Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91

Minimizing Conflicts: A Heuristic Repair Method for
Constraint-Satisfaction and Scheduling Problems

Steven Minton MINTON@QPTOLEMY.ARC.NASA.GOV
Andy Philips PHILIPS@PTOLEMY.ARC.NASA.GOV
NASA Ames Research Center, Mail Stop: 244-7,

Moffett Field, CA 94035 USA

Mark D. Johnston JOHNSTON@STSCI.EDU
Space Telescope Science Institute, 3700 San Martin Drive,
Baltimore, MD 21218 USA

Philip Laird LAIRD@PTOLEMY.ARC.NASA.GOV
NASA Ames Research Center, AI Research Branch, Mail Stop: 269-2,
Moffett Field, CA 94035 USA

Abstract

This paper describes a simple heuristic approach to solving large-scale constraint sat-
isfaction and scheduling problems. In this approach one starts with an inconsistent assign-
ment for a set of variables and searches through the space of possible repairs. The search
can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to
minimize the number of constraint violations after each step. The heuristic can be used
with a variety of different search strategies. We demonstrate empirically that on the n-
queens problem, a technique based on this approach performs orders of magnitude better
than traditional backtracking techniques. We also describe a scheduling application where
the approach has been used successfully. A theoretical analysis is presented both to explain
why this method works well on certain types of problems and to predict when it is likely
to be most effective.

1. Introduction

One of the most promising general approaches for solving combinatorial search problems is
to generate an initial, suboptimal solution and then to apply local repair heuristics. Tech-
niques based on this approach have met with empirical success on many combinatorial
problems, including the traveling salesman and graph partitioning problems (Johnson, Pa-
padimitrou, & Yannakakis, 1988). Such techniques also have a long tradition in AI, most
notably in problem-solving systems that operate by debugging initial solutions (Simmons,
1988; Sussman, 1975). In this paper, we describe how this idea can be extended to constraint
satisfaction problems (CSPs) in a natural manner.

Most of the previous work on CSP algorithms has assumed a “constructive” backtracking
approach in which a partial assignment to the variables is incrementally extended. In
contrast, our method (Minton, Johnston, Philips, & Laird, 1990) creates a complete, but
inconsistent assignment and then repairs constraint violations until a consistent assignment
is achieved. The method is guided by a simple ordering heuristic for repairing constraint
violations: identify a variable that is currently in conflict and select a new value that
minimizes the number of outstanding constraint violations.

©1993 AI Access Foundation. All rights reserved.



MINTON, PHILIPS, JOHNSTON, & LAIRD

We present empirical evidence showing that on some standard problems our approach is
considerably more efficient than traditional constructive backtracking methods. For exam-
ple, on the n-queens problem, our method quickly finds solutions to the one million queens
problem. We argue that the reason that repair-based methods can outperform constructive
methods is because a complete assignment can be more informative in guiding search than
a partial assignment. However, the utility of the extra information is domain dependent.
To help clarify the nature of this potential advantage, we present a theoretical analysis that
describes how various problem characteristics may affect the performance of the method.
This analysis shows, for example, how the “distance” between the current assignment and
solution (in terms of the minimum number of repairs that are required) affects the expected
utility of the heuristic.

The work described in this paper was inspired by a surprisingly effective neural net-
work developed by Adorf and Johnston (Adorf & Johnston, 1990; Johnston & Adorf, 1989)
for scheduling astronomical observations on the Hubble Space Telescope. Our heuristic
CSP method was distilled from an analysis of the network. In the process of carrying out
the analysis, we discovered that the effectiveness of the network has little to do with its
connectionist implementation. Furthermore, the ideas employed in the network can be im-
plemented very efficiently within a symbolic CSP framework. The symbolic implementation
is extremely simple. It also has the advantage that several different search strategies can be
employed, although we have found that hill-climbing methods are particularly well-suited
for the applications that we have investigated.

We begin the paper with a brief review of Adorf and Johnston’s neural network, and
then describe our symbolic method for heuristic repair. Following this, we describe empir-
ical results with the n-queens problem, graph-colorability problems and the Hubble Space
Telescope scheduling application. Finally, we consider a theoretical model identifying gen-
eral problem characteristics that influence the performance of the method. We include a
second gratuitous citation to ourselves to illustrate a short citation (Minton et al., 1990).

2. Previous Work: The GDS Network

By almost any measure, the Hubble Space Telescope scheduling problem is a complex task
(Johnston, 1987; Waldrop, 1989). Between ten thousand and thirty thousand astronomical
observations per year must be scheduled, subject to a great variety of constraints including
power restrictions, observation priorities, time-dependent orbital characteristics, movement
of astronomical bodies, stray light sources, etc. Because the telescope is an extremely
valuable resource with a limited lifetime, efficient scheduling is a critical concern. An
initial scheduling system, developed using traditional programming methods, highlighted
the difficulty of the problem; it was estimated that it would take over three weeks for the
system to schedule one week of observations. As described in section 4, this problem was
remedied by the development of a successful constraint-based system to augment the initial
system. At the heart of the constraint-based system is a neural network developed by
Adorf and Johnston, the Guarded Discrete Stochastic (GDS) network, which searches for a
schedule (Adorf & Johnston, 1990; Johnston & Adorf, 1989).

From a computational point of view the network is interesting because Adorf and John-
ston found that it performs well on a variety of tasks, in addition to the space telescope

26



MINIMIZING CONFLICTS: A HEURISTIC REPAIR METHOD

scheduling problem. For example, the network performs significantly better on the n-queens
problem than methods that were previously developed. The n-queens problem requires plac-
ing n queens on an n X n chessboard so that no two queens share a row, column or diagonal.
The network has been used to solve problems of up to 1024 queens, whereas most heuris-
tic backtracking methods encounter difficulties with problems one-tenth that size (Stone &
Stone, 1987).

The GDS network is a modified Hopfield network (Hopfield, 1982). In a standard
Hopfield network, all connections between neurons are symmetric. In the GDS network, the
main network is coupled asymmetrically to an auxiliary network of guard neurons which
restricts the configurations that the network can assume. This modification enables the
network to rapidly find a solution for many problems, even when the network is simulated
on a serial machine. Unfortunately, convergence to a stable configuration is no longer
guaranteed. Thus the network can fall into a local minimum involving a group of unstable
states among which it will oscillate. In practice, however, if the network fails to converge
after some number of neuron state transitions, it can simply be stopped and started over.

To illustrate the network architecture and updating scheme, let us consider how the
network is used to solve binary constraint satisfaction problems. A problem consists of
n variables, Xi...X,, with domains D;...D,, and a set of binary constraints. Each
constraint Co (X, Xi) is a subset of D; x Dy, specifying incompatible values for a pair of
variables. The goal is to find an assignment for each of the variables which satisfies the
constraints. (In this paper we only consider the task of finding a single solution, rather than
that of finding all solutions.) To solve a CSP using the network, each variable is represented
by a separate set of neurons, one neuron for each of the variable’s possible values. Each
neuron is either “on” or “off”, and in a solution state, every variable will have exactly
one of its corresponding neurons “on”, representing the value of that variable. Constraints
are represented by inhibitory (i.e., negatively weighted) connections between the neurons.
To insure that every variable is assigned a value, there is a guard neuron for each set of
neurons representing a variable; if no neuron in the set is on, the guard neuron will provide
an excitatory input that is large enough to turn one on. (Because of the way the connection
weights are set up, it is unlikely that the guard neuron will turn on more than one neuron.)
The network is updated on each cycle by randomly picking a set of neurons that represents
a variable, and flipping the state of the neuron in that set whose input is most inconsistent
with its current output (if any). When all neurons’ states are consistent with their input,
a solution is achieved.

To solve the n-queens problem, for example, each of the n x n board positions is rep-
resented by a neuron whose output is either one or zero depending on whether a queen is
currently placed in that position or not. (Note that this is a local representation rather
than a distributed representation of the board.) If two board positions are inconsistent,
then an inhibiting connection exists between the corresponding two neurons. For example,
all the neurons in a column will inhibit each other, representing the constraint that two
queens cannot be in the same column. For each row, there is a guard neuron connected to
each of the neurons in that row which gives the neurons in the row a large excitatory input,
enough so that at least one neuron in the row will turn on. The guard neurons thus enforce
the constraint that one queen in each row must be on. As described above, the network is
updated on each cycle by randomly picking a row and flipping the state of the neuron in

27



MINTON, PHILIPS, JOHNSTON, & LAIRD

AL

O = solution

Figure 1: Solutions Clustered vs. Solutions Evenly Distributed

that row whose input is most inconsistent with its current output. A solution is realized
when the output of every neuron is consistent with its input.

3. Why does the GDS Network Perform So Well?

Our analysis of the GDS network was motivated by the following question: “Why does
the network perform so much better than traditional backtracking methods on certain
tasks”? In particular, we were intrigued by the results on the n-queens problem, since this
problem has received considerable attention from previous researchers. For n-queens, Adorf
and Johnston found empirically that the network requires a linear number of transitions
to converge. Since each transition requires linear time, the expected (empirical) time for
the network to find a solution is O(n?). To check this behavior, Johnston and Adorf ran
experiments with n as high as 1024, at which point memory limitations became a problem.!

3.1 Nonsystematic Search Hypothesis

Initially, we hypothesized that the network’s advantage came from the nonsystematic nature
of its search, as compared to the systematic organization inherent in depth-first backtrack-
ing. There are two potential problems associated with systematic depth-first search. First,
the search space may be organized in such a way that poorer choices are explored first
at each branch point. For instance, in the n-queens problem, depth-first search tends to
find a solution more quickly when the first queen is placed in the center of the first row
rather than in the corner; apparently this occurs because there are more solutions with the
queen in the center than with the queen in the corner (Stone & Stone, 1987). Nevertheless,
most naive algorithms tend to start in the corner simply because humans find it more nat-
ural to program that way. However, this fact by itself does not explain why nonsystematic
search would work so well for n-queens. A backtracking program that randomly orders rows
(and columns within rows) performs much better than the naive method, but still performs
poorly relative to the GDS network.

1. The network, which is programmed in Lisp, requires approximately 11 minutes to solve the 1024 queens
problem on a TI Explorer II. For larger problems, memory becomes a limiting factor because the network
requires approximately O(n?) space. (Although the number of connections is actually O(n®), some
connections are computed dynamically rather than stored).

28



MINIMIZING CONFLICTS: A HEURISTIC REPAIR METHOD

The second potential problem with depth-first search is more significant and more subtle.
As illustrated by figure 1, a depth-first search can be a disadvantage when solutions are
not evenly distributed throughout the search space. In the tree at the left of the figure,
the solutions are clustered together. In the tree on the right, the solutions are more evenly
distributed. Thus, the average distance between solutions is greater in the left tree. In
a depth-first search, the average time to find the first solution increases with the average
distance between solutions. Consequently depth-first search performs relatively poorly in a
tree where the solutions are clustered, such as that on the left (Ginsberg & Harvey, 1990;
Langley, 1992). In comparison, a search strategy which examines the leaves of the tree in
random order is unaffected by solution clustering.

We investigated whether this phenomenon explained the relatively poor performance of
depth-first search on n-queens by experimenting with a randomized search algorithm, called
a Las Vegas algorithm (Brassard & Bratley, 1988). The algorithm begins by selecting a path
from the root to a leaf. To select a path, the algorithm starts at the root node and chooses
one of its children with equal probability. This process continues recursively until a leaf is
encountered. If the leaf is a solution the algorithm terminates, if not, it starts over again
at the root and selects a path. The same path may be examined more than once, since no
memory is maintained between successive trials.

The Las Vegas algorithm does, in fact, perform better than simple depth-first search on
n-queens (Brassard & Bratley, 1988). However, the performance of the Las Vegas algorithm
is still not nearly as good as that of the GDS network, and so we concluded that the
systematicity hypothesis alone cannot explain the network’s behavior.

3.2 Informedness Hypothesis

Our second hypothesis was that the network’s search process uses information about the
current assignment that is not available to a constructive backtracking program. ’s use
of an iterative improvement strategy guides the search in a way that is not possible with
a standard backtracking algorithm. We now believe this hypothesis is correct, in that it
explains why the network works so well. In particular, the key to the network’s performance
appears to be that state transitions are made so as to reduce the number of outstanding
inconsistencies in the network; specifically, each state transition involves flipping the neuron
whose output is most inconsistent with its current input. From a constraint satisfaction
perspective, it is as if the network reassigns a value for a variable by choosing the value
that violates the fewest constraints. This idea is captured by the following heuristic:

Min-Conflicts heuristic:

Given: A set of variables, a set of binary constraints, and an assignment specifying a
value for each variable. Two variables conflict if their values violate a constraint.
Procedure: Select a variable that is in conflict, and assign it a value that minimizes the
number of conflicts. (Break ties randomly.)

We have found that the network’s behavior can be approximated by a symbolic system
that uses the min-conflicts heuristic for hill climbing. The hill-climbing system starts with an
initial assignment generated in a preprocessing phase. At each choice point, the heuristic
chooses a variable that is currently in conflict and reassigns its value, until a solution is
found. The system thus searches the space of possible assignments, favoring assignments

29



MINTON, PHILIPS, JOHNSTON, & LAIRD

Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE)
If all variables are consistent, then solution found, STOP.
Let VAR = a variable in VARS-LEFT that is in conflict.
Remove VAR from VARS-LEFT.
Push VAR onto VARS-DONE.
Let VALUES = list of possible values for VAR in ascending order according
to number of conflicts with variables in VARS-LEFT.
For each VALUE in VALUES, until solution found:
If VALUE does not conflict with any variable that is in VARS-DONE,
then Assign VALUE to VAR.
Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)
end if
end for
end procedure

Begin program

Let VARS-LEFT list of all variables, each assigned an initial value.
Let VARS-DONE = nil

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

End program

Figure 2: Informed Backtracking Using the Min-Conflicts Heuristic

with fewer total conflicts. Of course, the hill-climbing system can become “stuck” in a local
maximum, in the same way that the network may become “stuck” in a local minimum. In
the next section we present empirical evidence to support our claim that the min-conflicts
approach can account for the network’s effectiveness.

There are two aspects of the min-conflicts hill-climbing method that distinguish it from
standard CSP algorithms. First, instead of incrementally constructing a consistent partial
assignment, the min-conflicts method repairs a complete but inconsistent assignment by
reducing inconsistencies. Thus, it uses information about the current assignment to guide
its search that is not available to a standard backtracking algorithm. Second, the use of
a hill-climbing strategy rather than a backtracking strategy produces a different style of
search.

3.2.1 REPAIR-BASED SEARCH STRATEGIES

(This is a example of a third level section.) Extracting the method from the network
enables us to tease apart and experiment with its different components. In particular, the
idea of repairing an inconsistent assignment can be used with a variety of different search
strategies in addition to hill climbing. For example, we can backtrack through the space
of possible repairs, rather than using a hill-climbing strategy, as follows. Given an initial
assignment generated in a preprocessing phase, we can employ the min-conflicts heuristic
to order the choice of variables and values to consider, as described in figure 2. Initially,
the variables are all on a list of VARS-LEFT, and as they are repaired, they are pushed onto
a list of VARS-DONE. The algorithm attempts to find a sequence of repairs, such that no

30



MINIMIZING CONFLICTS: A HEURISTIC REPAIR METHOD

variable is repaired more than once. If there is no way to repair a variable in VARS-LEFT
without violating a previously repaired variable (a variable in VARS-DONE), the algorithm
backtracks.

Notice that this algorithm is simply a standard backtracking algorithm augmented with
the min-conflicts heuristic to order its choice of which variable and value to attend to. This
illustrates an important point. The backtracking repair algorithm incrementally extends a
consistent partial assignment (i.e., VARS-DONE), as does a constructive backtracking pro-
gram, but in addition, uses information from the initial assignment (i.e., VARS-LEFT) to
bias its search. Thus, it is a type of informed backtracking. We still characterize it as
repair-based method since its search is guided by a complete, inconsistent assignment.

4. Experimental Results

[section ommitted]

5. A Theoretical Model

[section ommitted]

6. Discussion

[section ommitted]

Acknowledgments

The authors wish to thank Hans-Martin Adorf, Don Rosenthal, Richard Franier, Peter
Cheeseman and Monte Zweben for their assistance and advice. We also thank Ron Musick
and our anonymous reviewers for their comments. The Space Telescope Science Institute is
operated by the Association of Universities for Research in Astronomy for NASA.

Appendix A. Probability Distributions for N-Queens

[section ommitted]

References

Adorf, H., & Johnston, M. (1990). A discrete stochastic neural network algorithm for
constraint satisfaction problems. In Proceedings of the International Joint Conference
on Neural Networks.

Brassard, G., & Bratley, P. (1988). Algorithmics - Theory and Practice. Englewood Cliffs,
NJ: Prentice Hall.

Ginsberg, M., & Harvey, W. (1990). Iterative broadening. In Proceedings of AAAI-91.

31



MINTON, PHILIPS, JOHNSTON, & LAIRD

Hopfield, J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. In Proceedings of the National Academy of Sciences, Vol. 79.
Washington, DC: National Academy Press.

Johnson, D., Papadimitrou, C., & Yannakakis, M. (1988). How easy is local search?. Journal
of Computer and System Sciences, 37, 79-100.

Johnston, M. (1987). Automated telescope scheduling. In Proceedings of the Symposium on
Coordination of Observational Projects.

Johnston, M., & Adorf, H. (1989). Learning in stochastic neural networks for constraint

satisfaction problems. In Proceedings of NASA Conference on Space Telerobotics,
Vol. 37.

Langley, P. (1992). Systematic and nonsystematic search strategies. In Proceedings of
AAAI-92.

Minton, S., Johnston, M., Philips, A., & Laird, P. (1990). Solving large scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings
of AAAI-90.

Simmons, R. (1988). A theory of debugging plans and interpretations. In Proceedings of
AAAI-SS.

Stone, H., & Stone, J. (1987). Efficient search techniques - an empirical study of the n-queens
problem. IBM Journal of Research and Development, 31, 464-474.

Sussman, G. J. (1975). A Computer Model of Skill Acquisition. New York: New American
Elsevier.

Waldrop, M. (1989). Will the Hubble space telescope compute?. Science, 243, 1437-1439.

32



