
Journal of Arti�cial Intelligence Research 1 (1993) 109-138 Submitted 7/93; published 12/93

Decidable Reasoning in Terminological Knowledge

Representation Systems

Martin Buchheit buchheit@dfki.uni-sb.de

German Research Center for Arti�cial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany

Francesco M. Donini donini@assi.dis.uniroma1.it

Andrea Schaerf aschaerf@assi.dis.uniroma1.it

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza", Via Salaria 113, I-00198 Roma, Italy

Abstract

Terminological knowledge representation systems (TKRSs) are tools for designing and
using knowledge bases that make use of terminological languages (or concept languages).
We analyze from a theoretical point of view a TKRS whose capabilities go beyond the
ones of presently available TKRSs. The new features studied, often required in practical
applications, can be summarized in three main points. First, we consider a highly expres-
sive terminological language, called ALCNR, including general complements of concepts,
number restrictions and role conjunction. Second, we allow to express inclusion state-
ments between general concepts, and terminological cycles as a particular case. Third, we
prove the decidability of a number of desirable TKRS-deduction services (like satis�ability,
subsumption and instance checking) through a sound, complete and terminating calculus
for reasoning in ALCNR-knowledge bases. Our calculus extends the general technique
of constraint systems. As a byproduct of the proof, we get also the result that inclusion
statements in ALCNR can be simulated by terminological cycles, if descriptive semantics
is adopted.

1. Introduction

A general characteristic of many proposed terminological knowledge representation systems
(TKRSs) such as krypton (Brachman, Pigman Gilbert, & Levesque, 1985), nikl (Kacz-
marek, Bates, & Robins, 1986), back (Quantz & Kindermann, 1990), loom (MacGregor &
Bates, 1987), classic (Borgida, Brachman, McGuinness, & Alperin Resnick, 1989), kris
(Baader & Hollunder, 1991), k-rep (Mays, Dionne, & Weida, 1991), and others (see Rich,
editor, 1991; Woods & Schmolze, 1992), is that they are made up of two di�erent compo-
nents. Informally speaking, the �rst is a general schema concerning the classes of individuals
to be represented, their general properties and mutual relationships, while the second is a
(partial) instantiation of this schema, containing assertions relating either individuals to
classes, or individuals to each other. This characteristic, which the mentioned proposals
inherit from the seminal TKRS kl-one (Brachman & Schmolze, 1985), is shared also by
several proposals of database models such as Abrial's (1974), candide (Beck, Gala, &
Navathe, 1989), and taxis (Mylopoulos, Bernstein, & Wong, 1980).

Retrieving information in actual knowledge bases (KBs) built up using one of these sys-
tems is a deductive process involving both the schema (TBox) and its instantiation (ABox).

c
1993 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Buchheit, Donini, & Schaerf

In fact, the TBox is not just a set of constraints on possible ABoxes, but contains intensional
information about classes. This information is taken into account when answering queries
to the KB.

During the realization and use of a KB, a TKRS should provide a mechanical solution
for at least the following problems (from this point on, we use the word concept to refer to
a class):

1. KB-satis�ability : are an ABox and a TBox consistent with each other? That is, does
the KB admit a model? A positive answer is useful in the validation phase, while the
negative answer can be used to make inferences in refutation-style. The latter will be
precisely the approach taken in this paper.

2. Concept Satis�ability : given a KB and a concept C, does there exist at least one
model of the KB assigning a non-empty extension to C? This is important not only
to rule out meaningless concepts in the KB design phase, but also in processing the
user's queries, to eliminate parts of a query which cannot contribute to the answer.

3. Subsumption: given a KB and two concepts C and D, is C more general than D in
any model of the KB? Subsumption detects implicit dependencies among the concepts
in the KB.

4. Instance Checking : given a KB, an individual a and a concept C, is a an instance
of C in any model of the KB? Note that retrieving all individuals described by a
given concept (a query in the database lexicon) can be formulated as a set of parallel
instance checkings.

The above questions can be precisely characterized once the TKRS is given a semantics
(see next section), which de�nes models of the KB and gives a meaning to expressions
in the KB. Once the problems are formalized, one can start both a theoretical analysis
of them, and|maybe independently|a search for reasoning procedures accomplishing the
tasks. Completeness and correctness of procedures can be judged with respect to the formal
statements of the problems.

Up to now, all the proposed systems give incomplete procedures for solving the above
problems 1{4, except for kris1. That is, some inferences are missed, in some cases without
a precise semantical characterization of which ones are. If the designer or the user needs
(more) complete reasoning, she/he must either write programs in a suitable programming
language (as in the database proposal of Abrial, and in taxis), or de�ne appropriate in-
ference rules completing the inference capabilities of the system (as in back, loom, and
classic). From the theoretical point of view, for several systems (e.g., loom) it is not even
known if complete procedures can ever exist|i.e., the decidability of the corresponding
problems is not known.

Recent research on the computational complexity of subsumption had an in
uence in
many TKRSs on the choice for incomplete procedures. Brachman and Levesque (1984)

1. Also the system classic is complete, but only w.r.t. a non-standard semantics for the treatment of
individuals. Complete reasoning w.r.t. standard semantics for individuals is not provided, and is coNP-
hard (Lenzerini & Schaerf, 1991).

110

Decidable Reasoning in Terminological KR Systems

started this research analyzing the complexity of subsumption between pure concept ex-
pressions, abstracting from KBs (we call this problem later in the paper as pure subsump-
tion). The motivation for focusing on such a small problem was that pure subsumption is
a fundamental inference in any TKRS. It turned out that pure subsumption is tractable
(i.e., worst-case polynomial-time solvable) for simple languages, and intractable for slight
extensions of such languages, as subsequent research de�nitely con�rmed (Nebel, 1988;
Donini, Lenzerini, Nardi, & Nutt, 1991a, 1991b; Schmidt-Schau� & Smolka, 1991; Donini,
Hollunder, Lenzerini, Marchetti Spaccamela, Nardi, & Nutt, 1992). Also, beyond compu-
tational complexity, pure subsumption was proved undecidable in the TKRSs U (Schild,
1988), kl-one (Schmidt-Schau�, 1989) and nikl (Patel-Schneider, 1989).

Note that extending the language results in enhancing its expressiveness, therefore the
result of that research could be summarized as: The more a TKRS language is expressive,
the higher is the computational complexity of reasoning in that language|as Levesque
(1984) �rst noted. This result has been interpreted in two di�erent ways, leading to two
di�erent TKRSs design philosophies:

1. `General-purpose languages for TKRSs are intractable, or even undecidable, and
tractable languages are not expressive enough to be of practical interest'. Follow-
ing this interpretation, in several TKRSs (such as nikl, loom and back) incomplete
procedures for pure subsumption are considered satisfactory (e.g., see (MacGregor &
Brill, 1992) for loom). Once completeness is abandoned for this basic subproblem,
completeness of overall reasoning procedures is not an issue anymore; but other issues
arise, such as how to compare incomplete procedures (Heinsohn, Kudenko, Nebel,
& Pro�tlich, 1992), and how to judge a procedure \complete enough" (MacGregor,
1991). As a practical tool, inference rules can be used in such systems to achieve the
expected behavior of the KB w.r.t. the information contained in it.

2. `A TKRS is (by de�nition) general-purpose, hence it must provide tractable and
complete reasoning to a user'. Following this line, other TKRSs (such as krypton
and classic) provide limited tractable languages for expressing concepts, following
the \small-can-be-beautiful" approach (see Patel-Schneider, 1984). The gap between
what is expressible in the TKRS language and what is needed to be expressed for the
application is then �lled by the user, by a (sort of) programming with inference rules.
Of course, the usual problems present in program development and debugging arise
(McGuinness, 1992).

What is common to both approaches is that a user must cope with incomplete reasoning.
The di�erence is that in the former approach, the burden of regaining useful yet missed
inferences is mostly left to the developers of the TKRS (and the user is supposed to specify
what is \complete enough"), while in the latter this is mainly left to the user. These
are perfectly reasonable approaches in a practical context, where incomplete procedures
and specialized programs are often used to deal with intractable problems. In our opinion
incomplete procedures are just a provisional answer to the problem|the best possible up to
now. In order to improve on such an answer, a theoretical analysis of the general problems
1{4 is to be done.

Previous theoretical results do not deal with the problems 1{4 in their full generality.
For example, the problems are studied in (Nebel, 1990, Chapter 4), but only incomplete

111

Buchheit, Donini, & Schaerf

procedures are given, and cycles are not considered. In (Donini, Lenzerini, Nardi, & Schaerf,
1993; Schaerf, 1993a) the complexity of instance checking has been analyzed, but only KBs
without a TBox are treated. Instance checking has also been analyzed in (Vilain, 1991),
but addressing only that part of the problem which can be performed as parsing.

In addition, we think that the expressiveness of actual systems should be enhanced
making terminological cycles (see Nebel, 1990, Chapter 5) available in TKRSs. Such a
feature is of undoubtable practical interest (MacGregor, 1992), yet most present TKRSs
can only approximate cycles, by using forward inference rules (as in back, classic, loom).
In our opinion, in order to make terminological cycles fully available in complete TKRSs, a
theoretical investigation is still needed.

Previous theoretical work on cycles was done in (Baader, 1990a, 1990b; Baader, B�urkert,
Hollunder, Nutt, & Siekmann, 1990; Dionne, Mays, & Oles, 1992, 1993; Nebel, 1990, 1991;
Schild, 1991), but considering KBs formed by the TBox alone. Moreover, these approaches
do not deal with number restrictions (except for Nebel, 1990, Section 5.3.5)|a basic feature
already provided by TKRSs| and the techniques used do not seem easily extensible to
reasoning with ABoxes. We compare in detail several of these works with ours in Section 4.

In this paper, we propose a TKRS equipped with a highly expressive language, includ-
ing constructors often required in practical applications, and prove decidability of problems
1{4. In particular, our system uses the language ALCNR, which supports general comple-
ments of concepts, number restrictions and role conjunction. Moreover, the system allows
one to express inclusion statements between general concepts and, as a particular case,
terminological cycles. We prove decidability by means of a suitable calculus, which is de-
veloped extending the well established framework of constraint systems (see Donini et al.,
1991a; Schmidt-Schau� & Smolka, 1991), thus exploiting a uniform approach to reasoning
in TKRSs. Moreover, our calculus can easily be turned into a decision procedure.

The paper is organized as follows. In Section 2 we introduce the language, and we
give it a Tarski-style extensional semantics, which is the most commonly used. Using this
semantics, we establish relationships between problems 1{4 which allow us to concentrate
on KB-satis�ability only. In Section 3 we provide a calculus for KB-satis�ability, and show
correctness and termination of the calculus. Hence, we conclude that KB-satis�ability is
decidable in ALCNR, which is the main result of this paper. In Section 4 we compare our
approach with previous results on decidable TKRSs, and we establish the equivalence of
general (cyclic) inclusion statements and general concept de�nitions using the descriptive
semantics. Finally, we discuss in detail several practical issues related to our results in
Section 5.

2. Preliminaries

In this section we �rst present the basic notions regarding concept languages. Then we
describe knowledge bases built up using concept languages, and reasoning services that
must be provided for extracting information from such knowledge bases.

2.1 Concept Languages

In concept languages, concepts represent the classes of objects in the domain of interest,
while roles represent binary relations between objects. Complex concepts and roles can be

112

Decidable Reasoning in Terminological KR Systems

de�ned by means of suitable constructors applied to concept names and role names. In
particular, concepts and roles in ALCNR can be formed by means of the following syntax
(where Pi (for i = 1; : : : ; k) denotes a role name, C and D denote arbitrary concepts, and
R an arbitrary role):

C;D �! A j (concept name)
> j (top concept)
? j (bottom concept)
(C uD) j (conjunction)
(C tD) j (disjunction)
:C j (complement)
8R.C j (universal quanti�cation)
9R.C j (existential quanti�cation)
(� nR) j (� nR) (number restrictions)

R �! P1 u � � � u Pk (role conjunction)

When no confusion arises we drop the brackets around conjunctions and disjunctions.
We interpret concepts as subsets of a domain and roles as binary relations over a domain.
More precisely, an interpretation I = (�I ; �I) consists of a nonempty set �I (the domain
of I) and a function �I (the extension function of I), which maps every concept to a subset
of �I and every role to a subset of �I � �I . The interpretation of concept names and
role names is thus restricted by AI � �I , and P I � �I � �I , respectively. Moreover,
the interpretation of complex concepts and roles must satisfy the following equations (]fg
denotes the cardinality of a set):

>I = �I

?I = ;

(C uD)I = CI \DI

(C tD)I = CI [DI (1)

(:C)I = �I nCI

(8R.C)I = fd1 2 �I j 8d2 : (d1; d2) 2 RI ! d2 2 CIg

(9R.C)I = fd1 2 �I j 9d2 : (d1; d2) 2 RI ^ d2 2 CIg

(� nR)I = fd1 2 �I j]fd2 j (d1; d2) 2 RIg � ng

(� nR)I = fd1 2 �I j]fd2 j (d1; d2) 2 RIg � ng

(P1 u � � � u Pk)
I = P I

1 \ � � � \ P I
k

2.2 Knowledge Bases

A knowledge base built by means of concept languages is generally formed by two compo-
nents: The intensional one, called TBox, and the extensional one, called ABox.

We �rst turn our attention to the TBox. As we said before, the intensional level spec-
i�es the properties of the concepts of interest in a particular application. Syntactically,
such properties are expressed in terms of what we call inclusion statements. An inclusion

113

Buchheit, Donini, & Schaerf

statement (or simply inclusion) has the form

C v D

where C and D are two arbitrary ALCNR-concepts. Intuitively, the statement speci�es
that every instance of C is also an instance ofD. More precisely, an interpretation I satis�es
the inclusion C v D if CI � DI .

A TBox is a �nite set of inclusions. An interpretation I is a model for a TBox T if I
satis�es all inclusions in T .

In general, TKRSs provide the user with mechanisms for stating concept introductions
(e.g., Nebel, 1990, Section 3.2) of the form A

:
= D (concept de�nition, interpreted as set

equality), orA _�D (concept speci�cation, interpreted as set inclusion), with the restrictions
that the left-hand side concept A must be a concept name, that for each concept name
at most one introduction is allowed, and that no terminological cycles are allowed, i.e.,
no concept name may occur|neither directly nor indirectly|within its own introduction.
These restrictions make it possible to substitute an occurrence of a de�ned concept by its
de�nition.

We do not impose any of these restrictions to the form of inclusions, obtaining statements
that are syntactically more expressive than concept introductions. In particular, a de�nition
of the form A

:
= D can be expressed in our system using the pair of inclusions A v D

and D v A and a speci�cation of the form A _� D can be simply expressed by A v D.
Conversely, an inclusion of the form C v D, where C and D are arbitrary concepts, cannot
be expressed with concept introductions. Moreover, cyclic inclusions are allowed in our
statements, realizing terminological cycles.

As shown in (Nebel, 1991), there are at least three types of semantics for terminolog-
ical cycles, namely the least �xpoint, the greatest �xpoint, and the descriptive semantics.
Fixpoint semantics choose particular models among the set of interpretations that satisfy a
statement of the form A

:
= D. Such models are chosen as the least and the greatest �xpoint

of the above equation. The descriptive semantics instead considers all interpretations that
satisfy the statement (i.e., all �xpoints) as its models.

However, �xpoint semantics naturally apply only to �xpoint statements like A
:
= D,

where D is a \function" of A, i.e., A may appear in D, and there is no obvious way to
extend them to general inclusions. In addition, since our language includes the constructor
for complement of general concepts, the \function" D may be not monotone, and therefore
the least and the greatest �xpoints may be not unique. Whether there exists or not a
de�nitional semantics that is suitable for cyclic de�nitions in expressive languages is still
unclear.

Conversely, the descriptive semantics interprets statements as just restricting the set of
possible models, with no de�nitional import. Although it is not completely satisfactory in all
practical cases (Baader, 1990b; Nebel, 1991), the descriptive semantics has been considered
to be the most appropriate one for general cyclic statements in powerful concept languages.
Hence, it seems to be the most suitable to be extended to our case and it is exactly the one
we have adopted above.

Observe that our decision to put general inclusions in the TBox is not a standard one. In
fact, in TKRS like krypton such statements were put in the ABox. However, we conceive

114

Decidable Reasoning in Terminological KR Systems

inclusions as a generalization of traditional TBox statements: acyclic concept introductions,
with their de�nitional import, can be perfectly expressed with inclusions; and cyclic concept
introductions can be expressed as well, if descriptive semantics is adopted. Therefore, we
believe that inclusions should be part of the TBox.

Notice that role conjunction allows one to express the practical feature of subroles. For
example, the role ADOPTEDCHILD can be written as CHILDuADOPTEDCHILD0, where ADOPTED-
CHILD' is a role name, making it a subrole of CHILD. Following such idea, every hierarchy
of role names can be rephrased with a set of role conjunctions, and vice versa.

Actual systems usually provide for the construction of hierarchies of roles by means of
role introductions (i.e., statements of the form P

:
= R and P _� R) in the TBox. However,

in our simple language for roles, cyclic de�nitions of roles can be always reduced to acyclic
de�nitions, as explained in (Nebel, 1990, Sec.5.3.1). When role de�nitions are acyclic, one
can always substitute in every concept each role name with its de�nition, obtaining an
equivalent concept. Therefore, we do not consider role de�nitions in this paper, and we
conceive the TBox just as a set of concept inclusions.

Even so, it is worth to notice that concept inclusions can express knowledge about roles.
In particular, domain and range restrictions of roles can be expressed, in a way similar to
the one in (Catarci & Lenzerini, 1993). Restricting the domain of a role R to a concept C
and its range to a concept D can be done by the two inclusions

9R.> v C; > v 8R.D

It is straightforward to show that if an interpretation I satis�es the two inclusions, then
RI � CI �DI .

Combining subroles with domain and range restrictions it is also possible to partially
express the constructor for role restriction, which is present in various proposals (e.g.,
the language FL in Brachman & Levesque, 1984). Role restriction, written as R : C, is
de�ned by (R : C)I = f(d1; d2) 2 �I � �I j (d1; d2) 2 RI ^ d2 2 CIg. For example the
role DAUGHTER, which can be formulated as CHILD:Female, can be partially simulated by
CHILD u DAUGHTER0, with the inclusion > v 8DAUGHTER0.Female. However, this simulation
would not be complete in number restrictions: E.g., if a mother has at least three daughters,
then we know she has at least three female children; if instead we know that she has three
female children we cannot infer that she has three daughters.

We can now turn our attention to the extensional level, i.e., the ABox. The ABox
essentially allows one to specify instance-of relations between individuals and concepts, and
between pairs of individuals and roles.

Let O be an alphabet of symbols, called individuals. Instance-of relationships are ex-
pressed in terms of membership assertions of the form:

C(a); R(a; b);

where a and b are individuals, C is an ALCNR-concept, and R is an ALCNR-role. Intu-
itively, the �rst form states that a is an instance of C, whereas the second form states that
a is related to b by means of the role R.

115

Buchheit, Donini, & Schaerf

In order to assign a meaning to membership assertions, the extension function �I of an
interpretation I is extended to individuals by mapping them to elements of �I in such a
way that aI 6= bI if a 6= b. This property is called Unique Name Assumption; it ensures
that di�erent individuals are interpreted as di�erent objects.

An interpretation I satis�es the assertion C(a) if aI 2 CI , and satis�es R(a; b) if
(aI ; bI) 2 RI . An ABox is a �nite set of membership assertions. I is a model for an ABox
A if I satis�es all the assertions in A.

An ALCNR-knowledge base � is a pair � = hT ;Ai where T is a TBox and A is an
ABox. An interpretation I is a model for � if it is both a model for T and a model for A.

We can now formally de�ne the problems 1{4 mentioned in the introduction. Let � be
an ALCNR-knowledge base.

1. KB-satis�ability : � is satis�able, if it has a model;

2. Concept Satis�ability : C is satis�able w.r.t �, if there exists a model I of � such that
CI 6= ;;

3. Subsumption : C is subsumed by D w.r.t. �, if CI � DI for every model I of �;

4. Instance Checking : a is an instance of C, written � j= C(a), if the assertion C(a) is
satis�ed in every model of �.

In (Nebel, 1990, Sec.3.3.2) it is shown that the ABox plays no active role when checking
concept satis�ability and subsumption. In particular, Nebel shows that the ABox (subject
to its satis�ability) can be replaced by an empty one without a�ecting the result of those
services. Actually, in (Nebel, 1990), the above property is stated for a language less expres-
sive than ALCNR. However, it is easy to show that it extends to ALCNR. It is important
to remark that such a property is not valid for all concept languages. In fact, there are
languages that include some constructors that refer to the individuals in the concept lan-
guage, e.g., the constructor one-of (Borgida et al., 1989) that forms a concept from a set of
enumerated individuals. If a concept language includes such a constructor the individuals
in the TBox can interact with the individuals in the ABox, as shown in (Schaerf, 1993b).
As a consequence, both concept satis�ability and subsumption depend also on the ABox.

Example 2.1 Consider the following knowledge base � = hT ;Ai:

T = f9TEACHES.Course v (Studentu 9DEGREE.BS)t Prof;

Prof v 9DEGREE.MS;
9DEGREE.MS v 9DEGREE.BS;
MS u BS v ?g

A = fTEACHES(john; cs156); (� 1 DEGREE)(john); Course(cs156)g

� is a fragment of a hypothetical knowledge base describing the organization of a university.
The �rst inclusion, for instance, states that the persons teaching a course are either graduate
students (students with a BS degree) or professors. It is easy to see that � is satis�able. For
example, the following interpretation I satis�es all the inclusions in T and all the assertions

116

Decidable Reasoning in Terminological KR Systems

in A, and therefore it is a model for �:

�I = fjohn; cs156; csbg; johnI = john; cs156I = cs156

StudentI = fjohng; ProfI = ;; CourseI = fcs156g; BSI = fcsbg
MSI = ;; TEACHESI = f(john; cs156)g; DEGREEI = f(john; csb)g

We have described the interpretation I by giving only �I , and the values of I on
concept names and role names. It is straightforward to see that all values of I on complex
concepts and roles are uniquely determined by imposing that I must satisfy the Equations 1
on page 113.

Notice that it is possible to draw several non-trivial conclusions from �. For example, we
can infer that � j= Student(john). Intuitively this can be shown as follows: John teaches
a course, thus he is either a student with a BS or a professor. But he can't be a professor
since professors have at least two degrees (BS and MS) and he has at most one, therefore
he is a student.

Given the previous semantics, the problems 1{4 can all be reduced to KB-satis�ability
(or to its complement) in linear time. In fact, given a knowledge base � = hT ;Ai, two
concepts C and D, an individual a, and an individual b not appearing in �, the following
equivalences hold:

C is satis�able w:r:t � i� hT ;A [fC(b)gi is satis�able:

C is subsumed by D w:r:t: � i� hT ;A [f(C u :D)(b)gi is not satis�able:

� j= C(a) i� hT ;A [f(:C)(a)gi is not satis�able:

A slightly di�erent form of these equivalences has been given in (Hollunder, 1990). The
equivalences given here are a straightforward consequence of the ones given by Hollunder.
However, the above equivalences are not valid for languages including constructors that refer
to the individuals in the concept language. The equivalences between reasoning services in
such languages are studied in (Schaerf, 1993b).

Based on the above equivalences, in the next section we concentrate just on KB-
satis�ability.

3. Decidability Result

In this section we provide a calculus for deciding KB-satis�ability. In particular, in Subsec-
tion 3.1 we present the calculus and we state its correctness. Then, in Subsection 3.2, we
prove the termination of the calculus. This will be su�cient to assess the decidability of all
problems 1{4, thanks to the relationships between the four problems.

3.1 The calculus and its correctness

Our method makes use of the notion of constraint system (Donini et al., 1991a; Schmidt-
Schau� & Smolka, 1991; Donini, Lenzerini, Nardi, & Schaerf, 1991c), and is based on a
tableaux-like calculus (Fitting, 1990) that tries to build a model for the logical formula
corresponding to a KB.

117

Buchheit, Donini, & Schaerf

We introduce an alphabet of variable symbols V together with a well-founded total
ordering `�' on V . The alphabet V is disjoint from the other ones de�ned so far. The
purpose of the ordering will become clear later. The elements of V are denoted by the
letters x; y; z; w. From this point on, we use the term object as an abstraction for individual
and variable (i.e., an object is an element of O [V). Objects are denoted by the symbols
s; t and, as in Section 2, individuals are denoted by a; b.

A constraint is a syntactic entity of one of the forms:

s:C; sPt; 8x.x:C; s 6
:
= t;

where C is a concept and P is a role name. Concepts are assumed to be simple, i.e., the
only complements they contain are of the form :A, where A is a concept name. Arbitrary
ALCNR-concepts can be rewritten into equivalent simple concepts in linear time (Donini
et al., 1991a). A constraint system is a �nite nonempty set of constraints.

Given an interpretation I, we de�ne an I-assignment � as a function that maps every
variable of V to an element of �I , and every individual a to aI (i.e., �(a) = aI for all
a 2 O).

A pair (I; �) satis�es the constraint s:C if �(s) 2 CI , the constraint sPt if (�(s); �(t))
2 P I , the constraint s 6

:
= t if �(s) 6= �(t), and �nally, the constraint 8x.x:C if CI = �I

(notice that � does not play any role in this case). A constraint system S is satis�able if
there is a pair (I; �) that satis�es every constraint in S.

An ALCNR-knowledge base � = hT ;Ai can be translated into a constraint system
S� by replacing every inclusion C v D 2 T with the constraint 8x.x::C tD, every
membership assertion C(a) with the constraint a:C, every R(a; b) with the constraints
aP1b; : : : ; aPkb if R = P1 u : : :u Pk, and including the constraint a 6

:
= b for every pair (a; b)

of individuals appearing in A. It is easy to see that � is satis�able if and only if S� is
satis�able.

In order to check a constraint system S for satis�ability, our technique adds constraints
to S until either an evident contradiction is generated or an interpretation satisfying it can
be obtained from the resulting system. Constraints are added on the basis of a suitable set
of so-called propagation rules.

Before providing the rules, we need some additional de�nitions. Let S be a constraint
system and R = P1 u : : :u Pk (k � 1) be a role. We say that t is an R-successor of s in S
if sP1t; : : : ; sPkt are in S. We say that t is a direct successor of s in S if for some role R,
t is an R-successor of s. We call direct predecessor the inverse relation of direct successor.
If S is clear from the context we omit it. Moreover, we denote by successor the transitive
closure of the relation direct successor, and we denote by predecessor its inverse.

We assume that variables are introduced in a constraint system according to the ordering
`�'. This means, if y is introduced in a constraint system S then x � y for all variables x
that are already in S.

We denote by S[x=s] the constraint system obtained from S by replacing each occurrence
of the variable x by the object s.

We say that s and t are separated in S if the constraint s 6
:
= t is in S.

Given a constraint system S and an object s, we de�ne the function �(�; �) as follows:
�(S; s) := fC j s:C 2 Sg. Moreover, we say that two variables x and y are S-equivalent,

118

Decidable Reasoning in Terminological KR Systems

written x �s y, if �(S; x) = �(S; y). Intuitively, two S-equivalent variables can represent the
same element in the potential interpretation built by the rules, unless they are separated.

The propagation rules are:

1. S !u fs:C1; s:C2g [S

if 1. s:C1 u C2 is in S,
2. s:C1 and s:C2 are not both in S

2. S !t fs:Dg [S

if 1. s:C1 t C2 is in S,
2. neither s:C1 nor s:C2 is in S,
3. D = C1 or D = C2

3. S !8 ft:Cg [S

if 1. s: 8R.C is in S,
2. t is an R-successor of s,
3. t:C is not in S

4. S !9 fsP1y; : : : ; sPky; y:Cg [S

if 1. s: 9R.C is in S,
2. R = P1 u : : :u Pk ,
3. y is a new variable,
4. there is no t such that t is an R-successor of s in S and t:C is in S,
5. if s is a variable there is no variable w such that w � s and s �s w

5. S !� fsP1yi; : : : ; sPkyi j i 2 1::ng [fyi 6
:
= yj j i; j 2 1::n; i 6= jg [S

if 1. s: (� nR) is in S,
2. R = P1 u : : :u Pk ,
3. y1; : : : ; yn are new variables,
4. there do not exist n pairwise separated R-successors of s in S,
5. if s is a variable there is no variable w such that w � s and s �s w

6. S !� S[y=t]

if 1. s: (� nR) is in S,
2. s has more than n R-successors in S,
3. y; t are two R-successors of s which are not separated

7. S !8x fs:Cg [S

if 1. 8x.x:C is in S,
2. s appears in S,
3. s:C is not in S.

We call the rules !t and !� nondeterministic rules, since they can be applied in
di�erent ways to the same constraint system (intuitively, they correspond to branching
rules of tableaux). All the other rules are called deterministic rules. Moreover, we call the
rules !9 and !� generating rules, since they introduce new variables in the constraint
system. All other rules are called nongenerating ones.

119

Buchheit, Donini, & Schaerf

The use of the condition based on the S-equivalence relation in the generating rules
(condition 5) is related to the goal of keeping the constraint system �nite even in presence
of potentially in�nite chains of applications of generating rules. Its role will become clearer
later in the paper.

One can verify that rules are always applied to a system S either because of the presence
in S of a given constraint s:C (condition 1), or, in the case of the !8x-rule, because of the
presence of an object s in S. When no confusion arises, we will say that a rule is applied
to the constraint s:C or the object s (instead of saying that it is applied to the constraint
system S).

Proposition 3.1 (Invariance) Let S and S0 be constraint systems. Then:

1. If S0 is obtained from S by application of a deterministic rule, then S is satis�able if
and only if S0 is satis�able.

2. If S0 is obtained from S by application of a nondeterministic rule, then S is satis�-
able if S0 is satis�able. Conversely, if S is satis�able and a nondeterministic rule is
applicable to an object s in S, then it can be applied to s in such a way that it yields
a satis�able constraint system.

Proof. The proof is mainly a rephrasing of typical soundness proofs for tableaux meth-
ods (e.g., Fitting, 1990, Lemma 6.3.2). The only non-standard constructors are number
restrictions.
1. \(" Considering the deterministic rules one can directly check that S is a subset of S0.
So it is obvious that S is satis�able if S 0 is satis�able.

\)" In order to show that S0 is satis�able if this is the case for S we consider in turn
each possible deterministic rule application leading from S to S0. We assume that (I; �)
satis�es S.

If the !u-rule is applied to s:C1 u C2 in S, then S0 = S [fs:C1; s:C2g. Since (I; �)
satis�es s:C1 u C2, (I; �) satis�es s:C1 and s:C2 and therefore S0.

If the !8-rule is applied to s: 8R.C, there must be an R-successor t of s in S such that
S0 = S[ft:Cg. Since (I; �) satis�es S, it holds that (�(s); �(t)) 2 RI . Since (I; �) satis�es
s: 8R.C, it holds that �(t) 2 CI . So (I; �) satis�es t:C and therefore S0.

If the !8x-rule is applied to an s because of the presence of 8x.x:C in S, then S0 =
S [fs:Cg. Since (I; �) satis�es S it holds that CI = �I . Therefore �(s) 2 CI and so
(I; �) satis�es S0.

If the !9-rule is applied to s: 9R.C, then S0 = S [fsP1y; : : : ; sPky; y:Cg. Since (I; �)
satis�es S, there exists a d such that (�(s); d) 2 RI and d 2 CI . We de�ne the I-assignment
�0 as �0(y) := d and �0(t) := �(t) for t 6= y. It is easy to show that (I; �0) satis�es S0.

If the !�-rule is applied to s: (� nR), then S0 = S [fsP1yi; : : : ; sPkyi j i 2 1::ng [
fyi 6

:
= yj j i; j 2 1::n; i 6= jg. Since (I; �) satis�es S, there exist n distinct elements

d1; : : : ; dn 2 �I such that (�(s); di) 2 RI . We de�ne the I-assignment �0 as �0(yi) := di
for i 2 1::n and �0(t) := �(t) for t 62 fy1; : : : ; yng. It is easy to show that (I; �0) satis�es S0.

2. \(" Assume that S0 is satis�ed by (I; �0). We show that S is also satis�able. If S0

is obtained from S by application of the !t-rule, then S is a subset of S0 and therefore
satis�ed by (I; �0).

120

Decidable Reasoning in Terminological KR Systems

If S0 is obtained from S by application of the !�-rule to s: (� nR) in S, then there
are y; t in S such that S0 = S[y=t]. We de�ne the I-assignment � as �(y) := �0(t) and
�(v) := �0(v) for every object v with v 6= y. Obviously (I; �) satis�es S.

\)" Now suppose that S is satis�ed by (I; �) and a nondeterministic rule is applicable
to an object s.

If the !t-rule is applicable to s:C1 tC2 then, since S is satis�able, �(s) 2 (C1 t C2)
I .

It follows that either �(s) 2 CI
1 or �(s) 2 CI

2 (or both). Hence, the !t-rule can obviously
be applied in a way such that (I; �) satis�es the resulting constraint system S0.

If the !�-rule is applicable to s: (� nR), then|since (I; �) satis�es S|it holds that
�(s) 2 (� nR)I and therefore the set fd 2 �I j (�(s); d) 2 RIg has at most n elements.
On the other hand, there are more than n R-successors of s in S and for each R-successor t
of s we have (�(s); �(t)) 2 RI . Thus, we can conclude by the Pigeonhole Principle (see e.g.,
Lewis & Papadimitriou, 1981, page 26) that there exist at least two R-successors t; t0 of s
such that �(t) = �(t0). Since (I; �) satis�es S, the constraint t 6

:
= t0 is not in S. Therefore

one of the two must be a variable, let's say t0 = y. Now obviously (I; �) satis�es S[y=t].

Given a constraint system S, more than one rule might be applicable to it. We de�ne
the following strategy for the application of rules:

1. apply a rule to a variable only if no rule is applicable to individuals;

2. apply a rule to a variable x only if no rule is applicable to a variable y such that y � x;

3. apply generating rules only if no nongenerating rule is applicable.

The above strategy ensures that the variables are processed one at a time according to
the ordering `�'.

From this point on, we assume that rules are always applied according to this strategy
and that we always start with a constraint system S� coming from an ALCNR-knowledge
base �. The following lemma is a direct consequence of these assumptions.

Lemma 3.2 (Stability) Let S be a constraint system and x be a variable in S. Let a
generating rule be applicable to x according to the strategy. Let S0 be any constraint system
derivable from S by any sequence (possibly empty) of applications of rules. Then

1. No rule is applicable in S0 to a variable y with y � x

2. �(S; x) = �(S0; x)

3. If y is a variable in S with y � x then y is a variable in S0, i.e., the variable y is not
substituted by another variable or by a constant.

Proof. 1. By contradiction: Suppose S � S0 !� S1 !� � � � !� Sn � S0, where � 2
ft;u; 9; 8;�;�; 8xg and a rule is applicable to a variable y such that y � x in S0. Then
there exists a minimal i, where i � n, such that this is the case in Si. Note that i 6= 0; in
fact, because of the strategy, if a rule is applicable to x in S no rule is applicable to y in S.
So no rule is applicable to any variable z such that z � x in S0; : : : ; Si�1. It follows that
from Si�1 to Si a rule is applied to x or to a variable w such that x � w. By an exhaustive

121

Buchheit, Donini, & Schaerf

analysis of all rules we see that|whichever is the rule applied from Si�1 to Si|no new
constraint of the form y:C or yRz can be added to Si�1, and therefore no rule is applicable
to y in Si, contradicting the assumption.
2. By contradiction: Suppose �(S; x) 6= �(S0; x). Call y the direct predecessor of x, then a
rule must have been applied either to y or to x itself. Obviously we have y � x, therefore
the former case cannot be because of point 1. A case analysis shows that the only rules
which can have been applied to x are generating ones and the !8 and the !� rules. But
these rules add new constraints only to the direct successors of x and not to x itself and
therefore do not change �(�; x).
3. This follows from point 1. and the strategy.

Lemma 3.2 proves that for a variable x which has a direct successor, �(�; x) is stable,
i.e., it will not change because of subsequent applications of rules. In fact, if a variable
has a direct successor it means that a generating rule has been applied to it, therefore
(Lemma 3.2.2) from that point on �(�; x) does not change.

A constraint system is complete if no propagation rule applies to it. A complete system
derived from a system S is also called a completion of S. A clash is a constraint system
having one of the following forms:

� fs:?g

� fs:A; s::Ag, where A is a concept name.

� fs: (� nR)g [fsP1ti; : : : ; sPkti j i 2 1::n+ 1g
[fti 6

:
= tj j i; j 2 1::n+ 1; i 6= jg,

where R = P1 u : : :u Pk .

A clash is evidently an unsatis�able constraint system. For example, the last case
represents the situation in which an object has an at-most restriction and a set of R-
successors that cannot be identi�ed (either because they are individuals or because they
have been created by some at-least restrictions).

Any constraint system containing a clash is obviously unsatis�able. The purpose of the
calculus is to generate completions, and look for the presence of clashes inside. If S is a
completion of S� and S contains no clash, we prove that it is always possible to construct
a model for � on the basis of S. Before looking at the technical details of the proof, let us
consider an example of application of the calculus for checking satis�ability.

Example 3.3 Consider the following knowledge base � = hT ;Ai:

T = fItalian v 9FRIEND.Italiang

A = fFRIEND(peter; susan);
8FRIEND.:Italian(peter);
9FRIEND.Italian(susan)g

The corresponding constraint system S� is:

S� = f8x.x::Italian t 9FRIEND.Italian;
peterFRIENDsusan;

122

Decidable Reasoning in Terminological KR Systems

peter: 8FRIEND.:Italian;
susan: 9FRIEND.Italian
peter 6

:
= susang

A sequence of applications of the propagation rules to S� is as follows:

S1 = S� [fsusan::Italiang (!8-rule)

S2 = S1 [fpeter::Italiant 9FRIEND.Italiang (!8x-rule)

S3 = S2 [fsusan::Italiant 9FRIEND.Italiang (!8x-rule)
S4 = S3 [fpeter::Italiang (!t-rule)

S5 = S4 [fsusanFRIENDx; x:Italiang (!9-rule)

S6 = S5 [fx::Italiant 9FRIEND.Italiang (!8x-rule)
S7 = S6 [fx: 9FRIEND.Italiang (!t-rule)

S8 = S7 [fxFRIENDy; y: Italiang (!9-rule)
S9 = S8 [fy::Italiant 9FRIEND.Italiang (!8x-rule)

S10 = S9 [fy: 9FRIEND.Italiang (!t-rule)

One can verify that S10 is a complete clash-free constraint system. In particular, the !9-
rule is not applicable to y. In fact, since x �S10 y condition 5 is not satis�ed. From S10 one
can build an interpretation I, as follows (again, we give only the interpretation of concept
and role names):

�I = fpeter; susan; x; yg
peterI = peter, susanI = susan, �(x) = x, �(y) = y,
ItalianI = fx; yg
FRIENDI = f(peter; susan); (susan; x); (x; y); (y;y)g

It is easy to see that I is indeed a model for �.

In order to prove that it is always possible to obtain an interpretation from a complete
clash-free constraint system we need some additional notions. Let S be a constraint system
and x, w variables in S. We call w a witness of x in S if the three following conditions hold:

1. x �s w

2. w � x

3. there is no variable z such that z � w and z satis�es conditions 1. and 2., i.e., w is
the least variable w.r.t. � satisfying conditions 1. and 2.

We say x is blocked (by w) in S if x has a witness (w) in S. The following lemma states a
property of witnesses.

Lemma 3.4 Let S be a constraint system, x a variable in S. If x is blocked then

1. x has no direct successor and

2. x has exactly one witness.

123

Buchheit, Donini, & Schaerf

Proof. 1. By contradiction: Suppose that x is blocked in S and xPy is in S. During the
completion process leading to S a generating rule must have been applied to x in a system
S0. It follows from the de�nition of the rules that in S0 for every variable w � x we had
x6�s0w. Now from Lemma 3.2 we know, that for the constraint system S derivable from
S0 and for every w � x in S we also have x6�sw. Hence there is no witness for x in S,
contradicting the hypothesis that x is blocked.
2. This follows directly from condition 3. for a witness.

As a consequence of Lemma 3.4, in a constraint system S, if w1 is a witness of x then w1

cannot have a witness itself, since both the relations `�' and S-equivalence are transitive.
The uniqueness of the witness for a blocked variable is important for de�ning the following
particular interpretation out of S.

Let S be a constraint system. We de�ne the canonical interpretation IS and the canon-
ical IS-assignment �S as follows:

1. �IS := fs j s is an object in Sg

2. �S(s) := s

3. s 2 AIS if and only if s:A is in S

4. (s; t) 2 P IS if and only if

(a) sPt is in S or

(b) s is a blocked variable, w is the witness of s in S and wPt is in S.

We call (s; t) a P-role-pair of s in IS if (s; t) 2 P IS , we call (s; t) a role-pair of s in IS
if (s; t) is a P-role-pair for some role P . We call a role-pair explicit if it comes up from case
4.(a) of the de�nition of the canonical interpretation and we call it implicit if it comes up
from case 4.(b).

From Lemma 3.4 it is obvious that a role-pair cannot be both explicit and implicit.
Moreover, if a variable has an implicit role-pair then all its role-pairs are implicit and they
all come from exactly one witness, as stated by the following lemma.

Lemma 3.5 Let S be a completion and x a variable in S. Let IS be the canonical inter-
pretation for S. If x has an implicit role-pair (x; y), then

1. all role-pairs of x in IS are implicit

2. there is exactly one witness w of x in S such that for all roles P in S and all P -role-
pairs (x,y) of x, the constraint wPy is in S.

Proof. The �rst statement follows from Lemma 3.4 (point 1). The second statement follows
from Lemma 3.4 (point 2) together with the de�nition of IS .

We have now all the machinery needed to prove the main theorem of this subsection.

Theorem 3.6 Let S be a complete constraint system. If S contains no clash then it is
satis�able.

124

Decidable Reasoning in Terminological KR Systems

Proof. Let IS and �S be the canonical interpretation and canonical I-assignment for S.
We prove that the pair (IS ; �S) satis�es every constraint c in S. If c has the form sPt or
s 6
:
= t, then (IS; �S) satis�es them by de�nition of IS and �S . Considering the!�-rule and

the !�-rule we see that a constraint of the form s 6
:
= s can not be in S. If c has the form

s:C, we show by induction on the structure of C that s 2 CIS .

We �rst consider the base cases. If C is a concept name, then s 2 CIS by de�nition
of IS . If C = >, then obviously s 2 >IS . The case that C = ? cannot occur since S is
clash-free.

Next we analyze in turn each possible complex concept C. If C is of the form :C1 then
C1 is a concept name since all concepts are simple. Then the constraint s:C1 is not in S

since S is clash-free. Then s 62 CIS
1 , that is, s 2 �IS n CIS

1 . Hence s 2 (:C1)
IS .

If C is of the form C1 uC2 then (since S is complete) s:C1 is in S and s:C2 is in S. By
induction hypothesis, s 2 CIS

1 and s 2 CIS
2 . Hence s 2 (C1 u C2)

IS .

If C is of the form C1 t C2 then (since S is complete) either s:C1 is in S or s:C2 is in
S. By induction hypothesis, either s 2 CIS

1 or s 2 CIS
2 . Hence s 2 (C1 t C2)

IS .

If C is of the form 8R.D, we have to show that for all t with (s; t) 2 RIS it holds that
t 2 DIS . If (s; t) 2 RIS , then according to Lemma 3.5 two cases can occur. Either t is an
R-successor of s in S or s is blocked by a witness w in S and t is an R-successor of w in S.
In the �rst case t:D must also be in S since S is complete. Then by induction hypothesis
we have t 2 DIS . In the second case by de�nition of witness, w: 8R.D is in S and then
because of completeness of S, t:D must be in S. By induction hypothesis we have again
t 2 DIS .

If C is of the form 9R.D we have to show that there exists a t 2 �IS with (s; t) 2 RIS

and t 2 DIS . Since S is complete, either there is a t that is an R-successor of s in S and
t:D is in S, or s is a variable blocked by a witness w in S. In the �rst case, by induction
hypothesis and the de�nition of IS , we have t 2 DIS and (s; t) 2 RIS . In the second case
w: 9R.D is in S. Since w cannot be blocked and S is complete, we have that there is a
t that is an R-successor of w in S and t:D is in S. So by induction hypothesis we have
t 2 DIS and by the de�nition of IS we have (s; t) 2 RIS .

If C is of the form (� nR) we show the goal by contradiction. Assume that s 62 (�
nR)IS . Then there exist atleast n + 1 distinct objects t1; : : : ; tn+1 with (s; ti) 2 RIS ; i 2
1::n + 1. This means that, since R = P1 u : : : u Pk , there are pairs (s; ti) 2 P IS

j , where
i 2 1::n+1 and j 2 1::k. Then according to Lemma 3.5 one of the two following cases must
occur. Either all sPj ti for j 2 1::k; i 2 1::n+ 1 are in S or there exists a witness w of s in
S with all wPiti for j 2 1::k and i 2 1::n+1 are in S. In the �rst case the !�-rule can not
be applicable because of completeness. This means that all the ti's are pairwise separated,
i.e., that S contains the constraints ti 6

:
= tj ; i; j 2 1::n+ 1; i 6= j. This contradicts the fact

that S is clash-free. And the second case leads to an analogous contradiction.

If C is of the form (� nR) we show the goal by contradiction. Assume that s 62 (�
nR)IS . Then there exist atmost m < n (m possibly 0) distinct objects t1; : : : ; tm with
(s; ti) 2 RIS ; i 2 1::m. We have to consider two cases. First case: s is not blocked in
S. Since there are only m R-successors of s in S, the !�-rule is applicable to s. This
contradicts the fact that S is complete. Second case: s is blocked by a witness w in S.
Since there are m R-successors of w in S, the !�-rule is applicable to w. But this leads to
the same contradiction.

125

Buchheit, Donini, & Schaerf

If c has the form 8x.x:D then, since S is complete, for each object t in S, t:D is in
S|and, by the previous cases, t 2 DIS . Therefore, the pair (IS ; �S) satis�es 8x.x:D.
Finally, since (IS ; �S) satis�es all constraints in S, (IS ; �S) satis�es S.

Theorem 3.7 (Correctness) A constraint system S is satis�able if and only if there exists
at least one clash-free completion of S.

Proof. \(" Follows immediately from Theorem 3.6. \)" Clearly, a system containing
a clash is unsatis�able. If every completion of S is unsatis�able, then from Proposition 3.1
S, is unsatis�able.

3.2 Termination and complexity of the calculus

Given a constraint system S, we call nS the number of concepts appearing in S, including
also all the concepts appearing as a substring of another concept. Notice that nS is bounded
by the length of the string expressing S.

Lemma 3.8 Let S be a constraint system and let S0 be derived from S by means of the
propagation rules. In any set of variables in S0 including more than 2nS variables there are
at least two variables x,y such that x �s0 y.

Proof. Each constraint x:C 2 S0 may contain only concepts of the constraint system S.
Since there are nS such concepts, given a variable x there cannot be more than 2nS di�erent
sets of constraints x:C in S0.

Lemma 3.9 Let S be a constraint system and let S0 be any constraint system derived from
S by applying the propagation rules with the given strategy. Then, in S0 there are at most
2nS non-blocked variables.

Proof. Suppose there are 2nS + 1 non-blocked variables. From Lemma 3.8, we know that
in S0 there are at least two variables y1, y2 such that y1 �s y2. Obviously either y1 � y2 or
y2 � y1 holds; suppose that y1 � y2. From the de�nitions of witness and blocked either y1
is a witness of y2 or there exists a variable y3 such that y3 � y1 and y3 is a witness of y2.
In both cases y2 is blocked, contradicting the hypothesis.

Theorem 3.10 (Termination and space complexity) Let � be an ALCNR-knowledge
base and let n be its size. Every completion of S� is �nite and its size is O(24n).

Proof. Let S be a completion of S�. From Lemma 3.9 it follows that there are at most 2n

non-blocked variables in S. Therefore there are at most m� 2n total variables in S, where
m is the maximum number of direct successors for a variable in S.

Observe thatm is bounded by the number of 9R.C concepts (at most n) plus the sum of
all numbers appearing in number restrictions. Since these numbers are expressed in binary,
their sum is bounded by 2n. Hence, m � 2n + n. Since the number of individuals is also
bounded by n, the total number of objects in S is at mostm�(2n+n) � (2n+n)�(2n+n),
that is, O(22n).

126

Decidable Reasoning in Terminological KR Systems

The number of di�erent constraints of the form s:C, 8x.x:C in which each object s can
be involved is bounded by n, and each constraint has size linear in n. Hence, the total size
of these constraints is bounded by n � n � 22n, that is O(23n).

The number of constraints of the form sPt, s 6
:
= t is bounded by (22n)2 = 24n, and each

constraint has constant size.
In conclusion, we have that the size of S is O(24n).

Notice that the above one is just a coarse upper bound, obtained for theoretical purposes.
In practical cases we expect the actual size to be much smaller than that. For example,
if the numbers involved in number restrictions were either expressed in unary notation, or
limited by a constant (the latter being a reasonable restriction in practical systems) then
an argumentation analogous to the above one would lead to a bound of 23n.

Theorem 3.11 (Decidability) Given an ALCNR-knowledge base �, checking whether �
is satis�able is a decidable problem.

Proof. This follows from Theorems 3.7 and 3.10 and the fact that � is satis�able if and
only if S� is satis�able.

We can re�ne the above theorem, by giving tighter bounds on the time required to
decide satis�ability.

Theorem 3.12 (Time complexity) Given an ALCNR-knowledge base �, checking
whether � is satis�able can be done in nondeterministic exponential time.

Proof. In order to prove the claim it is su�cient to show that each completion is obtained
with an exponential number of applications of rules. Since the number of constraints of
each completion is exponential (Theorem 3.10) and each rule, but the !�-rule, adds new
constraints to the constraint system, it follows that all such rules are applied at most an
exponential number of times. Regarding the!�-rule, it is applied for each object at most as
many times as the number of its direct successors. Since such number is at most exponential
(if numbers are coded in binary) w.r.t. the size of the knowledge base, the claim follows.

A lower bound of the complexity of KB-satis�ability is obtained exploiting previous
results about the language ALC, which is a sublanguage of ALCNR that does not include
number restrictions and role conjunction. We know from McAllester (1991), and (indepen-
dently) from an observation by Nutt (1992) that KB-satis�ability in ALC-knowledge bases
is EXPTIME-hard (see (Garey & Johnson, 1979, page 183) for a de�nition) and hence it
is hard for ALCNR-knowledge bases, too. Hence, we do not expect to �nd any algorithm
solving the problem in polynomial space, unless PSPACE=EXPTIME. Therefore, we do
not expect to substantially improve space complexity of our calculus, which already works
in exponential space. We now discuss possible improvements on time complexity.

The proposed calculus works in nondeterministic exponential time, and hence improves
the one we proposed in (Buchheit, Donini, & Schaerf, 1993, Sec.4), which works in deter-
ministic double exponential time. The key improvement is that we showed that a KB has
a model if and only if it has a model of exponential size. However, it may be argued that
as it is, the calculus cannot yet be turned into a practical procedure, since such a proce-
dure would simply simulate nondeterminism by a second level of exponentiality, resulting

127

Buchheit, Donini, & Schaerf

in a double exponential time procedure. However, the di�erent combinations of concepts
are only exponentially many (this is just the cardinality of the powerset of the set of con-
cepts). Hence, a double exponential time procedure wastes most of the time re-analyzing
over and over objects with di�erent names yet with the same �(�; �), in di�erent constraint
systems. This could be avoided if we allow a variable to be blocked by a witness that is
in a previously analyzed constraint system. This technique would be similar to the one
used in (Pratt, 1978), and to the tree-automata technique used in (Vardi & Wolper, 1986),
improving on simple tableaux methods for variants of propositional dynamic logics. Since
our calculus considers only one constraint system at a time, a modi�cation of the calculus
would be necessary to accomplish this task in a formal way, which is outside the scope of
this paper. The formal development of such a deterministic exponential time procedure will
be a subject for future research.

Notice that, since the domain of the canonical interpretation �IS is always �nite, we
have also implicitly proved that ALCNR-knowledge bases have the �nite model property,
i.e., any satis�able knowledge base has a �nite model. This property has been extensively
studied in modal logics (Hughes & Cresswell, 1984) and dynamic logics (Harel, 1984). In
particular, a technique, called �ltration, has been developed both to prove the �nite model
property and to build a �nite model for a satis�able formula. This technique allows one to
build a �nite model from an in�nite one by grouping the worlds of a structure in equivalence
classes, based on the set of formulae that are satis�ed in each world. It is interesting to
observe that our calculus, based on witnesses, can be considered as a variant of the �ltration
technique where the equivalence classes are determined on the basis of our S-equivalence
relation. However, because of number restrictions, variables that are S-equivalent cannot
be grouped, since they might be separated (e.g., they might have been introduced by the
same application of the !�-rule). Nevertheless, they can have the same direct successors,
as stated in point 4.(b) of the de�nition of canonical interpretation on page 124. This would
correspond to grouping variables of an in�nite model in such a way that separations are
preserved.

4. Relation to previous work

In this section we discuss the relation of our paper to previous work about reasoning with in-
clusions. In particular, we �rst consider previously proposed reasoning techniques that deal
with inclusions and terminological cycles, then we discuss the relation between inclusions
and terminological cycles.

4.1 Reasoning Techniques

As mentioned in the introduction, previous results were obtained by Baader et al. (1990),
Baader (1990a, 1990b), Nebel (1990, 1991), Schild (1991) and Dionne et al. (1992, 1993).

Nebel (1990, Chapter 5) considers the language T F , containing concept conjunction,
universal quanti�cation and number restrictions, and TBoxes containing (possibly cyclic)
concept de�nitions, role de�nitions and disjointness axioms (stating that two concept names
are disjoint). Nebel shows that subsumption of T F-concepts w.r.t. a TBox is decidable.
However, the argument he uses is non-constructive: He shows that it is su�cient to con-

128

Decidable Reasoning in Terminological KR Systems

sider �nite interpretations of a size bounded by the size of the TBox in order to decide
subsumption.

In (Baader, 1990b) the e�ect of the three types of semantics|descriptive, greatest �x-
point and least �xpoint semantics|for the language FL0, containing concept conjunction
and universal quanti�cation, is described with the help of �nite automata. Baader reduces
subsumption of FL0-concepts w.r.t. a TBox containing (possibly cyclic) de�nitions of the
form A

:
= C (which he calls terminological axioms) to decision problems for �nite automata.

In particular, he shows that subsumption w.r.t. descriptive semantics can be decided in poly-
nomial space using B�uchi automata. Using results from (Baader, 1990b), in (Nebel, 1991)
a characterization of the above subsumption problem w.r.t. descriptive semantics is given
with the help of deterministic automata (whereas B�uchi automata are nondeterministic).
This also yields a PSPACE-algorithm for deciding subsumption.

In (Baader et al., 1990) the attention is restricted to the language ALC . In particular,
that paper considers the problem of checking the satis�ability of a single equation of the
form C = >, where C is an ALC-concept. This problem, called the universal satis�abil-
ity problem, is shown to be equivalent to checking the satis�ability of an ALC-TBox (see
Proposition 4.1).

In (Baader, 1990a), an extension of ALC, called ALCreg, is introduced, which supports
a constructor to express the transitive closure of roles. By means of transitive closure of
roles it is possible to replace cyclic inclusions of the form A v D with equivalent acyclic
ones. The problem of checking the satis�ability of an ALCreg-concept is solved in that
paper. It is also shown that using transitive closure it is possible to reduce satis�ability
of an ALC-concept w.r.t. an ALC-TBox T = fC1 v D1; : : : ; Cn v Dng into the concept
satis�ability problem in ALCreg (w.r.t. the empty TBox). Since the problem of concept
satis�ability w.r.t. a TBox is trivially harder than checking the satis�ability of a TBox,
that paper extends the result given in (Baader et al., 1990).

The technique exploited in (Baader et al., 1990) and (Baader, 1990a) is based on the
notion of concept tree. A concept tree is generated starting from a concept C in order
to check its satis�ability (or universal satis�ability). The way a concept tree is generated
from a concept C is similar in
avor to the way a complete constraint system is generated
from the constraint system fx:Cg. However, the extension of the concept tree method to
deal with number restrictions and individuals in the knowledge base is neither obvious, nor
suggested in the cited papers; on the other hand, the extension of the calculus based on
constraint systems is immediate, provided that additional features have a counterpart in
First Order Logic.

In (Schild, 1991) some results more general than those in (Baader, 1990a) are obtained
by considering languages more expressive than ALCreg and dealing with the concept satis�a-
bility problem in such languages. The results are obtained by establishing a correspondence
between concept languages and Propositional Dynamic Logics (PDL), and reducing the
given problem to a satis�ability problem in PDL. Such an approach allows Schild to �nd
several new results exploiting known results in the PDL framework. However, it cannot be
used to deal with every concept language. In fact, the correspondence cannot be established
when the language includes some concept constructors having no counterpart in PDL (e.g.,
number restrictions, or individuals in an ABox).

129

Buchheit, Donini, & Schaerf

Recently, an algebraic approach to cycles has been proposed in (Dionne et al., 1992), in
which (possibly cyclic) de�nitions are interpreted as determining an equivalence relation over
the terms describing concepts. The existence and uniqueness of such an equivalence relation
derives from Aczel's results on non-well founded sets. In (Dionne et al., 1993) the same
researchers prove that subsumption based on this approach is equivalent to subsumption in
greatest �xpoint semantics. The language analyzed is a small fragment of the one used in the
TKRS k-rep, and contains conjunction and existential-universal quanti�cations combined
into one construct (hence it is similar to FL0). The di�culty of extending these results
lies in the fact that it is not clear how individuals can be interpreted in this algebraic
setting. Moreover, we believe that constructive approaches like the algebraic one, give
counterintuitive results when applied to non-constructive features of concept languages|as
negation and number restrictions.

In conclusion, all these approaches, i.e., reduction to automata problems, concept trees,
reduction to PDL and algebraic semantics, deal only with TBoxes and they don't seem to be
suitable to deal also with ABoxes. On the other hand, the constraint system technique, even
though it was conceived for TBox-reasoning, can be easily extended to ABox-reasoning, as
also shown in (Hollunder, 1990; Baader & Hollunder, 1991; Donini et al., 1993).

4.2 Inclusions versus Concept De�nitions

Now we compare the expressive power of TBoxes de�ned as a set of inclusions (as done in
this paper) and TBoxes de�ned as a set of (possibly cyclic) concept introductions of the
form A _� D and A

:
= D.

Unlike (Baader, 1990a) and (Schild, 1991), we consider reasoning problems dealing with
TBox and ABox together. Moreover, we use the descriptive semantics for the concept intro-
ductions, as we do for inclusions. The result we have obtained is that inclusion statements
and concept introductions actually have the same expressive power. In detail, we show that
the satis�ability of a knowledge base � = hA; T i, where T is a set of inclusion statements,
can be reduced to the satis�ability of a knowledge base �0 = hA0; T 0i such that T 0 is a set
of concept introductions. The other direction, from concept introductions to inclusions, is
trivial since introductions of the form A

:
= D can be expressed by the pair of inclusions

A v D and D v A, while a concept name speci�cation A _� D can be rewritten as the
inclusion A v D (as already mentioned in Section 2).

As a notation, given a TBox T = fC1 v D1; : : : ; Cn v Dng, we de�ne the concept CT
as CT = (:C1 t D1) u � � � u (:Cn tDn). As pointed out in (Baader, 1990a) for ALC, an
interpretation satis�es a TBox T if and only if it satis�es the equation CT = >. This result
easily extends to ALCNR, as stated in the following proposition.

Proposition 4.1 Given an ALCNR-TBox T = fC1 v D1; : : : ; Cn v Dng, an interpreta-
tion I satis�es T if and only if it satis�es the equation CT = >.

Proof. An interpretation I satis�es an inclusion C v D if and only if it satis�es the equation
:C tD = >; I satis�es the set of equations :C1 tD1 = >,: : : , :Cn tDn = > if and only
if I satis�es (:C1 tD1) u � � � u (:Cn tDn) = >. The claim follows.

130

Decidable Reasoning in Terminological KR Systems

Given a knowledge base � = hA; T i and a concept A not appearing in �, we de�ne the
knowledge base �0 = hA0; T 0i as follows:

A0 = A [fA(b) j b is an individual in �g

T 0 = fA _� CT u 8P1.A u � � � u 8Pn.Ag

where P1; P2; : : : ; Pn are all the role names appearing in �. Note that T 0 has a single
inclusion, which could be also thought of as one primitive concept speci�cation.

Theorem 4.2 � = hA; T i is satis�able if and only if �0 = hA0; T 0i is satis�able.

Proof. In order to simplify the machinery of the proof, we will use for T 0 the following
(logically equivalent) form:

T 0 = fA v CT ; A v 8P1.A; : : :; A v 8Pn.Ag

(Note that we use the symbol `v' instead of ` _�' because now the concept name A appears
as the left-hand side of many statements, we must consider these statements as inclusions).

\)" Suppose � = hA; T i satis�able. From Theorem 3.7, there exists a complete
constraint system S without clash, which de�nes a canonical interpretation IS which is a
model of �. De�ne the constraint system S0 as follows:

S0 = S [fw:A j w is an object in Sg

and call IS0 the canonical interpretation associated to S0. We prove that IS0 is a model of
�0.

First observe that every assertion in A is satis�ed by IS0 since IS0 is equal to IS except
for the interpretation of A, and A does not appear in A. Therefore, every assertion in A0

is also satis�ed by IS0 , either because it is an assertion of A, or (if it is an assertion of the
form A(b)) by de�nition of S0.

Regarding T 0, note that by de�nition of S0, we have AIS0 = �I
S0 = �IS ; therefore both

sides of the inclusions of the form A v 8Pi.A (i = 1; : : : ; n) are interpreted as �I
S0 , hence

they are satis�ed by IS0 . Since A does not appear in CT , we have that (CT)IS0 = (CT)IS .
Moreover, since IS satis�es T , we also have, by Proposition 4.1, that (CT)

IS = �IS ,
therefore (CT)IS0 = (CT)IS = �IS = �I

S0 . It follows that also both sides of the inclusion
A v CT are interpreted as �I

S0 . In conclusion, IS0 satis�es T 0.
\(" Suppose �0 = hA0; T 0i satis�able. Again, because of Theorem 3.7, there exists a

complete constraint system S0 without clash, which de�nes a canonical interpretation IS0

which is a model of �0. We show that IS0 is also a model of �.
First of all, the assertions in A are satis�ed because A � A0, and IS0 satis�es every

assertion in A0. To prove that IS0 satis�es T , we �rst prove the following equation:

AIS0 = �I
S0 (2)

Equation 2 is proved by showing that, for every object s 2 �I
S0 , s is in AIS0 . In order to do

that, observe a general property of constraint systems: Every variable in S0 is a successor of
an individual. This comes from the de�nition of the generating rules, which add variables
to the constraint system only as direct successors of existing objects, and at the beginning
S�0 contains only individuals.

Then, Equation 2 is proved by observing the following three facts:

131

Buchheit, Donini, & Schaerf

1. for every individual b in �I
S0 , b 2 AIS0 ;

2. if an object s is in AIS0 , then because IS0 satis�es the inclusions AIS0 � (8P1.A)IS0 ; : : : ;

AIS0 � (8Pn.A)
I
S0 , every direct successor of s is in AIS0 ;

3. the successor relation is closed under the direct successor relation

From the Fundamental Theorem on Induction (see e.g., Wand, 1980, page 41) we con-
clude that every object s of �I

S0 is in AIS0 . This proves that Equation 2 holds.
From Equation 2, and the fact that IS0 satis�es the inclusion AIS0 � (CT)

I
S0 , we derive

that (CT)
I
S0 = �I

S0 , that is IS0 satis�es the equation CT = >. Hence, from Proposition
4.1, IS0 satis�es T , and this completes the proof of the theorem.

The machinery present in this proof is not new. In fact, realizing that the inclusions
A v 8P1.A; : : : ; A v 8Pn.A simulate a transitive closure on the roles P1; : : : ; Pn, one can
recognize similarities with the proofs given by Schild (1991) and Baader (1990a). The di�er-
ence is that their proofs rely on the notion of connected model (Baader uses the equivalent
notion of rooted model). In contrast, the models we obtain are not connected, when the
individuals in the knowledge base are not. What we exploit is the weaker property that
every variable in the model is a successor of an individual.

Note that the above reduction strongly relies on the fact that disjunction `t' and com-
plement `:' are within the language. In fact, disjunction and complement are necessary
in order to express all the inclusions of a TBox T inside the concept CT . Therefore, the
proof holds for ALC-knowledge bases, but does not hold for TKRSs not allowing for these
constructors of concepts (e.g., back).

Furthermore, for the language FL0 introduced in Section 4.1, the opposite result holds.
In fact, McAllester (1991) proves that computing subsumption w.r.t. a set of inclusions is
EXPTIME-hard, even in the small language FL0. Conversely, Nebel (1991) proves that
subsumption w.r.t. a set of cyclic de�nitions in FL0 can be done in PSPACE. Combining
the two results, we can conclude that for FL0 subsumption w.r.t. a set of inclusions and
subsumption w.r.t. a set of de�nitions are in di�erent complexity classes, hence (assuming
EXPTIME 6= PSPACE) inclusion statements are strictly more expressive than concept
de�nitions in FL0.

It is still open whether inclusions and de�nitions are equivalent in languages whose
expressivity is between FL0 and ALC.

5. Discussion

In this paper we have proved the decidability of the main inference services of a TKRS based
on the concept language ALCNR. We believe that this result is not only of theoretical
importance, but bears some impact on existing TKRSs, because a complete procedure can
be easily devised from the calculus provided in Section 3. From this procedure, one can build
more e�cient (but still complete) ones, as described at the end of Section 3.2, and also by
applying standard optimization techniques such as those described in (Baader, Hollunder,
Nebel, Pro�tlich, & Franconi, 1992). An optimized procedure can perform well for small
sublanguages where reasoning is tractable, while still being complete when solving more
complex tasks. However, such a complete procedure will still take exponential time and

132

Decidable Reasoning in Terminological KR Systems

space in the worst case, and it may be argued what could be its practical applicability. We
comment in following on this point.

Firstly, a complete procedure (possibly optimized) o�ers a benchmark for comparing
incomplete procedures, not only in terms of performance, but also in terms of missed infer-
ences. Let us illustrate this point in detail, by providing a blatant paradox: consider the
mostly incomplete constant-time procedure, answering always \No" to any check. Obvi-
ously this useless procedure outperforms any other one, if missed inferences are not taken
into account. This paradox shows that incomplete procedures can be meaningfully com-
pared only if missed inferences are considered. But to recognize missed inferences over large
examples, one needs exactly a complete procedure|even if not an e�cient one|like ours.
We believe that a fair detection of missed inferences would be of great help even when the
satisfaction of end users is the primary criterion for judging incomplete procedures.

Secondly, a complete procedure can be used for \anytime classi�cation", as proposed
in (MacGregor, 1992). The idea is to use a fast, but incomplete algorithm as a �rst step
in analyzing the input knowledge, and then do more reasoning in background. In the
cited paper, resolution-based theorem provers are proposed for performing this background
reasoning. We argue that any specialized complete procedure will perform better than a
general theorem prover. For instance, theorem provers are usually not speci�cally designed
to deal with �ltration techniques.

Moreover, our calculus can be easily adapted to deal with rules. As outlined in the
introduction, rules are often used in practical TKRSs. Rules behave like one-way concept
inclusions|no contrapositive is allowed|and they are applied only to known individuals.
Our result shows that rules in ALCNR can be applied also to unknown individuals (our
variables in a constraint system) without endangering decidability. This result is to be
compared with the negative result in (Baader & Hollunder, 1992), where it is shown that
subsumption becomes undecidable if rules are applied to unknown individuals in classic.

Finally, the calculus provides a new way of building incomplete procedures, by modifying
some of the propagation rules. Since the rules build up a model, modi�cations to them
have a semantical counterpart which gives a precise account of the incomplete procedures
obtained. For example, one could limit the size of the canonical model by a polynomial in
the size of the KB. Semantically, this would mean to consider only \small" models, which
is reasonable when the intended models for the KB are not much bigger than the size of the
KB itself. We believe that this way of designing incomplete procedures \from above", i.e.,
starting with the complete set of inferences and weakening it, is dual to the way incomplete
procedures have been realized so far \from below", i.e., starting with already incomplete
inferences and adding inference power by need.

Further research is still needed to address problems issuing from practical systems. For
example, to completely express role restrictions inside number restrictions, quali�ed number
restrictions (Hollunder & Baader, 1991) should be taken into account. Also, the language
resulting from the addition of enumerated sets (called one-of in classic), and role �llers
to ALCNR is still to be studied, although it does not seem to endanger the �ltration
method we used. Instead, a di�erent method might be necessary if inverse roles are added
to ALCNR, since the �nite model property is lost (as shown in Schild, 1991). Finally, the
addition of concrete domains (Baader & Hanschke, 1991) remains open.

133

Buchheit, Donini, & Schaerf

Acknowledgements

We thank Maurizio Lenzerini for the inspiration of this work, as well as for several discus-
sions that contributed to the paper. Werner Nutt pointed out to us the observation men-
tioned at the end of Section 3, and we thank him and Franz Baader for helpful comments
on earlier drafts. We thank also the anonymous reviewers, whose stimulating comments
helped us in improving on the submitted version.

The research was partly done while the �rst author was visiting the Dipartimento di In-
formatica e Sistemistica, Universit�a di Roma \La Sapienza". The third author also acknowl-
edges Yoav Shoham for his hospitality at the Computer Science Department of Stanford
University, while the author was developing part of this research.

This work has been supported by the ESPRIT Basic Research Action N.6810 (COM-
PULOG 2) and by the Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo of the
CNR (Italian Research Council), LdR \Ibridi".

References

Abrial, J. (1974). Data semantics. In Klimbie, J., & Ko�eman, K. (Eds.), Data Base
Management, pp. 1{59. North-Holland Publ. Co., Amsterdam.

Baader, F. (1990a). Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. Tech. rep. RR-90-13, Deutsches Forschungszentrum
f�ur K�unstliche Intelligenz (DFKI), Kaiserslautern, Germany. An abridged version ap-
peared in Proc. of the 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91, pp.
446{451.

Baader, F. (1990b). Terminological cycles in KL-ONE-based knowledge representation lan-
guages. Tech. rep. RR-90-01, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz
(DFKI), Kaiserslautern, Germany. An abridged version appeared in Proc. of the 8th
Nat. Conf. on Arti�cial Intelligence AAAI-90, pp. 621{626.

Baader, F., B�urkert, H.-J., Hollunder, B., Nutt, W., & Siekmann, J. H. (1990). Concept
logics. In Lloyd, J. W. (Ed.), Computational Logics, Symposium Proceedings, pp.
177{201. Springer-Verlag.

Baader, F., & Hanschke, P. (1991). A schema for integrating concrete domains into concept
languages. In Proc. of the 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91,
pp. 452{457 Sydney.

Baader, F., & Hollunder, B. (1991). A terminological knowledge representation system with
complete inference algorithm. In Proc. of the Workshop on Processing Declarative
Knowledge, PDK-91, Lecture Notes in Arti�cial Intelligence, pp. 67{86. Springer-
Verlag.

Baader, F., & Hollunder, B. (1992). Embedding defaults into terminological knowledge
representation formalisms. In Proc. of the 3rd Int. Conf. on Principles of Knowledge
Representation and Reasoning KR-92, pp. 306{317. Morgan Kaufmann, Los Altos.

134

Decidable Reasoning in Terminological KR Systems

Baader, F., Hollunder, B., Nebel, B., Pro�tlich, H.-J., & Franconi, E. (1992). An empirical
analisys of optimization techniques for terminological representation systems. In Proc.
of the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning KR-
92, pp. 270{281. Morgan Kaufmann, Los Altos.

Beck, H. W., Gala, S. K., & Navathe, S. B. (1989). Classi�cation as a query processing
technique in the CANDIDE semantic data model. In Proc. of the 5th IEEE Int. Conf.
on Data Engineering.

Borgida, A., Brachman, R. J., McGuinness, D. L., & Alperin Resnick, L. (1989). CLASSIC:
A structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 59{67.

Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-
based description languages. In Proc. of the 4th Nat. Conf. on Arti�cial Intelligence
AAAI-84, pp. 34{37.

Brachman, R. J., Pigman Gilbert, V., & Levesque, H. J. (1985). An essential hybrid
reasoning system: Knowledge and symbol level accounts in KRYPTON. In Proc. of
the 9th Int. Joint Conf. on Arti�cial Intelligence IJCAI-85, pp. 532{539 Los Angeles.

Brachman, R. J., & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science, 9 (2), 171{216.

Buchheit, M., Donini, F. M., & Schaerf, A. (1993). Decidable reasoning in terminological
knowledge representation systems. Tech. rep. RR-93-10, Deutsches Forschungszen-
trum f�ur K�unstliche Intelligenz (DFKI), Saarbr�ucken, Germany. An abridged version
appeared in Proc. of the 13th Int. Joint Conf. on Arti�cial Intelligence IJCAI-93 pp.
704{709.

Catarci, T., & Lenzerini, M. (1993). Representing and using interschema knowledge in
cooperative information systems. Journal of Intelligent and Cooperative Inf. Syst. To
appear.

Dionne, R., Mays, E., & Oles, F. J. (1992). A non-well-founded approach to terminological
cycles. In Proc. of the 10th Nat. Conf. on Arti�cial Intelligence AAAI-92, pp. 761{766.
AAAI Press/The MIT Press.

Dionne, R., Mays, E., & Oles, F. J. (1993). The equivalence of model theoretic and structural
subsumption in description logics. In Proc. of the 13th Int. Joint Conf. on Arti�cial
Intelligence IJCAI-93, pp. 710{716 Chambery, France. Morgan Kaufmann, Los Altos.

Donini, F. M., Hollunder, B., Lenzerini, M., Marchetti Spaccamela, A., Nardi, D., & Nutt,
W. (1992). The complexity of existential quanti�cation in concept languages. Arti�cial
Intelligence, 2{3, 309{327.

Donini, F. M., Lenzerini, M., Nardi, D., & Nutt, W. (1991a). The complexity of concept
languages. In Allen, J., Fikes, R., & Sandewall, E. (Eds.), Proc. of the 2nd Int.
Conf. on Principles of Knowledge Representation and Reasoning KR-91, pp. 151{162.
Morgan Kaufmann, Los Altos.

135

Buchheit, Donini, & Schaerf

Donini, F. M., Lenzerini, M., Nardi, D., & Nutt, W. (1991b). Tractable concept languages.
In Proc. of the 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91, pp. 458{463
Sydney.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A. (1991c). A hybrid system integrating
datalog and concept languages. In Proc. of the 2nd Conf. of the Italian Association
for Arti�cial Intelligence, No. 549 in Lecture Notes in Arti�cial Intelligence. Springer-
Verlag. An extended version appeared also in the Working Notes of the AAAI Fall
Symposium \Principles of Hybrid Reasoning".

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A. (1993). Deduction in concept lan-
guages: From subsumption to instance checking. Journal of Logic and Computation.
To appear.

Fitting, M. (1990). First-Order Logic and Automated Theorem Proving. Springer-Verlag.

Garey, M., & Johnson, D. (1979). Computers and Intractability|A guide to NP-
completeness. W.H. Freeman and Company, San Francisco.

Harel, D. (1984). Dynamic logic. In Handbook of Philosophical Logic, Vol. 2, pp. 497{640.
D. Reidel, Dordrecht, Holland.

Heinsohn, J., Kudenko, D., Nebel, B., & Pro�tlich, H.-J. (1992). An empirical analysis of
terminological representation systems. In Proc. of the 10th Nat. Conf. on Arti�cial
Intelligence AAAI-92, pp. 767{773. AAAI Press/The MIT Press.

Hollunder, B. (1990). Hybrid inferences in KL-ONE-based knowledge representation sys-
tems. In Proc. of the German Workshop on Arti�cial Intelligence, pp. 38{47. Springer-
Verlag.

Hollunder, B., & Baader, F. (1991). Qualifying number restrictions in concept languages.
Tech. rep. RR-91-03, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz (DFKI),
Kaiserslautern, Germany. An abridged version appeared in Proc. of the 2nd Int. Conf.
on Principles of Knowledge Representation and Reasoning KR-91.

Hughes, G. E., & Cresswell, M. J. (1984). A Companion to Modal Logic. Methuen, London.

Kaczmarek, T. S., Bates, R., & Robins, G. (1986). Recent developments in NIKL. In Proc.
of the 5th Nat. Conf. on Arti�cial Intelligence AAAI-86, pp. 978{985.

Lenzerini, M., & Schaerf, A. (1991). Concept languages as query languages. In Proc. of the
9th Nat. Conf. on Arti�cial Intelligence AAAI-91, pp. 471{476.

Levesque, H. J. (1984). Foundations of a functional approach to knowledge representation.
Arti�cial Intelligence, 23, 155{212.

Lewis, H. R., & Papadimitriou, C. H. (1981). Elements of the Theory of Computation.
Prentice-Hall, Englewood Cli�s, New Jersey.

MacGregor, R. (1991). Inside the LOOM description classi�er. SIGART Bulletin, 2 (3),
88{92.

136

Decidable Reasoning in Terminological KR Systems

MacGregor, R. (1992). What's needed to make a description logic a good KR citizen. In
Working Notes of the AAAI Fall Symposium on Issues on Description Logics: Users
meet Developers, pp. 53{55.

MacGregor, R., & Bates, R. (1987). The Loom knowledge representation language. Tech.
rep. ISI/RS-87-188, University of Southern California, Information Science Institute,
Marina del Rey, Cal.

MacGregor, R., & Brill, D. (1992). Recognition algorithms for the LOOM classi�er. In
Proc. of the 10th Nat. Conf. on Arti�cial Intelligence AAAI-92, pp. 774{779. AAAI
Press/The MIT Press.

Mays, E., Dionne, R., & Weida, R. (1991). K-REP system overview. SIGART Bulletin,
2 (3).

McAllester, D. (1991). Unpublished manuscript.

McGuinness, D. L. (1992). Making description logic based knowledge representation systems
more usable. InWorking Notes of the AAAI Fall Sysmposium on Issues on Description
Logics: Users meet Developers, pp. 56{58.

Mylopoulos, J., Bernstein, P., & Wong, E. (1980). A language facility for designing database-
intensive applications. ACM Trans. on Database Syst., 5 (2), 185{207.

Nebel, B. (1988). Computational complexity of terminological reasoning in BACK. Arti�cial
Intelligence, 34 (3), 371{383.

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems. Lecture Notes
in Arti�cial Intelligence. Springer-Verlag.

Nebel, B. (1991). Terminological cycles: Semantics and computational properties. In Sowa,
J. F. (Ed.), Principles of Semantic Networks, pp. 331{361. Morgan Kaufmann, Los
Altos.

Nutt, W. (1992). Personal communication.

Patel-Schneider, P. F. (1984). Small can be beautiful in knowledge representation. In Proc.
of the IEEE Workshop on Knowledge-Based Systems. An extended version appeared
as Fairchild Tech. Rep. 660 and FLAIR Tech. Rep. 37, October 1984.

Patel-Schneider, P. (1989). Undecidability of subsumption in NIKL. Arti�cial Intelligence,
39, 263{272.

Pratt, V. R. (1978). A practical decision method for propositional dynamic logic. In Proc.
of the 10th ACM SIGACT Symp. on Theory of Computing STOC-78, pp. 326{337.

Quantz, J., & Kindermann, C. (1990). Implementation of the BACK system version 4. Tech.
rep. KIT-Report 78, FB Informatik, Technische Universit�at Berlin, Berlin, Germany.

Rich, editor, C. (1991). SIGART bulletin. Special issue on implemented knowledge repre-
sentation and reasoning systems. (2)3.

137

Buchheit, Donini, & Schaerf

Schaerf, A. (1993a). On the complexity of the instance checking problem in concept lan-
guages with existential quanti�cation. Journal of Intelligent Information Systems, 2,
265{278. An abridged version appeared in Proc. of the 7th Int. Symp. on Methodolo-
gies for Intelligent Systems ISMIS-93.

Schaerf, A. (1993b). Reasoning with individuals in concept languages. Tech. rep. 07.93,
Dipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza". An
abridged version appeared in Proc. of the 3rd Conf. of the Italian Association for
Arti�cial Intelligence AI*IA-93.

Schild, K. (1988). Undecidability of subsumption in U . Tech. rep. KIT-Report 67, FB
Informatik, Technische Universit�at Berlin, Berlin, Germany.

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91, pp. 466{471
Sydney.

Schmidt-Schau�, M. (1989). Subsumption in KL-ONE is undecidable. In Brachman, R. J.,
Levesque, H. J., & Reiter, R. (Eds.), Proc. of the 1st Int. Conf. on Principles of
Knowledge Representation and Reasoning KR-89, pp. 421{431. Morgan Kaufmann,
Los Altos.

Schmidt-Schau�, M., & Smolka, G. (1991). Attributive concept descriptions with comple-
ments. Arti�cial Intelligence, 48 (1), 1{26.

Vardi, M., & Wolper, P. (1986). Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Science, 32, 183{221. A preliminary version
appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Computing STOC-
84.

Vilain, M. (1991). Deduction as parsing: Tractable classi�cation in the KL-ONE framework.
In Proc. of the 9th Nat. Conf. on Arti�cial Intelligence AAAI-91, pp. 464{470.

Wand, M. (1980). Induction, Recursion, and Programming. North-Holland Publ. Co.,
Amsterdam.

Woods, W. A., & Schmolze, J. G. (1992). The KL-ONE family. In Lehmann, F. (Ed.),
Semantic Networks in Arti�cial Intelligence, pp. 133{178. Pergamon Press. Published
as a special issue of Computers & Mathematics with Applications, Volume 23, Number
2{9.

138

