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Abstract

We report on a series of experiments in which all decision trees consistent with the

training data are constructed. These experiments were run to gain an understanding of the

properties of the set of consistent decision trees and the factors that a�ect the accuracy

of individual trees. In particular, we investigated the relationship between the size of a

decision tree consistent with some training data and the accuracy of the tree on test data.

The experiments were performed on a massively parallel Maspar computer. The results of

the experiments on several arti�cial and two real world problems indicate that, for many

of the problems investigated, smaller consistent decision trees are on average less accurate

than the average accuracy of slightly larger trees.

1. Introduction

The top-down induction of decision trees is an approach to machine learning that has been
used on a variety of real world tasks. Decision trees are well-suited for such tasks since they
scale fairly well with the number of training examples and the number of features, and can
represent complex concepts in a representation that is fairly easy for people to understand.

Decision tree induction algorithms (Breiman, Friedman, Olshen, & Stone, 1984; Quin-
lan, 1986; Fayyad & Irani, 1992) typically operate by choosing a feature that partitions the
training data according to some evaluation function (e.g., the purity of the resulting par-
titions). Partitions are then further partitioned recursively until some stopping criterion is
reached (e.g., the partitions contain training examples of a single class). Nearly all decision
tree induction algorithms create a single decision tree based upon local information of how
well a feature partitions the training data. However, this decision tree is only one of a set of
decision trees consistent with the training data. In this paper, we experimentally examine
the properties of the set of consistent decision trees. We will call the set of decision trees
that are consistent with the training data a decision forest.

Our experiments were run on several arti�cial concepts for which we know the correct
answer and two naturally occurring databases from real world tasks available from the UCI
Machine Learning Repository (Murphy & Aha, 1994) in which the correct answer is not
known. The goal of the experiments were to gain insight into how factors such as the
size of a consistent decision tree are related to the error rate on classifying unseen test
instances. Decision tree learners, as well as most other learners, attempt to produce the
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smallest consistent hypothesis.1 Occam's razor is often used to justify this bias. Here,
we experimentally evaluate this bias towards simplicity by investigating the relationship
between the size of a consistent decision tree and its accuracy. If the average error of
decision trees with N test nodes is less than the average error of decision trees of size N + i
(for i > 0), an appropriate bias for a learner attempting to minimize average error would
be to return the smallest decision tree it can �nd within its resource constraints.

In this paper, we restrict our attention to decision trees that are consistent with the
training data and ignore issues such as pruning which trade o� consistency with the training
data and the simplicity of the hypothesis. For the purposes of this paper, a consistent
decision tree is one that correctly classi�es every training example.2 We also place two
additional constraints on decision trees. First, no discriminator can pass all instances down
a single branch. This insures that the test made by the decision tree partitions the training
data. Second, if all of the training instances at a node are of the same class, no additional
discriminations are made. In this case, a leaf is formed with class label speci�ed by the class
of the instances at the leaf. These two constraints are added to insure that the decision
trees analyzed in the experiments correspond to those that could be formed by top down
decision tree induction algorithms. In this paper, we will not investigate problems that have
continuous-valued features or missing feature values.

In Section 2 (and the appendix), we will report on some initial exploratory experiments
in which the smallest consistent decision trees tend to be less accurate than the average
accuracy of those slightly larger. Section 3 provides results of additional experiments that
address this issue. Section 4 addresses the implication of our �ndings to the policy a learner
should take in deciding which of the many consistent hypotheses it should prefer. Section
5 relates this work to previous empirical and theoretical research.

2. Initial Experiments

We will investigate the relationship between various tree characteristics and error. In par-
ticular, we will look at node cardinality (i.e., the number of internal nodes in a tree) and
leaf cardinality (i.e., the total number of leaves in a tree).

It should be noted that even when using a powerful massively parallel computer, the
choice of problems is severely constrained by the computational complexity of the task.
The number of trees of any node cardinality that might be generated is O(dc) where d is
the number of discriminators and c is the node cardinality. Even on a massively parallel
computer, this precluded the use of problems with many features or any continuous-valued
features.

The �rst experiment considered learning from training data in which there are 5 boolean
features. The concept learned was XYZ _AB. This concept was chosen because it was of
moderate complexity, requiring a decision tree with at least 8 nodes to represent correctly.
With 5 boolean features, the smallest concept (e.g., True) would require 0 test nodes and
the largest (e.g., parity) would require 31.

1. We say \attempt to produce the smallest consistent hypothesis" because most systems use some form of
limited look-ahead or greedy search. As a result, the smallest consistent tree is rarely found.

2. The arti�cial and natural problems we study here have consistent training sets.
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We ran 100 trials, creating a training set by randomly choosing without replacement
20 of the 32 possible training examples and using the remaining 12 examples as the test
set. For each trial, every consistent decision tree was created, and we computed the average
error rate made by trees with the same node cardinality. Figure 1 plots the mean and 95%
con�dence interval of these average errors as a function of the node cardinality. Figure 1
also plots the number of trials on which at least one decision tree of a given node cardinality
is consistent with the training data.

20181614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

20

40

60

80

100

Error
Trials

 

Node Cardinality

E
rr

or

N
um

be
r 

of
 T

ri
al

s

Figure 1. The average error of 100 trials as a function of node cardinality and the number
of trials for each node cardinality.

From node cardinality 7 to node cardinality 16, there is a monotonic increase in error
with increasing node cardinality. For the range from 2 to 3 nodes, the error is varied;
however there is little evidence for these error values because they are based on only 2 and
1 trials, respectively. For the range of node cardinalities between 4 and 7, average error is
de�nitely not a monotonically increasing function of node cardinality. As seen in the curve,
5 node trees are on the average more accurate than 4 node trees, and 7 node trees are on
the average more accurate than trees with 6 nodes. This last result is somewhat surprising
since one gets the impression from reading the machine learning literature (Muggleton,
Srinivasan, & Bain, 1992) that the smaller hypothesis (i.e., the one that provides the most
compression of the data (Rissanen, 1978)) is likely to be more accurate. We will explore
this issue in further detail in Section 3. Appendix 1 presents data showing that this result
is not unique to this particular concept. A �nal, interesting �nding that we will not explore
further in this paper is that for very large node cardinalities, error begins to decrease as the
node cardinality increases.

Table 1 lists the average number of consistent trees for each node cardinality and the
average number of correct trees (i.e., those trees consistent with the training data that make
no errors on the unseen test examples). There are no correct trees with fewer than 8 nodes,
since at least 8 nodes are required to represent this concept. Clearly, since there are many
trees consistent with the training data, a learner needs some policy to decide which tree to
return. We will return to this issue in Section 4.
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Nodes Number of Number of
Consistent Trees Correct Trees

2 2.0 0.0

3 4.0 0.0

4 3.3 0.0

5 12.3 0.0

6 27.6 0.0

7 117.1 0.0

8 377.0 17.8

9 879.4 37.8

10 1799.9 50.2

11 3097.8 41.6

12 4383.0 95.4

13 5068.9 66.6

14 4828.3 37.7

15 3631.5 31.3

16 1910.6 14.8

17 854.4 4.0

18 308.6 3.6

19 113.8 0.0

Table 1. The average number of trees consistent with 20 training examples of theXY Z_AB
concept.

3. Further Experimentation

For most of the problems studied, we found that on average, the smallest decision trees
consistent with the training data had more error on unseen examples than slightly larger
trees. We ran additional experiments to make sure that this result is not an artifact of the
experimental methodology that we used, as reported in the next sections.

3.1 Representative Train/Test Partitions

One possible explanation for the �nding of the previous section is that the smaller decision
trees are formed from unrepresentative samples. For example, there are 11 positive and 21
negative examples of the concept XY Z _AB. If all or most of the examples in the training
set are negative, a very small tree may be learned which would probably do very poorly on
the mostly positive test set. To insure that the results are not caused by unrepresentative
training sets, we eliminated all training data that was not reasonably representative. In
particular, since there is a 11

32 probability that a training instance is positive, a representative
training set of size 20 would have about 7 positive instances. Since one standard deviation

would be
q
20 � 11

32 � (1�
11
32), we eliminated from analysis those training sets with greater

than 8 or fewer than 5 positive instances. Similarly, there is a 0.5 probability that each
binary feature takes on a true value, so we eliminated from analysis any training data which
has any feature that is true in greater than 13 or fewer than 7 instances. Figure 2 is based
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on the 69 of 100 trials of the XY Z _AB concept that met this representative test. Notice
that the two trials that formed the only 2 and 3 node trees were removed. Even when only
the more representative training sets are considered, the average error of trees of size 4 is
greater than the average error of size 5 trees.
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Figure 2. Error rate of consistent trees from representative training sets as a function of
node cardinality.

By regrouping the results of 100 trials for the XY Z_AB concept so that trials with the
same minimum-sized trees are grouped together, a set of �ve curves, each associated with
a subgroup, was formed (Figure 3). The intent of the grouping is to allow us to determine
whether the minimum-sized trees for any given trial are on average more accurate than
larger trees.
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Figure 3. Error as a function of node cardinality for the XY Z _ AB concept when �rst
grouped by minimum-sized trees built.

Note that in Figure 3, for most minimum tree sizes, error is not a monotonically increas-
ing function of node cardinality. Furthermore, the average error of the smallest trees found
is not the most accurate when the smallest tree has 4 or 6 nodes. In addition, regardless
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of the size of the smallest tree found, the average accuracy of trees of size 8 (the size of the
smallest correct tree) rarely has the minimum average error.

Another interesting �nding becomes apparent with this way of viewing the data: the
average error rates of trees for training sets that allow creation of smaller consistent trees
tends to be higher than for those training sets that can only form larger trees. For example,
the error rate for those training sets whose minimum-sized trees have 4 nodes is higher than
the error rate on trials whose minimum-sized trees has 7 nodes.
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Figure 4. Error rate of consistent trees with 2 examples per leaf of some correct 8 node tree
as a function of node cardinality.

The de�nition of representative that we used earlier in this section used global char-
acteristics of the training data to determine representativeness. Here, we consider a more
detailed view of representativeness that takes the structure of the correct concept into ac-
count. It is unreasonable to expect a decision tree learner to learn an accurate concept if
there are no examples that correspond to some of the leaves of some correct decision tree.
To generate training data for the next experiment, we �rst randomly selected one of the
72 trees with 8 nodes that is consistent with all the data. Next, for each leaf of the tree,
we randomly selected two examples (if possible) to include in the training set. If a leaf
only had one example, that example was included in the training set. Finally, we randomly
selected from the remaining examples so that there were 20 training examples and 12 test
examples. We had anticipated that with representative training sets formed in this manner,
very small consistent trees would be rare and perhaps the error rate would monotonically
increase with node cardinality. However, the results of 100 trials, as displayed in Figure 4,
indicate the same general pattern as before. In particular, the average error of trees with 7
nodes is substantially less than the average error of those with 6 nodes. Another experiment
with one randomly selected example per leaf had similar results.

3.2 Training Set Size and Concept Complexity

The minimum-sized decision tree for the concept XYZ_AB has 8 tests and 9 leaves. Since
the correct tree does not provide much compression3 of a set of 20 examples used to induce

3. The exact amount of compression provided depends upon the particular scheme chosen for encoding the
training data. See (Quinlan & Rivest, 1989; Wallace & Patrick, 1993) for two such schemes.
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the tree, one might argue that the sample used was too small for this complex a concept.
Therefore, we increased the number of training examples to the maximum possible. Figure
5 plots the average error of 32 trials in which we formed all decision trees consistent with 31
examples. Each tree was evaluated on the remaining unseen example. Figure 5 shows that
the smaller trees formed from samples of size 31 have more error than the slightly larger
trees. Since the minimum correct decision tree has 8 nodes and the consistent trees classify
all 31 training examples correctly, any decision tree with fewer than 8 nodes classi�es the
test example incorrectly.
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Figure 5. Error rate of consistent trees with leave-one-out testing as a function of node
cardinality.

To refute further the hypothesis that the results obtained so far were based on using
too small a training set for a given concept complexity, we considered two less complex
concepts. In particular, we investigated a single attribute discrimination, A with four
irrelevant features (Figure 6) and a simple conjunction, AB with three irrelevant features
(Figure 7).

20181614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

40

60

80

100

Error
Trials

Node Cardinality

E
rr

or

N
um

be
r 

of
 T

ri
al

s

Figure 6. Error as a function of node cardinality for the single attribute discrimination A

concept.
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Figure 7. Error as a function of node cardinality for the simple conjunction AB concept.

For each concept, 100 trials were run in which 20 examples were used for training and
the remaining 12 for testing. For these simpler concepts, though the smallest trees are the
most accurate, error again is not a monotonically increasing function of node cardinality.

3.3 Training and Testing using the Same Probability Distribution.

In our previous experiments, we used a methodology that is typical in empirical evaluations
of machine learning systems: the training data and the test data are disjoint. In contrast,
most theoretical work on the PAC model (Valiant, 1984) assumes that the training and
test data are generated from the same probability distribution over the examples. For
this section, we ran an experiment in which training and test examples were selected with
replacement from the same distribution to ensure that our results were not dependent on a
particular experimental methodology.
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Figure 8. Error as a function of node cardinality when the training and test examples are
generated by the same distribution for the XY Z _ AB concept.

Once again, the target concept was XY Z _ AB. By randomly choosing 31 training
examples with replacement from the set of 32 possible instances, on average approximately
20 distinct training examples are selected. Error is estimated by randomly choosing 1000
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examples with replacement from the set of possible instances. Figure 8 graphs the mean
error (averaged over 100 trials) as a function of node cardinality.

This testing methodology produces much smaller values for the proportion of test ex-
amples misclassi�ed than the disjoint training and test set methodology because those test
examples which also were training examples are always classi�ed correctly. However, the
same basic pattern of results is observed. Error is not at a minimum for the smallest de-
cision trees nor at decision trees with 8 nodes (the minimum-sized correct tree). Error
monotonically increases starting at trees with 7 nodes and then begins to decrease again
for very large node cardinalities. Note that on some trials, it is possible to build decision
trees with up to 21 nodes since some training sets contained 22 distinct examples.

3.4 Average Path Length

The information gain metric of ID3 is intended to minimize the number of tests required to
classify an example. Figure 9 reanalyzes the data from Figure 1 by graphing average error
as a function of average path length for the XY Z _ AB concept.
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Figure 9. Error as a function of average path length for the XY Z _AB concept.

The results are similar to those obtained when relating the number of test nodes to the
error rate: error is not a monotonically increasing function of average path length. Similar
analyses were performed and similar results have been obtained for other concepts which
are presented in the Appendix.

4. The Minimum-Sized Decision Tree Policy

A designer of a learning algorithm either explicitly or implicitly must decide which hypoth-
esis to prefer when multiple hypotheses are consistent with the training data. As Table 1
shows, there can be many consistent decision trees. Should the learner always prefer the
smallest consistent decision tree? A learner that adopts this strategy can be said to be
following the minimum-sized decision tree policy.
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In this section, we present results from additional experiments to evaluate this policy.
In particular, we gather evidence to address two related questions:

� Given any two consistent decision trees with di�erent node cardinalities, what is the
probability that the smaller decision tree is more accurate?

� Given the minimum-sized decision tree and a larger consistent decision tree, what is
the probability that the smallest decision tree is more accurate?

The �rst question is of more interest to the current practice of decision tree induction
since, for e�ciency reasons, no algorithm attempts to �nd the smallest consistent decision
tree for large data sets. Nonetheless, most algorithms are biased toward favoring trees with
fewer nodes.
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Figure 10. The probability that the accuracy of a smaller decision tree is greater than,
equal to, or less than the accuracy of a larger tree as a function of the di�erence of node
cardinalities for the XY Z_AB concept (upper). The number of trials out of 1000 on which
at least 2 trees had a given di�erence in node cardinality (lower).

To address the question of whether a learner should prefer the smaller of two randomly
selected consistent trees, we ran 1000 trials of learning the concept XY Z _ AB from 20
training examples. For each trial, we recorded the node cardinality and accuracy (on the
12 test examples) of every consistent tree. For each pair of consistent trees (with di�erent
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node cardinalities), we computed the di�erence in node cardinality and indicated whether
the accuracy of the smaller tree was greater than, equal to, or less than the accuracy of the
larger tree. From this data, we computed the observed probability that one decision tree
was more accurate than another as a function of the di�erence in node cardinalities (see
Figure 10 upper). The graph shows that on this concept, the probability that the smaller
of two randomly chosen consistent decision trees will be more accurate is greater than the
probability that the larger tree will be more accurate. Furthermore, the probability that
the smaller tree is more accurate increases as the di�erence in node cardinality increases.
An exception to this trend occurs for very large di�erences in node cardinality. However,
as Figure 10 lower shows, these exceptions are quite rare. Consistent decision trees whose
node cardinalities di�ered by 16 were found in only 6 of the 1000 trials.4 The results of
this experiment indicate that on average, a learner that prefers the smaller of two randomly
selected decision trees has a higher probability of being more accurate on this concept than
a learner that selects the larger tree.
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Figure 11. The probability that the accuracy of a minimum-sized decision is greater than,
equal to, or less than the accuracy of a larger tree as a function of the di�erence of node
cardinalities for the XY Z _ AB concept.

To address the question of whether a learner should prefer the smallest consistent deci-
sion over a randomly selected consistent tree with more test nodes, we reanalyzed the data
from the previous experiment. Figure 11 graphs the observed probability that a consistent
decision tree with the minimum node cardinality is more accurate than a larger tree as a
function of the di�erence in node cardinalities between the two trees. The graph shows that
a learner that chooses randomly among the consistent decision trees with minimum node
cardinalities is more likely to �nd a tree that is more accurate than a learner that randomly
selects among larger trees.5

Figure 11 clearly shows that for this particular concept, preferring the minimum-sized
decision tree policy is on average a better policy than preferring a decision tree that is any

4. Four trials had minimum-sized trees with 2 nodes and maximally sized trees with 18 nodes. Two trials
had minimum-sized trees with 3 nodes and maximally sized trees with 19 nodes.

5. Except for the rare case when an extremely small and an extremely large decision trees is found on the
same trial.
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�xed size larger than the smallest decision tree. However, it is not clear that the minimum-
sized decision tree is the best possible policy for this concept. Indeed, by looking at the
data from Figure 3, it is apparent that a better strategy for this concept would be to �nd
the minimum-sized tree and then decide whether to return the minimum-sized tree or a tree
of a di�erent node cardinality as a function of the node cardinality of the minimum-sized
consistent tree. Table 2 shows which node cardinality has the highest probability of being
most accurate as a function of the minimally sized tree, together with the number of trials
(out of 1000) on which the minimum-sized tree had a particular node cardinality.

Minimum Preferred Number of
Node Cardinality Node Cardinality Trials

2 2 49

3 5 17

4 5 300

5 5 351

6 8 211

7 8 71

8 8 1

Table 2. A policy of returning a larger decision tree as a function of the minimum-sized
tree for the XY Z _AB concept.

Figure 11 provides some of the data that illustrates that the policy in Table 2 will
perform better than preferring the minimum-sized decision tree on this concept. Figure
12 graphs the observed probability that a consistent decision tree with a minimum node
cardinality of 5 (upper), 6 (middle), or 7 (lower) is more accurate than a larger tree as a
function of the di�erence in node cardinalities between the two trees. The graph shows
that when the minimum-sized decision tree has 5 nodes, the probability that a larger tree
is more accurate is less than the probability that the smaller tree is more accurate for all
node cardinalities. This is particularly interesting because it shows that giving a decision
tree learner the size of the correct tree and having the decision tree learner produce an
hypothesis of this size is not the best strategy for this concept. However, when the smallest
consistent tree has 6 nodes, there is a 0.560 probability that a randomly chosen tree with
8 nodes will be more accurate and a 0.208 probability that a tree with 8 test nodes will
have the same accuracy. In addition, when the minimum-sized tree has 7 test nodes, the
probability that a tree with 8 nodes is more accurate is 0.345 while the probability that it
is less accurate is 0.312.

Note that we do not believe that the policy in Table 2 is uniformly superior to preferring
the minimum-sized decision tree. Rather, there is probably some interaction between the
complexity of the concept to be learned, the number of training examples, and the size of
the smallest consistent decision tree. Furthermore, a learner should not be tuned to learn a
particular concept, but should perform well on a variety of concepts. Clearly, if extremely
simple concepts are to be learned su�ciently frequently, the minimum-sized decision tree
policy will be better than the policy in Table 2. Indeed, the minimum-sized decision tree
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policy would work well on the simple concepts A and AB discussed in Section 3.2. However,
if simple concepts are rarely encountered, there may be better policies. The best policy must
depend upon the distribution of concepts that are encountered. Clearly, if the only concept
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Figure 12. The probability that the accuracy of a minimum-sized decision tree is greater
than, equal to, or less than the accuracy of a larger tree as a function of the di�erence of
node cardinalities for the XY Z _AB concept when the minimum-sized decision tree has 5
(upper), 6 (middle), or 7 (lower) test nodes.
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to be learned is XY Z_AB, the best policy would be to ignore the training data and return
the decision tree representation for XY Z _ AB. It may be that Occam's razor should
be viewed as a philosophical statement about the distribution of concepts one is likely
to encounter. Occam's razor has not been shown to be a guarantee that when learning
a complex concept, the simplest hypothesis consistent with the data is likely to be more
accurate than the randomly-chosen more complex hypothesis consistent with the training
data.

5. Analysis

Scha�er (1992, 1993) presents a series of experiments on over�tting avoidance algorithms.
Over�tting avoidance algorithms prefer simpler decision trees over more complex ones, even
though the simpler decision trees are less accurate on the training data, in hopes that the
trees will be more accurate on the test data. Scha�er shows that these over�tting avoidance
algorithms are a form of bias. Rather than uniformly improving performance, the over�tting
avoidance algorithms improve performance on some distributions of concepts and worsen
performance on other distributions of concepts.

The results of our experiments go a step further than Scha�er's. We have shown that
for some concepts, the preference for simpler decision trees does not result in an increase
in predictive accuracy on unseen test data, even when the simple trees are consistent with
the training data. Like Scha�er, we do not dispute the theoretical results on Occam's
razor (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987), minimum description length
(Quinlan & Rivest, 1989; Muggleton et al., 1992), or minimizing the number of leaves of
a decision tree (Fayyad & Irani, 1990). Rather, we point out that for a variety of reasons,
the assumptions behind these theoretical results mean that the results do not apply to the
experiments reported here. For example, (Blumer et al., 1987) indicates that if one �nds an
hypothesis in a su�ciently small hypothesis space (and simpler hypotheses are one example
of a small hypothesis space) and this hypothesis is consistent with a su�ciently large sample
of training data, one can be fairly con�dent that it will be fairly accurate on unseen data
drawn from the same distribution of examples. However, it does not say that on average
this hypothesis will be more accurate than other consistent hypotheses not in this small
hypothesis space.

The (Fayyad & Irani, 1990) paper explicitly states that the results on minimizing the
number of leaves of decision trees are worst case results and should not be used to make
absolute statements concerning improvements in performances. Nonetheless, informal argu-
ments in the paper state: \This may then serve as a basis for provably establishing that one
method for inducing decision trees is better than another by proving that one algorithm
always produces a tree with a smaller number of leaves, given the same training data."
Furthermore, other informal arguments imply that this result is probabilistic because of the
existence of \pathological training sets." However, as we have shown in Figures 2 and 4
(as well as a reanalysis of the mux6 data in the Appendix), eliminating pathological (i.e.,
unrepresentative) training sets does not change the qualitative result that on some concepts,
the smaller trees are less accurate predictors than slightly larger trees.
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6. Conclusion

We have reported on a series of experiments in which we generated all decision trees on
a variety of arti�cial concepts and two naturally occurring data sets. We found that for
many of the concepts, the consistent decision trees that had a smaller number of nodes were
less accurate on unseen data than the slightly larger ones. These results do not contradict
existing theoretical results. Rather, they serve to remind us to be cautious when informally
using the intuitions derived from theoretical results on problems that are not covered by the
theorems or when using intuitions derived from worst-case results to predict average-case
performance.

We stress that our results are purely experimental. Like the reader, we too would be
pleased if there were theoretical results that indicated, for a given sample of training data,
which decision tree is likely to be most accurate. However, it is not clear whether this can be
done without knowledge of the distribution of concepts one is likely to encounter (Scha�er,
1994).

We also note that our results may be due to the small size of the training sets relative to
the size of the correct tree. We tried to rule out this possibility by using larger training sets
(31 of the 32 possible examples) and by testing simpler concepts. For the simpler concepts,
the smallest decision trees were the most accurate, but error did not monotonically increase
with node cardinality. Since most decision tree learners that greedily build decision trees
do not return the smallest decision tree, our results may be of practical interest even for
simple concepts. In the future, experiments with more features and more examples could
help to answer this question, but considerably more complex problems cannot be handled
even by future generations of parallel supercomputers. In addition, we note that in our
experiments, we did not build decision trees in which a test did not partition the training
data. This explains why we found relatively few extremely large decision trees and may
explain why very large trees made few errors. To our knowledge, all decision tree algorithms
have this constraint. However, the theoretical work on learning does not make use of this
information. We could rerun all of our experiments without this constraint, but we would
prefer that some future theoretical work take this constraint into account.

Although we have found situations in which the smallest consistent decision tree is not
on average the most accurate and cases in which there is a greater than 0.5 probability that a
larger decision tree is more accurate than the smallest, we believe that learning algorithms
(and people) with no relevant knowledge of the concept and no information about the
distribution of concepts that are likely to be encountered should prefer simpler hypotheses.
This bias is appropriate for learning simple concepts. For more complex concepts, the
opposite bias, preferring the more complex hypotheses, is unlikely to produce an accurate
hypothesis (Blumer et al., 1987) and (Fayyad & Irani, 1990) due to the large number of
consistent complex hypotheses. We believe that the only way to learn complex hypotheses
reliably is to have some bias (e.g., prior domain knowledge) which favors particular complex
hypotheses such as combinations of existing hypotheses learned inductively as in OCCAM
(Pazzani, 1990). Indeed, (Valiant, 1984) advocates a similar position: \If the class of
learnable concepts is as severely limited as suggested by our results, then it would follow
that the only way of teaching more complex concepts is to build them up from simpler
ones."
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Appendix A. Experiments on Additional Problems

In this appendix, we provide data on experiments which we ran on additional problems.
The experiments show that the basic �ndings in this paper are not unique to the arti�cial
concept, XY Z _ AB.

Mux6

The multiplexor concept we consider, mux6, has a total of 8 binary features. Six features
represent the functionality of a multiplexor and 2 features are irrelevant. The minimum sized
tree has 7 nodes. This particular concept was chosen because it is di�cult for a top-down
inductive decision tree learner with limited look ahead to �nd a small hypothesis (Quinlan,
1993). On each trial, we selected 20 examples randomly and tested on the remaining
examples. Since most of the computational cost of building consistent trees is for larger
node cardinalities and we are primarily interested in trees with small node cardinalities, we
only computed consistent trees with up to 10 nodes for 10 trials and up to 8 nodes for 340
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Figure 13. Error as a function of node cardinality for the mux6 concept.

trials. Figure 13 presents the average error as a function of the node cardinality for these
trials. This graph again shows that average error does not monotonically increase with node
cardinality. Trees of 4 nodes are on the average 4% less accurate than trees of 5 nodes.

272



Exploring the Decision Forest

Lenses

The lenses domain has one 3-valued and three binary features, three classes, and 24 in-
stances. Since the lenses domain has one non-binary feature, trees with a range of leaf
cardinalities are possible for a particular node cardinality. The minimum-sized tree has
6 nodes and 9 leaves. Separate analyses for leaf and node cardinalities were performed.
We used training set sizes of 8, 12, and 18 for this domain, built all consistent trees, and
measured the error rate on all unseen examples.
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Figure 14. Error as a function of node cardinality (left) and error as a function of leaf
cardinality (right).

Figure 14 (left) shows the error as a function of the node cardinality for the 3 training
set sizes averaged over 50 trials. These curves indicate that the smallest consistent trees are
not always the most accurate. When observing the larger node cardinalities for the training
set sizes 12 and 18, error monotonically decreases with increasing node cardinality. Similar
statements can be said for the curve in Figure 14 (right), which relates average error as a
function of leaf cardinality.

Shuttle Landing

The shuttle landing domain has four binary and two 4-valued features, two classes, and 277
instances. The minimum-sized consistent tree has 7 nodes and 14 leaves. We used training
sets of size 20, 50, and 100 for the shuttle domain, generating all consistent decision trees
with fewer than 8, 10, and 12 nodes, and measured the error of these trees on all unseen
examples. Figure 15 presents the error as a function of leaf cardinality, averaged over
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10 trials. For this domain, there is a monotonically increasing relationship between node
cardinality and error.
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Figure 15. Error as a function of node cardinality for the Shuttle concept.
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