
Journal of Arti�cial Intelligence Research 2 (1995) 287-318 Submitted 9/94; published 1/95

Truncating Temporal Di�erences:
On the E�cient Implementation of TD(�)

for Reinforcement Learning

Paweª Cichosz cichosz@ipe.pw.edu.pl

Institute of Electronics Fundamentals, Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract

Temporal di�erence (TD) methods constitute a class of methods for learning predictions
in multi-step prediction problems, parameterized by a recency factor �. Currently the most
important application of these methods is to temporal credit assignment in reinforcement
learning. Well known reinforcement learning algorithms, such as AHC or Q-learning, may
be viewed as instances of TD learning. This paper examines the issues of the e�cient
and general implementation of TD(�) for arbitrary �, for use with reinforcement learning
algorithms optimizing the discounted sum of rewards. The traditional approach, based on
eligibility traces, is argued to su�er from both ine�ciency and lack of generality. The TTD
(Truncated Temporal Di�erences) procedure is proposed as an alternative, that indeed
only approximates TD(�), but requires very little computation per action and can be used
with arbitrary function representation methods. The idea from which it is derived is fairly
simple and not new, but probably unexplored so far. Encouraging experimental results are
presented, suggesting that using � > 0 with the TTD procedure allows one to obtain a
signi�cant learning speedup at essentially the same cost as usual TD(0) learning.

1. Introduction

Reinforcement learning (RL, e.g., Sutton, 1984; Watkins, 1989; Barto, 1992; Sutton, Barto,
& Williams, 1991; Lin, 1992, 1993; Cichosz, 1994) is a machine learning paradigm that relies
on evaluative training information. At each step of discrete time a learning agent observes
the current state of its environment and executes an action. Then it receives a reinforce-
ment value, also called a payo� or a reward (punishment), and a state transition takes
place. Reinforcement values provide a relative measure of the quality of actions executed
by the agent. Both state transitions and rewards may be stochastic, and the agent does not
know either transition probabilities or expected reinforcement values for any state-action
combinations. The objective of learning is to identify a decision policy (i.e., a state-action
mapping) that maximizes the reinforcement values received by the agent in the long term.
A commonly assumed formal model of a reinforcement learning task is aMarkovian decision
problem (MDP, e.g., Ross, 1983). The Markov property means that state transitions and
reinforcement values always depend solely on the current state and the current action: there
is no dependence on previous states, actions, or rewards, i.e., the state information supplied
to the agent is su�cient for making optimal decisions.

All the information the agent has about the external world and its task is contained
in a series of environment states and reinforcement values. It is never told what actions
to execute in particular states, or what actions (if any) would be better than those which

c
1995 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Cichosz

it actually performs. It must learn an optimal policy by observing the consequences of its
actions. The abstract formulation and generality of the reinforcement learning paradigm
make it widely applicable, especially in such domains as game-playing (Tesauro, 1992),
automatic control (Sutton et al., 1991), and robotics (Lin, 1993). To formulate a particular
task as a reinforcement learning task, one just has to design appropriate state and action
representation, and a reinforcement mechanism specifying the goal of the task. The main
limitation of RL applications is that it is by nature a trial-and-error learning method, and
it is hardly applicable in domains where making errors costs much.

A commonly studied performance measure to be maximized by an RL agent is the
expected total discounted sum of reinforcement:

E

"
1X
t=0

trt

#
; (1)

where rt denotes the reinforcement value received at step t, and 0 �
 � 1 is a discount
factor , which adjusts the relative signi�cance of long-term rewards versus short-term ones.
To maximize the sum for any positive
, the agent must take into account the delayed
consequences of its actions: reinforcement values may be received several steps after the
actions that contributed to them were performed. This is referred to as learning with delayed
reinforcement (Sutton, 1984; Watkins, 1989). Other reinforcement learning performance
measures have also been considered (Heger, 1994; Schwartz, 1993; Singh, 1994), but in this
work we limit ourselves exclusively to the performance measure speci�ed by Equation 1.

The key problem that must be solved in order to learn an optimal policy under the
conditions of delayed reinforcement is known as the temporal credit assignment problem
(Sutton, 1984). It is the problem of assigning credit or blame for the overall outcomes
of a learning system (i.e., long-term reinforcement values) to each of its individual actions,
possibly taken several steps before the outcomes could be observed. Discussing reinforcement
learning algorithms, we will concentrate on temporal credit assignment and ignore the issues
of structural credit assignment (Sutton, 1984), the other aspect of credit assignment in RL
systems.

1.1 Temporal Di�erence Methods

The temporal credit assignment problem in reinforcement learning is typically solved using
algorithms based on the methods of temporal di�erences (TD). They have been introduced
by Sutton (1988) as a class of methods for learning predictions in multi-step prediction
problems. In such problems prediction correctness is not revealed at once, but after more
than one step since the prediction was made, though some partial information relevant to
its correctness is revealed at each step. This information is available and observed as the
current state of a prediction problem, and the corresponding prediction is computed as a
value of a function of states.

Consider a multi-step prediction problem where at each step it is necessary to learn a
prediction of some �nal outcome. It could be for example predicting the outcome of a game
of chess in subsequent board situations, predicting the weather on Sunday on each day of
the week, or forecasting some economic indicators. The traditional approach to learning
such predictions would be to wait until the outcome occurs, keeping track of all predictions

288

Truncating Temporal Differences

computed at intermediate steps, and then, for each of them, to use the di�erence between
the actual outcome and the predicted value as the training error. It is supervised learning,
where directed training information is obtained by comparing the outcome with predictions
produced at each step. Each of the predictions is modi�ed so as to make it closer to the
outcome.

Temporal di�erence learning makes it unnecessary to always wait for the outcome. At
each step the di�erence between two successive predictions is used as the training error.
Each prediction is modi�ed so as to make it closer to the next one. In fact, TD is a class
of methods referred to as TD(�), where 0 � � � 1 is called a recency factor . Using � > 0
allows one to incorporate prediction di�erences from more time steps, to hopefully speed
up learning.

Temporal credit assignment in reinforcement learning may be viewed as a prediction
problem. The outcome to predict in each state is simply the total discounted reinforcement
that will be received starting from that state and following the current policy. Such predic-
tions can be used for modifying the policy so as to optimize the performance measure given
by Equation 1. Example reinforcement learning algorithms that implement this idea, called
TD-based algorithms , will be presented in Section 2.2.

1.2 Paper Overview

Much of the research concerning TD-based reinforcement learning algorithms has concen-
trated on the simplest TD(0) case. However, experimental results obtained with TD(� > 0)
indicate that it often allows one to obtain a signi�cant learning speedup (Sutton, 1988;
Lin, 1993; Tesauro, 1992). It has been also suggested (e.g., Peng & Williams, 1994) that
TD(� > 0) should perform better in non-Markovian environments than TD(0) (i.e., it should
be less sensitive to the potential violations of the Markov property). It is thus important
to develop e�cient and general implementation techniques that would allow TD-based RL
algorithms to use arbitrary �. This has been the motivation of this work.

The remainder of this paper is organized as follows. In Section 2 a formal de�nition of
TD methods is presented and their application to reinforcement learning is discussed. Three
example RL algorithms are brie
y described: AHC (Sutton, 1984), Q-learning (Watkins,
1989; Watkins & Dayan, 1992), and advantage updating (Baird, 1993). Section 3 presents
the traditional approach to TD(�) implementation, based on so called eligibility traces,
which is criticized for ine�ciency and lack of generality. In Section 4 the analysis of the
e�ects of the TD algorithm leads to the formulation of the TTD (Truncated Temporal
Di�erences) procedure. The two remaining sections are devoted to experimental results
and concluding discussion.

2. De�nition of TD(�)

When Sutton (1988) introduced TD methods, he assumed they would use parameter es-
timation techniques for prediction representation. According to his original formulation,
states of a prediction problem are represented by vectors of real-valued features, and corre-
sponding predictions are computed by the use of a set of modi�able parameters (weights).
Under such representation learning consists in adjusting the weights appropriately on the
basis of observed state sequences and outcomes. Below we present an alternative formula-

289

Cichosz

tion, adopted from Dayan (1992), that simpli�es the analysis of the e�ects of the TD(�)
algorithm. In this formulation states may be elements of an arbitrary �nite state space, and
predictions are values of some function of states. Transforming Sutton's original de�nition
of TD(�) to this alternative form is straightforward.

When discussing either the generic or RL-oriented form of TD methods, we conse-
quently ignore the issues of function representation. It is only assumed that TD predic-
tions or functions maintained by reinforcement learning algorithms are represented by a
method that allows adjusting function values using some error values, controlled by a learn-
ing rate parameter. Whenever we write that the value of an n-argument function ' for
arguments p0; p1; : : : ; pn�1 should be updated using an error value of �, we mean that
'(p0; p1; : : : ; pn�1) should be moved towards '(p0; p1; : : : ; pn�1) +�, to a degree controlled
by some learning rate factor �. The general form of this abstract update operation is written
as

update�('; p0; p1; : : : ; pn�1; �): (2)

Under this convention, a learning algorithm is de�ned by the rule it uses for computing
error values.

2.1 Basic Formulation

Let x0; x1; : : : ; xm�1 be a sequence of m states of a multi-step prediction problem. Each
state xt can be observed at time step t, and at step m, after passing the whole sequence, a
real-valued outcome z can be observed. The learning system is required to produce a corre-
sponding sequence of predictions P (x0); P (x1); : : : ; P (xm�1), each of which is an estimate
of z.

Following Dayan (1992), let us de�ne for each state x:

�x(t) =

(
1 if xt = x

0 otherwise:

Then the TD(�) prediction error for each state x determined at step t is given by:

�x(t) = (P (xt+1)� P (xt))
tX

k=0

�t�k�x(k); (3)

where 0 � � � 1 and P (xm) = z by de�nition, and the total prediction error for state x
determined after the whole observed sequence accordingly is:

�x =
m�1X
t=0

�x(t) =
m�1X
t=0

(
(P (xt+1)� P (xt))

tX
k=0

�t�k�x(k)

)
: (4)

Thus, learning at each step is driven by the di�erence between two temporally successive
predictions. When � > 0, the prediction di�erence at time t a�ects not only P (xt), but also
predictions from previous time steps, to an exponentially decaying degree.1

1. Alternatively, learning the prediction at step t relies not only on the prediction di�erence from that
step, but also on future prediction di�erences. This equivalent formulation will play a signi�cant role in
Section 4.

290

Truncating Temporal Differences

There are two possibilities of using such de�ned errors for learning. The �rst is to com-
pute total errors�x for all states x, by accumulating the�x(t) errors computed at each time
step t, and to use them after passing the whole state sequence to update predictions P (x).
It corresponds to batch learning mode. The second possibility, called incremental or on-line
learning, often more attractive in practice, is to update predictions at each step t using
current error values �x(t). It is then necessary to modify appropriately Equation 3, so as
to take into account that predictions are changed at each step:

�x(t) = (Pt(xt+1)� Pt(xt))
tX

k=0

�t�k�x(k); (5)

where Pt(x) designates the prediction for state x available at step t.
Sutton (1988) proved the convergence of batch TD(0) for a linear representation, with

states represented as linearly independent vectors, under the assumption that state se-
quences are generated by an absorbing Markov process .2 Dayan (1992) extended his proof
to arbitrary �.3

2.2 TD(�) for Reinforcement Learning

So far, this paper has presented TD as a general class of prediction methods for multi-step
prediction problems. The most important application of these methods, however, is to rein-
forcement learning. As a matter of fact, TD methods were formulated by Sutton (1988) as
a generalization of techniques he had previously used only in the context of temporal credit
assignment in reinforcement learning (Sutton, 1984).

As already stated above, the most straightforward way to formulate temporal credit
assignment as a prediction problem is to predict at each time step t the discounted sum of
future reinforcement

zt =
1X
k=0

krt+k;

called the TD return for time t. The corresponding prediction is designated by U(xt) and
called the predicted utility of state xt. TD returns obviously depend on the policy being
followed; we therefore assume that U values represent predicted state utilities with respect
to the current policy. For perfectly accurate predictions we would have:

U(xt) = zt = rt +
zt+1 = rt +
U(xt+1):

Thus, for inaccurate predictions, the mismatch or TD error is rt +
U(xt+1)� U(xt). The
resulting RL-oriented TD(�) equations take form:

�x(t) = (rt +
Ut(xt+1)� Ut(xt))
tX

k=0

(
�)t�k�x(k) (6)

2. An absorbing Markov process is de�ned by a set of terminal states XT , a set of non-terminal states XN ,
and the set of transition probabilities Pxy for all x 2 XN and y 2 XN [XT . The absorbing property
means that any cycles among non-terminal states cannot last inde�nitely long, i.e., for any starting
non-terminal state a terminal state will eventually be reached (all sequences eventually terminate).

3. Recently stronger theoretical results were proved by Dayan and Sejnowski (1994) and Jaakkola, Jordan,
and Singh (1993).

291

Cichosz

and

�x =
1X
t=0

�x(t) =
1X
t=0

(
(rt +
Ut(xt+1)� Ut(xt))

tX
k=0

(
�)t�k�x(k)

)
: (7)

Note the following additional di�erences between these equations and Equations 3 and 4:

� time step subscripts are used with U values to emphasize on-line learning mode,

� the discount applied in the sum in Equation 6 includes
 as well as � for reasons that
may be unclear now, but will be made clear in Section 4.1,

� the summation in Equation 7 extends to in�nity, because the predicted �nal outcome
is not, in general, available after any �nite number of steps.

TD-based reinforcement learning algorithms may be viewed as more or less direct im-
plementations of the general rule described by Equation 6. To see this, we will consider
three algorithms: well known AHC (Sutton, 1984) and Q-learning (Watkins, 1989; Watkins
& Dayan, 1992), and a recent development of Baird (1993) called advantage updating . All
the algorithms rely on learning certain real-valued functions de�ned over the state or state
and action space of a task. The � superscript used with any of the described functions
designates its optimal values (i.e., corresponding to an optimal policy). Simpli�ed versions
of the algorithms, corresponding to TD(0), will be presented and related to Equation 6.
The presentation below is limited solely to function update rules | for a more elaborated
description of the algorithms the reader should consult the original publications of their
developers or, for AHC and Q-learning, Lin (1993) or Cichosz (1994). They are all closely
related to dynamic programming methods (Barto, Sutton, & Watkins, 1990; Watkins, 1989;
Baird, 1993), but these relations, though theoretically and practically important and fruit-
ful, are not essential for the subject of this paper and will not be discussed.

2.2.1 The AHC Algorithm

The variation of the AHC algorithm described here is adopted from Sutton (1990). Two
functions are maintained: an evaluation function V and a policy function f . The evaluation
function evaluates each environment state and is essentially the same as what was called
above the U function, i.e., V (x) is intended to be an estimate of the discounted sum of
future reinforcement values received starting from state x and following the current policy.
The policy function assigns to each state-action pair (x; a) a real number representing
the relative merit of performing action a in state x, called the action merit . The actual
policy is determined from action merits using some, usually stochastic, action selection
mechanism, e.g., according to a Boltzmann distribution (as described in Section 5). The
optimal evaluation of state x, V �(x), is the expected total discounted reinforcement that
will be received starting from state x and following an optimal policy.

Both the functions are updated at each step t, after executing action at in state xt,
according to the following rules:

update�(V; xt; rt +
Vt(xt+1)� Vt(xt));

update�(f; xt; at; rt +
Vt(xt+1)� Vt(xt)).

292

Truncating Temporal Differences

The update rule for the V -function directly corresponds to Equation 6 for � = 0. The update
rule for the policy function increases or decreases the action merit of an action depending
on whether its long-term consequences appear to be better or worse than expected. We
present this, a simpli�ed form of AHC corresponding to TD(0), because this paper proposes
an alternative way of using TD(� > 0) to that implemented by the original AHC algorithm
presented by Sutton (1984).

2.2.2 The Q-Learning Algorithm

Q-learning learns a single function of states and actions, called a Q-function. To each
state-action pair (x; a) it assigns a Q-value or action utility Q(x; a), which is an estimate of
the discounted sum of future reinforcement values received starting from state x by executing
action a and then following a greedy policy with respect to the current Q-function (i.e.,
performing in each state actions with maximum Q-values). The current policy is implicitly
de�ned by Q-values. When the optimal Q-function is learned, then a greedy policy with
respect to action utilities is an optimal policy.

The update rule for the Q-function is:

update�(Q; xt; at; rt +
maxaQt(xt+1; a)�Qt(xt; at)).

To show its correspondence to the TD(0) version of Equation 6, we simply assume that
predicted state utilities are represented by Q-values so that Qt(xt; at) corresponds to Ut(xt)
and maxaQt(xt+1; a) corresponds to Ut(xt+1).

2.2.3 The Advantage Updating Algorithm

In advantage updating two functions are maintained: an evaluation function V and an
advantage function A. The evaluation function has essentially the same interpretation as its
counterpart in AHC, though it is learned in a di�erent way. The advantage function assigns
to each state-action pair (x; a) a real number A(x; a) representing the degree to which the
expected discounted sum of future reinforcement is increased by performing action a in
state x, relative to the action currently considered best in that state. The optimal action
advantages are negative for all suboptimal actions and equal 0 for optimal actions, and can
be related to the optimal Q-values by:

A�(x; a) = Q�(x; a)�max
a0

Q�(x; a0):

Similarly as action utilities, action advantages implicitly de�ne a policy.
The evaluation and advantage functions are updated at step t by applying the following

rules:

update�(A; xt; at; maxaAt(xt; a)� At(xt; at) + rt +
Vt(xt+1)� Vt(xt));

update�(V; xt;
1
�
[maxaAt+1(xt)�maxaAt(xt)]).

The update rule for the advantage function is somewhat more complex that the AHC or
Q-learning rules, but it still contains a term that directly corresponds to the TD(0) form of
Equation 6, by replacing V with U .

Actually, what has been presented above is a simpli�ed version of advantage updating.
The original algorithm di�ers in two details:

293

Cichosz

� the time step duration �t is explicitly included in the update rules, while in this
presentation we assumed �t = 1,

� besides learning updates , described above, so called normalizing updates are per-
formed.

3. Eligibility Traces

It is obvious that the direct implementation of the computation described by Equation 6 is
not too tempting. It requires maintaining �x(t) values for each state x and past time step t.
Note, however, that one only needs to maintain the whole sums

Pt
k=0(
�)

t�k�x(k) for all x
and only one (current) t, which is much easier due to a simple trick. Substituting

ex(t) =
tX

k=0

(
�)t�k�x(k);

we can de�ne the following recursive update rule:

ex(0) =

(
1 if x0 = x
0 otherwise;

ex(t) =

(

�ex(t� 1) + 1 if xt = x

�ex(t� 1) otherwise:
(8)

The quantities ex(t) de�ned this way are called activity or eligibility traces (Barto,
Sutton, & Anderson, 1983; Sutton, 1984; Watkins, 1989). Whenever a state is visited, its
activity becomes high and then gradually decays until it is visited again. The update to
the predicted utility of each state x resulting from visiting state xt at time t may be then
written as

�x(t) = (rt +
Ut(xt+1)� Ut(xt))ex(t); (9)

which is a direct transformation of Equation 6.

This technique (with minor di�erences) was already used in the early works of Barto
et al. (1983) and Sutton (1984), before the actual formulation of TD(�). It is especially
suitable for use with parameter estimation function representation methods, such as con-
nectionist networks. Instead of having one ex value for each state x one then has one ei
value for each weight wi. That is how eligibility traces were actually used by Barto et al.
(1983) and Sutton (1984), inspired by an earlier work of Klopf (1982). Note that in the case
of the AHC algorithm, di�erent � values may be used for maintaining traces used by the
evaluation and policy functions.

Unfortunately, the technique of eligibility traces is not general enough to be easy to im-
plement with an arbitrary function representation method. It is not clear, for example, how
it could be used with such an important class of function approximators as memory-based
(or instance-based) function approximators (Moore & Atkeson, 1992). Applied with a pure
tabular representation, it has signi�cant drawbacks. First, it requires additional memory lo-
cations, one per state. Second, and even more painful, is that it requires modifying both U(x)
and ex for all x at each time step. This operation dominates the computational complexity

294

Truncating Temporal Differences

of TD-based reinforcement learning algorithms, and makes using TD(� > 0) much more ex-
pensive than TD(0). The eligibility traces implementation of TD(�) is thus, for large state
spaces, absolutely impractical on serial computers, unless an appropriate function approx-
imator is used that allows updating function values and eligibility traces for many states
concurrently (such as a multi-layer perceptron). But even when such an approximator is
used, there are still signi�cant computational (both memory and time) additional costs of
using TD(�) for � > 0 versus TD(0). Another drawback of this approach will be revealed
in Section 4.1.

4. Truncating Temporal Di�erences

This section departs from an alternative formulation of TD(�) for reinforcement learning.
Then we follow with relating the TD(�) training errors used in this alternative formulation
to TD(�) returns. Finally, we propose approximating TD(�) returns with truncated TD(�)
returns, and we show how they can be computed and used for on-line reinforcement learning.

4.1 TD Errors and TD Returns

Let us take a closer look at Equation 7. Consider the e�ects of experiencing a sequence of
states x0; x1; : : : ; xk; : : : and corresponding reinforcement values r0; r1; : : : ; rk; : : :. For the
sake of simplicity, assume for a while that all states in the sequence are di�erent (though it
is of course impossible for �nite state spaces). Applying Equation 7 to state xt under this
assumption we have:

�xt = rt +
Ut(xt+1)� Ut(xt) +

�
h
rt+1 +
Ut+1(xt+2)� Ut+1(xt+1)

i
+

(
�)2
h
rt+2 +
Ut+2(xt+3)� Ut+2(xt+2)

i
+ : : :

=
1X
k=0

(
�)k
h
rt+k +
Ut+k(xt+k+1)� Ut+k(xt+k)

i
:

If a state occurs several times in the sequence, each visit to that state yields a similar update.
This simple observation opens a way to an alternative (though equivalent) formulation of
TD(�), o�ering novel implementation possibilities.

Let
�0

t = rt +
Ut(xt+1)� Ut(xt) (10)

be the TD(0) error at time step t. We de�ne the TD(�) error at time t using TD(0) errors
as follows:

��
t =

1X
k=0

(
�)k
h
rt+k +
Ut+k(xt+k+1)� Ut+k(xt+k)

i
=

1X
k=0

(
�)k�0
t+k: (11)

Now, we can express the overall TD(�) error for state x, �x, in terms of ��
t errors:

�x =
1X
t=0

��
t �x(t): (12)

295

Cichosz

In fact, from Equation 7 we have:

�x =
1X
t=0

�0
t

tX
k=0

(
�)t�k�x(k) =
1X
t=0

tX
k=0

(
�)t�k�0
t�x(k): (13)

Swapping the order of the two summations we get:

�x =
1X
k=0

1X
t=k

(
�)t�k�0
t�x(k): (14)

Finally, by exchanging k and t with each other, we receive:

�x =
1X
t=0

1X
k=t

(
�)k�t�0
k�x(t) =

1X
t=0

1X
k=0

(
�)k�0
t+k�x(t) =

1X
t=0

��
t �x(t): (15)

Note the following important di�erence between �x(t) (Equation 6) and ��
t : the former

is computed at each time step t for all x and the latter is computed at each step t only
for xt. Accordingly, at step t the error value �x(t) is used for adjusting U(x) for all x
and ��

t is only used for adjusting U(xt). This is crucial for the learning procedure proposed
in Section 4.2. While applying such de�ned ��

t errors on-line makes changes to predicted
state utilities at individual steps clearly di�erent than those described by Equation 6, the
overall e�ects of experiencing the whole state sequence (i.e., the sums of all individual error
values for each state) are equivalent, as shown above.

Having expressed TD(�) in terms of ��
t errors, we can gain more insight into its opera-

tion and the role of �. Some de�nitions will be helpful. Recall that the TD return for time t
is de�ned as

zt =
1X
k=0

krt+k:

The m-step truncated TD return (Watkins, 1989; Barto et al., 1990) is received by taking
into account only the �rst m terms of the above sum, i.e.,

z
[m]
t =

m�1X
k=0

krt+k:

Note, however, that the rejected terms
mrt+m +
m+1rt+m+1 + : : : can be approximated by

mUt+m�1(xt+m). The corrected m-step truncated TD return (Watkins, 1989; Barto et al.,
1990) is thus:

z
(m)
t =

m�1X
k=0

krt+k +
mUt+m�1(xt+m):

Equation 11 may be rewritten in the following form:

��
t =

1X
k=0

(
�)k
h
rt+k +
(1� �)Ut+k(xt+k+1) +
�Ut+k(xt+k+1)� Ut+k(xt+k)

i

=
1X
k=0

(
�)k
h
rt+k +
(1� �)Ut+k(xt+k+1)

i
� Ut(xt) +

1X
k=1

(
�)k
h
Ut+k�1(xt+k)� Ut+k(xt+k)

i
: (16)

296

Truncating Temporal Differences

Note that for � = 1 it yields:

�1
t =

1X
k=0

krt+k � Ut(xt) +
1X
k=1

k
h
Ut+k�1(xt+k)� Ut+k(xt+k)

i

= zt � Ut(xt) +
1X
k=1

k
h
Ut+k�1(xt+k)� Ut+k(xt+k)

i
:

If we relax for a moment our assumption about on-line learning mode and leave out time
subscripts from U values, the last term disappears and we simply have:

�1
t = zt � U(xt):

Similarly for general �, if we de�ne the TD(�) return (Watkins, 1989) for time t as a
weighted average of corrected truncated TD returns:

z�t = (1� �)
1X
k=0

�kz
(k+1)
t =

1X
k=0

(
�)k
h
rt+k +
(1� �)Ut+k(xt+k+1)

i
(17)

and again omit time subscripts, we will receive:

��
t = z�t � U(xt): (18)

The last equation brings more light on the exact nature of the computation performed
by TD(�). The error at time step t is the di�erence between the TD(�) return for that step
and the predicted utility of the current state, that is, learning with that error value will
bring the predicted utility closer to the return. For � = 1 the quantity z�t is the usual TD
return for time t, i.e., the discounted sum of all future reinforcement values.4 For � < 1 the
term rt+k is replaced by rt+k +
(1� �)Ut+k(xt+k+1), that is, the actual immediate reward
is augmented with the predicted future reward.

The de�nition of the TD(�) return (Equation 17) may be written recursively as

z�t = rt +
(�z�t+1 + (1� �)Ut(xt+1)): (19)

This probably best explains the role of � in TD(�) learning. It determines how the return
used for improving predictions is obtained. When � = 1, it is exactly the actual observed
return, the discounted sum of all rewards. For � = 0 it is the 1-step corrected truncated
return, i.e., the sum of the immediate reward and the discounted predicted utility of the
successor state. Using 0 < � < 1 allows to smoothly interpolate between these two extremes,
relying partially on actual returns and partially on predictions.

Equation 18 holds true only for batch learning mode, but in fact TD methods have been
originally formulated for batch learning. The incremental version, more practically useful,

4. This observation corresponds to the equivalence of \generic" TD(�) for � = 1 to supervised learning
shown by Sutton (1988). To receive such a result it was necessary to discount prediction di�erences with

� instead of � alone in Equation 6, though Sutton presenting the RL-oriented form of TD did not make
this modi�cation.

297

Cichosz

introduces an additional term. Let D�
t designate that term. By comparing Equations 16

and 17 we get:

D�
t = ��

t � (z�t � Ut(xt)) =
1X
k=1

(
�)k
h
Ut+k�1(xt+k)� Ut+k(xt+k)

i
: (20)

The magnitude of this discrepancy term, and consequently its in
uence on the learning
process, obviously depends on the learning rate value. To examine it further, suppose a
learning rate � is used when learning U on the basis of ��

t errors. Let the corresponding
learning rule be:

Ut+1(xt) := Ut(xt) + ���
t :

Then we have

Ut+1(xt)� Ut(xt) = �(z�t � Ut(xt)) + �D�
t

= �(z� � Ut(xt)) + �
1X
k=1

(
�)k
h
Ut+k�1(xt+k)� Ut+k(xt+k)

i

� �(z� � Ut(xt))� �2
1X
k=1

(
�)k��
t+k�1; (21)

with equality if and only if xt+k = xt+k�1 for all k. A similar result may be obtained for the
eligibility traces implementation, with learning driven by�x(t) errors de�ned by Equation 9.
We would then have:

Ut+1(xt)� Ut(xt) = �(z� � Ut(xt))� �2
1X
k=1

(
�)k�0
t+k�1ext+k (t+ k � 1): (22)

This e�ect may be considered another drawback of the eligibility traces implementation of
TD(�), apart from its ine�ciency and lack of generality. Though for small learning rates
the e�ect of D�

t is negligible, it may be still harmful in some cases, especially for large

and �.5

4.2 The TTD Procedure

We have shown that TD errors��
t or z

�
t � Ut(xt) can be used almost equivalently for TD(�)

learning, yielding the same overall results as the eligibility traces implementation, which has,
however, important drawbacks in practice. Nevertheless, it is impossible to use either TD(�)
errors ��

t or TD(�) returns z�t for on-line learning, since they are not available. At step t

the knowledge of both rt+k and xt+k is required for all k = 1; 2; : : :, and there is no way to
implement this in practice. Recall, however, the de�nition of the truncated TD return. Why
not de�ne the truncated TD(�) error and the truncated TD(�) return? The appropriate
de�nitions are:

��;m
t =

m�1X
k=0

(
�)k�0
t+k (23)

5. Sutton (1984) presented the technique of eligibility traces as an implementation of the recency and
frequency heuristics. In this context, the phenomenon examined above may be considered a harmful
e�ect of the frequency heuristic. Sutton discussed an example �nite-state task where this heuristic might
be misleading (Sutton, 1984, page 171).

298

Truncating Temporal Differences

and

z�;mt =
m�2X
k=0

(
�)k
h
rt+k +
(1� �)Ut+k(xt+k+1)

i
+ (
�)m�1

h
rt+m�1 +
Ut+m�1(xt+m)

i

=
m�1X
k=0

(
�)k
h
rt+k +
(1� �)Ut+k(xt+k+1)

i
+ (
�)mUt+m�1(xt+m): (24)

We call ��;m
t the m-step truncated TD(�) error, or simply the TTD(�;m) error at time

step t, and z�;mt the m-step truncated TD(�) return, or the TTD(�;m) return for time t.

Note that z
�;m
t de�ned by Equation 24 is corrected , i.e., it is not obtained by simply trun-

cating Equation 17. The correction term (
�)mUt+m�1(xt+m) results in multiplying the
last prediction Ut+m�1(xt+m) by
 alone instead of
(1� �), which is virtually equivalent

to using � = 0 for that step. It is done in order to include in z�;mt all the available infor-
mation about the expected returns for further time steps (t+m; t+m+ 1; : : :) contained
in Ut+m�1(xt+m). Without this correction for large � this information would be almost
completely lost.

So de�ned, m-step truncated TD(�) errors or returns, can be used for on-line learning
by keeping track of the last m visited states, and updating at each step the predicted
utility of the least recent state of those m states. This idea leads to what we call the TTD
Procedure (Truncated Temporal Di�erences), which can be a good approximation of TD(�)
for su�ciently large m. The procedure is parameterized by � and m values. An m-element
experience bu�er is maintained, containing records hxt�k; at�k; rt�k; Ut�k(xt�k+1)i for all
k = 0; 1; : : : ; m� 1, where t is the current time step. At each step t by writing x[k], a[k],
r[k], and u[k] we refer to the corresponding elements of the bu�er, storing xt�k, at�k , rt�k,
and Ut�k(xt�k+1).

6 References to U are not subscripted with time steps, since all of them
concern the values available at the current time step | in a practical implementation this
directly corresponds to restoring a function value from some function approximator or a
look-up table. Under this notational convention, the operation of the TTD(�;m) procedure
is presented in Figure 1. It uses TTD(�;m) returns for learning. An alternative version, using
TTD(�;m) errors instead (based on Equation 11), is also possible and straightforward to
formulate, but there is no reason to use a \weaker" version (subject to the harmful e�ects
described by Equations 20 and 21) when a \stronger" one is available at the same cost.

At the beginning of learning, before the �rst m steps are made, no learning can take
place. During these initial steps the operation of the TTD procedure reduces to updating
appropriately the contents of the experience bu�er. This obvious technical detail was left
out in Figure 1 for the sake of simplicity.

The TTD(�;m) return value z is computed in step 5 by the repeated application of
Equation 19. The computational cost of such propagating the return in time is acceptable
in practice for reasonable values of m. For some function representation methods, such
as neural networks, the overall time complexity is dominated by the costs of retrieving a
function value and learning performed in steps 4 and 6, and the cost of computing z is
negligible. One advantage of such implementation is that it allows to use adaptive � values:
in step 5 one can use �k depending on whether a[k�1] was or was not a non-policy action, or

6. This naturally means that the bu�er's indices are shifted appropriately on each time tick.

299

Cichosz

At each time step t:

1. observe current state xt; x[0] := xt;

2. select an action at for state xt; a[0] := at;

3. perform action at; observe new state xt+1 and immediate reinforcement rt;

4. r[0] := rt; u[0] := U(xt+1);

5. for k = 0; 1; : : : ; m� 1 do

if k = 0 then z := r[k] +
u[k]
else z := r[k] +
(�z + (1� �)u[k]);

6. update�(U; x[m�1]; a[m�1]; z � U(x[m�1]));

7. shift the indices of the experience bu�er.

Figure 1: The TTD(�;m) procedure.

\how much" non-policy it was. This re�nement to the TD(�) algorithm was suggested by
Watkins (1989) or recently Sutton and Singh (1994). Later we will see how the TTD return
computation can be performed in a fully incremental way, using constant time at each step
for arbitrary m.

Note that the function update carried out in step 6 at time t applies to the state and
action from time t �m+ 1, i.e., m� 1 time steps earlier. This delay between an experience
event and learning might be found a potential weakness of the presented approach, especially
for largem. Note, however, that as a baseline in computing the error value the current utility
U(x[m�1]) = Ut(xt�m+1) is used. This is an important point, because it guarantees that
learning will have the desired e�ect of moving the utility (whatever value it currently has)
towards the corresponding TTD return. If the error used in step 6 were z � Ut�m(xt�m+1)
instead of z � Ut(xt�m+1), then applying it to learning at time t would be problematic.
Anyway, it seems that m should not be too large.

The TTD procedure is not an exact implementation of TD methods for two reasons.
First, it only approximates TD(�) returns with TTD(�;m) returns. Second, it introduces
the aforementioned delay between experience and learning. I believe, however, that it is
possible to give strict conditions under which the convergence properties of TD(�) hold
true for the TTD implementation.

4.2.1 Choice of m

The reasonable choice of m obviously depends on �. For � = 0 the best possible is m = 1
and for � = 1 and
 = 1 no �nite value of m is large enough to accurately approximate
TD(�). Fortunately, this does not seem to be very painful. It is rather unlikely that in any
application one wanted to use the combination of � = 1 and
 = 1, the more so as existing

300

Truncating Temporal Differences

previous empirical results with TD(�) indicate that � = 1 is usually not the optimal value
to use, and it is at best comparable with other, smaller values (Sutton, 1984; Tesauro, 1992;
Lin, 1993). Similar conclusions follow from the discussion of the choice of � presented by
Watkins (1989) or Lin (1993). For � < 1 or
 < 1 we would probably like to have such a
value of m that the discount (
�)m is a small number. One possible de�nition of `small'
here could be, e.g., `much less than
�'. This is obviously a completely informal criterion.
Table 1 illustrates the practical e�ects of this heuristic. On the other hand, for too large m,
the delay between experience and learning introduced by the TTD procedure might become
signi�cant and cause some problems. Some of the experiments described in Section 5 have
been designed in order to test di�erent values of m for �xed 0 < � < 1.

� 0:99 0:975 0:95 0:9 0:8 0:6

minfm j (
�)m < 1
10
�g 231 92 46 23 12 6

Table 1: Choosing m: an illustration.

4.2.2 Reset Operation

Until now, we have assumed that the learning process, once started, continues in�nitely
long. This is not true for episodic tasks (Sutton, 1984) and for many real-world tasks,
where learning must usually stop some time. This imposes the necessity of designing a
special mechanism for the TTD procedure, that will be called the reset operation. The reset
operation would be invoked after the end of each episode in episodic tasks, or after the
overall end of learning.

There is not very much to be done. The only problem that must be dealt with is that the
experience bu�er contains the record of the last m steps for which learning has not taken
place yet, and there will be no further steps that would make learning for these remaining
steps possible. The implementation of the reset operation that we �nd the most natural
and coherent with the TTD procedure is then to simulate m additional �ctious steps, so
that learning takes place for all the real steps left in the bu�er, and their TTD returns
remain una�ected by the simulated �ctious steps. The corresponding algorithm, presented
in Figure 2, is formulated as a replacement of the original algorithm from Figure 1 for the
�nal time step. At the �nal step, when there is no successor state, the �ctious successor
state utility is assumed to be 0. This corresponds to assigning 0 to u[0]. The actual reset
operation is performed in step 5.

4.2.3 Incremental TTD

As stated above, the cost of iteratively computing the TTD(�;m) return is relatively small
for reasonable m, and with some function representation methods, for which restoring and
updating function values is computationally expensive, may be really negligible. We also
argued that reasonable values ofm should not be too large. On the other hand, such iterative
return computation is easy to understand and re
ects well the idea of TTD. That is why

301

Cichosz

At the �nal time step t:

1. observe current state xt; x[0] := xt;

2. select an action at for state xt; a[0] := at;

3. perform action at; observe immediate reinforcement rt;

4. r[0] := rt; u[0] := 0;

5. for k0 = 0; 1; : : : ; m� 1 do

(a) for k = k0; k0 + 1; : : : ; m� 1 do

if k = k0 then z := r[k] +
u[k]
else z := r[k] +
(�z + (1� �)u[k]);

(b) update�(U; x[m�1]; a[m�1]; z � U(x[m�1]));

(c) shift the indices of the experience bu�er.

Figure 2: The reset operation for the TTD(�;m) procedure.

we presented the TTD procedure in that form. It is possible, however, to compute the
TTD(�;m) return in a fully incremental manner, using constant time for arbitrary m.

To see this, note that the de�nition of the TTD(�;m) return (Equation 24) may be
rewritten in the following form:

z
�;m
t =

m�1X
k=0

(
�)krt+k +
m�2X
k=0

(
�)k
(1� �)Ut+k(xt+k+1) + (
�)m�1
Ut+m�1(xt+m)

= S�;m
t + T�;m

t +W�;m
t ;

where

S�;m
t =

m�1X
k=0

(
�)krt+k;

T�;m
t =

m�2X
k=0

(
�)k
(1� �)Ut+k(xt+k+1);

W�;m
t = (
�)m�1
Ut+m�1(xt+m):

W�;m
t can be directly computed in constant time for anym. It is not di�cult to convince

oneself that:

S
�;m
t+1 =

1

�

h
S
�;m
t � rt + (
�)mrt+m

i
; (25)

T�;m
t+1 =

1

�

h
T�;m
t �
(1� �)Ut(xt+1) + (1� �)W�;m

t

i
: (26)

302

Truncating Temporal Differences

The above two equations de�ne the algorithm for computing incrementally S�;m
t and T�;m

t ,

and consequently computing z
�;m
t in constant time for arbitrary m, with a very small com-

putational expense. This algorithm is strictly mathematically equivalent to the algorithm
presented in Figure 1.7 Modifying appropriately the TTD procedure is straightforward and
will not be discussed. A drawback of this modi�cation is that it probably does not allow
the learner to use di�erent (adaptive) � values at each step, i.e., it may not be possible to
combine it with the re�nements suggested by Watkins (1989) or Sutton and Singh (1994).
Despite this, such implementation might be bene�cial if one wanted to use really large m.

4.2.4 TTD-Based Implementations of RL Algorithms

To implement particular TD-based reinforcement learning algorithms on the basis of the
TTD procedure, one just has to substitute appropriate function values for U , and de�ne
the updating operation of step 6 in Figure 1 and step 5b in Figure 2. Speci�cally, for the
three algorithms outlined in Section 2.2 one should:

� for AHC:

1. replace U(xt+1) with V (xt+1) in step 4 (Figure 1);

2. implement step 6 (Figure 1) and step 5b (Figure 2) as:

v := V (x[m�1]);

update�(V; x[m�1]; z � v);

update�(f; x[m�1]; a[m�1]; z � v);

� for Q-learning:

1. replace U(xt+1) with maxaQ(xt+1; a) in step 4 (Figure 1);

2. implement step 6 (Figure 1) and step 5b (Figure 2) as:

update�(Q; x[m�1]; a[m�1]; z �Q(x[m�1]; a[m�1]));

� for advantage updating:

1. replace U(xt+1) with V (xt+1) in step 4 (Figure 1);

2. implement step 6 (Figure 1) and step 5b (Figure 2) as:

Amax := maxaA(x[m�1]; a);

update�(A; x[m�1]; a[m�1]; A
max �A(x[m�1]; at) + z � V (x[m�1]));

update�(V; x[m�1];
1
�
[maxaA(x[m�1])� Amax]).

4.3 Related Work

The simple idea of truncating temporal di�erences that is implemented by the TTD proce-
dure is not new. It was probably �rst suggested by Watkins (1989). This paper owes much
to his work. But, to the best of my knowledge, this idea has never been explicitly and

7. But it is not necessarily numerically equivalent, which may sometimes cause problems in practical
implementations.

303

Cichosz

exactly speci�ed, implemented, and tested. In this sense the TTD procedure is an original
development.

Lin (1993) used a very similar implementation of TD(�), but only for what he called
experience replay , and not for actual on-line reinforcement learning. In his approach a se-
quence of past experiences is replayed occasionally, and during replay for each experience
the TD(�) return (truncated to the length of the replayed sequence) is computed by ap-
plying Equation 19, and a corresponding function update is performed. Such a learning
method is by some means more computationally expensive than the TTD procedure (es-
pecially implemented in a fully incremental manner, as suggested above), since it requires
updating predictions sequentially for all replayed experiences, besides \regular" TD(0) up-
dates performed at each step (while TTD always requires only one update per time step),
and it does not allow the learner to take full advantage of TD(� > 0), which is applied only
occasionally.

Peng and Williams (1994) presented an alternative way of combining Q-learning and
TD(�), di�erent than discussed in Section 2.2. Their motivation was to better estimate TD
returns by the use of TD errors. Toward that end, they used the standard Q-learning error

rt +
max
a

Qt(xt+1; a)�Qt(xt; at)

for one-step updates and a modi�ed error

rt +
max
a

Qt(xt+1; a)�max
a

Qt(xt; a);

propagated using eligibility traces, thereafter. The TTD procedure achieves a similar ob-
jective in a more straightforward way, by the use of truncated TD(�) returns.

Other related work is that of Pendrith (1994). He applied the idea of eligibility traces in
a non-standard way to estimate TD returns. His approach is more computationally e�cient
that the classical eligibility traces technique (it requires one prediction update per time
step) and is free of the potentially harmful e�ect described by Equation 22. The method
seems to be roughly equivalent to the TTD procedure with � = 1 and large m, though it is
probably much more implementationally complex.

5. Demonstrations

The demonstrations presented in this section use the AHC variant of the TTD procedure.
The reason is that the AHC algorithm is the simplest of the three described algorithms and
its update rule for the evaluation function most directly corresponds to TD(�). Future work
will investigate the TTD procedure for the two other algorithms.

A tabular representation of the evaluation and policy functions is used. The abstract
function update operation described by Equation 2 is implemented in a standard way as

'(p0; p1; : : : ; pn�1) := '(p0; p1; : : : ; pn�1) + ��: (27)

Actions to execute at each step are selected using a simple stochastic selection mecha-
nism based on a Boltzmann distribution. According to this mechanism, action a� is selected

304

Truncating Temporal Differences

in state x with probability

Prob(x; a�) =
exp(f(x; a�)=T)P
a exp(f(x; a)=T)

; (28)

where the temperature T > 0 adjusts the amount of randomness.

5.1 The Car Parking Problem

This section presents experimental results for a learning control problem with a relatively
large state space and hard temporal credit assignment. We call this problem the car parking
problem, though it does not attempt to simulate any real-world problem at all. Using words
such as `car', `garage', or `parking' is just a convention that simpli�es problem description
and the interpretation of results. The primary purpose of the experiments is neither just
to solve the problem nor to provide evidence of the usefulness of the tested algorithm
for any particular practical problem. We use this example problem in order to illustrate
the performance of the AHC algorithm implemented within the TTD framework and to
empirically evaluate the e�ects of di�erent values of the TTD parameters � and m.

The car parking problem is illustrated in Figure 3. A car, represented as a rectangle,
is initially located somewhere inside a bounded area, called the driving area. A garage is
a rectangular area of a size somewhat larger than the car. All important dimensions and
distances are shown in the �gure. The agent | the driver of the car | is required to park
it in the garage, so that the car is entirely inside. The task is episodic, though it is neither
a time-until-success nor time-until-failure task (in Sutton's (1984) terminology), but rather
a combination of both. Each episode �nishes either when the car enters the garage or when
it hits a wall (of the garage or of the driving area). After an episode the car is reset to its
initial position.

5.1.1 State Representation

The state representation consists of three variables: the rectangular coordinates of the center
of the car, x and y, and the angle � between the car's axis and the x axis of the coordinate
system. The orientation of the system is shown in the �gure. The initial location and
orientation of the car is �xed and described by x = 6:15 m, y = 10:47 m, and � = 3:7 rad.
It was chosen so as to make the task neither too easy nor too di�cult.

5.1.2 Action Representation

The admissible actions are `drive straight on', `turn left', and `turn right'. The action of
driving straight on has the e�ect of moving the car forward along its axis, i.e., without
changing �. The actions of turning left and right are equivalent to moving along an arc with
a �xed radius. The distance of each move is determined by a constant car velocity v and
simulation time step � . Exact motion equations and other details are given in Appendix A.

5.1.3 Reinforcement Mechanism

The design of the reinforcement function is fairly straightforward. The agent receives a
reinforcement value of 1 (a reward) whenever it successfully parks the car in the garage,

305

Cichosz

xG

yG

x0x1

y1

y0

y

x 0

θ

l
w

0 1 2 3 m

Figure 3: The car parking problem. The scale of all dimensions is preserved: w = 2 m,
l = 4 m, x0 = �1:5 m, xG = 1:5 m, x1 = 8:5 m, y0 = �3 m, yG = 3 m, y1 = 13 m.

and a reinforcement value of �1 (a punishment) whenever it hits a wall. At all other time
steps the reinforcement is 0. That is, non-zero reinforcements are received only at the last
step of each episode. This involves a relatively hard temporal credit assignment problem,
providing a good experimental framework for testing the e�ciency of the TTD procedure.
The problem is hard not only because of reinforcement delay, but also because punishments
are much more frequent than rewards: it is much easier to hit a wall than to park the car
correctly.

With such a reinforcement mechanism as presented above, an optimal policy for any
0 <
 < 1 is a policy that allows to park the car in the garage in the smallest possible
number of steps.

306

Truncating Temporal Differences

5.1.4 Function Representation

The car parking problem has a continuous state space. It is arti�cially discretized | divided
into a �nite number of disjoint regions by quantizing the three state variables, and then a
function value for each region is stored in a look-up table. The quantization thresholds are:

� for x: �0:5, 0:0, 0:5, 1:0, 2:0, 3:0, 4:0, 6:0 m,

� for y: 0:5, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 8:0, 10:0 m,

� for �: 19
20�, �,

21
20�, : : :,

29
20�,

3
2�,

31
20� rad.

This yields 9� 10� 14 = 1260 regions. Of course many of them will never be visited. The
threshold values were chosen so as to make the resulting discrete state space of a moderate
size. The quantization is dense near the garage, and becomes more sparse as the distance
from the garage increases.

5.1.5 Experimental Design and Results

Our experiments with applying the TTD procedure to the car parking problem are divided
into two studies, testing the e�ects of the two TTD parameters � and m. The parameter
settings for all experiments are presented in Table 2. The symbols � and � are used to
designate the learning rates for the evaluation and policy functions, respectively. The initial
values of the functions were all set to 0, since we assumed that no knowledge is available
about expected reinforcement levels.

Study TTD Parameters Learning Rates
Number � m � �

0 0:7 0:7
0:3 0:5 0:5
0:5 0:5 0:5

1 0:7 25 0:5 0:5
0:8 0:5 0:5
0:9 0:25 0:25
1 0:25 0:25

5 0:25 0:25

2 0:9
10 0:25 0:25

15 0:25 0:25
20 0:25 0:25

Table 2: Parameter settings for the experiments with the car parking problem.

As stated above, the experiments were designed to test the e�ects of the two TTD
parameters. The other parameters were assigned values according to following principles:

� the discount factor
 was �xed and equal 0:95 in all experiments,

307

Cichosz

� the temperature value was also �xed and set to 0:02, which seemed to be equally good
for all experiments,

� the learning rates � and � were roughly optimized in each experiment.8

Each experiment continued for 250 episodes, the number selected so as to allow all or
almost all runs of all experiments to converge. The results presented for all experiments
are averaged over 25 individual runs, each di�ering only in the initial seed of the random
number generator. This number was chosen as a reasonable compromise between the relia-
bility of results and computational costs. The results are presented as plots of the average
reinforcement value per time step for the previous 5 consecutive episodes versus the episode
number.

Study 1: E�ects of �. The objective of this study was to examine the e�ects of various
� values on learning speed and quality, with m set to 25. The value m = 25 was found to be
large enough for all the tested � values (perhaps except � = 1).9 Smaller m values might be
used for small � (in particular, m = 1 for � = 0), but it was kept constant for consistency.

� = 0:7
� = 0:5
� = 0:3
� = 0:0

Episode

Reinf/Step

250200150100500

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

� = 1:0
� = 0:9
� = 0:8
� = 0:7

Episode

Reinf/Step

250200150100500

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

Figure 4: The car parking problem, learning curves for study 1.

The learning curves for this study are presented in Figure 4. The observations can be
brie
y summarized as follows:

� � = 0 gives the worst performance of all (not all of 25 runs managed to converge
within 250 episodes),

� increasing � improves learning speed,

� � values above or equal 0:7 are all similarly e�ective, greatly outperforming � = 0 and
clearly better than � = 0:5,

8. The optimization procedure in most cases was as follows: some rather large value was tested in a few
runs; if it did not give any e�ects of overtraining and premature convergence, it was accepted; otherwise
a (usually twice) smaller value was tried, etc.

9. Note that for � = 0:9, m = 25, and
 = 0:95 we have (
�)m � 0:02� 0:855 =
�.

308

Truncating Temporal Differences

� using large � caused the necessity of reducing the learning rates (cf. Table 2) to ensure
convergence.

The main result is that using large � with the TTD procedure (including 1) always
signi�cantly improved performance. It is not quite consistent with the empirical results of
Sutton (1988), who found the performance of TD(�) the best for intermediate �, and the
worst for � = 1. Lin (1993), who used � > 0 for his experience replay experiments, reported
� close to 1 as the most successful, similarly as this work. He speculated that the di�erence
between his results and Sutton's might have been caused by switching occasionally (for
non-policy actions) to � = 0 in his studies.10 Our results, obtained for � held �xed all the
time11, suggest that this is not a good explanation. It seems more likely that the optimal �
value simply strongly depends on the particular problem. Another point is that neither our
TTD(1; 25) nor Lin's implementation is exactly equivalent to TD(1).

Study 2: E�ects of m. This study was designed to investigate the e�ects of using several
di�erent m values for a �xed and relatively large � value. The best (approximately) � from
study 1 was used, that is 0:9. The smallest tested m value is 5, which we �nd to be rather
a small value.12

m = 25
m = 20
m = 15
m = 10
m = 5

Episode

Reinf/Step

250200150100500

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

Figure 5: The car parking problem, learning curves for study 2.

The learning curves for this study are presented in Figure 5. The results for m = 25
were taken from study 1 for comparison. The observations can be summarized as follows:

� m = 5 is the worst and m = 25 is the best,

� the di�erences between intermediate m values do not seem to be very statistically
signi�cant,

10. As a matter of fact, non-policy actions were not replayed at all in Lin's experience replay experiments.
11. Except for using � = 0 for the most recent time step covered by the TTD return, as it follows from its

de�nition (Equation 24).
12. For
 = 0:95, � = 0:9, and m = 5 we have (
�)m � 0:457, which is by all means comparable with

� = 0:855.

309

Cichosz

� even the smallestm = 5 gives the performance level much better than that obtained in
study 1 for small �, i.e., even relatively small m values allow us to have the advantages
of large �, though larger m values are generally better than small ones,

The last observation is probably the most important. It is also very optimistic. It suggests
that, at least in some problems, the TTD procedure with � > 0 allows to obtain a signi�cant
learning speed improvement over traditional TD(0)-based algorithms with practically no
additional costs, because for small m both space and time complexity induced by TTD is
always negligible.

5.2 The Cart-Pole Balancing Problem

The experiments of this section have one basic purpose: to verify the e�ectiveness of the
TTD procedure by applying its AHC implementation to a realistic and complex problem,
with a long reinforcement delay, for which there exist many previous results for comparison.
The cart-pole balancing problem, a classical benchmark of control specialists, is just such
a problem. In particular, we would like to see whether it is possible to obtain performance
(learning speed and the quality of the �nal policy) not worse than that reported by Barto
et al. (1983) and Sutton (1984) using the eligibility traces implementation.

Figure 6 shows the cart-pole system. The cart is allowed to move along a one-dimensional
bounded track. The pole can move only in the vertical plane of the cart and the track. The
controller applies either a left or right force of �xed magnitude to the cart at each time
step. The task is episodic: each episode �nishes when a failure occurs, i.e., the pole falls or
the cart hits an edge of the track. The objective is to delay the failure as long as possible.

The problem was realistically simulated by numerically solving a system of di�erential
equations, describing the cart-pole system. These equations and other simulation details
are given in Appendix B. All parameters of the simulated cart-pole system are exactly the
same as used by Barto et al. (1983).

5.2.1 State Representation

The state of the cart-pole system is described by four state variables:

� x | the position of the cart on the track,

� _x | the velocity of the cart,

� � | the angle of the pole with the vertical,

� _� | the angular velocity of the pole.

5.2.2 Action Representation

At each step the agent controlling the cart-pole system chooses one of the two possible
actions of applying a left or right force to the cart. The force magnitude is �xed and
equal 10 N.

310

Truncating Temporal Differences

x
d

θ

F

2l

Figure 6: The cart-pole system. F is the force applied to the cart's center, l is a half of the
pole length, and d is a half of the length of the track.

5.2.3 Reinforcement Mechanism

The agent receives non-zero reinforcement values (namely �1) only at the end of each
episode, i.e., after a failure. A failure occurs whenever j�j > 0:21 rad (the pole begins to
fall) or jxj > 2:4 m (the cart hits an edge of the track). Even at the beginning of learning,
with a very poor policy, an episode may continue for hundreds of time steps, and there may
be many steps between a bad action and the resulting failure. This makes the temporal
credit assignment problem in the cart-pole task extremely hard.

5.2.4 Function Representation

As in the case of the car parking problem, we deal with the continuous state space of the
cart-pole system by dividing it into disjoint regions, called boxes after Mitchie and Chambers
(1968). The quantization thresholds are the same as used by Barto et al. (1983), i.e.:

� for x: �0:8, 0:8 m,

� for _x: �0:5, 0:5 m/s,

� for �: �0:105, �0:0175, 0, 0:0175, 0:105 rad,

� for _�: �0:8727, 0:8727 rad/s,

which yields 3� 3� 6� 3 = 162 boxes. For each box there is a memory location, storing a
function value for that box.

311

Cichosz

5.2.5 Experimental Design and Results

Computational expense prevented such extensive experimental studies as for the car parking
problem. Only one experiment was carried out, intended to be a replication of the experi-
ment presented by Barto et al. (1983). The values of the TTD parameters that seemed the
best from the previous experiments were used, that is � = 0:9 and m = 25. The discount
factor
 was set to 0:95. The learning rates for the evaluation and policy functions were
roughly optimized by a small number of preliminary runs and equal � = 0:1 and � = 0:05,
respectively. The temperature of the Boltzmann distribution action selection mechanism
was set to 0:0001, so as to give nearly-deterministic action selection. The initial values of
the evaluation and policy functions were set to 0. We did not attempt to strictly replicate
the same learning parameter values as in the work of Barto et al. (1983), since they used not
only a di�erent TD(�) implementation13, but also a di�erent policy representation (based
on the fact that there are only two actions, while our representation is general), action
selection mechanism (for the same reasons), and function learning rule.

The experiment consisted of 10 runs, di�ering only in the initial seed of the random
number generator, and the presented results are averaged over those 10 runs. Each run con-
tinued for 100 episodes. Some of individual runs were terminated after 500; 000 time steps,
before completing 100 episodes. To produce reliable averages for all 100 episodes, �ctious
remaining episodes were added to such runs, with the duration assigned according to the
following principle, used in the experiments of Barto et al. (1983). If the duration of the
last, interrupted episode was less than the duration of the immediately preceding (com-
plete) episode, the �ctious episodes were assigned the duration of that preceding episode.
Otherwise, the �ctious episodes were assigned the duration of the last (incomplete) episode.
This prevented any short interrupted episodes from producing unreliably low averages. The
results are presented in Figure 7 as plots of the average duration (the number of time steps)
of the previous 5 consecutive episodes versus the episode number, in linear and logarithmic
scale.

We can observe that TTD-based AHC achieved a similar (slightly better, to be exact)
performance level, both as to learning speed and the quality of the �nal policy (i.e., the
balancing periods), to that reported by Barto et al. (1983). The �nal balancing periods lasted
above 130; 000 steps, on the average. It was obtained without using 162 additional memory
locations for storing eligibility traces, and without the expensive computation necessary to
update all of them at each time step, as well as all evaluation and policy function values.

5.3 Computational Savings

The experiments presented above illustrate the computational savings possible with the
TTD procedure over conventional eligibility traces. A direct implementation of eligibility
traces requires computation proportional to the number of states, i.e., to 1260 in the car
parking task and to 162 in the cart-pole task | potentially many more in larger tasks.
Even the straightforward iterative version of TTD may be then bene�cial, as it requires
computation proportional to m, which may be reasonably assumed to be many times less

13. It was the eligibility traces implementation, but eligibility traces were updated by applying a somewhat
di�erent update rule than speci�ed by Equation 8. In particular, they were discounted with � alone
instead of
�. Moreover, two di�erent � values were used for the evaluation and policy functions.

312

Truncating Temporal Differences

(a)

Episode

Episode Duration

100806040200

140000

120000

100000

80000

60000

40000

20000

0

(b)

Episode

Episode Duration

100806040200

100000

10000

1000

100

10

1

Figure 7: The cart-pole balancing problem, learning curve in (a) linear and (b) logarithmic
scale.

than the size of the state space. Of course, the incremental version of TTD, which requires
always very small computation independent of m, is much more e�cient.

In many practical implementations, to improve e�ciency, eligibility traces and predic-
tions are updated only for relatively few recently visited states. Traces are maintained only
for the nmost recently visited states, and the eligibility traces of all other states are assumed
to be 0.14 But even for this \e�cient" version of eligibility traces, the savings o�ered by
TTD are considerable. For a good approximation to in�nite traces in such tasks as consid-
ered here, n should be at least as large asm. For conventional eligibility traces, there will be
always a concern for keeping n low, by reducing
, �, or the accuracy of the approximation.
The same problem occurs for iterative TTD,15 but for incremental TTD, on the other hand,
none of these are at issue. The same small computation is needed independent of m.

6. Conclusion

We have informally derived the TTD procedure from the analysis of the updates introduced
by TD methods to the predicted utilities of states, and shown that they can be approxi-
mated by the use of truncated TD(�) returns. Truncating temporal di�erences allows easy
and e�cient implementation. It is possible to compute TTD returns incrementally in con-
stant time, irrespective of the value of m (the truncation period), so that the computational
expense of using TD-based reinforcement learning algorithms with � > 0 is negligible (cf.
Equations 25 and 26). It cannot be achieved with the eligibility traces implementation.
The latter, even for such function representation methods to which it is particularly well

14. This modi�cation cannot be applied when a parameter estimation function representation technique is
used (e.g., a multi-layer perceptron), where traces are maintained for weights rather than for states.

15. The relative computational expense of iterative TTD and the \e�cient" version of eligibility traces
depends on the cost of the function update operation, which is always performed only for one state by
the former, and for n states by the latter.

313

Cichosz

suited (e.g., neural networks), is always associated with signi�cant memory and time costs.
The TTD procedure is probably the most computationally e�cient (although approximate)
on-line implementation of TD(�). It is also general, equally good for any function represen-
tation method that might be used.

An important question concerning the TTD procedure is whether its computational
e�ciency is not obtained at the cost of reduced learning e�ciency. Having low computa-
tional costs per control action may not be attractive if the number of actions necessary to
converge becomes large. As for now, no theoretically grounded answer to this important
question has been provided, though it is not unlikely that such an answer will eventually
be found. Nevertheless, some informal consideration may suggest that the TTD-based im-
plementation of TD methods not only does not have to perform worse than the classical
eligibility traces implementation, but it can even have some advantages. As it follows from
Equations 20, 21, and 22, using TD(0) errors for on-line TD(�) learning, as in the eligibility
traces implementation, introduces an additional discrepancy term, whose in
uence on the
learning process is proportional to the square of the learning rate. That term, though often
negligible, may be still harmful in certain cases, especially in tasks where the agent is likely
to stay in the same states for long periods. The TTD procedure, based on truncated TD(�)
returns, is free of this drawback.

Another argument supporting the TTD procedure is associated with using large � values,
in particular 1. For an exact TD(�) implementation, such as that provided by eligibility
traces, it means that learning relies solely on actually observed outcomes, without any regard
to currently available predictions. It may be bene�cial at the early stages of learning, when
predictions are almost completely inaccurate, but in general it is rather risky | actual
outcomes may be noisy and therefore sometimes misleading. The TTD procedure never
relies on them entirely, even for � = 1, since it uses m-step TTD returns for some �nite m,
corrected by always using � = 0 for discounting the predicted utility of the most recent step
covered by the return (cf. Equation 17). This deviation of the TTD procedure from TD(�)
may turn out to be advantageous.

The TTD procedure using TTD returns for learning is only suitable for the implemen-
tation of TD methods applied to reinforcement learning. This is because in RL a part of the
predicted outcome is available at each step, as the current reinforcement value. However,
it is straightforward to formulate another version of the TTD procedure, using truncated
TD(�) errors instead of truncated TD(�) returns, that would cover the whole scope of
applications of generic TD methods.

The experimental results obtained for the TTD procedure seem very promising. The re-
sults presented in Section 5.1 show that using large � with the TTD procedure can give a sig-
ni�cant performance improvement over simple TD(0) learning, even for relatively small m.
While it does not say anything about the relative performance of TTD and the eligibility
traces implementation of TD(�), it at least suggests that the TTD procedure can be useful.
The best results have been obtained for the largest � values, including 1. This observation,
contradicting to the results reported by Sutton (1988), may be a positive consequence of
the TTD procedure's deviation from TD(�) discussed above.

The experiments with the cart-pole balancing problem supplied empirical evidence that
for a learning control problem with a very long reinforcement delay the TTD procedure can
equal or outperform the eligibility traces implementation of TD(�), even for a value of m

314

Truncating Temporal Differences

many times less than the average duration of an episode. This performance level is obtained
with the TTD procedure at a much lower computational (both memory and time) expense.

To summarize, our informal consideration and empirical results suggest that the TTD
procedure may have the following advantages:

� the possibility of the implementation of reinforcement learning algorithms that may
be viewed as instantiations of TD(�), using � > 0 for faster learning,

� computational e�ciency: low memory requirements (for reasonable m) and little com-
putation per time step,

� generality, compatibility with various function representation methods,

� good approximation of TD(�) for � < 1 (or for � = 1 and
 < 1),

� good practical performance, even for relatively small m.

There seems to be one important drawback: lack of theoretical analysis and a conver-
gence proof. We do not know either what parameter values assure convergence or what
values make it impossible. In particular, no estimate is available of the potential harmful
e�ects of using too large m. Both the advantages and drawbacks cause that the TTD proce-
dure is an interesting and promising subject for further work. This work should concentrate,
on one hand, on examining the theoretical properties of this technique, and, on the other
hand, on empirical studies investigating the performance of various TD-based reinforcement
learning algorithms implemented within the TTD framework on a variety of problems, in
particular in stochastic domains.

Appendix A. Car Parking Problem Details

The motion of the car in the experiments of Section 5.1 is simulated by applying at each
time step the following equations:

1. if r 6= 0 then

(a) �(t+ �) = �(t) + � v
r
;

(b) x(t+ �) = x(t)� r sin �(t) + r sin �(t + �);

(c) y(t+ �) = y(t) + r cos �(t)� r sin �(t + �);

2. if r = 0 then

(a) �(t+ �) = �(t);

(b) x(t+ �) = x(t) + �v cos �(t);

(c) y(t+ �) = y(t) + �v sin �(t);

where r is the turn radius, v is the car's velocity, and � is the simulation time step. In the
experiments r = �5 m was used for the `turn left' action, r = 5 m for `turn right', and r = 0
for `drive straight on'. The velocity was constant and set to 1 m/s, and the simulation time

315

Cichosz

step � = 0:5 s was used. With these parameter settings, the shortest possible path from the
car's initial location (x = 6:15 m, y = 10:47 m, � = 3:7 rad) to the garage requires 21 steps.

At each step, after determining the current x, y, and � values, the coordinates of the
car's corners are computed. Then the test for intersection of each side of the car with the
lines delimiting the driving area and the garage is performed to determine whether a failure
occurred. If the result is negative, the test is performed for each corner of the car whether
it is inside the garage, to determine if a success occurred.

Appendix B. Cart-Pole Balancing Problem Details

The dynamics of the cart-pole system are described by the following equations of motion:

�x(t) =
F (t) +mpl

h
_�2(t) sin �(t)� �� cos �(t)

i
� �c sgn _x(t)

mc +mp

��(t) =
g sin �(t) + cos �(t)

�
�F (t)�mpl _�2(t) sin �(t)+�c sgn _x(t)

mc+mp

�
� �p _�(t)

mpl

l
h
4
3 �

mp cos2 �(t)
mc+mp

i
where

g = 9:8 m/s2 | acceleration due to gravity,
mc = 1:0 kg | mass of the cart,
mp = 0:1 kg | mass of the pole,
l = 0:5 m | half of the pole length,
�c = 0:0005 | friction coe�cient of the cart on the track,
�p = 0:000002 | friction coe�cient of the pole on the cart,
F (t) = �10:0 N | force applied to the center of the cart at time t.

The equations were simulated using Euler's method with simulation time step � = 0:02 s.

Acknowledgements

I wish to thank the anonymous reviewers of this paper for many insightful comments. I was
unable to follow all their suggestions, but they contributed much to improving the paper's
clarity. Thanks also to Rich Sutton, whose assistance during the preparation of the �nal
version of this paper was invaluable.

This research was partially supported by the Polish Committee for Scienti�c Research
under Grant 8 S503 019 05.

References

Baird, III, L. C. (1993). Advantage updating. Tech. rep. WL-TR-93-1146, Wright Labora-
tory, Wright-Patterson Air Force Base.

Barto, A. G. (1992). Reinforcement learning and adaptive critic methods. In White, D. A.,
& Sofge, D. A. (Eds.), Handbook of Intelligent Control, pp. 469{491. Van Nostrand
Reinhold, New York.

316

Truncating Temporal Differences

Barto, A. G., Sutton, R. S., & Anderson, C. (1983). Neuronlike adaptive elements that can
solve di�cult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, 13, 835{846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1990). Learning and sequential
decision making. In Gabriel, M., & Moore, J. (Eds.), Learning and Computational
Neuroscience. The MIT Press.

Cichosz, P. (1994). Reinforcement learning algorithms based on the methods of temporal
di�erences. Master's thesis, Institute of Computer Science, Warsaw University of
Technology.

Dayan, P. (1992). The convergence of TD(�) for general �. Machine Learning, 8, 341{362.

Dayan, P., & Sejnowski, T. (1994). TD(�) converges with probability 1. Machine Learning,
14, 295{301.

Heger, M. (1994). Consideration of risk in reinforcement learning. In Proceedings of the
Eleventh International Conference on Machine Learning (ML-94). Morgan Kaufmann.

Jaakkola, T., Jordan, M. I., & Singh, S. P. (1993). On the convergence of stochastic iterative
dynamic programming algorithms. Tech. rep. 9307, MIT Computational Cognitive
Science. Submitted to Neural Computation.

Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning, and Intelli-
gence. Washington D.C.: Hempisphere.

Lin, L.-J. (1992). Self-improving, reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8, 293{321.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis,
School of Computer Science, Carnegie-Mellon University.

Mitchie, D., & Chambers, R. A. (1968). BOXES: An experiment in adaptive control.
Machine Intelligence, 2, 137{152.

Moore, A. W., & Atkeson, C. G. (1992). An investigation of memory-based function ap-
proximators for learning control. Tech. rep., MIT Arti�cial Intelligence Laboratory.

Pendrith, M. (1994). On reinforcement learning of control actions in noisy and
non-markovian domains. Tech. rep. UNSW-CSE-TR-9410, School of Computer Sci-
ence and Engineering, The University of New South Wales, Australia.

Peng, J., & Williams, R. J. (1994). Incremental multi-step Q-learning. In Proceedings of the
Eleventh International Conference on Machine Learning (ML-94). Morgan Kaufmann.

Ross, S. (1983). Introduction to Stochastic Dynamic Programming. Academic Press, New
York.

317

Cichosz

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted re-
wards. In Proceedings of the Tenth International Conference on Machine Learning
(ML-93). Morgan Kaufmann.

Singh, S. P. (1994). Reinforcement learning algorithms for average-payo�markovian decision
processes. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence
(AAAI-94).

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. Ph.D. thesis,
Department of Computer and Information Science, University of Massachusetts.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences. Machine
Learning, 3, 9{44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning (ML-90). Morgan Kaufmann.

Sutton, R. S., Barto, A. G., & Williams, R. J. (1991). Reinforcement learning is direct
adaptive optimal control. In Proceedings of the American Control Conference, pp.
2143{2146. Boston, MA.

Sutton, R. S., & Singh, S. P. (1994). On step-size and bias in temporal-di�erence learning.
In Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pp.
91{96. Center for Systems Science, Yale University.

Tesauro, G. (1992). Practical issues in temporal di�erence learning. Machine Learning, 8,
257{277.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, King's College,
Cambridge.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8, 279{292.

318

