
Journal of Arti�cial Intelligence Research 3 (1995) 187-222 Submitted 5/95; published 10/95

Learning Membership Functions in a

Function-Based Object Recognition System

Kevin Woods woods@bigpine.csee.usf.edu

Computer Science & Engineering

University of South Florida

Tampa, FL 33620-5399

Diane Cook cook@centauri.uta.edu

Computer Science & Engineering

University of Texas at Arlington

Arlington, TX 76019

Lawrence Hall hall@waterfall.csee.usf.edu

Kevin Bowyer kwb@bigpine.csee.usf.edu

Computer Science & Engineering

University of South Florida

Tampa, FL 33620-5399

Louise Stark stark@napa.eng.uop.edu

Electrical and Computer Engineering

University of the Paci�c

Stockton, CA 95211

Abstract

Functionality-based recognition systems recognize objects at the category level by rea-

soning about how well the objects support the expected function. Such systems naturally

associate a \measure of goodness" or \membership value" with a recognized object. This

measure of goodness is the result of combining individual measures, or membership values,

from potentially many primitive evaluations of di�erent properties of the object's shape. A

membership function is used to compute the membership value when evaluating a primitive

of a particular physical property of an object. In previous versions of a recognition sys-

tem known as Gruff, the membership function for each of the primitive evaluations was

hand-crafted by the system designer. In this paper, we provide a learning component for

theGruff system, called Omlet, that automatically learns membership functions given a

set of example objects labeled with their desired category measure. The learning algorithm

is generally applicable to any problem in which low-level membership values are combined

through an and-or tree structure to give a �nal overall membership value.

1. Introduction

In any computer vision (CV) application involving the recognition or the detection of \ob-
jects", descriptions of the types of objects to be recognized are required. Object descriptions
can be explicitly supplied by a human \expert". Alternatively, machine learning techniques

can be used to derive descriptions from example objects.

There are some advantages to learning object descriptions from examples rather than
from direct speci�cation by an expert. Speci�cally, it may be di�cult for a person to

c1995 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Woods, Cook, Hall, Bowyer, & Stark

provide a CV system with an accurate description of an object that is general enough to
cover the possible variations in the visual appearance of di�erent instances of the object. For
example, no two tumors in medical images will look exactly the same. Similarly, it would
be cumbersome for a human to provide a CV system with the ranges of possible values

for all the di�erent physical aspects of chairs (i.e., What are the possible surface areas
of the seating surface of a chair? How is the seating surface supported?). Considerable
\tweaking" of the object description parameters may be required by a human expert in

order to achieve satisfactory system performance. Machine learning techniques can be
used to generate concepts that are consistent with observed examples. Some examples of

such learning systems include C4.5 (Quinlan, 1992), and AQ (Michalski, 1983). System
performance is a�ected by the ratio of the number of training examples to the number of

features used to describe the examples, and the accuracy with which the examples represent
the \real-world" objects the CV system may encounter.

A function-based object recognition system is an example of a CV system for which

machine learning techniques can be useful in the development of object descriptions. A
function-based object recognition system recognizes an object by classifying it into one
or more generic object categories which describe the function that the object might serve

(Bogoni & Bajcsy, 1993; Brand, 1993; Di Manzo, Trucco, Giunchiglia, & Ricci, 1989; Kise,
Hattori, Kitahashi, & Fukunaga, 1993; Rivlin, Rosenfeld, & Perlis, 1993; Stark & Bowyer,
1991, 1994; Sutton, Stark, & Bowyer, 1993; Vaina & Jaulent, 1991). Each object category
is de�ned in terms of the functionality required of an object that belongs to the category.

For example, an object category might be de�ned as:

straight back chair ::= provides sittable surface & provides stability &

provides back support

indicating that an object can be classi�ed as a straight back chair to the degree that it
satis�es the conjunction of the three functional properties.

The functional properties are themselves de�ned in terms of primitive evaluations of

di�erent aspects of an object's shape. For example, candidate surfaces may be checked
for provides sittable surface by evaluating whether they have appropriate width, depth and

height above the support plane. In many cases, there is not a unique ideal value for some
given aspect of an object's shape, but instead there is a range of values that can be considered
equivalent in terms of \goodness". For example, anything between 0.45 to 0.55 meters

might be an equally acceptable height for a seating surface. However, as a particular shape
measurement becomes too small or too large, the evaluation measure should be reduced.
Fuzzy set theory provides a mathematical framework for handling this \goodness of �t"
concept. In our case, a fuzzy membership function transforms a physical measurement (i.e.,

height of an object's surface above the ground) into a membership value in the interval [0,1].
This membership value, or evaluation measure, denotes the degree to which the object (or
portion of the object) �ts the primitive physical concept (i.e., how well the height of the
surface matches the seating surface height of typical chairs). Thus, a separate measure

of goodness is produced for each primitive evaluation. These measures are combined to
produce a �nal aggregate measure of goodness for the object.

TheGruff system (Stark & Bowyer, 1991) is a function-based object recognition system
which utilizes fuzzy logic, in the manner just described, to evaluate 3-D shapes. In previous

188

Learning Membership Functions in Object Recognition

versions of Gruff, the fuzzy membership functions embedded in the system have been
collectively hand-crafted and re�ned to produce the best results over a large set of example
shapes. These membership functions are ideal candidates to be learned from examples using
a machine learning approach.

In this paper, we present a method of automatically learning the collection of fuzzy
membership functions from a set of labeled example shapes. Due to the system constraints
imposed by Gruff, general-purpose machine learning algorithms, such as neural networks,
genetic algorithms, or decision trees, are not readily applicable. Thus, a new special-purpose

learning component, called Omlet, has been developed. Omlet is tested with synthetic
data for two di�erent object categories (chairs and cups), and with data collected from
human evaluations of physical chairs. Results are presented to show that (a) learning the

membership functions in this way provides a level of recognition performance equivalent to
that obtained from the \hand-tweaked" Gruff, and (b) the learning method is compatible
with human interpretation of the shapes. The approach should be generally applicable
to any system in which a set of primitive evaluation measures is combined to produce an

overall measure of goodness for the �nal result.

This paper is organized as follows. Section 2 discusses some related work, and justi-
�es our need to develop a special-purpose learning component. Section 3 introduces the
Gruff object recognition system. Section 4 presents the new learning component, called

Omlet. At this point, we should state that the material in Section 3 has previously been
published, and is presented here to facilitate an understanding of the new learning compo-
nent. Although Omlet has been speci�cally \tailored" as an add-on learning component
for the Gruff system, it applies to a data structure that can be used in other systems.

In general, Omlet can be described as a system for learning in the context of a fuzzy
And/Or categorization tree. We point the reader with any questions concerning Gruff's
object recognition paradigm to the references provided. Section 5 describes our experimen-
tal design and the data sets that are utilized. Section 6 documents the experimental results

and gives our analysis of them. Finally, in Section 7 a summary of the paper is given and
conclusions are drawn.

2. Related Work

There are two ways that learning might be used to ease the construction of systems such as
Gruff. The �rst is that the rules (or proof tree) that make up Gruff could be built by an
inductive learning system. C4.5, a decision tree learner (Quinlan, 1992), is a good example
of this class of learning systems. However, these types of inductive classi�cation systems

cannot adequately replace the functionality of the Gruff/Omlet system. Omlet allows
examples which have less than perfect membership in a class to be used for training. There
is no direct way to accomplish this in a system such as C4.5. A decision-tree based system
would probably require di�erent trees to be trained for parent and child categories. The

functional concepts (provides sittable surface, for example) would get lost in the training
process if the individual features for a chair were directly used. We could train a series
of trees to learn functional concepts individually, then train a decision tree to combine the

results. In such an approach the parameters of the membership functions that are learned in
this paper would be learned implicitly in the construction of a decision tree for a functional

189

Woods, Cook, Hall, Bowyer, & Stark

concept and any resulting rules. Replacing Gruff/Omlet with a decision tree or other
general-purpose rule learner is possible, but would require extensive work to preserve the
idea of functional object recognition.

Omlet is aimed at the second area in which a Gruff-like system could bene�t from
learning, which is in tuning the membership functions. A knowledge primitive might be a

sittable surface. Given measurements for a speci�c surface of an object in a speci�c orienta-
tion, it is necessary to develop a representation of acceptable bounds on the measurements
to determine whether the surface has the area to be sittable.

Techniques from other areas of machine learning have been used to represent and learn
probabilistic and fuzzy membership functions. For example, belief networks provide a mech-
anism for representing probabilistic relationships between features of a domain. Individual

feature probabilities can be combined to generate the probability of a complex concept by
propagating belief values and constraints through the network. Adaptive probabilistic net-
works are a kind of belief nets that can learn the individual probability values and distribu-
tions using gradient descent (Pearl, 1988; Cooper & Herskovits, 1992; Spiegelhalter, Dawid,

Lauritzen, & Cowell, 1993). The structure of belief nets and their update algorithms are
similar to the approaches found in Omlet. However, Omlet incorporates symbolic theo-
rem proving, a feature that is fundamental to performing function-based object recognition,

as well as value propagation.

Similar research has been performed to learn fuzzy membership functions using adap-

tive techniques such as genetic algorithms and classi�er systems (Parido & Bonelli, 1993;
Valenzuela-Rendon, 1991). Much of this work can only be used to learn individual mem-
bership functions and cannot handle combinations of input. Once again, little work has
been directed at learning fuzzy memberships in the context of a rule-based system. Addi-

tional re�nement techniques such as reinforcement learning (Mahadevan & Connell, 1991;
Watkins, 1989), neural networks, and statistical learning techniques can also be used to

re�ne con�dence values.

This project represents a new direction in computer vision and machine learning re-
search; namely, the integration of machine learning and computer vision methods to learn
fuzzy membership functions for a function-based object recognition system. Although learn-

ing such functions in a rule-based context is a novel e�ort, similar research has been per-
formed in the area of re�ning certainty factors for intelligent rule bases. For example,
Mahoney and Mooney (1993) and Lacher et al. (1992) use backpropagation algorithms to

adjust certainty factors of existing rules in order to improve classi�cation of a given set of
training examples. In contrast to Omlet's approach, all of these systems re�ne values that
represent a measure of belief in a given result and are adjusted according to the combination
functions of certainty factors. Omlet's measures represent degrees of fuzzy membership in

an object class, and the re�nement method propagates error through an And/Or tree.

The work by Wilkins and Ma (1994) focuses on revising probabilistic rules in a classi�-

cation expert system. Probabilistic weights are applied to each rule, indicating the strength
of the evidence supplied by the rule. However, re�nements to the rule occur in the form
of modifying the applicability of the rule by generalizing, specializing, deleting or adding

rules, instead of automatically re�ning the weight of the rule. The authors avoid automatic
re�nement of weights because the resulting rule base may not be interpretable by experts.

190

Learning Membership Functions in Object Recognition

Towell and Shavlik (1993) convert a set of rules into a representation suitable for a
neural net, then train the network and re-extract the re�ned rules. The initial network
can be set up for a chain of rules. The extracted rules will not necessarily have the clear
functional meaning that our approach aims at preserving.

There are several new approaches to learning and tuning fuzzy rules (Ishibuchi, Nozaki,
& Yamamoto, 1993; Berenji & Khedkar, 1992; Jang, 1993; Jang & Sun, 1995) that use

genetic algorithms or specialized kinds of neural networks, some making use of reinforcement
learning. These approaches might provide an alternative way to learn the membership values
provided the initial functional rules are given as fuzzy rules. However, some modi�cations
to the learning approaches would be needed as they normally work in domains without rule

chaining or hierarchies of rules as there are in Gruff/Omlet.

3. The Gruff Object Recognition System

The Gruff acronym stands for Generic Representation Using Form and Function (Stark

& Bowyer, 1991). The Gruff recognition system takes a 3-D shape description as input,
reasons about whether the shape could belong to any of the object categories known to
Gruff, and outputs an interpretation for each category to which the object could belong.
An \interpretation" is a speci�ed orientation and a labeling of the parts of the shape which

are identi�ed as satisfying the functional properties. See Figure 1 for an example of an
interpretation.

Provides
Stable
Support

Provides
Sittable
Surface

GRUFF Input GRUFF Output

Figure 1: Gruff interpretation of a 3-D shape for the category conventional chair. Ele-
ments of the shape are labeled with the functional property they provide.

191

Woods, Cook, Hall, Bowyer, & Stark

3.1 The Knowledge Primitives

All of Gruff's reasoning about shape is performed using \low level" procedural knowledge
which is implemented as a set of knowledge primitives. Each knowledge primitive represents

some primitive physical property concerning shape, physics, or causation. Each knowledge
primitive takes some (speci�ed portions of a) 3-D shape description as its input, along with
values of the parameters for the primitive, and returns an evaluation measure between 0 and

1. The evaluation measure represents how well the shape element satis�es the particular
invocation of the primitive.

The knowledge primitives used byGruff to recognize chairs are (Stark & Bowyer, 1991,

1994; Sutton et al., 1993):

1. relative orientation (normal one, normal two, range parameters)

This primitive determines if the angle between the normals for two surfaces (nor-

mal one and normal two) falls within a desired range.

2. dimensions (shape element, dimension type, range parameters)

This primitive can be used to determine if the dimension (e.g. width or depth) of a
surface lies within a speci�ed range.

3. proximity (proximity type, shape element one, shape element two)

This primitive can be used to check qualitative relations between shape elements, such

as above, below and close to.

4. clearance (object description, clearance volume)

This primitive can be used to check for a speci�ed volume of unobstructed free space
in a location relative to a particular part of the shape.

5. stability (shape, orientation, applied force)

This primitive can be used to check that a given shape is stable when placed on a at
supporting plane in a given orientation and with a (possibly zero) force applied.

Each of the �rst two knowledge primitives include four range parameters: z1 (stands
for 1st zero point), n1 (1st normal point), n2 (2nd normal point), and z2 (2nd zero point).

These parameters are used to de�ne a trapezoidal fuzzy membership function, as in Figure 2,
for calculating an evaluation measure for the invocation of the primitive. The last three of
the knowledge primitives do not have range parameters. They return an evaluation measure
of 1 or 0 depending on whether or not the primitive physical property has been satis�ed.

Trapezoidal membership functions reect a desire to name (categorize) objects in a
manner compatible with human naming. There is typically a non-trivial range for the
\ideal" value of many physical properties related to functionality. For example, while there

is a unique value for the mean sittable surface area of a population of chairs, that value
is not the only one that would rate a perfect \1.0" for sittability. Reasonable deviations
result in no decrease in the sittability. When the sittable surface area falls outside the ideal

range (i.e., between z1 and n1, or between n2 and z2 in Figure 2), the evaluation measure
is reduced, indicating the surface provides a less than perfect (but still functional) sittable

192

Learning Membership Functions in Object Recognition

0.0

Evaluation
Measure

z1 = least

n1 = low ideal n2 = high ideal

z2 = greatest

Physical Measurement for a Particular Property i

1.0

Figure 2: Fuzzy membership function returns an evaluation measure of a primitive physical

property.

area. Finally, when the area falls outside the range of values (less than z1, or greater than
z2 in Figure 2), the surface can no longer function as the sittable portion of a chair, and a
evaluation measure of 0 is returned.

3.2 The Category De�nition Tree

Gruff's knowledge about di�erent object categories is implemented as a category de�nition

tree, the leaves of which represent invocations of the knowledge primitives. The category
de�nition tree for the chair category is illustrated in Figure 3.

A node in a category de�nition tree may have two subtrees. One subtree gives the
de�nition of the category in terms of a list of functional properties. In our chair example, an
object must satisfy the functional properties of stability and provides sittable surface in order

to be considered a member of the category conventional chair. Each functional property
may be de�ned in terms of multiple primitives. The evaluation measures of individual
primitives are combined (in a manner to be discussed shortly) to determine how well the
functional properties have been satis�ed. These functional property measures are further

combined to arrive at an overall evaluation measure for a category node.

The other subtree de�nes a subcategory. A subcategory is a specialization of its parent
(or superordinate) category, and thus provides a more detailed elaboration of the de�nition
of its parent. A subcategory node has a subtree of functional properties that are required
in addition to those of the parent category. For example, in Figure 3, the subcategory

straightback chair is a specialization of a conventional chair with the additional functional
requirement provides back support. The overall evaluation measure for a subcategory node
is a combination of its parent category evaluation measure and the evaluation measure

associated with the additional functional properties. In Figure 3, the overall measure for
the subcategory straightback chair is a combination of the measures from the conventional

193

Woods, Cook, Hall, Bowyer, & Stark

Subcategory
Trees

Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
SITTABLE SURFACE

Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
STABLE SUPPORT

Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
BACK SUPPORT

Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
ARM SUPPORT

PROVIDES
LOUNGING BACK SUPPORT
Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
LOUNGING SITTABLE SURFACE

Node
Type:

Name:

FUNCTIONAL
PROPERTY

Node
Type:

Name:

FUNCTIONAL
PROPERTY

PROVIDES
STABLE SUPPORT

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

Subcategory
Trees

RECLINER

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

Subcategory
Trees

CONVENTIONAL
CHAIR

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

Subcategory
Trees

CHAIR

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

Subcategory
Trees

LOUNGE
CHAIR

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

STRAIGHTBACK
CHAIR

Node
Type:

Name:

(SUB)CATEGORY

Funtional
Definition

Subcategory
Trees

ARMCHAIR

PROVIDES
LOUNGING ARM SUPPORT

Node
Type:

Name:

FUNCTIONAL
PROPERTY

Figure 3: Category de�nition tree for the basic level category chair.

chair node and the provides back support subtree. Note that subcategory measurements do
not contribute to the cumulative measure for a parent category. There may be multiple levels

of subcategories, as with conventional chair, straightback chair, and armchair in Figure 3.

Category nodes which have no associated functional properties (such as the root node
chair in Figure 3) do not have associated evaluation measures. These nodes are used to
set up the control structure of the function-based de�nition. However, they do provide the

category de�nition since an object that is a member of a subcategory is automatically a
member of all its predecessor categories. For example, in Figure 3, an object that belongs
to the subcategory straightback chair also belongs to the categories conventional chair and
chair. A superordinate category furniture could be added above the chair category (Stark

& Bowyer, 1994).

194

Learning Membership Functions in Object Recognition

3.3 Combination of Evidence

The evaluation measures returned by the primitive invocations at a functional property
node are combined using the T-norm:

T (a; b) = a� b

where a and b are the measures being combined. This T-norm is commonly referred to as
the probabilistic and (Pand) function (Bonissone & Decker, 1986). The immediate parent

category node directly receives an associated measure by combining the measures of the
functional property nodes using the same T-norm.

For example, the functional property provides sittable surface is de�ned by six primi-

tives. For simplicity, we'll denote the evaluation measures returned by these six primitives
as p1 through p6. The functional property stability is de�ned by a single primitive, which
also returns an evaluation measure (p7). To determine the overall evaluation measure of a
shape for the category conventional chair we compute

conventional chair ::= provides sittable surface Pand stability

where

provides sittable surface ::= p1 Pand p2 Pand p3 Pand p4 Pand p5 Pand p6

and

stability := p7

Since the de�nition of a (sub)category is a conjunction of required functional proper-
ties, the cumulative measure should be dominated by the \weakest link" in the individual

primitive evaluation measures, a property of the Pand function. So, an evaluation measure
of 0 for any one primitive physical property will result in a cumulative evaluation measure
of 0. An evaluation measure of 1 indicates that the primitive physical property has been

ideally satis�ed, and the shape may belong to the object category. The �nal result depends
on the evaluation of other primitive physical properties.

It would seem that each category could simply be de�ned by the knowledge primi-

tives without using the notion of functional properties. The functional property level was

introduced into the representation hierarchy for two reasons. First, the subgroupings of
functional properties intuitively follow the levels of named categorization typical of human
concepts of function. Secondly, most functional property evaluations result in the labeling

of the functional elements of the object (i.e., the portions of the structure) that ful�ll the
functional requirement.

Since the subcategory de�nition represents an increasingly specialized de�nition, evi-
dence for belonging to the subcategory should result in an increased measure for the object

belonging to the subcategory as opposed to just the parent category. The combination
of the functional property measurement of a subcategory node, a, with its parent node's
evaluation measure, b, is computed using the T-conorm:

S(a; b) = a+ b� a� b

195

Woods, Cook, Hall, Bowyer, & Stark

This T-conorm is commonly referred to as the probabilistic or (Por) function (Bonissone
& Decker, 1986). While the T-conorm is used to combine measures at a subcategory node,
the �nal subcategory evaluation measure is actually computed as:

Esubcategory =

(
S(a; b); if a > T;

0; otherwise:

where T is a user de�ned threshold. Thus, the functional property measurement of a
subcategory node, a, must be greater than some minimum in order for a shape to receive a

non-zero evaluation measure for the subcategory. For the purposes of this work, a value of
T = 0 is assumed, indicating that a shape can be assigned to a subcategory as long as there
is some non-zero evidence that it meets the additional functional requirements associated
with the subcategory. In practice, a �nal classi�cation decision might require much stronger

evidence, say T = 0:7, before a shape is assigned to a subcategory.

For example, to determine the overall evaluation measure of a shape for the category

straightback chair, we �rst compute the overall evaluation measure for the category conven-
tional chair, as previously described. The functional property provides back support is de-
�ned by 8 primitives. Denoting the measurements returned by the 8 primitives as p8 through

p15, the overall evaluation measure (assuming the measure for provides back support > T)
for the category straightback chair is computed as:

straightback chair ::= conventional chair Por provides back support

where

provides back support ::= p8 Pand p9 Pand p10 Pand p11 Pand p12
Pand p13 Pand p14 Pand p15

An object that can function as a straightback chair can also by de�nition function as a
conventional chair. The T-conorm will give the object a higher evaluation measure for the
subcategory straightback chair since there is some evidence in addition to the \minimal"
amount of evidence required for the shape to belong to the parent category conventional

chair. Thus, Gruff performs recognition of a shape by selecting the (sub)category with the
highest overall evaluation measure. This should correspond to the most speci�c applicable
subcategory. One exception occurs when the parent category has an evaluation measure

of 1 and there is non-zero evidence supporting the subcategory functional requirements.
In this case, the T-conorm assigns an evaluation measure of 1 to both the category and
subcategory.

The particular T-norm/T-conorm pair utilized in this paper was chosen from among
representative T-norm/T-conorm possibilities (including non-probabilistic formulations) de-
scribed by Bonissone and Decker (1986) after analyzing their performance in conjunction

with Gruff across a set of example shapes (Stark, Hall, & Bowyer, 1993a).

4. The OMLET Learning System

In this section, we describe the Omlet learning (sub)system. Omlet learns fuzzy member-
ship functions, which are located at the leaves of an And/Or categorization tree, from sets

196

Learning Membership Functions in Object Recognition

of training examples. Omlet works together with Gruff to automatically learn object
category de�nitions and use those de�nitions to recognize new objects.

In the training mode, Omlet uses examples to learn the fuzzy ranges for primitive
measurements. Each training example consists of an object description coupled with a
desired overall evaluation measure. In the testing mode, Omlet uses the previously learned
ranges to act as a function-based object recognition system. Knowledge primitives form the

building blocks of the Omlet system, and rules make up the representation language. The
rules, which are �xed, are derived from Gruff's category de�nition tree. They indicate
1) how the knowledge primitives are combined to de�ne functional properties, and 2) how

the functional properties are combined to give the function-based de�nition of an object
category.

Given a training example, Omlet uses the rules to construct a general proof tree for
the example's given object category. The proof tree is simply a data structure that mimics
the way Gruff combines primitive evaluation measures. The proof tree also maintains
the primitive ranges that are modi�ed by the learning algorithm. An example proof tree

generated from the rules that de�ne an object in the conventional chair category is shown in
Figure 4. The proof trees contain only those knowledge primitives which are de�ned using
range parameters. This is because the other knowledge primitives return only 0/1 measures,
and so there is no primitive membership function to learn. The training example must satisfy

these \binary", or necessary, functional properties and return evaluation measures of 1 in
order for the example to be a member of the given category. For example, in Figure 4, the
left branch of the top Pand node represents the functional property provides stable support.

This functional property is de�ned by a single knowledge primitive which has no range
parameters. Therefore, this input to the Pand node is �xed to always return a 1.

For Omlet to obtain an overall evaluation measure for an example object, the physical

measurements of the shape elements of the object are input to the primitive fuzzy mem-
bership functions in the leaves of the proof tree. The output at a leaf node represents
the evaluation measure for the individual functional property. The evaluation measures

are combined at the internal nodes of the tree using the probabilistic T-norm/T-conorm
combiners described in Section 2.3. The overall evaluation measure of the input example is
then output at the root node (see Figure 4).

Input toOmlet consists of a set of goals for speci�c examples from object (sub)categories.
The goal includes the example's (sub)category, the elements of the 3-D shape that ful�ll
the functional properties, and an overall desired evaluation measure which is greater than 0

(otherwise the object is not an example of the object category). Figure 5 shows an example
of a goal for a conventional chair object.

Using the training examples,Omlet attempts to learn the ranges used in the trapezoidal
membership functions associated with the knowledge primitive de�nitions (see Figure 2).
When a training example is presented, Omlet attempts to prove via the rule base that the
object is a member of the speci�ed category. Here, the check is to make sure the physical

elements of the object listed in the goal satisfy the binary, or necessary, functional properties.
So, for a conventional chair training example, Omlet checks that the given orientation is
stable, and the given seating surface is accessible (clearance in front and above) and meets a

minimumwidth to depth ratio. If the necessary functional properties have all been satis�ed,
a proof tree is constructed. The actual overall evaluation measure is then calculated in the

197

Woods, Cook, Hall, Bowyer, & Stark

PAND

PAND

1.0
0.572

= 0.572

Height = 0.67

0.763

Surface = 1.0
Contiguous

1.0

Area = 0.116

0.750

Conventional Chair
Evaluation Measure

Binary functional property
"provides stable support"
is fixed to always return a 1

Knowledge primitives with ranges that are used
to compute the evaluation measures of the functional
property "provides sittable surface".

(conventional_chair ?a ?b ?c) ::=
 (provides_sittable_surface ?a ?b ?c) PAND
 (provides_stable_support ?a)

(provides_sittable_surface ?a ?b ?c) ::=
 (dimensions AREA range_parameters ?b) PAND
 (WIDTH/DEPTH 1.0 ?b) PAND
 (dimensions CONTIGOUS SURFACE range_parameters ?b) PAND
 (dimensions HEIGHT range_parameters ?b) PAND
 (clearance ABOVE ?a ?b) PAND
 (clearance IN_FRONT ?a ?c)

(provides_stable_support ?a) ::=
 (stability SELF ?a)

Rules for Conventional Chair

?a

?b

?c

Figure 4: The simpli�ed proof tree constructed for a learning example from the category

conventional chair. The ?a, ?b, and ?c symbols in the rules represent the physical
aspects of a shape that are used by the rules. An orientation of the shape, the face

of the sittable surface, and the front edge of the sittable surface are substituted

for ?a, ?b, and ?c, respectively. This way Omlet knows which elements of a
shape are to be \measured" and evaluated by the knowledge primitives.

198

Learning Membership Functions in Object Recognition

(conventional_chair mchair.00.orientation2 mchair.00.face2 mchair.00.edge1-8) 0.9808

Object Category Object Orientation Sittable Surface Front Edge of
Sittable Surface

Desired
Evaluation
Measure

Functional Properties

Figure 5: Training goal input to Omlet for a conventional chair object.

manner described above. If the actual evaluation measure is su�ciently di�erent from
the desired evaluation measure, then the primitive fuzzy membership functions that were
included in the de�nition need to be adjusted.

Primitive membership functions are adjusted by propagating the overall error for each
training sample down through the nodes of the proof tree in a way that attempts to give
each leaf node (i.e., range) some portion of the error. The range parameters (z1, n1, n2,

and z2) that de�ne the fuzzy membership trapezoids are then adjusted in an attempt to
reduce the total error of the examples in the training set. The next few subsections provide
details of the Omlet learning algorithm. First, we discuss the method for calculating an
error value and propagating it down through the proof tree. Next, we present a method for

making initial estimates of the parameters for each membership function. We describe error
propagation �rst because it is utilized in the initialization phase. We then describe how
Omlet makes adjustments to the membership functions in an attempt to reduce the error

over the entire training set. The last subsection describes the general learning paradigm
and provides some theoretical justi�cation for our implementation.

4.1 Error Propagation

The error for a training example is de�ned as the di�erence between the desired evaluation
measure and the actual evaluation measure computed by the current state of the Omlet

system. A fraction of the error (de�ned by a \learning rate") is propagated down the proof
tree through the Pand and Por nodes. Error propagation through Pand and Por nodes
is handled di�erently. If the error at a three element Pand node is E, then each of the three
elements will receive a portion of the error equal to the cube root of E (i.e., the inverse of

the Pand function). For a Por node, the full amount of error, rather than an equal share,
is propagated down each link. The rationale for this treatment of error should become clear
in Section 4.4.

It should be noted that while the desired evaluation measure is fed to the root of the tree
and propagated down to the leaves, the error is directly computable since the actual and the

projected desired values are always known at each node. The actual values at each node are
those computed when the physical measurements of the object shape are fed into the leaf

199

Woods, Cook, Hall, Bowyer, & Stark

PAND

Actual = 0.35

PAND

Actual = .612

PAND

Actual = .571

Actual = .85 Actual = .72 Actual = .81 Actual = .85 Actual = .83

Desired = 0.6

Desired = .795 Desired = .754

Desired = .959 Desired = .829 Desired = .891 Desired = .911 Desired = .931

Figure 6: Example of error propagation through a Pand tree. Actual values are found

when an overall evaluation measure is computed for an object. Desired values are
propagated down the tree, and error is computed as Desired�Actual.

nodes and combined to produce an overall evaluation measure at the root. The projected
desired values in the proof tree are obtained by propagating the desired evaluation measure
from the root node down to the leaves. For example, given a two input Pand node with
actual inputs a1 and a2, the actual output A will be a1 � a2 (from the T-norm in section

2.3). If the desired output of the node is D, then we can compute the desired inputs to the
node as d1 and d2 by solving the following set of equations:

a1 � a2 � d1 � d2 = A�D (1)

and
a1 � d1 = a2 � d2 (2)

The �rst equation computes the error for the Pand node1, while the second equation assures
equal portions of the error are assigned to each input. Figure 6 shows an example of the

desired values computed via Equations 1 and 2 for every node in a proof tree. In this �gure,
we have a known desired overall measure of D = 0:6 at the top Pand node, and an actual
measure of A = 0:35 which was computed as the Pand of the actual node inputs, a1 = 0:612
and a2 = 0:571. Using Equations 1 and 2, we can easily compute the two unknown desired

inputs d1 and d2 to the top Pand node (which are also the desired outputs of the bottom

1. The equivalent and simpler equation d1 � d2 = D could be substituted here.

200

Learning Membership Functions in Object Recognition

two Pand nodes) as 0:795 and 0:754, respectively. If there are three inputs to a Pand node,
then we solve a set of three linear equations to derive the desired inputs. When there are
more than three inputs to a Pand node, we divide the set of inputs recursively into groups
of two or three and solve a set of two or three linear equations, respectively.

Since the Por nodes are used to combine a single parent category measure with a single
aggregate measure for a subcategory's functional properties, there will never be more than
2 inputs to this type of node. Therefore, the full amount of error can be propagated through

a Por node by simply solving the independent equations:

a2 + d1 � a2 � d1 = D (3)

and
a1 + d2 � a1 � d2 = D (4)

Eventually, some portion of the overall error is propagated to the ranges de�ned by

the trapezoid membership functions. When the error reaches the individual ranges for a
training example, the input to the primitive membership function (i.e., the x axis value)
and the desired primitive evaluation measure (the y axis value) de�ne a point that should
lie somewhere on the trapezoid. We also note which leg of the trapezoid the point belongs

to, based on which side of the normal portion of the range [n1,n2] that the x value lies.
The set of desired points for each leg can be used to make adjustments to the trapezoid
in an attempt to reduce the error. Omlet collects these desired points for each leg of

each membership function by propagating the error for all training examples down the

proof trees. The trapezoid/range parameters (z1,n1,n2,z2) are adjusted at the end of each
training epoch. Training continues for a �xed number of epochs or until some satisfactory
level of performance, de�ned by minimal classi�cation error rate averaged over the training

set, is achieved.

4.2 Initial Estimate of Measurement Functions

Omlet's learning algorithm begins by making reasonable initial estimates of all fuzzy trape-

zoid membership functions for the physical measurements. This is accomplished by assign-

ing actual values of 0 for the membership functions for each training example and prop-

agating the errors (which in this case would be equal to the desired evaluation measures)
down to the ranges in the leaf nodes of the proof trees. From the collections of desired

points, we make an initial estimate of each trapezoidal membership function. It is only
important at this stage to place the edges of the constructed normal range (the n1 and n2
range parameters) somewhere within the actual normal range. The learning algorithm will
make adjustments to the n1 and n2 points on subsequent training epochs. Additionally,

Omlet may set minimum or maximum limits on the values of some of the range parameters
(more on this shortly).

A training example with a desired evaluation measure of 1 is considered a \perfect"
example of an object from a given category. Perfect training examples are desirable in

the training set because all primitive measurements for perfect examples are known to fall
in the range [n1,n2]. For example, if a conventional chair training example has a desired
evaluation measure of 1, then we know that all of the membership functions in its proof

tree (see Figure 4) must return values of 1. This is because the result of the Pand function
can be no greater than the minimum input.

201

Woods, Cook, Hall, Bowyer, & Stark

Omlet now examines the set of desired points that have been propagated to each range
in the de�nition tree and determines \limit" points. These are de�ned as follows. If any
two desired points have y values (memberships) of 1, then at least a segment of the normal
range [n1,n2] is known. The n1 range parameter is set to the minimum x value of all desired

points with y values of 1. Similarly, the n2 parameter is set to the maximum x value of all
desired points with y values of 1. Note that if only one such desired point is found then
n1 and n2 are set to the same value, and the membership function is initially triangular.

Since some portion of the normal range is known to be correct, an upper limit is set on
the n1 value and a lower limit is set on the n2 value to assure that the known segment

of the normal range is not reduced during subsequent training. Since training examples
have desired membership values greater than 0, we know that all x input values must lie

between z1 and z2. Omlet uses the minimum and maximum x values from the set of
desired points to set limits on the z1 and z2 range parameters. The z1 range parameter is
never permitted to increase above the minimum x value during training. Similarly, the z2
value may never decrease below the maximum x value in the set of desired points. Figure 7

shows the range parameters (limit points) Omlet sets during the initialization phase given
a set of 10 examples.

1.0

0.0
p1

p2

p3

p4 p5 p6

p7
p8

p9

p10
Maximum
 z1 value
 Allowed

Maximum
 n1 value
 Allowed

Minimum
 n2 value
 Allowed

Minimum
 z2 value
 Allowed

Figure 7: Range parameter limits that may be set when initializing range parameters.

The limits on the range parameters serve several purposes. First, the limits assure that
perfect training examples will not be assigned evaluation measures less than 1, and that

all training examples will have evaluation measures greater than 0. More importantly, by
limiting the changes that can be made to some range parameters, better approximations
to the desired membership functions can be learned. In subsequent learning, the error is
propagated down the proof tree with the assumption that equal amounts of the error come

from each input to a node. This assumption is not always valid, and there is no way to
directly determine the portion of the error that belongs to each input. If an error propagated
to a membership function would cause a change in one or more of the range parameters

(z1,n1,n2,z2) that moves the parameter past its set limit, the portion of the overall error
assumed to be caused by the membership function has not been correctly estimated. When

202

Learning Membership Functions in Object Recognition

this occurs the parameter is set equal to its limit, e�ectively reducing the degree to which
changes in the membership function would compensate for the overall error. This should
allow the learning algorithm to �nd a good solution in the case where di�erent membership
functions contribute di�erent amounts of error.

If a segment of the normal range is known for some membership function, then initial-

ization of the range parameters is straight-forward. The n1 and n2 values will have already
been set. The z1 value is set simply by making the left leg of the trapezoid pass through
the point (n1,1.0) and the point from the set of desired points with the minimum x value.
Similarly, the z2 value is set by making the right leg of the trapezoid pass through the point

(n2,1.0) and the desired point with the maximum x value. If there are no points to the

left (right) of the n1 (n2) point, then the membership function is assumed to be one-legged
(as for CONTIGUOUS SURFACE in Figure 4) and the parameters n1 and z1 (n2 and z2)

are extended to a very large negative (positive) value and not permitted to change during
training.

If no portion of the normal range of a membership function can be determined, then we
attempt to �t a trapezoid to the set of desired points. First, the two desired points with the
maximum y values are found. We assume that the normal range lies somewhere between

them. A best-�t trapezoid is determined by varying the n1 and n2 range parameters over
the assumed normal range, and selecting the normal range [n1,n2] that produces the lowest
error for the set of desired points. The error is the sum of the absolute values of the
di�erence between the desired y value and the actual y value found for each point. The z1

(z2) range parameter is set in the same manner as before, where the left (right) trapezoid
leg is forced to pass through the desired point with the minimum (maximum) x value. The
n1 value is varied from the leftmost point of the assumed normal range to the rightmost

point in small increments. For each di�erent value of n1, the n2 value is varied from n1 to

the rightmost point of the assumed normal range in small increments. So, we are simply
testing a range of possible trapezoids (with the degree of accuracy, and number of trapezoids
tested, de�ned by the increments in which n1 and n2 are varied) that have a normal range

[n1,n2] somewhere within the assumed normal range. From these we select the set of range
parameters that minimize the total error over the set of training examples. The use of a
best-�t trapezoid approach is helpful, because we have no initial way to accurately associate
error with any given trapezoid.

4.3 Adjusting Membership Functions

To make adjustments to a membership trapezoid, each leg of the trapezoid is �t to a set
of desired points using a least squares line �t. Recall that after every training epoch we

have a set of desired points for each leg of each trapezoid. The new z1 (z2) value of the
trapezoid is set to the point at which the left (right) leg intersects 0. The new n1 (n2)
value is set to midway between the old n1 (n2) value and the value where the left (right)
leg of the �tted line intersects y = 1. The new n1 and n2 values are not directly set to

where the �tted trapezoid legs intersect 1 because overestimating the normal range [n1,n2]
can eliminate some desired points that should be used in the least squares line �t for a
trapezoid leg. Desired points in the normal [n1,n2] range by de�nition do not fall on a

leg of the trapezoid, and are not used when adjusting the trapezoid legs. Therefore, if the
normal range is overestimated, points that truly belong on a trapezoid leg will not be used

203

Woods, Cook, Hall, Bowyer, & Stark

to adjust the leg. By gradually moving the normal points n1 and n2, Omlet is better able
to converge on an appropriate solution. After the new range parameter values (z1,n1,n2,z2)
have been determined, Omlet checks to make sure that none of them lie outside any limits
that may have been set in the initialization phase. Restrictions on new range parameters

assure that the membership functions remain trapezoidal (or triangular if n1 = n2). First,
z1 must be less than or equal to n1. Similarly z2 must be greater than or equal to n2. If
z1 (z2) is greater (less) than n1 (n2) then z1 (z2) is set equal to n1 (n2). Also, n1 must be

less than or equal to n2. In the case that there is only a single point in the set of desired
points for a trapezoid leg, the leg is de�ned by the normal point for that leg (n1 for the left

leg and n2 for the right leg) and the single desired point.

The training data may provide target points for only a portion of a trapezoid for some
of the ranges. Omlet is capable of detecting this situation by observing the slope of the
�tted line, and adjusting the membership function appropriately. The slope of the left
trapezoid leg should be positive and the slope of the right leg should be negative. If the

slope of the �tted trapezoid leg is nearly horizontal (close to 0.0), or the sign of the slope
is opposite what is expected, then the normal point on that leg is moved (again, n1 for
the left leg and n2 for the right leg) outward. This adjustment allows Omlet to learn

one-legged membership functions, and to handle (as well as possible) situations when not
enough training data is available.

A method of escaping local minima was empirically found useful. Normally Omlet

does not allow a trapezoid leg to change if the change causes an increase in total error for
the training set. So, it is possible for zero, one or both trapezoid legs for each range to
get adjusted on an epoch. If learning slows down su�ciently, then Omlet will temporarily

allow trapezoid leg changes that cause an increase in overall error in hopes of escaping a
possible local minima. More precisely, if the total training set error for one epoch decreases
by less than a speci�ed threshold, then range changes that cause an increase in overall error
are permitted for the next training epoch.

4.4 The Training Approach

In order to learn all the various subcategories de�ned in a category de�nition tree, we

utilize a machine learning approach which is based on an assumption about human learning

known as one disjunct per lesson (Lehn, 1990). Perhaps it is easiest to understand the
mechanics of our learning approach if we explain the one-disjunct-per-lesson assumption

in the terminology of cognitive science. Since many of the terms in machine learning are
derived from the cognitive sciences, it will not be di�cult to show the similarities between
our algorithm and this characterization of human learning. We will also examine some of
the computational characteristics of our learning algorithm that support our choice of this

approach.

4.4.1 One Disjunct Per Lesson

Van Lehn (1990) tells us that an e�ective way of teaching more complicated concepts is to
build them up from simple subconcepts, as opposed to an \all-at-once" approach. For our
purposes, a disjunct can be considered one of these simple subconcepts. A lesson consists

of an uninterrupted sequence of demonstrations, examples, and exercises. The length of
a lesson varies. Thus, we might expect a human to better understand the concept of an

204

Learning Membership Functions in Object Recognition

armchair by presenting a series of lessons, each of which introduces a single new subconcept
that builds upon the previous subconcepts. For example, a �rst lesson teaches the concept of
a conventional chair which requires only a stable sittable surface in the correct orientation.
To learn what constitutes a straightback chair, we build upon the concept of conventional

chair by introducing the subconcept of back support in a second lesson. So, the second
lesson broadens our notion of chairs, in general. Finally, a third lesson builds upon our
understanding of a straightback chair by introducing the subconcept of arm support. By

contrast, the all-at-once approach may try to explain that an armchair provides a stable
sittable surface in the correct orientation with some back and arm support. Here, we

are trying to teach three subconcepts at one time, and show how the three subconcepts
together form the more complex concept of an armchair. Indeed, Van Lehn (1990) cites

some laboratory studies which indicate that the learning task is more di�cult when more
than one disjunct (subconcept) is taught per lesson.

We have chosen to utilize a machine learning algorithm which has underpinnings similar

to Van Lehn's one-disjunct-per-lesson assumption. In our case, concepts and subconcepts
are represented by categories and subcategories. A lesson for our algorithm consists of
numerous epochs of the training examples from one (sub)category. Thus, our lesson can
be viewed as an uninterrupted sequence of positive examples that \teach" the functional

requirements for a single (sub)category. The length, or number of training epochs, of our
lessons may vary depending on the subcategory being learned. To learn all the ranges in
a category de�nition tree, we begin by learning the simplest concepts �rst. Then we learn
additional more complex subconcepts by building upon the notion of the more simple con-

cept. For example in the simpli�ed proof tree in Figure 8, the parent category conventional
chair will be learned before attempting to learn the subcategory (specialization) straightback
chair. Since the subcategory straightback chair is itself a parent category, it will be learned

before attempting to learn the even more complex subcategory armchair. The remainder
of this subsection discusses our implementation in �ner detail.

From an implementation standpoint, the simplest concepts are the functional properties
associated with the categories that are directly linked to the root node in our category

de�nition tree such as provides sittable surface and provides stable support for the category

conventional chair. In our �rst lesson, we use positive examples from these \�rst level" (or
parent) categories to learn only those membership functions associated with these categories.
Once the �rst level categories have been learned, their membership functions are \frozen"

and not permitted to change during subsequent lessons.

In our second lesson, only the membership functions of the \second level" categories
(i.e., the subcategories of the �rst level categories in the de�nition tree) are learned. In

Figure 8, these membership functions belong to the node provides back support for the sub-
category straightback chair. If we have learned the \simple" functional concept associated
with the parent category, the values computed for a parent category node are assumed to be
reasonably accurate. For example, when the actual values in a proof tree are computed for a

straightback chair training example, the actual values emanating from the parent category
node conventional chair should be accurate since the concepts associated with this node
have already been learned. That is, the evaluation measures for the functional properties

provides sittable surface and provides stable support of a straightback chair example are as-
sumed to be correct. This implies that the membership functions making up the functional

205

Woods, Cook, Hall, Bowyer, & Stark

arm_chair
POR

provides_arm_support
PAND

provides_back_support
PAND

straight_back_chair
POR

conventional_chair
PAND

. . .

.

Example of a
"parent category"

Example of a subcategory
to be learned after the

parent category

Figure 8: Simpli�ed proof tree for an armchair object.

requirement subtree (i.e., provides back support) are responsible for the entire error for a
subcategory training example. (This explains why Equations 3 and 4 are used to propagate

error through Por nodes.) Hence, the error is propagated to the modi�able leaves under a
functional requirement node through a Pand subtree and learning continues as before.

The lessons continue with each parent category being learned before any of its subcate-
gories are learned, until all subcategories have been learned. By freezing the parent category
membership functions after they have been learned, we are applying to the one-subconcept-

per-lesson strategy. So in Figure 8 after learning straightback chair, the membership func-

tions for that branch are frozen and the armchair subcategory is learned by modifying the
membership functions under the provides arm support branch of the proof tree.

Omlet begins learning by evaluating the rule base in order to determine subcategory
dependencies and assigns each (sub)category in the de�nition tree a level in the learning
hierarchy. For example,Omlet determines that the category conventional chair has no par-

ent category and its membership functions can be learned immediately (level 1). However,
the evaluation measure of the subcategory straightback chair is dependent on the parent
category conventional chair. The straightback chair subcategory is assigned to learning

level 2. Subcategory armchair is dependent on parent category straightback chair, and is
therefore assigned to learning level 3.

206

Learning Membership Functions in Object Recognition

4.4.2 Practical Justification

In order to understand why we have taken a one-disjunct-per-lesson approach rather than

an all-at-once approach, let's make some observations concerning how accurately blame
assignment for an error can be determined for a typical training example.

Recall that error propagation through a proof tree involves projecting desired node input
values from a known node output value. Consider a Pand node with a known desired output
of 0.9, and two unknown inputs. We know that both of the inputs must be at least 0.9.
This means both inputs to the Pand node fall within the relatively small range [0.9,1.0].

However, when the desired output of a two input Por node is 0.9, we can only be sure
that both inputs fall in the range [0,0.9]. If the known output to the Pand or Por node
is very low, say 0.1, then there is an opposite e�ect. That is, the unknown inputs for a
Por node would lie in the relatively small range [0.0,0.1], and the unknown inputs for the

Pand node would fall somewhere in the much larger range [0.1,1.0]. These observations
suggest that the blame assignment for error can be propagated through a Pand node with
reasonable accuracy on examples that are relatively good, say 0.7 or above. However, for

high evaluation measures, an error value cannot be reliably propagated through a Por

node.

Since a subcategory evaluation measure is computed as the Por of a parent category
evaluation measure and the combination of additional functional requirements, all Por
nodes in a proof tree have two inputs. All Por nodes (in our proof trees) have at least 1
connecting node which consists of a parent (or more general) category whose membership

calculation involves only Pand connectives. The structure of the proof trees permits the
membership functions which contribute to the evaluation measure of a parent category to be
accurately learned prior to learning those de�ned in the additional functional requirements
of the subcategories. That is, we can determine one of the inputs to any Por node before we

attempt to propagate an error through that node. With one input and the desired output

of a Por node known, calculation of the unknown input is trivial. Thus, our learning
approach eliminates the reliability problems associated with propagating blame assignment

for error through Por nodes. This will be veri�ed in Section 6 with experimental results
for the subcategories straightback chair and armchair.

The mechanics of our learning algorithm suggests thatOmlet's performance depends on
how accurately blame assignment can be propagated through thePand nodes of a proof tree.
Earlier, we observed that blame assignment is less reliably propagated through Pand nodes
for \bad" training examples. Not surprisingly, this suggests that the quality of the training

data will have an e�ect on system performance. This does not mean that \bad" examples
of an object (sub)category cannot, or should not, be included in the training set. Since we
use a least squares line �t to adjust the fuzzy membership functions, the use of some \bad"
training examples (for which the blame may have been inaccurately distributed among the

fuzzy membership functions) should not dramatically a�ect the overall reliability of the
learned system parameters. Rather, it is just desirable to train the system with examples
that, for the most part, are good examples of their labeled object category. However, this

is not unreasonable as we might expect a machine (or a human for that matter) to better
learn what constitutes a chair by observing good examples of chairs.

207

Woods, Cook, Hall, Bowyer, & Stark

5. Experimental Setup

Upon reading in the rule base, the knowledge primitive measurements of the training exam-
ples, and all training example goals, Omlet begins by learning the membership functions
of all level 1 categories. The �rst learning epoch is used to make initial estimates of the
membership functions, and then Omlet iterates for 1000 additional training epochs. A

learning rate of 0.15 is used during the 1000 training epochs, so that 15 percent of the ac-
tual error for each training example is propagated to the adjustable ranges on each epoch.
After the 1000 training epochs, the best range parameters (those that resulted in the lowest

overall error) for level 1 categories are restored and frozen. The 1000 training epochs are
then repeated for the level 2 categories, followed by the level 3 categories, and so on until
all ranges in the category de�nition tree have been learned2.

The performance task of the Omlet system is evaluated by how well the trained system
recognizes objects that were not used in the training phase. One measurement of system

performance is the error observed on the test examples. The error for a test example is
computed as the absolute value of the di�erence between the desired and actual evaluation
measures. Training/Test sets are con�gured two ways: random partitioning of all labeled
data into training and test sets, and leave-one-out testing. In the �rst case, for a given

size training set, 10 train/test set pairs are created by randomly partitioning all the labeled
data. The error for a single test set is the average error of all test examples. The results for
a given size training set are reported as the average error of the 10 partitions. In leave-one-
out testing, one example in the data set is used to test while all remaining samples form

the training set. This is repeated using each example in the data as the test set, and results
are reported as the average error of all test examples. The average error per example versus
the training set size is plotted for training sets of 10, 20, 30, ... , N-1 samples. The point

with N-1 training examples represents the leave-one-out test results.

5.1 Test on the Gruff Chair Database

From the evaluations of Gruff (Stark & Bowyer, 1991), a large database of 3-D shapes

speci�ed as polyhedral boundary representations has been built up. Figure 9 shows 52 chair
shapes. A number of the 52 shapes can belong to more than one category or can function

in more than one stable orientation. This results in a total of 110 training examples. There

are 78 labeled instances for the category conventional chair. Some 28 of these instances

additionally satisfy the function of straightback chair, and 4 instances satisfy the function
of armchair. For each shape, we have the evaluation measure for the shape's membership
in di�erent object categories, as computed by Gruff with the hand-crafted functions for

the primitive evaluation measures. This set of shapes and their evaluation measures make
up the �rst set of training examples.

The �rst set of experiments will help determine how well Omlet learns a set of member-
ship functions that minimize the overall error, and also how closely the learned membership
functions approximate the original functions hand-crafted by an expert for Gruff. A

question of great practical importance to vision researchers is whether a machine learning

2. In some preliminary experiments, Omlet converged on a low overall error for each level of categories

anywhere between 200 and 900 training epochs. Hence the decision to train for 1000 epochs per category

level. The learning rate was also determined empirically.

208

Learning Membership Functions in Object Recognition

Figure 9: The 52 object chair database.

technique can derive a set of system parameters equivalent to the hand-crafted results of

the system designer. If so, the manual e�ort in system construction could be greatly eased.
When the learning task is formulated as duplicating the Gruff measures, the training
data for these experiments is e�ectively \noiseless". (Noiseless in the sense that the desired

evaluation measures that are used as input to Omlet are all derived in the same manner

from the same set of hand-crafted fuzzy membership functions.)

5.2 Test on a Synthetic Cup Database

The de�nition and recognition of cups is a task that has been visited frequently in machine
learning research (Mitchell, Keller, & Kedar-Cabelli, 1986; Winston, Binford, Katz, &

Lowry, 1983). As Winston (1983) observes, it is hard to tell vision systems what cups
should look like. It is much easier to talk about the purpose and function of a cup. We
convey the description of a cup by providing its functional de�nition. In particular, a cup
is described as an object that can hold liquid, that is stable, liftable, and can be used

to drink liquids. The physical identi�cation can be made using this functional de�nition.
In particular, for the synthetic set of objects created here, these functional properties are

broken down into 19 knowledge primitives, 17 of which have range parameters.

We generated a database of 200 synthetic cup examples, for which the measurements

of the knowledge primitives are randomly distributed. Hand-crafted range parameters
(z1,n1,n2,z2) are supplied for all 17 ranges in the cup functional de�nition. To generate a

209

Woods, Cook, Hall, Bowyer, & Stark

cup example, a primitive measurement is randomly selected for each range. Approximately
80% of the time the primitive measurement is randomly chosen between n1 and n2. The
other 20% of the time the measurement is randomly chosen outside n1 and n2, but inside
z1 and z2. This cup generator program provides us with the capability to create a large

number of cup examples without the time-consuming process of creating actual 3-D CAD
models for each example.

5.3 Learning from Human Evaluation Measures

In object recognition it is important to test a system on real objects, if possible, for a number
of reasons. First, we can see whether the system can approximate human judgment. Second,
it is important to observe system performance in the presence of noise, which real-world data

will inevitably contain. Finally, using real-world data will alleviate the need to completely
hand-craft the system with synthetic data. This is actually a useful guide for the scenario
where the \vision system engineer" gives the system a set of human-labeled examples, and
lets the system learn the parameters. To test Omlet, we have used a set of 37 actual

objects and human ratings of how well they might serve as a chair. Figure 10 shows some
of the objects used in these experiments.

Figure 10: Some examples of the chair objects used for human evaluation tests.

In order to determine how well Omlet can learn to recognize the set of real chair-like
objects, all the objects were collected together in a single room and each object was placed

in the orientation in which it would most likely be recognized as a chair. For actual chairs,
this is simply the orientation in which the chair would typically be used. For a metal trash

210

Learning Membership Functions in Object Recognition

can it would be an \upside down" orientation, etc. Then a group of 32 undergraduate
students in an Arti�cial Intelligence class was given the following instructions:

You are asked to rate each of the thirty-seven objects according to the degree
of \chair-ness" that is reected in its 3-D shape. For our purposes, \chair-ness"

measures if the object could be used as a chair. You are to consider only the
3-D shape in making your rating. You should assume that each object is made
of appropriate materials, so that this is not a factor in your ratings. You are
to consider the suitability of the object shape only in the orientation that you

see it, rather than some other orientation. Examples of factors that you should
consider in rating the \chair-ness" of a shape are height, width, depth, area,
relative orientation and apparent stability.

You are asked to rate each shape against the requirements of three di�erent

aspects of \chair-ness". The �rst aspect is solely its ability to provide a stable
seating surface. The second aspect is solely its ability to provide back support

compatible with the seating surface. The third aspect is solely its ability to
provide arm support compatible with the seat and back. Each aspect should
be judged independently on a scale of 1 to 5, where 1 means it has no ability
to provide the required function and 5 means that it seems ideal to provide the

desired function. You may mark halfway between two numbers if you wish.

The ratings of each aspect of \chair-ness" were then averaged, normalized and rounded
to the nearest multiple of 0.02 to result in values in the range [0,1]. The overall evaluation

measures for the objects for the conventional chair category are taken as the normalized
evaluation measures for the �rst aspect of \chair-ness", that is the object's ability to provide

a stable seating surface. Overall evaluation measures for the categories straightback chair

and armchair are computed using the probabilistic or T-conorm to combine the three aspects
of \chair-ness" in the manner described in Subsection 3.3. Hence, a comfortable, sturdy
chair would have a value close to 1 for \chair-ness", while the upside-down trash can has a

considerably lower value (approx. 0.5).

After the objects had been rated, measurements were taken for each of the primitives

describing the chair in the Gruff system. The measurements were those required for the
Omlet rules, such as the clearance from the ground, the area of the sittable surface, the
height of the sittable surface, etc. Complete Omlet examples describing the objects were
then created, including the aggregate evaluation measure of the objects for the categories

conventional chair, straightback chair, and armchair. This resulted in 37 objects for the
conventional chair category, 22 objects in the straightback chair category (15 objects had
no back support at all), and 12 objects in the armchair category (10 objects that had
back support did not have any arm support). There are at least two sources of noise in

this experimental data: 1) the human evaluations, and 2) the actual measurements of the
physical properties of the objects. For example, the standard deviations of the normalized
human evaluations of the 37 objects for the conventional chair category are about 0.12,

or 12%, on average. The results of leave-one-out testing on the 37 real-world objects are
presented in the next section.

211

Woods, Cook, Hall, Bowyer, & Stark

6. Experimental Results

There are at least four factors that may a�ect the performance of the Omlet system: 1)
the number of training epochs, 2) the number of training samples for each category, 3) the

number of ranges to be learned for each category, and 4) the quality of the training data for
each category. Histograms of the desired evaluation measures of the training data are used
to convey the concept of training set \quality". They are shown in Figure 11 for the Gruff
chair data. The height of each histogram bin is the number of training samples with desired

evaluation measures that fall within a particular range. So, the histogram of a \good" set
of training data would be skewed towards the higher evaluation measures. Similarly, the
histogram representing \bad" training data would be skewed towards the lower evaluation

measures.

Figure 11: Histograms of desired evaluation measures of the Gruff chair training sets.

The histogram of a parent category, such as conventional chair or cup, represents the
distribution of the overall desired evaluation measures (which are the goal measures of the
examples in the data set provided as input to Omlet). However, the histograms for subcat-

egories, such as straightback chair and armchair, represent the distributions of the desired
evaluation measures associated with the additional functional requirements de�ned for the

212

Learning Membership Functions in Object Recognition

subcategory. For example, the histogram for the straightback chair category represents the
quality of the provides back support portion of the straightback chair examples in a data
set, not the overall desired evaluation measures. Recall that the ranges associated with
the parent category conventional chair will be frozen (and presumably accurate) before

learning begins for the category straightback chair. So, Omlet only uses straightback chair
examples to learn the ranges associated with the provides back support functional property.
Thus, when learning the ranges for the category straightback chair, we want to observe the

quality of the back supports of the training examples. Similarly, we want to observe the
quality of the arm supports of the armchair examples, not the overall desired evaluation

measures.

A) Effect of Training Time for GRUFF Objects B) Effect of Training Time for Synthetic Cups

C) Effect of Training Time for Real Objects

Training with 77 GRUFF
Labeled Conventional Chairs

Training with 27 GRUFF
Labeled Straightback Chairs

Training with 200
Synthetic Cups

Training with 36 Human
Labeled Conventional Chairs

Training with 21 Human
Labeled Straightback Chairs

Figure 12: Average training sample error versus number of training epochs for A) Gruff
chair objects, B) synthetic cups, and C) real chair objects. These plots are for

a single leave-one-out test run.

Figure 12 shows examples of the average training sample error plotted as a function of
the number of training epochs for each of the three data sets (Gruff objects, synthetic

cups, and real objects). From these plots, we can see that 1000 training epochs is more
than su�cient for all of the categories in the three data sets. Training could most likely

213

Woods, Cook, Hall, Bowyer, & Stark

be stopped after 400 epochs for any of the categories without a degradation in system
performance. Since the number of training epochs is the same for all categories, and has
been shown to be su�cient, we can eliminate this factor as a possible cause for the di�erent
levels of performance among categories. Some experiments in addition to those described

in Section 5 were run to examine the e�ect of the other performance factors.

6.1 The Gruff Chair Database

Figure 13: Omlet results for test samples from the Gruff chair database.

Figure 13 shows the plot of the average error per sample versus training set size for ex-
amples from the conventional chair category, and a separate plot for examples from the
straightback chair category. Since there are only 28 straightback chair examples, only 3 dif-

ferent training set sizes (6,12,18) were evaluated in addition to the leave-one-out testing. All
78 conventional chair examples were used to train the ranges associated with the conven-
tional chair category before the ranges for the straightback chair category were trained. No
testing was done for the subcategory armchair since there were only four training samples

available. The plot shows that increasing the number of training samples generally leads
to a reduction in the average error. When more than 20 training examples are used, the
actual evaluation measures of the test examples are within approximately 1% of the desired

evaluation measures for both the conventional chair and straightback chair categories.

We should note here that the errors in overall evaluation measures found for categories
at di�erent learning levels are not directly comparable. So, the plot of the error rate for
the straightback chair category is not directly comparable to the plot for the conventional

chair category (Figure 13). As an example, consider an object with a desired overall eval-
uation measure of 0.85 for the category conventional chair. If Omlet computes an actual

214

Learning Membership Functions in Object Recognition

evaluation measure of 0.86, then the error for this example is 0.01. Let's assume the pro-
vides back support portion of this object has a desired evaluation measure of 0.75. The
overall desired evaluation measure for this example in the category straightback chair would
be 0.9625 (Por of 0.85 and 0.75). Now, suppose Omlet �nds the actual evaluation mea-

sure for the back support of the object to be 0.76, or an error of 0.01. In this case, the
actual overall evaluation measure of this example for the category straightback chair would
be 0.9664 (Por of 0.86 and 0.76). As a result, the error of 0.01 attributed to the pro-

vides back support portion of the object is manifested as a much smaller error of 0.0039 in
the overall evaluation measure of the object.

The original range parameters (z1,n1,n2,z2) hand-crafted by an expert for the three
ranges in the conventional chair de�nition (see Figure 4) are:

AREA (0.057599 0.135 0.22 0.546699)

CONTIGUOUS SURFACE (0.0 1.0 1.0 1.0)

HEIGHT (0.275 0.4 0.6 1.1)

These are the range values used by Gruff to determine the desired evaluation measures
in the goals provided to Omlet. A typical example of the range parameters as learned by
Omlet is:

AREA (0.057599 0.135002 0.219992 0.546706)

CONTIGUOUS SURFACE (7.45591e-06 0.999995 10000 10000)

HEIGHT (0.275 0.400002 0.6 1.10009)

Omlet was able to determine that the CONTIGUOUS SURFACE range was a one-legged
membership function, and the n2 and z2 values (i.e., the leg that does not exist) were set

to arbitrarily large values. These results show that the Omlet system is capable of using

labeled examples to automatically determine range parameters which are similar to those
that would be hand-crafted by an expert. This will facilitate the construction of other
object category de�nitions.

In Figure 13, we can see that the number of training samples does indeed a�ect the
error rate of test samples. With more than 20 or so training samples, the error rates
for both the conventional chair and straightback chair categories begin to level o�. So,
the number of training samples becomes less of a factor a�ecting system performance if a

su�cient number are used. What constitutes a su�cient number of training samples for a
category may depend on the number of ranges to be learned and the quality of the training
data. There are 3 ranges that must be learned for the category conventional chair, and 5
ranges that must be learned for the category straightback chair. The histograms of desired

evaluation measures for theGruff conventional chairs and the back supports of theGruff
straightback chairs in Figure 11 A and B, respectively, reect the quality of the training
data used for the leave-one-out tests.

We can isolate the e�ect of the quality of the training data with some additional experi-
ments utilizing two separate data sets of Gruff conventional chair examples. The number

215

Woods, Cook, Hall, Bowyer, & Stark

of training epochs, the number of training samples, and the number of ranges to be learned
will be identical for each data set. One data set of 38 \bad" examples contains all conven-
tional chair examples with desired evaluation measures less than 0.6. A second data set of
\good" examples was created by selecting 38 of the remaining conventional chair examples.

The histograms of desired evaluation measures for the examples used in the \good" and
\bad" data sets are shown in Figure 11 C and D, respectively. Leave-one-out testing (37
training examples) resulted in an average error of 0.0001 for the examples in the \good"

data set, and 0.1869 for the examples in the \bad" data set. Thus, it would seem that the
quality of the training data has a considerable e�ect on the performance of the learning

algorithm.

Using the set of 38 \good" conventional chair examples to train Omlet, the average
error found using the 38 \bad" examples to test drops to 0.013 (compared to an average
error of 0.1869 when 37 \bad" examples are used to train). A closer examination of the

results reveals that one \bad" example contributes a relatively high error of 0.5 to the
average. If this single example is excluded from the test results, the average error of the
remaining 37 \bad" examples is only 0.00067. If the 38 \bad" examples are used to train
Omlet, the average error found using the 38 \good" examples to test is 0.242. These

results indicate that Omlet is not inherently biased to produce more accurate test results
for \good" examples since we are able to achieve a low error rate for the \bad" examples
when \good" training data is used. Rather, these results emphasize the importance of

controlling the quality of the data used to train Omlet.

6.2 The Synthetic Cups Database

Figure 14: Omlet results for test samples from the Gruff cup database.

216

Learning Membership Functions in Object Recognition

Figure 14 shows the plot of the average error per sample versus training set size for examples
from the randomly generated cup category. As before, Omlet's performance generally
improves as the number of training samples is increased. A comparison of the error plots
for the conventional chair data and the cup data reveals that the average error for the

cups is higher for the same number of training samples, and the error rate decreases more
erratically. The comparison of error rates between these two categories is valid since they
are both at the same level in the learning hierarchy. As before, there are two performance

factors that could be the cause of the di�erent error rates. There are considerably more
ranges that need to be learned for the cup category than for the Gruff conventional chair

category (17 versus 3). Also, from Figure 15 A, we can see that data set created by the
cup generator program is of poor quality. Thus, due to the random nature of the synthetic

cup generator program, the system was trained with shapes that, on average, are not very
good examples of cups. Regardless of the poor training data, when more than 150 training
samples are used, the actual evaluation measures for the cup test examples are within
approximately 4% of the desired evaluation measures. In light of the \bad" set of shapes

used as training examples and the large number of ranges that must be learned, the higher
average error for cups seems reasonable.

Figure 15: Histograms of desired evaluation measures of the synthetic cup training sets.

As an additional test, we generated a set of 78 synthetic cups in the same manner as

before (see Section 5.2). However, we required the distribution of the desired evaluation
measures of the synthetic cups to have a similar distribution as the Gruff conventional

chair examples (shown in Figure 11 A). Figure 15 B shows the histogram of desired evalu-
ation measures of the examples in this second synthetic cup data set. Since the number of

training epochs, the number of training examples, and the quality of the training data are
the same as for the �rst test using the Gruff conventional chair examples, this experiment
isolates the e�ect of the number of ranges that must be learned. Performing a leave-one-out

test (77 training examples), the average error per sample was found to be approximately
0.08. In Figure 13, the leave-one-out results on the 78 Gruff conventional chair examples

217

Woods, Cook, Hall, Bowyer, & Stark

(Sub)Category Number of Average Desired Average Error
Training Samples Evaluation Measure per Sample

Conventional 36 0.8447 0.0715373
Chair

Straightback 21 0.9927 0.0066456
Chair

Armchair 11 0.9973 0.0022430

Table 1: Leave-one-out test results for real-object database with evaluation measures de-

rived from human ratings of the objects.

show an average error of less than 0.01 per sample. Thus, it would seem that the number
of ranges to be learned a�ects system performance considerably.

Finally, we created a set of 200 synthetic cups with a similar distribution as the Gruff

conventional chair examples. The histogram of desired evaluation measures of the examples
in this third synthetic cup data set would look similar to the histograms in Figure 11 A, and
Figure 15 B. Performing a leave-one-out test (199 training examples), the average error per
sample was found to be approximately 0.023. Compared to the error rate of the original 200

synthetic cups (approximately 0.04), we again note that \better" training data improved
system performance considerably. Compared to the error rate of the 78 synthetic cup data
set (approximately 0.08), which is similar in quality, we see the increased number of training

samples signi�cantly improved system performance. The error rate for this third synthetic
cup data set with 200 examples is still higher than the error rate for the Gruff data set
of 78 conventional chair objects (less than 0.01), which has a similar quality distribution.
Consider that for the Gruff data set we used 77 training examples to learn the 3 ranges

of the conventional chair category, and for the synthetic cup data set, we used 199 training
examples to learn the 17 ranges of the cup category.

6.3 The Chair Database for Human Evaluation

Leave-one-out test results for the real-object database with evaluation measures derived
from human ratings of the objects are listed in Table 1. Recall that the error rates are not
directly comparable among the three categories. The actual evaluation measures for the
conventional chairs objects are within approximately 7% of the human evaluation measures.

The average error here is about 6% greater average error than for the Gruff data with a
similar number of training samples. The histogram in Figure 16 A shows that the data set of
real conventional chair objects contains mostly \good" examples. Thus, the higher average
error can probably be attributed to the \noise" associated with the real-object evaluation

measures. Considering an average standard deviation of 12% for the human evaluations of
the conventional chair objects, a 7% average error per sample for theOmlet results does not
seem unreasonable. The actual evaluation measures for the real-object straightback chairs

and armchairs di�er on average by less than 1% from the desired measures. As before, all
conventional chair examples were used to train the ranges associated with the conventional

218

Learning Membership Functions in Object Recognition

chair category before the ranges for the straightback chair category were trained. The
histograms of desired evaluation measures for the back support of the real straightback
chair objects and the arm support of the real armchair objects are shown in Figure 16 B
and C, respectively.

Figure 16: Histograms of desired evaluation measures of the real-object training sets.

7. Summary and Discussion

We have presented a system (Omlet) which uses labeled training examples to learn fuzzy
membership functions embedded in a function-based object recognition system. The fuzzy

membership functions are used to provide evaluation measures which determine how well a
shape �ts the functional description of an object category. TheOmlet system is an example
of using machine learning techniques to aid in the development of a computer vision system.
We have shown that it is possible to accurately and automatically learn system parameters

which would otherwise have to be provided by a human expert. Omlet may be used to aid
in the construction of other object categories for theGruff object recognition system. The
expert does not need to concentrate on \hand-tweaking" the range parameters to improve

system performance, but rather on providing a good set of example objects to \show" to
Omlet. This is intuitively appealing in that we are deriving descriptions of objects we would

219

Woods, Cook, Hall, Bowyer, & Stark

like Gruff to recognize by providing examples from the object category. Additionally, we
have been able to demonstrate that the performance of the learning algorithm is a�ected
by the number and quality of the training examples.

It should be possible for the learning approach described in this paper to be applied to
other systems in which measurements (or other values) are combined in a tree structure.

All cases are covered by our approach, except the case of 2 leaves leading directly to a Por
node. However, a generalization of our method for treating Por nodes may be developed
to handle this situation. The tree structure in our CV system is composed entirely of
probabilistic and and probabilistic or nodes, which are used to combine measurements. It

is possible that a similar approach is applicable to tree structures in which other types of
nodes (T-norms or T-conorms) are used.

The Omlet system should make it easier to adapt the Gruff system to new object
domains. Early versions of Gruff performed object recognition starting from complete
3-D shape descriptions (Stark & Bowyer, 1991, 1994; Sutton et al., 1993) rather than from

real sensory data. The task of reliably extracting accurate object shape descriptions from
normal intensity images is beyond the current state of the art in computer vision. Although
work in, for example, binocular stereo, is steadily progressing, accurate models of object

shape are more readily extracted from range imagery. Whereas in normal imagery a pixel
value represents the intensity of reected light, in range imagery a pixel value represents the
distance to a point in the scene. A version of Gruff has been developed which attempts to
recognize object functionality from the shape model that is extracted from a single range

image (Stark, Hoover, Goldgof, & Bowyer, 1993b). A major di�culty here is, of course,
that a single range image does not yield a complete model of the 3-D shape of an object.
The \back half" of the object shape is unseen (Hoover, Goldgof, & Bowyer, 1995). The
accumulation of a complete 3-D shape model through a sequence of range images is a topic of

current research. If this problem was solved, then it is conceivable that an Omlet training
example might consist of a sequence of range images along with some operator annotations
to identify which portions of the images correspond to the functionally important parts of

the object (seating surface, back support surface, etc.).

Acknowledgements

This research was supported by Air Force O�ce of Scienti�c Research grant F49620-92-J-

0223 and National Science Foundation grant IRI-91-20895.

References

Berenji, H., & Khedkar, P. (1992). \Learning and Tuning Fuzzy Logic Controllers Through

Reinforcements". IEEE Transactions on Neural Networks, 3, 724{740.

Bogoni, L., & Bajcsy (1993). \An Active Approach to Characterization and Recognition of

Functionality and Functional Properties". In AAAI-93 Workshop on Reasoning about

Function, pp. 201{202 Washington, D.C.

220

Learning Membership Functions in Object Recognition

Bonissone, P. P., & Decker, K. S. (1986). \Selecting Uncertainty Calculi and Granularity:
An Experiment in Trading-o� Precision and Complexity". In Kanal, L., & Lemmer, J.
(Eds.), Uncertainty in Arti�cial Intelligence, pp. 217{247. North-Holland Publishing
Company.

Brand, M. (1993). \Vision Systems that See in Terms of Function". In AAAI-93 Workshop

on Reasoning about Function, pp. 17{22 Washington, D.C.

Cooper, G., & Herskovits, E. (1992). \A Bayesian Method for the Induction of Probabalistic
Networks from Data". Machine Learning, 9, 309{347.

Di Manzo, M., Trucco, E., Giunchiglia, F., & Ricci, F. (1989). \FUR: Understanding
FUnctional Reasoning". International Journal of Intelligent Systems, 4, 431{457.

Hoover, A., Goldgof, D., & Bowyer, K. (1995). Extracting a valid boundary representation
from a segmented range image. IEEE Transactions on Pattern Analysis and Machine

Intelligence. Accepted to appear.

Ishibuchi, H., Nozaki, K., & Yamamoto, N. (1993). \Selecting Fuzzy Rules by Genetic
Algorithm for Classi�cation Problems". In 2nd IEEE International Conference on

Fuzzy Systems, pp. 1119{1124.

Jang, J. S. R. (1993). \ANFIS: Adaptive-Network-based Fuzzy Inference Systems". IEEE
Transactions on Systems, Man and Cybernetics, 23 (3), 665{685.

Jang, J. S. R., & Sun, C. T. (1995). \Neuro-Fuzzy Modeling and Control". Proceedings of

the IEEE, 378{406.

Kise, K., Hattori, H., Kitahashi, T., & Fukunaga, K. (1993). \Representing and Recognizing
Simple Hand-tools Based on Their Functions". In Asian Conference on Computer

Vision, pp. 656{659 Osaka, Japan.

Lehn, K. V. (1990). Mind Bugs: The Origins of Procedural Misconceptions. The MIT Press,

Cambridge, Massachusetts.

Mahadevan, S., & Connell, J. (1991). \Automatic Programming of Behavoir-Based Robots
Using Reinforcement Learning". In AAAI, pp. 768{773.

Michalski, R. S. (1983). \A theory and methodology of inductive learning". In Michalski,

R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An Arti�cial

Intelligence Approach. Tioga Publishing Company, Palo Alto, CA.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). \Explanation-Based Gener-

alization: A Unifying View". Machine Learning, 1, 47{80.

Parido, A., & Bonelli, P. (1993). \A New Approach to Fuzzy Classi�er Systems". In
Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 223{
230.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann.

221

Woods, Cook, Hall, Bowyer, & Stark

Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Rivlin, E., Rosenfeld, A., & Perlis, D. (1993). \Recognition of Object Functionality in
Goal-Directed Robotics". In AAAI-93 Workshop on Reasoning about Function, pp.
126{130 Washington, D.C.

Spiegelhalter, D., Dawid, P., Lauritzen, S., & Cowell, R. (1993). \Bayesian Analysis in

Expert Systems". Statistical Science, 8, 219{282.

Stark, L., & Bowyer, K. W. (1991). \Achieving generalized object recognition through
reasoning about association of function to structure". IEEE Transactions on Pattern

Analysis and Machine Intelligence, 3 (10), 1097{1104.

Stark, L., & Bowyer, K. W. (1994). \Function-based recognition for multiple object cate-

gories". Image Understanding, 59 (10), 1{21.

Stark, L., Hall, L. O., & Bowyer, K. W. (1993a). \An investigation of methods of combining
functional evidence for 3-D object recognition". Int. J. of Pattern Recognition and

Arti�cial Intelligence, 7 (3), 573{594.

Stark, L., Hoover, A. W., Goldgof, D. B., & Bowyer, K. W. (1993b). \Function-based

recognition from incomplete knowledge of shape". In IEEE Workshop on Qualitative

Vision, pp. 11{22 New York, New York.

Sutton, M., Stark, L., & Bowyer, K. W. (1993). \Function-based generic recognition for
multiple object categories". In Jain, A. K., & Flynn, P. J. (Eds.), Three-dimensional

Object Recognition Systems, pp. 447{470. Elsevier Science Publishers.

Vaina, L., & Jaulent, M. (1991). \Object structure and action requirements: a compatibility
model for functional recognition". Int. J. of Intelligent Systems, 6, 313{336.

Valenzuela-Rendon, M. (1991). \The Fuzzy Classi�er System: A Classi�er System for Con-
tinuously Varying Variables". In Proceedings of the Fourth International Conference

on Genetic Algorithms, pp. 346{353.

Watkins, C. J. (1989). Models of Delayed Reinforcement Learning. Ph.D. thesis, Cambridge
University.

Winston, P. H., Binford, T. O., Katz, B., & Lowry, M. (1983). \Learning physical descrip-
tions from functional de�nitions, examples, and precedents". National Conference on

Arti�cial Intelligence, 433{439.

222

