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Abstract

Traditional databases commonly support e�cient query and update procedures that
operate in time which is sublinear in the size of the database. Our goal in this paper is
to take a �rst step toward dynamic reasoning in probabilistic databases with comparable
e�ciency. We propose a dynamic data structure that supports e�cient algorithms for
updating and querying singly connected Bayesian networks. In the conventional algorithm,
new evidence is absorbed in time O(1) and queries are processed in time O(N ), where N
is the size of the network. We propose an algorithm which, after a preprocessing phase,
allows us to answer queries in time O(logN ) at the expense of O(logN ) time per evidence
absorption. The usefulness of sub-linear processing time manifests itself in applications
requiring (near) real-time response over large probabilistic databases. We brie
y discuss a
potential application of dynamic probabilistic reasoning in computational biology.

1. Introduction

Probabilistic (Bayesian) networks are an increasingly popular modeling technique that has
been used successfully in numerous applications of intelligent systems such as real-time plan-
ning and navigation, model-based diagnosis, information retrieval, classi�cation, Bayesian
forecasting, natural language processing, computer vision, medical informatics and compu-
tational biology. Probabilistic networks allow the user to describe the environment using
a \probabilistic database" that consists of a large number of random variables, each corre-
sponding to an important parameter in the environment. Some random variables could in
fact be hidden and may correspond to some unknown parameters (causes) that in
uence
the observable variables. Probabilistic networks are quite general and can store information
such as the probability of failure of a particular component in a computer system, the prob-
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ability of page i in a computer cache being requested in the near future, the probability
of a document being relevant to a particular query, or the probability of an amino-acid
subsequence in a protein chain folding into an alpha-helix conformation.

The applications we have in mind include networks that are dynamically maintained to
keep track of a probabilistic model of a changing system. For instance, consider the task of
automated detection of power-plant failures. We might repeat a cycle that consists of the
following sequence of operations: First we perform sensing operations. These operations
cause updates to be performed to speci�c variables in the probabilistic database. Based on
this evidence we estimate (query) the probability of failure in certain sites. More precisely,
we query the probability distribution of the random variables that measure the probability
of failure in these sites based on the evidence. Since the plant requires constant monitoring,
we must repeat the cycle of sense/evaluate on a frequent basis.

A conventional (non-probabilistic) database tracking the plant's state would not be
appropriate here, because it is not possible to directly observe whether a failure is about
to occur. On the other hand, a probabilistic \database" based on a Bayesian network
will only be useful if the operations|update and query|can be performed very quickly.
Because real-time or near real-time is so often necessary, the question of doing extremely

fast reasoning in probabilistic networks is important.

Traditional (non-probabilistic) databases support e�cient query and update procedures
that often operate in time which is sublinear in the size of the database (e.g., using bi-
nary search). Our goal in this paper is to take a step toward systems that can perform
dynamic probabilistic reasoning (such as what is the probability of an event given a set of
observations) in time which is sublinear in the size of the probabilistic network. Typically,
sublinear performance in complex networks is attained by using parallelism. This paper
relies on preprocessing.

Speci�cally, we describe new algorithms for performing queries and updates in belief
networks in the form of trees (causal trees, polytrees and join trees). We de�ne two natural
database operations on probabilistic networks.

1. Update-Node: Perform sensory input, modify the evidence at a leaf node (single
variable) in the network and absorb this evidence into the network.

2. Query-Node: Obtain the marginal probability distribution over the values of an
arbitrary node (single variable) in the network.

The standard algorithms introduced by Pearl (1988) can perform the Query-Node oper-
ation in O(1) time although evidence absorption, i.e., the Update-Node operation, takes
O(N) time where N is the size of the network. Alternatively, one can assume that the
Update-Node operation takes O(1) time (by simply recording the change) and theQuery-
Node operation takes O(N) time (evaluating the entire network).

In this paper we describe an approach to perform both queries and updates in O(logN)
time. This can be very signi�cant in some systems since we improve the ability of a system to
respond after a change has been encountered from O(N) time to O(logN). Our approach is
based on preprocessing the network using a form of node absorption in a carefully structured
way to create a hierarchy of abstractions of the network. Previous uses of node absorption
techniques were reported by Peot and Shachter (1991).
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We note that measuring complexity only in terms of the size of the network, N , can
overlook some important factors. Suppose that each variable in the network has domain
size k or less. For many purposes, k can be considered constant. Nevertheless, some of the
algorithms we consider have a slowdown which is some power of k, which can be become
signi�cant in practice unless N is very large. Thus we will be careful to state this slowdown
where it exists.

Section 2 considers the case of causal trees, i.e., singly connected networks in which each
node has at most one parent. The standard algorithm (see Pearl, 1988) must use O(k2N)
time for either updates or for retrieval, although one of these operations can be done in
O(1) time. As we discuss brie
y in Section 2.1, there is also a straightforward variant on
this algorithm that takes O(k2D) time for both queries and updates, where D is the height
of the tree.

We then present an algorithm that takes O(k3 logN) time for updates and O(k2 logN)
time for queries in any causal tree. This can of course represent a tremendous speedup,
especially for large networks. Our algorithm begins with a polynomial-time preprocessing
step (linear in the size of the network), constructing another data structure (which is not
itself a probabilistic tree) that supports fast queries and updates. The techniques we use are
motivated by earlier algorithms for dynamic arithmetic trees, and involve \caching" su�-
cient intermediate computations during the update phase so that querying is also relatively
easy. We note, however, that there are substantial and interesting di�erences between the
algorithm for probabilistic networks and those for arithmetic trees. In particular, as will be
apparent later, computation in probabilistic trees requires both bottom-up and top-down
processing, whereas arithmetic trees need only the former. Perhaps even more interest-
ing is that the relevant probabilistic operations have a di�erent algebraic structure than
arithmetic operations (for instance, they lack distributivity).

Bayesian trees have many applications in the literature including classi�cation. For
instance, one of the most popular methods for classi�cation is the Bayes classi�er that
makes independence assumption on the features that are used to perform classi�cation
(Duda & Hart, 1973; Rachlin, Kasif, Salzberg, & Aha, 1994). Probabilistic trees have
been used in computer vision (Hel-Or & Werman, 1992; Chelberg, 1990), signal processing
(Wilsky, 1993), game playing (Delcher & Kasif, 1992), and statistical mechanics (Berger
& Ye, 1990). Nevertheless, causal trees are fairly limited for modeling purposes. However
similar structures, called join trees, arise in the course of one of the standard algorithms for
computing with arbitrary Bayesian networks (see Lauritzen and Spiegelhalter, 1988). Thus
our algorithm for join trees has potential relevance to many networks that are not trees.
Because join trees have some special structure, they allow some optimization of the basic
causal-tree algorithm. We elaborate on this in Section 5.

In Section 6 we consider the case of arbitrary polytrees. We give an O(logN) algo-
rithm for updates and queries, which involves transforming the polytree to a join tree, and
then using the results of Sections 2 and 5. The join tree of a polytree has a particularly
simple form, giving an algorithm in which updates take O(kp+3 logN) time and queries
O(kp+2 logN), where p is the maximum number of parents of any node. Although the
constant appears large, it must be noted that the original polytree takes O(kp+1N) space
merely to represent, if conditional probability tables are given as explicit matrices.

39



Delcher, Grove, Kasif & Pearl

��
��
Y

�
�

�
�	

MY jX

��
��
Z

@
@
@
@R

MZjX

��
��
V

�
�

�
�

�
�	

MV jU

��
��
X

@
@
@
@
@
@R

MXjU

��
��
U

Figure 1: A segment of a causal tree.

Finally, we discuss a speci�c modelling application in computational biology where prob-
abilistic models are used to describe, analyze and predict the functional behavior of biolog-
ical sequences such as protein chains or DNA sequences (see Delcher, Kasif, Goldberg, and
Hsu, 1993 for references). Much of the information in computational biology databases is
noisy. However, a number of successful attempts to build probabilistic models have been
made. In this case, we use a probabilistic tree of depth 300 that consists of 600 nodes and all
the matrices of conditional probabilities are 2�2. The tree is used to model the dependence
of a protein's secondary structure on its chemical structure. The detailed description of the
problem and experimental results are given by Delcher et al. (1993). For this problem we
obtain an e�ective speed-up of about a factor of 10 to perform an update as compared to the
standard algorithm. Clearly, getting an order of magnitude improvement in the response
time of a probabilistic real-time system could be of tremendous importance in future use of
such systems.

2. Causal Trees

A probabilistic causal tree is a directed tree in which each node represents a discrete random
variable X , and each directed edge is annotated by a matrix of conditional probabilities
MY jX (associated with edge X ! Y ). That is, if x is a possible value of X; and y of Y;
then the (x; y)th component of MY jX is Pr(Y = yjX = x). Such a tree represents a joint
probability distribution over the product space of all variables; for detailed de�nitions and
discussion see Pearl (1988). Brie
y, the idea is that we consider the product, over all nodes,
of the conditional probability of the node given its parents. For example, in Figure 1 the
implied distribution is:

Pr(U = u; V = v;X = x; Y = y; Z = z) =
Pr(U = u)Pr(V = vjU = u)Pr(X = xjU = u)Pr(Y = yjX = x)Pr(Z = zjX = x):

Given particular values of u; v; x; y; z; the conditional probabilities can be read from the
appropriate matrices M . One advantage of such a product representation is that it is very
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concise. In this example, we need four matrices and the unconditional probability over U ,
but the size of each is at most the square of the largest variable's domain size. In contrast,
a general distribution over N variables requires an exponential (in N) representation.

Of course, not every distribution can be represented as a causal tree. But it turns out
that the product decomposition implied by the tree corresponds to a particular pattern
of conditional independencies which often hold (if perhaps only approximately) in real
applications. Intuitively speaking, in Figure 1 some of these implied independencies are
that the conditional probability of U given V , X , Y and Z depends only on values of V and
X ; and the probability of Y given U , V , X , and Z depends only on X . Independencies of
this sort can arise for many reasons, for instance from a causal modeling of the interactions
between the variables. We refer the reader to Pearl (1988) for details related to the modeling
of independence assumptions using graphs.

In the following, we make several assumptions that signi�cantly simplify the presenta-
tion, but do not sacri�ce generality. First, we assume that each variable ranges over the
same, constant, number of values k.1 It follows that the marginal probability distribution
for each variable can be viewed as a k-dimensional vector, and each conditional probability
matrix such as MY jX is a square k � k matrix. A common case is that of binary random
variables (k = 2); the distribution over the values (TRUE, FALSE) is then (p; 1� p) for
some probability p.

The next assumption is that the tree is binary, and complete, so that each node has 0
or 2 children. Any tree can be converted into this form, by at most doubling the number
of nodes. For instance, suppose node p has children c1; c2; c3 in the original tree. We can
create another \copy" of p, p0, and rearrange the tree such that the two children of p are
c1 and p

0, and the two children of p0 are c2 and c3. We can constrain p0 always to have the
same value as p simply by choosing the identity matrix for the conditional probability table
between p and p0. Then the distribution represented by the new tree is e�ectively the same
as the original. Similarly, we can always add \dummy" leaf nodes if necessary to ensure a
node has two children. As explained in the introduction, we are interested in processes in
which certain variables' values are observed, upon which we wish to condition. Our �nal
assumption is that these observed evidence nodes are all leaves of the tree. Again, because
it is possible to \copy" nodes and to add dummy nodes, this is not restrictive.

The product distribution alluded to above corresponds to the distribution over variables
prior to any observations. In practice, we are more interested in the conditional distribution,
which is simply the result of conditioning on all the observed evidence (which, by the earlier
assumption, corresponds to seeing values for all the leaf nodes). Thus, for each non-leaf node
X we are interested in the conditional marginal probability over X , i.e., the k-dimensional
vector:

Bel (X) = Pr(X jall evidence values):

The main algorithmic problem is to compute Bel (X) for each (non-evidence) node X
in the tree given the current evidence. It is well known that the probability vector Bel (X)
can be computed in linear time (in the size of the tree) by a popular algorithm based on

1. This assumption is nonrestrictive because we can add \dummy" values to each variable's range, which
should be given conditional probability 0. Nevertheless, there may some computational advantage in
allowing di�erent variable domain sizes. The changes required to permit this are not di�cult, but since
they complicate the presentation somewhat we omit them.
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the following equation:

Bel (X) = Pr(X jall evidence) = � � �(X) � �(X)

Here � is a normalizing constant, �(X) is the probability of all the evidence in the subtree
below node X given X , and �(X) is the probability of X given all evidence in the rest of the
tree. To interpret this equation, note that if X = (x1; x2; : : : ; xk) and (Y = y1; y2; : : : ; yk)
are two vectors we de�ne � to be the operation of component-wise product (pairwise or
dyadic product of vectors):

X � Y = (x1y1; x2y2; : : : ; xkyk):

The usefulness of �(X) and �(X) derives from the fact that they can be computed recur-
sively, as follows:

1. If X is the root node, �(X) is the prior probability of X .

2. If X is a leaf node, �(X) is a vector with 1 in the ith position (where the ith value
has been observed) and 0 elsewhere. If no value for X has been observed, then �(X)
is a vector consisting of all 1's.2

3. Otherwise, if, as shown in Figure 1, the children of node X are Y and Z, its sibling
is V and its parent is U , we have:

�(X) = (MY jX � �(Y )) � (MZjX � �(Z))

�(X) = MT
XjU �

�
�(U) � (MV jU � �(V ))

�

Our presentation of this technique follows that of Pearl (1988). However, we use a
somewhat di�erent notation in that we don't describe messages sent to parents or succes-
sors, but rather discuss the direct relations among the � and � vectors in terms of simple
algebraic equations. We will take advantage of algebraic properties of these equations in
our development.

It is very easy to see that the equations above can be evaluated in time proportional to
the size of the network. The formal proof is given by Pearl (1988).

Theorem 1: The belief distribution of every variable (that is, the marginal probability
distribution for each variable, given the evidence) in a causal tree can be evaluated in
O(k2N) time where N is the size of the tree. (The factor k2 is due to the multiplication
of a matrix by a vector that must be performed at each node.)

This theorem shows that it is possible to perform evidence absorption in O(N) time, and
queries in constant time (i.e., by retrieving the previously computed values from a lookup
table). In the next sections we will show how to perform both queries and updates in
worst-case O(logN) time. Intuitively, we will not recompute all the marginal distributions
after an update, but rather make only a small number of changes, su�cient, however, to
compute the value of any variable with only a logarithmic delay.

2. Or we can set to 1 all components corresponding to possible values|this is especially useful when the
observed variable is part of a joint-tree clique (Section 5). In general, �(X) should be thought of as the
likelihood vector over X given our observations about X.
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2.1 A Simple Preprocessing Approach

To obtain intuition about the new approach we begin with a very simple observation.
Consider a causal tree T of depth D. For each node X in the tree we initially compute its
�(X) vector. � vectors are left uncomputed. Given an update to a node Y , we calculate the
revised �(X) vectors for all nodes X that are ancestors of Y in the tree. This clearly can be
done in time proportional to the depth of the tree, i.e., O(D). The rest of the information
in the tree remains unchanged. Now consider a Query-Node operation for some node V
in the tree. We obviously already have the accurate �(V ) vector for every node in the tree
including V . However, in order to compute its �(V ) vector we need to compute only the
�(Y ) vectors for all the nodes above V in the tree and multiply these by the appropriate
� vectors that are kept current. This means that to compute the accurate �(V ) vector we
need to perform O(D) work as well. Thus, in this approach we don't perform the complete
update to every �(X) and �(X) vector in the tree.

Lemma 2: Update-Node and Query-Node operations in a causal tree T can be per-
formed in O(k2D) time where D is the depth of the tree.

This implies that if the tree is balanced, both operations can be done in O(logN)
time. However, in some important applications the trees are not balanced (e.g., models of
temporal sequences, Delcher et al., 1993). The obvious question therefore is: Given a causal
tree T can we produce an equivalent balanced tree T 0? While the answer to this question
appears to be di�cult, it is possible to use a more sophisticated approach to produce a data
structure (which is not a causal tree) to process queries and updates in O(logN) time. This
approach is described in the subsequent sections.

2.2 A Dynamic Data Structure For Causal Trees

The data structure that will allow e�cient incremental processing of a probabilistic tree T =
T0 will be a sequence of trees, T0; T1; T2; : : : ; Ti; : : : ; TlogN . Each Ti+1 will be a contracted

version of Ti, whose nodes are a subset of those in Ti. In particular, Ti+1 will contain about
half as many leaves as its predecessor.

We defer the details of this contraction process until the next section. However, one key
idea is that we maintain consistency, in the sense that Bel (X); �(X); and �(X) are given
the same values by all the trees in which X appears. We choose the conditional probability
matrices in the contracted trees (i.e., all trees other than T0) to ensure this.

Recall that the � and � equations have the form

�(X) = (MY jX � �(Y )) � (MZjX � �(Z))

�(X) = MT
XjU �

�
�(U) � (MV jU � �(V ))

�

if Y and Z are children of X , X is a right child of U , and V is X 's sibling (Figure 1).
However, these equations are not in the most convenient form and the following notational
conventions will be very helpful. First, let Ai(x) (resp., Bi(x)) denote the conditional
probability matrix between X and X 's left (resp., right) child in the tree Ti. Note that the
identity of these children can di�er from tree to tree, because some of X 's original children
might be removed by the contraction process. One advantage of the new notation is that
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Figure 2: The e�ect of the operation Rake (e; x). e must be a leaf, but z may or may not
be a leaf.

the explicit dependence on the identity of the children is suppressed. Next, suppose X 's
parent in Ti is u. Then we let Ci(x) denote either Ai(u) or Bi(u), and Di(x) denote either
Bi(u)T or Ai(u)T, depending on whether X is the right or left child, respectively, of U . It
will not be necessary to keep careful track of these correspondences, but simply to note that
the above equations become:3

�(x) = Ai(x) � �(y) �Bi(x) � �(z)

�(x) = Di(x) � (�(u) �Ci(x) � �(v))

In the next section we describe the preprocessing step that creates the dynamic data
structure.

2.3 Rake Operation

The basic operation used to contract the tree is Rake which removes both a leaf and its
parent from the tree. The e�ect of this operation on the tree is shown in Figure 2. We
now de�ne the algebraic e�ect of this operation on the equations associated with this tree.
Recall that we want to de�ne the conditional probability matrices in the raked tree so that
the distribution over the remaining variables is unchanged. We achieve this by substituting
the equations for �(x) and �(x) into the equations for �(u), �(z), and �(v). In the following,
it is important to note that �(u), �(z) and �(v) are una�ected by the rake operation.

In the following, let Diag� denote the diagonal matrix whose diagonal entries are the
components of the vector �. We derive the algebraic e�ect of the rake operation as follows:

�(u) = Ai(u) � �(v) �Bi(u) � �(x)

= Ai(u) � �(v) �Bi(u) � (Ai(x) � �(e) �Bi(x) � �(z))

= Ai(u) � �(v) �Bi(u) �
�
DiagAi(x)��(e) �Bi(x) � �(z)

�
= Ai(u) � �(v) �

�
Bi(u) �DiagAi(x)��(e) �Bi(x)

�
� �(z)

= Ai+1(u) � �(v) �Bi+1(u) � �(z)

where Ai+1(u) = Ai(u) and Bi+1(u) = Bi(u) � DiagAi(x)��(e) � Bi(x). (Of course, the case
where the leaf being raked is a right child generates analogous equations.) Thus, by de�ning

3. Throughout, we assume that � has lower precedence than matrix multiplication (indicated by �).
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Ai+1(u) and Bi+1(u) in this way, we ensure that all � values in the raked tree are identical
to the corresponding values in the original tree. This is not yet enough, because we must
check that � values are similarly preserved. The only two values that could possibly change
are �(z) and �(v), so we check them both. For the former, we must have

�(z) = Di(z) � (�(x) � Ci(z) � �(e))

= Di+1(z) � (�(u) � Ci+1(z) � �(v)) :

After substituting for �(x) and some algebraic manipulation, we see that this is assured if
Ci+1(z) = Ci(x) and Di+1(z) = Di(z) �DiagCi(z)��(e) �Di(x). However recall that, by de�ni-
tion, Ci+1(z) = Ai+1(u) and Ci(x) = Ai(u), and so Ci+1(z) = Ci(x) follows. Furthermore,

Di+1(z) = Bi+1(u)
T

= (Bi(u) �DiagAi(x)��(e) �Bi(x))
T

= Bi(x)
T �DiagAi(x)��(e) �Bi(u)

T

= Di(z) �DiagCi(z)��(e) �Di(x)

as required.
For �(v) it is necessary to verify that

�(v) = Di(v) � (�(u) � Ci(v) � �(x))

= Di+1(v) � (�(u) �Ci+1(v) � �(z)) :

By substituting for �(x), this can be shown to be true if Di+1(v) = Di(v) = Ai(u)
T =

Ai+1(u)T and Ci+1(v) = Ci(v) �DiagAi(x)��(e) �Bi(x) = Bi+1(u). But these identities follow
by de�nition, so we are done.

Beginning with the given tree T = T0, each successive tree is constructed by performing
a sequence of rakes, so as to rake away about half of the remaining evidence nodes. More
speci�cally, let Contract be the operation in which we apply the Rake operation to every
other leaf of a causal tree, in left-to-right order, excluding the leftmost and the rightmost
leaf. Let fTig be the set of causal trees constructed so that Ti+1 is the causal tree generated
from Ti by a single application of Contract. The following result is proved using an easy
inductive argument:

Theorem 3: Let T0 be a causal tree of size N . Then the number of leaves in Ti+1 is equal
to half the leaves in Ti (not counting the two extreme leaves) so that starting with T0,
after O(logN) applications of Contract, we produce a three-node tree: the root, the
leftmost leaf and the rightmost leaf.

Below are a few observations about this process:

1. The complexity of Contract is linear in the size of the tree. Additionally, logN ap-
plications of Contract reduce the set of tree equations to a single equation involving
the root in O(N) total time.

2. The total space to store all the sets of equations associated with fTig0�i�logN is about
twice the space required to store the equations for T0.
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3. With each equation in Ti+1 we also store equations that describe the relationship
between the conditional probability matrices in Ti+1 to the matrices in Ti. Notice
that, even though Ti+1 is produced from Ti by a series of rake operations, each matrix
in Ti+1 depends directly on matrices present in Ti. This would not be the case if we
attempted to simultaneously rake adjacent children.

We regard these equations as part of Ti+1. So, formally speaking fTig are causal trees
augmented with some auxiliary equations. Each of the contracted trees describes a
probability distribution on a subset of the �rst set of variables that is consistent with
the original distribution.

We note that the ideas behind the Rake operation were originally developed by Miller
and Reif (1985) in the context of parallel computation of bottom-up arithmetic expression
trees (Kosaraju & Delcher, 1988; Karp & Ramachandran, 1990). In contrast, we are using
it in the context of incremental update and query operations in sequential computing. A
similar data structure to ours was independently proposed by Frederickson (1993) in the
context of dynamic arithmetic expression trees, and a di�erent approach for incremental
computing on arithmetic trees was developed by Cohen and Tamassia (1991). There are
important and interesting di�erences between the arithmetic expression-tree case and our
own. For arithmetic expressions all computation is done bottom-up. However, in probabilis-
tic networks �-messages must be passed top-down. Furthermore, in arithmetic expressions
when two algebraic operations are allowed, we typically require the distributivity of one
operation over the other, but the analogous property does not hold for us. In these re-
spects our approach is a substantial generalization of the previous work, while remaining
conceptually simple and practical.

3. Example: A Chain

To obtain an intuition about the algorithms, we sketch how to generate and utilize the
Ti; 0 � i � logN and their equations to perform �-value queries and updates in O(logN)
time on an N = 2L+ 1 node chain of length L. Consider the chain of length 4 in Figure 3,
and the trees that are generated by repeated application of Contract to the chain.

The equations that correspond to the contracted trees in the �gure are as follows (ig-
noring trivial equations). Recall that Ai(xj) is the matrix associated with the left edge of
random variable xj in Ti.

�(x1) = A0(x1) � �(e1) �B0(x1) � �(x2)
�(x2) = A0(x2) � �(e2) �B0(x2) � �(x3)
�(x3) = A0(x3) � �(e3) �B0(x3) � �(x4)
�(x4) = A0(x4) � �(e4) �B0(x4) � �(e5)

9>>>=
>>>;

for T0

�(x1) = A1(x1) � �(e1) �B1(x1) � �(x3)
�(x3) = A1(x3) � �(e3) �B1(x3) � �(e5)

where

B1(x1) = B0(x1) �DiagA0(x2)��(e2) �B0(x2)

B1(x3) = B0(x3) �DiagA0(x4)��(e4) �B0(x4)

9>>>>>>=
>>>>>>;

for T1
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T0: m m m m mx1 x2 x3 x4 e5- - - -

? ? ? ?m m m me1 e2 e3 e4

T1: m m mx1 x3 e5- -

? ?m me1 e3

T2: m mx1 e5-

?me1

Figure 3: A simple chain example.

�(x1) = A2(x1) � �(e1) �B2(x1) � �(e5)

where

B2(x1) = B1(x1) �DiagA1(x3)��(e3) �B1(x3)

9>>=
>>; for T2

We have not listed the A matrices because, in this example, they are constant. Now
consider a query operation on x2. Rather than performing the standard computation we
will �nd the level where x2 was \raked". Since this occurred on level 0, we obtain the
equation

�(x2) = A0(x2) � �(e2) �B0(x2) � �(x3)

Thus we must compute �(x3), and to do this we �nd where x3 is \raked". That happened
on level 1. However, on that level the equation associated with x3 is:

�(x3) = A1(x3) � �(e3) �B1(x3) � �(e5)

That means that we need not follow down the chain. In general for a chain of N nodes we
can answer any query to a node on the chain by evaluating logN equations instead of N
equations.

Now consider an update for e4. Since e4 was raked immediately, we �rst modify the
equation

B1(x3) = B0(x3) �DiagA0(x4)��(e4) �B0(x4)

on the �rst level where e4 occurs on the right-hand side. Since B1(x3) is a�ected by the
change to e4, we subsequently modify the equation

B2(x1) = B1(x1) �DiagA1(x3)��(e3) �B1(x3)

47



Delcher, Grove, Kasif & Pearl

on the second level. In general, we clearly need to update at most logN equations; i.e., one
per level. We now generalize this example and describe general algorithms for queries and
updates in causal trees.

3.1 Performing Queries And Updates E�ciently

In this section we shall show how to utilize the contracted trees Ti; 0 � i � logN to
perform queries and updates in O(logN) time in general causal trees. We shall show that a
logarithmic amount of work will be necessary and su�cient to compute enough information
in our data structure to update and query any � or � value.

3.2 � Queries

To compute �(x) for some node x we can do the following. We �rst locate ind (x), which is
de�ned to be the highest level i such that x appears in Ti. The equation for �(x) is of the
form:

�(x) = Ai(x) � �(y) �Bi(x) � �(z)

where y and z are the left and right children, respectively, of x in Ti.
Since x does not appear in Ti+1, it was raked at this level of equations, which implies

that one child (we assume z) is a leaf. We therefore only need to compute �(y), which can
be done recursively. If instead y was the raked leaf, we would compute �(z) recursively.

In either case O(1) operations are done in addition to one recursive call, which is to a
value at a higher level of equations. Since there are O(logN) levels, and the only operations
are matrix by vector multiplications, the procedure takes O(k2 logN) time. The function
�-Query (x) is given in Figure 4.

3.3 Updates

We now describe how the update operations can modify enough information in the data
structure to allow us to query the � vectors and � vectors e�ciently. Most importantly the
reader should note that the update operation does not try to maintain the correct � and
� values. It is su�cient to ensure that, for all i and x, the matrices Ai(x) and Bi(x) (and
thus also Ci(x) and Di(x)) are always up to date.

When we update the value of an evidence node, we are simply changing the � value of
some leaf e. At each level of equations, the value of �(e) can appear at most twice: once
in the �-equation of e's parent and once in the �-equation of e's sibling in Ti. When e

disappears, say at level i, its value is incorporated into one of the constant matrices Ai+1(u)
or Bi+1(u) where u is the grandparent of e in Ti. This constant matrix in turn a�ects
exactly one constant matrix in the next higher level, and so on. Since the e�ect at each
level can be computed in O(k3) time (due to matrix multiplication) and there are O(logN)
levels of equations, the update can be accomplished in O(k3 logN) time. The constant k3

is actually pessimistic, because faster matrix multiplication algorithms exist.
The update procedure is given in Figure 5. Update is initially called asUpdate(�(E) =

e; i) where E is a leaf, i the level at which it was raked, and e is the new evidence. This
operation will start a sequence of O(logN) calls to function �-Update (X = Term; i) as
the change will propagate to logN equations.

48



Queries & Updates in Probabilistic Networks

FUNCTION �-Query (x)

We look up the equation associated with �(x) in Tind (x).

Case 1: x is a leaf. Then the equation is of the form: �(x) = e where e is known. In
this case we return e.

Case 2: The equation associated with �(x) is of the form

�(x) = Ai(x) � �(y) �Bi(x) � �(z)

where z is a leaf and therefore �(z) is known. In this case we return

Ai(X) � �-Query (y) �Bi(X) � �(z)

The case where y is the leaf is analogous.

Figure 4: Function to compute the � value of a node.

3.4 � Queries

It is relatively easy to use a similar recursive procedure to perform �(x) queries. Unfor-
tunately, this approach yields an O(log2N)-time algorithm if we simply use recursion to
calculate � terms and calculate � terms using our earlier procedure. This is because there
will be O(logN) recursive calls to calculate � values, but each is de�ned by an equation
that also involves a � term taking O(logN) time to compute.

To achieve O(logN) time, we shall instead implement �(x) queries by de�ning a proce-
dure Calc�� (x; i) which returns a triple of vectors hP; L;Ri such that P = �(x), L = �(y)
and R = �(z) where y and z are the left and right children, respectively, of x in Ti.

To compute �(x) for some node x we can do the following. Let i = ind (x). The equation
for �(x) in Ti is of the form:

�(x) = Di(x) � (�(u) �Ci(x) � �(v))

where u is the parent of x in Ti and v its sibling. We then call procedure Calc�� (u; i+ 1)
which will return the triple h�(u); �(v); �(x)i, from which we immediately can compute �(x)
using the above equation.

Procedure Calc�� (x; i) can be implemented in the following fashion.

Case 1: If Ti is a 3-node tree with x as its root, then both children of x are leaves, hence
their � values are known, and �(x) is a given sequence of prior probabilities for x.

Case 2: If x does not appear in Ti+1, then one of x's children is a leaf, say e which is raked
at level i. Let z be the other child. We call Calc�� (u; i+ 1), where u is the parent of
x in Ti, and receive back h�(u); �(z); �(v)i or h�(u); �(v); �(z)i according to whether x
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FUNCTION �-Update (Term = Value; i)

1. Find the (at most one) equation in Ti, de�ning some Ai or Bi, in which Term

appears on the right-hand side; let Term0 be the matrix de�ned by this equation
(i.e., its left-hand side).

2. Update Term0; let Value be the new value.

3. Call �-Update (Term0 = Value; i+ 1) recursively.

Figure 5: The update procedure.

was a left or right child of u in Ti (and v is u's other child). We can now compute �(x)
from �(u) and �(v), and we have �(e) and �(z), so we can return the necessary triple.

Speci�cally,

�(x) =

(
Di(x) � (�(u) �Ai+1(u) � �(v))

Di(x) � (�(u) �Bi+1(u) � �(v))

where the choice depends on whether x is the right or left child, respectively, of u in Ti.

Case 3: If x does appear in Ti+1, then we call Calc�� (x; i+ 1). This returns the correct
value of �(x). For any child z of x in Ti that remains a child of x in Ti+1, it also returns
the correct value of �(z). If z is a child of x that does not occur in Ti+1, then it must be
the case that z was raked at level i so that one of z's children, say e, is a leaf and let the
other child be q. In this situation Calc�� (x; i+ 1) has returned the value of �(q) and
we can compute

�(z) = Ai(z) � �(e) �Bi(z) � �(q)

and return this value.

In all three cases, there is a constant amount of work done in addition to a single recursive
call that uses equations at a higher level. Since there are O(logN) levels of equations, each
requiring only matrix by vector multiplication, the total work done is O(k2 logN).

4. Extended Example

In this section we illustrate the application of our algorithms to a speci�c example. Consider
the sequence of contracted trees shown in Figure 6. Corresponding to these trees we have
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Figure 6: Example of tree contraction.
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such equations as the following:

For T0:
�(x1) = A0(x1) � �(x2) �B0(x1) � �(x3) �(x2) = D0(x2) � (�(x1) �C0(x2) � �(x3))

...
...

For T1:
�(x1) = A1(x1) � �(x2) �B1(x1) � �(e9) �(x2) = D1(x2) � (�(x1) �C1(x2) � �(e9))

...
...

For T2:
�(x1) = A2(x1) � �(x4) �B2(x1) � �(e9) �(x4) = D2(x4) � (�(x1) �C2(x4) � �(e9))

...
...

For T3:
�(x1) = A3(x1) � �(e1) �B3(x1) � �(e9)

Now consider, for instance, the e�ect of an update for e2. Since it is raked immediately,
the new value of �(e2) is incorporated in:

B1(x6) = B0(x6) �DiagA0(x8)��(e2) �B0(x8)

From subsequent Rake operations we know that A2(x4) depends on B1(x6), and A3(x1)
depends on A2(x4), so we must also update these values as follows:

A2(x4) = A1(x4) �DiagB1(x6)��(e3) �A1(x6)

A3(x1) = A2(x1) �DiagB2(x4)��(e5) �A2(x4)

Finally, consider a query for x7. Since x7 is raked together with e5 in T0, we follow
the steps outlined above and generate the following calls: Calc�� (x7; 0), Calc�� (x4; 1),
Calc�� (x4; 2), and Calc�� (x1; 3). This provides us with �(x7). In this case, �(x7)
is particularly easy to compute since both x7's children are leaf nodes. Then we simply
compute �(x7) � �(x7) and then normalize, giving us the conditional marginal distribution
Bel (x7) as required.

5. Join Trees

Perhaps the best-known technique for computing with arbitrary (i.e., not singly-connected)
Bayesian networks uses the idea of join trees (junction trees) (Lauritzen & Spiegelhalter,
1988). In many ways a join tree can be thought of as a causal tree, albeit one with somewhat
special structure. Thus the algorithm in the previous section can be applied. However, the
structure of a join tree permits some optimization, which we describe in this section. This
becomes especially relevant in the next section, where we use the join-tree technique to
show how O(logN) updates and queries can be done for arbitrary polytrees. Our review
of join-trees and their utility is extremely brief and quite incomplete; for clear expositions
see, for instance, Spiegelhalter et al. (1993) and Pearl (1988).

Given any Bayesian network, the �rst step towards constructing a join-tree is tomoralize

the network: insert edges between every pair of parents of a common node, and then treat all
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edges in the graph as being undirected (Spiegelhalter et al., 1993). The resulting undirected
graph is called the moral graph. We are interested in undirected graphs that are chordal :
every cycle of length 4 or more should contain a chord (i.e., an edge between two nodes
that are non-adjacent in the cycle). If the moral graph is not chordal, it is necessary to add
edges to make it so; various techniques for this triangulation stage are known (for instance,
see Spiegelhalter et al., 1993).

If p is a probability distribution represented in a Bayesian network G = (V;E), and
M = (V; F ) is the result of moralizing and then triangulating G, then:

1. M has at most jV j cliques,4 say C1; : : : ; CjV j.

2. The cliques can be ordered so that for each i > 1 there is some j(i) < i such that

Ci \ Cj(i) = Ci \ (C1 [ C2 [ : : : [ Ci�1:)

The tree T formed by treating the cliques as nodes, and connecting each node Ci to
its \parent" Cj(i), is called a join tree.

3. p =
Y
i

p(CijCj(i))

4. p(CijCj(i)) = p(CijCj(i) \ Ci)

From 2 and 3, we see that if we direct the edges in T away from the \parent" cliques,
the resulting directed tree is in fact a Bayesian causal tree that can represent the original
distribution p. This is true no matter what the form of the original graph. Of course, the
price is that the cliques may be large, and so the domain size (the number of possible values
of a clique node) can be of exponential size. This is why this technique is not guaranteed
to be e�cient.

We can use the Rake technique of Section 2 on the directed join tree without any
modi�cation. However, property 4 above shows that the conditional probability matrices
in the join tree have a special structure. We can use this to gain some e�ciency. In the
following, let k be the domain size of the variables in G as usual. Let n be the maximum
size of cliques in the join tree; without loss of generality we can assume that all cliques are
of the same size (because we can add \dummy" variables). Thus the domain size of each
clique is K = kn. Finally, let c be the maximum intersection size of a clique and its parent
(i.e., jCj(i) \ Cij) and L = kc.

In the standard algorithm, we would represent p(CijCj(i)) as a K�K matrix, MCijCj(i)
.

However, p(CijCj(i) \ Ci) can be represented as a smaller L �K matrix, MCijCj(i)\Ci
. By

property 4 above,MCijCj(i)
is identical toMCijCj(i)\Ci

, except that many rows are repeated.
Thus there is a K � L matrix J such that

MCijCj(i)
= J �MCijCj(i)\Ci

:

(J is actually a simple matrix whose entries are 0 and 1, with exactly one 1 per row; however
we do not use this fact.)

4. A clique is a maximal completely-connected subgraph.
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Our claim is that, in the case of join trees, the following is true. First, the matrices
Ai and Bi used in the Rake algorithm can be stored in factored form, as the product of
two matrices of dimension K � L and L � K respectively. So, for instance, we factor Ai

as Al
i � A

r
i . We never need to explicitly compute, or store, the full matrices. As we have

just seen, this claim is true when i = 0 because the M matrices factor this way. The proof
for i > 1 uses an inductive argument, which we illustrate below. The second claim is that,
when the matrices are stored in factored form, all the matrix multiplications used in the
Rake algorithm are of one of the following types: 1) an L�K matrix times a K�L matrix,
2) an L �K matrix times a K �K diagonal matrix, 3) an L� L matrix times an L �K

matrix, or 4) an L�K matrix times a vector.
To prove these claims consider, for instance, the equation de�ning Bi+1 in terms of lower-

level matrices. From Section 2, Bi+1(u) = Bi(u) �DiagAi(x)��(e) �Bi(x): But, by assumption,
this is:

(Bl
i(u) �B

r
i (u)) �Diag(Al

i
(x)�Ar

i
(x))��(e) � (B

l
i(x) �B

l
i(x));

which, using associativity, is clearly equivalent to

Bl
i(u) �

h
((Br

i (u) �DiagAl
i(x)�(A

r
i (x)��(e))

) �Bl
i(x)) �B

l
i(x)

i
:

However, every multiplication in this expression is one of the forms stated earlier. Identifying
Bl
i+1(u) as B

l
i(u) and B

r
i+1(u) as the bracketed part of the expression proves this case, and

of course the case where we rake a left child (so that Ai+1(u) is updated) is analogous.
Thus, even using the most straightforward technique for matrix multiplication, the cost of
updating Bi+1 is O(KL2) = O(kn+2c). This contrasts with O(K3) if we do not factor the
matrices, and may represent a worthwhile speedup if c is small. Note that the overall time
for an update using this scheme is O(kn+2c logN). Queries, which only involve matrix by
vector multiplication, require O(kn+c logN) time.

For many join trees the di�erence between N and logN is unimportant, because the
clique domain size K is often enormous and dominates the complexity. Indeed, K and L

may be so large that we cannot represent the required matrices explicitly. Of course, in such
cases our technique has little to o�er. But there will be other cases in which the bene�ts
will be worthwhile. The most important general class in which this is so, and our immediate
reason for presenting the technique for join trees, is the case of polytrees.

6. Polytrees

A polytree is a singly connected Bayesian network; we drop the assumption of Section 2
that each node has at most one parent. Polytrees o�er much more 
exibility than causal
trees, and yet there is a well-known process that can update and query in O(N) time, just
as for causal trees. For this reason polytrees are an extremely popular class of networks.

We suspect that it is possible to present an O(logN) algorithm for updates and queries
in polytrees, as a direct extension of the ideas in Section 2. Instead we propose a di�erent
technique, which involves converting a polytree to its join tree and then using the ideas of
the preceding section. The basis for this is the simple observation that the join tree of a
polytree is already chordal. Thus (as we show in detail below) little is lost by considering
the join tree instead of the original polytree. The speci�c property of polytrees that we
require is the following. We omit the proof of this well-known proposition.
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Proposition 4: If T is the moral graph of a polytree P = (V;E) then T is chordal, and
the set of maximal cliques in T is ffvg [ parents (v) : v 2 V g.

Let p be the maximum number of parents of any node. From the proposition, every
maximal clique in the join tree has at most p+1 variables, and so the domain size of a node
in the join tree is K = kp+1. This may be large, but recall that the conditional probability
matrix in the original polytree, for a variable with p parents, has K entries anyway since we
must give the conditional distribution for every combination of the node's parents. Thus K
is really a measure of the size of the polytree itself.

It now follows from the proposition above that we can perform query and update in
polytrees in time O(K3 logN), simply by using the algorithm of Section 2 on the directed
join tree. But, as noted in Section 5, we can do better. Recall that the savings depend on
c, the maximum size of the intersection between any node and its parent in the join tree.
However, when the join tree is formed from a polytree, no two cliques can share more than a
single node. This follows immediately from Proposition 4, for if two cliques have more than
one node in common then there must be either two nodes that share more than one parent,
or else a node and one of its parents that both share yet another parent. Neither of these is
consistent with the network being a polytree. Thus in the complexity bounds of Section 5,
we can put c = 1. It follows that we can process updates in O(Kk2c logN) = O(kp+3 logN)
time and queries in O(kp+2 logN).

7. Application: Towards Automated Site-Speci�c Muta-Genesis

An experiment which is commonly performed in biology laboratories is a procedure where
a particular site in a protein is changed (i.e., a single amino-acid is mutated) and then
tested to see whether the protein settles into a di�erent conformation. In many cases, with
overwhelming probability the protein does not change its secondary structure outside the
mutated region. This process is often called muta-genesis. Delcher et al. (1993) developed a
probabilistic model of a protein structure which is basically a long chain. The length of the
chain varies between 300{500 nodes. The nodes in the network are either protein-structure
nodes (PS-nodes) or evidence nodes (E-nodes). Each PS-node in the network is a discrete
random variable Xi that assumes values corresponding to descriptors of secondary sequence
structure: helix, sheet or coil. With each PS-node the model associates an evidence node
that corresponds to an occurrence of a particular subsequence of amino acids at a particular
location in the protein.

In our model, protein-structure nodes are �nite strings over the alphabet fh; e; cg. For
example the string hhhhhh is a string of six residues in an �-helical conformation, while
eecc is a string of two residues in a �-sheet conformation followed by two residues folded as
a coil. Evidence nodes are nodes that contain information about a particular region of the
protein. Thus, the main idea is to represent physical and statistical rules in the form of a
probabilistic network.

In our �rst set of experiments we converged on the following model that, while clearly
biologically naive, seems to match in prediction accuracy many existing approaches such as
neural networks. The network looks like a set of PS-nodes connected as a chain. To each
such node we connect a single evidence node. In our experiments the PS-nodes are strings
of length two or three over the alphabet fh; e; cg and the evidence nodes are strings of the
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Figure 7: Example of causal tree model using pairs, showing protein segment GSAT with
corresponding secondary structure cchh.

same length over the set of amino acids. The following example clari�es our representation.
Assume we have a string of amino acids GSAT. We model the string as a network comprised
of three evidence nodes GS, SA, AT and three PS-nodes. The network is shown in Figure 7.
A correct prediction will assign the values cc, ch, and hh to the PS-nodes as shown in the
�gure.

Now that we have a probabilistic model, we can test the robustness of the protein or
whether small changes in the protein a�ect the structure of certain critical sites in the
protein. In our experiments, the probabilistic network performs a \simulated evolution" of
the protein, namely the simulator repeatedly mutates a region in the chain and then tests
whether some designated sites in the protein that are coiled into a helix are predicted to
remain in this conformation. The main goal of the experiment was to test if stable bonds far
away from the mutated location were a�ected. Our previous results (Delcher et al., 1993)
support the current thesis in the biology community, namely that local distant changes
rarely a�ect structure.

The algorithms we presented in the previous sections of the paper are perfectly suited
for this type of application and are predicted to generate a factor of 10 improvement in
e�ciency over the current brute-force implementation presented by Delcher et al. (1993)
where each change is propagated throughout the network.

8. Summary

This paper has proposed several new algorithms that yield a substantial improvement in the
performance of probabilistic networks in the form of causal trees. Our updating procedures
absorb su�cient information in the tree such that our query procedure can compute the
correct probability distribution of any node given the current evidence. In addition, all
procedures execute in time O(logN), where N is the size of the network. Our algorithms
are expected to generate orders-of-magnitude speed-ups for causal trees that contain long
paths (not necessarily chains) and for which the matrices of conditional probabilities are
relatively small. We are currently experimenting with our approach with singly connected
networks (polytrees). It is likely to be more di�cult to generalize the techniques to general
networks. Since it is known that the general problem of inference in probabilistic networks is
NP-hard (Cooper, 1990), it obviously is not possible to obtain polynomial-time incremental
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solutions of the type discussed in this paper for general probabilistic networks. The other
natural open question is extending the approach developed in this paper to other dynamic
operations on probabilistic networks such as addition and deletion of nodes and modifying
the matrices of conditional probabilities (as a result of learning).

It would also be interesting to investigate the practical logarithmic-time parallel algo-
rithms for probabilistic networks on realistic parallel models of computation. One of the
main goals of massively parallel AI research is to produce networks that perform real-time
inference over large knowledge-bases very e�ciently (i.e., in time proportional to the depth
of the network rather than the size of the network) by exploiting massive parallelism. Jerry
Feldman pioneered this philosophy in the context of neural architectures (see Stan�ll and
Waltz, 1986, Shastri, 1993, and Feldman and Ballard, 1982). To achieve this type of per-
formance in the neural network framework, we typically postulate a parallel hardware that
associates a processor with each node in a network and typically ignores communication re-
quirements. With careful mapping to parallel architectures one can indeed achieve e�cient
parallel execution of speci�c classes of inference operations (see Mani and Shastri, 1994,
Kasif, 1990, and Kasif and Delcher, 1992). The techniques outlined in this paper presented
an alternative architecture that supports very fast (sub-linear time) response capability on
sequential machines based on preprocessing. However, our approach is obviously limited to
applications where the number of updates and queries at any time is constant. One would
naturally hope to develop parallel computers that support real-time probabilistic reasoning
for general networks.
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