Journal of Artificial Intelligence Research 4 (1996) 445-475 Submitted 11/95; published 6/96

A Formal Framework for Speedup Learning
from Problems and Solutions

Prasad Tadepalli TADEPALLIQCS.ORST.EDU
Department of Computer Science

303 Dearborn Hall, Oregon State University

Corvallis, OR 97331

Balas K. Natarajan NATARAJAN@HPL.HP.COM
Hewlett Packard Research Labs

1501 Page Mill Road, Bldg 3U

Palo Alto, CA 94304

Abstract

Speedup learning seeks to improve the computational efficiency of problem solving
with experience. In this paper, we develop a formal framework for learning efficient problem
solving from random problems and their solutions. We apply this framework to two different
representations of learned knowledge, namely control rules and macro-operators, and prove
theorems that identify sufficient conditions for learning in each representation. Our proofs
are constructive in that they are accompanied with learning algorithms. Our framework
captures both empirical and explanation-based speedup learning in a unified fashion. We
illustrate our framework with implementations in two domains: symbolic integration and
Eight Puzzle. This work integrates many strands of experimental and theoretical work
in machine learning, including empirical learning of control rules, macro-operator learning,
Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.

1. Introduction

A lot of work in machine learning is in the context of concept learning. A prototypical
example of this is learning to recognize hand-written characters from classified examples.
Concept learning is the subject of an intense theoretical study under the name of “Probably
Approximately Correct (PAC) Learning” — so called because the learner is required only
to learn an approximation to the target concept with a high probability (Valiant, 1984).
This rich and growing body of knowledge studies the possibility of learning approximations
to concepts in different representations under various learning protocols. (See Natarajan,
1991, Anthony & Biggs, 1992, or Kearns & Vazirani, 1994 for a broad introduction.)

In this paper, we are concerned with a different kind of learning called “speedup learn-
ing,” which deals with improving the computational efliciency of a problem solver with
experience. One of the main differences between the concept learning and the speedup
learning is that, in the latter, it is theoretically possible to solve the problems optimally
using a brute-force problem solver. However, problem solving without learning is NP-hard
in most of these domains, and hence is impractical in most cases. The role of learning
can be seen as improving the efficiency of a brute-force problem solver by acquiring some
“control knowledge” that is useful to guide problem solving in fruitful directions. In a con-
cept learning task, before learning, there is not enough information to classify an example

©1996 Al Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

TADEPALLI & NATARAJAN

even by brute-force. Even though the speedup learning program has access to a brute-force
problem solver, it is still a challenge to reformulate its knowledge in a way that makes prob-
lem solving eflicient. There have been many successful speedup learning systems described
in the experimental machine learning literature, PRODIGY (Minton, 1990) and SOAR
(Laird, Rosenbloom, & Newell, 1986) being two of the most prominent ones.

Consider the domain of symbolic integration. Given the definition of the domain and a
standard table of integrals, anyone has complete information on how to solve any solvable
problem. Yet, while we humans are capable of solving problems of symbolic integration,
we are by no means efficient in our methods. It appears that we need to examine sample
instances, study solutions to these instances, and based on these solutions build up a set of
heuristics that will enable us to quickly solve future problems. In this sense, the learning
process has helped improve our computational efficiency.

We briefly describe the intuition behind our framework here, deferring the formal details
to later sections. In essence, we would like our learning program to behave in the following
manner: consider a class M of domains, such that each domain in the class is known to
possess an efficient algorithm. We are interested in a learning algorithm for the class M, an
algorithm that takes as input the specification of a domain drawn from the class as well as
sample instances of the problems in that domain and their solutions, and produces as output
an efficient algorithm for the domain. As we will see, the sample instances and their solutions
play a crucial role in the process, as in their absence, constructing an efficient problem solver
for the input domain can be computationally intractable. In this paper, we are interested
in examining the conditions under which such learning is made computationally efficient by
using sample instances and solutions. We present a unified formal framework that captures
both supervised and unsupervised forms of speedup learning, where examples of successful
problem solving are provided by a teacher and by a search program respectively. Our
framework is based on some of our previous work reported earlier (Natarajan & Tadepalli,
1988; Tadepalli, 1991a). Our methods of analysis are similar to that of PAC learning, in
that we only require the learner to output an approximately correct problem solver with a
high probability. Just as in PAC learning, we require the learner to be successful on any
stationary problem distribution unknown to the learner.

There have been some other attempts to formalize speedup learning (e.g., Cohen, 1992,
Greiner & Likuski, 1989, Subramanian & Hunter, 1992). However, most of these formaliza-
tions of speedup learning use a measure of problem-solving performance such as the number
of nodes expanded in solving a problem (Cohen, 1992) or the number of unifications done
in answering a query (Greiner & Likuski, 1989). We believe that these measures are too
fine grained to be useful as a foundation for a robust theory of speedup learning comparable
to the analysis of concept learning in the PAC-learning framework. Following the standard
practice in complexity theory, we use the worst-case asymptotic complexity as our measure
of performance. We require a successful speedup learning program to result in a problem
solver whose worst-case asymptotic complexity is better than that of the nonlearning brute-
force problem solver. Moreover, the learning itself must consume only a polynomial amount
of time and a polynomial number of examples. Note that, according to our definition, the
standard forms of compiler optimizations such as loop unrolling, and improvements in the
hardware on which the program is run do not qualify as learning processes because they
do not change the asymptotic complexity of problem solving. However, more sophisticated

446

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

forms of program transformation such as partial evaluation are considered as learning pro-
vided they improve the asymptotic complexity of program execution. Thus, we believe that
improving the worst-case asymptotic complexity of problem solving captures a cognitively
interesting form of speedup learning. Although any decrease in asymptotic complexity is
useful and interesting, in this paper we will be concerned with learning of polynomial-time
problem solvers for domains which can only be solved in exponential time in the worst case
without learning.

In Section 2, we introduce the preliminaries of problem solving and PAC learning. In
Section 3, we introduce our formal framework for speedup learning. Drawing on prior results
in PAC-learning, we prove a general theorem identifying conditions sufficient to allow such
learning. In Section 4, we apply our framework to learning control rules and describe an
implementation and experimental results in the symbolic integration domain. In Section
5, we apply our framework to learning macro-operators in the domain of Eight Puzzle. In
Section 6, we discuss our work in relation to previous formalizations of speedup learning.
In Section 7, we discuss some future extensions to our framework, including learning from
unsolved problems and exercises. Section 8 concludes the paper.

2. Preliminaries

Without loss of generality, we assume X = {0, 1} to be the alphabet of the language of state
descriptions, and use X" for the set of binary strings of length n.

A problem domain D is a tuple (S, G, 0), where, S = X" is a set of states, G is procedure
to recognize a subset of states in S as the goal states, and O is a set of operators {oq, ..., 01},
where each o; is a procedure which takes a state in S as input and outputs another state
also in S. The combination of goals and operators is called the specification of D. A
mela-domain M is a set of domains defined over the same set of states.

We denote the result of applying an operator o to a state s by o(s). A problem is a state
s € 5. A problem s is solvable if there is a sequence of operators 8 = (0g,, ..., 0z,), and a
sequence of states (sg, ..., sq), such that (a) s = sg, (b) for all ¢ from 1 to d, s; = 04,(s;-1),
and (c) sq satisfies the goal G'. In this case, 3 is a solution sequence of s, and d is the length
of the solution sequence [3.

The problem size is a syntactic measure of the complexity of a problem such as its length
when encoded in binary. If s is an arbitrary problem in 5 = X%, then its size |s| is n.

Notice that our domain specification is not as explicit as the domain theory used in
typical speedup learning programs like PRODIGY (Minton, 1990). The operators need not
be described in the STRIPS formalism, and goals need not be logical formulas. In fact, they
need not be declaratively represented at all, but may be described by procedures whose run
time is reasonably bounded. Thus, our learning framework requires the learning techniques
to be more independent of the operator representation than the traditional methods. This
allows choosing the operator representation which is best suited to the domain rather than
being constrained by the assumptions of the learning technique.

In the speedup learning systems studied by the experimental community, the goals and
operators are usually parameterized. These systems also learn control rules and macro-
operators with parameters. Learning parameterized rules and macro-operators makes it
possible to apply them to problems of arbitrary size. Another advantage of parameterization

447

TADEPALLI & NATARAJAN

is the ability to apply the same rule recursively many times, where each application binds the
parameters to different arguments. Unfortunately, however, parameterization also increases
the computational cost of instantiating the operators (or rules). When the number of
parameters can be arbitrarily high, the instantiation problem is NP-complete in general.
One way to theoretically limit this cost is to upper-bound the number of parameters of the
operators, macro-operators, and control-rules to a constant. This ensures that both the time
for instantiation and the number of different instantiations are polynomials in the length
of the state description. It is possible to extend our results to such parameterized domains
with some suitable restrictions on the number of parameters or their interdependencies
(Tambe, Newell, & Rosenbloom, 1990). In fact, our application of the formal framework
to the symbolic integration domain does involve an implicit parameter that denotes the
subexpression of the current expression to which an operator is applied. However, for
simplicity of exposition, we currently restrict our theoretical framework to nonparameterized
operators.

A problem solver f for a domain D is a deterministic program that takes as input a
problem, s, and outputs its solution sequence if such exists, or the special symbol “L” if it
does not exist.

A hypothesis space F is a set of problem solvers. If F is a space of hypotheses, the
restriction of F to problems of size < n is called a subspace of hypotheses and is denoted by
Fn. Formally, for every f € F, there is a corresponding problem solver f, € F,, such that
fu(z) = f(z)if || < n and undefined otherwise. The logarithmic dimension or I-dimension
of a hypothesis space F is defined to be log|F,| and is denoted by dim(F,).

3. Learning from solved problems

In this section, we describe our learning framework. First, the domain specification is given
to the learner. The teacher then selects an arbitrary problem distribution and a problem
solver. We assume that there is at least one problem solver in the hypothesis space of
the learner that is functionally equivalent to the teacher’s problem solver, i.e., one which
outputs the same solution as the teacher’s problem solver on each problem. We call such a
problem solver in the learner’s hypothesis space, a target problem solver.

The learning algorithm has access to an oracle called SOLVED-PROBLEM. At each
call, SOLVED-PROBLEM randomly chooses a problem in the current domain, solves it
using the teacher’s problem solver, and returns the (problem solution) pair, which is called
an example. A lraining sample is a set of such training examples. We assume that if the
problem is not solvable by the teacher’s problem solver, it outputs the pair (problem, L).

Ideally, the goal of speedup learning is to find a target problem solver in the learner’s
hypothesis space. However, this is not always possible because our model of learning relies
on randomly chosen training examples. Hence, we allow the learning algorithm to output
an approximately correct problem solver with a high probability after seeing a reasonable
number of examples. The problem solver needs only to be approximately correct in the
sense that it may fail to produce a correct solution for a problem with a small probability
even though the teacher succeeds in solving it. We are now ready to formally define our
model of learning.

448

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

Definition 1 An algorithm A is a speedup learning algorithm for a meta-domain M in a
hypothesis space F, if for any domain D € M, any choice of a problem distribution P, and
any target problem solver f € F,

1. A takes as inpul the specification of a domain D € M, mazimum problem size n, an
error parameter €, and a confidence parameter 6;

2. A may call SOLVED-PROBLEM, which returns examples (z, f(z)) for D, where
is chosen with probability P(xz) from the problem set ¥"; the number of oracle calls
of A must be polynomial in the maximum problem size n, %, %, and the length of
its input; its running time must be polynomial in all the previous parameters and an
upper bound t on the running times of programs in D on inpuls of size n;

3. for all D € M and all probabilily distributions P over %", with probability at least
(1=140), A outputs a program f' that approximates F in the sense that X ea P(z) < €,
where A = {z|f'(z) # f(z) and f(z) # L}; and

4. there is a fized polynomial R such that, for a mazimum problem size n, mazimum

solution length L, %, %, and the upper bound t on the programs in D, if A outpuls f’,

the run time of [’ is bounded by R(n,L,t,%, %)

There are a few things that should be noted about this framework. Similar to the
framework of Tadepalli (1991a), but unlike that of Natarajan and Tadepalli (1988), the
learning algorithm is a function of the hypothesis space. Note that the teacher is free to
generate solutions using any method. In particular, the teacher may be a human or a search
program. The only requirement is that a target problem solver that is functionally equivalent
to the teacher’s problem solver exists in the learner’s hypothesis space. This assumption is
needed so that the learner can approximate the target problem solver arbitrarily closely by
taking in more and more training examples. It would be impossible to do this if the target
problem solver itself does not exist in the learner’s hypothesis space.

Just as in the PAC-learning literature, learning must be successful independent of the
choice of training distribution P. The problem solver f’ output by the learner is said
to approximate the target problem solver, if they both produce the same solution with
probability no less than 1 — ¢, when tested on the problems sampled using P. Since the
training problems are randomly chosen, they sometimes may not be representative, and the
learner may fail to learn an approximately correct problem solver. Hence, we only require
that such a problem solver is learned at least with a probability 1 — 6.

Finally, there is the requirement that the learned problem solver must be efficient. We
capture this idea by insisting that it should run in time polynomial in various parameters,
including the problem size, solution length, inverses of the error and reliability parameters e
and 4, and the upper bound ¢ on the time needed for executing the domain operators. This
last parameter ¢ factors out the time for executing individual operators from the problem-
solving time, since this time is something the learning algorithm cannot be expected to
improve, because the operators are assumed to be opaque. In other words, we require only
that the number of operator executions is polynomial in various parameters, even though
the time for executing a single operator may be arbitrary but bounded.

The speedup achieved by the learner’s problem solver is with respect to a default brute-
force problem solver, which is the only one available to the learner before the learning
begins, and not with respect to the problem solvers in the learner’s hypothesis space. All

449

TADEPALLI & NATARAJAN

the problem solvers in the hypothesis space of the learner are supposed to be efficient, since
we are only measuring efficiency by coarse scales such as running in polynomial time. As we
said earlier, we are not concerned with more refined notions of efficiency, such as improving
the time complexity of problem solving from O(n?) to O(n?), in this paper.

Although we treated a problem solver as simply a deterministic program that maps
problems to solutions, typically it consists of two components: a declarative representation
of some kind of control knowledge (a function) that specifies which operator or operator
sequence to apply in a given state, and an interpreter that uses the control knowledge to
solve any problem in time polynomial in its size. Since the interpreter is usually fixed, the
hypothesis space of problem solvers directly corresponds to a hypothesis space of possible
control knowledge. Assuming that there is an efficient target problem solver in the hypoth-
esis space of problem solvers implies that there is a target function in the corresponding
hypothesis space of control knowledge. Speedup learning of a hypothesis space of target
problem solvers can be achieved by PAC-learning of the corresponding hypothesis space
of control knowledge. However, we do have an additional problem of converting problem-
solution pairs of the target problem solver to examples of the target control knowledge.
We take advantage of the domain specification (definition of goals and operators) in doing
this conversion. Hence speedup learning in our framework consists of two steps: First, the
problem-solution pairs of the target problem solver should be converted to examples of the
target control knowledge using the domain specification. Second, the examples of target
control knowledge must be generalized using some function learning scheme, and the result
must be plugged into the interpreter to create an approximate problem solver.

For simplicity of exposition, this framework assumes that the maximum problem size n
is given. For a given problem distribution, this can also be easily estimated from examples
by the standard procedure of starting with size 1 and iteratively doubling it and verifying
it with a sufficiently large set of randomly generated problems (Natarajan, 1989).

Definition 2 A problem solver f is consistent with a training sample if for every (problem,
solution) pair in the training sample f(problem) = solution.

Similar to many PAC-learning algorithms, the speedup learning algorithms we consider
work by efficiently filtering the hypothesis space for a problem solver which is consistent
with the training sample. Before we prove theorems about particular hypotheses spaces, we
first state a general theorem which is a direct consequence of the results in PAC-learning
of finite hypothesis spaces (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989).

Theorem 1 Let M be a meta-domain, and F be a hypothesis space of polynomial-time
problem solvers for domains in M. Let dim(F,,) be polynomially bounded in n. Then an
algorithm is a speedup learning algorithm for M in F, if it

1. tlakes the specification of D € M, n, €, and ¢ as inpuls;

2. possibly calls the goals and operators in D;

3. collects L(dim(F,)In2 + In }) training examples;

4. terminates in time polynomial in n, %, %, and in the sizes of the domain specification

and the training examples; and

5. outputs a problem solver in F which is consistent with the training sample.

450

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

In what follows, we refine this theorem to two particular hypothesis spaces: sets of
control rules and macro-operators. We identify sufficient conditions to guarantee speedup
learning in each of these two hypothesis spaces.

4. Learning control rules

One way to build efficient problem solvers is by learning control rules as in LEX (Mitchell,
Utgoff, & Banerji, 1983) or in PRODIGY (Minton, 1990). Control rules reduce search by
selecting, rejecting or ordering operators appropriately. In this section we consider learning
of control rules that select appropriate operators to apply in a given state.

4.1 A theory of control-rule learning

A control rule is a pair (U(0),0), where U(o) describes the set of problem states on which
this rule selects the operator o. U(o) is called the select-set of o.

We assume that the select-sets of operators of domains in M are described in some
language C'. We consider a hypothesis space F of problem solvers, where every problem
solver consists of a set of select-sets in C', one for each operator in the domain. Let C), be
the select-sets restricted to problems of size < n.

The hypothesis space F uses a fixed total ordering over the operators of the domain.
This ordering is used to resolve conflicts between applicable operators when more than one
select-set contains the given problem. In what follows, without loss of generality, we assume
that the operators are numbered using this ordering. Given a problem and a set of control
rules, a problem solver in F picks the least numbered operator whose select-set contains
the problem, and applies it. This is repeated until the problem is solved or no select-set
contains the current problem, in which case, the problem solver fails (see Figure 1). If the
membership in the select-sets can be checked in polynomial time, then this problem solver
runs in time polynomial in various parameters.

Now, we are ready to state and prove the main theorem of this section. The statement
and proof of this theorem can be derived from previous results on learning sets with one-
sided error (Natarajan, 1987). We prove it from the first principles for completeness.

Let L denote a set of sentences, each of which represents a set of problems in the
domain. There is a natural partial ordering over the elements of L defined by the “more
specific than” relation. A sentence is more specific than another if the set represented by
the first sentence is a subset of that represented by the second sentence. We define a most
specific generalization (MSG) of a set S of problems in L to be a sentence in L which
represents the most specific superset of 5.

Theorem 2 A mela-domain M possesses a speedup learning algorithm in the hypothesis
space F of problem solvers based on select-setls from C, if
1. every domain D € M has a problem solver in F thal solves any solvable problem in
polynomial time;
2. for any set of problems in S, there is a unique most specific generalization in C,, and
it can be computed in polynomial time;
3. membership in the sets in C,, can be checked in time polynomial in n; and
. log|C}| is a polynomial in n.

BN

451

TADEPALLI & NATARAJAN

procedure Control-rule-problem-solver

input z;
begin
o=
while —Solved(z) do
begin
pick the least i s.t. « € U(o;);
if no such ¢ exists, halt with a failure;
z = o0;(x);
o = Append(o, 0;);
end;
output o;

end Control-rule-problem-solver

Figure 1: A problem solver that uses control rules

Proof: The key idea in the proof is as follows: Given a problem domain D, the learning
algorithm will construct approximations to the select-sets of the operators of D by finding
the most specific generalizations of the example problems to which they are applied. If the
conditions of the theorem are satisfied, this can be carried out in polynomial time, which is
exponentially faster than the default brute-force search. With these select-sets in place, the
algorithm Control-rule-problem-solver of Figure 1 behaves as an approximate problem solver
for the domain D.

The rest of the proof deals with the details. Specifically, we will exhibit a speedup
learning algorithm for M. Let D be a domain in M.

Let C be a language as in the statement of the theorem. By the conditions of the
theorem, C' must possess an algorithm that finds the most specific generalization of a set of
examples in polynomial time. The learning algorithm Control-rule-learner in Figure 2 uses
this algorithm, called Generalize, to construct good approximations for the select-sets in C,
and uses them to build a problem solver.

In particular, the Control-rule-learner works as follows. It first collects the required
number of examples, and for each problem, obtains all its intermediate subproblems by
applying its solution sequence to it. For each operator o; in the domain, it collects the set
of subproblems for which it is the first operator applied in their solutions. It then calls
Generalize on these sets S(o;), which outputs approximate select-sets U(o;).

We now show that the procedure Control-rule-learner of Figure 2 is indeed a learning
algorithm for M in F, if every domain in M has a problem solver in F. First, we show that
Control-rule-learner outputs a problem solver which is consistent with the training sample.

The proof is by induction on the length of the teacher’s solutions of training problems.
It is trivially true for any solutions of length 0. Assume that the above statement is true
for any training problems and their intermediate subproblems which are solved in less than

452

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

procedure Control-rule-learner
input €,0,D = (G,0),n, L
begin
Let O ={oili =1,...,k};
initialize S(o01),...,5(ok) to {};

/* Section 1: Generate examples for select-sets */

repeat 1(klog|C,|In2 4 In §) times

begin
call SOLVED-PROBLEM to obtain (z,0);
Ifo#1
then
Let 0 = “0gy,04,,...,0.7
5(0z,) = S(oz,) U{z}
5(0z,) := 5(0z,) U {0, (2)}
§(0z,) = 5(0z,) U{0g, (- (02, (2)) ..)}
end;

/* Section 2: Construct approximations of select-sets */

for 7:=1 through k£ do
U(o;) := Generalize(5(0;));
output the problem solver of Figure 1 with the learned U(0)’s
end Control-rule-learner

Figure 2: An algorithm for control rule learning

r operator applications by the teacher. Consider a (sub)problem z which is solved by the
sequence 0 = “0g,,05,,...,05 " by the teacher. The learning algorithm includes z in the
set S(0gz,). When the learning algorithm generalizes this set, the learned select-set of o,
includes z. Since all problem solvers in the hypothesis space including the target problem
solver always use the least numbered operator whose select-set contains the problem, it
follows that the target select-sets of operators o;,...,0;,_1 do not contain z. Moreover,
since the learner finds the most specific generalization of the set of examples, the learned
select-sets of operators o0y,...,0,,—1 must be subsets of the corresponding target select-
sets, and hence do not contain z. Hence o, is the least numbered operator whose select-set
contains z and will be selected by the learned problem solver to solve z. Since oy, () is
solved with a sequence of length less than r by the teacher, by inductive hypothesis, it will
be solved with the same sequence by the learned problem solver. Hence x will be solved
using o by the learned problem solver.

453

TADEPALLI & NATARAJAN

:f ()dz — [g(z)dz
= [f(z)dz + [g(z)dx
) = g(2) [f(z)de = [{(Dg(z)z) [f(x)dz}dz
fx”das nt) /(n 4+ 1)
[sinzdx = (— cosx)
Jcosadr = sinz

H

NS Ot N e
%
~
/—\

Figure 3: A table of integration operators

We now show that the sample size in our algorithm is sufficient for learning an approx-
imate problem solver. For problems of size n or less, each set U(o) can be chosen in |C,,|
ways in Section 2 of the algorithm. Since there are k operators, the number of distinct
select-set tuples, and hence the number of distinct problem solvers that can be constructed
in Section 2 is |C,,|*¥. Hence dim(F,) < klog|C,|. Hence by Theorem 1 the sample size
given in the algorithm is sufflicient for learning.

Since log |C},| is polynomial in n, if membership in the sets in C,, and the most specific
generalizations of the sets of examples can both be computed in polynomial time, then
Control-Rule-Learner runs in polynomial time as well. Hence, by Theorem 1, it is a speedup
learning algorithm for M in F. O

Note that the above theorem can also be stated using the on-line mistake-bound model,
in which the learner incrementally updates a hypothesis whenever it cannot solve a new
training problem in the same way as the teacher does, i.e., whenever the learner makes a
“mistake” (Littlestone, 1988). This yields a slightly more general result than Theorem 2,
because, under the same conditions of this theorem, the number of mistakes of the learner
in the worst-case is polynomially bounded for any arbitrary choice of training examples,
i.e., not necessarily generated using a fixed probability distribution. The mistake-bound
algorithms can be converted to batch PAC-learning algorithms in a straightforward way
(Littlestone, 1988).

4.2 Application to symbolic integration

We now consider an application of Theorem 2 to the domain of symbolic integration,
as was done in the LEX program (Mitchell et al., 1983). We will show how this can be
efficiently implemented using a straightforward application of Theorem 2 for a subset of
LEX’s domain.

Consider the class of symbolic integrals that can be solved by the standard integration
operators. Let M be the set of domains whose operators are described by rules such as in
Figure 3, and whose problems can be described by an unambiguous context free grammar
I’ such as shown in Figure 4.

Let a be any sentential form, i.e., a string of terminals and variables, of the grammar
I’ of Figure 4 derivable from the start symbol Prob. A sentential form a denotes the set of
problems derivable from a using the productions of I'. Consider a hypothesis space F of

454

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

Prob — [Exzp d Var|DExzpVar

Exp — Term|Term + Exp|Term — Exp

Term — P-term | P-term «Term| P-term [Term
P-term — Const|Var|(=Term)|Trig|Power|Prob|(Ezp)
Power — (Var 1 Term)

Trig — (sin Var)|(cos Var)

Const — Intlalk

Var — x

Int — 0]1]2|3]4/5/6]7]8|9

Figure 4: A grammar to generate the integration problems

problem solvers whose select-sets are represented by the sentential forms of the grammar T'.
We plan to show that the Control-rule-learner, with an appropriate Generalize routine that
computes the MSG of a set of problems, is a learning algorithm for M in F.

We first need a few definitions. A parse tree is an ordered tree where all nodes are
labeled by the variables or terminals of the grammar, and the root is labeled by the start
symbol. Moreover, if a node V has children Vi,..., Vg, then V — Vi ..., Vi must be a
production of the grammar. The string of symbols obtained by reading the leaves of the
parse tree from left to right is called the yield of the tree (Hopcroft & Ullman, 1979). If the
grammar is unambiguous, then for every sentence which can be generated by the grammar
there is a unique parse tree which yields that sentence. This tree is called the parse of that
sentence.

A cap of a tree T is any ordered subtree 7’ such that (a) all the nodes and edges of T’
are in T, (b) the root of T"is in 77, and (c) if a node is in 7", then its parent and its siblings
in T" are also in 1".

Intuitively, a cap is obtained by pruning the subtrees rooted under some selected internal
nodes in the parse tree and by making those nodes its leaves. Since the grammar is un-
ambiguous, all the generalizations (in C') of an example correspond to the yields of various
caps of the parse of that example. If there are two caps ¢y and ¢y for a parse tree such that
¢y is also a cap of ¢1, then c¢q’s yield is more specific than ¢;’s, in that the set of sentences
derivable from the yield of the former is a subset of the corresponding set derivable from
the yield of the latter. We say that ¢; is more specific than ¢y in this case. ¢ is strictly
more specific than ¢y if ¢; is more specific than ¢, and ¢ # ¢s.

Given two or more parse trees for the same grammar, the most specific cap (MSC) is
defined as a subtree which is a cap of all the parse trees such that no other common cap
for these trees is strictly more specific. Since the caps of the parse tree of an example
correspond to all possible generalizations of that example in our hypothesis space C', the
yield of the MSC of the parse trees of a set of problems corresponds to the MSG of that set
of examples.

We now describe the Generalize algorithm which computes the MSG of a set of examples
by computing the MSC of their parse trees. The algorithm is to march down these parse

455

TADEPALLI & NATARAJAN

[sinz + 22 dx

[cosa + sin zdx

Op3 Op3
[sin zdx + [2tdx [cosazdx + [sinzdx
Op6 Oph Op7 Op6
g2+l 3 _
~(cosz) - sin x (cosz)

Figure 5: Tree representations of the solutions of the two examples

trees simultaneously from the root, including a node and its siblings in the MSC if and only
if they are all present in all the parse trees in exactly the same positions (and their parent
is already included).

Consider, for example, that the program is given the following two examples. Figure 5
shows the solutions of the two problems in the form of trees.

z2+1

1. fsinx+x2dx@fsinwdw—l—fﬁdw(ﬂG(—cosx)—l—fodxoﬂ?(—cosx)—}— 1

. op3 . op7 . . op6
2. [cosz +sinade = [cosadr + [sinazdz — sinz + [sinzde = sinz + (— cosz)

From these two examples, the procedure Control-rule-learner generates the problem set
{[sinz+2%dz, [cos z+sin zdz} for operator 3, and the singleton sets { [%dxz}, { [sin z dz},
{[coszdz}, for operators 5, 6, and 7 respectively. The MSGs of the singleton sets are the
examples themselves. The parse trees of the two problems [sin z+z?dz and [cos z +sin zdx
for operator 3 are shown in Figure 6. The MSC of the two parse trees are marked with
triangles. The yield of the MSC, [T'rig+ P-term dz, corresponds to the unique MSG of
the two examples.

Generalize computes the MSG of more than 2 examples incrementally by repeatedly
finding the MSC of the parse trees of the current MSG (or the first problem) and the next
problem. We are now ready to state and prove the following theorem.

Theorem 3 Let C be the sel of sentential forms derivable from the start symbol of an
unambiguous context free grammar I'. Let F be the hypothesis space of problem solvers
defined using the select-sets from C. If each domain in the meta-domain M has a problem
solver in F that correclly solves all solvable problems in thal domain, then there is a speedup
learning algorithm for M in F.

Proof: We show that Control-rule-learner is a learning algorithm for M in F by showing
that the conditions of Theorem 2 hold. We already assumed the first condition of Theorem
2, namely the existence of complete problem solvers in F.

456

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

Figure 6: Finding the MSG of the two examples: [sinz + z2dz and [cos + sin zdx

The MSG of a set of problems is unique because I' is unambiguous. As described earlier,
the MSC can be computed in time linear in the number of examples and the sizes of the
parse trees. Since parsing for unambiguous context free grammars can be done in time
O(n?) (Earley, 1970), the MSG of a set of problems can be found in polynomial time. Thus
the second condition of Theorem 2 is satisfied as well.

The third condition of Theorem 2 also holds since membership in select-sets corresponds
to parsing which is an O(n?) problem. Finally, since the number of sentential forms of
length n is at most ¢” for some constant ¢, log |C),| is of the order of O(n), satisfying the
last condition of Theorem 2. Hence it follows that M has a speedup learning algorithm in

F. O

TADEPALLI & NATARAJAN

4.3 Experimental Results

The Control-rule-learner and the Control-rule-problem-solver are implemented in a program
called SIMPLEX, and tested in the symbolic integration domain. The expressions to
be solved are generated using the grammar in Figure 4. The domain has 39 operators
including those in Figure 3, and some differentiation and simplification operators. Solving
a problem consists of removing the integral sign and simplifying the result as much as
possible. In this experiment, we assumed that the solutions to the problems are provided
by an external teacher. To allow controlled experimentation with different training sets, we
implemented the teacher using a set of select control rules. In fact, the teacher’s control
rules themselves were learned from 102 human-generated examples using the Generalize
routine that computes the most specific generalization of a set of problems. FEach such
example consisted of a problem and the best first operator to apply on that problem. In
this domain, each operator might be applicable to many parts of an expression. Hence
the teacher-generated solution of a problem actually consists of a list of parameterized
operators, where the parameter denotes the location (subexpression) at which it is applied.
From these pairs, the program learns the select-sets as described in the previous section.

The problem solvers in the hypothesis space are assumed to employ post-order traversal
of the expression tree to transform subexpressions by applying the operators. Since the
learner’s select-sets are obtained by most specific generalization of the training examples,
and since both the learned problem solver and the target problem solver employ the same
algorithm to traverse the expression tree, by the argument in the proof of Theorem 3, the
learned problem solver is always consistent with the training examples. Hence the theorem
is applicable to this parameterized domain as well.

We trained the system on integration problems that consisted of sums of products of
powers of z and some trigonometric functions of . In particular, each problem was of the
following form, where each coefficient was selected uniformly randomly from all its choices
and independently from all other choices.!

[{0—=9}2B=9 4 {sin z, cos 2,0 — 9} * 22 + {sin z, cos z,0 — 9} x & + {sinz, cos z, 0 — 9}dz

After each training example, the system was tested on a set of 100 test problems. The
test problems were also selected using the same training distribution mentioned before. A
test problem was counted as correctly solved by the learner if its solution exactly matches
that of the teacher. This is a more conservative way of measuring accuracy than counting
the problems which are reduced to equivalent expressions without the integral sign. It also
forces the learner to simplify the results of integration in the same way that the teacher
does.

Figure 7 shows the percentage of the test problems correctly solved from the test set
averaged over 50 training trials plotted against the number of training examples. The
error bars denote one standard deviation intervals on both sides of the mean. The learning
converges quickly reaching 99% accuracy within 30 training examples. This is because each
training example in fact gives raise to many small training experiences, each corresponding
to one operator application.

1. We picked this narrow subset of the problems instead of the entire domain because (a) many problems
in our domain do not have closed form solutions, and (b) since the teacher is to be first trained using
hand-selected examples, it is tedious to do this on a large domain. The learning performance of the
system is not sensitive to this choice of the problem distribution.

458

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

100 | IR IR IR I I BE T
| T %/%/%/%%/% % % %A\irieiciracy .
80 - P B
kd
&
#
60 - K B
4
=) /
IS
S
8 /
2 ‘ f i
40 ~ -
4
///
20 = / -
/
Oé-«é/lllll_'
[0} 5 10 15 20 25 20

Number of training examples

Figure 7: Learning curve for SIMPLEX; the error bars are one standard deviation away
on either side of the mean.

5. Learning macro-operators

A macro-operator (or a macro) is any sequence of operators that achieves a subgoal. Macro-
operators make the grain size of the search space coarser than the space of primitive oper-
ators, thereby increasing the efficiency of search. In this section, we consider the learning
of macro-operators and formalize it using our speedup learning framework.

5.1 A theory of macro-operator learning

Here we make the assumption that states are representable as vectors of n discrete valued
features, where the maximum number of values a feature can take is bounded by a polyno-
mial in n. In Rubik’s Cube, the features are cubie (each of the 26 subcubes) names, and
their values are cubie positions. In Fight Puzzle, the features are tiles, and their values are
tile positions. We use the notation (s!,...,s") to represent a state s, where s' is the value
of its " feature.

A domain D is totally decomposable if the effect of any operator in D on a feature value
is a function of the value of only that feature and is independent of all other feature values
(Korf, 1985). Rubik’s Cube is an example of a totally decomposable domain, because the
effect of any turn on the position of a cubie is completely predictable from the original
position of that cubie. Total decomposability is not obeyed by domains like FEight Puzzle.
In Eight Puzzle, the effect of any operator like up, down, etc. on a tile depends not only
on the position of that tile, but also on the position of the blank. Korf (1985) defined a
more general notion of decomposability called “serial decomposability” which is applicable
to such domains.

459

TADEPALLI & NATARAJAN

A domain is serially decomposable for a given total ordering on the set of features if the
effect of any operator in the domain on a feature value is a function of the values of only that
feature and all the features that precede it (Korf, 1985). If we treat the blank as a special
feature in Eight Puzzle, then Eight Puzzle is serially decomposable for any feature ordering
that orders the blank first. Note that serial decomposability is a property of the domain as
well as its representation. If Eight Puzzle is represented with positions as features and tiles
as their values, then it is not serially decomposable for any ordering of the features.

We assume that the goal is satisfied by a single goal state g described by (g*,...,¢™).
This assumption allows the learner to recognize when the subgoals are achieved. A domain
satisfies operator closure, if the set of solvable states is closed under operators, i.e., every
state reachable from a solvable state by an operator is solvable.

Consider a domain which is serially decomposable for some feature ordering 2. Without
loss of generality, let ©Q be the ordering 1,...,n. A macro table is a table of macros to
achieve a single goal state, where the columns represent the features in the above ordering
and the rows represent their possible values. A macro M;; in the ith column of the ;"
row satisfies the macro-table property if whenever it is used in a solvable state s where the
features 1,...,7 — 1 have their goal values, g',...,¢*"!, and the feature i has the value 7,
the features 1 through i in the resulting state are guaranteed to have the goal values g',

.. g'. A macro ;i is nonredundant if it satisfies the macro-table property and no strict
prefix of M;; satisfies it.

Korf showed that if a domain is serially decomposable and satisfies the operator closure,
then it has a macro table (Korf, 1985). To see why, let #’s stand for some arbitrary
(don’t-care) feature values. For a domain which is serially decomposable with respect to €,
any operator sequence o that takes a state (g',..., ¢ %, 7, %,...,%) to (g}, ..., g% %, ..., %)
satisfies the macro-table property, since the values of features 1 through 7 in the latter state
depend only on their values in the initial state, and not on the values of other features
(represented with *’s). If the domain satisfies operator closure, there is bound to be some
such operator sequence for any solvable state. Moreover, if ¢ is redundant, A;; can be
replaced with its shortest prefix that satisfies the macro-table property. Hence, any serially
decomposable domain that satisfies the operator closure has a macro table that contains
only nonredundant macros. We call such a macro table nonredundant.

If a full macro table with appropriately ordered features is given, then it can be used
to construct solutions from any initial state without any backtracking search as shown in
Figure 8 (Korf, 1985). The features 7 from 1 to n are successively taken to their goal values,
by applying macros M;;, where j is the value of feature 7 in the state before applying
the macro. While the features 1 through ¢ — 1 may not have their goal values during the
application of the macro, they all will regain their goal values along with the feature ¢ by
the end of the application of the macro. Thus, any solvable problem is solved in » macro
applications by such problem solver.

Definition 3 A problem solver f for a domain D € Mg is based on a macro-table M if
there is a total ordering) over the features such that,

1. D s serially decomposable with respect to ; and

2. [constructs its solutions by running Macro-problem-solver on the macro table M with
the feature ordering €.

460

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

procedure Macro-problem-solver

input s /* problem */
solution := “7;
for i := 1 through » do
begin
j 1= s'; /* = the value of the i** feature of s */

solution := Append(solution, M; ;)
s 1= Apply(Mj;, s);
end;
output (solution);
end Macro-problem-solver

Figure 8: Korf’s Macro Problem Solver

Korf’s program fills the macro table by a single backward search from the goal state
(Korf, 1985). In our implementation, macro-operators are learned incrementally by Iterative
Deepening A* (IDA*) search. Given a random problem, the teacher constructs a solution
as follows. It proceeds through the successive columns of the macro-table, starting with the
first column. Before starting the search for a macro-operator in column ¢, the features 1
through i — 1 are assumed to have the goal values already. If the value of the i*" feature
of the problem at hand is j, the teacher program seeks a macro-operator for the 5 row
and the i*" column of the macro table. If there is already a previously learned macro in
this location, the teacher simply applies it to the problem. Because the domain is serially
decomposable with respect to the ordering €2, the features 1 through ¢ reach their goal
values after this application. If there is no such previously learned macro-operator 3;;, the
teacher uses IDA* to search for an operator sequence that brings the features 1 through ¢
to their goal values. It applies this operator sequence to the current problem and proceeds
to the next column. After going through all the columns of the macro-table in this manner,
all the features would have reached their goal values. The entire operator sequence that
transformed the initial state to the final state is returned as the solution.

It is important to note that the above implementation of the teacher is only one of many
possibilities. The teacher oracle might use any other form of search or might be replaced
by a human problem solver. The main requirement of our theory is only that there exists
a target problem solver in the hypothesis space of the learner which is consistent with the
teacher’s problem solver. This requirement is fulfilled by the above implementation of the
teacher because it reuses the macro-operators which are already learned by the learner
whenever possible. This ensures that there is a single macro-table that can generate all
solutions produced by the teacher. We describe a learning method called Serial Parsing,
which works for any implementation of the teacher oracle as long as the above requirement
is satisfied.

461

TADEPALLI & NATARAJAN

The Serial-parser (see Figure 9) uses teacher-given examples to incrementally build the
macro table. To simplify the presentation, we assume that the program is given the number
of features n, and the number of distinct feature values v, which together determine the
problem size of our framework. Both of these can be estimated from examples at the cost
of a little additional complexity of the learning algorithm.

procedure Serial-parser;
input €,6,D = (G,0),n,v;
begin
Let O =A{o;li=1,...,1}
repeat m(e,d,n,v) times
begin
call SOLVED-PROBLEM to obtain (zg, 0);

if o = 1 then continue with the next iteration ;

”
T

/* Apply the operator sequence to the problem */
for £ := 1 through r do
T 1= 0g, (Th_1);
/* Recognize the terminating points for macro-operators */
Operator index p := 0;
for ¢ := 1 through » do
begin

o«
Let 0 = “0g,,05,, ..., 05

ji= CL‘;; /* value of feature ¢ of x,*/
Let k > p be the smallest integer s.t. (z},....2%) = (g%,...,g%)
if M;; is empty
then M;; 1= “0z, 1,00, ;02,7
p =k
end
end
output macro table M

end Serial-parser

Figure 9: Serial Parsing Algorithm.

The idea behind the Serial-parser is simple. It collects a sufficient number of training
problems and their solutions using SOLVED-PROBLEM. To each training problem zq, it
applies its solution sequence obtaining the sequence of intermediate states zy through z,.
Since it is known that the solutions to problems are generated using the macro problem
solver with a known feature ordering, the solution sequence must be a composition of several
macro-operators. It breaks this solution into its constituent macros M;; for each feature ¢
by recognizing the earliest intermediate states in which the first ¢ features obtain their goal
values. The macros are stored in the appropriate cells of the macro-table unless the cells
have already been filled by previously learned macro-operators.

The result of this section can now be stated and proved.

462

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

Theorem 4 Serial-parser with m = %(nv In2 + In %) training examples is a learning algo-
rithm for Mg in Hq, if
1. all domains in Mgq are serially decomposable with respect to Q;

2. Hq is the sel of all problem solvers based on nonredundant macro-tables with the
feature ordering Q for domains in Mgq; and

3. the number of distinct feature values v is bounded by a polynomial function of maxi-
mum problem size n.

Proof: Without loss of generality, assume that € orders the features in the increasing
order.

First, from Figure 8, we observe that the Macro-problem-solver runs in time O(ntl)
assuming that the time to apply a single operator is bounded by ¢ and the maximum length
of a macro in the macro table is bounded by [. Hence Hq is a set of polynomial-time
problem solvers.

The Serial-parser stores the shortest operator subsequence that occurs between any state
(g4 g8, 4%, oo %), and (g, ,g" Lg%, %, ..., *) as the macro M;;. Since the domain
is serially decomposable for the feature ordering 1,...,n, the effect of any operator or
macro-operator on features 1 through ¢ is not dependent on the values of features greater
than 7. Hence, it satisfies the macro-table property. In fact, M;; must be identical to the
corresponding macro in the target problem solver’s macro table. This is so because the
target problem solver is based on a nonredundant macro table, and any subsequence of the
solution which has M;; as a strict prefix would be redundant. Since all the macros present
in the solutions of the training problems are thus correctly extracted by the Serial-parser,
the Macro-problem-solver will be able to reproduce the solutions of all these problems using
the learned macro table. Hence the problem solver output by the learning algorithm is
consistent with the training sample.

Since the macros extracted by the Serial-parser always match the corresponding macros
in the target macro table, the only way in which the learned macro table might fail to
produce a solution given by the teacher is when some necessary macro-operator in the
target macro table has never been learned. Since there are n rows and v columns, there are
at most nv macros, and any subset of these macros could be missing in a learned macro
table. Hence the number of different macro tables or problem solvers that can be learned
from a given target macro table is upper-bounded by 2. This is the effective hypothesis
space of the learner. Hence, by Theorem 1, m = %(mj In2 +1In %) examples is sufficient to
ensure learnability.

It is easy to see from Figure 9 that the running time of Serial-parser is bounded by
O(mrnt), where r is the length of longest solution in the training sample, and the other
parameters are as defined above. Since m = O("*In %), the run time of Serial-parser is
polynomial in all the required parameters. Hence it is a speedup learning algorithm for
Mg in Hq. O

The above theorem shows that the Serial-parser exploits serial decomposability, a problem-
space structure which allows it to compress the potentially exponential number of solutions
into a polynomial size macro table. Serial Parsing requires that the teacher’s solutions
(provided by the SOLVED-PROBLEM) can be derived using a single problem solver, i.e.,
a single macro table. We satisfied this requirement by letting the teacher search for a

463

TADEPALLI & NATARAJAN

macro-operator to solve a subgoal only when such macro-operator has not been previously
learned. This ensures that there is always a macro table in the learner’s search space which
is consistent with all the solutions generated thus far. This approach closely integrates the
“learner” and the “teacher” and brings our system closer to the previous implementations
of unsupervised speedup learning such as SOAR (Laird et al., 1986).

To see the importance of the above requirement, consider what happens if the teacher
uses some form of admissible search algorithm to give an optimal solution to every Eight
Puzzle problem it is asked to solve. If the problems are chosen uniformly randomly, it is
highly unlikely that all these optimal solutions can be derived from any single macro-table.
The difficulty of finding optimal solutions for the N x N generalization of Eight Puzzle
argues even more strongly against that possibility for bigger puzzles (Ratner & Warmuth,
1986). This suggests that the teacher is not free to use any problem solving or search method
to solve problems, if the learning has to be successful. However, if the learner is allowed
to ask queries, i.e., ask the teacher to solve carefully designed problems, the situation is
different. Then the learner can ask the teacher to solve a problem designed specifically so
that its solution would fit a particular cell in the macro-table. In fact, in our experiment
described in the next section, the teacher uses search only to solve the subproblems that
correspond to individual cells in the macro-table. Instead of interpreting this as the teacher
ensuring that there is a single macro-table which is consistent with all its solutions, we can
think of the teacher to be just the search program which solves the subproblems. Given a
problem, the learner decomposes it into subproblems and tries to use the already learned
macro-operators in its macro-table to solve them. Whenever a particular subproblem does
not have a corresponding macro-operator in its table, it simply calls the “teacher” to solve
it by search and stores the solution in its table. This is analogous to asking membership
queries in one of Angluin’s models of PAC learning (Angluin, 1988). With this membership
query model, it is no longer required that there is a problem solver in the learner’s hypothesis
space which is consistent with the teacher’s solutions. There is also no guarantee that the
learner and the teacher produce the same solutions on random problems. In fact, this is
most likely not the case, because the learner uses the macro-table to produce its solutions
and the teacher may not. For example, if the teacher always finds the shortest solution to a
problem by search, then its solutions to randomly chosen problems are likely to be shorter
than those produced by the learner.

5.2 Experimental Results

In this section, we illustrate an application of the theory to the Eight Puzzle domain.

In Eight Puzzle, let r, |, u, and d represent the primitive operators of moving a tile right,
left, up, and down respectively. Macros are represented as strings made up of these letters.
For example, the string “dr” represents down followed by right. For notational ease, features
(tiles) are labeled from 0 to 8, 0 standing for the blank and ¢ for tile ¢. From the argument
of the previous section, it is serially decomposable for the feature ordering 0 through 8. A
macro M;; represents the sequence of moves needed to get the it" tile to the goal position
from its current position j, while preserving the positions of all previous tiles including the

blank.

464

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

6 3
dr = rdlu

S(|7 2[5

C (b) ©)| gruuldrdiu
urdl uldrurdllurd
2113 1112113 1([2

8 N |[7 Nle___|[56 7

(f) (€) (d)

Figure 10: An Fight Puzzle problem and the intermediate subgoals. The macro-operators
solve the successive subgoals.

The teacher is implemented as described in the previous section. If there is an applicable
macro-operator which is previously learned to solve the next subgoal, it uses it. Otherwise,
it uses IDA* with the Manhattan-distance heuristic. Since the teacher program is search-
based and uses the current macro-table of the learner, our implementation actually blurs the
distinction between the teacher and the learner, and more closely approximates the speedup
learning systems such as SOAR and PRODIGY which learn in unsupervised mode, i.e.,
without being given the solutions.?

The board position (a) in Figure 10 represents the initial state and the board position
(f) represents the goal state. The tile positions are numbered by the tile numbers in the
goal state, which are assumed to be fixed. Hence the top left tile position is numbered 1,
top middle tile position is numbered 2, and so on. The center tile position is numbered 0.
Given the problem in the figure, our program looks for a macro-operator that solves the
first subgoal. If the given feature ordering is 0 through 8, it first tries to take the blank
from position 5 to its goal position, 0. Assuming that there is already a macro-operator
M;so = “dr” learned, it uses that macro, reaching the position (c) in the figure. It then
looks for a macro-operator that takes tile 1 and the blank to their goal positions. Assuming
that this macro-operator has not already been learned, it uses IDA* and finds that the

2. In fact, to make our implementation cleaner and more efficient, the teacher, rather than giving the entire
solution to a problem to the learner which it should then parse into macro-operators, directly gives it
new macro-operators found by search. They are simply stored by the learner in its macro-table. This
avoids the serial parsing step which would be needed if the teacher program is opaque.

465

TADEPALLI & NATARAJAN

macro-operator “rdlu” is appropriate in that it brings both the tile 1 and the blank to their
goal positions. It applies this macro-operator, reaching the board position (b). It stores this
macro in its table as Mj 1, since the position of tile 1 in board (b) is 2. It proceeds similarly
through tiles 2 to 8, bringing them into their goal positions and learning new macros when
needed. Note that since tiles 3 and 4 both have reached their goal positions along with tile
2 in board (d), a null macro will be stored in the corresponding cells of the macro-table,
M3 3 and My 4 respectively. Thus, from this example alone, the program can potentially
learn 7 macros including the null macros.

The program was trained with 40 training examples using a fixed macro-table and tested
after each 2 training examples on a sample of 100 random test examples. The training and
test examples were selected using the uniform distribution over all solvable problems. The
results in Figure 11 are averages over 50 different training sets. The error bars denote one
standard deviation intervals on both sides of the mean. The learning converges quickly
reaching a 98.7% average accuracy within 40 training examples. As can be expected, this is
much smaller than the worst-case theoretical bound of 585 examples with é = 0.1 and 90%
accuracy (€ = 0.1). Knowing that there are only 35 nontrivial macros in the Eight-Puzzle
domain reduces the theoretical bound to 266, which is still much higher than the examples
needed in practice.

o A | 53555 cta

80 - 7 -

60 — % -

Accuracy

40 ~ 4 -

; /
: /
; s
/
20 - % -
//
: S
: ,

fo) $.$,$_$/§'§,/ ,,,,, L 1 O O |
[0} 5 10 15 20 25 30 35 40
Number of Training Examples

Figure 11: Learning curve for the macro-operator learning program; the error bars are one
standard deviation away on both sides of the mean.

The sigmoid shape of the learning curve is worth noting. In the beginning, the learning is
slow because solving a new test problem requires correct macro-operators for all the subgoals
in its solution. With only a limited experience, it is likely that one or more of these are
missing, which means that the problem cannot be solved. But with training, the effect
of multiple learning experiences that correspond to the different subgoals in each training
example enhances the learning speed, leading to a steep increase in the performance.

466

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

6. Discussion and Related Work

Recently, there have been a few formal frameworks proposed to capture speedup learning.
For example, Cohen (1992) analyzes a “Solution Path Caching” mechanism and shows that
organizing the solutions of the training problems in a tree and restricting the search of the
problem solver to this tree improves the performance of the problem solver in the sense of
reducing the number of nodes searched with a high probability. However, Cohen’s results do
not guarantee an eventual convergence to an efficient problem solver, but only to an optimal
problem solver achievable by restricting the search to the tree of solutions of the training
problems. By defining learning as producing a polynomial-time problem solver as opposed
to simply running faster than the original problem solver, we have more stringent conditions
on successful learning in our framework. For example, in domains like the Eight Puzzle,
Solution Path Caching will produce an exponentially large tree of solutions, since each
solution generated by the macro-table is stored as a path in the tree. Learning such large
trees will need exponentially large number of examples and exponentially long running time.
In retrospect, this is not surprising because solution path caching is a weak learning method
that does not assume or exploit any structure in the problem space. Either a domain has
some structure and hence significant speedup is achievable by exploiting it in some learning
algorithm, or it does not have any structure, in which case learning can only have limited
benefit. We believe that the role of a theory of speedup learning is to distinguish between
these two cases, and provide learning algorithms for cases in which significant speedups are
achievable. The validity of this general methodology is already borne out by the rich body
of results in computational learning theory literature in the context of concept learning.
Our aim is to transfer this methodology to speedup learning, identify problem domains for
which effective speedup is possible, and build speedup learning algorithms for them.

Our work was originally aimed at formalizing a form of Explanation-Based Learning
(EBL) (Tadepalli, 1991a). EBL constructs a proof of how a problem is solved in the training
example using an explicit form of domain theory, and then generalizes and transforms
that proof to a control rule or a macro-operator, which is justified by the original domain
theory (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986; Minton, 1990;
Shavlik, 1990). Like Solution Path Caching, EBL is a weak learning method, and in general,
cannot be expected to improve the performance. Indeed, the results in the speedup learning
literature suggest that EBL could lead to problem solvers which are much more inefficient
than the original problem solvers (Minton, 1990; Etzioni, 1993). However, depending on
the structure of the problem space used, and the way in which EBL’s domain theory is
coded and used, it is possible for EBL to learn successfully in some situations. For example,
Etzioni showed that in the PRODIGY system, EBL’s success hinges on its ability to find
constant-size nonrecursive proofs that show that choosing some operators in certain states
is always bad (or always good) (Etzioni, 1993). Such constant-size proofs result in constant-
size control rules, which are inexpensive to match. If there is a finite set of such control
rules that can reduce the number of states expanded in problem solving from an exponential
function of the state size to a polynomial function, the problem solving can be guaranteed
to take only polynomial time (Etzioni, 1993, Proposition 2.1., pg. 102). Etzioni’s original
system STATIC exploited this structural feature of the problem space to learn efficient
problem solvers without using any examples (Etzioni, 1993). A subsequent system called

467

TADEPALLI & NATARAJAN

DYNAMIC used examples to identify the problems to be explained (Perez & Etzioni, 1992).
The examples play two roles in our theory: first, they provide distribution information that
determines which macro-operators or control rules are worth learning, and second, they
help the learner avoid expensive search for solutions. Perez and Etzioni (1992) separate
these two roles, and use examples only to learn the distribution information.

While the conclusions of Etzioni (1993) may be read as too pessimistic for rules derived
from recursive explanations, our results with macro-tables show that Explanation-Based
Learning can be used to learn efficient polynomial-time problem solvers for arbitrary prob-
lem distributions, if the domain exhibits some structure such as serial decomposability. The
application of our theory to learning macro-operators can be used to explain the success
of SOAR in domains like Eight Puzzle (Laird et al., 1986). (The version of EBL used
in SOAR is called Chunking.) Recall that Serial Parsing is given the order in which the
subgoals are achieved. In systems like SOAR that successfully learn macros using EBL,
the goal ordering is implicitly given by defining the subgoals such that they are successively
inclusive (Laird et al., 1986). For example, in Eight Puzzle, the goals are “getting the blank
in correct position,” “getting the blank and tile 1 in correct positions,” “getting the blank
and tiles 1 and 2 in correct positions,” and so on. This representational trick combined
with the serial decomposability of the domain is mainly responsible for SOAR’s success in
learning macro-operators in Eight Puzzle.

The differences between Serial Parsing and EBL/chunking algorithms are worth consid-
ering. Unlike the operators used in EBL, the operators of Serial Parsing are opaque, and
are not inspectable by the learning mechanism. To some extent, SOAR’s operators are
also opaque to its learning method in that the learning mechanism has only knowledge of
which objects are “touched” by the operators, but does not have access to the operators
themselves (Laird et al., 1986).> This suggests that, unlike in EBL (Mitchell et al., 1986),
it is not necessary to have access to declaratively represented operators to achieve speedup
using macro-operators. Knowing the feature ordering which makes the domain serially
decomposable is sufficient to infer the appropriate conditions to apply a macro-operator,
which is the main goal of chunking or the EBL process. If such a feature ordering is not
known, neither EBL nor chunking might converge with a small number of macro-operators
without some kind of utility analysis (Minton, 1990).

Tadepalli (1991b) describes a method called Batch Parsing, which learns the correct
feature ordering along with the macro table. The basic idea here is to learn the macro table
column by column, using multiple examples to disambiguate the feature that corresponds
to a given column. While this method works without backtracking for Eight Puzzle, it
is possible to construct domains for which it gets misled into wrong feature choice, and
needs to backtrack.* It is not known whether there is a provably correct speedup learning
algorithm that learns a correct feature ordering and the macro-table, from examples of
solutions constructed from that macro-table. Bylander (1992) shows that detecting serial
decomposability without examples is NP-hard in general. The existence of macro-tables is
only guaranteed if there is a unique goal state and the operator closure is satisfied. Checking
these properties is, in general, PSPACE-hard (Bylander, 1992). However, it may be easier

3. SOAR also makes the macro-table method applicable to any goal using another representational trick,
i.e., by parameterizing the tiles rather than labeling them with fixed numbers.
4. We thank Prasad Chalasani for illustrating this.

468

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

to check these properties under some conditions. For example, Chalasani et al. (1991)
describe an algorithm that detects serial and total decomposability for permutation groups
(Chalasani, Etzioni, & Mount, 1991). If the operators are defined in STRIPS notation,
it may sometimes be possible to check sufficient conditions for serial decomposability by
constructing a graph of dependencies among the domain features and checking that it has
no cycles. Similarly a sufficient condition for operator closure is that every operator has an
inverse, which may be possible to check if we have access to explicit definitions of operators.

There is a lot of interesting theoretical work in the area of speeding up logic programs.
Greiner and Likuski (1989) introduced a model of speedup learning where redundant macro-
rules are added to a base-level domain theory of Horn-rules (Greiner & Likuski, 1989;
Greiner, 1991). Subramanian and Hunter (1992) extended this work by developing fine-
grained cost models for theorem proving in recursive Horn-theories and using them to
derive “utility theorems” that describe the conditions under which such redundant macro-
rule learning is beneficial. Greiner and Jurisica (1992) describe a method called PALO
that is based on hill climbing over a set of optimization transformations on the problem
solver. Each transformation is only made if it significantly improves the problem solver’s
performance on a randomly chosen set of training problems. The program is guaranteed
to converge to an approximate locally optimal problem solver with a high probability. The
work of Gratch and DeJong (1992) in the COMPOSER system follows a similar strategy
of applying a series of transformations which are proved useful on a training sample until
the performance no longer improves.

One difference between our approach and all these methods is that our cost model is
much more coarse than the others. In particular, we only require that the output problem
solver must run in polynomial time, while the previous works have more fine-grained cost
models. An advantage of the fine-grained models is that they could make more precise
predictions. However, one also needs to know a lot more information such as problem
distributions to make these predictions. In contrast, our goal is to identify structure in
the problem space that guarantees qualitatively significant speedup with a reasonably small
amount of training. In other words, we are seeking robust results which may not be as
fine grained, but exploit interesting problem-space structure, and are amenable to coarse
theoretical analysis.

There is a lot of scope for combining these two kinds of models, however. A coarse
model may be used to make a quick and dirty analysis of the domain and identify possible
optimizations and resulting speedups, and a detailed model may then be used to fine-tune
the optimizations. For example, one of the interesting theorems proved by Subramanian
and Hunter (1992)is that even adding a single redundant macro-rule which can be proved or
disproved in a constant time can increase the overall cost of theorem proving exponentially!
The reason for this is that macro-rules increase the number of different ways a goal may
be proved, and increase the branching factor of search. Even a small increase in branching
factor from 1 to 2 could exponentially increase the theorem proving cost for some problem
distributions. The authors identify a condition called “separability,” which, if preserved by
the macro-rule learner, will have no negative impact and might have exponential benefit.
Simply stated, separability exists when exactly one choice of rule is explored at every node
in every computation, and hence corresponds to backtrack-free search. Not surprisingly, our
problem solvers which are based on control rules and macro-operators also rely on backtrack-

469

TADEPALLI & NATARAJAN

free search for efficiency. In fact, Subramanian and Hunter (1992) present an example where
adding a single redundant macro-rule creates separability of the sort present in our macro-
tables, thereby exponentially speeding up problem solving. It would be interesting to explore
ways of transforming domain theories in a way that separability is preserved or created.

Our framework captures both empirical and explanation-based speedup learning meth-
ods in a uniform manner. Our SIMPLEX system is designed after LEX(1), which is
described as an “empirical learning system” (Mitchell et al., 1983), and our macro-table
learner is similar to SOAR, which is described as an “explanation-based learner” (Laird
et al., 1986). We view the speedup learning problem as one of finding a close approximation
of the target problem solver from examples of that problem solver and the domain specifi-
cation by efficiently searching the hypothesis space of problem solvers. Generally there are
two kinds of constraints obeyed by the problem solvers in the hypothesis space. One kind
are the semantic constraints which are obeyed by all domains in the meta-domain. For ex-
ample, serial decomposability is such a constraint. The other kind are syntactic constraints
on the structure of the target problem solver. For example, the constraints that the target
problem solver is organized as a macro-table or as a set of control-rules with left hand sides
which are sentential forms of a grammar are examples of syntactic constraints. The syn-
tactic and semantic constraints on the target problem solver help bias the learner, in that
they improve its ability to generalize from a small number of training examples. Generally
speaking, the semantic constraint is stronger in EBL systems and the syntactic constraint
is stronger in empirical learning systems. Depending on the structure of these two kinds of
constraints, the learner may adopt a variety of search strategies to find an approximation to
the target problem solver in the hypothesis space. In general, all speedup learning systems
assume that their representational structures — macros, control rules, or whatever else —
are adequate to succinctly represent the control knowledge needed to efficiently solve the
problems in their domain. In addition to syntactic and semantic biases which restrict the
hypothesis space of problem solvers, a learning system might also incorporate preference
biases, for example, prefer shorter rules, or rules derived from shorter explanations. Bias
specifies the conditions under which learning succeeds and also provides the justification for
the learning algorithm.

Speedup learning systems sometimes suffer from what has been called the “utility prob-
lem,” which is the inefficiency of the learned problem solver caused by the proliferation
of learned control knowledge which is too expensive to use (Minton, 1990). Our approach
suggests that the utility problem can be solved in some cases by constraining the target
problem solver so that it only learns efficient forms of control knowledge (properly indexed
macro-operators or control rules) and uses them in a controlled fashion. Since the utility
problem is unsolvable in general (Minton, 1990), our approach suggests a way to identify
the cases in which it can be solved and precisely characterize them.

Khardon (1996) extends our work to the reinforcement learning problem where the goal
is to learn an eflicient action strategy, i.e., a mapping from sensory inputs to actions, in
a stochastic domain. Unlike the typical reinforcement learning algorithms where action
strategies are learned indirectly by learning value functions over states or state-action pairs
(Kaelbling, Littman, & Moore, 1996), here the approach is to learn them directly by em-
pirical generalization of action sequences observed from a knowledgeable teacher. Khardon
shows that action strategies represented as systems of parameterized production rules with

470

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

small preconditions are efficiently learnable in this framework using a greedy algorithm sim-
ilar to that of Rivest (1987). Also, unlike in reinforcement learning, the goal is to closely
approximate the teacher’s action strategy rather than to learn the optimal strategy. One
interesting fact about this approach is that, unlike in the current reinforcement learning
methods (Russell & Parr, 1995; Littman, Cassandra, & Kaelbling, 1995), it has no partic-
ular difficulty with problems where the state is only partially observable.

7. Future Work

To apply our work to Al planning domains such as the blocks world, we need to extend
our results to richer hypothesis spaces that include first order relational predicates. There
are many challenges in such domains. Concept learning from examples in such structural
domains is known to be intractable (Haussler, 1989). This means that we have to extend
our model to allow other kinds of information. For example, the learner might be allowed
to pose its own problems to the teacher, a natural extension to the paradigm of membership
queries (Angluin, 1988). Reddy et al. (1996) report a speedup learning method that learns
recursive decomposition rules for planning from examples and membership queries (Reddy,
Tadepalli, & Roncagliolo, 1996). A decomposition rule recursively decomposes a goal into
a number of subgoals and primitive actions. As in the SIMPLEX program, the learning
algorithm here needs to find a generalization of a set of positive examples. However, without
the membership queries, finding a most specific generalization of a set of examples is known
to be NP-hard (Haussler, 1989). The queries make it possible to find a generalization
incrementally, by verifying whether each literal in the condition is relevant to the rule.
We plan to extend this work to real-time domains where actions are nondeterministic and
planning and execution are interleaved.

We showed that our work is applicable to the supervised setting, in which a human
teacher provides solutions to problems (DeJong & Mooney, 1986; Shavlik, 1990), as well as
to the unsupervised setting, where the solutions are generated by a search program (Laird
et al., 1986; Minton, 1990; Tadepalli, 1992). Natarajan (1989) takes a middle course between
these two extremes. The teacher is assumed to supply to the learner a set of randomly chosen
“exercises” — useful subproblems that help solve the problems that naturally occur in the
domain. This is very much similar to the exercises one might find at the end of a text book
dealing with, say, symbolic integration or differential equations. The learner is required to
converge in polynomial time and with polynomial number of exercises. Natarajan (1989)
proves that the conditions suflicient for learning from solved problems as in this paper are
sufficient for learning from exercises as well.

One of the challenges of unsupervised speedup learning is the “multiple image problem.”
In supervised speedup learning, we usually assume that the teacher’s solutions are all con-
sistent with a single problem solver in the hypothesis space. The reason that this is crucial
is that every problem in the domain may have multiple solutions (images). For example,
there are usually many routes to go to one’s office from home, and there may be many ways
of fixing a bicycle. In the absence of a teacher who ensures that all the solutions of the
examples are consistent with a single problem solver, the learner has to decide if there is
a target problem solver consistent with a given set of solutions or not. In other words, it
has to select solutions of problems in such a way that at least one target problem solver

471

TADEPALLI & NATARAJAN

is always retained in its current effective hypothesis space. We solved this problem in the
case of Eight Puzzle by exploiting the fact that domains like Fight Puzzle have a special
structure, namely serial decomposability, which allows them to have macro tables. This
allowed the learner to fill any cell of the macro-table with any macro-operator that solves
the corresponding subgoal, while not losing the property that the remaining macro-table
can be correctly filled by other macro-operators. However, this kind of property may not
hold in general in a new domain. The computational constraint that the final problem
solver output by the learner must be efficient makes this particularly difficult.

Thus far we have not considered the solution quality in our analysis. In many domains
like the blocks world, scheduling, and N X N generalizations of 8-puzzle, it is not difficult
to find some solution to a problem, while finding optimal solutions is NP-hard (Guptha &
Nau, 1992; Garey & Johnson, 1979; Ratner & Warmuth, 1986). Hence, to find reasonably
good solutions in reasonable time, the learning system must make some tradeoffs. While
this is achievable somewhat easily in the supervised speedup learning framework by having
a helpful teacher who provides solutions that make reasonable tradeoffs, it considerably
complicates the multiple image problem in unsupervised speedup learning. For example,
a learner that always selects optimal solutions to the training problems, and constructs
a consistent problem solver from them, may have to sacrifice efficiency of the resulting
problem solver. Similarly a learner that always generalizes from easily found solutions may
have to sacrifice solution quality. It is a challenging problem to design learning systems
that make this tradeoff in an optimal fashion.

8. Conclusions

We presented a unifying formal framework to study speedup learning. Our work draws upon
the extensive body of work on Probably Approximately Correct (PAC) learning. Unlike in
the standard uses of PAC-learning to concept learning situations, here the learner has access
to a domain-specification in terms of goals and operators, which is used to constrain the
hypothesis space of problem solvers. The examples play two roles in our theory: first, they
provide distribution information that determines which macro-operators or control rules are
worth learning, and second, they help the learner avoid expensive search for solutions.

Our work closely integrates a number of areas which have been hitherto thought of as
different — explanation-based learning, PAC learning, and empirical learning, in particular.
We showed how the same framework can be used to describe learning algorithms that
learn different forms of control knowledge, such as control rules and macro-operators. By
introducing a single framework for speedup learning that captures seemingly dissimilar
systems, we hope to have shown the underlying similarity of all these methods. In the
future, we plan to extend this work to Al planning domains with richer representations and
to real-time problem solving. Learning from exercises and learning to improve the quality
of solutions are also worth pursuing.

Acknowledgments

The first author is supported by the National Science Foundation under grant number
IRI-9520243 and the Office of Naval Research under grant number N00014-95-1-0557. We

472

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

thank Tom Amoth, Prasad Chalasani, Tom Dietterich, Oren Etzioni, Nick Flann, Sridhar
Mahadevan, Steve Minton, Tom Mitchell, Barney Pell, Armand Prieditis, and Chandra
Reddy for many interesting discussions on this topic. Thanks to William Cohen, Roni
Khardon, Steve Minton, and the reviewers of this paper for their thorough and helpful
comments, and to Padmaja Akkaraju for her careful proof-reading.

References

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4), 319-342.

Anthony, M., & Biggs, N. (1992). Computational Learning Theory. Cambridge University
Press, New York, NY.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4), 929-965.

Bylander, T. (1992). Complexity results for serial decomposability. In Proceedings of Na-
tional Conference on Artificial Intelligence, pp. 729-734. San Jose, CA. AAAI Press.

Chalasani, P., Etzioni, O., & Mount, J. (1991). Detecting and exploiting decomposabil-
ity in update graphs. In 2nd International Conference on Principles of Knowledge
Representation and Reasoning, pp. 89-98. Cambridge, MA.

Cohen, W. (1992). Using distribution-free learning theory to analyze solution path caching
mechanisms. Computational Intelligence, 8(2), 336-375.

DelJong, G., & Mooney, R. (1986). Explanation based learning: An alternative view. Ma-
chine Learning, 1, 145-176.

Earley, J. (1970). An efficient context-free parsing algorithm.. Communications of ACM,
13(2), 94-102.

Etzioni, O. (1993). A structural theory of explanation-based learning. Artificial Intelligence,
60(1), 93-139.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman.

Gratch, J., & DeJong, G. (1992). CoMPOSER: A probabilistic solution to the utility problem
in speedup-learning. In Proceedings of National Conference on Artificial Intelligence,
pp- 235-240. San Jose, CA. AAAI Press.

Greiner, R. (1991). Finding the optimal derivation strategy in a redundant knowledge base.
Artificial Intelligence, 50(1), 95-116.

Greiner, R., & Jurisica, . (1992). A statistical approach to solving the EBL utility problem.
In Proceedings of National Conference on Artificial Intelligence, pp. 241-248. San Jose,
CA. AAAT Press.

473

TADEPALLI & NATARAJAN

Greiner, R., & Likuski, J. (1989). Incorporating redundant learned rules: A preliminary
formal analysis of EBL. In Proceedings of International Joint conference on Artificial
Intelligence, pp. 744-749. Detroit,MI. Morgan Kaufmann.

Guptha, N., & Nau, D. (1992). On the complexity of blocks world planning. Artificial
Intelligence, 56(2-3), 223-254.

Haussler, D. (1989). Learning conjunctive concepts in structural domains. Machine Learn-
ing, 4, 7—40.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237-285.

Kearns, M. J., & Vazirani, U. V. (1994). An Introduction to Computational Learning Theory.
The M.I.T. Press, Cambridge, MA.

Khardon, R. (1996). Learning to take actions. In Proceedings of National Conference on
Artificial Intelligence. Portland, OR.

Korf, R. (1985). Macro-operators: a weak method for learning. Artificial Intelligence, 26,
35-77.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in soar: The anatomy of a general
learning mechanism. Machine Learning, 1, 11-46.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear
threshold algorithm. Machine Learning, 2, 285-318.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Learning policies in partially
observable environments: Scaling up. In Proceedings of the International Machine
Learning Conference, pp. 362-370. Morgan Kaufmann.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning.
Artificial Intelligence, 42(2-3), 363-391.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation based generalization: A
unifying view. Machine Learning, 1, 47-80.

Mitchell, T., Utgoff, P., & Banerji, R. (1983). Learning by experimentation: Acquiring and
refining problem solving heuristics. In Michalski, R., Carbonell, J., & Mitchell, T.
(Eds.), Machine Learning, pp. 163-190. Tioga, Palo Alto, CA.

Natarajan, B. (1987). On learning Boolean functions. In Proceedings of the 19t ACM
Symposium on Theory of Computing, pp. 296-304. ACM Press.

Natarajan, B. (1989). On learning from exercises. In Proceedings of the 2"¢ Annual Work-
shop on Computational Learning Theory, pp. 72-87. Santa Cruz, CA.

474

A ForRMAL FRAMEWORK FOR SPEEDUP LEARNING

Natarajan, B. (1991). Machine Learning: A Theoretical Approach. Morgan Kaufmann, San
Mateo, CA.

Natarajan, B., & Tadepalli, P. (1988). Two new frameworks for learning. In Proceedings of
the International Machine Learning Conference, pp. 402-415. Ann Arbor, MI.

Perez, M. A., & Etzioni, 0. (1992). Dynamic: A new role for training problems in EBL.
In Proceedings of the International Machine Learning Conference, pp. 367-372. Ab-
erdeen, Scotland. Morgan Kaufmann.

Ratner, D., & Warmuth, M. (1986). Finding a shortest solution for the N x N extension of
the 15-puzzle is intractable. In Proceedings of the National Conference on Artificial
Intelligence, pp. 168-172. Philadelphia, PA. Morgan Kaufmann.

Reddy, C., Tadepalli, P., & Roncagliolo, S. (1996). Theory-guided empirical speedup learn-
ing of goal decomposition rules. In Proceedings of the Internalional Machine Learning
Conference. Bari, Italy.

Rivest, R. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.

Russell, S., & Parr, R. (1995). Approximating optimal policies for partially observable
stochastic domains. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1088-1094. Montreal, CA.

Shavlik, J. (1990). Acquiring recursive and iterative concepts with explanation-based learn-
ing. Machine Learning, 5, 39-70.

Subramanian, D., & Hunter, S. (1992). Measuring utility and the design of provably good
EBL algorithms. In Proceedings of the International Machine Learning Conference,
pp- 426-435. Aberdeen, Scotland. Morgan Kaufmann.

Tadepalli, P. (1991a). A formalization of explanation-based macro-operator learning. In
Proceedings of International Joint conference on Artificial Intelligence, pp. 616-622.
Sydney, Australia. Morgan Kaufmann.

Tadepalli, P. (1991b). Learning with inscrutable theories. In Proceedings of Machine Learn-
ing Workshop, pp. 544-548. Chicago, IL. Morgan Kaufmann.

Tadepalli, P. (1992). A theory of unsupervised speedup learning. In Proceedings of National
Conference on Artificial Intelligence, pp. 229-234. San Jose, CA. AAAI Press.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive chunks and
its solution by restricting expressiveness. Machine Learning, 5(3), 299-348.

Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134~
1142.

