
Journal of Arti�cial Intelligence Research 5 (1996) 95{137 Submitted 3/96; published 9/96

Accelerating Partial-Order Planners: Some Techniques for

E�ective Search Control and Pruning

Alfonso Gerevini gerevini@ing.unibs.it

Dipartimento di Elettronica per l'Automazione, Universit�a di Brescia

Via Branze 38, I-25123 Brescia, Italy

Lenhart Schubert schubert@cs.rochester.edu

Department of Computer Science, University of Rochester

Rochester, NY 14627-0226, USA

Abstract

We propose some domain-independent techniques for bringing well-founded partial-
order planners closer to practicality. The �rst two techniques are aimed at improving
search control while keeping overhead costs low. One is based on a simple adjustment to
the default A* heuristic used by ucpop to select plans for re�nement. The other is based
on preferring \zero commitment" (forced) plan re�nements whenever possible, and using
LIFO prioritization otherwise. A more radical technique is the use of operator parameter
domains to prune search. These domains are initially computed from the de�nitions of
the operators and the initial and goal conditions, using a polynomial-time algorithm that
propagates sets of constants through the operator graph, starting in the initial conditions.
During planning, parameter domains can be used to prune nonviable operator instances and
to remove spurious clobbering threats. In experiments based on modi�cations of ucpop,
our improved plan and goal selection strategies gave speedups by factors ranging from 5
to more than 1000 for a variety of problems that are nontrivial for the unmodi�ed version.
Crucially, the hardest problems gave the greatest improvements. The pruning technique
based on parameter domains often gave speedups by an order of magnitude or more for
di�cult problems, both with the default ucpop search strategy and with our improved
strategy. The Lisp code for our techniques and for the test problems is provided in on-line
appendices.

1. Introduction

We are concerned here with improving the performance of \well-founded" domain-independ-
ent planners { planners that permit proofs of soundness, completeness, or other desirable
theoretical properties. A state-of-the-art example of such a planner is ucpop (Barrett
et al., 1994; Penberthy & Weld, 1992), whose intellectual ancestry includes strips (Fikes &
Nilsson, 1971), tweak (Chapman, 1987), and snlp (McAllester & Rosenblitt, 1991). Such
planners unfortunately do not perform well at present, in comparison with more practically
oriented planners such as sipe (Wilkins, 1988), prs (George� & Lansky, 1987), or O-Plan
(Currie & Tate, 1991).

However, there appear to be ample opportunities for bringing well-founded planners
closer to practicality. In the following, we begin by suggesting some improvements to
search control in planning, based on more carefully formulated strategies for selecting partial
plans for re�nement, and for choosing open conditions in a selected partial plan. Our plan-

c
1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Gerevini & Schubert

selection strategy uses S+OC { the number of steps in a plan plus the number of open
conditions still to be established { as a heuristic measure for ucpop's A* search of the
plan space. (Addition of an attenuated term re
ecting the number of threats or \unsafe
conditions" UC, such as 0.1UC, is sometimes advantageous.)1 Our
aw-selection strategy,
which we term ZLIFO, prefers \zero commitment" plan re�nements to others, and otherwise
uses a LIFO (stack) discipline. Zero commitment re�nements are logically necessary ones:
they either eliminate a plan altogether because it contains an irremediable
aw, or they add
a unique step or unique causal link (from the initial state) to establish an open condition
that cannot be established in any other way. The strategy is closely related to ones proposed
by Peot & Smith (1993) and Joslin & Pollack (1994) but generally appears to perform better
than either.

We describe these two classes of techniques in Section 2 below, and in Section 3 we
report our experimental results based on slightly modi�ed versions of ucpop.2 For the
more di�cult problems taken from the available ucpop test suite and elsewhere, we obtain
improvements by factors ranging from 5 to more than 1000, with the hardest problems
giving the greatest improvements.

We then turn to our proposal for using computed operator parameter domains during
planning. In particular, in Section 4 we motivate and describe a method of precomput-
ing parameter domains based on propagating sets of constants forward from the initial
conditions.3 The process is iterative, but the algorithm runs within a time bound that is
polynomial in the size of the problem speci�cation. We provide details of the algorithm,
along with theorems about its correctness and tractability, in Sections 4.2{4.3 and Online
Appendix 1.

In Section 5 we show how to use parameter domain information in a ucpop-style plan-
ner. During planning, parameter domains can be used to prune operator instances whose
parameter domains are inconsistent with binding constraints, and to eliminate spurious
threats that cannot, in fact, be realized without violating domain constraints. We illustrate
the e�ectiveness of this technique with examples drawn from the ucpop test suite as well as
from the trains transportation planning world developed at Rochester (Allen & Schubert,
1991; Allen et al., 1995). In some of these tests, we apply the parameter domain information
in the context of the default ucpop search strategy. We demonstrate signi�cant gains on
most problems, particularly the more challenging ones (e.g., speedups of more than an order
of magnitude for several problems in the strips world, and a more than 900-fold speedup
for a trains problem).

In another set of tests in the trains world, we use our own improved search strategies
as baseline, i.e., we ask whether additional speedups are obtainable by use of parameter

1. The search strategy is described as \A* or IDA*" search in (Penberthy & Weld, 1992); in the code for
ucpop 2.0 it is described more generally as best-�rst, since arbitrary ranking functions, not necessarily
corresponding to A* heuristics, may be plugged in. But with choices like S+OC or S+OC+UC as
plan-ranking heuristic (as discussed in Section 2.2), it is natural to view the strategy as an A* strategy.

2. While the techniques we describe are applicable to other planners, our focus is on ucpop because it is
well-known and the Lisp code is readily available. The system can be obtained via anonymous ftp from
cs.washington.edu.

3. We hope that the notion of a parameter domain, as a set of admissible bindings (constants), will cause
no confusion with the notion of a planning domain, as a speci�ed set of operators, along with constraints
on admissible initial conditions and goal conditions.

96

Accelerating Partial-Order Planners

domains, above those obtainable with the S+OC and ZLIFO search strategies. Our ex-
perimental results again show speedups by about a factor of 10 through use of parameter
domains, on top of those obtained by the improved search strategies (the combined speedup
is over 2000).

As evidence that the e�ectiveness of using parameter domains in combination with our
search strategy is not dependent on some peculiarity of the latter, we also include some
results for ucpop's default strategy, Joslin and Pollack's \least cost
aw repair" (LCFR)
strategy (Joslin & Pollack, 1994) and for Peot and Smith's \least commitment" (LC) open
condition selection strategy (Peot & Smith, 1993) in Section 5.

In Section 6, we state our conclusions, comment on some related work and mention
possible extensions of our techniques.

2. Plan Selection and Goal Selection

We will be basing our discussion and experiments on ucpop, an algorithm exemplifying the
state of the art in well-founded partial-order planning. Thus we begin with a sketch of this
algorithm, referring the reader to (Barrett et al., 1994; Penberthy & Weld, 1992) for details.
In the next two subsections we then motivate and describe our improved plan-selection and
goal-selection strategies.

2.1 UCPOP

ucpop uses strips-like operators, with positive or negative preconditions and positive or
negative e�ects. The initial state consists of positive predications with constant arguments
(if any), and all other ground predications are false by default. Unlike strips, ucpop also
allows conditional e�ects, expressed by 2-part when-clauses specifying a (possibly complex)
extra condition needed by that e�ect and the (possibly complex) e�ect itself. For instance,
an action PUTON(?x ?y ?z) (\put ?x on ?y from ?z") might have conditional e�ects stating
that when ?y is not the table, it will not be clear at the end of the action, and when z is
not the table, it will be clear at the end of the action. The \U" in ucpop indicates
that universally quanti�ed conditions and e�ects are permitted as well. For instance, it is
permissible to have a precondition for a PICKUP(?x) action that says that for all ?y, (not
(on ?y ?x)) holds. Universal statements are handled by explicit substitution of domain
constants and need not concern us at this point.

In essence, ucpop explores a space of partially speci�ed plans, each paired with an
agenda of goals still to be satis�ed and threats still to be averted. The initial plan contains
a dummy *start* action whose e�ects are the given initial conditions, and a dummy
end action whose preconditions are the given goals. Thus goals are uniformly viewed as
action preconditions, and are uniformly achieved through the e�ects of actions, including
the *start* action.

The plans themselves consist of a collection of steps (i.e., actions obtained by instanti-
ating the available operators), along with a set of causal links, a set of binding constraints,
and a set of ordering constraints. When an open goal (precondition) is selected from the
agenda, it is established (if possible) either by adding a step with an e�ect that uni�es
with the goal, or by using an existing step with an e�ect that uni�es with the goal. (In
the latter case, it must be consistent with current ordering constraints to place the existing

97

Gerevini & Schubert

step before the goal, i.e., before the step whose preconditions generated the goal.) When a
new or existing step is used to establish a goal in this way, there are several side e�ects:

� A causal link (Sp; Q; Sc) is also added, where Sp indicates the step \producing" the
goal condition Q and Sc indicates the step \consuming" Q. This causal link serves to
protect the intended e�ect of the added (or reused) step from interference by other
steps.

� Binding constraints are added, corresponding to the uni�er for the action e�ect in
question and the goal (precondition) it achieves.

� An ordering constraint is added, placing the step in question before the step whose
precondition it achieves.

� If the action in question is new, its preconditions are added to the agenda as new
goals (except that EQ/NEQ conditions are integrated into the binding constraints { see
below).

� New threats (unsafe conditions) are determined. For a new step and its causal link,
other steps threaten the causal link if they have e�ects uni�able with the condition
protected by the causal link (and these e�ects can occur temporally during the causal
link); and the e�ects of the new step may similarly threaten other causal links. In
either case, new threats are placed on the agenda. It is useful to distinguish de�nite
threats from potential threats: the former are those in which the uni�cation that
con�rmed the threat involved no new binding of variables.

Binding constraints assert the identity (EQ) or nonidentity (NEQ) of two variables or a variable
and a constant. EQ-constraints arise from unifying open goals with action e�ects, and NEQ-
constraints arise (i) from NEQ-preconditions of newly instantiated actions, (ii) from matching
negative goals containing variables to the initial state, and (iii) from averting threats by
\separation", i.e., forcing non-equality of two variables or a variable and a constant that
were uni�ed in threat detection. NEQ-constraints may be disjunctive, but are handled simply
by generating separate plans for each disjunct.

The overall control loop of ucpop consists of selecting a plan from the current list of
plans (initially the single plan based on *start* and *end*), selecting a goal or threat from
its agenda, and replacing the plan by the corresponding re�ned plans. If the agenda item is
a goal, the re�ned plans are those corresponding to all ways of establishing the goal using
a new or existing step. If the agenda item is a de�nite threat to a causal link (Sp; Q; Sc),
then there are at most three re�ned plans. Two of these constrain the threatening step
to be before step Sp (demotion) or after step Sc (promotion), thus averting the threat.
A third possibility arises if the e�ect threatening (Sp; Q; Sc) is a conditional e�ect of the
threatening action. Such a conditional threat can be averted by creating a goal denying
some precondition needed by the conditional e�ect.

ucpop has a \delay separation" switch, *d-sep*, and when this is turned on, only
de�nite threats are dealt with. Note that potential threats may become de�nite as a result
of added binding constraints. (They may also \expire" as a result of added binding and
ordering constraints, i.e., the threatening e�ect may no longer unify with the threatened
condition or it may be forced to occur before or after the threatened causal link. Expired

98

Accelerating Partial-Order Planners

threats are removed from the agenda when selected.) When *d-sep* is o�, potential threats
as well as de�nite ones are averted, with separation as an additional method of doing so
besides the three methods above.

Inconsistencies in binding constraints and ordering constraints are detected when they
�rst occur (as a result of adding a new constraint) and the corresponding plans are elim-
inated. Planning fails if no plans remain. The success condition is the creation of a plan
with consistent binding and ordering constraints and an empty agenda.

The allowance for conditional e�ects and universal conditions and e�ects causes only
minor perturbations in the operation of ucpop. For instance, conditional e�ects can lead
to multiple matches against operators for a given goal, each match generating di�erent
preconditions. (Of course, there can be multiple matches even without conditional e�ects,
if some predicates occur more than once in the e�ects.)

The key issues for us right now are the strategic ones: how plans are selected from the
current set of plans (discussed in Section 2.2), and how goals are selected for a given plan
(discussed in Section 2.3).

2.2 The Trouble with Counting Unsafe Conditions

The choice of the next plan to re�ne in the ucpop system is based on an A* best-�rst
search. Recall that A* uses a heuristic estimate f(p) of overall solution cost consisting of
a part g(p) = cost of the current partial solution (plan) p and a part h(p) = estimate of
the additional cost of the best complete solution that extends p. In the current context it
is helpful to think of f(p) as a measure of plan complexity, i.e., \good" plans are simple
(low-complexity) plans.

There are two points of which the reader should be reminded. First, in order for A*
to guarantee discovery of an optimal plan (i.e., the \admissibility" condition), h(p) should
not overestimate the remaining solution cost (Nilsson, 1980). Second, if the aim is not
necessarily to �nd an optimal solution but to �nd a satisfactory solution quickly, then f(p)
can be augmented to include a term that estimates the remaining cost of �nding a solution.
One common way of doing that is to use a term proportional to h(p) for this as well, i.e.,
we emphasize the h-component of f relative to the g-component. This is reasonable to the
extent that the plans that are most nearly complete (indicated by a low h-value) are likely
to take the least e�ort to complete. Thus we will prefer to pursue a plan p0 that seems closer
to being complete to a plan p further from completion, even though the overall complexity
estimate for p0 may be greater than for p (Nilsson, 1980) (pages 87{88). Alternatively, we
could add a heuristic estimate of the remaining cost of �nding a solution to f(p) that is
more or less independent of the estimate h(p).

With these considerations in mind, we now evaluate the advisability of including the
various terms in ucpop's function for guiding its A* search, namely

S, OC, CL, and UC,

where S is the number of steps in the partial plan, OC is the number of open conditions
(unsatis�ed goals and preconditions), CL is the number of causal links, and UC is the
number of unsafe conditions (the number of pairs of steps and causal links where the step

99

Gerevini & Schubert

threatens the causal link). The default combination used by ucpop is S+OC+UC.4 This
becomes S+OC+UC+F if special open conditions called \facts" are present. These are
conditions that are not state-dependent (e.g., a numerical relation like (add-one ?x ?y), or
a geometrical one like (loc-in-room ?x ?y ?room)) and are established by Lisp functions
(Barrett et al., 1994). Since few of our test problems involved facts, we will not discuss the
F term further except to say that we followed the ucpop default strategy of including this
term where it is relevant (see the TileWorld problems in Section 3.2 and also some remarks
in Section 5.2 in connection with the parameter-domain experiments).

2.2.1 S: the number of steps currently in the plan

This can naturally be viewed as comprising g(p), the plan complexity so far. Intuitively, a
plan is complex to the extent that it contains many steps. While in some domains we might
want to make distinctions among the costs of di�erent kinds of steps, a simple step count
seems like a reasonable generic complexity measure.

2.2.2 OC: the number of open conditions

This can be viewed as playing the role of h(p), since each remaining open condition must be
established by some step. The catch is that it may be possible to use existing steps in the
plan (including *start*, i.e., the initial conditions) to establish remaining open conditions.
Thus OC can overestimate the number of steps still to be added, forfeiting admissibility.

Despite this criticism, several considerations favor retention of the OC term. First, a
better estimator of residual plan complexity seems hard to come by. Perhaps one could
modify OC by discounting open conditions that are matched by existing actions, but this
presumes that all such open conditions can actually be achieved by action re-use, which is
improbable if there are remaining threats, or remaining goals requiring new steps.5 Second,
the possibility that OC will overestimate the residual plan complexity will rarely be actu-
alized, since typically further steps still need to be added to achieve some of the goals, and
those steps will typically introduce further open conditions again requiring new steps. Fi-
nally, to the extent that OC does at times overestimate the residual plan complexity, it can
be viewed as emphasizing the the h(p) term of f(p), thus promoting faster problem-solving
as explained above.

2.2.3 CL: the number of causal links

One might motivate the inclusion of this term by arguing that numerous causal links are
indicative of a complex plan. As such, CL appears to be an alternative to step-counting.

4. This is in no way the \recommended" strategy. The ucpop implementation makes available various
options for controlling search, to be used at the discretion of experimenters. Our present work has
prompted the incorporation of our particular strategies as an option in ucpop 4.0.

5. Note that threats and remaining goals impose constraints that may not be consistent with seemingly
possible instances of action re-use. This is clear enough for threats, which often imply temporal ordering
constraints inconsistent with re-use of an action. It is also fairly clear for remaining goals. For instance,
in Towers of Hanoi the small disk D1 is initially on the medium disk D2, which in turn is on the big disk
D3, and D3 is on peg P1. The goal is to move the tower to the third peg P3, so it seems to ucpop initially
as if (on D1 D2) and (on D2 D3) could be achieved by \re-use" of *start*. However, the third goal (on
D3 P3) implies that various actions must be added to the plan which are inconsistent with those two
seemingly possible instances of action re-use.

100

Accelerating Partial-Order Planners

However, note that CL is in general larger than S, since every step of a plan establishes
at least one open condition and thus introduces at least one causal link. The larger CL is
relative to S, the more subgoals are achieved by action re-use. Hence, if we use CL instead
of (or in addition to) S in the g(p) term, we would in e�ect be saying that achieving multiple
subgoals with a single step is undesirable; we would tend to search for ways of achieving
multiple goals with multiple steps, even when they can be achieved with a single step. This
is clearly not a good idea, and justi�es the exclusion of CL from f(p).

2.2.4 UC: the number of unsafe conditions

We note �rst of all that this is clearly not a g-measure. While the number of threats will
tend to increase if we establish more and more subgoals without curtailing threats, threats
as such are not elements of the plan being constructed and so do not contribute to its
complexity. In fact, when the plan is done all threats will be gone.

Can UC then be viewed as an h-measure? One argument of sorts for the a�rmative is
the following. Not all partial plans are expandable into complete plans, and a high value of
UC makes it more likely that the partial plan contains irresolvable con
icts. If we regard
impossible plans as having in�nite cost, then inclusion of a term increasing with UC as part
of the h-measure is reasonable. This carries a serious risk, though, since in the case where
the partial plan does have a consistent completion (despite a high UC-count), inclusion of
such a term can greatly overestimate the residual plan complexity.

Another possible a�rmative argument is that conditional threats are sometimes resolved
by \confrontation", which introduces a new goal denying a condition required for the threat-
ening conditional e�ect. This new goal may in turn require new steps for its achievement,
adding to the plan complexity. However, this link to complexity is very tenuous. In the �rst
place, many of the ucpop test domains involve no conditional e�ects, and threat removal
by promotion, demotion or separation adds no steps. Even when conditional e�ects are
present, many unconditional as well as conditional threats are averted by these methods.

Furthermore, UC could swamp all other terms since threats may appear and expire in
groups of size O(n), where n is the number of steps in the plan. For instance, consider
a partial plan that involves moves by a robot R to locations L1, ..., Ln, so that there
are n causal links labeled (at R L1), ..., (at R Ln). If a new move to location L is
now added, initially with an inde�nite point of departure ?x, this produces e�ects (at

R L) and (not (at R ?x)). The latter can threaten all of the above n causal links, at
least if the new move is at �rst temporally unordered relative to the n existing moves. If
this new action subsequently happens to be demoted so as to precede the �rst move (or
promoted so as to follow the last), or if ?x becomes bound to a constant distinct from
L1, ..., Ln, all n threats expire. Keeping in mind that di�erent steps in a plan may
have similar e�ects, we can see that half of the steps could threaten the causal links of the
others. In such a case we could have O(n2) unsafe conditions, destined to expire as a result
of O(n) promotions/demotions. In fact even a single new binding constraint may cause
O(n2) threats to expire. For instance, if there are n=2 e�ects (not (P ?x)) threatening
n=2 causal links labeled (P ?y), then if binding constraint (NEQ ?x ?y) is added, all n2=4
threats expire. Recall that when expired threats are selected from the agenda by ucpop,
they are recognized as such and discarded without further action.

101

Gerevini & Schubert

Our conclusion is that it would be a mistake to include UC in full in a general h-measure,
though some increasing function of UC that remains small enough not to mask OC may be
worth including in h.

Finally, can UC be regarded as a measure of the remaining cost of �nding a solution?
Here, similar arguments to those above apply. On the a�rmative side, we can argue that
a high value of UC indicates that we may be facing a combinatorially explosive, time-
consuming search for a set of promotions and demotions that produce a con
ict-free step
ordering. In other words, a high value of UC may indicate a high residual problem-solving
cost. (And at the end of such a search, we may still lack a solution, if no viable step
ordering exists.) On the other hand, we have already noted that unsafe conditions include
many possible con
icts which may expire as a result of subsequent partial ordering choices
and variable binding choices not speci�cally aimed at removing these con
icts. So counting
unsafe conditions can arbitrarily overestimate the number of genuine re�nement steps, and
hence the problem-solving e�ort, still needed to complete the plan.

So UC is scarcely more trustworthy as a measure of residual planning cost than as a
measure of residual plan cost.

Thus we conclude that the most promising general heuristic measure for plan selection is
S+OC, possibly augmented with an attenuated form of the UC term that will not dominate
the S+OC component. (For instance, one might add a small fraction of the term, such as
UC/10, or more subtly { to avoid swamping by a quadratic component { a term proportional
to UC:5.)

2.3 The Goal Selection Strategy

An important opportunity for improving planning performance independently of the domain
lies in identifying forced re�nements, i.e., re�nements that can be made deterministically.
Speci�cally, in considering possible re�nements of a given partial plan, it makes sense to
give top priority to open conditions that cannot be achieved; and then preferring open
conditions that can be achieved in only one way { either through addition of an action not
yet in the plan, or through a unique match against the initial conditions.

The argument for giving top priority to unachievable goals is just that a plan containing
such goals can be eliminated at once. Thus we prevent allocation of e�ort to the re�nement
of doomed plans, and to the generation and re�nement of their doomed successor plans.

The argument for preferring open conditions that can be achieved in only one way
is equally apparent. Since every open condition must eventually be established by some
action, it follows that if this action is unique, it must be part of every possible completion
of the partial plan under consideration. So, adding the action is a \zero-commitment"
re�nement, involving no choices or guesswork. At the same time, adding any re�nement in
general narrows down the search space by adding binding constraints, ordering constraints
and threats, which constrain both existing steps and subsequently added steps. For unique
re�nements this narrowing-down is monotonic, never needing revocation. For example,
suppose some re�nement happens to add constraints that eliminate a certain action instance
A as a possible way of achieving a certain open condition C. If the re�nement is unique,
then we are assured that no completion of the plan contains A as a way of establishing C.
If it is not unique, we have no such assurance, since some alternative re�nement may be

102

Accelerating Partial-Order Planners

compatible with the use of A to achieve C. In short, the zero-commitment strategy cuts
down the search space without loss of access to viable solutions.

Peot and Smith (1993) studied the strategy of preferring forced threats to unforced
threats, and also used a \least commitment" (LC) strategy for handling open conditions.
Least commitment always selects an open condition which generates the fewest re�ned
plans. Thus it entails the priorities for unachievable and uniquely achievable goals above
(while also entailing a certain prioritization of nonuniquely achievable goals). Joslin and
Pollack (1994) studied the uniform application of such a strategy to both threats and open
conditions in ucpop, terming this strategy \least cost
aw repair" (LCFR). Combining this
with ucpop's default plan selection strategy, they obtained signi�cant search reductions
(though less signi�cant running time reductions, mainly for implementation reasons, but
also because of the intrinsic overhead of computing the \repair costs") for a majority of the
problems in the ucpop test suite.

Joslin & Pollack (1994) and subsequently Srinivasan & Howe (1995) proposed some
variants of LCFR designed to reduce the overhead incurred by LCFR for
aw selection.
These strategies employ various assumptions about the
aw repair costs, allowing the more
arduous forms of cost estimation (requiring look-ahead generation of plans) to be con�ned
to a subset of the
aws in the plan, while for the rest an approximation is used that does
not signi�cantly increase the overhead. Both teams obtained quite signi�cant reductions
in overhead costs in many cases, e.g., by factors ranging from about 3 to about 20 for the
more di�cult problems. However, overall performance was sometimes adversely a�ected.
Joslin and Pollack found that their variant (QLCFR) solved fewer problems than LCFR,
because of an increase in the number of plans generated in some cases. Each of Srinivasan &
Howe's four strategies did slightly better than LCFR in some of their 10 problem domains
but signi�cantly worse in others. In terms of plans examined during the search, their best
overall strategy, which uses similar action instances for similar
aws, did slightly better on
4 of the domains, slightly worse on 4, and signi�cantly worse on 2 (and in those cases the
number of plans examined was also more than a factor of 20 above that of default ucpop).

In the unmodi�ed form of ucpop, goals are selected from the agenda according to a
LIFO (last-in �rst-out, i.e., stack) discipline. Based on experience with search processes
in AI in general, such a strategy has much to recommend it, as a simple default. In the
�rst place, its overhead cost is low compared to strategies that use heuristic evaluation or
lookahead to prioritize goals. As well, it will tend to maintain focus on the achievement of
a particular higher-level goal by regression { very much as in Prolog goal chaining { rather
than attempting to achieve multiple goals in breadth-�rst fashion.

Maintaining focus on a single goal should be advantageous at least when some of the
goals to be achieved are independent. For instance, suppose that two goals G1 and G2 can
both be achieved in various ways, but choosing a particular method of achieving G1 does
not rule out any of the methods of achieving G2. Then if we maintain focus on G1 until
it is solved, before attempting G2, the total cost of solving both goals will just be the sum
of the costs of solving them individually. But if we switch back and forth, and solutions
of both goals involve searches that encounter many dead ends, the combined cost can be
much larger. This is because we will tend to search any unsolvable subtree of the G1 search
tree repeatedly, in combination with various alternatives in the G2 search tree (and vice
versa). This argument should still have some validity even if G1 and G2 are not entirely

103

Gerevini & Schubert

independent; i.e., as long as G1 gives rise to subproblems that tend to fail in the same
way regardless of choices made in the attempt to solve G2 (or vice versa), then shifting
attention between G1 and G2 will tend to generate a set of partial plans that unnecessarily
\cross-multiplies" alternatives.

We have therefore chosen to stay with ucpop's LIFO strategy whenever there are no
zero commitment choices. This has led to very substantial improvements over LCFR in our
experiments.

Thus our strategy, which we term ZLIFO (\zero-commitment last-in �rst-out"), chooses
the next
aw according to the following preferences:

1. a de�nite threat (*d-sep* is turned on), using LIFO to pick among these;

2. an open condition that cannot be established in any way;

3. an open condition that can be resolved in only one way, preferring open conditions
that can be established by introducing a new action to those that can be established
by using *start*;6

4. an open condition, using LIFO to pick among these.

Hence the overhead incurred by ZLIFO for
aw selection is limited to the open con-
ditions, and is lower for these than the overhead incurred by LCFR. Furthermore, it can
also be signi�cantly lower in practice than the overhead incurred by LC, because testing
whether an OC is not a zero-commitment choice (i.e., whether it can be established in more
than one way) is less expensive than computing the total number of ways to achieve it.

In Online Appendix 1 we give the pseudocode of ZLIFO for the selection of the open
condition (preferences 2{4). Very recently this implementation has also been packaged into
ucpop 4.0, a new version of ucpop which is available by anonymous ftp to cs.washington.edu.

3. Experiments Using UCPOP

In order to test our ideas we modi�ed version 2.0 of ucpop (Barrett et al., 1994), replac-
ing its default plan-selection strategy (S+OC+UC) and goal-selection strategy (LIFO) to
incorporate strategies discussed in the previous sections.

We tested the modi�ed planner on several problems in the ucpop suite, emphasizing
those that had proved most challenging for previous strategies, on some arti�cial problems
due to Kambhampati et al. (1995), in the trains transportation domain developed in
Rochester (Allen & Schubert, 1991; Allen et al., 1995), and in Joslin & Pollack's TileWorld
domain (Joslin & Pollack, 1994). We brie
y describe the test problems and the platforms
and parameter settings we used, and then present the experimental results for our improved
search strategies.

6. 2. and 3. are zero-commitment choices. In our experiments, which are described in the next section, the
sub-preference in 3. gave improvements in the context of Russell's tire changing domain (in particular
with Fix3), without signi�cant deterioration of performance in the other domains.

104

Accelerating Partial-Order Planners

3.1 Test Problems and Experimental Settings

The ucpop problems include Towers of Hanoi (T of H), Fixa, Fix3, Fixit, Tower-Invert4,
Test-Ferry, and Sussman-Anomaly. In the case of T of H, we added a 3-operator version to
the ucpop single-operator version, since T of H is a particularly hard problem for ucpop
and its di�culty has long been known to be sensitive to the formalization (e.g., (Green,
1969)). Fixa is a problem from Dan Weld's \fridge domain", in which the compressor
in the fridge is to be exchanged, requiring unscrewing several screws, stopping the fridge,
removing the backplane, and making the exchange. Fix3 is from Stuart Russell's \
at tire
domain", where a new wheel is to be mounted and lowered to the ground (the old wheel has
been jacked up already and the nuts loosened); this requires unscrewing the nuts holding
the old wheel, removing the wheel, putting on the new wheel, screwing on the nuts, jacking
down the hub, and tightening the nuts. Fixit is more complicated, as the wheel is not yet
jacked up initially and the nuts not yet loosened, the spare tire needs to be in
ated, and
the jack, wrench and pump all need to be taken out of the trunk and stowed again at the
end. Tower-Invert4 is a problem in the blocks world, requiring the topmost block in a stack
of four blocks to be made bottom-most. Test-Ferry is a simple problem requiring two cars
to be moved from A to B using a one-car ferry, by boarding, sailing, and unboarding for
each car.

The arti�cial problems correspond to two parameter settings for ART-#est-#clob, one
of the two arti�cial domains that served as a testbed for Kambhampati et al.'s extensive
study of the behavior of various planning strategies as a function of problem parameters
(Kambhampati et al., 1995). ART-#est-#clob provides two layers of 10 operators each,
where those in layer 1 achieve the preconditions of those in layer 2, and each operator in
layer 2 achieves one of the 10 goals. However, some operators in each layer can establish
or clobber the preconditions of their neighbors, and this can force operators to be used in
a certain order.

The version of the trains domain that we encoded involves four cities (Avon, Bath,
Corning, Dansville) connected by four tracks in a diamond pattern, with a �fth city (Elmira)
connected to Corning by a �fth track. The available resources, which are located at various
cities, consist of a banana warehouse, an orange warehouse, an orange juice factory, three
train engines (not coupled to any cars), 4 boxcars (suitable for transporting oranges or
bananas), and a tanker car (suitable for transporting orange juice). Goals are typically to
deliver oranges, bananas, or orange juice to some city, requiring engine-car coupling, car
loading and unloading, engine driving, and possibly OJ-manufacture.

The TileWorld domain consists of a grid on which holes and tiles are scattered. A given
tile may or may not �t into a particular hole. The goals are to �ll one or more holes by
using three possible actions: picking up a tile, going to an x-y location on the grid, and
dropping a tile into a hole. The agent can carry at most four tiles at a time.

Formalizations of these domains in terms of ucpop's language are provided in Online
Appendix 2. The experiments for all problems except Fixit, the trains problems and the
TileWorld problems were conducted on a sun 10 using Lucid Common Lisp 4.0.0, while
the rest (Tables X{XI in the next subsection) were conducted on a sun 20 using Allegro
Common Lisp 4.2. Judging from some repeated experiments, we do not think that the

105

Gerevini & Schubert

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 204.51 160,911/107,649
LIFO S+OC 0.97 751/511
ZLIFO S+OC+UC 6.90 1816/1291
ZLIFO S+OC 0.54 253/184

Table I: Performance of plan/goal selection strategies on T-of-H1

di�erences in the platforms signi�cantly impact performance improvements.7 Among the
search control functions provided by ucpop, we used the default bestf-search when the
problem was solvable within the search limit of 40,000 plans generated, while we used the
function id-bf-search (an implementation of the linear-space best-�rst search algorithm
given by Korf, 1992), when this limit was exceeded.8 In all of the experiments the delay-
separation switch, *d-sep*, was on, except for those using the LCFR strategy.

3.2 Experimental Results for ZLIFO and S+OC

Tables I{XI show the CPU time (seconds) and the number of plans created/explored by
ucpop on twelve problems in the domains described above: Towers of Hanoi with three
disks and either one operator (T-of-H1) or three operators (T-of-H3), the fridge domain
(Fixa), the tire changing domain (Fix3 and Fixit), the blocks world (Tower-Invert4 and
Sussman-anomaly), the ferry domain (Test-Ferry), the arti�cial domain ART-#est-#clob

(speci�cally, ART-3-6 and ART-6-3), the trains domain (Trains1, Trains2 and Trains3)
and the TileWorld domain (tw-1, ..., tw-6). Both the number of plans created/explored and
the CPU time are important performance measures. The number of plans, which indicates
search space size, is a more stable measure in the sense that it depends only on the search
algorithm, not the implementation.9 But the time is still of interest since an improvement
in search may have been purchased at the price of a more time-consuming evaluation of
alternatives. It turns out that we do pay some price in overhead when we substitute our
strategies for the defaults (factors ranging from about 1.2 to 1.9, and rarely higher, per plan
created). This may be due to slightly greater inherent complexity of ZLIFO versus LIFO,
but we think the di�erences could be reduced by substituting modi�ed data structures for
those of ucpop { we were committed to not altering these.

Tables I and II show that for the T of H the plan selection strategy S+OC gives dramatic
improvements over the default S+OC+UC strategy. (In these tests the default LIFO goal
selection strategy was used.) In fact, ucpop solved T-of-H1 in 0.97 seconds using S+OC
versus 204.5 seconds using S+OC+UC. T-of-H3 proved harder to solve than T-of-H1, re-

7. The di�erences were the result of what was available at di�erent times and locales over the course of
nearly two years of experimentation.

8. This choice was motivated by the observation that when the problem is relatively easy to solve
bestf-search appears to be more e�cient than id-bf-search, while for hard problems it can be very
ine�cient because of the considerable amount of space used at run time and the CPU time spent on
garbage collection, which in some cases made Lisp crash, reporting an internal error.

9. It is also worth noting that the number of plans created implicitly takes into account plan size, since
addition of a step to a plan is counted as creation of a new plan in ucpop.

106

Accelerating Partial-Order Planners

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC > 600 > 500,000
LIFO S+OC 8.54 5506/3415
ZLIFO S+OC+UC > 600 > 500,000
ZLIFO S+OC 1.24 641/420

Table II: Performance of plan/goal selection strategies on T-of-H3

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 2.45 2131/1903
LIFO S+OC 2.48 2131/1903
ZLIFO S+OC+UC 0.33 96/74
ZLIFO S+OC 0.33 96/74

Table III: Performance of plan/goal selection strategies on Fixa

quiring 8.5 seconds using S+OC and an unknown time in excess of 600 CPU seconds using
S+OC+UC.

Our ZLIFO goal-selection strategy can signi�cantly accelerate planning compared with
the simple LIFO strategy. In particular, when ZLIFO was combined with the S+OC plan-
selection strategy in solving T of H, it further reduced the number of plans generated by a
factor of 3 in T-of-H1 and by a factor of 8 in T-of-H3. The overall performance improvement
for T-of-H1 was thus a factor of 636 in terms of plans created and factor of 379 in terms of
CPU time (from 204.5 to 0.54 seconds).

Tables III{VIII provide data for problems that are easier than T of H, but still challeng-
ing to ucpop operating with its default strategy, namely Fixa (Table III), Fix3 (Table IV),
Tower-Invert4 (Table V), Test-Ferry (Table VI) and the arti�cial domain ART-#est-#clob

with #est = 3 and #clob = 6 (Table VII) and with #est = 6 and #clob = 3 (Table VII).
The results show that the combination of S+OC and ZLIFO substantially improves the
performance of ucpop in comparison with its performance using S+OC+UC and LIFO.
The number of plans generated dropped by a factor of 22 for Fixa, by a factor of 5.9 for

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 6.50 3396/2071
LIFO S+OC 0.43 351/215
ZLIFO S+OC+UC 1.12 357/221
ZLIFO S+OC 1.53 574/373

Table IV: Performance of plan/goal selection strategies on Fix3

107

Gerevini & Schubert

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 1.35 808/540
LIFO S+OC 0.19 148/105
ZLIFO S+OC+UC 2.81 571/378
ZLIFO S+OC 0.36 142/96

Table V: Performance of plan/goal selection strategies on Tower-Invert4

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 0.63 718/457
LIFO S+OC 0.32 441/301
ZLIFO S+OC+UC 0.24 136/91
ZLIFO S+OC 0.22 140/93

Table VI: Performance of plan/goal selection strategies on Test-Ferry

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC .67 568/392
LIFO S+OC 1.36 1299/840
ZLIFO S+OC+UC 0.16 72/49
ZLIFO S+OC 0.18 79/54

Table VII: Performance of plan/goal selection strategies on ART-#est-#clob with #est = 3
and #clob = 6 (averaged over 100 problems)

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 1.32 985/653
LIFO S+OC 2.08 1743/1043
ZLIFO S+OC+UC 0.14 57/37
ZLIFO S+OC 0.14 57/37

Table VIII: Performance of plan/goal selection strategies on ART-#est-#clob with #est = 6
and #clob = 3 (averaged over 100 problems)

Goal-selection Plan-selection CPU sec Plans

LIFO S+OC+UC 0.06 44/26
LIFO S+OC 0.04 36/21
ZLIFO S+OC+UC 0.12 67/43
ZLIFO S+OC 0.07 41/25

Table IX: Performance of plan/goal selection strategies on Sussman-anomaly

108

Accelerating Partial-Order Planners

1

10

100

1000

10 100 1000 10000 100000 1e+06 1e+07
Problem size

Sussman-anomaly

ART-3-6

Test-ferry
Tower-invert4

Fixa

Fix3

T-of-H1
Trains1

ART-6-3

Fixit
Performance

Improvement

2

2

22

2
2

2

2

2

2

2 Search space reduction

Speedup

Figure 1: Performance improvement due to ZLIFO and S+OC, relative to the number of
plans generated by LIFO and S+OC+UC (log-log scale). The improvements for
the problems that ucpop was unable to solve even with a very high search limit
(Trains2, Trains3, and T-of-H3) are not included.

Fix3, by a factor of 5.7 for Tower-Invert4, by a factor of 5.1 for Test-Ferry, by a factor of 7
for ART-3-6, and by a factor of 17 for ART-6-3.

Concerning ART-#est-#clob, note that the performance we obtained with unenhanced
ucpop (568 plans generated for ART-3-6 and 985 for ART-6-3) was much the same as
(just marginally better than) reported by Kambhampati et al. (1995) for the best planners
considered there (700 { 1500 plans generated for ART-3-6, and 1000-2000 for ART-6-3).
This is to be expected, since ucpop is a generalization of the earlier partial-order planners.
Relative to standard ucpop and its predecessors, our \accelerated" planner is thus an order
of magnitude faster. Interestingly, the entire improvement here can be ascribed to ZLIFO
(rather than S+OC plan selection, which is actually a little worse than S+OC+UC). This
is probably due to the unusual arrangement of operators in ART-#est-#clob into a \clobber-
ing chain" (An

�

;1 clobbers An
�

�1;1's preconditions, ..., A1;1 clobbers A0;1's preconditions;
similarly for Ai;2), which makes immediate attention to new unsafe conditions an unusually
good strategy.

In experimenting with various combinatorially trivial problems that unmodi�ed ucpop

handles with ease, we found that the S+OC and ZLIFO strategy is neither bene�cial nor
harmful in general; there may be a slight improvement or a slight degradation in perfor-
mance. Results for the Sussman anomaly in Table IX provide an illustrative example.

We summarize the results of Tables I{X in Figure 1, showing the performance improve-
ments obtained with the combined ZLIFO goal selection strategy and S+OC plan selection

109

Gerevini & Schubert

Trains1 Trains2 Trains3 Fixit

ZLIFO & Plans 4097/2019 17,482/10,907 31,957/19,282 5885/3685
S+OC Time 13.7 80.6 189.8 32.5
LC & Plans 438/242 34,805/24,000 253,861/168,852 71,154/46,791
S+OC Time 2.6 368.9 1879.9 547.8
LCFR & Plans 1093/597 >1,000,000 >1,000,000 190,095/117,914
S+OC Time 10.65 >10,905 >9918 4412.36
LIFO & Plans 1,071,479/432,881 > 10,000,000 > 1,000,000 8,090,014/4,436,204

S+OC+UC Time 3050.15 > 37,879 > 2539 27,584.9

Table X: Performance of the plan selection strategy S+OC in combination with the goal
selection strategies ZLIFO, LCFR and LC in solving problems which are very
hard for the default strategies of ucpop (S+OC+UC/LIFO). (The CPU seconds
do not include Lisp garbage collection. The number of plans generated for LCFR
does not include those created in order to estimate the repair cost of the
aws.)

Problem ZLIFO* LCFR

name CPU time Plans CPU time Plans

tw-1 0.09 26/15 0.10 26/15
tw-2 0.61 72/39 0.66 72/39
tw-3 2.55 138/71 3.17 139/72
tw-4 7.80 224/111 10.97 227/114
tw-5 19.41 330/159 30.17 336/165
tw-6 42.57 456/215 71.10 466/225

Table XI: Performance of UCPOP in the TileWorld domain using ZLIFO* and LCFR for
goal selection, and S+OC+F+0.1UC for plan selection

strategy as a function of problem di�culty (as indicated by the number of plans generated
by the default LIFO plus S+OC+UC strategy). The trend toward greater speedups for
more complex problems (though somewhat dependent on problem type) is quite apparent
from the log-log plot.

For direct comparison with Joslin and Pollack's LCFR strategy and Peot and Smith's
LC strategy, we implemented their strategies and applied them to several problems. They
did very well (sometimes better than ZLIFO) for problems on the lower end of the di�culty
spectrum, but poorly for harder problems. (For all the problems we ran, LC with the
d-sep switch on performed better than LCFR in terms of plans explored and CPU
time required.) For T-of-H1 LCFR in combination both with the default S+OC+UC plan
selection strategy, and with our S+OC plan strategy did not �nd a solution within a search
limit of 200,000 plans generated (cf. 253 for ZLIFO with S+OC, and 751 for ZLIFO with
S+OC+UC), requiring an unknown CPU time in excess of 4254 seconds with S+OC+UC,

110

Accelerating Partial-Order Planners

and in excess of 4834 seconds with S+OC (cf. 0.54 seconds for ZLIFO with S+OC).10

LC performed much better than LCFR but still considerably worse than ZLIFO, solving
T-of-H1 by generating/exploring 8313/6874 plans with S+OC and 8699/6441 plans with
S+OC+UC, and requiring 44.4 CPU secs. and 48.95 CPU secs. respectively. For T-of-
H3, LC found a solution by generating/exploring 21,429/15,199 plans with S+OC+UC
and 17,539/14,419 plans with S+OC, requiring 145.18 CPU secs. and 77.84 CPU secs.
respectively.

Table X shows the results for the plan strategy S+OC, with the goal strategies ZLIFO,
LCFR and LC, applied to three problems (Trains1, Trains2 and Fixit). As shown by the data
in the table these are very hard for the default strategies of ucpop (LIFO & S+OC+UC),
but become relatively easy when S+OC is used in combination either with ZLIFO, LCFR
or LC. While LCFR and LC did slightly better than ZLIFO for Trains1 (the easiest of
these problems), they performed quite poorly for Fixit, Trains2 and Trains3 (the hardest
problems) compared to ZLIFO.

Joslin and Pollack (1994) tested their LCFR strategy on six problems in the TileWorld
(tw-1, ..., tw-6), �ve of which are very hard for default ucpop, but easy for ucpop using
LCFR.11 We tested our ZLIFO strategy in the TileWorld using the same six problems.
ZLIFO did well for tw-1{4, but for tw-5 and tw-6 its performance dropped well below that
of LCFR. This raised the question whether for these particular problems it is crucial to
minimize \repair cost" in
aw selection uniformly, rather than just in certain special cases
(ZLIFO does minimize the repair cost when no threat is on the
aw list, and at least one zero-
commitment open condition is present). However, further experiments aimed at answering
this question suggested that the poor choices made by ZLIFO for some TileWorld problems
were not due to selection of \high cost" over \low cost"
aws. Instead two factors appear be
crucial for improving ZLIFO: (a) emphasizing zero-commitment open conditions by giving
them higher priority than threats; (b) when there are no zero-commitment open conditions,
resolving threats as soon as they enter the agenda. (We realized the relevance of (b) by
observing that the performance of a modi�ed versions of LCFR, where the *d-sep* switch
is implicitly forced on, dramatically degraded for tw-6 in a slightly di�erent formulation of
the TileWorld.)

We extended our ZLIFO strategy to include (a) and (b), and we brie
y tested the
resulting variant of ZLIFO (ZLIFO*). Table XI shows the results for ZLIFO* together with
the plan selection strategy S+OC+0.1UC+F, where as discussed in Section 2.3 we included
an attenuated form of the UC term (UC/10), and an F term equal to the number of facts
since TileWorld uses facts to track the number of tiles carried by the agent.12 ZLIFO*

10. This was with *d-sep* turned o�, which is the implicit setting in LCFR (Joslin, 1995). In our experiments
we also tested a variant of LCFR, where the switch is forced to be on. The resulting goal strategy in
combination with our plan strategy S+OC performed signi�cantly better for T-of-H1, solving the problem
generating/exploring 7423/6065 plans, and using 110.45 CPU seconds. Note also that a comparison of
our implementation of LCFR and Joslin & Pollack's implementation used for the experiments discussed
in (Joslin & Pollack, 1994) showed that our implementation is considerably faster (Joslin, 1995).

11. In their experiments tw-2, the easiest among tw-2{6, was not solved by ucpop even when allowed to run
for over eight hours. On the other hand, ucpop using LCFR solves tw-6, the hardest problem, without
ever reaching a dead-end node in the search tree.

12. In the ZLIFO* experiments the re�ned plans generated by resolving a threat were added to the
aw list
in the following order: �rst the plan generated by promotion, then the plan generated by demotion, and
�nally the plan generated by confrontation or separation.

111

Gerevini & Schubert

performed very e�ciently for all six TileWorld problems, in fact a little better than LCFR.
Note that for these problems ZLIFO* is more e�cient than LCFR in terms of the CPU time,
even though the number of plans generated/explored by the two strategies is approximately
the same. This is because the overhead of selecting the next
aw to be handled is higher
in LCFR than in ZLIFO* (and ZLIFO). In fact, while LCFR needs to compute the \repair
cost" of each
aw (including the threats) in the current plan, ZLIFO* (ZLIFO) only needs to
check for the presence of zero-commitment open conditions, without processing the threats.

Additional experiments indicated that the average performance of ZLIFO* is comparable
to that of ZLIFO for most of the other problems we used in our experiments, in terms of
plans created/explored. However, the CPU time tends to increase since the overhead of
computing the goal selection function is higher for ZLIFO* than for ZLIFO, because of the
extra agenda-management costs. Because of this overhead, we do not regard ZLIFO* as
generally preferable to ZLIFO. However, the TileWorld experiments underscored for us that
in some worlds re�nements of ZLIFO are advantageous.

Finally, another possible variant of ZLIFO, which was suggested to us by David Smith,
is based on the following preferences of the next
aw to be handled: (i) a threat that cannot
be resolved; (ii) an open condition that cannot be established; (iii) a threat that has only
one possible resolution; (iv) an open condition that can only be established in one way; (v)
other threats; (vi) other open conditions (using LIFO to pick among these). We observe
that while this strategy could give further savings in terms of plans created/explored, it
also imposes an additional overhead with respect to both ZLIFO and ZLIFO* which could
degrade performance in terms of CPU time.

4. Precomputing Parameter Domains

Even with the speedups obtained through improved search, a ucpop-like algorithm remains
severely limited in the complexity of problems it can solve. We believe that signi�cant
further progress requires fuller use of global properties of the search space, as determined by
the structure of the operators, initial conditions, and goals. One way to do that would be
through a more in-depth analysis of alternatives during the search, but this can lead to high
overhead costs. Another is to precompute constraints on the search space, and to use these
during planning to prune the search. The parameter domain method we now motivate and
describe is of the latter type.

4.1 How Can Parameter Domains Help?

In our previous experimentation with ucpop strategies, we found that ucpop goal regres-
sion often hypothesized steps that were doomed to be abandoned eventually, because they
stipulated impossible parameter bindings. A clear example of this occurred in the Molgen
domain, as encoded in the ucpop test suite. The goal of the \Rat-insulin" test problem is

(and (bacterium ?b) (molecule ?m)

(contains IG ?m) (contains ?m ?b) (pure ?b)),

where ?b and ?m are existentially quanti�ed variables. What this means is that we wish
to create a puri�ed bacterial culture ?b, where ?b contains a molecule ?m (necessarily an

112

Accelerating Partial-Order Planners

exosome, it turns out), and this molecule in turn contains the insulin gene, IG. We are
using the abbreviations IG, EE, JE, L for insulin-gene, e-coli-exosome, junk-exosome,
and linker; and E, J, A1 for e-coli, junk, and antibiotic-1. Roughly speaking, the solution
involves processing the initially given mRNA form of the insulin gene so as to produce a
form of insulin DNA that can be spliced into the e-coli-exosome, using a ligate operator.
In turn, the exosome is inserted into the e-coli bacterium using a transform operator, and
the bacterial culture is then puri�ed using a screen operator, with antibiotic-1. (The junk
bacterium and exosome merely serve to complicate the task { they are nearly, but not quite,
substitutable for the e-coli bacterium and exosome; the junk exosome, unlike e-coli-exosome,
is not resistant to antibiotic-1, violating a precondition of screen.)

Now, in the initial regression the goals (bacterium ?b) and (molecule ?m) can be
established only with the *start* operator, i.e., with the initial conditions, and thus will
not be instantiated to bizarre values. (The initial conditions supply E and J as the only
instances of bacterium, and IG, EE, JE, and L as the only instances of molecule.) On
the other hand, the remaining goals turn out to match the e�ects of various instances of
the ligate, transform, and screen operators of Molgen, as follows:

(contains IG ?m): (ligate IG ?m), (transform IG ?m)

(contains ?m ?b): (ligate ?m ?b), (transform ?m ?b)

(pure ?b): (screen ?b ?y ?z)

ucpop will happily regress on these actions. Yet two of them, (transform IG ?m) and
(ligate ?m ?b), are doomed to fail, perhaps after a great deal of e�ort has been expended
on trying to satisfy their preconditions. In particular, examination of the constants that can
\
ow into" the transform operator from the initial conditions and other Molgen operators
shows that its �rst argument is restricted to domain fEE, JEg, i.e., it must be one of
the given exosomes, and the second is restricted to fE, Jg, i.e., it must be one of the
given bacteria. Consequently the instance (transform IG ?m) is unrealizable, as its �rst
argument IG is not in fEE, JEg. (Note that distinct constants denote distinct entities
according to the unique-names assumption made by ucpop.) The (ligate ?m ?b) action
is doomed for slightly more subtle reasons. It is the result of a match between (contains ?m

?b) and a \when-clause" (conditional e�ect) of the ligate operator, whose preconditions
can be reached only if the second parameter ?b lies in the set of molecules fIG, JE, EEg;
yet ?b is also restricted to the set of bacteria fE, Jg, as a result of the goal condition
(bacterium ?b). The fact that these sets are disjoint should allow us to eliminate the
(transform IG ?m) action.

Note that elimination of action candidates as above increases the number of zero com-
mitment plan re�nements that can be made. In the example, we are left with exactly one
action for each of the three goals, and so the ZLIFO and LCFR strategies will prefer to
regress on these goals rather than regressing on (bacterium ?b) and (molecule ?m) {
which would prematurely make arbitrary choices of ?b and ?m from the initial state.

4.2 Description of the Algorithm

In any completed plan, each precondition of each action must be instantiated by an e�ect
of some earlier action. So the values of the parameters of the action can only be values that

113

Gerevini & Schubert

can be \produced" by earlier actions, starting with the initial action, *start*. Moreover,
suppose that a parameter x of a certain action occurs in each of preconditions P1, ..., Pk.
Then a constant c is a possible value of x only if earlier actions can instantiate x to c in
each of P1, ..., Pk.

Our algorithm find-parameter-domains is based on these observations. Beginning in
the initial state, it propagates positive atomic predications to all possible operator precon-
ditions. For a propagated ground atom, if the atom matches an operator precondition,
the algorithm adds the constants in that ground atom to the individual domains of the
parameters they were uni�ed with. These individual domains are particular to speci�c pre-
conditions. For instance, the individual domain of ?x for an operator with preconditions
(on ?x ?y), (clear ?x) will in general be distinct for these two preconditions.

As soon as we have nonempty individual domains for all parameters in all preconditions
of an operator, we form the intersection of the individual domains of each parameter of
the operator. For example, if (on ?x ?y) has (so far) been matched by (on A B) and
(on B C), and (clear ?x) has (so far) been matched by (clear A) and (clear Table),
then the individual domain of x will be fA,Bg in the �rst precondition and fA,Tableg

in the second. Thus (assuming there are no other preconditions) the intersected domain
of ?x will be fAg at this point. If later (clear B) is also matched against (clear ?x),
the intersected domain of ?x will grow to fA,Bg. When both ?x and ?y have nonempty
intersected domains, the e�ects (postconditions) of the operator can in turn be propagated,
with ?x and ?y \bound" to their intersected domains.

The propagated e�ects are again matched against all possible operator preconditions,
and when a variable \bound" to an intersected domain is successfully uni�ed with a vari-
able in a precondition, it passes its intersected domain to the individual domain of that
precondition-variable (via a union operation). This can again lead to growth of the inter-
sected domains of the operator whose precondition was matched, the e�ects of that operator
may then be propagated, and so on. The individual domains and intersected domains grow
monotonically during the propagation process, and in the end represent the desired param-
eter domains of the operators.

We illustrate this process through an example. Consider the simple planning problem
depicted in Figure 2 where an \operator graph" (Smith & Peot, 1993) is used to describe the
logical dependencies among the operators, while the iterative computation of the parameter
domains is graphically illustrated with a \domain-propagation graph" below the operator
graph.

The initial conditions (P A) and (P B) unify with the precondition (P ?x) of op1. So,
the individual domain of ?x relative to the precondition P of op1 is fA,Bg. On the other
hand, the precondition (Q ?x) of op1 cannot be satis�ed by the initial state, and so the
individual domain of ?x relative to Q is initially the empty set. Hence the intersected domain
of ?x for op1 is also the empty set.

For op2 we have a di�erent situation, since here we have only one precondition and it
can be established by the initial state. Therefore, the individual domain of ?y relative to
precondition R of op2 is the set of constants fB,Cg, and the intersected domain of ?y for
op2 is the same set (because R is the only precondition of op2 involving ?y). Since the
intersected domain of ?y has been enlarged (initially it was empty), it is propagated to the
individual domains of the other operators through the e�ect (Q ?y) of op2. In particular,

114

Accelerating Partial-Order Planners

indicates bundle of edges

start *end*

(P ?x)

(Q ?x)

(R ?y)

(S ?z)

(T B)

op1

op2

op3

 effects: effects: effects:

op1: preconds: op3: preconds: (P ?x),(Q ?x)

(S ?x)

(R ?y)

(Q ?y)

op2: preconds: (S ?z)

(T ?z)

Init state:

Goal: (T B)

(P A),(P B),(R B),(R C),(S C)

id(?y)={B,C}

ID(P,?x)={A,B}
ID(Q,?x)={}

id(?x)={} id(?x)={B}

ID(P,?x)={A,B}
ID(Q,?x)={B,C}

id(?z)={A,B}

ID(S,?z)={A,B}ID(S,?z)={A}

id(?z)={A}

ID(R,?y)={B,C}

(S ?z)

(Q ?y)

(P B)

(P A)

(R C)

(R B)

S(A)

(R ?y)

(Q ?x)

(P ?x)

(S ?z)

(S ?x)

(Q ?x)op1

op2

op1

op3op3

Figure 2: Operator and domain-propagation graphs for a simple planning problem.
ID(?x,P) indicates the individual domain of the parameter ?x relative to pre-
condition P; id(?x) indicates the intersected domain of the parameter ?x; �nal
intersected domains are indicated using bold fonts.

(Q ?y) matches the precondition (Q ?x) of op1. So, the individual domain of ?x relative
to precondition Q of op1 is updated by adding the constants of the intersected domain of ?y
to it. Thus the intersected domain of ?x is enlarged to fBg, and can be propagated through
the e�ect (S ?x) of op1.

Similarly, the propagation of (S ?x) will enlarge the individual domain of ?z for op3,
and also the intersected domain, to the set fA,Bg. Therefore, the �nal intersected domains
are: fBg for ?x in op1; fB,Cg for ?y in op2; fA,Bg for ?z in op3.

Before presenting the algorithm a little more formally, we note that the parameter do-
mains will sometimes be \too large", including values that would be found to be impossible

115

Gerevini & Schubert

if a more detailed state space exploration were conducted. However, all that is required
for soundness in our use of the domains is that they not be \too small" (i.e., that they
contain all parameter values that can actually occur in the problem under consideration).
Of course, to be of practical use the parameter domains of an operator should exclude
some of the constants occurring in the problem speci�cation, particularly those for which
it is intuitively obvious that they are of the wrong sort to �ll particular argument slots of
the operator. This has turned out to be the case for all problem domains we have so far
experimented with.

The preceding sketch of our method is an oversimpli�cation since preconditions and
e�ects of ucpop operators may be particular to a when-clause. In this case we compute
individual domains and intersected domains separately for each when-clause. For example,
consider the following schematic representation of an operator:

(define (operator op1)

:parameters (?x ?y)

:precondition (and P1 P2)
:effect (and E1 E2

(when P 0E0)

(when P"E"))),

where all conditions starting with P or E denote atomic formulas that may involve ?x and ?y.
We can think of this operator as consisting of a primary when-clause whose preconditions
P1 and P2 must always be satis�ed and whose e�ects E1 and E2 are always asserted, and
two secondary when-clauses whose respective preconditions P 0 and P" may or may not
be satis�ed, and when they are, the corresponding e�ects E0 and E" are asserted. Here
our algorithm would maintain individual domains for ?x and ?y for each of preconditions
P1, P2, P 0, and P", and it would maintain intersected domains for ?x and ?y for the
primary when-clause and each of the two secondary clauses. The intersected domains for
the secondary clauses would be based on the individual domains of ?x and ?y not only
relative to P 0 and P", but also on those relative to P1 and P2, since (as noted) the primary
preconditions must hold for the operator to have any of its e�ects, including conditional
e�ects.

Some further complications arise when ucpop operators contain universally quanti-
�ed preconditions or e�ects, disjunctive preconditions, or facts (mentioned in Section 2.2).
Rather than dealing with these complications directly, we will assume that no such op-
erators occur in the input to the algorithm. Later we describe a semi-automated way of
handling operators containing the additional constructs.

The algorithm is outlined below (a more detailed description is given in Online Ap-
pendix 1). W is a list of (names of) when-clauses whose e�ects are to be propagated.
Individual parameter domains are initially nil, and intersected parameter domains are ini-
tially either nil or T (where T is the universal domain). The intersected domain of a
parameter, relative to a given when-clause, is T just in case the parameter occurs neither
in the preconditions of the when-clause nor in the primary preconditions. (In such a case
the successful instantiation of the when-clause is clearly independent of the choice of value
for the parameter in question.) Uni�cation in step 2(a) is as usual, except that when an
e�ect variable v is uni�ed with a constant c in a precondition, the uni�cation succeeds,

116

Accelerating Partial-Order Planners

with uni�er v = c, just in case c is an element of the intersected domain of v (for the rel-
evant when-clause). The given inits (initial conditions) and goals (which may be omitted,
i.e., nil) are treated as an operator *start* with no preconditions and an operator *end*
with no e�ects. Variables in goals are treated like operator parameters. We use the terms
\parameters" and \variables" interchangeably here.

Algorithm: �nd-parameter-domains(operators,inits,goals)

1. Initialize W to the initial conditions, so that it contains just the (primary) when-clause
of *start*.

2. Repeat steps (a{c) until W = nil:

(a) Unify the positive e�ects of all when-clauses in W with all possible operator
preconditions, and mark the preconditions successfully matched in this way as
\matched". (This marking is permanent.) Augment the individual domain of
each matched precondition variable with a certain set C of constants, de�ned as
follows. If the precondition variable was uni�ed with a constant c, then C = fcg;
if it was uni�ed with an e�ect variable, then C is the intersected domain of that
e�ect variable (relative to the when-clause to which the e�ect belongs).

(b) Mark those when-clauses as \propagation candidates" that have all their precon-
ditions (including corresponding primary preconditions) marked as \matched"
and that involve at least one variable for which some relevant individual domain
was augmented in step (a).

(c) Reset W to nil. For all when-clauses that are propagation candidates, compute
new intersected domains for their variables. If an intersected domain of a when-
clause is thereby enlarged, and all intersected domains for the when-clause are
now nonempty, then add the when-clause to W.

3. Further restrict intersected domains using equative preconditions of form (EQ u v),
i.e., form a common intersected domain if both u and v are variables. If u is a
constant and v is a variable, reduce the intersected domain of v by intersecting it
with fug; similarly if u is a variable and v is a constant. If the equation belongs to a
primary when-clause, use it to reduce the intersected domains of u and v (whichever
are variables) in the secondary clauses as well.

4. Return the intersected domains as the parameter domains, producing a sequence of
lists with each list of form

(op (x1 a1 b1 c1 :::) (x2 a2 b2 c2 :::) :::),

where each operator op appears at least once. If op has k conditional e�ects, there
will be k + 1 successive lists headed by op, where the �rst provides the parameter
domains for the primary e�ects of op and the rest provide the parameter domains for
the conditional e�ects (in the order of appearance in the ucpop de�nition of op).

Note that we do not match or propagate negative conditions. The problem with negative
conditions is that a very large number of them may be implicit in the initial conditions, given

117

Gerevini & Schubert

the use of the Closed World Assumption in ucpop. For instance, in a world of n blocks,
with at most O(n) on-relations (assuming that a block can be on only one other block), we
necessarily have O(n2) implicit (not (on ...)) relations. In fact, the individual variable
domains of negative preconditions or goals can really be in�nitely large. For instance, given
an empty initial state and a (paint-red ?x) operation with precondition (not (red ?x))

and e�ect (red ?x), we can achieve (red c) for in�nitely many constants c. Perhaps
negative conditions could be e�ectively dealt with by maintaining anti-domains for them,
but we have not explored this since in practice ignoring negative conditions seems to cause
only minimal \domain bloating". (We have proved that no actual domain elements can be
lost through neglect of some preconditions.)

Our use of EQ-conditions could be re�ned by making use of them during the propagation
process, and NEQ-conditions could also be used. However, doing so would probably have
marginal impact.

As a �nal comment, we note that the output format speci�ed in step 4 of the algorithm
is actually generalized in our implementation so as to report inaccessible preconditions
and goals. These inaccessible conditions are simply appended to the list of parameter
domains for the appropriate when-clause of the appropriate operator. For instance, if the
preconditions (oj ?oj) and (at ?oj ?city) in the ld-oj (\load orange juice") operator
of the trains world (see Online Appendix 2) are unreachable (say, because no oranges for
producing orange juice have been provided), the parameter domain list for the (unique)
when-clause of ld-oj will have the appearance

(ld-oj (?oj ...)(?car ...)(?city ...)(oj ?oj)(at ?oj ?city)).
This feature turns out to be very useful for debugging operator speci�cations and detecting
unreachable goals.

4.3 Correctness and Tractability

In keeping with the remarks in the previous section, we will call an algorithm for computing
parameter domains correct if the domains it computes subsume all possible parameter values
that can actually occur (in a given primary or secondary when-clause) if we consider all
possible sequences of operator applications starting at the given initial state.

The point is that this property will maintain the soundness of a planning algorithm that
uses the precomputed parameter domains to prune impossible actions (as well as spurious
threats) from a partially constructed plan. We assert the following:

Theorem 1 The find-parameter-domains algorithm is correct for computing parameter
domains of ucpop-style sets of operators (without quanti�cation, disjunction, or facts),
initial conditions, and (possibly) goal conditions.

The proof is given in Appendix A. A preliminary step is to establish termination, using the
monotonic growth of domains and the �niteness of the set of constants involved. Correctness
is then established by showing that if there exists a valid sequence A0A1:::An of actions
(operator instances) starting with A0 = *start*, and if An is an instance of the operator
Op, then the bindings that the parameters of Op received in instance An are eventually added
to the relevant intersected domains of Op (where \relevant" refers to the when-clauses of Op
whose preconditions are satis�ed at the beginning of An). This is proved by induction on n.

118

Accelerating Partial-Order Planners

We now indicate how we can deal with universally quanti�ed preconditions and e�ects,
disjunctive preconditions, and facts. We make some simple changes to operator de�nitions
by hand in preparation for parameter domain precomputation, and then use the domains
computed by find-parameter-domains, together with the original operators, in running
the planner. The steps for preparing an operator for parameter domain precomputation are
as follows:

� Delete disjunctive preconditions, fact-preconditions,13 and universally quanti�ed pre-
conditions (this includes universally quanti�ed goals; it would also include universally
quanti�ed sentences embedded within the antecedents of when-clauses, e.g., in the
manner (:when (:forall(?x) �)), though these do not occur in any problem
domains we have seen).

� Drop universal quanti�ers occurring positively in operator e�ects, i.e., occurring at
the top level or embedded by one or more :and's. For example, an e�ect

(:and (at robot ?to)

(:not (at robot ?from))

(:forall (?x)

(:when (:and (grasping ?x) (object ?x))

(:and (at ?x ?to) (:not (at ?x ?from))))))

would become

(:and (at robot ?to)

(:not (at robot ?from))

(:when (:and (grasping ?x) (object ?x))

(:and (at ?x ?to) (:not (at ?x ?from))))))

Note that the universally quanti�ed variable should be renamed, if necessary, to be
distinct from all other such variables and from all operator parameters.

In the example above the universally quanti�ed variable is unrestricted. When the
quanti�ed variable includes a type restriction, as in (:forall (object ?x) �), then
this type restriction needs to become an antecedent of the matrix sentence �. In
the example at hand, � should be rewritten as the equivalent of (:when(object ?x)

�). Since � is often a when-clause, this can be done by adding (object ?x) as a
conjunct to the antecedent of the when-clause. In some cases � is a conjunction of
when-clauses, and in such a case the quanti�er restriction can be added into each
when-clause antecedent.

� Drop existential quanti�ers in preconditions and goals, adding any restrictions on the
quanti�ed variables as conjuncts to the matrix sentence. For example, the goal

(:exists (bacterium ?y)

(:exists (molecule ?x)

(:and (contains IG ?x)

(contains ?x ?y)

(pure ?y))))

13. E.g., in the strips-world we would drop (fact (loc-in-room ?x ?y ?room)), which checks whether
the given coordinates lie in the given room.

119

Gerevini & Schubert

becomes

(:and (bacterium ?y) (molecule ?x) (contains IG ?x)

(contains ?x ?y) (pure ?y))

(Actually, the :and is dropped as well, when supplying goals to find-parameter-
domains.)

With these reductions, find-parameter-domains will then compute correct parameter
domains for the operators and goals. To see this, note �rst of all that dropping pre-
conditions (in the initial step above) will not forfeit correctness, since doing so can only
weaken the constraints on admissible parameter values, and thus can only add constants
to the domains. The e�ect of dropping a universal quanti�er, from the perspective of
find-parameter-domains, is to introduce a new parameter in place of the universal vari-
able. (The operator normalization subroutine detects variables in operator preconditions
and e�ects that are not listed as parameters, and treats them as additional parameters.)
While this is of course a drastic change in the meaning of the operator, it preserves correct-
ness of the parameter domain calculation. This is because the domain of the new parameter
will certainly contain all constants (and hence, under the Closed World Assumption, all ob-
jects) over which the quanti�ed variable ranges. For example, if ?x is treated as a parameter
rather than a universally quanti�ed variable in the conditional e�ect

(:forall(?x) (:when(object?x) (in?x box))),
then the domain of ?x for the when-clause will consist of everything that can be an object, in
any state where the operator can be applied. Thus the e�ect (in?x box) will also be prop-
agated for all such objects, as is required. Finally, the elimination of existential quanti�ers
from preconditions and goals can be seen to preserve the meaning of those preconditions
and goals, and hence preserves the correctness of the parameter domain calculation.

Next we formally state our tractability claim for the algorithm, as follows (with some
tacit assumptions, mentioned in the proof).

Theorem 2 Algorithm find-parameter-domains can be implemented to run in O(mnpne(np+
ne)) time and O(mnp) space in the worst case, where m is the number of constants in the
problem speci�cation, np is the combined number of preconditions for all operators (and
goals, if included), and ne is the combined number of operator e�ects (including those of
start).

Again the proof is in Appendix A. The time complexity of find-parameter-domains is
determined as the sum of (1) the cost of all the uni�cations performed, (2) the costs of all
the individual domain updates attempted, and (3) the cost of all the intersected domain
updates attempted. The space complexity bound is easily derived by assuming that there
is a �xed upper bound on the number of arguments that a predicate (in a precondition or
e�ect) can have, and from the fact that for each when-clause at most O(m) constants are
stored.

By adding some additional data structures in find-parameter-domains we can obtain
a version of the algorithm whose worst-case time complexity is slightly improved. In fact,
in step 2.(c) instead of propagating all of the e�ects of a when-clause with an enlarged

120

Accelerating Partial-Order Planners

intersected domain (i.e., adding such a when-clause to the list W), it is su�cient to propagate
just those e�ects of the when-clause that involve an enlarged intersected-domain. This could
be done by setting up for each when-clause a table that maps each parameter to a list of
e�ects (of that when-clause) involving that parameter.
In the improved algorithm we use W to store the list of e�ects (instead of the list of when-
clauses) that will be propagated in the next cycle of the algorithm, and steps 1, and 2 of
find-parameter-domains are modi�ed in the following way:

10. Initialize W to the list of the e�ects of *start*.

20. Repeat steps (a{c) until W = nil:

(a0) Unify the positive e�ects in W with all possible operator preconditions, and mark
the preconditions successfully matched in this way as \matched" ...

(b0) same as 2.(b).

(c0) Reset W to nil. For all when-clauses that are propagation candidates, com-
pute new intersected domains for their variables. If an intersected domain of a
when-clause is thereby enlarged, and all intersected domains for the when-clause
are now nonempty, then add to W the subset of the e�ects of the when-clause
involving at least one parameter whose intersected domain is enlarged.

Note that the worst-case time complexity of the revised algorithm is improved, because now
each e�ect of each when-clause is propagated at most O(m) times. This decreases the upper
bound on the number of uni�cations performed, reducing the complexity estimated in step
(1) of the proof of Theorem 2 to O(mnenp). Hence we have proved the following corollary.

Corollary 1 There exists an improved version of find-parameter-domains that can be
implemented to run in O(mn2pne) time in the worst case.

5. Using Parameter Domains for Accelerating a Planner

We have already used the example of Molgen to motivate the use of precomputed parameter
domains in planning, showing how such domains may allow us to prune non-viable actions
from a partial plan.

More fundamentally, they can be used each time the planner needs to unify two predi-
cations involving a parameter, either during goal regression or during threat detection. (In
either case, one predication is a (sub)goal and the other is an e�ect of an action or an
initial condition.) If the uni�er is inconsistent with a parameter domain, it should count
as a failure even if it is consistent with other binding constraints in the current (partial)
plan. And if there is no inconsistency, we can use the uni�er to intersect and thus re�ne
the domains of parameters equated by the uni�er.

For example, suppose that G = (at ?x ?y) is a precondition of a step in the current
plan, and that E = (at ?w ?z) is an e�ect of another (possibly new) step, where ?x, ?y,
?w and ?z are parameters (or, in the case of ?w and ?z, existentially quanti�ed variables)
which have no binding constraints associated with them in the current plan. Assume also
that the domains of the parameters are:

121

Gerevini & Schubert

?x : {Agent1, Agent2, Agent3} ?y : {City1, City2}

?w : {Agent1, Agent2} ?z : {City3, City4}

The uni�cation of G and E gives the binding constraints f?x = ?w, ?y = ?zg, which are
not viable because the parameter domains of ?y and of ?z have an empty intersection.
On the other hand, if the domain of ?z had been fCity2, City3, City4g, then the uni�-
cation of G and E would have been judged viable, and the domains of the parameters would
have been re�ned to:

?x : {Agent1, Agent2} ?y : {City2}

?w : {Agent1, Agent2} ?z : {City2}

Thus parameter domains can be incrementally re�ned as the planning search progresses;
and the narrower they become, the more often they lead to pruning.

5.1 Incorporating Parameter Domains into UCPOP

The preceding consistency checks and domain re�nements can be used in a partial-order,
causal-link planner like ucpop as follows. Given a goal (open condition) G selected by
ucpop as the next
aw to be repaired, we can

(1) restrict the set of new operator instances that ucpop would use for establishing G; an
instance of an operator with e�ect E (matching G) is disallowed if the precomputed
parameter domains relevant to E are incompatible with the current parameter do-
mains or binding constraints relevant to G; (note that the current parameter domains
associated with G may be re�nements of the initial domains);

(2) restrict the set of existing steps that ucpop would reuse for establishing G; reusing a
step with e�ect E (matching G) is disallowed if the current parameter domains relevant
to E are incompatible with the current parameter domains or binding constraints
relevant to G.

Moreover, given a potential threat by an e�ect Q against a protected condition P, inspection
of the relevant parameter domains may reveal that the threat is actually spurious. This
happens if the uni�er of P and Q violates the (possibly re�ned) domain constraints of a
parameter in P or Q. Thus we can often

(3) reduce the number of threats that are generated by the planner when a new causal
link is introduced into the plan (this happens when an open condition is established
either by reusing a step or by introducing a new one);

(4) recognize that a threat on the list of the
aws to be processed is redundant, allowing
its elimination. (Note that since parameter domains are incrementally re�ned during
planning, even if we use (3) during the generation of the threats, it is still possible for
a threat to becomes spurious after it has been added to the
aw list).

These four uses of parameter domains cut down the search space without loss of viable
solutions, since the options that are eliminated cannot lead to a correct, complete plan.

122

Accelerating Partial-Order Planners

Note that (3) and (4) can be useful even when the planner only deals with de�nite
threats (i.e., *d-sep* switch is turned on) for at least three reasons. First, determining
that a threat is not a de�nite threat when *d-sep* is on incurs an overhead cost. So,
earlier elimination of a spurious threat could lead to considerable savings if the threat is
delayed many times during the search. The second reason relates to the plan-selection
strategies adopted. If one uses a function that includes an (attenuated) term corresponding
to the number of threats currently on the
aw list, then eliminating spurious threats in
advance can give a more accurate measure of the \badness" of a plan. Finally, parameter
domains could be used in threat processing so as to prune the search even when *dsep* is
on. In particular, suppose that we modify the notion of a de�nite threat, when we have
parameter domains, so that e.g., (P ?x) and (not (P ?y)) comprise a de�nite threat if
the parameter domains associated with ?x and ?y are both c. So in that case, even with
d-sep* on, we may discover early that a threat has become de�nite { in which case it might
also be a forced threat, i.e., the choice between promotion and demotion may be dictated
by ordering constraints; and that can prune the search space. However, in our current
implementation we do not exploit this third point.

We have incorporated these techniques into ucpop (version 2.0), along with our earlier
improvements to the plan and goal selection strategies. Parameter domains are handled
through an extension of the \varset" data structure (Weld, 1994) to include the domains
of the variables (parameters), and by extending the uni�cation process to implement the
�ltering discussed above.14 We now describe our experiments with this enhanced system.

5.2 Experimental Results Using Parameter Domains

Our main goal here is to show that while the overhead determined by computing the param-
eter domains is not signi�cant (both at preprocessing time and at planning time), exploita-
tion of the parameter domains during planning can signi�cantly prune the search. In the
experiments we used the version of find-parameter-domains which is described in Section
4.2 and in Online Appendix 1. Note that for domains more complex than the ones we have
considered it might be worthwhile to use the improved version of the algorithm discussed in
Section 4.3. (However, it remains to be seen whether problems signi�cantly more complex
than those we consider here can be solved by any ucpop-style planner.)

The CPU times needed by our implementation of find-parameter-domains are negli-
gible for the problems we have looked at. They were 10 msec or less for many problems
in the ucpop test suite (when running compiled Allegro CL 4.2 on a sun 20), 20 msec for
two problems (Fixa from the fridge repair domain and Fixit from the
at tire domain), and
30msec on the trains world problems described below.

In our �rst set of tests, we relied on the search strategy used as default in ucpop. The
function used for A* plan selection was thus S+OC+UC+F (allowing for problems that
involve \facts"), and the goals were selected from the agenda according to a pure LIFO
discipline.15

14. In the current implementation new threats are �ltered only when the protected condition is established
by a step already in the plan.

15. In all experiments the *d-sep* switch was on. The default delay-separation strategy for selecting unsafe
conditions was slightly modi�ed in the version of ucpop using parameter domains. In particular, the

123

Gerevini & Schubert

We began by experimenting with a variety of problems from ucpop's test suite, com-
paring performance with and without the use of parameter domains. While relatively easy
problems such as Sussman-anomaly, Fixa, Test-ferry, and Tower-invert4 showed no im-
provement through the use of parameter domains, most problems { particularly the harder
ones { were solved more easily with parameter domains. For example, the Rat-insulin
problem from the Molgen domain was solved nearly twice as fast, and some strips-world
problems (Move-boxes and variants)16 and Towers of Hanoi (T-of-H1) were solved about
10 times as fast. Note that the strips-world problems involve both facts and universally
quanti�ed conditional e�ects. Two problems from the o�ce world, O�ce5 and O�ce6,
which we knew to be readily solvable with our improved search strategy, remained di�-
cult (in the case of O�ce6, unsolvable) with the default ucpop strategy, despite the use
of parameter domains.17 Further experiments revealed that the source of this ine�ciency
was the default plan-selection strategy of ucpop. In fact, using our S+OC+F strategy
instead of S+OC+UC+F, without parameter domains O�ce5 and O�ce6 were solved gen-
erating/exploring 3058/2175 and 8770/6940 plans respectively; while using the parameter
domains the plans numbered 1531/1055 and 2954/2204 respectively.

These initial experiments suggested to us that the most promising application of com-
puted parameter domains would be for nontrivial problems that involved a variety of types of
entities and relationships, and signi�cant amounts of goal chaining (i.e., with each successive
action establishing preconditions for the next). From this perspective, the trains world
struck us as a natural choice for further experimentation, with the additional advantage
that its design was independently motivated by research at Rochester into mixed-initiative
problem solving through natural-language interaction. (Refer again to the formalization in
Online Appendix 2.) Recall from Table X that the Trains1 problem was extremely hard for
unmodi�ed ucpop, requiring about 50 minutes and generating over a million plans.

Running the same problem with parameter domains produced a solution in 3.3 seconds
(with 1207 plans generated), i.e., 927 times faster.

Intuitively, the use of parameter domains to constrain planning is analogous to using
type constraints on the parameters (although parameter domains also take account of initial
conditions). So it is of interest to see whether adding type constraints can provide similar
e�ciency gains as the use of parameter domains. Our �rst set of experiments therefore
included T-Trains1, a \typed" version of Trains1; the operators have been slightly changed
by adding new preconditions stating the types of the parameters involved. For example,
the operator uncouple has been augmented with the preconditions (engine ?eng) and
(car ?car). This problem was also extremely hard for the unmodi�ed ucpop, exceeding
the search limit of 1,000,000 plans generated and requiring more than 2600 seconds. With
parameter domains, the solution was obtained in one second.

threats that can be resolved by separation and which are recognized to be redundant through the use of
parameter domains were selected to be eliminated.

16. Move-boxes-2 di�ers slightly from the Move-boxes problem in the ucpop suite, in that its goal is (in-room
box2 rclk); Move-boxes-a di�ers slightly from the Move-boxes-2, in that its initial state contains two
boxes.

17. O�ce5 is directly from ucpop's test suite and O�ce6 is minor variant of O�ce5. In O�ce5, all persons
are to be furnished with checks made out to them, using a check printer at the o�ce and a briefcase for
picking up the checks and bringing them home. \Sam" and \Sue" are the given persons, and in O�ce6
we have added (person Alan) and (person Smith) in the initial conditions.

124

Accelerating Partial-Order Planners

Problems without domains with domains Domain
Plans CPU sec Plans CPU sec ratio

Trains1 1,071,479/432,881 3050.15 1207/824 3.29 0.425
T-Trains1 > 1,000,000 > 2335 404/296 0.98 0.425
Move-boxes 608,231/167,418 1024.04 5746/3253 18.8 0.705
Move-boxes-1 > 1,000,000 > 6165 1264/645 3.59 0.705
Move-boxes-2 13,816/3927 45.05 1175/587 2.66 0.705
Move-boxes-a 13,805/3918 46.11 1175/587 2.54 0.702

T-of-H1 160,911/107,649 204.51� 17,603/12,250 37.5 0.722
Rat-insulin 364/262 0.36 196/129 0.19 0.714
Monkey-test1 96/62 0.12 75/46 0.11 0.733
Monkey-test2 415/262 0.61 247/149 0.50 0.529

Fix3 3395/2070 5.77 3103/1983 6.02 0.532
O�ce5 809,345/500,578 1927.4 575,224/358,523 1556.8 0.625
O�ce6 > 1,000,000 > 2730 > 1,000,000 > 2640 0.667

Tower-invert4 806/538 1.55 806/538 1.59 0.733
Sussman-anomaly 44/26 0.05 44/26 0.06 0.917

Fixa 2131/1903 2.2 2131/1903 2.34 1
Test-ferry 718/457 0.65 718/457 0.71 1

Table XII: Plans generated/visited and CPU time (secs) for standard ucpop with and
without parameter domains. (� This result was obtained on a sun 10 with
Lucid Common Lisp; the others on a sun 20 with Allegro Common Lisp.)

These results indicate that adding type constraints to operator speci�cations is not
nearly as e�ective as the use of parameter domains in boosting planning e�ciency. We
discuss this point further in the context of the second set of tests (below).

Table XII summarizes the experimental results for all of the experiments that used the
default ucpop search strategy. The table gives the number of plans generated/visited by
the planner and the CPU time (seconds) required to solve the problems.18 Note that the
use of the parameter domains gave very dramatic improvements not only in the trains do-
main, but also in the strips-world domain. The rightmost column supplies \domain ratio"
data, as a metric that we hoped would predict the likely e�ectiveness of using parameter
domains. The idea is that parameter domains should be e�ective to the extent that they
�lter out many parameter bindings that can be reached by chaining back from individual
preconditions of an operator to the initial state. These bindings can be found by using a
variant of the algorithm for propagating intersected domains that instead propagates unions
of individual domains, and comparing these union domains to the intersected domains.19

18. The systems were compiled under Allegro CL 4.2, with settings (space 0) (speed 3) (safety 1) (debug
0), and run on a sun 20. The CPU time includes the Lisp garbage collection (it is the time given in the
output by ucpop).

19. Actually, we do not need to explicitly propagate union domains, but can propagate (partial) bindings for
one predication at a time, starting with the initial conditions. We match the predication to all possible
preconditions, adding the constant arguments it contains to the union domains of the matched operator

125

Gerevini & Schubert

trains without domains with domains Domain
problems Plans CPU sec Plans CPU sec ratio

Trains1 4097/2019 13.7 297/238 1.4 0.425
Trains2 17,482/10,907 80.6 1312/1065 7.16 0.425
Trains3 31,957/19,282 189.8 3885/3175 25.1 0.411

Table XIII: Plans generated/visited and CPU time (secs) for ucpop with and without
parameter domains in the trains domain using the ZLIFO strategy.

trains without domains with domains Domain
problems Plans CPU sec Plans CPU sec ratio

Trains1 1093/597 8.1 265/194 2.3 0.425
Trains2 >50,000 >607 >50,000 >534 0.425
Trains3 >50,000 >655 >50,000 >564 0.411

Table XIV: Plans generated/visited and CPU time (secs) for ucpop with and without
parameter domains in the trains domain using the LCFR strategy.

The \domain ratio" provides this comparison, dividing the average union domain size by the
average intersected domain size, with averages taken over all parameters of all when-clauses
of all operators.

The largest speedups (e.g., for the trains problems) do tend to correlate with the
smallest domain ratios, and the smallest speedups with the largest domain ratio (unity {
see the last few rows). However, it can be seen from the table that the problem di�culty (as
measured by plans or CPU time) is much more useful than the domain ratio as a predictor
of speedups to be expected when using parameter domains. Problems that generate on the
order of a million plans or more with standard ucpop tend to produce speedups by 3 orders
of magnitude, whereas the domain ratio for some of these problems (e.g., Move-boxes-1) is
no better (or even worse) than for problems with much smaller speedups (e.g., Move-boxes-
a, Rat-insulin, Monkey-test1, Monkey-test2). The much lower di�culty of these problems
predicts their reduced speedup. But to complicate matters, not all di�cult problems give
high speedups (see T-of-H1 and especially O�ce5); we do not know what subtleties of
problem structure account for these unusual cases.

In our second round of experiments, we tested the e�ectiveness of the parameter domain
technique in combination with our improved search strategy, i.e., S+OC/ZLIFO. In addi-
tion, we combined S+OC with LCFR (least cost
aw selection) (Joslin & Pollack, 1994), so

(or when-clause). We then �nd corresponding (partially bound) e�ects, and add any new e�ects to the
list of predications still to be propagated. A partially bound e�ect such as (P A ?x ?y) is new if there
is no identical or similar predication such as (P A ?u ?v) among the previously propagated predications
or among those still to be propagated.

126

Accelerating Partial-Order Planners

t-trains without domains with domains Domain
problems Plans CPU sec Plans CPU sec ratio

T-Trains1 3134/2183 17.2 505/416 3.4 0.425
T-Trains2 5739/4325 37.3 3482/2749 27.3 0.425
T-Trains3 17,931/13,134 130.4 11,962/9401 105.1 0.425

Table XV: Plans generated/visited and CPU time (secs) for ucpop with and without pa-
rameter domains in the \typed" trains domain using the ZLIFO strategy.

t-trains without domains with domains Domain
problems Plans CPU sec Plans CPU sec ratio

T-Trains1 3138/2412 31.5 1429/1157 14.5 0.425
T-Trains2 >50,000 >1035 >50,000 >1136 0.425
T-Trains3 >50,000 >976 >50,000 >962 0.425

Table XVI: Plans generated/visited and CPU time (secs) for ucpop with and without
parameter domains in the \typed" trains domain using the LCFR strategy.

as to test for possible sensitivity of the parameter-domains technique to the precise strategy
used. For the present set of tests we used a search limit of 50,000 plans generated.

Once again we began by sampling some problems from the ucpop test suite, and these
initial trials yielded results quite analogous to those for the default ucpop strategy. We
obtained no improvements for several easier problems and signi�cant improvements for
harder ones (e.g., again close to a factor of 2 for Rat-insulin). Noteworthy members of the
latter category were O�ce5 and O�ce6 { recall that O�ce5 had shown little speedup with
standard ucpop and O�ce6 had been unsolvable. However, in view of the computational
expense of testing both ZLIFO and LCFR, we then decided to narrow our focus to the
trains world. As mentioned, the advantages of this world are its inherent interest and
relative complexity.

Tables XIII-XVI provide experimental results for the trains domain with the S+OC/
ZLIFO strategy and the S+OC/LCFR strategy, in each case with and without parameter
domains.

The results in Tables XIII and XIV show that using parameter domains can still give very
signi�cant improvements in performance, over and above those obtained through the use
of better search strategies. For example, the use of parameter domains provided an 11-fold
speedup for Trains2, for the S+OC/ZLIFO strategy. In this particular problem the speedup
(on all metrics) was the result of pruning 1482 plans (more than half of those generated)
during the search., and recognizing 305 unsafe conditions as redundant. Evidently, the
e�ect of this pruning is ampli�ed by an order of magnitude in the overall performance,
because of the futile searches that are cut short. Note that the speedups for Trains1-3 are

127

Gerevini & Schubert

roughly comparable (within a factor of 2) to those obtained for problems in the previous set
with comparable initial di�culty (e.g., see Move-boxes-2 and Move-boxes-a in Table XII).
This again points to a rather consistent correlation between problem di�culty and speedups
obtainable using parameter domains. The constant domain ratios are also compatible with
the more or less invariant speedups here, though this is of little import, given the earlier
results. For S+OC/LCFR the gains appear to be less, though the single result showing
a 3.5-fold speedup provides only anecdotal evidence for such a conclusion. Trains2 and
Trains3 remained too di�cult for solution by LCFR. Similar gains were observed for the
S+OC/LC strategies where the best observed gain in the Trains domain was a 1.7-fold
speedup for Trains2. In any case, all results con�rm the e�ectiveness of the parameter-
domains technique.

Tables XV and XVI are again for the \typed" version of trains. In this case parameter
typing gave modest improvements in the absence of parameter-domains, and (in contrast
with the results for Trains1 under the default search strategy) signi�cant deterioration in
their presence. While we do not know how to account for these results in detail, it seems
clear that contrary e�ects are involved. On the one hand, typing does tend to help in that
it tends to limit choices of parameter values to \sensible" ones. For example, a precondition
(engine ?eng) will be satis�able only through use of *start*, and the initial state will thus
constrain ?eng to assume sensible values. On the other hand, adding type-preconditions
will tend to broaden the search space, by adding further open conditions to the
aw list.

The lesson from the \typed" experiments appears to be that it is best not to supply
explicit type constraints on operator parameters, instead using our automated method of
calculating and updating domains to constrain parameter bindings.

6. Conclusions and Further Work

We began by exploring some simple, domain-independent improvements to search strategies
in partial order planning, and then described a method of using precomputed parameter do-
mains to prune the search space. We now summarize our conclusions about these techniques
and then point to promising directions for further work.

6.1 Improving Search

Our proposed improvements to search strategies were based on the one hand on a carefully
considered choice of terms in the A* heuristic for plan selection, and on the other on a
preference for choosing open conditions that cannot be achieved at all or can be achieved
in only one way (with a default LIFO prioritization of other open conditions). Since the
plan re�nements corresponding to uniquely achievable goals are logically necessary, we have
termed the latter strategy a zero-commitment strategy. One advantage of this technique
over other similar strategies is that it incurs a lower computational overhead.

Our experiments based on modi�cations of ucpop indicate that our strategies can give
large improvements in planning performance, especially for problems that are hard for
ucpop (and its \relatives") to begin with. The best performance was achieved when our
strategies for plan selection and goal selection were used in combination. In practical terms,
we were able to solve nearly every problem we tried from the ucpop test suite in a fraction
of a second (except for Fixit, which required 38.2 seconds), where some of these problems

128

Accelerating Partial-Order Planners

previously required minutes or were unsolvable on the same machine. This included a
su�cient variety of problems to indicate that our techniques are of broad potential utility.

Further, our results suggest that zero-commitment is best supplemented with a LIFO
strategy for open conditions achievable in multiple ways, rather than a generalization of
zero-commitment favoring goals with the fewest children. This somewhat surprising result
might be thought to be due to the way in which the designer of a domain orders the
preconditions of operators; i.e., the \natural" ordering of preconditions may correlate with
the best planning order, giving a fortuitous advantage to a LIFO strategy relative to a
strategy like LC.20

However, some preliminary experiments we performed with randomized preconditions
for T-of-H1 and Trains1 indicate otherwise. In 5 randomizations of the preconditions of
T-of-H1, both LC and ZLIFO were slowed down somewhat, by average factors of 2.2 (2)
and 3.3 (4.2) in terms of plans expanded (CPU time used) respectively. (In both cases,
S+OC was used for plan search.) This still left ZLIFO with a performance advantage of
a factor of 22 in terms of plans created and 39 in terms of CPU time. For Trains1 the
performance of LC greatly deteriorated in 2 out of 5 cases (by a factor close to 70 in terms
of both plans and time), while that of ZLIFO actually improved marginally. This now left
ZLIFO with an average performance advantage over LC (whereas it had been slightly slower
in the unrandomized case) { a factor of 3.3 in terms of plans and 6.7 in terms of CPU time
(though these values are very unreliable, in view of the fact that the standard deviations
are of the same order as the means).

Despite these results we believe that a satisfactory understanding of the dependence of

aw-selection strategies on the order of operator preconditions will require a more extensive
experimental investigation. We are currently undertaking this work.

6.2 Using Parameter Domains

We described an implemented, tractable algorithm for precomputing parameter domains of
planning operators, relative to given initial conditions. We showed how to use the precom-
puted domains during the planning process to prune non-viable actions and bogus threats,
and how to update them dynamically for maximum e�ect.

The idea of using precomputed parameter domains to constrain planning was apparently
�rst proposed in a technical report by Goldszmidt et al. (1994). This contains the essential
idea of accumulating domains by forward propagation from the initial conditions. Though
the report only sketches a single-sweep propagation process from the initial conditions
to the goals, the implemented Rockwell Planner (RNLP) handles cyclic operator graphs,
repeatedly propagating bindings until quiescence, much as in our algorithm. Our algorithm
deals with the additional complexities of conditional e�ects and equalities (and in semi-
automated fashion with quanti�cation) and appears to be more e�cient (Smith, 1996).
Other distinctive features of our work are the method of incrementally re�ning domains

20. This was suggested to us by David Smith as well as Mike Williamson. Williamson tried ZLIFO with 5
randomized versions of T-of-H1, and reported a large performance degradation (Williamson & Hanks,
1996). We recently ran these versions using our implementation, obtaining far more favorable results
(three of the �ve versions were easier to solve than the original version of T-of-H1, while the other two
versions slowed down ZLIFO by a factor of 1.84 and 4.86 in terms of plans explored.)

129

Gerevini & Schubert

during planning, the theoretical analysis of our algorithm, and the systematic experimental
tests.

Another closely related study is that of Yang and Chan (1994), who used hand-supplied
parameter domains in planning much as we use precomputed domains. An interesting
aspect of their work is the direct use of sets of constants as variable bindings. For instance,
in establishing a precondition (P ?x) using an initial state containing (P a), (P b) and
(P c), they would bind ?x to fa, b, cg rather than to a speci�c constant. They re�ne
these \noncommittal" bindings during planning much as we re�ne variable domains, and
periodically use constraint satisfaction methods to check their consistency with current
EQ/NEQ constraints. They conclude that delaying variable bindings works best for problems
with low solution densities (while degrading performance for some problems with high
solution densities), and that the optimal frequency of making consistency checks depends on
whether dead ends tend to occur high or low in the search tree. Our work is distinguished
from theirs by our method of precomputing parameter domains, our use of speci�c bindings
when matching initial conditions to OCs, our use of parameter domains in threat detection
and resolution, and our handling of the enriched syntax of ucpop operators as compared
snlp operators.

Judging from the examples we have experimented with, our techniques are well-suited
to nontrivial problems that involve diverse types of objects, relations and actions, and sig-
ni�cant logical interdependencies among the steps needed to solve a problem. When used in
conjunction with the default search strategy of ucpop, our method gave signi�cant speedups
for nontrivial problems, reaching a speedup factor of 927 in the trains transportation plan-
ning domain, and more than 1717 for the hardest strips-world problem we tried . When
combined with our S+OC and ZLIFO search strategies, the parameter domain technique
still gave speedups by a factor of around 10 for some trains problems. Though our im-
plementation is aimed at a ucpop-style planner, essentially the same techniques would be
applicable to many other planners.

We also found the parameter domain precomputations to be a very useful debugging
aid. In fact, the domain precomputation for our initial formulation of the trains world
immediately revealed several errors. For instance, the domain of the ?eng parameter of
mv-engine turned out to contain oranges, bananas, and an OJ factory, indicating the need
for a type constraint on ?eng. (Without this, transportation problems would have been
solvable without the bene�t of engines and trains!) Another immediately apparent problem
was revealed by the parameter domains for ?city1 and ?city2 in mv-engine: the domain
for ?city1 excluded Elmira, and that for ?city2 excluded Avon. The obvious diagnosis
was that we had neglected to assert both (connected c1 c2) and (connected c2 c1) for
each track connecting two cities. Furthermore, the parameter domains can quickly identify
unreachable operators and goals in some cases. For instance, without the make-oj operator,
the computed domains show that the ld-oj operator is unreachable, and that a goal like
(and(oj ?oj) (at ?oj Bath)) (getting some orange juice to Bath) is unattainable (the
parameter domain for ?oj will be empty).

Of course, running the planner itself can also be used for debugging a formalization, but
planning is in general far more time-consuming than our form of preprocessing (especially
if the goal we pose happens to be unachievable in the formalization!), and the trace of

130

Accelerating Partial-Order Planners

an anomalous planning attempt can be quite hard to interpret, compared to a listing of
parameter domains, obtained in a fraction of a second.

6.3 Further work

First of all, some additional experimentation would be of interest, to further assess and
perhaps re�ne our search strategies. Some of this experimentation might focus on threat-
handling strategies, including the best general form of an attenuated UC-term in plan
selection, and the best way to combine threat selection with open condition selection. The
preference for de�nite threats over open conditions used by ZLIFO does appear to be a
good default according to our experience, but the TileWorld experiments indicated that a
re-ordering of priorities between threats and open conditions is sometimes desirable. Con-
cerning the choice of a UC-related term for inclusion in the heuristic for plan selection, we
should mention that we have brie
y tried using S+OC+UCd, where UCd is the number of
de�nite threats, but did not obtain signi�cant uniform improvements.

One promising direction for further development of our search strategy is to make the
zero-commitment strategy apply more often by �nding ways of identifying false options as
early as possible. That is, if a possible action instance (obtained by matching an open
condition against available operators as well as against existing actions) is easily recogniz-
able as inconsistent with the current plan, then its elimination may leave us with a single
remaining match and hence an opportunity to apply the zero-commitment strategy.

One way of implementing this strategy would be to check at once, before accepting
a matched action as a possible way to attain an open condition, whether the temporal
constraints on that action force it to violate a causal link, or alternatively, force its causal
link to be violated. In that case the action could immediately be eliminated, perhaps
leaving only one (or even no) alternative. This could perhaps be made even more e�ective
by broadening the de�nition of threats so that preconditions as well as e�ects of actions
can threaten causal links, and hence bring to light inconsistencies sooner. Note that if a
precondition of an action is inconsistent with a causal link, it will have to be established
with another action whose e�ects violate the causal link; so the precondition really poses a
threat from the outset.

Two possible extensions to our parameter domain techniques are (i) fully automated
handling of universally quanti�ed preconditions and e�ects, disjunctions and facts in the
preprocessing algorithm; and (ii) more \intelligent" calculation of domains, by applying a
constraint propagation process to the sets of ground predications that have been matched to
the preconditions of an operator; this can be shown to yield tighter domains, though at some
computational expense. Blum and Furst (1995) recently explored a similar idea, but rather
than computing parameter domains, they directly stored sets of ground atoms that could be
generated by one operator application (starting in the initial state), two successive operator
applications, and so on, and then used these sets of atoms (and exclusivity relations among
the atoms and the actions connecting them) to guide the regressive search for a plan. The
algorithm they describe does not allow for conditional e�ects, though this generalization
appears entirely possible. For the examples used in their tests, they obtained dramatic
speedups.

131

Gerevini & Schubert

Finally, we are also working on another preprocessing technique, namely the inference
of state constraints from operator speci�cations. One useful form of constraint is impli-
cational (e.g., (implies (on ?x ?y) (not (clear ?y)))), and another is single-valuedness
conditions (e.g., (on ?x ?y) may be single-valued in both ?x and ?y). We conjecture that
such constraints can be tractably inferred and used for further large speedups in domain-
independent, well-founded planning.

In view of the results we have presented and the possibilities for further speedups we
have mentioned, we think it plausible that well-founded, domain-independent planners may
yet become competitive with more pragmatically designed planners.

Acknowledgements

This work amalgamates and extends two conference papers on improving search (Schubert
& Gerevini, 1995) and using computed parameter domains (Gerevini & Schubert, 1996) to
accelerate partial-order planners. The research was supported in part by Rome Lab con-
tract F30602-91-C-0010 and NATO Collaborative Research Grant CRG951285. Some of the
work by AG was carried out at IRST, 38050 Povo (TN), Italy, and at the CS Department
of the University of Rochester, Rochester NY USA. The helpful comments and perceptive
questions of Marc Friedman, David Joslin, Rao Kambhampati, Colm O'Riain, Martha Pol-
lack, David Smith, Dan Weld, Mike Williamson, and of Associate Editor Michael Wellman
and the anonymous reviewers are gratefully acknowledged.

Appendix A (Proofs of the Theorems)

Theorem 1 The find-parameter-domains algorithm is correct for computing parameter
domains of ucpop-style sets of operators (without quanti�cation, disjunction, or facts),
initial conditions, and (possibly) goal conditions.

Proof. As a preliminary observation, the intersected parameter domains computed it-
eratively by the algorithm eventually stabilize, since they grow monotonically and there
are only �nitely many constants that occur in the initial conditions and in operator e�ects.
Thus the algorithm terminates.

In order to prove correctness we need to show that if there exists a valid sequence
A0A1:::An of actions (operator instances) starting with A0 = *start*, and if An is an
instance of the operator Op, then the bindings that the parameters of Op received in instance
An are eventually added to the relevant intersected domains of Op (where \relevant" refers
to the when-clauses of Op whose preconditions are satis�ed at the beginning of An). We
prove this by induction on n.

If n = 0, then An = A0 = *start*, so there are no parameters and the claim is trivially
true.

Now assume that the claim holds for n = 1; 2; :::; k. Then consider any operator instance
Ak+1 that can validly follow A0A1:::Ak, i.e., such that Ak+1 is an instance of an operator
Op whose primary preconditions, possibly along with some secondary ones, are satis�ed at
the end of A0A1:::Ak. Let p be such a precondition, and write its instance in Ak+1 as
(P c1c2 ..). Then (P c1 c2..) must be an e�ect of some Ai, where 0 � i � k. If i = 0

132

Accelerating Partial-Order Planners

then (P c1c2 ..) holds in the initial state, and hence this predication is propagated and
successfully matched to p in the initial propagation phase of find-parameter-domains. If
i > 0, then Ai is an instance of some operator Op' and (P c1c2 ..) is the corresponding
instance of some e�ect (P t1 t2 ..) of Op', where each tj is either a parameter of Op' or is
equal to cj. Diagrammatically,

A0 . . . Ai . . . Ak Ak+1

j j
Op' Op

e�ect (P t1 t2 ..) ����! precond p
(P c1c2 ..) (P c1c2 ..)

By the induction assumption, the bindings of the parameters in Ai are eventually added
to the relevant intersected domains of Op'. This also implies that the intersected domains
of Op' become nonempty, and so the e�ect (P t1 t2 ..) is eventually propagated, where
any variables among the tj have the corresponding constant cj in the relevant intersected
domain. Consequently, much as in the case i = 0, e�ect (P t1 t2 ..) is successfully matched
to precondition p of Op at some stage of the propagation. Given these observations, it is
clear that for both i = 0 and i > 0, p will be marked \matched" in Op eventually, and
furthermore any parameters of Op that occur in p will have the bindings resulting from
the uni�cation with (Pc1 c2 ..) added to the appropriate individual domains associated
with p.

This argument applies to all preconditions of Op satis�ed in its instance Ak+1, in partic-
ular to all the primary preconditions. Since these are all marked \matched", the algorithm
will compute intersected domains for all Op-parameters that occur in them. In view of the
individual domain updates just con�rmed, and since individual domains grow monotoni-
cally, these intersected domains will eventually contain the parameter bindings of Ak+1.
For instance, if a parameter ?x of Op occurs in a primary precondition and is bound to
c in Ak+1, we have shown that c will eventually be added to the intersected domain of
?x associated with the primary when-clause of Op. If a parameter does not occur in the
primary preconditions of Op, then its intersected domain is set to T at the outset, and this
implicitly contains whatever binding the parameter has in Ak+1.

A very similar argument can be made for any secondary when-clause of Op whose pre-
conditions are also satis�ed for Ak+1. Again, all preconditions of the secondary clause,
as well as the primary preconditions, will be marked \matched", and so for any parameter
occurring in these combined preconditions, its intersected domain (relative to the secondary
clause) will be updated to include its binding in Ak+1. For parameters of Op not occurring
in any of these preconditions, the intersected domains will again be set to T initially, and
this implicitly contains any possible binding. Finally, we note that since the intersected
domains relative to both primary and secondary when-clauses grow monotonically, the aug-
mentations of intersected domains we have just con�rmed is permanent. (In the case of
T-domains, these remain T.)

We leave some additional details concerned with the ultimate use of EQ-preconditions in
find-parameter-domains to the reader. 2

133

Gerevini & Schubert

Theorem 2Algorithm find-parameter-domains can be implemented to run in O(mnpne(np+
ne)) time and O(mnp) space in the worst case, where m is the number of constants in the
problem speci�cation, np is the combined number of preconditions for all operators (and
goals, if included), and ne is the combined number of operator e�ects (including those of
start).

Proof. The time complexity of find-parameter-domains can be determined as the sum
of (1) the cost of all the uni�cations performed, (2) the costs of all the individual domain
updates attempted, and (3) the cost of all the intersected domain updates attempted. We
estimate an upper bound for each of these terms under the following assumptions:

(a) the uni�cation of any operator e�ect with any operator precondition requires constant
time;

(b) there is a �xed upper bound on the number of arguments that a predicate (in a
precondition or e�ect) can have. It follows that O(ne) is an upper bound on the total
number of intersected domains;21

(c) individual domains and intersected domains are stored in hash tables (indexed by the
constants in the domain). So, we can check whether an element belongs to a particular
(individual or intersected) domain, and possibly add it to that domain essentially in
constant time. Furthermore for each individual and intersected domain, appropriate
data structures are used to keep track of the (possibly empty) set of new elements
that have been added to the domain in the last update attempt.

(1) For any particular intersected domain of any particular operator, there can be at
most m updates of this domain. Each such update causes all of the e�ects of the when-
clause to which the intersected domain belongs to be propagated. An upper bound on this
number is ne. Each propagated e�ect may then be uni�ed with O(np) preconditions. Thus
the O(m) updates of an intersected domain may cause O(mnenp) uni�cations. Hence from
(b), the overall number of uni�cations caused by the propagation of intersected domains
to individual domains is O(mn2enp). To these uni�cations we have to add those which are
initially performed between the e�ects of *start* and the preconditions of the operators.
There are O(mnp) such uni�cations, and so they do not increase the previous upper bound
on the number of uni�cations. Thus, from (a), the cost of all of the uni�cations performed
by the algorithm is O(mn2enp).

(2) Each uni�cation is potentially followed by an attempt to update the individual
domain(s) of the relevant parameter(s). However, with assumption (c) the number of such
attempts is limited to those where the set of new elements in the intersected domain(s)
of the unifying e�ect is (are) not empty. Furthermore, when we attempt to update an
individual domain DI by performing the union of a relevant intersected domain Di and DI ,
only the subset of the new elements of Di need to be added to DI (if they are not already
there). Thus, since any intersected domain grows monotonically, from (b) and (c) we have
that the overall cost of all the update attempts for one particular individual domain caused

21. Note that if a parameter appears in a precondition of a when-clause, but in none of its e�ects, then the
intersected domain of the parameter will not be propagated by the algorithm. Hence in implementing
the algorithm we can ignore such parameters.

134

Accelerating Partial-Order Planners

by one particular e�ect is O(m). But in the worst case one e�ect can unify with all the
O(np) preconditions of all the operators, yielding an overall bound on all of the attempts
to update the individual domains of O(mnenp).

(3) There can be an attempt to update a particular intersected domain for each relevant
individual domain update, and each relevant individual domain can be updated O(m) times
(because the domains grow monotonically). Therefore from (b) there are at most O(mnp)
attempts to update one intersected domain. By (c) the total cost of these attempts is
O(mn2p), because checking whether a new element of an individual domain belongs to all
the other O(np) relevant individual domains takes O(np) time. So, since from (b) there
are no more than O(ne) intersected domains, the total cost incurred by the algorithm for
updating all of the intersected domains is O(mnen

2
p).

It follows that the time complexity of find-parameter-domains is:

O(mn2enp) + O(mnenp) + O(mnen
2
p) = O(mnpne(np + ne)).

The space complexity bound is easily derived from (b), and from the fact that for each
when-clause at most O(m) constants are stored. 2

References

Allen, J., & Schubert, L. (1991). The TRAINS project. Tech. rep. 382, Dept. of Computer
Science, Univ. of Rochester, Rochester, NY. Also slightly revised as Language and
discourse in the TRAINS project, in A. Ortony, J. Slack, and O. Stock (eds.), Com-
munication from an Arti�cial Intelligence Perspective: Theoretical Springer-Verlag,
Heidelberg, pp. 91-120.

Allen, J., Schubert, L., Ferguson, G., Heeman, P., Hwang, C., Kato, T., Light, M., Martin,
N., Miller, B., Poesio, M., & Traum, B. (1995). The TRAINS project: A case study
in building a conversational planning agent. Experimental and Theoretical Arti�cial
Intelligence, 7, 7{48.

Barrett, A., Golden, K., Penberthy, S., & Weld, D. (1994). UCPOP user's manual. Tech.
rep. 93-09-06, Dept. of Computer Science and Engineering, University of Washington,
Seattle, WA 98105.

Blum, A., & Furst, M. (1995). Fast planning through planning graph analysis. In Proceedings
of the Fourteenth International Joint Conference on Arti�cial Intelligence (IJCAI-95),
pp. 1636{1642 Montreal, CA. Morgan Kaufmann.

Chapman, D. (1987). Planning for conjunctive goals. Arti�cial Intelligence, 32 (3), 333{377.

Currie, K., & Tate, A. (1991). O-Plan: The open planning architecture. Arti�cial Intelli-
gence, 51 (1).

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Arti�cial Intelligence, 2, 189{208.

George�, M., & Lansky, A. (1987). Reactive reasoning and planning. In Proceedings of the
Sixth National Conference of the American Association for Arti�cial Intelligence, pp.
677{682 Seattle, WA. Morgan Kaufmann.

135

Gerevini & Schubert

Gerevini, A., & Schubert, L.K. (1995). Computing parameter domains as an aid to planning.
In Proc. of the 3rd Int. Conf. on Arti�cial Intelligence Planning Systems (AIPS-96),
pp. 94{101 Menlo Park, CA. The AAAI Press.

Goldszmidt, M., Darwiche, A., Chavez, T., Smith, D., & White, J. (1994). Decision-theory
for crisis management. Tech. rep. RL-TR-94-235, Rome Laboratory.

Green, C. (1969). Application of theorem proving to problem solving. In Proceedings of
the First International Joint Conference on Arti�cial Intelligence (IJCAI-69), pp.
219{239.

Joslin, D. (1995). Personal communication.

Joslin, D., & Pollack, M. (1994). Least-cost
aw repair: a plan re�nement strategy for
partial-order planning. In Proceedings of the Twelfth National Conference of the
American Association for Arti�cial Intelligence (AAAI-94), pp. 1004{1009 Seattle,
WA. Morgan Kaufmann.

Kambhampati, S., Knoblock, C. A., & Yang, Q. (1995). Planning as re�nement search: A
uni�ed framework for evaluating design tradeo� in partial-order planning. Arti�cial
Intelligence. Special Issue on Planning and Scheduling, 76 (1-2).

Korf, R. (1992). Linear-space best-�rst search: Summary of results. In Proceedings of
the Tenth National Conference of the American Association for Arti�cial Intelligence
(AAAI-92), pp. 533{538.

McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings
of the Ninth National Conference on Arti�cial Intelligence (AAAI-91), pp. 634{639
Anheim, Los Angeles, CA. Morgan Kaufmann.

Nilsson, N. (1980). Principles of Arti�cial Intelligence. Tioga Pub. Co., Palo Alto, CA.

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner
for ADL. In Nebel, B., Rich, C., & Swartout, W. (Eds.), Proceedings of the Third
International Conference on Principles of Knowledge Representation and Reasoning
(KR92), pp. 103{114 Boston, MA. Morgan Kaufmann.

Peot, M. A., & Smith, D. E. (1993). Threat-removal strategies for partial-order planning.
In Proceedings of the Eleventh National Conference of the American Association for
Arti�cial Intelligence (AAAI-93), pp. 492{499 Washington, D.C. Morgan Kaufmann.

Schubert, L., & Gerevini, A. (1995). Accelerating partial order planners by improving
plan and goal choices. In Proc. of the 7th IEEE Int. Conf. on Tools with Arti�cial
Intelligence, pp. 442{450 Herndon, Virginia. IEEE Computer Society Press.

Smith, D. E., & Peot, M. A. (1993). Postponing threats in partial-order planning. In
Proceedings of the Eleventh National Conference of the American Association for Ar-
ti�cial Intelligence (AAAI-93), pp. 500-506 Washington, D.C. Morgan Kaufmann.

Smith, D. E. (1996). Personal communication.

136

Accelerating Partial-Order Planners

Srinivasan, R., & Howe, A. (1995). Comparison of methods for improving search e�ciency
in a partial-order planner. In Proceedings of the Fourteenth International Joint Con-
ference on Arti�cial Intelligence (IJCAI-95), pp. 1620{1626.

Weld, D. (1994). An introduction to least commitment planning. AI Magazine, 15 (4),
27{62.

Wilkins, D. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, CA.

Williamson, M., & Hanks, S. (1995). Flaw selection strategies for value-directed planning. In
Proceedings of the Third International Conference on Arti�cial Intelligence Planning
Systems, pp. 237{244.

Yang, Q., & Chan, A.Y.M. (1994). Delaying variable binding commitments in planning. In
Proceedings of the Second International Conference on Arti�cial Intelligence Planning
Systems, pp. 182{187.

137

