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Abstract

Cue phrases may be used in a discourse sense to explicitly signal discourse structure, but
also in a sentential sense to convey semantic rather than structural information. Correctly
classifying cue phrases as discourse or sentential is critical in natural language processing
systems that exploit discourse structure, e.g., for performing tasks such as anaphora reso-
lution and plan recognition. This paper explores the use of machine learning for classifying
cue phrases as discourse or sentential. Two machine learning programs (cgrendel and
C4.5) are used to induce classi�cation models from sets of pre-classi�ed cue phrases and
their features in text and speech. Machine learning is shown to be an e�ective technique
for not only automating the generation of classi�cation models, but also for improving
upon previous results. When compared to manually derived classi�cation models already
in the literature, the learned models often perform with higher accuracy and contain new
linguistic insights into the data. In addition, the ability to automatically construct classi-
�cation models makes it easier to comparatively analyze the utility of alternative feature
representations of the data. Finally, the ease of retraining makes the learning approach
more scalable and 
exible than manual methods.

1. Introduction

Cue phrases are words and phrases that may sometimes be used to explicitly signal discourse
structure in both text and speech. In particular, when used in a discourse sense, a cue
phrase explicitly conveys structural information. When used in a sentential sense, a cue
phrase instead conveys semantic rather than structural information. The following examples
(taken from a spoken language corpus that will be described in Section 2) illustrate sample
discourse and sentential usages of the cue phrases \say" and \further":

� Discourse

\: : :we might have the concept of say a researcher who has worked for �fteen years
on a certain project : : :"

\Further, and this is crucial in AI and probably for expert databases as well : : :"

� Sentential

\: : : let me just say that it bears a strong resemblance to much of the work that's
done in semantic nets and even frames."

\: : : from a place that is even stranger and further away : : :"

For example, when used in the discourse sense, the cue phrase \say" conveys the structural
information that an example is beginning. When used in the sentential sense, \say" does
not convey any structural information and instead functions as a verb.
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The ability to correctly classify cue phrases as discourse or sentential is critical for
natural language processing systems that need to recognize or convey discourse structure,
for tasks such as improving anaphora resolution (Grosz & Sidner, 1986; Reichman, 1985).
Consider the following example, again taken from the corpus that will be described in
Section 21:

If the system attempts to hold rules, say as an expert database for an expert system,
then we expect it not only to hold the rules but to in fact apply them for us in
appropriate situations.

In this example, the cue phrases \say" and \then" are discourse usages, and explicitly
signal the boundaries of an intervening subtopic in the discourse structure. Furthermore,
the referents of the noun phrases \the system," \an expert database," and \an expert
system" are all possible referents for the pronoun \it." With the structural information
conveyed by the cue phrases, the system can determine that \the system" is more relevant
for interpreting the pronoun \it," as both \an expert database" and \an expert system"
occur within the embedded (and now concluded) subtopic. Without the cue phrases, the
reasoning required to determine that the referent of the \the system" is the intended referent
of \it" would be much more complex.

Correctly classifying cue phrases as discourse or sentential is important for other natural
language processing tasks as well. The discourse/sentential distinction can be used to
improve the naturalness of synthetic speech in text-to-speech systems (Hirschberg, 1990).
Text-to-speech systems generate synthesized speech from unrestricted text. If a cue phrase
can be classi�ed as discourse or sentential using features of the input text, it can then be
synthesized using di�erent intonational models for the discourse and sentential usages. In
addition, by explicitly identifying rhetorical and other relationships, discourse usages of cue
phrases can be used to improve the coherence of multisentential texts in natural language
generation systems (Zuckerman & Pearl, 1986; Moser & Moore, 1995). Cue phrases can
also be used to reduce the complexity of discourse processing in such areas as argument
understanding (Cohen, 1984) and plan recognition (Litman & Allen, 1987; Grosz & Sidner,
1986).

While the problem of cue phrase classi�cation has often been noted (Grosz & Sidner,
1986), until recently, models for classifying cue phrases were neither developed nor evaluated
based on careful empirical analyses. Even though the literature suggests that some features
might be useful for cue phrase classi�cation, there are no quantitative analyses of any actual
classi�cation algorithms that use such features (nor any suggestions as to how di�erent types
of features might be combined). Most systems that recognize or generate cue phrases simply
assume that discourse uses are utterance or clause initial (Reichman, 1985; Zuckerman &
Pearl, 1986). While there are empirical studies showing that the intonational prominence
of certain word classes varies with respect to discourse function (Halliday & Hassan, 1976;
Altenberg, 1987), these studies do not investigate cue phrases per se.

To address these limitations, Hirschberg and Litman (1993) conducted several empirical
studies speci�cally addressing cue phrase classi�cation in text and speech. Hirschberg and
Litman pre-classi�ed a set of naturally occurring cue phrases, described each cue phrase in
terms of prosodic and textual features (the features were posited in the literature or easy

1. This example is also described in more detail by Hirschberg and Litman (1993).
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to automatically code), then manually examined the data to construct classi�cation models
that best predicted the classi�cations from the feature values.

This paper examines the utility of machine learning for automating the construction
of models for classifying cue phrases from such empirical data. A set of experiments are
described that use two machine learning programs, cgrendel (Cohen, 1992, 1993) and
C4.5 (Quinlan, 1993), to induce classi�cation models from sets of pre-classi�ed cue phrases
and their features. The features, classes and training examples used in the studies of
Hirschberg and Litman (1993), as well as additional features, classes and training exam-
ples, are given as input to the machine learning programs. The results are evaluated both
quantitatively and qualitatively, by comparing both the error rates and the content of the
manually derived and learned classi�cation models. The experimental results show that
machine learning is indeed an e�ective technique, not only for automating the generation
of classi�cation models, but also for improving upon previous results. The accuracy of
the learned classi�cation models is often higher than the accuracy of the manually derived
models, and the learned models often contain new linguistic implications. The learning
paradigm also makes it easier to compare the utility of di�erent knowledge sources, and to
update the model given new features, classes, or training data.

The next section summarizes previous work on cue phrase classi�cation. Section 3
then describes the machine learning approach to cue phrase classi�cation that is taken in
this paper. In particular, the section describes four sets of experiments that use machine
learning to automatically induce cue phrase classi�cation models. The types of inputs and
outputs of the machine learning programs are presented, as are the methodologies that are
used to evaluate the results. Section 4 presents and discusses the experimental results, and
highlights the many bene�ts of the machine learning approach. Section 5 discusses the
practical utility of the results of this paper. Finally, Section 6 discusses the use of machine
learning in other studies of discourse, while Section 7 concludes.

2. Previous Work on Classifying Cue Phrases

This section summarizes Hirschberg's and Litman's empirical studies of the classi�cation of
cue phrases in speech and text (Hirschberg & Litman, 1987, 1993; Litman & Hirschberg,
1990). Hirschberg's and Litman's data (cue phrases taken from corpora of recorded and
transcribed speech, classi�ed as discourse or sentential, and coded using both speech-based
and text-based features) will be used to create the input for the machine learning experi-
ments. Hirschberg's and Litman's results (performance �gures for manually developed cue
phrase classi�cation models) will be used as a benchmark for evaluating the performance
of the classi�cation models produced by machine learning.

The �rst study by Hirschberg and Litman investigated usage of the cue phrase \now"
by multiple speakers in a radio call-in show (Hirschberg & Litman, 1987). A classi�cation
model based on prosodic features was developed based on manual analysis of a \training"
set of 48 examples of \now", then evaluated on a previously unseen test set of 52 examples
of \now". In a follow-up study (Hirschberg & Litman, 1993), Hirschberg and Litman tested
this classi�cation model on a larger set of cue phrases, namely all single word cue phrases
in a technical keynote address by a single speaker. This corpus yielded 953 instances of 34
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Prosodic Model:

if composition of intermediate phrase = alone then discourse (1)
elseif composition of intermediate phrase = :alone then (2)

if position in intermediate phrase = �rst then (3)
if accent = deaccented then discourse (4)
elseif accent = L* then discourse (5)
elseif accent = H* then sentential (6)
elseif accent = complex then sentential (7)

elseif position in intermediate phrase = :�rst then sentential (8)

Textual Model:

if preceding orthography = true then discourse (9)
elseif preceding orthography = false then sentential (10)

Figure 1: Decision tree representation of the manually derived classi�cation models of
Hirschberg and Litman.

di�erent single word cue phrases derived from the literature.2 Hirschberg and Litman also
used the cue phrases in the �rst 17 minutes of this corpus to develop a complementary cue
phrase classi�cation model based on textual features (Litman & Hirschberg, 1990), which
they then tested on the full corpus (Hirschberg & Litman, 1993). The �rst study will be
referred to as the \now" study, and the follow-up study as the \multiple cue phrase" study.
Note that the term \multiple" means that 34 di�erent single word cue phrases (as opposed
to just the cue phrase \now") are considered, not that cue phrases consisting of multiple
words (e.g. \by the way") are considered.

The method that Hirschberg and Litman used to develop their prosodic and textual clas-
si�cation models was as follows. They �rst separately classi�ed each example cue phrase in
the data as discourse, sentential or ambiguous while listening to a recording and reading a
transcription.3 Each example was also described as a set of prosodic and textual features.4

Previous observations in the literature correlating discourse structure with prosodic infor-
mation, and discourse usages of cue phrases with initial position in a clause, contributed to
the choice of features. The set of classi�ed and described examples was then examined in
order to manually develop the classi�cation models shown in Figure 1. These models are
shown here using decision trees for ease of comparison with the results of C4.5 and will be
explained below.

Prosody was described using Pierrehumbert's theory of English intonation (Pierrehum-
bert, 1980). In Pierrehumbert's theory, intonational contours are described as sequences
of low (L) and high (H) tones in the fundamental frequency (F0) contour (the physical

2. Figure 2 contains a list of the 34 cue phrases. Hirschberg and Litman (1993) provide full details regarding
the distribution of these cue phrases. The most frequent cue phrase is \and", which occurs 320 times.
The next most frequent cue phrase is \now", which occurs 69 times. \But," \like," \or" and \so" also
each occur more than �fty times. The four least frequent cue phrases { \essentially," \otherwise," \since"
and \therefore" { each occur 2 times.

3. The class ambiguouswas not introduced until the multiple cue phrase study (Hirschberg & Litman, 1993;
Litman & Hirschberg, 1990).

4. Although a limited set of textual features were noted in the \now" data, the analysis of the \now" data
did not yield a textual classi�cation model.
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correlate of pitch). Intonational contours have as their domain the intonational phrase.
A �nite-state grammar describes the set of tonal sequences for an intonational phrase. A
well-formed intonational phrase consists of one or more intermediate phrases followed by a
boundary tone. A well-formed intermediate phrase has one or more pitch accents followed
by a phrase accent. Boundary tones and phrase accents each consist of a single tone, while
pitch accents consist of either a single tone or a pair of tones. There are two simple pitch
accents (H* and L*) and four complex accents (L*+H, L+H*, H*+L, and H+L*). The
* indicates which tone is aligned with the stressed syllable of the associated lexical item.
Note that not every stressed syllable is accented. Lexical items that bear pitch accents are
called accented, while those that do not are called deaccented.

Prosody was manually transcribed by Hirschberg by examining the fundamental fre-
quency (F0) contour, and by listening to the recording. This transcription process was
performed separately from the process of discourse/sentential classi�cation. To produce the
F0 contour, the recording of the corpus was digitized and pitch-tracked using speech analy-
sis software. This resulted in a display of the F0 where the x-axis represented time and the
y-axis represented frequency in Hz. Various phrase �nal characteristics (e.g., phrase accents,
boundary tones, as well as pauses and syllable lengthening) helped to identify intermediate
and intonational phrases, while peaks or valleys in the display of the F0 contour helped to
identify pitch accents. Similar manual transcriptions of prosodic phrasing and accent have
been shown to be reliable across coders (Pitrelli, Beckman, & Hirschberg, 1994).

Once prosody was coded, Hirschberg and Litman represented every cue phrase in terms
of the following prosodic features.5 Accent corresponded to the pitch accent (if any) that
was associated with the cue phrase. For both the intonational and intermediate phrases
containing each cue phrase, the feature composition of phrase represented whether or not
the cue phrase was alone in the phrase (the phrase contained only the cue phrase, or only
the cue phrase and other cue phrases). Position in phrase represented whether the cue
phrase was �rst (the �rst lexical item in the prosodic phrase unit { possibly preceded by
other cue phrases) or not.

The textual features used in the multiple cue phrase study (Hirschberg & Litman, 1993;
Litman & Hirschberg, 1990) were extracted automatically from the transcript. The part of
speech of each cue phrase was obtained by running a program for tagging words with one of
approximately 80 parts of speech (Church, 1988) on the transcript.6 Several characteristics
of the cue phrase's immediate context were also noted, in particular, whether it was im-
mediately preceded or succeeded by orthography (punctuation or a paragraph boundary),
and whether it was immediately preceded or succeeded by a lexical item corresponding to
another cue phrase.

With this background, the classi�cation models shown in Figure 1 can now be explained.
The prosodic model uniquely classi�es any cue phrase using the features composition of
intermediate phrase, position in intermediate phrase, and accent. When a cue phrase is
uttered as a single intermediate phrase { possibly with other cue phrases (i.e., line (1) in
Figure 1), or in a larger intermediate phrase with an initial position (possibly preceded by

5. Only the features used in Figure 1 are discussed here.
6. Another syntactic feature - dominating constituent - was obtained by running the parser Fidditch (Hindle,

1989) on the transcript. However, since this feature did not appear in any models manually derived from
the training data (Litman & Hirschberg, 1990), the feature was not pursued.
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

Prosodic 24.6 � 3.0 14.7 � 3.2
Textual 19.9 � 2.8 16.1 � 3.4

Default Class 38.8 � 3.2 40.8 � 4.4

Table 1: 95% con�dence intervals for the error rates (%) of the manually derived classi�ca-
tion models of Hirschberg and Litman, testing data (multiple cue phrase corpus).

other cue phrases) and a L* accent or deaccented, it is classi�ed as discourse. When part of
a larger intermediate phrase and either in initial position with a H* or complex accent, or
in a non-initial position, it is sentential. The textual model classi�es cue phrases using only
the single feature preceding orthography.7 When a cue phrase is preceded by any type of
orthography, it is classi�ed as discourse; otherwise, the cue phrase is classi�ed as sentential.

When the prosodic model was used to classify each cue phrase in its training data, i.e.,
the 100 examples of \now" from which the model was developed, the error rate was 2.0%.8

The error rate of the textual model on the training examples from the multiple cue phrase
corpus was 10.6% (Litman & Hirschberg, 1990).

The prosodic and textual models were evaluated by quantifying their performance in
correctly classifying example cue phrases in two test sets of data, as shown in the rows
labeled \Prosodic" and \Textual" in Table 1. Each test set is a subset of the 953 examples
from the multiple cue phrase corpus. The �rst test set (878 examples) consists of only the
classi�able cue phrases, i.e., the cue phrases that both Hirschberg and Litman classi�ed as
discourse or that both classi�ed as sentential. Note that those cue phrases that Hirschberg
and Litman classi�ed as ambiguous or that they were unable to agree upon are not included
in the classi�able subset. (These cue phrases will be considered in the learning experiments
described in Section 4.4, however.) The second test set, the classi�able non-conjuncts
(495 examples), was created from the classi�able cue phrases by removing all instances of
\and", \or" and \but". This subset was considered particularly reliable since 97.2% of non-
conjuncts were classi�able compared to 92.1% of all example cue phrases. The error rate of
the prosodic model was 24.6% for the classi�able cue phrases and 14.7% for the classi�able
non-conjuncts (Hirschberg & Litman, 1993). The error rate of the textual model was 19.9%
for the classi�able cue phrases and 16.1% for the classi�able non-conjuncts (Hirschberg &
Litman, 1993). The last row of the table shows error rates for a simple \Default Class"
baseline model that always predicts the most frequent class in the corpus (sentential). These
rates are 38.8% for the classi�able cue phrases and 40.8% for the classi�able non-conjuncts.

7. A classi�cation model based on part-of-speech was also developed (Litman & Hirschberg, 1990;
Hirschberg & Litman, 1993); however, it did not perform as well as the model based on orthography
(the error rate of the part-of-speech model was 36.1% in the larger test set, as opposed to 19.9% for the
orthographic model). Furthermore, a model that combined orthography and part-of-speech performed
comparably to the simpler orthographic model (Hirschberg & Litman, 1993). Hirschberg and Litman
also had preliminary observations suggesting that adjacency of cue phrases might prove useful.

8. Following Hirschberg and Litman (1993), the original 48- and 52-example sets (Hirschberg & Litman,
1987) are combined.
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Although not computed by Hirschberg and Litman, Table 1 also associates margins of er-
rors with each error percentage, which are used to compute con�dence intervals (Freedman,
Pisani, & Purves, 1978). (The margin of error is � 2 standard errors for a 95% con�dence
interval using a normal table.) The lower bound of a con�dence interval is computed by
subtracting the margin of error from the error rate, while the upper bound is computed by
adding the margin of error. Thus, the 95% con�dence interval for the prosodic model on
the classi�able cue phrase test set is (21.6%, 27.6%). Analysis of the con�dence intervals
indicates that the improvement of both the prosodic and textual models over the default
model is signi�cant. For example, the upper bounds of the error rates of the prosodic and
textual models on the classi�able cue phrase test set - 27.6% and 22.7% - are both lower
than the lower bound of the default class error rate - 35.6%. This methodology of using sta-
tistical inference to determine whether di�erences in error rates are signi�cant is discussed
more fully in Section 3.3.

3. Experiments using Machine Learning

This section describes experiments that use the machine learning programs C4.5 (Quinlan,
1993) and cgrendel (Cohen, 1992, 1993) to automatically induce cue phrase classi�cation
models. cgrendel and C4.5 are similar to each other and to other learning methods such
as neural networks and cart (Brieman, Friedman, Olshen, & Stone, 1984) in that all induce
classi�cation models from preclassi�ed examples. Each program takes the following inputs:
names of the classes to be learned, names and possible values of a �xed set of features, and
the training data (i.e., a set of examples for which the class and feature values are speci�ed).
The output of each program is a classi�cation model, expressed in C4.5 as a decision tree
and in cgrendel as an ordered set of if-then rules. Both cgrendel and C4.5 learn the
classi�cation models using greedy search guided by an \information gain" metric.

The �rst group of machine learning experiments replicate the training and testing condi-
tions used by Hirschberg and Litman (1993) (reviewed in the previous section), to support
a direct comparison of the manual and machine learning approaches. The second group of
experiments evaluate the utility of training from larger amounts of data than was feasible
for the manual analysis of Hirschberg and Litman. The third set of experiments allow the
machine learning algorithms to distinguish among the 34 cue phrases, to evaluate the util-
ity of developing classi�cation models specialized for particular cue phrases. The fourth set
of experiments consider all the examples in the multiple cue phrase corpus, not just the
classi�able cue phrases. This set of experiments attempt to predict a third classi�cation
unknown, as well as the classi�cations discourse and sentential. Finally, within each of these
four sets of experiments, each individual experiment learns a classi�cation model using a
di�erent feature representation of the training data. Some experiments consider features in
isolation, to comparatively evaluate the utility of each individual feature for classi�cation.
Other experiments consider linguistically motivated sets of features, to gain insight into
feature interactions.

3.1 The Machine Learning Inputs

This section describes the inputs to both of the machine learning programs, namely, the
names of the classi�cations to be learned, the names and possible values of a �xed set of
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Total Classi�able Cue Phrases
Classi�cation Discourse Sentential Unknown
Judge1/Judge2 D/D S/S ?/? D/S S/D D/? S/? ?/D ?/S
All Cue Phrases 953 341 537 59 5 0 0 0 5 6
Non-Conjuncts 509 202 293 11 1 0 0 0 0 2

Table 2: Determining the classi�cation of cue phrases.

features, and training data specifying the class and feature values for each example in the
training set.

3.1.1 Classifications

The �rst input to each learning program speci�es the names of a �xed set of classi�cations.
Hirschberg and Litman's 3-way classi�cation of cue phrases by 2 judges (Hirschberg &
Litman, 1993) is transformed into the classi�cations used by the machine learning programs
as shown in Table 2. Recall from Section 2 that each judge classi�ed each cue phrase as
discourse, sentential, or ambiguous; these classi�cations are shown as D, S, and ? in Table 2.
As discussed in Section 2, the classi�able cue phrases are those cue phrases that the judges
both classi�ed as either discourse or as sentential usages. Thus, in the machine learning
experiments, a cue phrase is assigned the classi�cation discourse if both judges classi�ed it
as discourse (D/D, as shown in column 3 of Table 2). Similarly, a cue phrase is assigned the
classi�cation sentential if both judges classi�ed it as sentential (S/S, as shown in column
4). 878 (92.1%) of the 953 examples in the full corpus were classi�able, while 495 (97.2%)
of the 509 non-conjuncts were classi�able.

For some of the machine learning experiments, a third cue phrase classi�cation will also
be considered. In particular, a cue phrase is assigned the classi�cation unknown if both
Hirschberg and Litman classi�ed it as ambiguous (?/?, as shown in column 5), or if they
were unable to agree upon its classi�cation (D/S, S/D, D/?, S/?, ?/D, ?/S, as shown in
columns 6-11). In the full corpus, 59 cue phrases (6.2%) were judged ambiguous by both
judges (?/?). There were only 5 cases (.5%) of true disagreement (D/S). 11 cue phrases
(1.2%) were judged ambiguous by the �rst judge but classi�ed by the second judge (?/D
and ?/S). When the conjunctions \and," \or" and \but" were removed from the corpus,
only 11 examples (2.2%) were judged ambiguous by both judges: 3 instances of \actually,"
2 instances each of \because" and \essentially," and 1 instance of \generally," \indeed,"
\like" and \now." There was only 1 case (.2%) of true disagreement (an instance of \like").
2 cue phrases (.4%) - an instance each of \like" and \otherwise" - were judged ambiguous
by the �rst judge.

3.1.2 Features

A second component of the input to each learning program speci�es the names and potential
values of a �xed set of features. The set of primitive features considered in the learning
experiments are shown in Figure 2. Feature values can either be a numeric value or one of a
�xed set of user-de�ned symbolic values. The feature representation shown here follows the
representation of Hirschberg and Litman except as noted. Length of intonational phrase (P-
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� Prosodic Features

{ length of intonational phrase (P-L): integer.

{ position in intonational phrase (P-P): integer.

{ length of intermediate phrase (I-L): integer.

{ position in intermediate phrase (I-P): integer.

{ composition of intermediate phrase (I-C): only, only cue phrases, other.

{ accent (A): H*, L*, L*+H, L+H*, H*+L, H+L*, deaccented, ambiguous.

{ accent* (A*): H*, L*, complex, deaccented, ambiguous.

� Textual Features

{ preceding cue phrase (C-P): true, false, NA.

{ succeeding cue phrase (C-S): true, false, NA.

{ preceding orthography (O-P): comma, dash, period, paragraph, false, NA.

{ preceding orthography* (O-P*): true, false, NA.

{ succeeding orthography (O-S): comma, dash, period, false, NA.

{ succeeding orthography* (O-S*): true, false, NA.

{ part-of-speech (POS): article, coordinating conjunction, cardinal numeral, subordinating conjunction,
preposition, adjective, singular or mass noun, singular proper noun, intensi�er, adverb, verb base form,
NA.

� Lexical Feature

{ token (T): actually, also, although, and, basically, because, but, essentially, except, �nally, �rst, further,
generally, however, indeed, like, look, next, no, now, ok, or, otherwise, right, say, second, see, similarly,
since, so, then, therefore, well, yes.

Figure 2: Representation of features, for use by C4.5 and cgrendel.

L) and length of intermediate phrase (I-L) represent the number of words in the intonational
and intermediate phrases containing the cue phrase, respectively. This feature was not coded
in the \now" data, but was coded (although not used) in the later multiple cue phrase
data. Position in intonational phrase (P-P) and position in intermediate phrase (I-P) use
numeric values rather than the earlier symbolic values (e.g., �rst in Figure 1). Composition
of intermediate phrase (I-C) replaces the value alone (meaning that the phrase contained
only the example cue phrase, or only the example plus other cue phrases) from Figure 1
with the more primitive values only and only cue phrases (whose disjunction is equivalent to
alone); I-C also uses the value other rather than :alone (as was used in Figure 1). Accent
(A) uses the value ambiguous to represent all cases where the prosodic analysis yields a
disjunction (e.g., \H*+L or H*"). Accent* (A*) re-represents some of the symbolic values
of the feature accent (A) using a more abstract level of description. In particular, L*+H,
L+H*, H*+L, and H+L* are represented as separate values in A but as a single value { the
superclass complex { in A*. While useful abstractions can often result from the learning
process, A* is explicitly represented in advance as it is a prosodic feature representation
that has the potential to be automated (see Section 5).

In all the textual features, the value NA (not applicable) re
ects the fact that 39 recorded
examples were not included in the transcription, which was done independently of the
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studies performed by Hirschberg and Litman (1993). In the coding used by Hirschberg and
Litman, preceding cue phrase (C-P) and succeeding cue phrase (C-S) represented the actual
cue phrase (e.g., \and") when there was a preceding or succeeding cue phrase; here the value
true encodes all such cases. As with the prosodic feature set A*, preceding orthography*
(O-P*) and succeeding orthography* (O-S*) re-represent some of the symbolic values of
preceding orthography (O-P) and succeeding orthography (O-S), respectively, using a more
abstract level of description (e.g., comma, dash, and period are represented as separate values
in O-S but as the single value true in O-S*). This is done because the reliability of coding
detailed transcriptions of orthography is not known. Part-of-speech (POS) represents the
part of speech assigned to each cue phrase by Church's program for tagging part of speech in
unrestricted text (Church, 1988); while the program can assign approximately 80 di�erent
values, only the subset of values that were actually assigned to the cue phrases in the
transcripts of the corpora are shown in the �gure. Finally, the lexical feature token (T) is
new to this study, and represents the actual cue phrase being described.

3.1.3 Training Data

The �nal input to each learning program is training data, i.e., a set of examples for which
the class and feature values are speci�ed. Consider the following utterance, taken from the
multiple cue phrase corpus (Hirschberg & Litman, 1993):

Example 1 [(Now) (now that we have all been welcomed here)] it's time to get on with
the business of the conference.

This utterance contains two cue phrases, corresponding to the two instances of \now". The
brackets and parentheses illustrate the intonational and intermediate phrases, respectively,
that contain the example cue phrases. Note that a single intonational phrase contains both
examples, but that each example is uttered in a di�erent intermediate phrase. If we were
only interested in the feature length of intonational phrase (P-L), the two examples would
be represented in the training data as follows:

P-L Class

9 discourse
9 sentential

The �rst column indicates the value assigned to the feature P-L, while the second column
indicates how the example was classi�ed. Thus, the length of the intonational phrase
containing the �rst instance of \now" is 9 words, and the example cue phrase is classi�ed
as a discourse usage. If we were only interested in the feature composition of intermediate
phrase (I-C), the two examples would instead be represented in the training data as follows:

I-C Class

only discourse
other sentential

That is, the intermediate phrase containing the �rst instance of \now" contains only the
cue phrase \now", while the intermediate phrase containing the second instance of \now"
contains \now" as well as 7 other lexical items that are not cue phrases. Note that while
the value of P-L is the same for both examples, the value of I-C is di�erent.
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3.2 The Machine Learning Outputs

The output of both machine learning programs are classi�cation models. In C4.5 the model
is expressed as a decision tree, which consists of either a leaf node (a class assignment), or a
decision node (a test on a feature, with one branch and subtree for each possible outcome of
the test). The following example illustrates the non-graphical representation for a decision
node testing a feature with n possible values:

if test1 then : : :

: : :

elseif testn then : : :

Tests are of the form \feature operator value"9. \Feature" is the name of a feature (e.g.
accent), while \value" is a valid value for that feature (e.g., deaccented). For features with
symbolic values (e.g., accent), there is one branch for each symbolic value, and the operator
\=" is used. For features with numeric values (e.g., length of intonational phrase), there
are two branches, each comparing the numeric value with a threshold value; the operators
\�" and \>" are used. Given a decision tree, a cue phrase is classi�ed by starting at the
root of the tree and following the appropriate branches until a leaf is reached. Section 4
shows example decision trees produced by C4.5.

In cgrendel the classi�cation model is expressed as an ordered set of if-then rules of
the following form:

if test1 ^ : : :^ testk then class

The \if" part of a rule is a conjunction of tests on the values of (varying) features, where
tests are again of the form \feature operator value." As in C4.5, \feature" is the name of
a feature, and \value" is a valid value for that feature. Unlike C4.5, the operators = or 6=
are used for features with symbolic values, while � or � are used for features with numeric
values. The \then" part of a rule speci�es a class assignment (e.g, discourse). Given a set
of if-then rules, a cue phrase is classi�ed using the rule whose \if" part is satis�ed. If there
or two or more such rules and the rules disagree on the class of an example, cgrendel
applies one of two con
ict resolution strategies (chosen by the user): choose the �rst rule,
or choose the rule that is most accurate on the data. The experiments reported here use
the second strategy. If there are no such rules, cgrendel assigns a default class. Section 4
shows example rules produced by cgrendel.

Both C4.5 and cgrendel learn their classi�cation models using greedy search guided
by an \information gain" metric. C4.5 uses a divide and conquer process: training examples
are recursively divided into subsets (using the tests discussed above), until all of the subsets
belong to a single class. The test chosen to divide the examples is that which maximizes
a metric called a gain ratio (a local measure of progress, which does not consider any
subsequent tests); this metric is based on information theory and is discussed in detail by
Quinlan (1993). Once a test is selected, there is no backtracking. Ideally, the set of chosen
tests should result in a small �nal decision tree. cgrendel generates its set of if-then rules
using a method called separate and conquer (to highlight the similarity with divide and
conquer):

9. An additional type of test may be invoked by a C4.5 option.
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Many rule learning systems generate hypotheses using a greedy strategy in which
rules are added to the rule set one by one in an e�ort to form a small cover of
the positive examples; each rule, in turn is created by adding one condition
after another to the antecedent until the rule is consistent with the negative
data. (Cohen, 1993)

Although cgrendel is claimed to have two advantages over C4.5, these advantages do
not come into play for the experiments reported here. First, if-then rules appear to be easier
for people to understand than decision trees (Quinlan, 1993). However, for the cue phrase
classi�cation task, the decision trees produced by C4.5 are quite compact and thus easily
understood. Furthermore, a rule representation can be derived from C4.5 decision trees,
using the program C4.5rules. Second, cgrendel allows users to exploit prior knowledge of
a learning problem, by constraining the syntax of the rules that can be learned. However, no
prior knowledge is exploited in the cue phrase experiments. The main reason for using both
C4.5 and cgrendel is to increase the reliability of any comparisons between the machine
learning and manual results. In particular, if comparable results are obtained using both
C4.5 and cgrendel, then any performance di�erences between the learned and manually
derived classi�cation models are less likely to be due to the speci�cs of a particular learning
program, and more likely to re
ect the learned/manual distinction.

3.3 Evaluation

The output of each machine learning experiment is a classi�cation model that has been
learned from the training data. These learned models are qualitatively evaluated by exam-
ining their linguistic content, and by comparing them with the manually derived models of
Figure 1. The learned models are also quantitatively evaluated by examining their error
rates on testing data and by comparing these error rates to each other and to the error
rates shown in Table 1. The error rate of a classi�cation model is computed by using the
model to predict the classi�cations for a set of examples where the classi�cations are already
known, then comparing the predicted and known classi�cations. In the cue phrase domain,
the error rate is computed by summing the number of discourse examples misclassi�ed as
sentential with the number of sentential examples misclassi�ed as discourse, then dividing
by the total number of examples.

The error rates of the learned classi�cation models are estimated using two methodolo-
gies. Train-and-test error rate estimation (Weiss & Kulikowski, 1991) \holds out" a test
set of examples, which are not seen until after training is completed. That is, the model is
developed by examining only the training examples; the error of the model is then estimated
by using the model to classify the test examples. This was the evaluation method used by
Hirschberg and Litman. The resampling method of cross-validation (Weiss & Kulikowski,
1991) estimates error rate using multiple train-and-test experiments. For example, in 10-
fold cross-validation, instead of dividing examples into training and test sets once, 10 runs of
the learning program are performed. The total set of examples is randomly divided into 10
disjoint test sets; each run thus uses the 90% of the examples not in the test set for training
and the remaining 10% for testing. Note that for each iteration of the cross-validation, the
learning process begins from scratch; thus a new classi�cation model is learned from each
training sample. An estimated error rate is obtained by averaging the error rate on the test-
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ing portion of the data from each of the 10 runs. While this method does not make sense for
humans, computers can truly ignore previous iterations. For sample sizes in the hundreds
(the classi�able subset of the multiple cue phrase sample and the classi�able non-conjunct
subset provide 878 and 495 examples, respectively) 10-fold cross-validation often provides
a better performance estimate than the hold-out method (Weiss & Kulikowski, 1991). The
major advantage is that in cross-validation all examples are eventually used for testing, and
almost all examples are used in any given training run.

The best performing learned models are identi�ed by comparing their error rates to
the error rates of the other learned models and to the manually derived error rates. To
determine whether the fact that an error rate E1 is lower than another error rate E2 is
also signi�cant, statistical inference is used. In particular, con�dence intervals for the two
error rates are computed, at a 95% con�dence level. When an error rate is estimated using
only a single error rate on a test set (i.e., the train-and-test methodology), the con�dence
interval is computed using a normal approximation to the binomial distribution (Freedman
et al., 1978). When the error rate is estimated using the average from multiple error
rates (i.e., the cross-validation methodology), the con�dence interval is computed using a
t-Table (Freedman et al., 1978). If the upper bound of the 95% con�dence interval for E1
is lower than the lower bound of the 95% con�dence interval for the error rate E2, then the
di�erence between E1 and E2 is assumed to be signi�cant.10

3.4 The Experimental Conditions

This section describes the conditions used in each set of machine learning experiments. The
experiments di�er in their use of training and testing corpora, methods for estimating error
rates, and in the features and classi�cations used. The actual results of the experiments are
presented in Section 4.

3.4.1 Four Sets of Experiments

The learning experiments can be conceptually divided into four sets. Each experiment in
the �rst set estimates error rate using the train-and-test method, where the training and
testing samples are those used by Hirschberg and Litman (1993) (the \now" data and the
two subsets of the multiple cue phrase corpus, respectively). This allows a direct comparison
of the manual and machine learning approaches. However, only the prosodic experiments
conducted by Hirschberg and Litman (1993) are replicated. The textual training and testing
conditions are not replicated as the original training corpus (the �rst 17 minutes of the
multiple cue phrase corpus) (Litman & Hirschberg, 1990) is a subset of, rather than disjoint
from, the test corpus (the full 75 minutes of the multiple cue phrase corpus) (Hirschberg &
Litman, 1993).

In contrast, each experiment in the second set uses cross-validation to estimate error
rate. Furthermore, both training and testing samples are taken from the multiple cue
phrase corpus. Each experiment uses 90% of the examples from the multiple cue phrase
data for training, and the remaining 10% for testing. Thus each experiment in the second
set trains from much larger amounts of data (790 classi�able examples, or 445 classi�able

10. Thanks to William Cohen for suggesting this methodology.
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P-L P-P I-L I-P I-C A A* C-P C-S O-P O-P* O-S O-S* POS

prosody X X X X X X X
hl93features X X X X
phrasing X X X X X
length X X
position X X
intonational X X
intermediate X X X

text X X X X X X X
adjacency X X
orthography X X X X
preceding X X X
succeeding X X X

speech-text X X X X X X X X X X X X X X

Table 3: Multiple feature sets and their components.

non-conjuncts) than each experiment in the �rst set (100 \nows"). The reliability of the
testing is not compromised due to the use of cross-validation (Weiss & Kulikowski, 1991).

Each experiment in the third set replicates an experiment in the second set, with the ex-
ception that the learning program is now allowed to distinguish between cue phrases. This
is done by adding a feature representing the cue phrase (the feature token from Figure 2)
to each experiment from the second set. Since the potential use of such a lexical feature
was noted but not used by Hirschberg and Litman (1993), these experiments provide qual-
itatively new linguistic insights into the data. For example, the same features may now be
used di�erently to predict the classi�cations of di�erent cue phrases or sets of cue phrases.

Finally, each experiment in the fourth set replicates an experiment in the �rst, second,
and third set, with the exception that all 953 examples in the multiple cue phrase corpus
are now considered. This is because in practice, any learned cue phrase classi�cation model
will likely be used to classify all cue phrases, even those that are di�cult for human judges
to classify. The experiments in the fourth set allow the learning programs to attempt to
learn the class unknown, in addition to the classes discourse and sentential.

3.4.2 Feature Representations within Experiment Sets

Within each of these four sets of experiments, each individual experiment represents the
data using a di�erent subset of the available features. First, the data is represented in
each of 14 single feature sets, corresponding to each prosodic and textual feature shown in
Figure 2. These experiments comparatively evaluate the utility of each individual feature
for classi�cation. The representations of Example 1 shown above illustrate how data is
represented using the single feature set P-L, and using the single feature set I-C.

Second, the data is represented in each of the 13 multiple feature sets shown in Table 3.
Each of these sets contains a linguistically motivated subset of at least 2 of the 14 features.
The �rst 7 sets use only prosodic features. Prosody considers all the prosodic features that
were coded for each example cue phrase. Hl93features considers only the coded features
that were also used in the model shown in Figure 1. Phrasing considers all features of both
the intonational and intermediate phrases containing the example cue phrase (i.e., length
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Example 1 [(Now) (now that we have all been welcomed here)] it's time to get on with the business of the conference.

P-L P-P I-L I-P I-C A A* C-P C-S O-P O-P* O-S O-S* POS Class
9 1 1 1 only H*+L complex f t par. t f f adv. disc.
9 2 8 1 other H* H* t f f f f f adv. sent.

Figure 3: Representation of Example 1 in feature set speech-text.

of phrase, position of example in phrase, and composition of phrase). Length and position
each consider only one of these features, but with respect to both the intonational and
intermediate phrase. Conversely, intonational and intermediate each consider only one type
of phrase, but consider all of the features. The next 5 sets use only textual features. Text
considers all the textual features. Adjacency and orthography each consider a single textual
feature, but consider both the preceding and succeeding immediate context. Preceding and
succeeding consider contextual features relating to both orthography and cue phrases, but
limit the context. The last set, speech-text, uses all of the prosodic and textual features.

Figure 3 illustrates how the two example cue phrases in Example 1 would be represented
using speech-text. Consider the feature values for the �rst example cue phrase. Since this
example is the �rst lexical item in both the intonational and intermediate phrases which
contain it, its position in both phrases (P-P and I-P) is 1. Since the intermediate phrase
containing the cue phrase contains no other lexical items, its length (I-L) is 1 word and its
composition (I-C) is only the cue phrase. The values for A and A* indicate that when the
intonational phrase is described as a sequence of tones, the complex pitch accent H*+L is
associated with the cue phrase. With respect to the textual features, the utterance was
transcribed such that it began a new paragraph. Thus the example cue phrase was not
preceded by another cue phrase (C-P), but it was preceded by a form of orthography (O-P
and O-P*). Since the example cue phrase was immediately followed by another instance
of \now" in the transcription, the cue phrase was succeeded by another cue phrase (C-S)
but was not succeeded by orthography (O-S and O-S*). Finally, the output of the part of
speech tagging program when run on the transcript of the corpus yields the value adverb
for the cue phrase's part of speech (POS).

The �rst set of experiments replicate only the prosodic experiments conducted by
Hirschberg and Litman (1993); cue phrases are represented using the subset of the fea-
ture sets that only consist of prosodic features. In the second set of experiments, examples
are represented using all 27 di�erent feature sets (the 14 single feature sets and the 13
multiple feature sets). In the third set of experiments, examples are represented using 27
tokenized feature sets, constructed by adding the lexical feature token from Figure 2 (the
cue phrase being described) to each of the 14 single and 13 multiple feature sets from the
second set of experiments. These tokenized feature sets will be referred to using the names
of the single and multiple feature sets, concatenated with \+". The following illustrates
how the two cue phrases in Example 1 would be represented using P-L+:

P-L T Class

9 now discourse
9 now sentential
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The representation is similar to the P-L representation shown earlier, except for the second
column which indicates the value assigned to the feature token (T).

4. Results

This section examines the results of running the two learning programs { C4.5 and cgren-
del { in the four sets of cue phrase classi�cation experiments described above. The learned
classi�cation models will be compared with the classi�cation models shown in Figure 1,
while the error rates of the learned classi�cation models will be compared with the error
rates shown in Table 1 and with the error rates of the other learned models. As will be
seen, the results suggest that machine learning is useful for automating the generation of
linguistically viable classi�cation classi�cation models, for generating classi�cation models
that perform with lower error rates than manually developed hypotheses, and for adding to
the body of linguistic knowledge regarding cue phrases.

4.1 Experiment Set 1: Replicating Hirschberg and Litman

The �rst group of experiments replicate the training, testing, and evaluation conditions
used by Hirschberg and Litman (1993), in order to investigate how well machine learning
performs in comparison to the manual development of cue phrase classi�cation models.

Figure 4 shows the best performing prosodic classi�cation models learned by the two
machine learning programs; the top of the �gure replicates the manually derived prosodic
model from Figure 1 for ease of comparison. When all of the prosodic features are used
to represent the 100 training examples of \now" (i.e., each example is represented using
feature set prosody from Table 3)11, the classi�cation models that are learned are shown
after the manually derived model at the top of Figure 4. Note that using both learning
programs, the same decision tree is also learned when the smaller feature sets phrasing and
position are used to represent the \now" data. The bottom portion of the �gure shows the
classi�cation models that are learned when the same examples are represented using only
the single prosodic feature position in intonational phrase (P-P); the same model is also
learned when the examples are represented using the multiple feature set intonational.

Recall that C4.5 represents each learned classi�cation model as a decision tree. Each
level of the tree (shown by indentation) speci�es a test on a single feature, with a branch for
every possible outcome of the test. A branch can either lead to the assignment of a class, or
to another test. For example, the C4.5 classi�cation model learned from prosody classi�es
cue phrases using the two features position in intonational phrase (P-P) and position in
intermediate phrase (I-P). Note that not all of the available features in prosody (recall
Table 3) are used in the decision tree. The tree initially branches based on the value of
the feature position in intonational phrase.12 The �rst branch leads to the class assignment
discourse. The second branch leads to a test of the feature position in intermediate phrase.
The �rst branch of this test leads to the class assignment discourse, while the second branch
leads to sentential. C4.5 produces both unsimpli�ed and pruned decision trees. The goal

11. In Experiment Set 1, the feature set prosody does not contain the features P-L and I-L. Recall that
phrasal length was only coded in the later multiple cue phrase study.

12. For ease of comparison to Figure 1, the original symbolic representation of the feature value is used
rather than the integer representation shown in Figure 2.
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Manually derived prosodic model (repeated from Figure 1):

if composition of intermediate phrase = alone then discourse (1)
elseif composition of intermediate phrase = :alone then (2)

if position in intermediate phrase = �rst then (3)
if accent = deaccented then discourse (4)
elseif accent = L* then discourse (5)
elseif accent = H* then sentential (6)
elseif accent = complex then sentential (7)

elseif position in intermediate phrase = :�rst then sentential (8)

Decision tree learned from prosody, from phrasing, and from position using C4.5:

if position in intonational phrase = �rst then discourse

elseif position in intonational phrase = :�rst then
if position in intermediate phrase = �rst then discourse

elseif position in intermediate phrase = :�rst then sentential

Ruleset learned from prosody, from phrasing, and from position using CGRENDEL:

if (position in intonational phrase 6= �rst) ^ (position in intermediate phrase 6= �rst) then sentential

default is on discourse

Decision tree learned from P-P and from intonational using C4.5:

if position in intonational phrase = �rst then discourse

elseif position in intonational phrase = :�rst then sentential

Ruleset learned from P-P and from intonational using CGRENDEL:

if position in intonational phrase 6= �rst then sentential

default is on discourse

Figure 4: Example C4.5 and cgrendel classi�cation models learned from di�erent prosodic
feature representations of the \now" data.
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

P-P 18.3 � 2.6 16.6 � 3.4
prosody 27.3 � 3.0 17.8 � 3.4
phrasing 27.3 � 3.0 17.8 � 3.4
position 27.3 � 3.0 17.8 � 3.4
intonational 18.3 � 2.6 16.6 � 3.4

manual prosodic 24.6 � 3.0 14.7 � 3.2

Table 4: 95%-con�dence intervals for the error rates (%) of the best performing cgrendel
prosodic classi�cation models, testing data. (Training data was the \now" corpus;
testing data was the multiple cue phrase corpus.)

of the pruning process is to take a complex decision tree that may also be over�tted to the
training data, and to produce a tree that is more comprehensible and whose accuracy is
not comprised (Quinlan, 1993). Since almost all trees are improved by pruning (Quinlan,
1993), only simpli�ed decision trees are considered in this paper.

In contrast, cgrendel represents each learned classi�cation model as a set of if-then
rules. Each rule speci�es a conjunction of tests on various features, and results in the
assignment of a class. For example, the cgrendel ruleset learned from prosody classi�es
cue phrases using the two features position in intonational phrase (P-P) and position in
intermediate phrase (I-P) (the same two features used in the C4.5 decision tree). If the
values of both features are not �rst, the if-then rule applies and the cue phrase is classi�ed
as sentential. If the value of either feature is �rst, the default applies and the cue phrase is
classi�ed as discourse.

An examination of the learned classi�cation models of Figure 4 shows that they are
comparable in content to the portion of the manually derived model that classi�es cue
phrases solely on phrasal position (line (8)). In particular, all of the classi�cation models
say that if the cue phrase is not in an initial phrasal position classify it as sentential.
On the other hand, the manually derived model also assigns the class sentential given an
initial phrasal position in conjunction with certain combinations of phrasal composition and
accent; the learned classi�cation models instead classify the cue phrase as discourse in all
other cases. As will be shown, the further discrimination of the manually obtained model
does not signi�cantly improve performance when compared to the learned classi�cation
models, and in fact in one case signi�cantly degrades performance.

The error rates of the learned classi�cation models on the \now" training data from
which they were developed is as follows: 6% for the models learned from prosody, phrasing
and position, and 9% for the models learned from P-P and intonational. Recall from
Section 2 that the error rate of the manually developed prosodic model of Figure 1 on
the same training data was 2%.

Table 4 presents 95% con�dence intervals for the error rates of the best performing
cgrendel prosodic classi�cation models. For ease of comparison, the row labeled \manual
prosodic" presents the error rates of the manually developed prosodic model of Figure 1 on
the same two test sets, which were originally shown in Table 1. The table includes all the
cgrendel models whose performance matches or exceeds the manual performance.
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Comparison of the error rates of the learned and manually developed models suggests
that machine learning is an e�ective technique for automating the development of cue phrase
classi�cation models. In particular, within each test set, the 95% con�dence interval for
the error rate of the classi�cation models learned from the multiple feature sets prosody,
phrasing, and position each overlaps with the con�dence interval for the error rate of the
manual prosodic model. This is also true for the error rates of P-P and intonational in the
classi�able non-conjunct test set. Thus, machine learning supports the automatic construc-
tion of a variety of cue phrase classi�cation models that achieve similar performance as the
manually constructed models.

The results from P-P and from intonational in the classi�able cue phrase test set are
shown in italics, as they suggest that machine learning may also be useful for improving
performance. Although the very simple classi�cation model learned from P-P and intona-
tional performs worse than the manually derived model on the training data, when tested
on the classi�able cue phrases, the learned model (with an upper bound error rate of 20.9%)
outperforms the manually developed model (with a lower bound error rate of 21.6%). This
suggests that the manually derived model might have been over�tted to the training data,
i.e., that the prosodic feature set most useful for classifying \now" did not generalize to
other cue phrases. As noted above, the use of simpli�ed learned classi�cation models helps
to guard against over�tting in the learning approach. The ease of inducing classi�cation
models from many di�erent sets of features using machine learning supports the generation
and evaluation of a wide variety of hypotheses (e.g. P-P, which was a high performing but
not the optimal performing model on the training data).

Note that the manual prosodic manual performs signi�cantly better in the smaller test
set (which does not contain the cue phrases \and", \or", and \but"). In contrast, the
performance improvement for P-P and intonational in the smaller test set is not signi�cant.
This also suggests that the manually derived model does not generalize as well as the learned
models.

Finally, for the feature sets shown in Table 4, the decision trees produced by C4.5 perform
with the same error rates as the rulesets produced by cgrendel, for both test sets. Recall
from Figure 4 that the C4.5 decision trees and cgrendel rules are in fact semantically
equivalent for each feature set. The fact that comparable results are obtained using C4.5
and cgrendel adds an extra degree of reliability to the experiments. In particular, the
duplication of the results suggests that the ability to match and perhaps even to improve
upon manual performance by using machine learning is not due to the speci�cs of either
learning program.

4.2 Experiment Set 2: Using Di�erent Training Sets

The second group of experiments evaluate the utility of training from larger amounts of
data. This is done by using 10-fold cross-validation to estimate error, where for each run
90% of the examples in a sample are used for training (and over the 10 runs, all of the
examples are used for testing). In addition, the experiments in this second set take both
the training and testing data from the multiple-cue phrase corpus, in contrast to the previous
set of experiments where the training data was taken from the \now" corpus. As will be
seen, these changes improve the results, such that more of the learned classi�cation models
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

P-L 33.0 � 5.9 (33.2 � 1.9)
P-P 16.1 � 3.5 18.8 � 4.2
I-L 25.5 � 3.7 (25.6 � 2.8)
I-P 25.9 � 4.9 19.4 � 3.1
I-C (36.5 � 5.4) (35.2 � 3.4)
A 28.6 � 3.6 (30.2 � 3.1)
A* 28.3 � 4.3 (28.4 � 1.7)

prosody 15.5 � 2.6 17.2 � 3.1
hl93features 29.4 � 3.3 18.2 � 4.2
phrasing 16.1 � 3.4 19.6 � 3.9
length 26.1 � 3.8 (27.4 � 3.4)
position 18.2 � 2.3 19.4 � 2.8
intonational 17.0 � 4.0 20.6 � 3.6
intermediate 21.9 � 2.3 19.4 � 5.7

manual prosodic 24.6 � 3.0 14.7 � 3.2

Table 5: 95%-con�dence intervals for the error rates (%) of all cgrendel prosodic classi-
�cation models, testing data. (Training and testing were done from the multiple
cue phrase corpus using cross-validation.)

perform with lower or comparable error rates when compared to the manually developed
models.

4.2.1 Prosodic Models

Table 5 presents the error rates of the classi�cation models learned by cgrendel, in
the 28 di�erent prosodic experiments. (For Experiment Sets 2 and 3, the C4.5 error rates
are presented in Appendix A.) Each numeric cell shows the 95% con�dence interval for the
error rate, which is equal to the error percentage obtained by cross-validation � the margin
of error (� 2.26 standard errors, using a t-Table). The top portion of the table considers
the models learned from the single prosodic feature sets (Figure 2), the middle portion
considers the models learned from the multiple feature sets (Table 3), while the last row
considers the manually developed prosodic model. The error rates shown in italics indicate
that the performance of the learned classi�cation model exceeds the performance of the
manual model (given the same test set). The error rates shown in parentheses indicate the
opposite case - that the performance of the manual model exceeds the performance of the
learned model. Such cases were omitted in Table 4.

As in Experiment Set 1, comparison of the error rates of the learned and manually
developed models suggests that machine learning is an e�ective technique for not only
automating the development of cue phrase classi�cation models, but also for improving
performance. When evaluated on the classi�able cue phrase test set, �ve learned models
have improved performance compared to the manual model; all of the models except I-C
perform at least comparably to the manual model. Note that in Experiment Set 1, only two
learned models outperformed the manual model, and only �ve learned models performed
at least comparably. The ability to use large training sets thus appears to be an advantage
of the automated approach.
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Manually derived prosodic model (repeated from Figure 1):

if composition of intermediate phrase = alone then discourse (1)
elseif composition of intermediate phrase = :alone then (2)

if position in intermediate phrase = �rst then (3)
if accent = deaccented then discourse (4)
elseif accent = L* then discourse (5)
elseif accent = H* then sentential (6)
elseif accent = complex then sentential (7)

elseif position in intermediate phrase = :�rst then sentential (8)

Decision tree learned from P-P using C4.5:

if position in intonational phrase � 1 then discourse

elseif position in intonational phrase > 1 then sentential

Ruleset learned from P-P using CGRENDEL:

if position in intonational phrase � 2 then sentential

default is on discourse

Decision tree learned from prosody using C4.5:

if position in intonational phrase � 1 then
if position in intermediate phrase � 1 then discourse

elseif position in intermediate phrase > 1 then sentential

elseif position in intonational phrase > 1 then
if length of intermediate phrase � 1 then discourse

elseif length of intermediate phrase > 1 then sentential

Ruleset learned from prosody using CGRENDEL:

if (position in intonational phrase � 2) ^ (length of intermediate phrase � 2) then sentential

if (7 � position in intonational phrase � 4) ^ (length of intonational phrase � 10) then sentential

if (length of intermediate phrase � 2) ^ (length of intonational phrase � 7) ^ (accent = H*) then sentential

if (length of intermediate phrase � 2) ^ (length of intonational phrase � 9) ^ (accent = H*+L) then sentential

if (length of intermediate phrase � 2) ^ (accent = deaccented) then sentential

if (length of intermediate phrase � 8) ^ (length of intonational phrase � 9) ^ (accent = L*) then sentential

default is on discourse

Figure 5: Example C4.5 and cgrendel classi�cation models learned from di�erent prosodic
feature representations of the classi�able cue phrases in the multiple cue phrase
corpus.

When tested on the classi�able non-conjuncts (where the error rate of the manually
derived model decreases), machine learning is useful for automating but not for improving
performance. This might re
ect the fact that the manually derived theories already achieve
optimal performance with respect to the examined features in this less noisy subcorpus,
and/or that the automatically derived theory for this subcorpus was based on a smaller
training set than used in the larger subcorpus.

An examination of some of the best performing learned classi�cation models shows that
they are quite comparable in content to relevant portions of the prosodic model of Figure 1,
and often contain further linguistic insights. Consider the classi�cation model learned from
the single feature position in intonational phrase (P-P), shown near the top of Figure 5.
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Both of the learned classi�cation models say that if the cue phrase is not in the initial
position of the intonational phrase, classify as sentential; otherwise classify as discourse.
Note the correspondence with line (8) in the manually derived prosodic model. Also note
that the classi�cation models are comparable13 to the P-P classi�cation models learned
from Experiment Set 1 (shown in Figure 4), despite the di�erences in training data. The
fact that the single prosodic feature position in intonational phrase (P-P) can classify cue
phrases at least as well as the more complicated manual and multiple feature learned models
is again a new result of the learning experiments.

Figure 5 also illustrates the more complex classi�cation models learned using prosody,
the largest prosodic feature set. The C4.5 model is similar to lines (1) and (8) of the manual
model. (The length value 1 is equivalent to the composition value alone.) In the ruleset
induced from prosody by cgrendel, the �rst 2 if-then rules correlate sentential status with
(among other things) non-initial position14, and the second 2 rules with H* and H*+L
accents; these rules are similar to lines (6)-(8) in Figure 1. However, the last 2 if-then rules
in the ruleset also correlate no accent and L* with sentential status when the phrase is of a
certain length, while lines (4) and (5) in Figure 1 provide a di�erent interpretation and do
not take length into account. Recall that length was coded by Hirschberg and Litman only
in their test data. Length was thus never used to generate or revise their prosodic model.
The utility of length is a new result of this experiment set.

Although not shown, the models learned from phrasing, position, and intonational also
outperform the manual model. As can be seen from Table 3, these models correspond to
all of the feature sets that are supersets of P-P but subsets of prosody.

4.2.2 Textual Models

Table 6 presents the error rates of the classi�cation models learned by cgrendel, in the
24 di�erent textual experiments. Unlike the experiments involving the prosodic feature sets,
none of the learned textual models perform signi�cantly better than the manually derived
model. However, the results suggest that machine learning is still an e�ective technique
for automating the development of cue phrase classi�cation models. In particular, �ve
learned models (O-P, O-P*, text, orthography, and preceding) perform comparably to the
manually derived model, in both test sets. Note that these �ve models are learned from
the �ve textual feature sets that include either the feature O-P or O-P* (recall Figure 2
and Table 3). These models perform signi�cantly better than all of the remaining learned
textual models.

Figure 6 shows the best performing learned textual models. Note the similarity to the
manually derived model. As with the prosodic results, the best performing single feature
models perform comparably to those learned from multiple features. In fact, in cgrendel,
the rulesets learned from the multiple feature sets orthography and preceding are identical
to the rulesets learned from the single features O-P and O-P*, even though more features
were available for use. (The corresponding error rates in Table 6 are not identical due to the

13. The di�erent feature values in the two �gures re
ect the fact that phrasal position was represented in
the \now" corpus using symbolic values (as in Figure 1), and in the multiple cue phrase corpus using
integers (as in Figure 2).

14. Tests such as \feature � x" and \feature � y" are merged in the �gure for simplicity, e.g., \y � feature
� x."
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

C-P (40.7 � 6.2) (40.2 � 4.5)
C-S (41.3 � 5.9) (39.8 � 4.2)
O-P 20.6 � 5.7 17.6 � 3.3
O-P* 18.4 � 3.7 17.2 � 2.4
O-S (34.1 � 6.3) (30.2 � 1.8)
O-S* (35.2 � 5.5) (32.6 � 3.0)
POS (37.7 � 4.1) (38.2 � 4.6)

text 18.8 � 4.2 19.0 � 3.6
adjacency (39.7 � 5.7) (40.2 � 3.4)
orthography 18.9 � 3.4 18.8 � 3.0
preceding 18.8 � 3.8 17.6 � 3.2
succeeding (33.9 � 6.0) (30.0 � 2.7)

manual textual 19.9 � 2.8 16.1 � 3.4

Table 6: 95%-con�dence intervals for the error rates (%) of all cgrendel textual classi�-
cation models, testing data. (Training and testing were done from the multiple
cue phrase corpus using cross-validation.)

Manually derived textual model (repeated from Figure 1):

if preceding orthography = true then discourse

elseif preceding orthography = false then sentential

Decision tree learned from O-P*, from text, from orthography, and from preceding using C4.5:

if preceding orthography* = NA then discourse

elseif preceding orthography* = false then sentential

elseif preceding orthography* = true then discourse

Ruleset learned from O-P, from O-P*, from orthography, and from preceding using CGRENDEL:

if preceding orthography* = false then sentential

default is on discourse

Ruleset learned from text using CGRENDEL:

if preceding orthography* = false then sentential

if part-of-speech = article then sentential

default is on discourse

Figure 6: Example C4.5 and cgrendel classi�cation models learned from di�erent textual
feature representations of the classi�able cue phrases in the multiple cue phrase
corpus.

estimation using cross-validation.) The cgrendel model text also incorporates the feature
part-of-speech. In C4.5, the models text, orthography and preceding are all identical to O-P*.

4.2.3 Prosodic/Textual Models

Table 7 presents the error rates of the classi�cation models learned by cgrendel when the
data is represented using speech-text, the complete set of prosodic and textual features (recall
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

speech-text 15.9 � 3.2 14.6 � 4.6

manual prosodic 24.6 � 3.0 14.7 � 3.2
manual textual 19.9 � 2.8 16.1 � 3.4

Table 7: 95%-con�dence intervals for the error rates (%) of the cgrendel prosodic/textual
classi�cation model, testing data. (Training and testing were done from the mul-
tiple cue phrase corpus using cross-validation.)

Table 3). Since Hirschberg and Litman did not develop a similar classi�cation model that
combined both types of features, for comparison the last two rows show the error rates of
the separate prosodic and textual models. Only when the learned model is compared to the
manual prosodic model, using the classi�able cue phrases for testing, does learning result in
a signi�cant performance improvement. This is consistent with the results discussed above,
where several learned prosodic models performed better than the manually derived prosodic
model in this test set. The performance of speech-text is not signi�cantly better or worse
than the performance of either the best prosodic or textual learned models (Tables 5 and 6,
respectively).

Figure 7 shows the C4.5 and cgrendel hypotheses learned from speech-text. The C4.5
model classi�es cue phrases using the prosodic and textual features that performed best in
isolation (position in intonational phrase and preceding orthography*, as discussed above), in
conjunction with the additional feature length of intermediate phrase (which also appears
in the model learned from prosody in Figure 5). Like line (9) in the manually derived
textual model, the learned model associates the presence of preceding orthography with
the class discourse. Unlike line (10), however, cue phrases not preceded by orthography
may be classi�ed as either discourse or sentential, based on prosodic feature values (which
were not available for use by the textual model). The branch of the learned decision tree
corresponding to the last three lines is also similar to lines (1), (2), and (8) of the manually
derived prosodic model. (Recall that a length value of 1 is equivalent to a composition value
alone.)

The cgrendel model uses similar features to those used by C4.5 as well as the prosodic
feature accent (also used in prosody in Figure 5), and the textual features part-of-speech
(also used in text in Figure 6) and preceding cue phrase. Like C4.5, and unlike line (10)
of the manually derived textual model, the cgrendel model classi�es cue phrases lacking
preceding orthography as sentential only in conjunction with certain other feature values.
Unlike line (9) in the manual model, the learned model also classi�es some cue phrases with
preceding orthography as sentential (if the orthography is a comma, and other feature values
are present). Finally, the third and �fth learned rules elaborate line (6) with additional
prosodic as well as textual features, while the �rst and last learned rules elaborate line (8).

4.3 Experiment Set 3: Adding the Feature token

Each experiment in the third group replicates an experiment from the second group, with
the exception that the data representation now also includes the lexical feature token from
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Manually derived prosodic model (repeated from Figure 1):

if composition of intermediate phrase = alone then discourse (1)
elseif composition of intermediate phrase = :alone then (2)

if position in intermediate phrase = �rst then (3)
if accent = deaccented then discourse (4)
elseif accent = L* then discourse (5)
elseif accent = H* then sentential (6)
elseif accent = complex then sentential (7)

elseif position in intermediate phrase = :�rst then sentential (8)

Manually derived textual model (repeated from Figure 1):

if preceding orthography = true then discourse (9)
elseif preceding orthography = false then sentential (10)

Decision tree learned from speech-text using C4.5:

if position in intonational phrase � 1 then
if preceding orthography* = NA then discourse

elseif preceding orthography* = true then discourse

elseif preceding orthography* = false then
if length of intermediate phrase > 12 then discourse

elseif length of intermediate phrase � 12 then
if length of intermediate phrase � 1 then discourse

elseif length of intermediate phrase > 1 then sentential

elseif position in intonational phrase > 1 then
if length of intermediate phrase � 1 then discourse

elseif length of intermediate phrase > 1 then sentential

Ruleset learned from speech-text using CGRENDEL:

if (preceding orthography = false) ^ (4 � position in intonational phrase � 6) ^ then sentential

if (preceding orthography = false) ^ (length of intermediate phrase � 2) then sentential

if (preceding orthography = false) ^ (length of intonational phrase � 7) ^ (preceding cue phrase = NA)
^ (accent = H*) then sentential

if (preceding orthography = comma) ^ (length of intermediate phrase � 5) ^ (length of intonational phrase � 17)
^ (part-of-speech = adverb) then sentential

if (preceding orthography = comma) ^ (3 � length of intonational phrase � 8) ^ (accent = H*) then sentential

if (preceding orthography = comma) ^ (3 � length of intermediate phrase � 8)
^ (length of intonational phrase � 15) then sentential

if (position in intonational phrase � 2) ^ (length of intermediate phrase �2)
^ (preceding cue phrase = NA) then sentential

default is on discourse

Figure 7: C4.5 and cgrendel classi�cation models learned from the prosodic/textual fea-
ture representation of the classi�able cue phrases in the multiple cue phrase cor-
pus.
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

P-L+ 21.8 � 4.6 17.4 � 2.7
P-P+ 16.7 � 2.8 14.8 � 5.0
I-L+ 20.3 � 3.4 16.0 � 3.3
I-P+ 25.1 � 4.1 17.0 � 3.6
I-C+ 27.0 � 3.6 18.4 � 3.4
A+ 19.8 � 3.2 12.8 � 3.1
A*+ 18.6 � 3.8 15.4 � 2.8

prosody+ 16.7 � 2.9 15.8 � 3.1
hl93features+ 24.0 � 4.5 17.4 � 4.3
phrasing+ 14.5 � 3.3 12.6 � 3.3
length+ 18.6 � 2.0 16.2 � 3.5
position+ 15.6 � 3.3 13.0 � 3.9
intonational+ 15.1 � 2.2 16.6 � 4.6
intermediate+ 18.5 � 3.7 16.6 � 4.0

manual prosodic 24.6 � 3.0 14.7 � 3.2

Table 8: 95%-con�dence intervals for the error rates (%) of all cgrendel prosodic, tok-
enized classi�cation models, testing data. (Training and testing were done from
the multiple cue phrase corpus using cross-validation.)

Figure 2. These experiments investigate how performance changes when classi�cation mod-
els are allowed to treat di�erent cue phrases di�erently. As will be seen, learning from
tokenized feature sets often further improves the performance of the learned classi�cation
models. In addition, the classi�cation models now contain new linguistic information re-
garding particular tokens (e.g., \so").

4.3.1 Prosodic Models

Table 8 presents the error of the learned classi�cation models on both test sets from the
multiple cue phrase corpus, for each of the tokenized prosodic feature sets. Again, the error
rates in italics indicate that the performance of the learned classi�cation model meaningfully
exceeds the performance of the \manual prosodic" model (which did not consider the feature
token).

One way that the improvement obtained by adding the feature token can be seen is by
comparing the performance of the learned and manually derived models. In Table 8, six
cgrendel classi�cation models have lower (italicized) error rates than the manual model.
In Table 5, only �ve of these models are italicized. Thus, adding the feature token results
in an additional learned model - length+ - outperforming the manually derived model.
Conversely, in Table 8, no learned models perform signi�cantly worse than the manually
derived manual. In contrast, in Table 5, several non-tokenized models perform worse than
the manual model (I-C in the larger test set, and P-L, I-L, I-C, A, A*, and length in the
non-conjunct test set).

The improvement obtained by adding the feature token can also be seen by comparing
the performance of the tokenized (Table 8) and non-tokenized (Table 5) versions of each
model to each other. For convenience, cases where tokenization yields improvement are
highlighted in Table 9. The table shows that the error rate of the tokenized versions of the
feature sets is signi�cantly lower than the error of the non-tokenized versions, for P-L, I-C,
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

Non-Tokenized Tokenized (+) Non-Tokenized Tokenized (+)

P-L 33.0 � 5.9 21.8 � 4.6 33.2 � 1.9 17.4 � 2.7
I-L - - 25.6 � 2.8 16.0 � 3.3
I-C 36.5 � 5.4 27.0 � 3.6 35.2 � 3.4 18.4 � 3.4
A 28.6 � 3.6 19.8 � 3.2 30.2 � 3.1 12.8 � 3.1
A* 28.3 � 4.3 18.6 � 3.8 28.4 � 1.7 15.4 � 2.8
length 26.1 � 3.8 18.6 � 2.0 27.4 � 3.4 16.2 � 3.5

Table 9: Cases where adding the feature token improves the performance of a prosodic
model.

A, A*, and length in both test sets, and for I-L in only the non-conjunct test set. Note the
overlap between the feature sets of Table 9 and those discussed in the previous paragraph.

Figure 8 shows several tokenized single feature prosodic classi�cation models. The �rst
cgrendel model in the �gure shows the ruleset learned from P-L+, which reduces the
33.2% � 1.9% error rate of P-L (length of intonational phrase) to 17.4% � 2.7%, when
trained and tested using the classi�able non-conjuncts (Table 9). Note that the �rst rule
uses only a prosodic feature (like the rules of Experiment Sets 1 and 2), and is in fact
similar to line (1) of the manual model. (Recall that the length value 1 is equivalent to
the composition value alone.) However, unlike the rules of the previous experiment sets,
the next 5 rules use both the prosodic feature and the lexical feature token. Also unlike
the rules of the previous experiment sets, the remaining rules classify cue phrases using
only the feature token. Examination of the learned rulesets in Figures 8 and 9 shows that
the same cue phrases often appear in this last type of rule. Some of these cue phrases, for
example, \�nally", \however", and \ok", are in fact always discourse usages in the multiple
cue phrase corpus. For the other cue phrases, classifying cue phrases using only token
corresponds to classifying cue phrases using their default class (the most frequent type of
usage in the multiple cue phrase corpus). Recall the use of a non-tokenized default class
model in Table 1.

The second example shows the ruleset learned from I-C+ (composition of intermediate
phrase+). The �rst rule corresponds to line (1) of the manually derived model.15 The
next six rules classify particular cue phrases as discourse, independently of the value of I-C.
Note that although in this model the cue phrase \say" is classi�ed using only token, in the
previous model a more sophisticated strategy for classifying \say" could be found.

The third example shows the cgrendel ruleset learned from A+ (accent+). The �rst
rule corresponds to line (5) of the manually derived prosodic model. In contrast to line
(4), however, cgrendel uses deaccenting to predict discourse for only the tokens \say"
and \so." If the token is \�nally", \however", \now" or \ok", discourse is assigned (for all
accents). In all other deaccented cases, sentential is assigned (using the default). Similarly,
in contrast to line (7), the complex accent L+H* predicts discourse for the cue phrases
\further" and \indeed" (and also for \�nally", \however", \now" and \ok"), and sentential
otherwise.

15. As discussed in relation to Figure 2, the I-C values only and only cue phrases in the multiple cue phrase
corpus replace the value alone in the \now" corpus.
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Manually derived prosodic model (repeated from Figure 1):

if composition of intermediate phrase = alone then discourse (1)
elseif composition of intermediate phrase = :alone then (2)

if position in intermediate phrase = �rst then (3)
if accent = deaccented then discourse (4)
elseif accent = L* then discourse (5)
elseif accent = H* then sentential (6)
elseif accent = complex then sentential (7)

elseif position in intermediate phrase = :�rst then sentential (8)

Ruleset learned from P-L+ using CGRENDEL:

if length of intonational phrase � 1 then discourse

if (7 � length of intonational phrase � 11) ^ (token = although) then discourse

if (9 � length of intonational phrase � 16) ^ (token = indeed) then discourse

if (length of intonational phrase � 20) ^ (token = say) then discourse

if (11 � length of intonational phrase � 13) ^ (token = then) then discourse

if (length of intonational phrase = 5) ^ (token = well) then discourse

if token = �nally then discourse

if token = further then discourse

if token = however then discourse

if token = now then discourse

if token = ok then discourse

if token = otherwise then discourse

if token = so then discourse

default is on sentential

Ruleset learned from I-C+ using CGRENDEL:

if composition of intermediate phrase = only then discourse

if token = �nally then discourse

if token = however then discourse

if token = now then discourse

if token = ok then discourse

if token = say then discourse

if token = so then discourse

default is on sentential

Ruleset learned from A+ using CGRENDEL:

if accent = L* then discourse

if (accent = deaccented) ^ (token = say) then discourse

if (accent = deaccented) ^ (token = so) then discourse

if (accent = L+H*) ^ (token = further) then discourse

if (accent = L+H*) ^ (token = indeed) then discourse

if token = �nally then discourse

if token = however then discourse

if token = now then discourse

if token = ok then discourse

default is on sentential

Figure 8: Example cgrendel classi�cation models learned from di�erent tokenized,
prosodic feature representations of the classi�able non-conjuncts in the multiple
cue phrase corpus.
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

C-P+ (28.2 � 3.9) 16.4 � 4.6
C-S+ (28.9 � 3.6) 17.2 � 4.0
O-P+ 17.5 � 4.4 10.0 � 3.1
O-P*+ 17.7 � 2.9 12.2 � 2.9
O-S+ 26.9 � 4.7 18.4 � 3.9
O-S*+ (27.3 � 3.5) 16.0 � 3.2
POS+ (27.4 � 3.6) 17.2 � 3.9

text+ 18.4 � 3.0 12.0 � 2.6
adjacency+ (28.6 � 4.1) 15.2 � 3.1
orthography+ 17.6 � 3.0 13.6 � 3.9
preceding+ 17.0 � 4.1 13.6 � 2.6
succeeding+ 25.6 � 3.9 18.0 � 4.5

manual textual 19.9 � 2.8 16.1 � 3.4

Table 10: 95%-con�dence intervals for the error rates (%) of all cgrendel textual, tok-
enized classi�cation models, testing data. (Training and testing were done from
the multiple cue phrase corpus using cross-validation.)

To summarize, new prosodic results of Experiment Set 3 are that features relating to
length, composition, and accent, while not useful (in isolation) for predicting the classi�-
cation of all cue phrases, are in fact quite useful for predicting the class of individual cue
phrases or subsets of cue phrases. (Recall that the result of Experiment Sets 1 and 2 was
that without token, only the prosodic feature position in intonational phrase was useful in
isolation.)

4.3.2 Textual Models

Table 10 presents the error of the learned classi�cation models on both test sets from
the multiple cue phrase corpus, for each of the tokenized textual feature sets. As in Exper-
iment Set 2 (Table 6), none of the cgrendel classi�cation models have lower (italicized)
error rates than the manual model. However, adding the feature token does improve the
performance of many of the learned rulesets, in that the following models (unlike their
non-tokenized counterparts) are no longer outperformed by the manual model: O-S+ and
succeeding+ in the larger test set, and C-P+, C-S+, O-S+, O-S*+, POS+, adjacency+,
and succeeding+ in the non-conjunct test set.

The improvement obtained by adding the feature token can also be seen by comparing
the performance of the tokenized (Table 10) and non-tokenized (Table 6) versions of each
model to each other, as shown in Table 11. The table shows that the error rates of the
tokenized versions of the feature sets are signi�cantly lower than the error of the non-
tokenized versions, for C-P, C-S, POS, and adjacency in both test sets, and for O-P, O-S,
O-S*, text, and succeeding in the non-conjunct test set. Note the overlap between the feature
sets of Table 11 and those discussed in the previous paragraph.

Figure 9 shows several tokenized single textual feature classi�cation models. The �rst
cgrendel model shows the ruleset learned from C-P+ (preceding cue phrase+), which
reduces the 40.2% � 4.5% error rate of C-P to 16.4% � 4.6% when trained and tested using
the classi�able non-conjuncts (Table 11). This ruleset correlates preceding cue phrases with
discourse usages of \indeed", and omitted transcriptions of \further", \now", and \so" with
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Manually derived textual model (repeated from Figure 1):

if preceding orthography = true then discourse

elseif preceding orthography = false then sentential

Ruleset learned from C-P+ using CGRENDEL:

if (preceding cue phrase = true) ^ (token = indeed) then discourse

if (preceding cue phrase = NA) ^ (token = further) then discourse

if (preceding cue phrase = NA) ^ (token = now) then discourse

if (preceding cue phrase = NA) ^ (token = so) then discourse

if token = although then discourse

if token = �nally then discourse

if token = however then discourse

if token = ok then discourse

if token = say then discourse

if token = similarly then discourse

default is on sentential

Ruleset learned from O-P+ using CGRENDEL:

if preceding orthography = false then sentential

if (preceding orthography = comma) ^ (token = then) then sentential

default is on discourse

Ruleset learned from O-S+ using CGRENDEL:

if succeeding orthography = comma then discourse

if (succeeding orthography = false) ^ (token = so) then discourse

if succeeding orthography = NA then discourse

if token = although then discourse

if token = �nally then discourse

if token = now then discourse

if token = ok then discourse

if token = say then discourse

default is on sentential

Ruleset learned from POS+ using CGRENDEL:

if (part-of-speech = adverb) ^ (token = �nally) then discourse

if (part-of-speech = singular proper noun) ^ (token = further) then discourse

if (part-of-speech = adverb) ^ (token = however) then discourse

if (part-of-speech = adverb) ^ (token = indeed) then discourse

if (part-of-speech = subordinating conjunction) ^ (token = so) then discourse

if token = although then discourse

if token = now then discourse

if token = say then discourse

if token = ok then discourse

default is on sentential

Figure 9: Example cgrendel classi�cation models learned from di�erent tokenized, textual
feature representations of the classi�able non-conjuncts in the multiple cue phrase
corpus.
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Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

Non-Tokenized Tokenized (+) Non-Tokenized Tokenized (+)

C-P 40.7 � 6.2 28.2 � 3.9 40.2 � 4.5 16.4 � 4.6
C-S 41.3 � 5.9 28.9 � 3.6 39.8 � 4.2 17.2 � 4.0
O-P - - 17.6 � 3.3 10.0 � 3.1
O-S - - 30.2 � 1.8 18.4 � 3.9
O-S* - - 32.6 � 3.0 16.0 � 3.2
POS 37.7 � 4.1 27.4 � 3.6 38.2 � 4.6 17.2 � 3.9
text - - 19.0 � 3.6 12.0 � 2.6
adjacency 39.7 � 5.7 28.6 � 4.1 40.2 � 3.4 15.2 � 3.1
succeeding - - 30.0 � 2.7 18.0 � 4.5

Table 11: Cases where adding the feature token improves the performance of a textual
model.

discourse usages. The classi�cations for the rest of the cue phrases are predicted using only
the feature token.

The second example shows the cgrendel ruleset learned from O-P+ (preceding orthog-
raphy+). This ruleset correlates no preceding orthography with sentential usages of cue
phrases (as in both the manually derived model and the learned models from Experiment
Set 2). Unlike those models, however, the cue phrase \then" is also classi�ed as sentential,
even when it is preceded by orthography (namely, by a comma).

The third example shows the cgrendel ruleset learned from O-S+ (succeeding orthog-
raphy). This ruleset correlates the presence of succeeding commas with discourse usages of
cue phrases, except for the cue phrase \so", which is classi�ed as a discourse usage without
any succeeding orthography. The model also correlates cue phrases that were omitted from
the transcript with discourse usages. The classi�cations for the rest of the cue phrases are
predicted using only the feature token.

The last example shows the cgrendel ruleset learned from POS+ (part-of-speech+).
This ruleset classi�es certain cue phrases as discourse usages depending on both part-of-
speech and token, as well as independently of part-of-speech.

Finally, Figure 10 shows the classi�cation model learned from text+, the largest tok-
enized textual feature set. Note that three of the four features used in the tokenized, single
textual feature models of Figure 9 are incorporated into this tokenized, multiple textual
feature model.

To summarize, new textual results of Experiment Set 3 are that features based on adja-
cent cue phrases, succeeding orthography, and part-of-speech, while not useful (in isolation)
for predicting the classi�cation of all cue phrases, are in fact quite useful in conjunction with
only the feature token. (Recall that the result of Experiment Set 2 was that without token,
only the textual features preceding orthography and preceding orthography* were useful in
isolation.)

4.3.3 Prosodic/Textual Models

Table 12 presents the error rates of the classi�cation models learned by cgrendel

when the data is represented using speech-text+, the complete set of prosodic and textual
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Ruleset learned from text+ using CGRENDEL:

if preceding orthography = false then sentential

if (preceding orthography = comma) ^ (token = although) then sentential

if (preceding orthography = comma) ^ (token = no) then sentential

if (preceding orthography = comma) ^ (token = then) then sentential

if (succeeding orthography = false) ^ (preceding cue phrase = NA) ^ (token = similarly) then sentential

if token = actually then sentential

if token = �rst then sentential

if token = since then sentential

if token = yes then sentential

default is on discourse

Figure 10: cgrendel classi�cation model learned from a tokenized, multiple textual feature
representation of the classi�able non-conjuncts in the multiple cue phrase corpus.

Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

speech-text+ 16.9 � 3.4 16.6 � 4.1

manual prosodic 24.6 � 3.0 14.7 � 3.2
manual textual 19.9 � 2.8 16.1 � 3.4

Table 12: 95%-con�dence intervals for the error rates (%) of the cgrendel
prosodic/textual, tokenized classi�cation models, testing data. (Training and
testing were done from the multiple cue phrase corpus using cross-validation.)

features. As in Experiment Set 2, the performance of speech-text+ is not better than the
performance of either the best learned (tokenized) prosodic or textual models (Tables 8
and 10, respectively).

Comparison of Tables 7 and 12 also shows that for the feature set speech-text, tokeniza-
tion does not improve performance. This is in contrast to the prosodic and textual feature
sets, where tokenization improves the performance of many learned models (namely those
shown in Tables 9 and 11).

4.4 Experiment Set 4: Adding the Classi�cation ambiguous

In practice, a cue phrase classi�cation model will have to classify all the cue phrases in a
recording or text, not just those that are \classi�able." The experiments in the fourth set
replicate the experiments in Experiment Sets 1, 2, and 3, with the exception that all 953 cue
phrases in the multiple cue phrase corpus are now used. This means that cue phrases are
now classi�ed as discourse, sentential, as well as unknown (de�ned in Table 2). Experiment
Set 4 investigates whether machine learning can explicitly recognize the new class unknown.

Recall that the studies of Hirschberg and Litman did not attempt to predict the class
unknown, as it did not occur in their \now" training corpus. Thus in Experiment Set 1, the
class unknown similarly can not be learned from the training data. However, the unknown
examples can be added to the testing data of Experiment Set 1. Obviously performance will
degrade, as the models must incorrectly classify each unknown example as either discourse
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or sentential. For example, when tested on the full corpus of 953 example cue phrases,
the 95% con�dence intervals for the error rates of P-P and intonational are 24.8% � 2.8%;
recall that when tested on the subset of the corpus corresponding to the 878 classi�able cue
phrases, the error was 18.3% � 2.6% (Table 4).

Unfortunately, the results of rerunning Experiment Sets 2 and 3 do not show promising
results for classifying cue phrases as unknown. Despite the presence of 75 examples of
unknown, most of the learned models still classify unknown cue phrases as only discourse or
sentential. For example, when cgrendel is used for learning, only 2 of the possible 27 non-
tokenized models16 (phrasing and speech-text) contain rules that predict the class unknown.
Furthermore, each of these models only contains one rule for unknown, and each of these
rules only applies to 2 of the possible 953 examples! Similarly, only four of the possible 27
tokenized models (length+, phrasing+, prosody+, and speech-text+) contain at least one rule
for the class unknown. When compared to training and testing using only the classi�able
cue phrases in the corpus, the error rate on the full corpus is typically (but not always)
signi�cantly higher. The best performing model in Experiment Set 4 is speech-text+, with
a 22.4% � 4.1% error rate (95% con�dence interval).

In sum, Experiment Set 4 addressed a problem that was previously unexplored in the
literature - the ability to develop classi�cation models that predict not only discourse and
sentential usages of cue phrases, but also usages which human judges �nd di�cult to classify.
Unfortunately, the results of the experiments suggest that learning how to classify cue
phrases as unknown is a di�cult problem. Perhaps with more training data (recall that
there are only 75 examples of unknown) or with additional features better results could be
obtained.

4.5 Discussion

The experimental results suggest that machine learning is a useful tool for both automating
the generation of classi�cation models and improving upon manually derived results. In
Experiment Sets 1 and 2 the performance of many of the learned classi�cation models is
comparable to the performance of the manually derived models. In addition, when tested
on the classi�able cue phrases, several learned prosodic classi�cation models (as well as
the learned prosodic/textual model) outperform Hirschberg and Litman's manually derived
prosodic model. Experiment Set 3 shows that learning from tokenized feature sets even
further improves performance, especially in the non-conjunct test set. More tokenized than
non-tokenized learned models perform at least as well as the manually derived models.
Many tokenized learned models also outperform their non-tokenized counterparts.

While the textual classi�cation models do not outperform the better prosodic classi�ca-
tion models, they have the advantage that the textual feature values are obtained directly
from the transcript, while determining the values of prosodic features requires manual anal-
ysis. (See, however, Section 5 for a discussion of the feasibility of automating the prosodic
analysis. In addition, a transcript may not always be available.) On the other hand, almost
all the high performing textual models are dependent on orthography. While manual tran-

16. Recall that Experiment Sets 2 and 3 constructed 14 prosodic models, 12 textual models, and 1
prosodic/textual model.
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scriptions of prosodic features have been shown to be reliable across coders (Pitrelli et al.,
1994), there are no corresponding results for the reliability of orthography.

Examination of the best performing learned models shows that they are often compa-
rable in content to the relevant portions of the manually derived models. Examination
of the models also provides new contributions to the cue phrase literature. For example,
Experiment Sets 1 and 2 demonstrate the utility of classifying cue phrases based on only a
single prosodic feature - phrasal position.17 Experiment Set 2 also demonstrates the utility
of the prosodic feature length and the textual feature preceding cue phrase for classifying
cue phrases - in conjunction with other prosodic and textual features. Finally, the results of
Experiment Set 3 demonstrate that even though many features are not useful by themselves
for classifying all cue phrases, they may nonetheless be very informative in their tokenized
form. This is true for the prosodic features based on phrasal length, phrasal composition,
and accent, and for the textual features based on adjacent cue phrases, succeeding position,
and part-of-speech.18

5. Utility

The results of the machine learning experiments are quite promising, in that when compared
to manually derived classi�cation models already in the literature, the learned classi�cation
models often perform with comparable if not higher accuracy. Thus, machine learning
appears to be an e�ective technique for automating the generation of classi�cation models.
However, given that the experiments reported here still rely on manually created training
data, a discussion of the practical utility of the results is in order.

Even given manually created training data, the results established by Hirschberg and
Litman (1993) - obtained using even less automation than the experiments of this paper
- are already having practical import. In particular, the manually derived cue phrase
classi�cation models are used to improve the naturalness of the synthetic speech in a text-to-
speech system (Hirschberg, 1990). Using the text-based model, the text-to-speech system
classi�es each cue phrase in a text to be synthesized as either a discourse or sentential
usage. Using the prosodic model, the system then conveys this usage by synthesizing the
cue phrase with the appropriate type of intonation. The speech synthesis could be further
improved (and the output made more varied) by using any one of the higher performing
learned prosodic models presented in this paper.

The results of this paper could also be directly applied in the area of text generation.
For example, Moser and Moore (1995) are concerned with the implementation of cue selec-
tion and placement strategies in natural language generation systems. Such systems could
be enhanced by using the text-based models of cue phrase classi�cation (particularly the

17. The empirical studies performed by Holte (1993) show that for many other datasets, the accuracy of
single feature rules and decision trees is often competitive with the accuracy of more complex learned
models.

18. In contrast, the prosodic features phrasal composition and accent were previously known to be useful
in conjunction with each other and with phrasal position (Hirschberg & Litman, 1993), while part-of-
speech was known to be useful only in conjunction with orthography (Hirschberg & Litman, 1993).
Length, adjacent cue phrases, and succeeding position were not used in either of the manually derived
models (Hirschberg & Litman, 1993) (although length and adjacent cue phrases were shown to be useful
- again only in conjunction with other prosodic and textual features - in Experiment Set 2).
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tokenized models) to additionally specify preceding and succeeding orthography, part-of-
speech, and adjacent cue phrases that are appropriate for discourse usages.

Finally, if the results of this paper could be fully automated, they could also be used in
natural language understanding systems, by enhancing their ability to recognize discourse
structure. The results obtained by Litman and Passonneau (1995) and Passonneau and
Litman (in press) suggest that algorithms that use cue phrases (in conjunction with other
features) to predict discourse structure outperform algorithms that do not take cue phrases
into account. In particular, Litman and Passonneau develop several algorithms that explore
how features of cue phrases, prosody and referential noun phrases can be best combined
to predict discourse structure. Quantitative evaluations of their results show that the best
performing algorithms all incorporate the use of discourse usages of cue phrases (where cue
phrases are classi�ed as discourse using only phrasal position). As discussed in Section 1,
discourse structure is useful for performing tasks such as anaphora resolution and plan
recognition. Recent work has also shown that if discourse structure can be recognized, it
can be used to improve retrieval of text (Hearst, 1994) and speech (Sti
eman, 1995).

Although the prosodic features were manually labeled by Hirschberg and Litman, there
are recent results suggesting that at least some aspects of prosody can be automatically
labeled directly from speech. For example, Wightman and Ostendorf (1994) develop an
algorithm that is able to automatically recognize prosodic phrasing with 85-86% accuracy
(measured by comparing automatically derived labels with hand-marked labels); this accu-
racy is only slightly less than human-human accuracy. Recall that the experimental results
of this paper show that models learned from the single feature position in intonational
phrase - which could be automatically computed given such an automatic prosodic phras-
ing algorithm - perform at least as well as any other learned prosodic model. Similarly,
accenting versus deaccenting can be automatically labeled with 88% accuracy (Wightman
& Ostendorf, 1994), while a more sophisticated labeling scheme that distinguishes between
four types of accent classes (and is somewhat similar to the prosodic feature accent* used
in this paper) can be labeled with 85% accuracy (Ostendorf & Ross, in press). Recall from
Experiment Set 3 that the tokenized models learned using accent* also classify cue phrases
with good results.

Although the textual features were automatically extracted from a transcript, the tran-
script itself was manually created. Many natural language understanding systems do not
deal with speech at all, and thus begin with such textual representations. In spoken lan-
guage systems the transcription process is typically automated using a speech recognition
system (although this introduces further sources of error).

6. Related Work

This paper has both compared the results obtained using machine learning to previously
existing manually-obtained results, and has also used machine learning as a tool for devel-
oping theories given new linguistic data (as in the models resulting from Experiment Set 3,
where the new feature token was considered). Siegel (1994) similarly uses machine learning
(in particular, a genetic learning algorithm) to classify cue phrases from a previously un-
studied set of textual features: a feature corresponding to token, as well as textual features
containing the lexical or orthographic item immediately to the left of and in the 4 positions
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to the right of the example. Siegel's input consists of one judge's non-ambiguous examples
taken from the data used by Hirschberg and Litman (1993) as well as additional examples;
his output is in the form of decision trees. Siegel reports a 21% estimated error rate, with
half of the corpus used for training and half for testing. Siegel and McKeown (1994) also
propose a method for developing linguistically viable rulesets, based on the partitioning of
the training data produced during induction.

Machine learning has also been used in several other areas of discourse analysis. For ex-
ample, learning has been used to develop rules for structuring discourse into multi-utterance
segments. Grosz and Hirschberg (1992) use the classi�cation and regression tree system
cart (Brieman et al., 1984) to construct decision trees for classifying aspects of discourse
structure from intonational feature values. Litman and Passonneau (1995) and Passonneau
and Litman (in press) use the system C4.5 to construct decision trees for classifying utter-
ances as discourse segment boundaries, using features relating to prosody, referential noun
phrases, and cue phrases. In addition, C4.5 has been used to develop anaphora resolution
algorithms, by training on corpora tagged with appropriate discourse information (Aone &
Bennett, 1995). Similarly, McCarthy and Lehnert (1995) use C4.5 to learn decision trees
to classify pairs of phrases as coreferent or not. Soderland and Lehnert (1994) use the
machine learning program ID3 (a predecessor of C4.5) to support corpus-driven knowledge
acquisition in information extraction. Machine learning often results in algorithms that
outperform manually derived alternatives (Litman & Passonneau, 1995; Passonneau & Lit-
man, in press; Aone & Bennett, 1995; McCarthy & Lehnert, 1995), although statistical
inference is not always used to evaluate the signi�cance of the performance di�erences.

Finally, machine learning has also been used with great success in many other areas of
natural language processing. As discussed above, the work of most researchers in discourse
analysis has concentrated on the direct application of existing symbolic learning approaches
(e.g., C4.5), and on the comparison of learning and manual methods. While researchers
in other areas of natural language processing have also addressed these issues, they have
in addition applied a much wider variety of learning approaches, and have been concerned
with the development of learning methods particularly designed for language processing. A
recent survey of learning for natural language (Wermter, Rilo�, & Scheler, 1996) illustrates
both the type of learning approaches that have been used and modi�ed (in particular,
symbolic, connectionist, statistical, and hybrid approaches), as well as the scope of the
problems that have proved amenable to the use of learning techniques (e.g., grammatical
inference, syntactic disambiguation, and word sense disambiguation).

7. Conclusion

This paper has demonstrated the utility of machine learning techniques for cue phrase
classi�cation. Machine learning supports the automatic generation of linguistically viable
classi�cation models. When compared to manually derived models already in the literature,
many of the learned models contain new linguistic insights and perform with at least as
high (if not higher) accuracy. In addition, the ability to automatically construct classi�-
cation models makes it easier to comparatively analyze the utility of alternative feature
representations of the data. Finally, the ease of retraining makes the learning approach
more scalable and extensible than manual methods.
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A �rst set of experiments were presented that used the machine learning programs
cgrendel (Cohen, 1992, 1993) and C4.5 (Quinlan, 1993) to induce classi�cation models
from the preclassi�ed cue phrases and their features that were used as training data by
Hirschberg and Litman (1993). These results were then evaluated with the same testing data
and methodology used by Hirschberg and Litman (1993). A second group of experiments
used the method of cross-validation to both train and test from the testing data used by
Hirschberg and Litman (1993). A third set of experiments induced classi�cation models
using the new feature token. A fourth set of experiments induced classi�cation models
using the new classi�cation unknown.

The experimental results indicate that several learned classi�cation models (including
extremely simple one feature models) have signi�cantly lower error rates than the models
developed by Hirschberg and Litman (1993). One possible explanation is that the hand-
built classi�cation models were derived using very small training sets; as new data became
available, this data was used for testing but not for updating the original models. In con-
trast, machine learning in conjunction with cross-validation (Experiment Set 2) supported
the building of classi�cation models using a much larger amount of the data for training.
Even when the learned models were derived using the same small training set (Experiment
Set 1), the results showed that the learning approach helped guard against over�tting on
the training data.

While the prosodic classi�cation model developed by Hirschberg and Litman demon-
strated the utility of combining phrasal position with phrasal composition and accent, the
best performing prosodic models of Experiment Sets 1 and 2 demonstrated that phrasal
position was in fact even more useful for predicting cue phrases when used by itself. The
other high performing classi�cation models of Experiment Set 2 also demonstrated the util-
ity of classifying cue phrases based on the prosodic feature length and the textual feature
preceding cue phrase, in combination with other features.

Just as the machine learning approach made it easy to retrain when new training ex-
amples became available (Experiment Set 2), machine learning also made it easy to retrain
when new features become available. In particular, when the value of the feature token
was added to all the representations in Experiment Set 2, it was trivial to relearn all of the
models (Experiment Set 3). Allowing the learning programs to treat cue phrases individ-
ually further improved the accuracy of the learned classi�cation models, and added to the
body of linguistic knowledge regarding cue phrases. Experiment Set 3 demonstrated that
while not useful by themselves for classifying all cue phrases, the prosodic features based
on phrasal length, phrasal composition, and accent, and textual features based on adjacent
cue phrases, succeeding position, and part-of-speech, were in fact useful when used only in
conjunction with the feature token.

A �nal advantage of the machine learning approach is that the ease of inducing classi�ca-
tion models from many di�erent sets of features supports an exploration of the comparative
utility of di�erent knowledge sources. This is especially useful for understanding the trade-
o�s between the accuracy of a model and the set of features that are considered. For
example, it might be worth the e�ort to code a feature that is not automatically obtainable
or that is expensive to automatically obtain if adding the feature results in a signi�cant
improvement in performance.
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In sum, the results of this paper suggest that machine learning is a useful tool for
cue phrase classi�cation, when the amount of data precludes e�ective human analysis,
when the 
exibility a�orded by easy retraining is needed (e.g., due to additional training
examples, new features, new classi�cations), and/or when an analysis goal is to gain a better
understanding of the di�erent aspects of the data.

Several areas for future work remain. First, there is still room for performance improve-
ment. The error rates of the best performing learned models, even though they outperform
the manually derived models, perform with error rates in the teens. Note that only the
features that were coded or discussed by Hirschberg and Litman (1993) were considered in
this paper. It may be possible to further lower the error rates by considering new types
of prosodic and textual features (e.g., other contextual textual features (Siegel, 1994), or
features that have been proposed in connection with the more general topic of discourse
structure), and/or by using di�erent kinds of learning methods. Second, Experiment Set
4 (and the previous literature) show that as yet, there are no models for predicting when
a cue phrase usage should be classi�ed as unknown, rather than as discourse or sentential.
Again, it may be possible to improve the performance of the existing learned models by
considering new features and/or learning methods, or perhaps performance could be im-
proved by providing more training data. Finally, it is currently an open question whether
the textual models developed here, which were based on transcripts of speech, are applicable
to written texts. Textual models thus need to be developed using written texts as training
data. Machine learning should continue to be a useful tool for helping to address these
issues.

Appendix A. C4.5 Results for Experiment Sets 2 and 3

Tables 13, 14 and 15 present the C4.5 error rates for Experiment Sets 2 and 3. The C4.5
results for Experiment Set 2 are shown in the \Non-Tokenized" columns. A comparison of
Tables 13 and 5 shows that except for A in the larger test set, the C4.5 prosodic error rates
fall within the cgrendel con�dence intervals. A similar comparison of Tables 14 and 6
shows that except for O-P in the larger test set, the C4.5 textual error rates fall within the
cgrendel con�dence intervals. Finally, a comparison of Tables 15 and 7 shows that the
C4.5 error rate of speech-text falls within the cgrendel con�dence interval. The fact that
comparable cgrendel and C4.5 results are generally obtained suggests that the ability to
automate as well as to improve upon manual performance is not due to the speci�cs of
either learning program.

The C4.5 results for Experiment Set 3 are shown in the \Tokenized" columns of Ta-
bles 13, 14 and 15. Comparison with Tables 8, 10 and 12 shows that the error rates of C4.5
and cgrendel are not as similar as in Experiment Set 2. However, the error rates reported
in the tables use the default C4.5 and cgrendel options when running the learning pro-
grams. Comparable performance between the two learning programs can in fact generally
be achieved by overriding one of the default C4.5 options. As detailed by Quinlan (1993),
the default C4.5 approach { which creates a separate subtree for each possible feature value
{ might not be appropriate when there are many values for a feature. This situation char-
acterizes the feature token. When the C4.5 default option is changed to allow feature values
to be grouped into one branch of the decision tree, the problematic C4.5 error rates do

90



Cue Phrase Classification Using Machine Learning

Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

Non-Tokenized Tokenized (+) Non-Tokenized Tokenized (+)

P-L 32.5 31.7 32.2 31.4
P-P 16.2 18.4 18.8 19.0
I-L 25.6 26.8 25.6 25.6
I-P 25.9 26.3 19.4 18.8
I-C 36.5 36.6 35.8 32.8
A 40.7 40.7 29.6 29.2
A* 28.3 26.7 28.8 31.2

prosody 16.0 15.2 19.4 16.0
hl93features 30.2 29.0 18.8 18.8
phrasing 15.9 15.2 18.0 17.4
length 24.8 24.4 26.2 24.2
position 18.1 18.0 19.6 17.6
intonational 16.8 16.6 18.8 19.8
intermediate 21.2 22.3 21.6 18.4

Table 13: Error rates (%) of the C4.5 prosodic classi�cation models, testing data. (Training
and testing were done from the multiple cue phrase corpus using cross-validation.)

Model Classi�able Cue Phrases (N=878) Classi�able Non-Conjuncts (N=495)

Non-Tokenized Tokenized (+) Non-Tokenized Tokenized (+)

C-P 40.7 39.3 39.2 33.6
C-S 40.7 39.9 39.2 39.2
O-P 40.7 35.7 18.6 14.6
O-P* 18.4 20.3 17.2 15.0
O-S 35.0 31.6 31.8 31.8
O-S* 34.4 32.5 31.0 32.4
POS 40.7 34.7 41.8 31.8

text 19.0 20.6 20.0 15.0
adjacency 40.9 39.4 40.6 43.6
orthography 18.9 19.3 17.8 18.0
preceding 18.7 19.3 19.2 16.0
succeeding 34.1 32.9 30.0 31.8

Table 14: Error rates (%) of the C4.5 textual classi�cation models, testing data. (Training
and testing were done from the multiple cue phrase corpus using cross-validation.)

indeed improve. For example, the A+ error rate for the classi�able non-conjuncts changes
from 29.2% (Table 13) to 11%, which is within the 12.8% � 3.1% cgrendel con�dence
interval (Table 8).
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