
Journal of Arti�cial Intelligence Research 11 (1999) 199-240 Submitted 7/98; published 9/99

Unifying Class-Based Representation Formalisms

Diego Calvanese calvanese@dis.uniroma1.it

Maurizio Lenzerini lenzerini@dis.uniroma1.it

Daniele Nardi nardi@dis.uniroma1.it

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113, I-00198 Roma, Italy

Abstract

The notion of class is ubiquitous in computer science and is central in many formalisms
for the representation of structured knowledge used both in knowledge representation and
in databases. In this paper we study the basic issues underlying such representation for-
malisms and single out both their common characteristics and their distinguishing features.
Such investigation leads us to propose a unifying framework in which we are able to cap-
ture the fundamental aspects of several representation languages used in di�erent contexts.
The proposed formalism is expressed in the style of description logics, which have been
introduced in knowledge representation as a means to provide a semantically well-founded
basis for the structural aspects of knowledge representation systems. The description logic
considered in this paper is a subset of �rst order logic with nice computational characteris-
tics. It is quite expressive and features a novel combination of constructs that has not been
studied before. The distinguishing constructs are number restrictions, which generalize ex-
istence and functional dependencies, inverse roles, which allow one to refer to the inverse of
a relationship, and possibly cyclic assertions, which are necessary for capturing real world
domains. We are able to show that it is precisely such combination of constructs that makes
our logic powerful enough to model the essential set of features for de�ning class structures
that are common to frame systems, object-oriented database languages, and semantic data
models. As a consequence of the established correspondences, several signi�cant extensions
of each of the above formalisms become available. The high expressiveness of the logic we
propose and the need for capturing the reasoning in di�erent contexts forces us to distin-
guish between unrestricted and �nite model reasoning. A notable feature of our proposal is
that reasoning in both cases is decidable. We argue that, by virtue of the high expressive
power and of the associated reasoning capabilities on both unrestricted and �nite models,
our logic provides a common core for class-based representation formalisms.

1. Introduction

In many �elds of computer science we �nd formalisms for the representation of objects and
classes (Motschnig-Pitrik & Mylopoulous, 1992). Generally speaking, an object denotes an
element of the domain of interest, and a class denotes a set of objects with common char-
acteristics. We use the term \class-based representation formalism" to refer to a formalism
that allows one to express several kinds of relationships and constraints (e.g., subclass con-
straints) holding among the classes that are meaningful in a set of applications. Moreover,
class-based formalisms aim at taking advantage of the class structure in order to provide
various information, such as whether a class is consistent, i.e., it admits at least one object,
whether a class is a subclass of another class, and more generally, whether a given constraint

c1999 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Calvanese, Lenzerini, & Nardi

holds between a given set of classes. From the above characterization, it should be clear
that the formalisms referred to in this paper deal only with the structural aspects of objects
and classes, and do not include any features for the speci�cation of behavioral properties of
objects.

Three main families of class-based formalisms are identi�ed in this paper. The �rst one
comes from knowledge representation and in particular from the work on semantic networks
and frames (see for example Lehmann, 1992; Sowa, 1991). The second one originates in
the �eld of databases and in particular from the work on semantic data models (see for
example Hull & King, 1987). The third one arises from the work on types in programming
languages and object-oriented systems (see for example Kim & Lochovsky, 1989).

In the past there have been several attempts to establish relationships among the various
families of class-based formalisms (see Section 6 for a brief survey). The proposed solutions
are not fully general and a formalism capturing both the modeling constructs and the
reasoning techniques for all the above families is still missing. In this paper we address this
problem by proposing a class-based representation formalism, based on description logics
(Brachman & Levesque, 1984; Schmidt-Schau� & Smolka, 1991; Donini, Lenzerini, Nardi,
& Schaerf, 1996), and by using it for comparing other formalisms.

In description logics, structured knowledge is described by means of so called concepts

and roles, which denote unary and binary predicates, respectively. Starting from a set of
atomic symbols one can build complex concept and role expressions by applying suitable
constructors which characterize a description logic. Formally, concepts are interpreted as
subsets of a domain and roles as binary relations over that domain, and all constructs
are equipped with a precise set-theoretic semantics. The most common constructs include
boolean operations on concepts, and quanti�cation over roles. For example, the concept
Person u 8child.Male, denotes the set of individuals that are instances of the concept
Person and are connected through the role child only to instances of the concept Male,
while the concept 9child denotes all individuals that are connected through the role child
to some individual. Further constructs that have been considered important include more
general forms of quanti�cation, number restrictions, which allow one to state limits on the
number of connections that an individual may have via a certain role, and constructs on
roles, such as intersection, concatenation and inverse. A description logic knowledge base,
expressing the intensional knowledge about the modeled domain, is built by stating inclusion
assertions between concepts, which have to be satis�ed by the models of the knowledge base.
The assertions are used to specify necessary and/or necessary and suÆcient conditions for
individuals to be instances of certain concepts. Reasoning on such knowledge bases includes
the detection of inconsistencies in the knowledge base itself, determining whether a concept
can be populated in a model of the knowledge base, and checking subsumption, i.e., whether
all instances of a concept are necessarily also instances of another concept in all models of
the knowledge base.

In this paper we propose a description logic called aluni, which is quite expressive
and includes a novel combination of constructs, including number restrictions, inverse roles,
and inclusion assertions with no restrictions on cycles. Such features make aluni powerful
enough to provide a uni�ed framework for frame systems, object-oriented languages, and
semantic data models. We show this by establishing a precise correspondence with a frame-
based language in the style of the one proposed by Fikes and Kehler (1985), with the

200

Unifying Class-Based Representation Formalisms

Entity-Relationship model (Chen, 1976), and with an object-oriented language in the style
of the one introduced by Abiteboul and Kanellakis (1989). More speci�cally, we identify
the most relevant features to model classes in each of the cited settings and show that
a speci�cation in any of those class-based formalisms can be equivalently expressed as a
knowledge base in aluni. In this way, we are able to identify which are the commonalities
among the families and which are the speci�cities of each family. Therefore, even though
there are speci�c features of every family that are not addressed by aluni, we are able
to show that the formalism proposed in this paper provides important features that are
currently missing in each family, although their relevance has often been stressed. In this
sense, our unifying framework points out possible developments for the languages belonging
to all the three families.

One fundamental reason for regarding aluni as a unifying framework for class-based
representation formalisms is that reasoning in aluni is hard, but nonetheless decidable, as
shown by Calvanese, Lenzerini, and Nardi (1994), Calvanese (1996c). Consequently, the
language features arising from di�erent frameworks to build class-based representations are
not just given a common semantic account, but are combined in a more expressive setting
where one retains the capability of solving reasoning tasks. The combination of constructs
included in the language makes it necessary to distinguish between reasoning with respect to
�nite models, i.e., models with a �nite domain, and reasoning with respect to unrestricted
models. Calvanese (1996c) devises suitable techniques for both unrestricted and �nite model
reasoning, that enable for reasoning in the di�erent contexts arising from assuming a �nite
domain, as it is often the case in the �eld of databases, or assuming that a domain can also
be in�nite. In the paper, we discuss the results on reasoning in aluni, and compare them
with other results on reasoning in class-based representation formalisms.

Summarizing, our framework provides an adequate expressive power to account for
the most signi�cant features of the major families of class-based formalisms. Moreover, it
is equipped with suitable techniques for reasoning in both �nite and unrestricted models.
Therefore, we believe that aluni captures the essential core of the class-based representation
formalisms belonging to all three families mentioned above.

The paper is organized as follows. In the next section we present our formalism and
in Sections 3, 4, and 5 we discuss three families of class-based formalisms, namely, frame
languages, semantic data models, and object-oriented data models, showing that their basic
features are captured by knowledge bases in aluni. The �nal sections contain a review of
related work, including a discussion of reasoning in aluni and class-based formalism, and
some concluding remarks.

2. A Unifying Class-Based Representation Language

In this section, we present aluni, a class-based formalism in the style of description logics

(DLs) (Brachman & Levesque, 1984; Schmidt-Schau� & Smolka, 1991; Donini et al., 1996;
Donini, Lenzerini, Nardi, & Nutt, 1997). In DLs the domain of interest is modeled by means
of concepts and roles, which denote classes and binary relations, respectively. Generally
speaking, a DL is formed by three basic components:

� A description language, which speci�es how to construct complex concept and role
expressions (also called simply concepts and roles), by starting from a set of atomic

201

Calvanese, Lenzerini, & Nardi

Construct Syntax Semantics

atomic concept A AI � �I

atomic negation :A �I n AI

conjunction C1 u C2 CI
1 \ C

I
2

disjunction C1 t C2 CI
1 [C

I
2

universal quanti�cation 8R.C fo j 8o0 . (o; o0) 2 RI ! o0 2 CIg

number restrictions 9�nR fo j]fo0 j (o; o0) 2 RIg � ng1

9�nR fo j]fo0 j (o; o0) 2 RIg � ng

atomic role P P I � �I ��I

inverse role P� f(o; o0) j (o0; o) 2 P Ig

Table 1: Syntax and semantics of ALUNI

symbols and by applying suitable constructors. It is the set of allowed constructs that
characterizes the description language.

� A knowledge speci�cation mechanism, which speci�es how to construct a DL knowl-
edge base, in which properties of concepts and roles are asserted.

� A set of basic reasoning tasks provided by the DL.

In the rest of the section we describe the speci�c form that these three components assume
in aluni.

2.1 The Description Language of aluni

In the description language of aluni, called ALUNI, concepts and roles are formed ac-
cording to the syntax shown in Table 1, where A denotes an atomic concept, P an atomic
role, C an arbitrary concept expression, R an arbitrary role expression, and n a nonnega-
tive integer. To increase readability of concept expressions, we also introduce the following
abbreviations:

> � A t :A; for some atomic concept A

? � A u :A; for some atomic concept A

9R � 9�1R

9=nR � 9�nR u 9�nR

Concepts are interpreted as subsets of a domain and roles as binary relations over that
domain. Intuitively, :A represents the negation of an atomic concept, and is interpreted
as the complement with respect to the domain of interpretation. C1 u C2 represents the
conjunction of two concepts and is interpreted as set intersection, while C1 tC2 represents
disjunction and is interpreted as set union. Consequently, > represents the whole domain,

1.]S denotes the cardinality of a set S.

202

Unifying Class-Based Representation Formalisms

and ? the empty set. 8R.C is called universal quanti�cation over roles and is used to
denote those elements of the interpretation domain that are connected through role R only
to instances of the concept C. 9�nR and 9�nR are called number restrictions, and impose
on their instances restrictions on the minimum and maximum number of objects they are
connected to through role R. P�, called the inverse of role P , represents the inverse of the
binary relation denoted by P .

More formally, an interpretation I = (�I ; �I) consists of an interpretation domain �I

and an interpretation function �I that maps every concept C to a subset CI of �I and
every role R to a subset RI of �I��I according to the semantic rules speci�ed in Table 1.
The sets CI and RI are called the extensions of C and R respectively.

Example 2.1 Consider the concept expression

8enrolls.Student u 9�2enrolls u 9�30enrollsu
8teaches�.(Professor t GradStudent) u 9=1teaches� u
:AdvCourse

specifying the constraints for an object to be a university course. The expression reects the
fact that each course enrolls only students, and restrictions on the minimum and maximum
number of enrolled students. By using the role teaches and the inverse constructor we
can state the property that each course is taught by exactly one individual, who is either a
professor or a graduate student. Finally, negation is used to express disjointness from the
concept denoting advanced courses.

2.2 Knowledge Bases in aluni

An aluni knowledge base, which expresses the knowledge about classes and relations of the
modeled domain, is formally de�ned as a triple K = (A;P;T), where A is a �nite set of
atomic concepts, P is a �nite set of atomic roles, and T is a �nite set of so called inclusion

assertions. Each such assertion has the form

A _� C

where A is an atomic concept and C an arbitrary concept expression. Such an inclusion
assertion states by means of the concept C necessary properties for an element of the domain
in order to be an instance of the atomic concept A. Formally, an interpretation I satis�es

the inclusion assertion A _� C if AI � CI . An interpretation I is a model of a knowledge
base K if it satis�es all inclusion assertions in K. A �nite model is a model with �nite
domain.

Example 2.1 (cont.) The assertion

Course _� 8enrolls.Studentu 9�2enrollsu 9�30enrolls u
8teaches�.(Professort GradStudent) u 9=1teaches�

makes use of a complex concept expression to state necessary conditions for an object to
be an instance of the concept Course.

203

Calvanese, Lenzerini, & Nardi

In aluni no restrictions are imposed on the form that the inclusion assertions may
assume. In particular we do not rule out cyclic assertions, i.e., assertions in which the
concept expression on the right hand side refers, either directly or indirectly via other
assertions, to the atomic concept on the left hand side. In the presence of cyclic assertions
di�erent semantics may be adopted (Nebel, 1991). The one de�ned above, called descriptive
semantics, accepts all interpretations that satisfy the assertions in the knowledge base, and
hence interprets assertions as constraints on the domain to be modeled. For inclusion
assertions, descriptive semantics has been claimed to provide the most intuitive results
(Buchheit, Donini, Nutt, & Schaerf, 1998). Alternative semantics which have been proposed
are based on �xpoint constructions (Nebel, 1991; Schild, 1994; De Giacomo & Lenzerini,
1994b), and hence allow to de�ne in a unique way the interpretation of concepts.

In general, cycles in the knowledge base increase the complexity of reasoning (Nebel,
1991; Baader, 1996; Calvanese, 1996b) and require a special treatment by reasoning proce-
dures (Baader, 1991; Buchheit, Donini, & Schaerf, 1993). For this reason, many DL based
systems assume the knowledge base to be acyclic (Brachman, McGuinness, Patel-Schneider,
Alperin Resnick, & Borgida, 1991; Bresciani, Franconi, & Tessaris, 1995). However, this as-
sumption is unrealistic in practice, and cycles are de�nitely necessary for a correct modeling
in many application domains. Indeed, the use of cycles is allowed in all data models used
in databases, and, as shown in the following sections, in order to capture their semantics in
aluni the possibility of using cyclic assertions is fundamental.

Besides inclusion assertions, some DL based systems also make use of equivalence as-
sertions (Buchheit et al., 1993), which express both necessary and suÆcient conditions for
an object to be an instance of a concept. Although this possibility is ruled out in aluni,
this does not limit its ability of capturing both frame based systems and database models,
where the constraints that can be expressed correspond naturally to inclusion assertions.

2.3 Reasoning in aluni

The basic tasks we consider when reasoning over an aluni knowledge base are concept
consistency and concept subsumption:

� Concept consistency is the problem of deciding whether a concept C is consistent in
a knowledge base K (written as K 6j= C � ?), i.e., whether K admits a model I such
that CI 6= ;.

� Concept subsumption is the problem of deciding whether a concept C1 is subsumed by

a concept C2 in a knowledge base K (written as K j= C1 � C2), i.e., whether C
I
1 � CI

2

for each model I of K.

The inclusion of number restrictions and inverse roles in ALUNI and the ability in
aluni of using arbitrary, possibly cyclic inclusion assertions allows one to construct a knowl-
edge base in which a certain concept is consistent but has necessarily an empty extension
in all �nite models of the knowledge base. Similarly, a subsumption relation between two
concepts may hold only if in�nite models of the knowledge base are ruled out and only �nite
models are considered.

204

Unifying Class-Based Representation Formalisms

Keven = (A;P ; T), where

A = fNumber; Eveng,

P = fdoublesg,

and the set T of assertions consists of:

Number _� 9doubles� u 8doubles�.Even

Even _� Numberu 9�1doublesu 8doubles.Number

Figure 1: An aluni knowledge base with two concepts that are equivalent in all �nite
models

Example 2.2 Let Keven be the knowledge base shown in Figure 1. Intuitively, the asser-
tions in Keven state that for each number there is an even number which doubles it, and
that all numbers which double it are even. Each even number is a number, doubles at most
one number, and doubles only numbers. Observe that for any model I of Keven , the univer-
sal quanti�cations together with the functionality of doubles in the assertions imply that
]EvenI �]NumberI , while the direct inclusion assertion between Even and Number implies
that]EvenI �]NumberI . Therefore, the two concepts have the same cardinality, and since
one is a sub-concept of the other, if the domain is �nite, their extensions coincide. This
does not necessarily hold for in�nite domains. In fact, the names we have chosen suggest
already an in�nite model of the knowledge base in which Number and Even are interpreted
di�erently. The model is obtained by taking the natural numbers as domain, and inter-
preting Number as the whole domain, Even as the even numbers, and doubles as the set
f(2n; n) j n � 0g.

The example above shows that aluni does not have the �nite model property, which
states that if a concept is consistent in a knowledge base then the knowledge base admits
a �nite model in which the concept has a nonempty extension. Therefore, it is important
to distinguish between reasoning with respect to unrestricted models and reasoning with
respect to �nite models. We call (unrestricted) concept consistency (written as K 6j=u C �
?) and (unrestricted) concept subsumption (written as K j=u A � C) the reasoning tasks
as described above, i.e., carried out without restricting the attention to �nite models. The
corresponding reasoning tasks carried out by considering �nite models only, are called �nite

concept consistency (written as K 6j=f C � ?) and �nite concept subsumption (written as
K j=f A � C).

Example 2.2 (cont.) Summing up the previous considerations, we can say that Number is
not subsumed by Even in Keven , i.e., Keven 6j=u Number � Even, but is �nitely subsumed, i.e.,
Keven j=f Number � Even. Equivalently Numberu:Even is consistent in Keven , i.e., Keven 6j=u

Numberu:Even � ?, but is not �nitely consistent, i.e., Keven j=f Numberu:Even � ?.

A distinguishing feature of aluni is that reasoning both in the �nite and in the un-
restricted case is decidable. In particular, unrestricted concept satis�ability and concept
subsumption are decidable in deterministic exponential time (De Giacomo & Lenzerini,

205

Calvanese, Lenzerini, & Nardi

1994a; Calvanese et al., 1994), and since reasoning in strict sublanguages of aluni is al-
ready EXPTIME-hard (Calvanese, 1996c), the known algorithms are computationally opti-
mal. Finite concept consistency in aluni is also decidable in deterministic exponential time
while �nite concept subsumption (in the general case) is decidable in deterministic double
exponential time (Calvanese, 1996c). A more precise discussion on the methods for reason-
ing in aluni is provided in Section 6.2, while a detailed account of the adopted algorithms
and an analysis of their computational complexity is presented by Calvanese (1996c).

In the next sections we show how the two forms of reasoning with respect to unrestricted
and �nite models, capture the reasoning tasks that are typically considered in di�erent
formalisms for the structured representation of knowledge.

3. Frame Based Systems

Frame languages are based on the idea of expressing knowledge by means of frames, which
are structures representing classes of objects in terms of the properties that their instances
must satisfy. Such properties are de�ned by the frame slots, that constitute the items of a
frame de�nition. Since the 70s a large number of frame systems have been developed, with
di�erent goals and di�erent features. DLs bear a close relationship with the kl-one family
of frame systems (Woods & Schmolze, 1992). However, here we would like to consider frame
systems from a more general perspective, as discussed for example by Karp (1992), Karp,
Myers, and Gruber (1995), and establish the correspondence with aluni knowledge bases
in this context.

We remark that we are restricting our attention to those aspects that are related to
the taxonomic structure. Moreover, as discussed below, we consider assertional knowledge
bases, where intensional knowledge is characterized in terms of inclusion assertions rather
than de�nitions. In addition, we do not consider those features that cannot be captured in
a �rst-order framework, such as default values in the slots, attached procedures, and the
speci�cation of overriding inheritance policies. Some of the issues concerning the modeling
of these aspects in DLs are addressed by Donini, Lenzerini, Nardi, Nutt, and Schaerf (1994),
Donini, Nardi, and Rosati (1995), within a modal nonmonotonic extension of DLs.

3.1 Syntax of Frame Based Systems

To make the correspondence precise, we need to �x syntax and semantics for the frame
systems we consider. Unfortunately, there is no accepted standard and we have chosen to
use here basically the notation adopted by Fikes and Kehler (1985), which is used also in
the KEE2 system.

De�nition 3.1 A frame knowledge base, denoted by F , is formed by a set of frame and
slot names, and is constituted by a set of frame de�nitions of the following form:

Frame : F in KB F E;

2. KEE is a trademark of Intellicorp. Note that a KEE user does not directly specify her knowledge base

in this notation, but is allowed to de�ne frames interactively via the graphical system interface.

206

Unifying Class-Based Representation Formalisms

Frame: Course in KB University

MemberSlot: enrolls
ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30

MemberSlot: taughtby
ValueClass: (UNION GradStudent

Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University

SuperClasses: Course
MemberSlot: enrolls
ValueClass: (INTERSECTION

GradStudent

(NOT Undergrad))
Cardinality.Max: 20

Frame: BasCourse in KB University

SuperClasses: Course
MemberSlot: taughtby
ValueClass: Professor

Frame: Professor in KB University

Frame: Student in KB University

Frame: GradStudent in KB University

SuperClasses: Student
MemberSlot: degree
ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Undergrad in KB University

SuperClasses: Student

Figure 2: A KEE knowledge base

where E is a frame expression, i.e., an expression formed according to the following syntax:

E �! SuperClasses : F1; : : : ; Fh
MemberSlot : S1
ValueClass : H1

Cardinality.Min : m1

Cardinality.Max : n1
� � �
MemberSlot : Sk
ValueClass : Hk

Cardinality.Min : mk

Cardinality.Max : nk

F and S denote frame and slot names, respectively, m and n denote positive integers, and
H denotes slot constraint, which can be speci�ed as follows:

H �! F j
(INTERSECTION H1 H2) j
(UNION H1 H2) j
(NOT H)

For readers that are familiar with the KEE system, we point out that we omit the
speci�cation of the sub-classes for a frame present in KEE, since it can be directly derived
from the speci�cation of the super-classes.

Example 3.2 Figure 2 shows a simple example of a knowledge base modeling the situation
at an university expressed in the frame language we have presented. The frame Course

207

Calvanese, Lenzerini, & Nardi

represents courses which enroll students and are taught either by graduate students or
professors. Cardinality restrictions are used to impose a minimum and maximum number
of students that may be enrolled in a course, and to express that each course is taught by
exactly one individual. The frame AdvCourse represents courses which enroll only graduate
students, i.e., students who already have a degree. Basic courses, on the other hand, may
be taught only by professors.

3.2 Semantics of Frame Based Systems

To give semantics to a set of frame de�nitions we resort to their interpretation in terms of
�rst-order predicate calculus (Hayes, 1979). According to such interpretation, frame names
are treated as unary predicates, while slots are considered binary predicates.

A frame expression E is interpreted as a predicate logic formula E(x), which has one
free variable, and consists of the conjunction of sentences, obtained from the super-class
speci�cation and from each slot speci�cation. In particular, for the super-classes F1; : : : ; Fh
we have:

F1(x) ^ : : : ^ Fh(x)

and for a slot speci�cation
MemberSlot : S
ValueClass : H
Cardinality.Min : m
Cardinality.Max : n

we have
8y. (S(x; y)! H(y)) ^
9y1; : : : ; ym. ((

V
i6=j yi 6= yj) ^ S(x; y1) ^ � � � ^ S(x; ym)) ^

8y1; : : : ; yn+1. ((S(x; y1) ^ � � � ^ S(x; yn+1))!
W
i6=j yi = yj);

under the assumption that within one frame de�nition the occurrences of x refer to the same
free variable. Finally the constraints on the slots are interpreted as conjunction, disjunction
and negation, respectively, i.e.:

(INTERSECTION H1 H2) is interpreted as H1(x) ^H2(x)
(UNION H1 H2) is interpreted as H1(x) _H2(x)
(NOT H) is interpreted as :H(x)

A frame de�nition

Frame : F in KB F E

is then considered as the universally quanti�ed sentence of the form

8x.(F (x)! E(x)):

The whole frame knowledge base F is considered as the conjunction of all �rst-order sen-
tences corresponding to the frame de�nitions in F .

Here we regard frame de�nitions as necessary conditions, which is commonplace in the
frame systems known as assertional frame systems, as opposed to de�nitional systems,
where frame de�nitions are interpreted as necessary and suÆcient conditions.

208

Unifying Class-Based Representation Formalisms

In order to enable the comparison with our formalisms for representing structured knowl-
edge we restrict our attention to the reasoning tasks that involve the frame knowledge base,
independently of the assertional knowledge, i.e., the frames instances. Fikes and Kehler
(1985) mention several reasoning services associated with frames, such as:

� Consistency checking, which amounts to verifying whether a frame F is satis�able
in a knowledge base. In particular, this involves both reasoning on cardinalities and
checking whether the �ller of a given slot belongs to a certain frame.

� Inheritance, which, in our case, amounts to the ability of identifying which of the
frames are more general than a given frame, sometimes called all-super-of (Karp
et al., 1995). All the properties of the more general frames are then inherited by the
more speci�c one. Such a reasoning is therefore based on the more general ability to
check the mutual relationhips between frame descriptions in the knowledge base.

These reasoning services are formalized in the �rst-order semantics as follows.

De�nition 3.3 Let F be a frame knowledge base and F a frame in F . We say that F is
consistent in F if the �rst-order sentence F ^9x.F (x) is satis�able. Moreover, we say that
a frame description E is more general than F in F if F j= 8x.(F (x)! E(x)).

3.3 Relationship between Frame Based Systems and aluni

The �rst-order semantics given above allows us to establish a straightforward relationship
between frame languages and aluni. Indeed, we now present a translation from frame
knowledge bases to aluni knowledge bases.

We �rst de�ne the function � that maps each frame expression into an ALUNI concept
expression as follows:

� Every frame name F is mapped into an atomic concept �(F).

� Every slot name S is mapped into an atomic role �(S).

� Every slot constraint is mapped as follows

(UNION H1 H2) is mapped into �(H1) t �(H2):
(INTERSECTION H1 H2) is mapped into �(H1) u �(H2):
(NOT H) is mapped into :�(H):

� Every frame expression of the form

SuperClasses : F1; : : : ; Fh
MemberSlot : S1
ValueClass : H1

Cardinality.Min : m1

Cardinality.Max : n1
� � �
MemberSlot : Sk
ValueClass : Hk

Cardinality.Min : mk

Cardinality.Max : nk

209

Calvanese, Lenzerini, & Nardi

K = (A;P ; T), where

A = fCourse; AdvCourse; BasCourse; Professor; Student; GradStudent; Undergrad; Stringg,

P = fenrolls; taughtby; degreeg,

and the set T of assertions consists of:

Course _� 8enrolls.Studentu 9�2enrollsu 9�30enrolls u
8taughtby.(Professort GradStudent) u 9=1taughtby

AdvCourse _� Courseu 8enrolls.(GradStudentu :Undergrad) u 9�20enrolls

BasCourse _� Courseu 8taughtby.Professor

GradStudent _� Studentu 8degree.Stringu 9=1degree

Undergrad _� Student

Figure 3: The aluni knowledge base corresponding to the KEE knowledge base in Figure 2

is mapped into the class expression

�(F1) u � � � u �(Fh) u
8�(S1).�(H1) u 9�m1�(S1) u 9�n1�(S1) u
� � �
8�(Sk).�(Hk) u 9

�mk�(Sk) u 9
�nk�(Sk):

This mapping allows us to translate a frame knowledge base into an aluni knowledge base,
as speci�ed in the following de�nition.

De�nition 3.4 The aluni knowledge base �(F) = (A;P;T) corresponding to a frame
knowledge base F is obtained as follows:

� A consists of one atomic concept �(F) for each frame name F in F .

� P consists of one atomic role �(S) for each slot name S in F .

� T consists of an inclusion assertion

�(F) _� �(E)

for each frame de�nition

Frame : F in KB F E

in F .

Example 3.2 (cont.) We illustrate the translation on the frame knowledge base in Fig-
ure 2. The corresponding aluni knowledge base is shown in Figure 3.

210

Unifying Class-Based Representation Formalisms

The correctness of the translation follows from the correspondence between the set-
theoretic semantics of aluni and the �rst-order interpretation of frames (see for example
Hayes, 1979; Borgida, 1996; Donini et al., 1996). We can observe that inverse roles are in
fact not necessary for the formalization of frames. Indeed, the possibility of referring to the
inverse of a slot has been rarely considered in frame knowledge representation systems (Some
exceptions are reported in Karp, 1992). Due to the absence of inverse roles the distinction
between reasoning in �nite and unrestricted models is not necessary3. Consequently, all
the above mentioned forms of reasoning are captured by unrestricted concept consistency
and concept subsumption in aluni knowledge bases. This is summarized in the following
theorem.

Theorem 3.5 Let F be a frame knowledge-base, F be a frame in F , E be a frame de-
scription, and �(F), �(F), and �(E) be their translations in aluni. Then the following

hold:

� F is consistent in F if and only if �(F) 6j=u �(F) � ?.

� E is more general than F in F if and only if �(F) j=u �(F) � �(E).

Proof. The claim directly follows from the semantics of frame knowledge bases and the
translation into DLs that we have adopted.

By Theorem 3.5 it becomes possible to exploit the methods for unrestricted reasoning
on aluni knowledge bases in order to reason on frame knowledge bases. Since the problem
of reasoning, e.g., in KEE is already EXPTIME-complete, we do not pay in terms of com-
putational complexity for the expressiveness added by the constructs of aluni. In fact, by
resorting to the correspondence with aluni it becomes possible to add to frame systems
useful features, such as the possibility of specifying the inverse of a slot (Karp, 1992), and
still retain the ability to reason in EXPTIME.

4. Semantic Data Models

Semantic data models were introduced primarily as formalisms for database schema design.
They provide a means to model databases in a much richer way than traditional data
models supported by Database Management Systems, and are becoming more and more
important because they are adopted in most of the recent database design methodologies
and Computer Aided Software Engineering tools.

The most widespread semantic data model is the Entity-Relationship (ER) model in-
troduced by Chen (1976). It has by now become a standard, extensively used in the design
phase of commercial applications. In the commonly accepted ER notation, classes are called
entities and are represented as boxes, whereas relationships between entities are represented
as diamonds. Arrows between entities, called ISA relationships, represent inclusion asser-
tions. The links between entities and relationships represent the ER-roles, to which number
restrictions are associated. Dashed links are used whenever such restrictions are re�ned for
more speci�c entities. Finally, elementary properties of entities are modeled by attributes,

3. If we eliminate from ALUNI inverse roles, then the resulting DL has the �nite model property.

211

Calvanese, Lenzerini, & Nardi

whose values belong to one of several prede�ned domains, such as Integer, String, or
Boolean.

The ER model does not provide constructs for expressing explicit disjointness or disjunc-
tion of entities, but extensions of the model allow for the use of generalization hierarchies
which represent a combination of these two constructs. In order to keep the presenta-
tion simple, we do not consider generalization hierarchies in the formalization we provide,
although their addition would be straightforward. Similarly, we omit attributes of relations.

We now show that all relevant aspects of the ER model can be captured in aluni, and
thus that reasoning on an ER schema can be reduced to reasoning on the corresponding
aluni knowledge base. Since aluni is equipped with capabilities to reason on knowledge
bases, both with respect to �nite and unrestricted models (see Section 6.2), the reduction
shows that reasoning on the ER model, and more generally on semantic data models, is
decidable.

As in the case of frame-based systems, we restrict our attention to those aspects that
constitute the core of the ER model. For this reason we do not consider some features,
such as keys and weak entities, that have been introduced in the literature (Chen, 1976),
but appear only in some of the formalizations of the ER model and the methodologies for
conceptual modeling based on the model. A proposal for the treatment of keys in description
logics is presented by Borgida and Weddell (1997).

In order to establish the correspondence between the ER model and aluni, we present
formal syntax and semantics of ER schemata.

4.1 Syntax of the Entity-Relationship Model

Although the ER model has by now become an industrial standard, several variants and
extensions have been introduced, which di�er in minor aspects in expressiveness and in
notation (Chen, 1976; Teorey, 1989; Batini, Ceri, & Navathe, 1992; Thalheim, 1992, 1993).
Also, ER schemata are usually de�ned using a graphical notation which is particularly
useful for an easy visualization of the data dependencies, but which is not well suited for our
purposes. Therefore we have chosen a formalization of the ER model which abstracts with
respect to the most important characteristics and allows us to develop the correspondence
to aluni.

In the following, for two �nite sets X and Y we call a function from a subset of X
to Y an X-labeled tuple over Y . The labeled tuple T that maps xi 2 X to yi 2 Y , for
i 2 f1; : : : ; kg, is denoted [x1: y1; : : : ; xk: yk]. We also write T [xi] to denote yi.

De�nition 4.1 An ER schema is a tuple S = (LS ;�S ; attS ; relS ; cardS), where

� LS is a �nite alphabet partitioned into a set ES of entity symbols, a set AS of attribute
symbols, a set US of role symbols, a set RS of relationship symbols, and a set DS of
domain symbols; each domain symbol D has an associated prede�ned basic domain
DBD , and we assume the various basic domains to be pairwise disjoint.

� �S� ES � ES is a binary relation over ES .

� attS is a function that maps each entity symbol in ES to an AS-labeled tuple over DS .

212

Unifying Class-Based Representation Formalisms

� relS is a function that maps each relationship symbol in RS to an US-labeled tuple
over ES . We assume without loss of generality that:

{ Each role is speci�c to exactly one relationship, i.e., for two relationships
R;R0 2 RS with R 6= R0, if relS(R) = [U1:E1; : : : ; Uk:Ek] and relS(R

0) =
[U 0

1:E
0
1; : : : ; U

0
k0 :E

0
k0], then fU1; : : : ; Ukg and fU

0
1; : : : ; U

0
k0g are disjoint.

{ For each role U 2 US there is a relationship R and an entity E such that
relS(R) = [: : : ; U :E; : : :].

� cardS is a function from ES � RS � US to IN0 � (IN0 [f1g) that satis�es the fol-
lowing condition: for a relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek],
cardS(E;R;U) is de�ned only if U = Ui for some i 2 f1; : : : ; kg, and if E ��S Ei

(where ��S denotes the reexive transitive closure of �S). The �rst component
of cardS(E;R;U) is denoted with cminS(E;R;U) and the second component with
cmaxS(E;R;U). If not stated otherwise, cminS(E;R;U) is assumed to be 0 and
cmaxS(E;R;U) is assumed to be 1.

Before specifying the formal semantics of ER schemata we give an intuitive description of
the components of a schema. The relation �S models the ISA-relationship between entities.
We do not need to make any special assumption on the form of �S such as acyclicity
or injectivity. The function attS is used to model attributes of entities. If for example
attS associates the AS-labeled tuple [A1: Integer; A2: String] to an entity E, then E has
two attributes A1; A2 whose values are integers and strings respectively. For simplicity we
assume attributes to be single-valued and mandatory, but we could easily handle also multi-
valued attributes with associated cardinalities. The function relS associates a set of roles
to each relationship symbol R, determining implicitly also the arity of R, and for each role
U in such set a distinguished entity, called the primary entity for U in R. In a database
satisfying the schema only instances of the primary entity are allowed to participate in
the relationship via the role U . The function cardS speci�es cardinality constraints, i.e.,
constraints on the minimum and maximum number of times an instance of an entity may
participate in a relationship via some role. Since such constraints are meaningful only if
the entity can e�ectively participate in the relationship, the function is de�ned only for
the sub-entities of the primary entity. The special value 1 is used when no restriction is
posed on the maximum cardinality. Such constraints can be used to specify both existence
dependencies and functionality of relations (Cosmadakis & Kanellakis, 1986). They are
often used only in a restricted form, where the minimum cardinality is either 0 or 1 and
the maximum cardinality is either 1 or 1. Cardinality constraints in the form considered
here have been introduced already by Abrial (1974) and subsequently studied by Grant
and Minker (1984), Lenzerini and Nobili (1990), Ferg (1991), Ye, Parent, and Spaccapietra
(1994), Thalheim (1992).

Example 4.2 Figure 4 shows a simple ER schema modeling a state of a�airs similar to the
one represented by the KEE knowledge base in Figure 2. We have used the standard graphic
notation for ER schemata, except for the dashed link, which represents the re�nement of
a cardinality constraint for the participation of a sub-entity (in our case AdvCourse) in a
relationship (in our case ENROLLING).

213

Calvanese, Lenzerini, & Nardi

AdvCourse

Course

Teacher

Student

GradStudentdegree/String

ENROLLING
(2,30)

Ein

(4,6)

Eof

TEACHING
(1,1)

Tof

(0,1)

Tby

(2,20)

6 6

Figure 4: An ER schema

4.2 Semantics of the Entity-Relationship Model

The semantics of an ER schema can be given by specifying which database states are
consistent with the information structure represented by the schema. Formally, a database
state B corresponding to an ER schema S = (LS ;�S ; attS ; relS ; cardS) is constituted by a
nonempty �nite set �B, assumed to be disjoint from all basic domains, and a function �B

that maps

� every domain symbol D 2 DS to the corresponding basic domain DBD ,

� every entity E 2 ES to a subset EB of �B,

� every attribute A 2 AS to a set AB � �B �
S
D2DS

DBD , and

� every relationship R 2 RS to a set RB of US-labeled tuples over �B.

The elements of EB, AB, and RB are called instances of E, A, and R respectively.

A database state is considered acceptable if it satis�es all integrity constraints that are
part of the schema. This is captured by the de�nition of legal database state.

De�nition 4.3 A database state B is said to be legal for an ER schema S =
(LS ;�S ; attS ; relS ; cardS), if it satis�es the following conditions:

� For each pair of entities E1; E2 2 ES such that E1 �S E2, it holds that E
B
1 � EB

2 .

� For each entity E 2 ES , if attS(E) = [A1:D1; : : : ; Ah:Dh], then for each instance
e 2 EB and for each i 2 f1; : : : ; hg the following holds:

{ there is exactly one element ai 2 ABi whose �rst component is e, and

{ the second component of ai is an element of DBD
i .

� For each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek], all instances
of R are of the form [U1: e1; : : : ; Uk: ek], where ei 2 E

B
i , i 2 f1; : : : ; kg.

214

Unifying Class-Based Representation Formalisms

Even

Number

DOUBLES

(1,1)

(0,1)

6

Figure 5: The ER schema corresponding to Example 2.2

� For each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek], for each
i 2 f1; : : : ; kg, for each entity E 2 ES such that E ��S Ei and for each instance e of E
in I, it holds that

cminS(E;R;Ui) �]fr 2 RB j r[Ui] = eg � cmaxS(E;R;Ui):

Notice that the de�nition of database state reects the usual assumption in databases
that database states are �nite structures (see also Cosmadakis, Kanellakis, & Vardi, 1990).
In fact, the basic domains are not required to be �nite, but for each legal database state
for a schema, only a �nite set of values from the basic domains are actually of interest. We
de�ne the active domain �B

act of a database state B as the set of all elements of the basic
domains DBD , D 2 DS , that e�ectively appear as values of attributes in B. More formally:

�B
act = fd 2 DBD j D 2 DS ^ 9A 2 AS ; e 2 �B . (e; d) 2 ABg:

Since �B is �nite and AS contains only a �nite number of attributes, which are functional
by de�nition, also �B

act is �nite.

Reasoning in the ER model includes verifying entity satis�ability and deducing inheri-
tance. Entity satis�ability amounts to checking whether a given entity can be populated in
some legal database state (Atzeni & Parker Jr., 1986; Lenzerini & Nobili, 1990; Di Battista
& Lenzerini, 1993), and corresponds to the notion of concept consistency in DLs. Deducing
inheritance amounts to verifying whether in all databases that are legal for the schema,
every instance of an entity is also an instance of another entity. Such implied ISA relation-
ships can arise for di�erent reasons. Either trivially, through the transitive closure of the
explicit ISA relationships present in the schema, or in more subtle ways, through speci�c
patterns of cardinality restrictions along cycles in the schema and the requirement of the
database state to be �nite (Lenzerini & Nobili, 1990; Cosmadakis et al., 1990).

Example 4.4 Figure 5 shows an ER schema modeling the same situation as the knowledge
base of Example 2.2. Arguing exactly as in that example we can conclude that the two
entities Number and Even denote the same set of elements in every �nite database legal for
the schema, although the ISA relation from Number to Even is not stated explicitly. It is
implied, however, due to the cycle involving the relationship and the two entities and due
to the particular form of cardinality constraints.

215

Calvanese, Lenzerini, & Nardi

4.3 Relationship between Entity-Relationship Schemata and aluni

We now show that the di�erent forms of reasoning on ER schemata are captured by �nite
concept consistency and �nite concept subsumption in aluni. The correspondence between
the two formalisms is established by de�ning a translation � from ER schemata to aluni
knowledge bases, and then proving that there is a correspondence between legal database
states and �nite models of the derived knowledge base.

De�nition 4.5 Let S = (LS ;�S ; attS ; relS ; cardS) be an ER schema. The aluni knowl-
edge base �(S) = (A;P;T) is de�ned as follows:
The set A of atomic concepts of �(S) contains the following elements:

� for each domain symbol D 2 DS , an atomic concept �(D);

� for each entity E 2 ES , an atomic concept �(E);

� for each relationship R 2 RS , an atomic concept �(R).

The set P of atomic roles of �(S) contains the following elements:

� for each attribute A 2 AS , an atomic role �(A);

� for each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek], k atomic roles
�(U1); : : : ; �(Uk).

The set T of assertions of �(S) contains the following elements:

� for each pair of entities E1; E2 2 ES such that E1 �S E2, the assertion

�(E1) _� �(E2) (1)

� for each entity E 2 ES such that attS(E) = [A1:D1; : : : ; Ah:Dh], the assertion

�(E) _� 8�(A1).�(D1) u � � � u 8�(Ah).�(Dh) u 9
=1�(A1) u � � � u 9

=1�(Ah) (2)

� for each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek], the assertions

�(R) _� 8�(U1).�(E1) u � � � u 8�(Uk).�(Ek) u 9
=1�(U1) u � � � u 9

=1�(Uk) (3)

�(Ei) _� 8(�(Ui))
�.�(R); i 2 f1; : : : ; kg (4)

� for each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek], for i 2
f1; : : : ; kg, and for each entity E 2 ES such that E ��S Ei,

{ if m = cminS(E;R;Ui) 6= 0, the assertion

�(E) _� 9�m(�(Ui))
�: (5)

{ if n = cmaxS(E;R;Ui) 6=1, the assertion

�(E) _� 9�n(�(Ui))
�: (6)

� for each pair of symbols X1;X2 2 ES[RS[DS such that X1 6= X2 and X1 2 RS[DS ,
the assertion

�(X1) _� :�(X2): (7)

216

Unifying Class-Based Representation Formalisms

K = (A;P ; T), where

A = fCourse; AdvCourse; Teacher; Student; GradStudent; TEACHING; ENROLLING; Stringg,

P = fTof; Tby; Ein; Eof; degreeg,

and the set T of assertions consists of:

TEACHING _� 8Tof.Courseu 9=1Tof u
8Tby.Teacheru 9=1Tby

ENROLLING _� 8Ein.Courseu 9=1Ein u
8Eof.Studentu 9=1Eof

Course _� 8Tof�.TEACHINGu 9=1Tof� u
8Ein�.ENROLLINGu 9�2Ein� u 9�30Ein�

AdvCourse _� Courseu 9�20Ein�

Teacher _� 8Tby�.TEACHING

Student _� 8Eof�.ENROLLINGu 9�4Eof� u 9�6Eof�

GradStudent _� Studentu 8degree.Stringu 9=1degree:

Figure 6: The aluni knowledge base corresponding to the ER schema in Figure 4

Example 4.2 (cont.) We illustrate the translation on the ER schema of Figure 4. The
aluni knowledge base that captures exactly its semantics is shown in Figure 6, where for
brevity the disjointness assertions (7) are omitted, and assertions with the same concept on
the left hand side are collapsed.

The translation makes use of both inverse attributes and number restrictions to capture
the semantics of ER schemata. We observe that, by means of the inverse constructor, a
binary relationship could be treated in a simpler way by choosing a traversal direction and
mapping the relationship directly to a role. Notice also that the assumption of acyclicity
of the resulting knowledge base is unrealistic in this case, and in order to exploit the cor-
respondence for reasoning in the ER model, we need techniques that can deal with inverse
attributes, number restrictions, and cycles together. As shown in Example 2.2, the com-
bination of these factors causes the �nite model property to fail to hold, and we need to
resort to reasoning methods for �nite models.

In fact, we can reduce reasoning in the ER model to �nite model reasoning in aluni

knowledge bases. For this purpose we de�ne a mapping between database states corre-
sponding to an ER schema and �nite interpretations of the knowledge base derived from it.
Due to the possible presence of relations with arity greater than 2, this mapping is however
not one-to-one and we �rst need to characterize those interpretations of the knowledge base
that directly correspond to database states.

De�nition 4.6 Let S = (LS ;�S ; attS ; relS ; cardS) be an ER schema and �(S) be de�ned
as above. An interpretation I of �(S) is relation-descriptive, if for every relationship R 2
RS , with relS(R) = [U1:E1; : : : ; Uk:Ek], for every d; d

0 2 (�(R))I , we have that

(
^

1�i�k

8d00 2 �I . ((d; d00) 2 (�(Ui))
I $ (d0; d00) 2 (�(Ui))

I))! d = d0: (8)

217

Calvanese, Lenzerini, & Nardi

Intuitively, the extension of a relationship in a database state is a set of labeled tuples,
and such a set does not contain the same element twice. Therefore it is implicit in the
semantics of the ER model that there cannot be two labeled tuples connected through all
roles of the relationship to exactly the same elements of the domain. In a model of the
aluni knowledge base corresponding to the ER schema, on the other hand, each tuple is
represented by a new individual, and the above condition is not implicit anymore. It also
cannot be imposed in aluni by suitable assertions. The following lemma, however, shows
that we do not need such an explicit condition, when we are interested in reasoning on an
aluni knowledge base corresponding to an ER schema. This is due to the fact that we can
always restrict ourselves to considering only relation-descriptive models.

Lemma 4.7 Let S be an ER schema, �(S) be the aluni knowledge base obtained from S
according to De�nition 4.5, and C be a concept expression of �(S). If C is �nitely consistent

in �(S), then there is a �nite relation-descriptive model I of �(S) such that CI 6= ;.

Proof. Let I0 be a �nite model of �(S) such that CI 6= ;. We can build a �nite relation-
descriptive model I 0 by starting from I0 and applying the following construction once for
each relationship in RS .

Let I be the model obtained in the previous step and let R 2 RS with relS(R) =
[U1:E1; : : : ; Uk:Ek] be the next relationship to which we apply the construction. We con-
struct from I a model IR such that condition 8 is satis�ed for relationship R.

Given an individual r 2 (�(R))I , we denote by Ui(d), i 2 f1; : : : ; kg the (unique)
individual e such that (r; e) 2 (�(Ui))

I . For ei 2 (�(Ei))
I , i 2 f1; : : : ; kg we de�ne

X(U1:e1;:::;Uk:ek) = fr 2 (�(R))I j Ui(d) = ei; for i 2 f1; : : : ; kgg. We call conict-set
a set X(U1:e1;:::;Uk:ek) with more than one element. From each conict-set X(U1:e1;:::;Uk:ek)

we randomly choose one individual r, and we say that the others induce a conict on

(U1: e1; : : : ; Uk: ek). We call Conf the (�nite) set of all objects inducing a conict on some
(U1: e1; : : : ; Uk: ek).

We de�ne an interpretation I2Conf as the disjoint union of 2]Conf copies of I, one copy,
denoted by IZ , for every set Z 2 2Conf . We denote by dZ the copy in IZ of the individual
d in I. Since the disjoint union of two models of an aluni knowledge base is again a
model, I2Conf is a model of �(S). Let IZ and IZ0 be two copies of I in I2Conf . We call
exchanging Uk(rZ) with Uk(rZ0) the operation on I2Conf consisting of replacing in (�(Uk))

IZ

the pair (rZ ; Uk(rZ)) with (rZ ; Uk(rZ0)) and, at the same time, replacing in (�(Uk))
IZ0 the

pair (rZ0 ; Uk(rZ0)) with (rZ0 ; Uk(rZ)). Intuitively, by exchanging Uk(rZ) with Uk(rZ0), the
individuals rZ and rZ0 do not induce conicts anymore.

We construct now from I2Conf an interpretation IR as follows: For each r 2 Conf and
for each Z 2 2Conf such that r 2 Z, we exchange Uk(rZ) with Uk(rZnfrg). It is possible
to show that all conicts are thus eliminated while no new conict is created. Hence, in
IR, condition 8 for R is satis�ed. We still have to show that IR is a model of �(S) in
which CIR 6= ;. Indeed, it is straightforward to check by induction that for every concept
expression C 0 appearing in �(S), for all Z 2 2Conf , d 2 C 0I if and only if dZ 2 C 0IR . Thus
all assertions of �(S) are still satis�ed in IR and CIR 6= ;.

218

Unifying Class-Based Representation Formalisms

With this result, the following correspondence between legal database states for an
ER schema and relation-descriptive models of the resulting aluni knowledge base can be
established.

Proposition 4.8 For every ER schema S = (LS ;�S ; attS ; relS ; cardS) there exist two

mappings �S , from database states corresponding to S to �nite interpretations of its transla-
tion �(S), and �S , from �nite relation-descriptive interpretations of �(S) to database states

corresponding to S, such that:

1. For each legal database state B for S, �S(B) is a �nite model of �(S), and for each
symbol X 2 ES [AS [RS [DS , X

B = (�(X))�S (B).

2. For each �nite relation-descriptive model I of �(S), �S(I) is a legal database state for
S, for each entity E 2 ES , (�(E))I = E�S(I), and for each symbol X 2 AS [RS [DS,
]�(X)I =]X�S(I).

Proof. (1) Given a database state B, we de�ne the interpretation I = �S(B) of �(S) as
follows:

� �I = �B [�B
act [

S
R2RS

RB.

� For each symbol X 2 ES [AS [RS [DS ,

(�(X))I = XB: (9)

� For each relationship R 2 RS such that relS(R) = [U1:E1; : : : ; Uk:Ek],

(�(Ui))
I = f(r; e) 2 �I ��I j r 2 RB; and r[Ui] = eg; i 2 f1; : : : ; kg: (10)

Let B be a legal database state. To prove claim (1) it is suÆcient to show that I satis�es
every assertion in �(S). Assertions 1 are satis�ed since B satis�es the set inclusion between
the extensions of the corresponding entities. With respect to assertions 2, let E 2 ES be an
entity such that attS(E) = [A1:D1; : : : ; Ah:Dh], and consider an instance e 2 (�(E))I . We
have to show that for each i 2 f1; : : : ; hg, there is exactly one element ei 2 �I such that
(e; ei) 2 (�(Ai))

I , and moreover that ei 2 (�(Di))
I . By 9, e 2 EB, and by de�nition of legal

database state there is exactly one element ai 2 ABi = (�(Ai))
I whose �rst component is e.

Moreover, the second component ei of ai is an element of DBD
i = (�(Di))

I . With respect
to assertions 3, let R 2 RS be a relationship such that relS(R) = [U1:E1; : : : ; Uk:Ek],
and consider an instance r 2 (�(R))I . We have to show that for each i 2 f1; : : : ; kg
there is exactly one element ei 2 �I such that (r; ei) 2 (�(Ui))

I , and that moreover
ei 2 (�(Ei))

I . By 9, r 2 RB, and by de�nition of legal database state, r is a labeled tuple
of the form [U1: e

0
1; : : : ; Uk: e

0
k], where e

0
i 2 EB

i , i 2 f1; : : : ; kg. Therefore r is a function
de�ned on fU1; : : : ; Ukg, and by 10, ei is unique and equal to e0i. Moreover, again by 9,
ei 2 (�(Ei))

I = EB
i . Assertions 4 are satis�ed, since by 10 the �rst component of each

element of (�(Ui))
I is always an element of RB = (�(R))I . With respect to assertions 5,

let R 2 RS be a relationship such that relS(R) = [U1:E1; : : : ; Uk:Ek], let E 2 ES be an
entity such that E �S Ei, for some i 2 f1; : : : ; kg, and such that m = cminS(E;R;Ui) 6= 0.

219

Calvanese, Lenzerini, & Nardi

Consider an instance e 2 (�(E))I . We have to show that there are at least m pairs in
(�(Ui))

I that have e as their second component. Since assertions 4 are satis�ed we know
that the �rst component of all such pairs is an instance of �(R). By 9 and by de�nition
of legal database state, there are at least m labeled tuples in RB whose Ui component is
equal to e. By 10, (�(Ui))

I contains at least m pairs whose second component is equal to
e. With respect to assertions 6 we can proceed in a similar way. Finally, assertions 7 are
satis�ed since �rst, by de�nition the basic domains are pairwise disjoint and disjoint from
�B and from the set of labeled tuples, second, no element of �B is a labeled tuple, and
third, labeled tuples corresponding to di�erent relationships cannot be equal since they are
de�ned over di�erent sets of roles.

(2) Let I be a �nite relation-descriptive interpretation of �(S). For each basic domain
D 2 DS , let �

D
� be a function from �I to DBD that is one-to-one and onto. Since �I

is �nite and each basic domain contains a countable number of elements, such a function
always exists. In order to de�ne �S(I) we �rst specify a mapping �� that associates to
each individual d 2 �I an element as follows:

� If d 2 (�(E))I for some entity E 2 ES , then ��(d) = d.

� If d 2 (�(R))I for some relationship R 2 RS with relS(R) = [U1:E1; : : : ; Uk:Ek], and
there are individuals d1; : : : ; dk 2 �I such that (d; di) 2 (�(Ui))

I , for i 2 f1; : : : ; kg,
then ��(d) = [U1: d1; : : : ; Uk: dk].

� If d 2 (�(D))I for some basic domain D 2 DS , then ��(d) = �D�(d).

� Otherwise ��(d) = d.

For a pair of individuals (d1; d2) 2 �I ��I , ��((d1; d2)) = (��(d1); ��(d2)), and for a set
X, ��(X) = f��(x) j x 2 Xg.

If I is a model of �(S) the above rules de�ne ��(d) for every d 2 �I . Indeed, by
assertions 7, each d 2 �I can be an instance of at most one atomic concept corresponding
to a relationship or basic domain, and if this is the case it is not an instance of any atomic
concept corresponding to an entity. Moreover, if d 2 (�(R))I for some relationship R 2 RS

with relS(R) = [U1:E1; : : : ; Uk:Ek], then by assertions 3, for each i 2 f1; : : : ; kg there is
exactly one element di 2 �I such that (d; di) 2 (�(Ui))

I . If I is not a model of �(S) and
for some d 2 �I , ��(d) is not uniquely determined, then we choose nondeterministically
one possible value.

We can now de�ne the database state B = �S(I) corresponding to I:

� �B = �I n
�S

R2RS
(�(R))I [

S
D2DS

(�(D))I
�
.

� For each symbol X 2 ES [AS [RS [DS , XB = ��((�(X))I).

It is not diÆcult to see, that if I is a model of �(S), then B de�ned in such a way is a legal
database state for S with active domain

S
D2DS

(�(D))I .

220

Unifying Class-Based Representation Formalisms

The following theorem allows us to reduce reasoning on ER schemata to �nite model
reasoning on aluni knowledge bases.

Theorem 4.9 Let S be an ER schema, E;E0 be two entities in S, and �(S) be the trans-

lation of S. Then the following holds:

1. E is satis�able in S if and only if �(S) 6j=f �(E) � ?.

2. E inherits from E0 in S if and only if �(S) j=f �(E) � �(E0).

Proof. (1) \)" Let B be a legal database state with EB 6= ;. By part 1 of Proposition 4.8,
�S(B) is a �nite model of �(S) in which (�(E))�S (B) 6= ;.

\(" Let �(E) be �nitely consistent in �(S). By Lemma 4.7 there is a �nite relation-
descriptive model I of �(S) with �(E)I 6= ;. By part 2 of Proposition 4.8, �S(I) is a
database state legal for S in which EB 6= ;.

(2) \)" Let �(S) 6j=f �(E) � �(E0). Then �(E)u:�(E0) is �nitely consistent in �(S).
By Lemma 4.7 there is a �nite relation-descriptive model I of �(S) with d 2 (�(E))I and
d 62 (�(E0))I , for some d 2 �I . By part 2 of Proposition 4.8, �S(I) is a database state legal
for S in which d 2 EB and d 62 E0B. Therefore E does not inherit from E0.

\(" Assume E does not inherit from E0. Then there is a database state B legal
for S where for an instance e 2 EB we have e 62 E0B. By part 1 of Proposition 4.8,
�S(B) is a �nite model of �(S) in which e 2 (�(E))�S (B) and e 62 (�(E0))�S (B). Therefore
�(S) 6j=f �(E) � �(E0).

Theorem 4.9 allows us to e�ectively exploit the reasoning methods that have been devel-
oped for aluni in order to reason on ER schemas. The complexity of the resulting method
for reasoning on ER schemata is exponential. Observe however, that the known algorithms
for reasoning on ER schemata are also exponential (Calvanese & Lenzerini, 1994b), and
that the precise computational complexity of the problem is still open.

Moreover, by exploiting the correspondence with aluni, it becomes possible to add to
the ER model (and more in general to semantic data models) several features and modeling
primitives that are currently missing, and which have been considered important, and fully
take them into account when reasoning over schemata. Such additional features include for
example the possibility to specify and use arbitrary boolean combinations of entities, and
to re�ne properties of entities along ISA hierarchies.

5. Object-Oriented Data Models

Object-oriented data models have been proposed with the goal of devising database for-
malisms that could be integrated with object-oriented programming systems (Kim, 1990).
They are the subject of an active area of research in the database �eld, and are based on
the following features:

� They rely on the notion of object identi�er at the extensional level (as opposed to
traditional data models which are value-oriented) and on the notion of class at the
intensional level.

221

Calvanese, Lenzerini, & Nardi

� The structure of the classes is speci�ed by means of typing and inheritance.

As in the previous section, we present the common basis of object-oriented data models
with other class-based formalisms by introducing a language for specifying object-oriented
schemata and show that such schemata can be correctly represented as aluni knowledge
bases. In our analysis, we concentrate our attention on the structural aspects of object-
oriented data models. One of the characteristics of the object-oriented approach is to provide
mechanisms for specifying also the dynamic properties of classes and objects, typically
through the de�nition of methods associated to the classes. Those aspects are outside the
scope of our investigations. Nevertheless, we argue that general techniques for schema level
reasoning, in particular, type consistency and type inference, can be pro�tably exploited for
restricted forms of reasoning on methods (Abiteboul, Kanellakis, Ramaswamy, & Waller,
1992).

5.1 Syntax of an Object-Oriented Model

Below we de�ne a simple object-oriented language in the style of most popular models
featuring complex objects and object identity. Although we do not refer to any speci�c
formalism, our model is inspired by the ones presented by Abiteboul and Kanellakis (1989),
Hull and King (1987).

De�nition 5.1 An object-oriented schema is a tuple S = (CS ;AS ;DS), where:

� CS is a �nite set of class names, denoted by the letter C.

� AS is a �nite set of attribute names, denoted by the letter A.

� DS is a �nite set of class declarations of the form

Class C is-a C1; : : : ; Ck type-is T;

in which T denotes a type expression built according to the following syntax:

T �! C j

Union T1; : : : ; Tk End j

Set-of T j

Record A1:T1; : : : ; Ak:Tk End:

DS contains exactly one such declaration for each class C 2 CS .

Example 5.2 Figure 7 shows a fragment of the object-oriented schema corresponding to
the KEE knowledge base of Figure 2.

Each class declaration imposes constraints on the instances of the class it refers to. The
is-a part of a class declaration allows one to specify inclusion between the sets of instances of
the involved classes, while the type-is part speci�es through a type expression the structure
assigned to the objects that are instances of the class.

222

Unifying Class-Based Representation Formalisms

Class Teacher type-is
Union Professor, GradStudent
End

Class GradStudent is-a Student type-is
Record

degree: String
End

Class Course type-is
Record
enrolls: Set-of Student,
taughtby: Teacher

End

Figure 7: An object-oriented schema

5.2 Semantics of an Object-Oriented Model

The meaning of an object-oriented schema is given by specifying the characteristics of an
instance of the schema. The de�nition of instance makes use of the notions of object
identi�er and value.

Let us �rst characterize the set of values that can be constructed from a set of symbols,
called object identi�ers. Given a �nite set O of symbols denoting real world objects, the set
VO of values over O is inductively de�ned as follows:

� O � VO.

� If v1; : : : ; vk 2 VO then fjv1; : : : ; vkjg 2 VO.

� If v1; : : : ; vk 2 VO then [[A1: v1; : : : ; Ak: vk]] 2 VO.

� Nothing else is in VO.

A database instance J of a schema S = (CS ;AS ;DS) is constituted by

� a �nite set OJ of object identi�ers;

� a mapping �J assigning to each class in CS a subset of OJ ;

� a mapping �J assigning a value in VOJ to each object in OJ .

Although the set VOJ of values that can be constructed from a set OJ of object identi�ers
is in�nite, for a database instance one needs only to consider a �nite subset of VOJ .

De�nition 5.3 Given an object-oriented schema S and an instance J of S, the set VJ of
active values with respect to J is constituted by:

� the set OJ of object identi�ers.

� the set of values assigned by �J to the elements of OJ , including those values that
are not explicitly associated with object identi�ers, but are used to form other values.

The interpretation of type expressions in J is de�ned through an interpretation func-

tion �J that assigns to each type expression a subset of VOJ such that the following condi-
tions are satis�ed:

CJ = �J (C)

223

Calvanese, Lenzerini, & Nardi

(Union T1; : : : ; Tk End)J = TJ1 [� � � [TJk

(Set-of T)J = ffjv1; : : : ; vkjg j k � 0; vi 2 T
J ; for i 2 f1; : : : ; kgg

(Record A1:T1; : : : ; Ak:Tk End)J = f[[A1: v1; : : : ; Ah: vh]] j h � k;

vi 2 T
J
i ; for i 2 f1; : : : ; kg;

vj 2 VOJ ; for j 2 fk + 1; : : : ; hgg:

Notice that the instances of type record may have more components than those speci�ed in
the type of the class. Thus we are using an open semantics for records, which is typical of
object-oriented data models (Abiteboul & Kanellakis, 1989).

In order to characterize object-oriented data models we consider the instances that are
admissible for the schema.

De�nition 5.4 Let S = (CS ;AS ;DS) be an object-oriented schema. A database instance
J of S is said to be legal (with respect to S) if for each declaration

Class C is-a C1; : : : ; Cn type-is T

in DS , it holds that CJ � CJ
i for each i 2 f1; : : : ; ng, and that �J (CJ) � TJ .

Therefore, for a legal database instance, the type expressions that are present in the
schema determine the (�nite) set of active values that must be considered. The construction
of such values is limited by the depth of type expressions.

5.3 Relationship between Object-Oriented Schemata and aluni

We establish now a relationship between aluni and the object-oriented language presented
above. This is done by providing a mapping from object-oriented schemata into aluni

knowledge bases. Since the interpretation domain for aluni knowledge bases consists of
atomic objects, whereas each instance of an object-oriented schema is assigned a possibly
structured value (see the de�nition of VO), we need to explicitly represent some of the
notions that underlie the object-oriented language. In particular, while there is a corre-
spondence between concepts and classes, one must explicitly account for the type structure
of each class. This can be accomplished by introducing in aluni concepts AbstractClass,
to represent the classes, and RecType and SetType to represent the corresponding types.
The associations between classes and types induced by the class declarations, as well as the
basic characteristics of types, are modeled by means of roles: the (functional) role value

models the association between classes and types, and the role member is used for specifying
the type of the elements of a set. Moreover, the concepts representing types are assumed to
be mutually disjoint, and disjoint from the concepts representing classes. These constraints
are expressed by adequate inclusion assertions that will be part of the knowledge base we
are going to de�ne.

We �rst de�ne the function that maps each type expression into an ALUNI concept
expression as follows:

� Every class C is mapped into an atomic concept (C).

� Every type expression Union T1; : : : ; Tk End is mapped into (T1) t � � � t (Tk).

224

Unifying Class-Based Representation Formalisms

� Every type expression Set-of T is mapped into SetType u 8member. (T).

� Every attribute A is mapped into an atomic role (A), and every type expression
Record A1:T1; : : : ; Ak:Tk End is mapped into

RecType u 8 (A1). (T1) u 9
=1 (A1) u � � � u

8 (Ak). (Tk) u 9
=1 (Ak):

Using we de�ne the aluni knowledge base corresponding to an object-oriented schema.

De�nition 5.5 The aluni knowledge base (S) = (A;P;T) corresponding to the object-
oriented schema S = (CS ;AS ;DS) is obtained as follows:

� A = fAbstractClass; RecType; SetTypeg [f (C) j C 2 CSg.

� P = fvalue; memberg [f (A) j A 2 ASg.

� T consists of the following assertions:

AbstractClass _� 9=1value

RecType _� 8value.?
SetType _� 8value.? u :RecType

and for each class declaration

Class C is-a C1; : : : ; Cn type-is T

in DS , an inclusion assertion

 (C) _� AbstractClassu (C1) u � � � u (Cn) u 8value. (T):

From the above translation we can observe that inverse roles are not necessary for the
formalization of object-oriented data models. Indeed, the possibility of referring to the
inverse of an attribute is generally ruled out in such models. However, this strongly limits
the expressive power of the data model, as pointed out in recent papers (see for example
Albano, Ghelli, & Orsini, 1991; Cattell, 1994). Note also that the use of number restrictions
is limited to the value 1, which corresponds to existence constraints and functionality,
whereas union is used in a more general form than for example in the KEE system.

Example 5.2 (cont.) We illustrate the translation on the fragment of object-oriented
schema in Figure 7. The corresponding aluni knowledge base is shown in Figure 8.

225

Calvanese, Lenzerini, & Nardi

K = (A;P ; T), where

A = fAbstractClass; RecType; SetType; String;
Course; Teacher; Professor; Student; GradStudentg,

P = fvalue; member; enrolls; taughtby; degreeg,

and the set T of assertions consists of:

Course _� AbstractClassu
8value.(RecTypeu 9=1enrollsu 9=1taughtby u

8enrolls.(SetTypeu 8member.Student) u 8taughtby.Teacher)

Teacher _� AbstractClassu 8value.(GradStudentt Professor)

GradStudent _� AbstractClassu Studentu
8value.(RecTypeu 8degree.Stringu 9=1degree)

AbstractClass _� 9=1value

RecType _� 8value.?

SetType _� 8value.?u :RecType

Figure 8: The aluni knowledge base corresponding to the object-oriented schema in Fig-
ure 7

Below we discuss the e�ectiveness of the translation . First of all observe that the
aluni knowledge base (S) resulting from the translation of an object-oriented schema S
may admit models that do not have a direct counterpart among legal database instances
of S. More precisely, both an interpretation of (S) and a database instance of S can be
viewed as a directed labeled graph: In the case of an interpretation, the nodes are domain
individuals and the arcs are labeled with roles. In the case of a database instance, the
nodes are either object identi�ers or active values, and an arc either connects an object
identi�er to its associated value (in which case it is labeled with value), or is part of the
sub-structure representing a set or record value (in which case it is labeled with member or
with an attribute, in accordance with the type of the value). In a legal database instance
of S, a value v is represented by a sub-structure that has the form of a �nite tree with v as
root, set and record values as intermediate nodes, and objects identi�ers as leaves. Clearly,
such a substructure does not contain cycles. Conversely, in a model of (S), there may
be cycles involving only nodes that are instances of SetType and RecType and in which
all roles are di�erent from value. We call such cycles bad. A model containing bad cycles
cannot be put directly in correspondence with a legal database instance. Also, due to the
open semantics of records one cannot adopt a di�erent translation for which bad cycles in
the model are ruled out.

Example 5.6 Consider the object-oriented schema S, containing a single class declaration

Class C type-is Record a1 : Record a2 : Record a3 : C End End End

226

Unifying Class-Based Representation Formalisms

o1 v1 v2

o2 v3 v4 v5

C

C RecType

RecType RecType RecType

RecType

a1

a1

a2

a2

a3

a3

value

value

Figure 9: A model containing cycles

which is translated to

C _� AbstractClass u
8value.(RecType u 9=1a1 u 8a1.(RecType u 9=1a2 u 8a2.(RecType u 9=1a3 u 8a3.C))):

Figure 9 shows a model of (S) represented as a graph. For clarity, we have named the
instances of C, and hence of AbstractClass, with o and the instances of RecType with
v. Observe the two di�erent types of cycles in the graph. The cycle involving individuals
o2; v3; v4, and v5 does not cause any problems since it contains an arc labeled with value,
which is not part of the structure constituting a complex value. In fact, v3 represents the
record value [[a1: [[a2: [[a3: o2]]]]]]. On the other hand, due to the bad cycle involving v1 and
v2, individual v1 represents (together with o2 connected via a3 to v1) a record of in�nite
depth.

We can nevertheless establish a correspondence from �nite models of (S) possibly
containing bad cycles to legal instances of the object-oriented schema S. This can be
achieved by unfolding the bad cycles in a model of (S) to in�nite trees. Obviously, the
unfolding of a cycle into an in�nite tree, generates an in�nite number of nodes, which
would correspond to an in�nite database state. However, we can restrict the duplication of
individuals to those that represent set and record values, and thus are instances of SetType
and RecType. The instances of AbstractClass, instead, are not duplicated in the process
of unfolding, and therefore their number remains �nite. Moreover, since the set of possible
active values associated with each object identi�er is bound by the depth of the schema, we
can in fact block the unfolding of bad cycles to the �nite tree of depth equal to the depth
of the schema.

Let us �rst formally de�ne the depth of an object-oriented schema S.

De�nition 5.7 For a type expression T we de�ne depth(T) inductively as follows:

depth(T) =

8>><
>>:

0; if T = C.
max1�i�k(depth(Ti)); if T = Union T1; : : : ; Tk End.
1 + depth(T 0); if T = Set-of T 0.
1 + max1�i�k(depth(Ti)); if T = Record A1:T1; : : : ; Ak:Tk End.

The depth of an object-oriented schema S is de�ned as the maximum of depth(T) for a type
expression T in S.

227

Calvanese, Lenzerini, & Nardi

o1

C RecType

a3

value
v0
2

a1 a1a1

RecType

a2 a2

v3 v4 v5

C RecType RecType RecType

a1 a2

a3

RecType

: : :

RecType

v0
1

v1
1

v1
2

v2
1

RecType

a3a3

value

o2

Figure 10: The unfolded version of the model in Figure 9

We can now introduce the notion of unfolding of an aluni interpretation.

De�nition 5.8 Let S be an object-oriented schema, (S) its translation in aluni and I
a �nite interpretation of (S). We call unfolded version of I the interpretation obtained
from I as follows: For each individual v that is part of a bad cycle, unfold the bad cycle
into an (in�nite) tree having v as root, by generating new individuals only for the instances
of RecType and SetType. For a nonnegative integer m, we call m-unfolded version of I,
denoted as Ijm, the interpretation obtained by truncating at depth m each in�nite tree
generated in the process of unfolding.

Example 5.6 (cont.) Figure 10 shows the unfolded version of the model in Figure 9.
Notice that only the bad cycle has been unfolded to an in�nite tree, and that all arcs labeled
with a3 lead to o2, which is an instance of AbstractClass and has not been duplicated.

The correctness of (S) is sanctioned by the following proposition.

Proposition 5.9 For every object-oriented schema S of depth m, there exist mappings:

1. �S from instances of S into �nite interpretations of (S) and �V from active values

of instances of S into domain elements of the �nite interpretations of (S) such that:

For each legal instance J of S, �S(J) is a �nite model of (S), and for each type

expression T of S and each v 2 VJ , v 2 TJ if and only if �V(v) 2 ((T))�S (J).

2. �S from �nite interpretations of (S) into instances of S and �V from domain el-

ements of the m-unfolded versions of the �nite interpretations of (S) into active

values of instances of S, such that: For each �nite model I of (S), �S(I) is a legal

instance of S, and for each concept (T), which is the translation of a type expression

T of S and each d 2 �Ijm , d 2 ((T))Ijm if and only if �V(d) 2 T �S(I).

Proof. (1) Given a database instance J we de�ne an interpretation �S(J) of (S) as
follows:

228

Unifying Class-Based Representation Formalisms

� �V is a function mapping every element of VJ into a distinct element of ��S(J).
Therefore ��S(J) is de�ned as the set of elements �V(v) such that v 2 VJ . Moreover
we denote with �id, �rec, and �set the elements of ��S(J) corresponding to object
identi�ers, record and set values, respectively.

� The interpretation of atomic concepts is de�ned as follows:

((C))�S (J) = f�V(o) j o 2 �
J (C)g;

for every (C) corresponding to a class name C in S
AbstractClass�S(J) = �id

RecType�S(J) = �rec

SetType�S(J) = �set

� The interpretation of atomic roles is de�ned as follows:

((A))�S (J) = f(d1; d2) j d1 2 �rec and �
�1
V (d1) = [[: : : ; A:��1V (d2); : : :]]g;

for every (A) corresponding to an attribute name A in S
member�S(J) = f(d1; d2) j d1 2 �set and �

�1
V (d1) = fj: : : ; ��1V (d2); : : :jgg

value�S(J) = f(d1; d2) j (�
�1
V (d1); �

�1
V (d2)) 2 �J g

We prove that for each type T and each v 2 VJ , v 2 TJ if and only if �V(v) 2
((T))�S (J). The �rst part of the thesis then follows from the de�nition of �S(J). The
proof is by induction on the structure of the type expression.

Base case: T = C (i.e., T is a class name). If o 2 CJ then �V(o) 2 ((C))�S (J), and
vice-versa if d 2 ((C))�S (J) then ��1V (d) 2 CJ .

Inductive case: T = Record A1:T1; : : : ; Ak:Tk End and (T) = RecType u
8 (A1). (T1) u 9=1 (A1) u � � � u 8 (Ak). (Tk) u 9

=1 (Ak). We assume that v 2 TJi
i� �V(v) 2 ((Ti))

�S(J), for i 2 f1; : : : ; kg, and show that v 2 TJ i� �V(v) 2 ((T))�S (J).
Suppose that v 2 TJ , i.e., v = [[A1: v1; : : : ; Ah: vh]] with h � k and vi 2 TJi for

i 2 f1; : : : ; kg. By induction hypothesis �V(vi) 2 ((Ti))
�S (J), for i 2 f1; : : : ; kg, and by

de�nition of �S , �V(v) 2 RecType�S(J), (�V(v); �V (vi)) 2 ((Ai))
�S (J) for i 2 f1; : : : ; kg,

and all roles (A) corresponding to attribute names are functional. Therefore, �V(v) 2
((T))�S (J).

Conversely, suppose that d = �V(v) 2 ((T))�S (J). Then, for each i 2 f1; : : : ; kg there is
exactly one di 2 ��S(J) such that (d; di) 2 ((Ai))

�S (J), and moreover di 2 ((Ti))
�S (J).

By de�nition of �S we have v = [[A1: v1; : : : ; Ah: vh]], with h � k and vi = ��1V (di), for
i 2 f1; : : : ; kg. By induction hypothesis vi 2 TJi , for i 2 f1; : : : ; kg, and therefore v 2
(Record A1:T1; : : : ; Ak:Tk End)J .

The cases for T = Union T1; : : : ; Tk End and T = Set-of T 0 can be treated analogously.

(2) Given a �nite model I of (S) of depth m, we de�ne a legal database instance �S(I)
as follows:

� �V is a function mapping every element of �Ijm into a distinct element of V�S(I) such
that the following conditions are satis�ed:

{ O�S(I) � V�S(I) is the set of elements �V(d) such that d 2 AbstractClassIjm .

229

Calvanese, Lenzerini, & Nardi

{ If d 2 RecTypeIjm , (d; di) 2 ((Ai))
Ijm , for i 2 f1; : : : ; kg, and there is no

other individual d0 2 �Ijm and attribute A0 such that (d; d0) 2 ((A0))Ijm , then
�V(d) = [[A1:�V(d1); : : : ; Ak:�V(dk)]].

{ If d 2 SetTypeIjm , (d; di) 2 memberIjm , for i 2 f1; : : : ; kg, and there is no
other individual d0 2 �Ijm such that (d; d0) 2 (member)Ijm , then �V(d) =
f�V(d1); : : : ; �V (dk)g.

� For every class name C, ��S(I)(C) = f�V(d) j d 2 ((C))Ijmg.

� ��S(I) = f(o; v) j �V(d1) = o; �V(d2) = v; and (d1; d2) 2 valueIjmg.

We �rst prove that for each concept (T), which is the translation of a type expression
T of S, and each d 2 �Ijm , d 2 ((T))Ijm if and only if �V(d) 2 T �S(I). The proof is
by induction on the structure of the concept expression. Again for the inductive part we
restrict our attention to the case of record types.

Base case: T = C (i.e., (T) is an atomic concept). If d 2 ((C))Ijm then �V(d) 2
C�S(I), and vice-versa if o 2 C�S(I) then ��1V (o) 2 ((C))Ijm .

Inductive case: (T) = RecType u 8 (A1). (T1) u 9=1 (A1) u � � � u 8 (Ak). (Tk) u
9=1 (Ak) and T = Record A1:T1; : : : ; Ak:Tk End. We assume that d 2 ((Ti))

Ijm i�

�V(d) 2 T
�S(I)
i , for i 2 f1; : : : ; kg, and show that d 2 ((T))Ijm i� �V(d) 2 T �S(I).

Suppose that d 2 ((T))Ijm . Then d 2 RecTypeIjm and for each i 2 f1; : : : ; kg there
is an individual di such that di 2 ((Ti))

Ijm and (d; di) 2 ((Ai))
Ijm . By construction

�V(d) = [[A1: v1; : : : ; Ah: vh]] for some h � k. Moreover, by induction hypothesis �V(di) 2

T
�S(I)
i and therefore �V(d) 2 T �S(I).

Conversely, suppose that �V(d) 2 T �S(I), i.e., �V(d) = [[A1: v1; : : : ; Ah: vh]] with h � k

and vi 2 T
�S(I)
i for i 2 f1; : : : ; kg. By induction hypothesis di = ��1V (vi) 2 ((Ti))

Ijm ,
for i 2 f1; : : : ; kg, and by de�nition of �V , d 2 RecTypeIjm and (d; di) 2 ((Ai))

Ijm ,
for i 2 f1; : : : ; kg. Since all roles (A) corresponding to attribute names are functional,
d 2 ((T))Ijm .

It remains to show that for each declaration

Class C is-a C1; : : : ; Cn type-is T

in DS , (a) C�S(I) � C
�S(I)
i for each i 2 f1; : : : ; ng, and (b) ��S(I)(C�S(I)) � T �S(I).

(a) follows from the fact that (S) contains the assertion (C) _� (C1) u � � � u (Cn)
and from the de�nition of ��S(I).

(b) follows from what we have shown above and from the fact that Ijm still satis�es the

assertion (C) _� AbstractClass u 8value. (T). In fact, for some d 2 ((C))I let d0 be
the unique individual such that (d; d0) 2 valueI . Since I is a model of (S), d0 2 ((T))I .
We argue that also d0 2 ((T))Ijm . If d0 is not part of a bad cycle in I, then I and
Ijm coincide on the sub-structure rooted at d0 and formed by the individuals reached via
member and roles corresponding to attributes, and we are done. Otherwise, in Ijm such
sub-structure is expanded into a �nite tree. Since by construction the depth of this tree
is at least depth(T), and the connections between individuals in I are preserved in Ijm, it

follows that d0 2 ((T))Ijm .

230

Unifying Class-Based Representation Formalisms

The basic reasoning services considered in object-oriented databases are subtyping
(check whether a type denotes a subset of another type in every legal instance) and type
consistency (check whether a type is consistent in a legal instance). Based on Proposi-
tion 5.9, we can show that these forms of reasoning are fully captured by �nite concept
consistency and �nite concept subsumption in aluni knowledge bases.

Theorem 5.10 Let S be an object-oriented schema, T; T 0 two type expressions in S, and
 (S) the translation of S. Then the following holds:

1. T is consistent in S if and only if (S) 6j=f (T) � ?.

2. T is a subtype of T 0 in S if and only if (S) j=f (T) � (T 0).

Proof. The proof is analogous to the proof of Theorem 4.9, but it makes use of Proposi-
tion 5.9 instead of Proposition 4.8.

Again, the correspondence with aluni established by Theorem 5.10 allows us to make
use of the reasoning techniques developed for aluni to reason on object-oriented schemas.
Observe that reasoning in object-oriented models is already PSPACE-hard (Bergamaschi
& Nebel, 1994) and thus the known algorithms are exponential. However, by resorting
to aluni, it becomes possible to take into account for reasoning also various extensions
of the object-oriented formalism. Such extensions are useful for conceptual modeling and
have already been proposed in the literature (Cattell & Barry, 1997). First of all, the same
considerations developed for the ER model with regard to the use of arbitrary boolean
constructs on classes can be applied also in the object-oriented setting, which provides
disjunction but does not admit any form of negation. Additional features that can be added
to object oriented models are inverses of attributes, cardinality constraints on set-valued
attributes, and more general forms of restrictions on the values of attributes.

6. Related Work

In this section we briey discuss recent results on the correspondence between class-based
formalisms and on techniques for reasoning in aluni and in class-based representation
formalisms.

6.1 Relationships among Class-Based Formalisms

In the past there have been several attempts to establish relationships among class-based
formalisms. Bl�asius, Hedst�uck, and Rollinger (1990), Lenzerini, Nardi, and Simi (1991)
carry out a comparative analysis of class-based languages and attempt to provide a uni�ed
view. The analysis makes it clear that several diÆculties arise in identifying a common
framework for the formalisms developed in di�erent areas. Some recent papers address this
problem. For example, an analysis of the relationships between frame-based languages and
types in programming languages has been carried out by Borgida (1992), while Bergamaschi
and Sartori (1992), Piza, Schewe, and Schmidt (1992) use frame-based languages to enrich
the deductive capabilities of semantic and object-oriented data models.

231

Calvanese, Lenzerini, & Nardi

Artale, Cesarini, and Soda (1996) study reasoning in object-oriented data models by
presenting a translation to DLs in the style of the one discussed in Section 5. However, the
proposed translation is applicable only in the case where the shema contains no recursive
class declarations. This limitation is not present in the work by Bergamaschi and Nebel
(1994), where a formalism derived from DLs is used to model complex objects and an
algorithm for computing subsumption between classes is provided.

A recent survey on the application of DLs to the problem of data management has been
presented by Borgida (1995) . The application to the task of data modeling of reasoning
techniques derived from the correspondences presented in Sections 4 and 5 is discussed in
more detail by Calvanese, Lenzerini, and Nardi (1998).

Recently, there have also been proposals to integrate the object-oriented and the logic
programming paradigms (Kifer & Wu, 1993; Kifer, Lausen, & Wu, 1995). These proposals
are however not directly related to the present work, since they aim at providing mechanisms
for computing with structured objects, rather than means for reasoning over a conceptual
(object-oriented) representation of the domain of interest.

6.2 Reasoning in aluni and in Class-Based Representation Formalisms

aluni is equipped with techniques to reason both with respect to unrestricted and with
respect to �nite models. We briey sketch the main ideas underlying reasoning in both
contexts. A detailed account of the reasoning techniques has been carried out by Calvanese
(1996c).

6.2.1 Unrestricted Model Reasoning

We remind that reasoning on a knowledge base with respect to unrestricted models amounts
to check either concept consistency, i.e., determine whether the knowledge base admits a
(possibly in�nite) model in which a given concept has a nonempty extension, or concept
subsumption, i.e., determine whether the extension of one concept is contained in the ex-
tension of another concept in every model (including the in�nite ones) of the knowledge
base.

The method to reason in aluni with respect to unrestricted models exploits a well known
correspondence between DLs and Propositional Dynamic Logics (PDLs) (Kozen & Tiuryn,
1990), which are a class of logics speci�cally designed to reason about programs. The
correspondence, which has �rst been pointed out by Schild (1991), relies on a substantial
similarity of the interpretative structures of both formalisms, and allows one to exploit the
reasoning techniques developed for PDLs to reason in the corresponding DLs. In particular,
since ALUNI, the description language of aluni, includes the construct for inverse roles,
for the correspondence one has to resort to converse-PDL, a variant of PDL that includes
converse programs (Kozen & Tiuryn, 1990). However, because of the presence of number
restrictions in ALUNI which have no direct correspondence in PDLs, we cannot rely on
traditional techniques for reasoning in PDLs. Recently, encoding techniques have been
developed, which allow one to eliminate number restrictions from a knowledge base while
preserving concept consistency and concept subsumption (De Giacomo & Lenzerini, 1994a).
The encoding is applicable to knowledge bases formulated in expressive variants of DLs, and
in particular it can be used to reduce unrestricted model reasoning on aluni knowledge

232

Unifying Class-Based Representation Formalisms

bases (both concept consistency and concept subsumption) to deciding satis�ability of a
formula of converse-PDL. Reasoning in converse-PDL is decidable in EXPTIME (Kozen &
Tiuryn, 1990), and since the encoding is polynomial (De Giacomo & Lenzerini, 1994a) we
obtain an EXPTIME decision procedure for unrestricted concept consistency and concept
subsumption in aluni knowledge bases. A simpli�ed form of the encoding, which can be
applied to decide unrestricted concept consistency in aluni has also been presented by
Calvanese et al. (1994).

6.2.2 Finite Model Reasoning

We remind that reasoning on a knowledge base with respect to �nite models amounts to
check either �nite concept consistency or �nite concept subsumption, for which only the
�nite models of the knowledge base must be considered.

For �nite model reasoning, the techniques based on a reduction to reasoning in PDLs
are not applicable. Indeed, the PDL formula corresponding to an aluni knowledge base
contains constructs both for converse programs (corresponding to inverse roles) and for
functionality of direct and inverse programs, and thus is a formula of a variant of PDL
which does not have the �nite model property (Vardi, 1985). However, after encoding
functionality, one obtains a converse-PDL formula, and since converse-PDL has the �nite
model property (Fischer & Ladner, 1979), this formula is satis�able if and only if it is
�nitely satis�able. This shows that the encoding of number restrictions (and in particular
the encoding of functionality), while preserving unrestricted satis�ability does not preserve
�nite satis�ability (De Giacomo & Lenzerini, 1994a).

For �nite model reasoning in aluni one can adopt a di�erent technique, which is based
on the idea of separating the reasoning process in two distinct phases (see Calvanese, 1996c,
for full details). The �rst phase deals with all constructs except number restrictions, and
builds an \expanded knowledge base" in which these constructs are embedded implicitly
in the concepts and roles. In the second phase the assertions involving number restrictions
are used to derive from this expanded knowledge base a system of linear inequalities. The
system is de�ned in such a way that its solutions of a certain type (acceptable solutions) are
directly related to the �nite models of the original knowledge base. In particular, from each
acceptable solution one can directly deduce the cardinalities of the extensions of all concepts
and roles in a possible �nite model. The proposed method allows one to establish for aluni
EXPTIME decidability for �nite concept consistency and for special cases of �nite concept
subsumption. By resorting to a more complicated encoding one can obtain a 2EXPTIME
decision procedure for �nite concept subsumption in aluni in general (Calvanese, 1996a,
1996c).

Reasoning with respect to �nite models has also been investigated in the context of de-
pendency theory in databases. As shown by Casanova, Fagin, and Papadimitriou (1984) for
the relational model, when functional and inclusion dependencies interact, the dependency
implication problem in the �nite case di�ers from the one in the unrestricted case. While
the implication problem for arbitrary functional and inclusion dependencies is undecidable
(Chandra & Vardi, 1985; Mitchell, 1983), for functional and unary inclusion dependencies
it is solvable in polynomial time, both in the �nite and the unrestricted case (Cosmadakis
et al., 1990).

233

Calvanese, Lenzerini, & Nardi

Consistency with respect to �nite models of schemata expressed in an enriched Entity-
Relationship model with cardinality constraints has been shown decidable in polynomial
time by Lenzerini and Nobili (1990). Calvanese and Lenzerini (1994b) extend the decid-
ability result to include also ISA relationships, and Calvanese and Lenzerini (1994a) show
EXPTIME decidability of reasoning in an expressive object-oriented model. An algorithm
for computing a re�nement ordering for types (the analogue to a concept hierarchy) in the
framework of the O2 object oriented model in discussed by Lecluse and Richard (1989).

Reasoning in the strict sublanguage of aluni obtained by omitting inverse roles and
number restrictions is already EXPTIME-hard (Calvanese, 1996b). Therefore, the known
algorithms for deciding unrestricted concept consistency and subsumption and �nite concept
consistency are essentially optimal.

7. Conclusions

We have presented a uni�ed framework for representing information about class structures
and reasoning about them. We have pursued this goal by looking at various class-based
formalisms proposed in di�erent �elds of computer science, namely frame based systems
used in knowledge representation, and semantic and object-oriented data models used in
databases, and rephrasing them in the framework of description logics. The resulting de-
scription logic, called aluni includes a combination of constructs that was not addressed
before, although all of the constructs had previously been considered separately.

The major achievement of the paper is the demonstration that class-based formalisms
can be given a precise characterization by means of a powerful fragment of �rst-order logic,
which thus can be regarded as the essential core of the class-based representation formalisms
belonging to all three families mentioned above. This has several consequences.

First of all, any of the formalisms considered in the paper can be enriched with constructs
originating from other formalisms and treated in the general framework. In this sense, the
work reported here not only provides a common powerful representation formalism, but
may also contribute to signi�cant developments for the languages belonging to all the three
families. For example, the usage of inverse roles in concept languages greatly enhances the
expressivity of roles, while the combination of ISA, number restrictions, and union enriches
the reasoning capabilities available in semantic data models.

Secondly, the comparison of class-based formalisms from the �elds of knowledge rep-
resentation and conceptual data modeling makes it feasible to address the development of
reasoning tools to support conceptual modeling (Calvanese et al., 1998). In fact, reason-
ing capabilities become especially important in complex scenarios such as those arising in
heterogenous database applications and Data Warehousing. This line of work was among
the motivations for developing systems based on expressive description logics (Horrocks,
1998; Horrocks & Patel-Schneider, 1999), and has lead to further extending the language of
description logics to support Information Integration and, more speci�cally, the conceptual
modeling of Data Warehouses (Calvanese, De Giacomo, Lenzerini, Nardi, & Rosati, 1998).

234

Unifying Class-Based Representation Formalisms

References

Abiteboul, S., Kanellakis, P., Ramaswamy, S., & Waller, E. (1992). Method schemas. Tech.
rep. CS-92-33, Brown University. An earlier version appeared in Proc. of the 9th

Symp. on Principles of Database Systems PODS-90.

Abiteboul, S., & Kanellakis, P. (1989). Object identity as a query language primitive. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 159{173.

Abrial, J. R. (1974). Data semantics. In Klimbie, J. W., & Ko�eman, K. L. (Eds.), Data
Base Management, pp. 1{59. North-Holland Publ. Co., Amsterdam.

Albano, A., Ghelli, G., & Orsini, R. (1991). A relationship mechanism for strongly typed
Object-Oriented database programming languages. In Proceedings of the Seven-
teenth International Conference on Very Large Data Bases (VLDB'91), pp. 565{575
Barcelona.

Artale, A., Cesarini, F., & Soda, G. (1996). Describing database objects in a concept
language environment. IEEE Transactions on Knowledge and Data Engineering, 8 (2),
345{351.

Atzeni, P., & Parker Jr., D. S. (1986). Formal properties of net-based knowledge represen-
tation schemes. In Proceedings of the Second IEEE International Conference on Data

Engineering (ICDE'86), pp. 700{706 Los Angeles.

Baader, F. (1991). Augmenting concept languages by transitive closure of roles: An al-
ternative to terminological cycles. In Proceedings of the Twelfth International Joint

Conference on Arti�cial Intelligence (IJCAI'91) Sydney, Australia.

Baader, F. (1996). Using automata theory for characterizing the semantics of terminological
cycles. Annals of Mathematics and Arti�cial Intelligence, 18, 175{219.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual Database Design, an Entity-

Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, California.

Bergamaschi, S., & Nebel, B. (1994). Acquisition and validation of complex object database
schemata supporting multiple inheritance. Applied Intelligence, 4 (2), 185{203.

Bergamaschi, S., & Sartori, C. (1992). On taxonomic reasoning in conceptual design. ACM
Transactions on Database Systems, 17 (3), 385{422.

Bl�asius, K. H., Hedst�uck, U., & Rollinger, C.-R. (Eds.). (1990). Sorts and Types in Arti�cial

Intelligence, Vol. 418 of Lecture Notes in Arti�cial Intelligence. Springer-Verlag.

Borgida, A. (1992). From type systems to knowledge representation: Natural semantics
speci�cations for description logics. Journal of Intelligent and Cooperative Information
Systems, 1 (1), 93{126.

Borgida, A. (1995). Description logics in data management. IEEE Transactions on Knowl-

edge and Data Engineering, 7 (5), 671{682.

235

Calvanese, Lenzerini, & Nardi

Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics.
Arti�cial Intelligence, 82, 353{367.

Borgida, A., & Weddell, G. E. (1997). Adding functional dependencies to description logics.
In Proceedings of the Fifth International Conference on Deductive and Object-Oriented

Databases (DOOD'97).

Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-based
description languages. In Proceedings of the Fourth National Conference on Arti�cial

Intelligence (AAAI'84), pp. 34{37.

Brachman, R. J., & Levesque, H. J. (Eds.). (1985). Readings in Knowledge Representation.
Morgan Kaufmann, Los Altos.

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., Alperin Resnick, L., & Borgida,
A. (1991). Living with CLASSIC: When and how to use a KL-ONE-like language. In
Sowa, J. F. (Ed.), Principles of Semantic Networks, pp. 401{456. Morgan Kaufmann,
Los Altos.

Bresciani, P., Franconi, E., & Tessaris, S. (1995). Implementing and testing expressive
description logics: Preliminary report. In Borgida, A., Lenzerini, M., Nardi, D., &
Nebel, B. (Eds.), Working Notes of the 1995 Description Logics Workshop, Technical
Report, RAP 07.95, Dipartimento di Informatica e Sistemistica, Universit�a di Roma
\La Sapienza", pp. 131{139 Rome (Italy).

Buchheit, M., Donini, F. M., Nutt, W., & Schaerf, A. (1998). A re�ned architecture for
terminological systems: Terminology = schema + views. Arti�cial Intelligence, 99 (2),
209{260.

Buchheit, M., Donini, F. M., & Schaerf, A. (1993). Decidable reasoning in terminological
knowledge representation systems. Journal of Arti�cial Intelligence Research, 1, 109{
138.

Calvanese, D. (1996a). Finite model reasoning in description logics. In Aiello, L. C., Doyle,
J., & Shapiro, S. C. (Eds.), Proceedings of the Fifth International Conference on the
Principles of Knowledge Representation and Reasoning (KR'96), pp. 292{303. Morgan
Kaufmann, Los Altos.

Calvanese, D. (1996b). Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Wahlster, W. (Ed.), Proceedings of the Twelfth European Confer-

ence on Arti�cial Intelligence (ECAI'96), pp. 303{307. John Wiley & Sons.

Calvanese, D. (1996c). Unrestricted and Finite Model Reasoning in Class-

Based Representation Formalisms. Ph.D. thesis, Dipartimento di Infor-
matica e Sistemistica, Universit�a di Roma \La Sapienza". Available at
http://www.dis.uniroma1.it/pub/calvanes/thesis.ps.gz.

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., & Rosati, R. (1998). Description
logic framework for information integration. In Proceedings of the Sixth International

236

Unifying Class-Based Representation Formalisms

Conference on Principles of Knowledge Representation and Reasoning (KR'98), pp.
2{13.

Calvanese, D., & Lenzerini, M. (1994a). Making object-oriented schemas more expressive.
In Proceedings of the Thirteenth ACM SIGACT SIGMOD SIGART Symposium on

Principles of Database Systems (PODS'94), pp. 243{254 Minneapolis. ACM Press
and Addison Wesley.

Calvanese, D., & Lenzerini, M. (1994b). On the interaction between ISA and cardinality
constraints. In Proceedings of the Tenth IEEE International Conference on Data

Engineering (ICDE'94), pp. 204{213 Houston (Texas). IEEE Computer Society Press.

Calvanese, D., Lenzerini, M., & Nardi, D. (1994). A uni�ed framework for class based rep-
resentation formalisms. In Doyle, J., Sandewall, E., & Torasso, P. (Eds.), Proceedings
of the Fourth International Conference on the Principles of Knowledge Representation

and Reasoning (KR'94), pp. 109{120 Bonn. Morgan Kaufmann, Los Altos.

Calvanese, D., Lenzerini, M., & Nardi, D. (1998). Description logics for conceptual data
modeling. In Chomicki, J., & Saake, G. (Eds.), Logics for Databases and Information
Systems, pp. 229{264. Kluwer Academic Publisher.

Casanova, M. A., Fagin, R., & Papadimitriou, C. H. (1984). Inclusion dependencies and
their interaction with functional dependencies. Journal of Computer and System

Sciences, 28 (1), 29{59.

Cattell, R. G. G. (Ed.). (1994). The Object Database Standard: ODMG-93. Morgan Kauf-
mann, Los Altos. Release 1.1.

Cattell, R. G. G., & Barry, D. K. (Eds.). (1997). The Object Database Standard: ODMG

2.0. Morgan Kaufmann, Los Altos.

Chandra, A. K., & Vardi, M. Y. (1985). The implication problem for functional and inclusion
dependencies is undecidable. SIAM Journal on Computing, 14 (3), 671{677.

Chen, P. P. (1976). The Entity-Relationship model: Toward a uni�ed view of data. ACM
Transactions on Database Systems, 1 (1), 9{36.

Cosmadakis, S. S., & Kanellakis, P. C. (1986). Functional and inclusion dependencies - A
graph theoretical approach. In Kanellakis, P. C., & Preparata, F. P. (Eds.), Advances
in Computing Research, Vol. 3, pp. 163{184. JAI Press.

Cosmadakis, S. S., Kanellakis, P. C., & Vardi, M. (1990). Polynomial-time implication
problems for unary inclusion dependencies. Journal of the ACM, 37 (1), 15{46.

De Giacomo, G., & Lenzerini, M. (1994a). Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence (AAAI'94), pp. 205{212. AAAI Press/The MIT
Press.

237

Calvanese, Lenzerini, & Nardi

De Giacomo, G., & Lenzerini, M. (1994b). Concept language with number restrictions and
�xpoints, and its relationship with �-calculus. In Proceedings of the Eleventh European
Conference on Arti�cial Intelligence (ECAI'94), pp. 411{415.

Di Battista, G., & Lenzerini, M. (1993). Deductive entity-relationship modeling. IEEE
Transactions on Knowledge and Data Engineering, 5 (3), 439{450.

Donini, F. M., Lenzerini, M., Nardi, D., & Nutt, W. (1997). The complexity of concept
languages. Information and Computation, 134, 1{58.

Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., & Schaerf, A. (1994). Queries, rules and
de�nitions. In Foundations of Knowledge Representation and Reasoning. Springer-
Verlag.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A. (1996). Reasoning in description
logics. In Brewka, G. (Ed.), Principles of Knowledge Representation, Studies in Logic,
Language and Information, pp. 193{238. CSLI Publications.

Donini, F. M., Nardi, D., & Rosati, R. (1995). Non-�rst-order features in concept lan-
guages. In Gori, M., & Soda, G. (Eds.), Proceedings of the Fourth Conference of the

Italian Association for Arti�cial Intelligence (AI*IA'95), Vol. 992 of Lecture Notes in
Arti�cial Intelligence, pp. 91{102. Springer-Verlag.

Ferg, S. (1991). Cardinality concepts in entity-relationship modeling. In Proceedings of the

Tenth International Conference on the Entity-Relationship Approach (ER'91), pp.
1{30.

Fikes, R., & Kehler, T. (1985). The role of frame-based representation in reasoning. Com-
munications of the ACM, 28 (9), 904{920.

Fischer, M. J., & Ladner, R. E. (1979). Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18, 194{211.

Grant, J., & Minker, J. (1984). Numerical dependencies. In Gallaire, H., Minker, J., &
Nicolas, J.-M. (Eds.), Advances in Database Theory II. Plenum Publ. Co., New York.

Hayes, P. J. (1979). The logic of frames. In Metzing, D. (Ed.), Frame Conceptions and Text

Understanding, pp. 46{61. Walter de Gruyter and Co. Republished in (Brachman &
Levesque, 1985).

Horrocks, I. (1998). Using an expressive description logic: FaCT or �ction?. In Proceedings

of the Sixth International Conference on Principles of Knowledge Representation and

Reasoning (KR'98), pp. 636{647.

Horrocks, I., & Patel-Schneider, P. F. (1999). Optimizing description logic subsumption.
Journal of Logic and Computation, 9 (3), 267{293.

Hull, R. B., & King, R. (1987). Semantic database modelling: Survey, applications and
research issues. ACM Computing Surveys, 19 (3), 201{260.

238

Unifying Class-Based Representation Formalisms

Karp, P. D. (1992). The design space of knowledge representation systems. Tech. rep. SRI
AI Technical Note 520, SRI International, Menlo Park, CA.

Karp, P. D., Myers, K. L., & Gruber, T. (1995). The generic frame protocol. In Proceedings

of the Fourteenth International Joint Conference on Arti�cial Intelligence (IJCAI'95),
Vol. A, pp. 768{774 Montreal, Canada.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of Object-Oriented and frame-
based languages. Journal of the ACM, 42 (4), 741{843.

Kifer, M., & Wu, J. (1993). A logic for programming with complex objects. Journal of

Computer and System Sciences, 47, 77{120.

Kim, W. (1990). Introduction to Object-Oriented Databases. The MIT Press.

Kim, W., & Lochovsky, F. H. (Eds.). (1989). Object-Oriented Concepts, Databases, and

Applications. ACM Press and Addison Wesley, New York.

Kozen, D., & Tiuryn, J. (1990). Logics of programs. In van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science { Formal Models and Semantics, pp. 789{840. Elsevier
Science Publishers (North-Holland), Amsterdam.

Lecluse, C., & Richard, P. (1989). Modeling complex structures in object-oriented databases.
In Proceedings of the Eighth ACM SIGACT SIGMOD SIGART Symposium on Prin-

ciples of Database Systems (PODS'89), pp. 362{369.

Lehmann, F. (Ed.). (1992). Semantic Networks in Arti�cial Intelligence. Pergamon Press,
Oxford.

Lenzerini, M., Nardi, D., & Simi, M. (Eds.). (1991). Inheritance Hierarchies in Knowledge

Representation and Programming Languages. John Wiley & Sons, Chichester.

Lenzerini, M., & Nobili, P. (1990). On the satis�ability of dependency constraints in entity-
relationship schemata. Information Systems, 15 (4), 453{461.

Mitchell, J. C. (1983). The implication problem for functional and inclusion dependencies.
Information and Control, 56, 154{173.

Motschnig-Pitrik, R., & Mylopoulous, J. (1992). Classes and instances. Journal of Intelli-
gent and Cooperative Information Systems, 1 (1).

Nebel, B. (1991). Terminological cycles: Semantics and computational properties. In Sowa,
J. F. (Ed.), Principles of Semantic Networks, pp. 331{361. Morgan Kaufmann, Los
Altos.

Piza, B., Schewe, K.-D., & Schmidt, J. W. (1992). Term subsumption with type construc-
tors. In Yesha, Y. (Ed.), Proceedings of the International Conference on Information

and Knowledge Management (CIKM'92), pp. 449{456 Baltimore.

239

Calvanese, Lenzerini, & Nardi

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the Twelfth International Joint Conference on Arti�cial Intelligence

(IJCAI'91), pp. 466{471 Sydney, Australia.

Schild, K. (1994). Terminological cycles and the propositional �-calculus. In Doyle, J.,
Sandewall, E., & Torasso, P. (Eds.), Proceedings of the Fourth International Con-

ference on the Principles of Knowledge Representation and Reasoning (KR'94), pp.
509{520 Bonn. Morgan Kaufmann, Los Altos.

Schmidt-Schau�, M., & Smolka, G. (1991). Attributive concept descriptions with comple-
ments. Arti�cial Intelligence, 48 (1), 1{26.

Sowa, J. F. (Ed.). (1991). Principles of Semantic Networks. Morgan Kaufmann, Los Altos.

Teorey, T. J. (1989). Database Modeling and Design: The Entity-Relationship Approach.
Morgan Kaufmann, Los Altos.

Thalheim, B. (1992). Fundamentals of cardinality constraints. In Pernoul, G., & Tjoa,
A. M. (Eds.), Proceedings of the Eleventh International Conference on the Entity-

Relationship Approach (ER'92), pp. 7{23. Springer-Verlag.

Thalheim, B. (1993). Fundamentals of the Entity Relationship Model. Springer-Verlag.

Vardi, M. Y. (1985). The taming of converse: Reasoning about two-way computations.
In Parikh, R. (Ed.), Proc. of the 4th Workshop on Logics of Programs, Vol. 193 of
Lecture Notes in Computer Science, pp. 413{424. Springer-Verlag.

Woods, W. A., & Schmolze, J. G. (1992). The KL-ONE family. In Lehmann, F. W. (Ed.),
Semantic Networks in Arti�cial Intelligence, pp. 133{178. Pergamon Press. Published
as a special issue of Computers & Mathematics with Applications, Volume 23, Number
2{9.

Ye, X., Parent, C., & Spaccapietra, S. (1994). Cardinality consistency of derived objects in
DOOD systems. In Loucopoulos, P. (Ed.), Proceedings of the Thirteenth International

Conference on the Entity-Relationship Approach (ER'94), Vol. 881 of Lecture Notes

in Computer Science, pp. 278{295 Manchester (UK). Springer-Verlag.

240

