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Abstract

The notion of class is ubiquitous in computer science and is central in many formalisms
for the representation of structured knowledge used both in knowledge representation and
in databases. In this paper we study the basic issues underlying such representation for-
malisms and single out both their common characteristics and their distinguishing features.
Such investigation leads us to propose a unifying framework in which we are able to cap-
ture the fundamental aspects of several representation languages used in different contexts.
The proposed formalism is expressed in the style of description logics, which have been
introduced in knowledge representation as a means to provide a semantically well-founded
basis for the structural aspects of knowledge representation systems. The description logic
considered in this paper is a subset of first order logic with nice computational characteris-
tics. It is quite expressive and features a novel combination of constructs that has not been
studied before. The distinguishing constructs are number restrictions, which generalize ex-
istence and functional dependencies, inverse roles, which allow one to refer to the inverse of
a relationship, and possibly cyclic assertions, which are necessary for capturing real world
domains. We are able to show that it is precisely such combination of constructs that makes
our logic powerful enough to model the essential set of features for defining class structures
that are common to frame systems, object-oriented database languages, and semantic data
models. As a consequence of the established correspondences, several significant extensions
of each of the above formalisms become available. The high expressiveness of the logic we
propose and the need for capturing the reasoning in different contexts forces us to distin-
guish between unrestricted and finite model reasoning. A notable feature of our proposal is
that reasoning in both cases is decidable. We argue that, by virtue of the high expressive
power and of the associated reasoning capabilities on both unrestricted and finite models,
our logic provides a common core for class-based representation formalisms.

1. Introduction

In many fields of computer science we find formalisms for the representation of objects and
classes (Motschnig-Pitrik & Mylopoulous, 1992). Generally speaking, an object denotes an
element of the domain of interest, and a class denotes a set of objects with common char-
acteristics. We use the term “class-based representation formalism” to refer to a formalism
that allows one to express several kinds of relationships and constraints (e.g., subclass con-
straints) holding among the classes that are meaningful in a set of applications. Moreover,
class-based formalisms aim at taking advantage of the class structure in order to provide
various information, such as whether a class is consistent, i.e., it admits at least one object,
whether a class is a subclass of another class, and more generally, whether a given constraint
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holds between a given set of classes. From the above characterization, it should be clear
that the formalisms referred to in this paper deal only with the structural aspects of objects
and classes, and do not include any features for the specification of behavioral properties of
objects.

Three main families of class-based formalisms are identified in this paper. The first one
comes from knowledge representation and in particular from the work on semantic networks
and frames (see for example Lehmann, 1992; Sowa, 1991). The second one originates in
the field of databases and in particular from the work on semantic data models (see for
example Hull & King, 1987). The third one arises from the work on types in programming
languages and object-oriented systems (see for example Kim & Lochovsky, 1989).

In the past there have been several attempts to establish relationships among the various
families of class-based formalisms (see Section 6 for a brief survey). The proposed solutions
are not fully general and a formalism capturing both the modeling constructs and the
reasoning techniques for all the above families is still missing. In this paper we address this
problem by proposing a class-based representation formalism, based on description logics
(Brachman & Levesque, 1984; Schmidt-Schaufl & Smolka, 1991; Donini, Lenzerini, Nardi,
& Schaerf, 1996), and by using it for comparing other formalisms.

In description logics, structured knowledge is described by means of so called concepts
and roles, which denote unary and binary predicates, respectively. Starting from a set of
atomic symbols one can build complex concept and role expressions by applying suitable
constructors which characterize a description logic. Formally, concepts are interpreted as
subsets of a domain and roles as binary relations over that domain, and all constructs
are equipped with a precise set-theoretic semantics. The most common constructs include
boolean operations on concepts, and quantification over roles. For example, the concept
Person N Vchild.Male, denotes the set of individuals that are instances of the concept
Person and are connected through the role child only to instances of the concept Male,
while the concept Ichild denotes all individuals that are connected through the role child
to some individual. Further constructs that have been considered important include more
general forms of quantification, number restrictions, which allow one to state limits on the
number of connections that an individual may have via a certain role, and constructs on
roles, such as intersection, concatenation and inverse. A description logic knowledge base,
expressing the intensional knowledge about the modeled domain, is built by stating inclusion
assertions between concepts, which have to be satisfied by the models of the knowledge base.
The assertions are used to specify necessary and/or necessary and sufficient conditions for
individuals to be instances of certain concepts. Reasoning on such knowledge bases includes
the detection of inconsistencies in the knowledge base itself, determining whether a concept
can be populated in a model of the knowledge base, and checking subsumption, i.e., whether
all instances of a concept are necessarily also instances of another concept in all models of
the knowledge base.

In this paper we propose a description logic called ALUNI, which is quite expressive
and includes a novel combination of constructs, including number restrictions, inverse roles,
and inclusion assertions with no restrictions on cycles. Such features make ALUNI powerful
enough to provide a unified framework for frame systems, object-oriented languages, and
semantic data models. We show this by establishing a precise correspondence with a frame-
based language in the style of the one proposed by Fikes and Kehler (1985), with the
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Entity-Relationship model (Chen, 1976), and with an object-oriented language in the style
of the one introduced by Abiteboul and Kanellakis (1989). More specifically, we identify
the most relevant features to model classes in each of the cited settings and show that
a specification in any of those class-based formalisms can be equivalently expressed as a
knowledge base in ALUNI. In this way, we are able to identify which are the commonalities
among the families and which are the specificities of each family. Therefore, even though
there are specific features of every family that are not addressed by ALUNI, we are able
to show that the formalism proposed in this paper provides important features that are
currently missing in each family, although their relevance has often been stressed. In this
sense, our unifying framework points out possible developments for the languages belonging
to all the three families.

One fundamental reason for regarding ALUNI as a unifying framework for class-based
representation formalisms is that reasoning in ALUNI is hard, but nonetheless decidable, as
shown by Calvanese, Lenzerini, and Nardi (1994), Calvanese (1996¢). Consequently, the
language features arising from different frameworks to build class-based representations are
not just given a common semantic account, but are combined in a more expressive setting
where one retains the capability of solving reasoning tasks. The combination of constructs
included in the language makes it necessary to distinguish between reasoning with respect to
finite models, i.e., models with a finite domain, and reasoning with respect to unrestricted
models. Calvanese (1996¢) devises suitable techniques for both unrestricted and finite model
reasoning, that enable for reasoning in the different contexts arising from assuming a finite
domain, as it is often the case in the field of databases, or assuming that a domain can also
be infinite. In the paper, we discuss the results on reasoning in ALUNI, and compare them
with other results on reasoning in class-based representation formalisms.

Summarizing, our framework provides an adequate expressive power to account for
the most significant features of the major families of class-based formalisms. Moreover, it
is equipped with suitable techniques for reasoning in both finite and unrestricted models.
Therefore, we believe that ALUNI captures the essential core of the class-based representation
formalisms belonging to all three families mentioned above.

The paper is organized as follows. In the next section we present our formalism and
in Sections 3, 4, and 5 we discuss three families of class-based formalisms, namely, frame
languages, semantic data models, and object-oriented data models, showing that their basic
features are captured by knowledge bases in ALUNI. The final sections contain a review of
related work, including a discussion of reasoning in ALUNI and class-based formalism, and
some concluding remarks.

2. A Unifying Class-Based Representation Language

In this section, we present ALUNI, a class-based formalism in the style of description logics
(DLs) (Brachman & Levesque, 1984; Schmidt-Schaufl & Smolka, 1991; Donini et al., 1996;
Donini, Lenzerini, Nardi, & Nutt, 1997). In DLs the domain of interest is modeled by means
of concepts and roles, which denote classes and binary relations, respectively. Generally
speaking, a DL is formed by three basic components:

e A description language, which specifies how to construct complex concept and role
expressions (also called simply concepts and roles), by starting from a set of atomic
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H Construct Syntax Semantics H

atomic concept A AT C AT

atomic negation -A AT\ AT

conjunction C1 N Coy ctnct

disjunction Cy U Cy ctuct

universal quantification | VR.C' | {o|Vo'. (0,0') € RT — o' € CT}

number restrictions I"R {o|#{d ] (0,0') € R} > n}!
SR | {o|#{ | (0,0) € KT} <n}

atomic role P PLcC AT x AT

inverse role P~ {(0,0") | (0, 0) € P}

Table 1: Syntax and semantics of ALUNT

symbols and by applying suitable constructors. It is the set of allowed constructs that
characterizes the description language.

e A knowledge specification mechanism, which specifies how to construct a DL knowl-
edge base, in which properties of concepts and roles are asserted.

o A set of basic reasoning tasks provided by the DL.

In the rest of the section we describe the specific form that these three components assume
in ALUNI.

2.1 The Description Language of ALUNI

In the description language of ALUNI, called ALUNT, concepts and roles are formed ac-
cording to the syntax shown in Table 1, where A denotes an atomic concept, P an atomic
role, C an arbitrary concept expression, R an arbitrary role expression, and n a nonnega-
tive integer. To increase readability of concept expressions, we also introduce the following
abbreviations:

T = AuU-A, for some atomic concept A
1 = An-A, for some atomic concept A
3R = F'R

37"R = 3I*"RN3I*"R

Concepts are interpreted as subsets of a domain and roles as binary relations over that
domain. Intuitively, =A represents the negation of an atomic concept, and is interpreted
as the complement with respect to the domain of interpretation. C7 N Cy represents the
conjunction of two concepts and is interpreted as set intersection, while C'y U Co represents
disjunction and is interpreted as set union. Consequently, T represents the whole domain,

1. 4S5 denotes the cardinality of a set S.
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and | the empty set. VR.C is called universal quantification over roles and is used to
denote those elements of the interpretation domain that are connected through role R only
to instances of the concept C. 32" R and 3" R are called number restrictions, and impose
on their instances restrictions on the minimum and maximum number of objects they are
connected to through role R. P, called the inverse of role P, represents the inverse of the
binary relation denoted by P.

More formally, an interpretation Z = (AZ,.T) consists of an interpretation domain AT
and an interpretation function - that maps every concept C to a subset C* of AT and
every role R to a subset R? of AT x AT according to the semantic rules specified in Table 1.
The sets CT and R? are called the extensions of C and R respectively.

Example 2.1 Consider the concept expression

Venrolls.Student I 3>2enrolls M 3<*Yenrolls M
Vteaches™.(Professor Ll GradStudent) M3~ 'teaches™ I
—AdvCourse

specifying the constraints for an object to be a university course. The expression reflects the
fact that each course enrolls only students, and restrictions on the minimum and maximum
number of enrolled students. By using the role teaches and the inverse constructor we
can state the property that each course is taught by exactly one individual, who is either a
professor or a graduate student. Finally, negation is used to express disjointness from the
concept denoting advanced courses. "

2.2 Knowledge Bases in ALUNI

An ALUNI knowledge base, which expresses the knowledge about classes and relations of the
modeled domain, is formally defined as a triple X = (A, P, T), where A is a finite set of
atomic concepts, P is a finite set of atomic roles, and 7 is a finite set of so called inclusion
assertions. Fach such assertion has the form

A=<C

where A is an atomic concept and C an arbitrary concept expression. Such an inclusion
assertion states by means of the concept C' necessary properties for an element of the domain
in order to be an instance of the atomic concept A. Formally, an interpretation Z satisfies
the inclusion assertion A < C if AT C CZ. An interpretation Z is a model of a knowledge
base K if it satisfies all inclusion assertions in K. A finite model is a model with finite
domain.

Example 2.1 (cont.) The assertion

Course =< Venrolls.Student M 3>2enrolls M 3<3%enrolls
Vteaches .(Professor LI GradStudent) M 3~ teaches™

makes use of a complex concept expression to state necessary conditions for an object to
be an instance of the concept Course. "

203



CALVANESE, LENZERINI, & NARDI

In ALUNI no restrictions are imposed on the form that the inclusion assertions may
assume. In particular we do not rule out cyclic assertions, i.e., assertions in which the
concept expression on the right hand side refers, either directly or indirectly via other
assertions, to the atomic concept on the left hand side. In the presence of cyclic assertions
different semantics may be adopted (Nebel, 1991). The one defined above, called descriptive
semantics, accepts all interpretations that satisfy the assertions in the knowledge base, and
hence interprets assertions as constraints on the domain to be modeled. For inclusion
assertions, descriptive semantics has been claimed to provide the most intuitive results
(Buchheit, Donini, Nutt, & Schaerf, 1998). Alternative semantics which have been proposed
are based on fixpoint constructions (Nebel, 1991; Schild, 1994; De Giacomo & Lenzerini,
1994b), and hence allow to define in a unique way the interpretation of concepts.

In general, cycles in the knowledge base increase the complexity of reasoning (Nebel,
1991; Baader, 1996; Calvanese, 1996b) and require a special treatment by reasoning proce-
dures (Baader, 1991; Buchheit, Donini, & Schaerf, 1993). For this reason, many DL based
systems assume the knowledge base to be acyclic (Brachman, McGuinness, Patel-Schneider,
Alperin Resnick, & Borgida, 1991; Bresciani, Franconi, & Tessaris, 1995). However, this as-
sumption is unrealistic in practice, and cycles are definitely necessary for a correct modeling
in many application domains. Indeed, the use of cycles is allowed in all data models used
in databases, and, as shown in the following sections, in order to capture their semantics in
ALUNI the possibility of using cyclic assertions is fundamental.

Besides inclusion assertions, some DL based systems also make use of equivalence as-
sertions (Buchheit et al., 1993), which express both necessary and sufficient conditions for
an object to be an instance of a concept. Although this possibility is ruled out in ALUNI,
this does not limit its ability of capturing both frame based systems and database models,
where the constraints that can be expressed correspond naturally to inclusion assertions.

2.3 Reasoning in ALUNI

The basic tasks we consider when reasoning over an ALUNI knowledge base are concept
consistency and concept subsumption:

e Concept consistency is the problem of deciding whether a concept C' is consistent in
a knowledge base IC (written as IC = C' < 1), i.e., whether I admits a model Z such
that C7 # ().

e Concept subsumption is the problem of deciding whether a concept C is subsumed by
a concept Cy in a knowledge base K (written as K = C; < C5), i.e., whether Cf C CT
for each model Z of .

The inclusion of number restrictions and inverse roles in ALUNT and the ability in
ALUNI of using arbitrary, possibly cyclic inclusion assertions allows one to construct a knowl-
edge base in which a certain concept is consistent but has necessarily an empty extension
in all finite models of the knowledge base. Similarly, a subsumption relation between two
concepts may hold only if infinite models of the knowledge base are ruled out and only finite
models are considered.

204



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

Iceven = (-/‘LP, T), where
A = {Number, Even},
P = {doubles},

and the set T of assertions consists of:

Jddoubles™ M Vdoubles™ .Even
Number M 3<'doubles M Vdoubles.Number

Number j
Even j

Figure 1: An ALUNI knowledge base with two concepts that are equivalent in all finite
models

Example 2.2 Let Kcpen be the knowledge base shown in Figure 1. Intuitively, the asser-
tions in Keyen state that for each number there is an even number which doubles it, and
that all numbers which double it are even. Each even number is a number, doubles at most
one number, and doubles only numbers. Observe that for any model Z of K¢yep, the univer-
sal quantifications together with the functionality of doubles in the assertions imply that
#Even? > fNumber?, while the direct inclusion assertion between Even and Number implies
that §Even? < fNumber’. Therefore, the two concepts have the same cardinality, and since
one is a sub-concept of the other, if the domain is finite, their extensions coincide. This
does not necessarily hold for infinite domains. In fact, the names we have chosen suggest
already an infinite model of the knowledge base in which Number and Even are interpreted
differently. The model is obtained by taking the natural numbers as domain, and inter-
preting Number as the whole domain, Even as the even numbers, and doubles as the set
{(2n,n) | n > 0}. ]

The example above shows that ALUNI does not have the finite model property, which
states that if a concept is consistent in a knowledge base then the knowledge base admits
a finite model in which the concept has a nonempty extension. Therefore, it is important
to distinguish between reasoning with respect to unrestricted models and reasoning with
respect to finite models. We call (unrestricted) concept consistency (written as K &, C <
1) and (unrestricted) concept subsumption (written as K =, A < C) the reasoning tasks
as described above, i.e., carried out without restricting the attention to finite models. The
corresponding reasoning tasks carried out by considering finite models only, are called finite

concept consistency (written as K =y C' < L) and finite concept subsumption (written as
K |:f A=XC).

Example 2.2 (cont.) Summing up the previous considerations, we can say that Number is
not subsumed by Even in Keyep, i-€., Keyen [~y Number < Even, but is finitely subsumed, i.e.,
Keven =y Number < Even. Equivalently NumberM—Even is consistent in Keyen, i-e., Keven Fu
Number—Even < L, but is not finitely consistent, i.e., Kepen =7 Number—Even < L. n

A distinguishing feature of ALUNI is that reasoning both in the finite and in the un-
restricted case is decidable. In particular, unrestricted concept satisfiability and concept
subsumption are decidable in deterministic exponential time (De Giacomo & Lenzerini,
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1994a; Calvanese et al., 1994), and since reasoning in strict sublanguages of ALUNI is al-
ready EXPTIME-hard (Calvanese, 1996¢), the known algorithms are computationally opti-
mal. Finite concept consistency in ALUNI is also decidable in deterministic exponential time
while finite concept subsumption (in the general case) is decidable in deterministic double
exponential time (Calvanese, 1996¢). A more precise discussion on the methods for reason-
ing in ALUNI is provided in Section 6.2, while a detailed account of the adopted algorithms
and an analysis of their computational complexity is presented by Calvanese (1996¢).

In the next sections we show how the two forms of reasoning with respect to unrestricted
and finite models, capture the reasoning tasks that are typically considered in different
formalisms for the structured representation of knowledge.

3. Frame Based Systems

Frame languages are based on the idea of expressing knowledge by means of frames, which
are structures representing classes of objects in terms of the properties that their instances
must satisfy. Such properties are defined by the frame slots, that constitute the items of a
frame definition. Since the 70s a large number of frame systems have been developed, with
different goals and different features. DLs bear a close relationship with the KL-ONE family
of frame systems (Woods & Schmolze, 1992). However, here we would like to consider frame
systems from a more general perspective, as discussed for example by Karp (1992), Karp,
Myers, and Gruber (1995), and establish the correspondence with ALUNI knowledge bases
in this context.

We remark that we are restricting our attention to those aspects that are related to
the taxonomic structure. Moreover, as discussed below, we consider assertional knowledge
bases, where intensional knowledge is characterized in terms of inclusion assertions rather
than definitions. In addition, we do not consider those features that cannot be captured in
a first-order framework, such as default values in the slots, attached procedures, and the
specification of overriding inheritance policies. Some of the issues concerning the modeling
of these aspects in DLs are addressed by Donini, Lenzerini, Nardi, Nutt, and Schaerf (1994),
Donini, Nardi, and Rosati (1995), within a modal nonmonotonic extension of DLs.

3.1 Syntax of Frame Based Systems

To make the correspondence precise, we need to fix syntax and semantics for the frame
systems we consider. Unfortunately, there is no accepted standard and we have chosen to
use here basically the notation adopted by Fikes and Kehler (1985), which is used also in
the KEE? system.

Definition 3.1 A frame knowledge base, denoted by F, is formed by a set of frame and
slot names, and is constituted by a set of frame definitions of the following form:

Frame: F'in KB F E,

2. KEE is a trademark of Intellicorp. Note that a KEE user does not directly specify her knowledge base
in this notation, but is allowed to define frames interactively via the graphical system interface.

206



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

Frame: Course in KB University
MemberSlot: enrolls
ValueClass: Student
Cardinality.Min: 2

Frame: BasCourse in KB University
SuperClasses: Course
MemberSlot: taughtby

ValueClass: Professor

Cardinality.Max: 30
MemberSlot: taughtby
ValueClass: (UNION GradStudent
Professor)
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Professor in KB University
Frame: Student in KB University

Frame: GradStudent in KB University
SuperClasses: Student
MemberSlot: degree

ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University
SuperClasses: Course
MemberSlot: enrolls

ValueClass: (INTERSECTION
GradStudent
(NOT Undergrad))

Cardinality.Max: 20

Frame: Undergrad in KB University
SuperClasses: Student

Figure 2: A KEE knowledge base

where F is a frame expression, i.e., an expression formed according to the following syntax:

E — SuperClasses: Fi,...,F},
MemberSlot : S
ValueClass : H;
Cardinality.Min : m,
Cardinality.Max : n,

MemberSlot : S
ValueClass : Hy
Cardinality.Min : my
Cardinality.Max : ny

F and S denote frame and slot names, respectively, m and n denote positive integers, and
H denotes slot constraint, which can be specified as follows:

H — F|
(INTERSECTION H; Hy) |
(UNION H, H,) |
(NOT H)

For readers that are familiar with the KEE system, we point out that we omit the
specification of the sub-classes for a frame present in KEE, since it can be directly derived
from the specification of the super-classes.

Example 3.2 Figure 2 shows a simple example of a knowledge base modeling the situation
at an university expressed in the frame language we have presented. The frame Course
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represents courses which enroll students and are taught either by graduate students or
professors. Cardinality restrictions are used to impose a minimum and maximum number
of students that may be enrolled in a course, and to express that each course is taught by
exactly one individual. The frame AdvCourse represents courses which enroll only graduate
students, i.e., students who already have a degree. Basic courses, on the other hand, may
be taught only by professors. "

3.2 Semantics of Frame Based Systems

To give semantics to a set of frame definitions we resort to their interpretation in terms of
first-order predicate calculus (Hayes, 1979). According to such interpretation, frame names
are treated as unary predicates, while slots are considered binary predicates.

A frame expression F is interpreted as a predicate logic formula E(x), which has one
free variable, and consists of the conjunction of sentences, obtained from the super-class
specification and from each slot specification. In particular, for the super-classes Fi, ..., Fp
we have:

Fi(z) A ...\ Fp(x)

and for a slot specification
MemberSlot : S
ValueClass: H
Cardinality.Min : m
Cardinality.Max : n
we have
Vy. (S(z,y) = H(y)) A
1oy Yme (Nigg ¥i # 95) A S(@y1) A AS(2,4ym)) A
YY1, Yntre ((S(@oyn) A AS(@ynt1) = Vigj ¥i = y5),
under the assumption that within one frame definition the occurrences of z refer to the same

free variable. Finally the constraints on the slots are interpreted as conjunction, disjunction
and negation, respectively, i.e.:

(INTERSECTION H; Hjy) is interpreted as  Hj(z) A Ho(x)
(UNION H, Hj) is interpreted as  Hj(x) V Ha(z)
(NOT H) is interpreted as —H ()

A frame definition
Frame: Fin KB F F

is then considered as the universally quantified sentence of the form

The whole frame knowledge base F is considered as the conjunction of all first-order sen-
tences corresponding to the frame definitions in F.

Here we regard frame definitions as necessary conditions, which is commonplace in the
frame systems known as assertional frame systems, as opposed to definitional systems,
where frame definitions are interpreted as necessary and sufficient conditions.
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In order to enable the comparison with our formalisms for representing structured knowl-
edge we restrict our attention to the reasoning tasks that involve the frame knowledge base,
independently of the assertional knowledge, i.e., the frames instances. Fikes and Kehler
(1985) mention several reasoning services associated with frames, such as:

e (Consistency checking, which amounts to verifying whether a frame F' is satisfiable
in a knowledge base. In particular, this involves both reasoning on cardinalities and
checking whether the filler of a given slot belongs to a certain frame.

e Inheritance, which, in our case, amounts to the ability of identifying which of the
frames are more general than a given frame, sometimes called all-super-of (Karp
et al., 1995). All the properties of the more general frames are then inherited by the
more specific one. Such a reasoning is therefore based on the more general ability to
check the mutual relationhips between frame descriptions in the knowledge base.

These reasoning services are formalized in the first-order semantics as follows.

Definition 3.3 Let F be a frame knowledge base and F' a frame in F. We say that F' is
consistent in F if the first-order sentence F A Jz.F(x) is satisfiable. Moreover, we say that
a frame description E is more general than F in F if F |=Vz.(F(z) — E(z)). n

3.3 Relationship between Frame Based Systems and ALUNI

The first-order semantics given above allows us to establish a straightforward relationship
between frame languages and ALUNI. Indeed, we now present a translation from frame
knowledge bases to ALUNI knowledge bases.

We first define the function 6 that maps each frame expression into an ALUNT concept
expression as follows:

e Every frame name F' is mapped into an atomic concept 6(F).
e Every slot name S is mapped into an atomic role 0(S).

e Every slot constraint is mapped as follows

(UNION H, Hj) is mapped into  0(Hy) L 0(Hs)
(INTERSECTION H; H,) is mapped into  6(H;) M 6(Hy)
(NOT H) is mapped into  —6(H).

e Every frame expression of the form

SuperClasses : Fi,...,Fj

MemberSlot : S
ValueClass : H;
Cardinality.Min : m,
Cardinality.Max : n;

MemberSlot : S
ValueClass : Hy,
Cardinality.Min : my
Cardinality.Max : ny
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K= (A,P,T), where
A = {Course, AdvCourse, BasCourse, Professor, Student, GradStudent, Undergrad, String},
P = {enrolls, taughtby, degree},

and the set 7 of assertions consists of:

Course = Venrolls.Student M 3>2enrolls M 3<*0enrolls M
Vtaughtby.(Professor U GradStudent) 1 3= taughtby
AdvCourse = Coursell Venrolls.(GradStudent M —~Undergrad) M 35%enrolls
BasCourse = Coursell Vtaughtby.Professor
GradStudent = Student M Vdegree.StringM 3~ 'degree
Undergrad j Student

Figure 3: The ALUNI knowledge base corresponding to the KEE knowledge base in Figure 2

is mapped into the class expression

O(Fy)M---MO(Fy) M
VO(S1).0(Hy) M 32"m9(Sy) MIs™e(Sy) M

VO(Sy).0(Hy) M 32m0(S,) M I<m9(S),).

This mapping allows us to translate a frame knowledge base into an ALUNI knowledge base,
as specified in the following definition.

Definition 3.4 The ALUNI knowledge base 6(F) = (A,P,T) corresponding to a frame
knowledge base F is obtained as follows:

e A consists of one atomic concept §(F') for each frame name F in F.
e P consists of one atomic role #(S) for each slot name S in F.

e 7 consists of an inclusion assertion
0(F) = 0(F)

for each frame definition
Frame: Fin KB F F

in F. n

Example 3.2 (cont.) We illustrate the translation on the frame knowledge base in Fig-
ure 2. The corresponding ALUNI knowledge base is shown in Figure 3. "
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The correctness of the translation follows from the correspondence between the set-
theoretic semantics of ALUNI and the first-order interpretation of frames (see for example
Hayes, 1979; Borgida, 1996; Donini et al., 1996). We can observe that inverse roles are in
fact not necessary for the formalization of frames. Indeed, the possibility of referring to the
inverse of a slot has been rarely considered in frame knowledge representation systems (Some
exceptions are reported in Karp, 1992). Due to the absence of inverse roles the distinction
between reasoning in finite and unrestricted models is not necessary®. Consequently, all
the above mentioned forms of reasoning are captured by unrestricted concept consistency
and concept subsumption in ALUNI knowledge bases. This is summarized in the following
theorem.

Theorem 3.5 Let F be a frame knowledge-base, F be a frame in F, E be a frame de-
scription, and 0(F), 0(F), and 6(E) be their translations in ALUNIL. Then the following
hold:

e F is consistent in F if and only if 0(F) W, O(F) < L.
e E is more general than F in F if and only if 0(F) =, O(F) 2 0(E).

Proof. The claim directly follows from the semantics of frame knowledge bases and the
translation into DLs that we have adopted. O

By Theorem 3.5 it becomes possible to exploit the methods for unrestricted reasoning
on ALUNI knowledge bases in order to reason on frame knowledge bases. Since the problem
of reasoning, e.g., in KEE is already EXPTIME-complete, we do not pay in terms of com-
putational complexity for the expressiveness added by the constructs of ALUNI. In fact, by
resorting to the correspondence with ALUNI it becomes possible to add to frame systems
useful features, such as the possibility of specifying the inverse of a slot (Karp, 1992), and
still retain the ability to reason in EXPTIME.

4. Semantic Data Models

Semantic data models were introduced primarily as formalisms for database schema design.
They provide a means to model databases in a much richer way than traditional data
models supported by Database Management Systems, and are becoming more and more
important because they are adopted in most of the recent database design methodologies
and Computer Aided Software Engineering tools.

The most widespread semantic data model is the Entity-Relationship (ER) model in-
troduced by Chen (1976). It has by now become a standard, extensively used in the design
phase of commercial applications. In the commonly accepted ER notation, classes are called
entities and are represented as boxes, whereas relationships between entities are represented
as diamonds. Arrows between entities, called ISA relationships, represent inclusion asser-
tions. The links between entities and relationships represent the ER-roles, to which number
restrictions are associated. Dashed links are used whenever such restrictions are refined for
more specific entities. Finally, elementary properties of entities are modeled by attributes,

3. If we eliminate from ALUNT inverse roles, then the resulting DL has the finite model property.
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whose values belong to one of several predefined domains, such as Integer, String, or
Boolean.

The ER model does not provide constructs for expressing explicit disjointness or disjunc-
tion of entities, but extensions of the model allow for the use of generalization hierarchies
which represent a combination of these two constructs. In order to keep the presenta-
tion simple, we do not consider generalization hierarchies in the formalization we provide,
although their addition would be straightforward. Similarly, we omit attributes of relations.

We now show that all relevant aspects of the ER model can be captured in ALUNI, and
thus that reasoning on an ER schema can be reduced to reasoning on the corresponding
ALUNI knowledge base. Since ALUNI is equipped with capabilities to reason on knowledge
bases, both with respect to finite and unrestricted models (see Section 6.2), the reduction
shows that reasoning on the ER model, and more generally on semantic data models, is
decidable.

As in the case of frame-based systems, we restrict our attention to those aspects that
constitute the core of the ER model. For this reason we do not consider some features,
such as keys and weak entities, that have been introduced in the literature (Chen, 1976),
but appear only in some of the formalizations of the ER model and the methodologies for
conceptual modeling based on the model. A proposal for the treatment of keys in description
logics is presented by Borgida and Weddell (1997).

In order to establish the correspondence between the ER model and ALUNI, we present
formal syntax and semantics of ER schemata.

4.1 Syntax of the Entity-Relationship Model

Although the ER model has by now become an industrial standard, several variants and
extensions have been introduced, which differ in minor aspects in expressiveness and in
notation (Chen, 1976; Teorey, 1989; Batini, Ceri, & Navathe, 1992; Thalheim, 1992, 1993).
Also, ER schemata are usually defined using a graphical notation which is particularly
useful for an easy visualization of the data dependencies, but which is not well suited for our
purposes. Therefore we have chosen a formalization of the ER model which abstracts with
respect to the most important characteristics and allows us to develop the correspondence
to ALUNIL.

In the following, for two finite sets X and Y we call a function from a subset of X
to Y an X-labeled tuple over Y. The labeled tuple T" that maps z; € X to y; € Y, for
i€{l,...,k}, is denoted [z1:y1, ...,z yx|. We also write T'[z;] to denote y;.

Definition 4.1 An ER schema is a tuple S = (Ls, <s, atts, rels, card s), where

e Ls is a finite alphabet partitioned into a set Es of entity symbols, a set As of attribute
symbols, a set Us of role symbols, a set Rs of relationship symbols, and a set Dg of
domain symbols; each domain symbol D has an associated predefined basic domain
DB? | and we assume the various basic domains to be pairwise disjoint.

o <sC &s x &g is a binary relation over £s.

e aits is a function that maps each entity symbol in £s to an Ags-labeled tuple over Dgs.
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e rels is a function that maps each relationship symbol in Rgs to an Us-labeled tuple
over £g. We assume without loss of generality that:

— Each role is specific to exactly one relationship, i.e., for two relationships
R,R' € Rs with R # R/, if rels(R) = [Ui: E1,...,Uy: E] and rels(R') =
[U{:EY,...,U.: E,], then {Un,...,U} and {U],...,U},} are disjoint.

— For each role U € Ug there is a relationship R and an entity F such that
rels(R)=[...,U:E,...].

e cards is a function from Es x Rs X Us to Ny x (INg U {oc}) that satisfies the fol-
lowing condition: for a relationship R € Rgs such that rels(R) = [U1: E1, ..., Uy: E],
cards(E,R,U) is defined only if U = U; for some i € {1,...,k}, and if E <% E;
(where <% denotes the reflexive transitive closure of <g). The first component
of cards(E,R,U) is denoted with cming(F,R,U) and the second component with
cmazs(E,R,U). If not stated otherwise, emins(E, R,U) is assumed to be 0 and
emazs(E, R,U) is assumed to be oo. .

Before specifying the formal semantics of ER schemata we give an intuitive description of
the components of a schema. The relation <s models the ISA-relationship between entities.
We do not need to make any special assumption on the form of <g such as acyclicity
or injectivity. The function atts is used to model attributes of entities. If for example
atts associates the Ag-labeled tuple [A;: Integer, As: String] to an entity £, then E has
two attributes A1, Ao whose values are integers and strings respectively. For simplicity we
assume attributes to be single-valued and mandatory, but we could easily handle also multi-
valued attributes with associated cardinalities. The function rels associates a set of roles
to each relationship symbol R, determining implicitly also the arity of R, and for each role
U in such set a distinguished entity, called the primary entity for U in R. In a database
satisfying the schema only instances of the primary entity are allowed to participate in
the relationship via the role U. The function cardgs specifies cardinality constraints, i.e.,
constraints on the minimum and maximum number of times an instance of an entity may
participate in a relationship via some role. Since such constraints are meaningful only if
the entity can effectively participate in the relationship, the function is defined only for
the sub-entities of the primary entity. The special value oo is used when no restriction is
posed on the maximum cardinality. Such constraints can be used to specify both existence
dependencies and functionality of relations (Cosmadakis & Kanellakis, 1986). They are
often used only in a restricted form, where the minimum cardinality is either 0 or 1 and
the maximum cardinality is either 1 or co. Cardinality constraints in the form considered
here have been introduced already by Abrial (1974) and subsequently studied by Grant
and Minker (1984), Lenzerini and Nobili (1990), Ferg (1991), Ye, Parent, and Spaccapietra
(1994), Thalheim (1992).

Example 4.2 Figure 4 shows a simple ER schema modeling a state of affairs similar to the
one represented by the KEE knowledge base in Figure 2. We have used the standard graphic
notation for ER schemata, except for the dashed link, which represents the refinement of
a cardinality constraint for the participation of a sub-entity (in our case AdvCourse) in a
relationship (in our case ENROLLING). .
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TEACHING Teacher

Ein
Course ENROLLING Student
(2,30)
A / A
/
y, (2,20)
AdvCourse degree/String O— GradStudent

Figure 4: An ER schema

4.2 Semantics of the Entity-Relationship Model

The semantics of an ER schema can be given by specifying which database states are
consistent with the information structure represented by the schema. Formally, a database
state B corresponding to an ER schema § = (Ls, <s, alts, rels, cards) is constituted by a
nonempty finite set AB, assumed to be disjoint from all basic domains, and a function -3
that maps

e every domain symbol D € Dg to the corresponding basic domain D5P,

e every entity F € s to a subset EP of AB,

e every attribute A € Ag to a set A8 C AB x Ubeps DB?  and

e every relationship R € Rs to a set RE of Us-labeled tuples over AB.
The elements of EB, AB and R? are called instances of E, A, and R respectively.

A database state is considered acceptable if it satisfies all integrity constraints that are
part of the schema. This is captured by the definition of legal database state.

Definition 4.3 A database state B is said to be legal for an ER schema § =
(Ls, =<s,atts, rels, card g), if it satisfies the following conditions:

e For each pair of entities F1, Fy € £g such that Fq <g Fs, it holds that Efg C Ef.

e For each entity E € &g, if atts(E) = [A1: D1,...,Ap: Dy], then for each instance
e € EB and for each i € {1,...,h} the following holds:

— there is exactly one element a; € A{" whose first component is e, and

— the second component of a; is an element of D? D,

e For each relationship R € Rg such that rels(R) = [Uy: Eu,. .., Uy: Ex], all instances
of R are of the form [Uj:ey,...,Ug: ex], where e; € EF, i € {1,...,k}.
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Number

A

DOUBLES

(0,1)

Even

Figure 5: The ER schema corresponding to Example 2.2

e For each relationship R € Rs such that rels(R) = [Uy: E1,...,Uy: Eg], for each
i € {l,...,k}, for each entity E € s such that £ <% E; and for each instance e of E
in Z, it holds that

cmings (B, R,U;) < #{r € RP | r[U;] = e} < cmazs(E, R, Uj;).

Notice that the definition of database state reflects the usual assumption in databases
that database states are finite structures (see also Cosmadakis, Kanellakis, & Vardi, 1990).
In fact, the basic domains are not required to be finite, but for each legal database state
for a schema, only a finite set of values from the basic domains are actually of interest. We
define the active domain AB, of a database state B as the set of all elements of the basic
domains DB?, D € Dg, that effectively appear as values of attributes in B. More formally:

AB, = {deDP | DeDsAIAE As,e € AB. (e,d) € AP},

Since AP is finite and As contains only a finite number of attributes, which are functional
by definition, also AB,, is finite.

Reasoning in the ER model includes verifying entity satisfiability and deducing inheri-
tance. Entity satisfiability amounts to checking whether a given entity can be populated in
some legal database state (Atzeni & Parker Jr., 1986; Lenzerini & Nobili, 1990; Di Battista
& Lenzerini, 1993), and corresponds to the notion of concept consistency in DLs. Deducing
inheritance amounts to verifying whether in all databases that are legal for the schema,
every instance of an entity is also an instance of another entity. Such implied ISA relation-
ships can arise for different reasons. Either trivially, through the transitive closure of the
explicit ISA relationships present in the schema, or in more subtle ways, through specific
patterns of cardinality restrictions along cycles in the schema and the requirement of the
database state to be finite (Lenzerini & Nobili, 1990; Cosmadakis et al., 1990).

Example 4.4 Figure 5 shows an ER schema modeling the same situation as the knowledge
base of Example 2.2. Arguing exactly as in that example we can conclude that the two
entities Number and Even denote the same set of elements in every finite database legal for
the schema, although the ISA relation from Number to Even is not stated explicitly. It is
implied, however, due to the cycle involving the relationship and the two entities and due
to the particular form of cardinality constraints. "
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4.3 Relationship between Entity-Relationship Schemata and ALUNI

We now show that the different forms of reasoning on ER schemata are captured by finite
concept consistency and finite concept subsumption in ALUNI. The correspondence between
the two formalisms is established by defining a translation ¢ from ER schemata to ALUNI
knowledge bases, and then proving that there is a correspondence between legal database
states and finite models of the derived knowledge base.

Definition 4.5 Let § = (Ls, <s, alts, rels, cards) be an ER schema. The ALUNI knowl-
edge base ¢(S) = (A, P, T) is defined as follows:
The set A of atomic concepts of ¢(S) contains the following elements:

e for each domain symbol D € Dg, an atomic concept ¢(D);
e for each entity F € &g, an atomic concept ¢(F);

e for each relationship R € R, an atomic concept ¢(R).
The set P of atomic roles of ¢(S) contains the following elements:

e for each attribute A € Ag, an atomic role ¢(A);

e for each relationship R € Rg such that rels(R) = [U;: E1, ..., Uy: Ei], k atomic roles
¢(U1)7 s 7¢(Uk)

The set T of assertions of ¢(S) contains the following elements:

e for each pair of entities 1, Fs € £s such that Fy <s FEs, the assertion
(E1) 2 $(Fa) (1)
e for each entity F € Es such that atts(FE) = [A1: D1, ..., Ap: Dy], the assertion
G(E) = Vh(A1).¢(D1) M-+ MVP(Ap).¢(Dp) M3~ P(A1) M- 1T Hp(An)  (2)
e for each relationship R € Rs such that rels(R) = [U;: Ey,. .., Uy: Ei], the assertions

G(R) = VH(UL).(Er) N+ NVP(U).-d(Ey) N3 $(U1) M-+ 137 p(Ux) (3)
¢(Ez) j V(¢(U1))_¢(R)a iE{l,...,k} (4)

e for each relationship R € Rs such that rels(R) = [U: Ei,...,U: Eg], for i €
{1,...,k}, and for each entity F € £s such that £ <% E;,

— if m = emings(E, R,U;) # 0, the assertion

$(E) = F™($(Us))~. (5)
— if n = cmazs(E, R,U;) # oo, the assertion
P(E) = I ($(Us)". (6)

e for each pair of symbols X, Xo € EsURsUDg such that X1 # X5 and X; € RsUDg,
the assertion
H(X1) = —p(Xa). (7)
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K =(A,P,T), where
A = {Course, AdvCourse, Teacher, Student, GradStudent, TEACHING, ENROLLING, String},
P = {Tof, Tby, Ein, Eof, degree},

and the set T of assertions consists of:

TEACHING < VTof.Course 3=!'Tof M
VTby.Teacher M3~ Tby

ENROLLING =< VEin.Coursel 3='Ein N
VEof.Student M 3~!Eof

Course < VTof .TEACHINGM 3=!'Tof~ N
VEin~.ENROLLING M 322Ein~ M 3<3Ein~
AdvCourse =< Coursel3<?°Ein~
Teacher =< VTby .TEACHING
Student =< VEof .ENROLLING M 3Z*Eof~ M 3I<CEof~
GradStudent =< Student Vdegree.StringM 3~ 'degree.

Figure 6: The ALUNI knowledge base corresponding to the ER schema in Figure 4

Example 4.2 (cont.) We illustrate the translation on the ER schema of Figure 4. The
ALUNI knowledge base that captures exactly its semantics is shown in Figure 6, where for
brevity the disjointness assertions (7) are omitted, and assertions with the same concept on
the left hand side are collapsed. "

The translation makes use of both inverse attributes and number restrictions to capture
the semantics of ER schemata. We observe that, by means of the inverse constructor, a
binary relationship could be treated in a simpler way by choosing a traversal direction and
mapping the relationship directly to a role. Notice also that the assumption of acyclicity
of the resulting knowledge base is unrealistic in this case, and in order to exploit the cor-
respondence for reasoning in the ER model, we need techniques that can deal with inverse
attributes, number restrictions, and cycles together. As shown in Example 2.2, the com-
bination of these factors causes the finite model property to fail to hold, and we need to
resort to reasoning methods for finite models.

In fact, we can reduce reasoning in the ER model to finite model reasoning in ALUNI
knowledge bases. For this purpose we define a mapping between database states corre-
sponding to an ER schema and finite interpretations of the knowledge base derived from it.
Due to the possible presence of relations with arity greater than 2, this mapping is however
not one-to-one and we first need to characterize those interpretations of the knowledge base
that directly correspond to database states.

Definition 4.6 Let S = (Ls, <s, atts, rels, cards) be an ER schema and ¢(S) be defined
as above. An interpretation Z of ¢(S) is relation-descriptive, if for every relationship R €
Rs, with rels(R) = [Uy: By, ..., Uy: Ei], for every d,d’ € (¢(R))*, we have that

( A\ vd"e AT ((d,d") € (p(U:))" & (d',d") € (p(U:))7)) = d=d (8)

1<i<k
|
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Intuitively, the extension of a relationship in a database state is a set of labeled tuples,
and such a set does not contain the same element twice. Therefore it is implicit in the
semantics of the ER model that there cannot be two labeled tuples connected through all
roles of the relationship to exactly the same elements of the domain. In a model of the
ALUNI knowledge base corresponding to the ER schema, on the other hand, each tuple is
represented by a new individual, and the above condition is not implicit anymore. It also
cannot be imposed in ALUNI by suitable assertions. The following lemma, however, shows
that we do not need such an explicit condition, when we are interested in reasoning on an
ALUNI knowledge base corresponding to an ER schema. This is due to the fact that we can
always restrict ourselves to considering only relation-descriptive models.

Lemma 4.7 Let S be an ER schema, ¢(S) be the ALUNI knowledge base obtained from S
according to Definition 4.5, and C be a concept expression of ¢(S). If C is finitely consistent
in ¢(S), then there is a finite relation-descriptive model T of ¢(S) such that CT # ().

Proof. Let Iy be a finite model of ¢(S) such that CZ # (). We can build a finite relation-
descriptive model Z' by starting from Zy and applying the following construction once for
each relationship in Rgs.

Let Z be the model obtained in the previous step and let R € Rs with rels(R) =
[Ui: Ey,...,Ug: Eg] be the next relationship to which we apply the construction. We con-
struct from Z a model Zp such that condition 8 is satisfied for relationship R.

Given an individual r € (¢(R))%, we denote by U;(d), i € {1,...,k} the (unique)
individual e such that (r,e) € (¢p(U;))*. For e; € (p(E;))%, i € {1,...,k} we define
Xyer,yuper) = 17 € (B(R)F | Ui(d) = e, fori € {1,...,k}}. We call conflict-set
a set X(17.e,,.. Up:e,) With more than one element. From each conflict-set X(y7,.e, . 1,:61)
we randomly choose one individual r, and we say that the others induce a conflict on
(Uy:eq,...,Uk:er). We call Conf the (finite) set of all objects inducing a conflict on some
(Ur:er,..., Uk eg).

We define an interpretation Z,co.s as the disjoint union of 2¢¢°™ copies of Z, one copy,
denoted by Tz, for every set Z € 29"/ . We denote by dz the copy in Zz of the individual
d in Z. Since the disjoint union of two models of an ALUNI knowledge base is again a
model, Zycons is a model of ¢(S). Let Zz and Zz be two copies of Z in Zycons. We call
exchanging Uy (rz) with Uy(rz/) the operation on Zycons consisting of replacing in (¢(Uy))%2
the pair (rz,Ug(rz)) with (rz, Ug(rz)) and, at the same time, replacing in (¢(Uy))*2’ the
pair (rz/,Ug(rz/)) with (rz/,Ug(rz)). Intuitively, by exchanging Uy (rz) with Uy (rz/), the
individuals 7z and rz do not induce conflicts anymore.

We construct now from Z,cons an interpretation Zr as follows: For each r € Conf and
for each Z € 2¢°" such that r € Z, we exchange U (rz) with Uk(rz\{ry)- It is possible
to show that all conflicts are thus eliminated while no new conflict is created. Hence, in
Zr, condition 8 for R is satisfied. We still have to show that Zp is a model of ¢(S) in
which CT® # (). Indeed, it is straightforward to check by induction that for every concept
expression C' appearing in ¢(S), for all Z € 2% d € C'F if and only if dz € C"?%. Thus
all assertions of ¢(S) are still satisfied in Zr and CT# # (). O
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With this result, the following correspondence between legal database states for an
ER schema and relation-descriptive models of the resulting ALUNI knowledge base can be
established.

Proposition 4.8 For every ER schema S = (Ls,=<s,atts, rels, cardg) there exist two
mappings as, from database states corresponding to S to finite interpretations of its transla-
tion ¢(S), and Bs, from finite relation-descriptive interpretations of ¢(S) to database states
corresponding to S, such that:

1. For each legal database state B for S, as(B) is a finite model of ¢(S), and for each
symbol X € Es U As URsUDs, X8 = ((X))*s®).

2. For each finite relation-descriptive model T of ¢(S), Bs(T) is a legal database state for
S, for each entity E € Es, ($(E))F = EPsD | and for each symbol X € AsURsUDsg,
fp(X)T = x5,

Proof. (1) Given a database state B, we define the interpretation Z = ags(B) of ¢(S) as
follows:

[ ] AI:ABUAB UURERSRB‘

act

e For each symbol X € £s U As URs U Dg,
($(X))" = X5. (9)
e For each relationship R € Rs such that rels(R) = [U1: B, ..., Uy: Ex],

(p(U))E = {(r,e) e AT x AT |r € RE, and r[U;] =€}, ie€{l,...,k}.  (10)

Let B be a legal database state. To prove claim (1) it is sufficient to show that Z satisfies
every assertion in ¢(S). Assertions 1 are satisfied since B satisfies the set inclusion between
the extensions of the corresponding entities. With respect to assertions 2, let £ € £s be an
entity such that atts(E) = [A1: Dy,..., Ap: Dp], and consider an instance e € (¢(FE))%. We
have to show that for each i € {1,...,h}, there is exactly one element e; € AT such that
(e,e;) € (¢(A;))*, and moreover that e; € (p(D;))t. By 9, e € EB, and by definition of legal
database state there is exactly one element a; € AP = (¢(4;))* whose first component is e.
Moreover, the second component e; of a; is an element of DZE P = (¢(D;))t. With respect
to assertions 3, let R € Rs be a relationship such that rels(R) = [Uy: E1,...,Uy: Exl,
and consider an instance r € (p(R))Z. We have to show that for each i € {1,...,k}
there is exactly one element e; € AT such that (r,e;) € (¢(U;))*, and that moreover
e; € (p(FE;))E. By 9, r € RB, and by definition of legal database state, r is a labeled tuple
of the form [Uy:ef,...,Ux:e}], where e} € EF i € {1,... k}. Therefore r is a function
defined on {Uj,...,Ux}, and by 10, e; is unique and equal to e,. Moreover, again by 9,
e; € (p(F;))t = EPB. Assertions 4 are satisfied, since by 10 the first component of each
element of (p(U;))? is always an element of R® = (¢(R))T. With respect to assertions 5,
let R € Rs be a relationship such that rels(R) = [Uy: En,...,Ux: E], let E € Es be an
entity such that ' <s E;, for some i € {1,...,k}, and such that m = cming(E, R,U;) # 0.
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Consider an instance e € (¢(E))Z. We have to show that there are at least m pairs in
(#(U;))* that have e as their second component. Since assertions 4 are satisfied we know
that the first component of all such pairs is an instance of ¢(R). By 9 and by definition
of legal database state, there are at least m labeled tuples in R® whose U; component is
equal to e. By 10, (¢(U;))? contains at least m pairs whose second component is equal to
e. With respect to assertions 6 we can proceed in a similar way. Finally, assertions 7 are
satisfied since first, by definition the basic domains are pairwise disjoint and disjoint from
AB and from the set of labeled tuples, second, no element of AP is a labeled tuple, and
third, labeled tuples corresponding to different relationships cannot be equal since they are
defined over different sets of roles.

(2) Let Z be a finite relation-descriptive interpretation of ¢(S). For each basic domain
D € Dg, let BX be a function from AZ to DPP that is one-to-one and onto. Since AT
is finite and each basic domain contains a countable number of elements, such a function
always exists. In order to define Bs(Z) we first specify a mapping Sa that associates to
each individual d € A an element as follows:

o If d € (p(E))? for some entity E € Es, then [a(d) = d.

o If d € (p(R))? for some relationship R € Rs with rels(R) = [Uy: E1,. .., Uy: Ei], and
there are individuals dy,...,d; € AT such that (d,d;) € (¢(U;))%, for i € {1,...,k},
then ,BA(d) = [Ult dl, ey Uk: dk]

o If d € (¢(D))* for some basic domain D € Dg, then B (d) = X (d).
e Otherwise fa(d) = d.

For a pair of individuals (dy,ds) € AT x AT, Ba((dy,d2)) = (Ba(d1), Ba(dz)), and for a set
X, Ba(X) ={Ba(z) |z € X}

If 7 is a model of ¢(S) the above rules define Ba(d) for every d € AZ. Indeed, by
assertions 7, each d € AT can be an instance of at most one atomic concept corresponding
to a relationship or basic domain, and if this is the case it is not an instance of any atomic
concept corresponding to an entity. Moreover, if d € (¢(R))? for some relationship R € R
with rels(R) = [Uy: E1,...,Ux: Ex], then by assertions 3, for each i € {1,...,k} there is
exactly one element d; € AT such that (d,d;) € (¢(U;))%. If T is not a model of ¢(S) and
for some d € AT, Ba(d) is not uniquely determined, then we choose nondeterministically
one possible value.

We can now define the database state B = 3s(Z) corresponding to Z:

o AF = AT\ (Uperg (4(R)F UUpep, (4(D))F).
e For each symbol X € s UAs URs U Ds, XZ = Ba((¢(X))?).

It is not difficult to see, that if Z is a model of ¢(S), then B defined in such a way is a legal
database state for § with active domain Jpep (4(D))?. O
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The following theorem allows us to reduce reasoning on ER schemata to finite model
reasoning on ALUNI knowledge bases.

Theorem 4.9 Let S be an ER schema, E, E' be two entities in S, and $(S) be the trans-
lation of §. Then the following holds:

1. E is satisfiable in S if and only if $(S) [Fr ¢(E) < L.
2. E inherits from E' in S if and only if $(S) =5 ¢(E) = $(E').

Proof. (1) “=” Let B be a legal database state with E® # (). By part 1 of Proposition 4.8,
as(B) is a finite model of ¢(S) in which (p(F))*sB) £ .

“<" Let ¢(F) be finitely consistent in ¢(S). By Lemma 4.7 there is a finite relation-
descriptive model Z of ¢(S) with ¢(E)T # (). By part 2 of Proposition 4.8, Bs(Z) is a
database state legal for S in which E® # ().

(2) “=7 Let ¢(S) Er $(E) = $(E"). Then ¢p(E) N —¢(E') is finitely consistent in ¢(S).
By Lemma 4.7 there is a finite relation-descriptive model Z of ¢(S) with d € (¢(E))* and
d & (p(E"))*, for some d € AT. By part 2 of Proposition 4.8, 8s(Z) is a database state legal
for S in which d € EB and d ¢ E'B. Therefore E does not inherit from E'.

“<” Assume FE does not inherit from E’. Then there is a database state B legal
for S where for an instance e € EP we have e ¢ E'8. By part 1 of Proposition 4.8,
as(B) is a finite model of ¢(S) in which e € (¢(E))*s®B) and e ¢ (p(E'))*sB). Therefore

P(S) [Fr #(E) 2 $(E"). O

Theorem 4.9 allows us to effectively exploit the reasoning methods that have been devel-
oped for ALUNI in order to reason on ER schemas. The complexity of the resulting method
for reasoning on ER schemata is exponential. Observe however, that the known algorithms
for reasoning on ER schemata are also exponential (Calvanese & Lenzerini, 1994b), and
that the precise computational complexity of the problem is still open.

Moreover, by exploiting the correspondence with ALUNI, it becomes possible to add to
the ER model (and more in general to semantic data models) several features and modeling
primitives that are currently missing, and which have been considered important, and fully
take them into account when reasoning over schemata. Such additional features include for
example the possibility to specify and use arbitrary boolean combinations of entities, and
to refine properties of entities along ISA hierarchies.

5. Object-Oriented Data Models

Object-oriented data models have been proposed with the goal of devising database for-
malisms that could be integrated with object-oriented programming systems (Kim, 1990).
They are the subject of an active area of research in the database field, and are based on
the following features:

e They rely on the notion of object identifier at the extensional level (as opposed to
traditional data models which are value-oriented) and on the notion of class at the
intensional level.
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e The structure of the classes is specified by means of typing and inheritance.

As in the previous section, we present the common basis of object-oriented data models
with other class-based formalisms by introducing a language for specifying object-oriented
schemata and show that such schemata can be correctly represented as ALUNI knowledge
bases. In our analysis, we concentrate our attention on the structural aspects of object-
oriented data models. One of the characteristics of the object-oriented approach is to provide
mechanisms for specifying also the dynamic properties of classes and objects, typically
through the definition of methods associated to the classes. Those aspects are outside the
scope of our investigations. Nevertheless, we argue that general techniques for schema level
reasoning, in particular, type consistency and type inference, can be profitably exploited for
restricted forms of reasoning on methods (Abiteboul, Kanellakis, Ramaswamy, & Waller,
1992).

5.1 Syntax of an Object-Oriented Model

Below we define a simple object-oriented language in the style of most popular models
featuring complex objects and object identity. Although we do not refer to any specific
formalism, our model is inspired by the ones presented by Abiteboul and Kanellakis (1989),
Hull and King (1987).

Definition 5.1 An object-oriented schema is a tuple S = (Cs, As, Ds), where:

e (s is a finite set of class names, denoted by the letter C.
e Ags is a finite set of attribute names, denoted by the letter A.

e Dg is a finite set of class declarations of the form
Class C' is-a C,...,Cy type-is T,
in which T denotes a type expression built according to the following syntax:

T — C]
Union T1,..., T}, End |
Set-of T |
Record Ay:Th, ..., Ag: Ty End.

Ds contains exactly one such declaration for each class C' € Cg. "

Example 5.2 Figure 7 shows a fragment of the object-oriented schema corresponding to
the KEE knowledge base of Figure 2. "

Each class declaration imposes constraints on the instances of the class it refers to. The
is-a part of a class declaration allows one to specify inclusion between the sets of instances of
the involved classes, while the type-is part specifies through a type expression the structure
assigned to the objects that are instances of the class.

222



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

Class Teacher type-is Class Course type-is

Union Professor, GradStudent Record

End enrolls: Set-of Student,

taughtby: Teacher

Class GradStudent is-a Student type-is End

Record

degree: String
End

Figure 7: An object-oriented schema

5.2 Semantics of an Object-Oriented Model

The meaning of an object-oriented schema is given by specifying the characteristics of an
instance of the schema. The definition of instance makes use of the notions of object
identifier and value.

Let us first characterize the set of values that can be constructed from a set of symbols,
called object identifiers. Given a finite set O of symbols denoting real world objects, the set
Vo of values over O is inductively defined as follows:

e O CVo.

o If uy,...,v5 € Vo then {uy,..., v} € Vo.

o Ifvy,...,v € Vo then [A1:v1,..., Ax:vi] € Vo.

e Nothing else is in Vp.

A database instance J of a schema S = (Cs, As, Ds) is constituted by

e a finite set O7 of object identifiers;
e a mapping 77 assigning to each class in Cs a subset of O7;
e a mapping p” assigning a value in V7 to each object in 07,

Although the set V7 of values that can be constructed from a set O of object identifiers
is infinite, for a database instance one needs only to consider a finite subset of V7.

Definition 5.3 Given an object-oriented schema S and an instance J of S, the set V7 of
active values with respect to J is constituted by:

e the set O7 of object identifiers.

e the set of values assigned by p7 to the elements of @7, including those values that
are not explicitly associated with object identifiers, but are used to form other values.

The interpretation of type expressions in J is defined through an interpretation func-
tion -7 that assigns to each type expression a subset of V7 such that the following condi-
tions are satisfied:
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(Union T1,...,T; End)Y = 77 U --- uT/
(Set-of T)7 = {{v1,...,vk} | k> 0,0, € T, fori € {1,...,k}}

(RecordA1:T1,...,Ak:TkM)‘7 = {[[Al:vl,...,Ah:vh]Hth,
v; € TY, fori e {1,...,k},
vj € Vor, for je{k+1,...,h}}.

Notice that the instances of type record may have more components than those specified in
the type of the class. Thus we are using an open semantics for records, which is typical of
object-oriented data models (Abiteboul & Kanellakis, 1989).

In order to characterize object-oriented data models we consider the instances that are
admissible for the schema.

Definition 5.4 Let S = (Cs, As,Ds) be an object-oriented schema. A database instance
J of S is said to be legal (with respect to S) if for each declaration

Class C is-a C1,...,C), type-is T
in Dg, it holds that CY C CY for each i € {1,...,n}, and that p7 (C7) C TV, .

Therefore, for a legal database instance, the type expressions that are present in the
schema determine the (finite) set of active values that must be considered. The construction
of such values is limited by the depth of type expressions.

5.3 Relationship between Object-Oriented Schemata and ALUNI

We establish now a relationship between ALUNI and the object-oriented language presented
above. This is done by providing a mapping from object-oriented schemata into ALUNI
knowledge bases. Since the interpretation domain for ALUNI knowledge bases consists of
atomic objects, whereas each instance of an object-oriented schema is assigned a possibly
structured value (see the definition of V), we need to explicitly represent some of the
notions that underlie the object-oriented language. In particular, while there is a corre-
spondence between concepts and classes, one must explicitly account for the type structure
of each class. This can be accomplished by introducing in ALUNI concepts AbstractClass,
to represent the classes, and RecType and SetType to represent the corresponding types.
The associations between classes and types induced by the class declarations, as well as the
basic characteristics of types, are modeled by means of roles: the (functional) role value
models the association between classes and types, and the role member is used for specifying
the type of the elements of a set. Moreover, the concepts representing types are assumed to
be mutually disjoint, and disjoint from the concepts representing classes. These constraints
are expressed by adequate inclusion assertions that will be part of the knowledge base we
are going to define.

We first define the function ¢ that maps each type expression into an ALUNZ concept
expression as follows:

e Every class C is mapped into an atomic concept 1(C).

e Every type expression Union 77, ...,T} End is mapped into ¢(77) U --- U (T}).
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e Every type expression Set-of 7' is mapped into SetType N Vmember.1)(T').

e Every attribute A is mapped into an atomic role ¥ (A), and every type expression
Record Aq:T1,...,A;: T, End is mapped into

RecType M Vi(Aq).4p(Ty) N 3:11/)(A1) M-I
Vip(Ap)p(Ty) N 37 p(Ag).

Using ¢ we define the ALUNI knowledge base corresponding to an object-oriented schema.

Definition 5.5 The ALUNI knowledge base ¢(S) = (A, P, T) corresponding to the object-
oriented schema § = (Cs, As, Dgs) is obtained as follows:

e A = {AbstractClass, RecType, SetType} U {¢(C) | C € Cs}.
o P = {value,member} U {y(A) | A € As}.

e 7 cousists of the following assertions:

AbstractClass =< J~lvalue
RecType =< Vvalue.l
SetType = Vvalue.l [N1—-RecType

and for each class declaration
Class C' is-a C1,...,C), type-is T
in Dg, an inclusion assertion

$(C) =< AbstractClassM(Cy) M --- M (Cy) N Vvalue.)(T).

From the above translation we can observe that inverse roles are not necessary for the
formalization of object-oriented data models. Indeed, the possibility of referring to the
inverse of an attribute is generally ruled out in such models. However, this strongly limits
the expressive power of the data model, as pointed out in recent papers (see for example
Albano, Ghelli, & Orsini, 1991; Cattell, 1994). Note also that the use of number restrictions
is limited to the value 1, which corresponds to existence constraints and functionality,
whereas union is used in a more general form than for example in the KEE system.

Example 5.2 (cont.) We illustrate the translation on the fragment of object-oriented
schema in Figure 7. The corresponding ALUNI knowledge base is shown in Figure 8. "

225



CALVANESE, LENZERINI, & NARDI

K =(A,P,T), where

A = {AbstractClass,RecType, SetType, String,
Course, Teacher, Professor, Student, GradStudent},

P = {value,member, enrolls, taughtby, degree},

and the set T of assertions consists of:

Course j AbstractClassl
Vvalue.(RecType 3= lenrolls M 3= taughtby Il
Venrolls.(SetType 1 Vmember.Student) M Vtaughtby.Teacher)
Teacher =< AbstractClassll Vvalue.(GradStudent LI Professor)
GradStudent j AbstractClass 1 Student I
Vvalue.(RecType [1Vdegree.String M 3~ 'degree)
AbstractClass =< I 'value
RecType = Vvalue.l
SetType j Vvalue.l M —RecType

Figure 8: The ALUNI knowledge base corresponding to the object-oriented schema in Fig-
ure 7

Below we discuss the effectiveness of the translation . First of all observe that the
ALUNI knowledge base ¢(S) resulting from the translation of an object-oriented schema S
may admit models that do not have a direct counterpart among legal database instances
of §. More precisely, both an interpretation of 1(S) and a database instance of S can be
viewed as a directed labeled graph: In the case of an interpretation, the nodes are domain
individuals and the arcs are labeled with roles. In the case of a database instance, the
nodes are either object identifiers or active values, and an arc either connects an object
identifier to its associated value (in which case it is labeled with value), or is part of the
sub-structure representing a set or record value (in which case it is labeled with member or
with an attribute, in accordance with the type of the value). In a legal database instance
of §, a value v is represented by a sub-structure that has the form of a finite tree with v as
root, set and record values as intermediate nodes, and objects identifiers as leaves. Clearly,
such a substructure does not contain cycles. Conversely, in a model of 1(S), there may
be cycles involving only nodes that are instances of SetType and RecType and in which
all roles are different from value. We call such cycles bad. A model containing bad cycles
cannot be put directly in correspondence with a legal database instance. Also, due to the
open semantics of records one cannot adopt a different translation for which bad cycles in
the model are ruled out.

Example 5.6 Consider the object-oriented schema S, containing a single class declaration

Class C' type-is Record a; : Record a9 : Record as : C End End End
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C

RecType RecType

Figure 9: A model containing cycles

which is translated to

C < AbstractClass I
Vvalue.(RecType M 3='a; MVa;.(RecType M3~ ay M Vay.(RecType M 3= taz MVas.C))).

Figure 9 shows a model of 1(S) represented as a graph. For clarity, we have named the
instances of C, and hence of AbstractClass, with o and the instances of RecType with
v. Observe the two different types of cycles in the graph. The cycle involving individuals
02,3, v4, and vs does not cause any problems since it contains an arc labeled with value,
which is not part of the structure constituting a complex value. In fact, vs represents the
record value [Jai: [Jaz: [ag: 02]]|]. On the other hand, due to the bad cycle involving v; and
vy, individual v1 represents (together with oo connected via as to v1) a record of infinite
depth. L]

We can nevertheless establish a correspondence from finite models of 1(S) possibly
containing bad cycles to legal instances of the object-oriented schema S. This can be
achieved by unfolding the bad cycles in a model of ¥(S) to infinite trees. Obviously, the
unfolding of a cycle into an infinite tree, generates an infinite number of nodes, which
would correspond to an infinite database state. However, we can restrict the duplication of
individuals to those that represent set and record values, and thus are instances of SetType
and RecType. The instances of AbstractClass, instead, are not duplicated in the process
of unfolding, and therefore their number remains finite. Moreover, since the set of possible
active values associated with each object identifier is bound by the depth of the schema, we
can in fact block the unfolding of bad cycles to the finite tree of depth equal to the depth
of the schema.

Let us first formally define the depth of an object-oriented schema S.

Definition 5.7 For a type expression T' we define depth(T) inductively as follows:

0, T = C.
) max;<i<p(depth(T;)), if T'= Union T, ..., T} End.
depth(T) =3 | 4 depth (), if T = Set-of T".

1 + max;<;<k(depth(T;)), if T = Record A;:T1,...,Ay: T End.

The depth of an object-oriented schema S is defined as the maximum of depth(T) for a type
expression 7" in §. "
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value 0 a1 0 as 1 ay 1 a2 2 a1
oy . — - v

¢ RecType

RecType RecType

as

RecType RecType ecType

as

Figure 10: The unfolded version of the model in Figure 9

We can now introduce the notion of unfolding of an ALUNI interpretation.

Definition 5.8 Let S be an object-oriented schema, 1(S) its translation in ALUNI and Z
a finite interpretation of ¢(S). We call unfolded version of Z the interpretation obtained
from 7 as follows: For each individual v that is part of a bad cycle, unfold the bad cycle
into an (infinite) tree having v as root, by generating new individuals only for the instances
of RecType and SetType. For a nonnegative integer m, we call m-unfolded version of I,
denoted as Zj,,, the interpretation obtained by truncating at depth m each infinite tree
generated in the process of unfolding. "

Example 5.6 (cont.) Figure 10 shows the unfolded version of the model in Figure 9.
Notice that only the bad cycle has been unfolded to an infinite tree, and that all arcs labeled
with ag lead to 09, which is an instance of AbstractClass and has not been duplicated.

The correctness of ¢(S) is sanctioned by the following proposition.

Proposition 5.9 For every object-oriented schema S of depth m, there exist mappings:

1. as from instances of S into finite interpretations of ¥(S) and ay from active values
of instances of S into domain elements of the finite interpretations of ¥(S) such that:
For each legal instance J of S, as(J) is a finite model of ¥ (S), and for each type
expression T of S and each v € V7, v € TV if and only if ay(v) € (p(T))*s(I).

2. Bs from finite interpretations of (S) into instances of S and Py from domain el-
ements of the m-unfolded versions of the finite interpretations of (S) into active
values of instances of S, such that: For each finite model Z of ¥(S), Bs(Z) is a legal
instance of S, and for each concept (T, which is the translation of a type expression
T of S and each d € ATm | d € ((T))Em if and only if By(d) € TAsD).

Proof. (1) Given a database instance J we define an interpretation ags(J) of (S) as
follows:
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e ay is a function mapping every element of V7 into a distinct element of A%s(7).,
Therefore A*(7) is defined as the set of elements oy (v) such that v € V7. Moreover
we denote with Ajg, Ayec, and Age the elements of A*s(7) corresponding to object
identifiers, record and set values, respectively.

e The interpretation of atomic concepts is defined as follows:

($(0))*sY) = {ay(o) |o€ T (O)},

for every ¢ (C) corresponding to a class name C in S

AbstractClass®s(T) = Ay
RecType®s 7)) = Ayec
SetTypeaS(j) = Aget

e The interpretation of atomic roles is defined as follows:

(p(A)2sT) = {(di,do) | di € Apec and ay,'(d1) = [..., A: oy, (do), .. ]},
for every ¢(A) corresponding to an attribute name A in §
member®s(7) = {(dy,ds) | d; € Ay and ayt(dr) = {... apt (d2), .. [}
valueo‘S(j) = {(dl,dQ) | (a;l(dl),agl(dz)) € pj}

We prove that for each type T and each v € V7, v € TY if and only if ay(v) €
(p(T))*s(T). The first part of the thesis then follows from the definition of as(J). The
proof is by induction on the structure of the type expression.

Base case: T = C (i.e., T is a class name). If o € C7 then ay(0) € (¢(C))*s(7), and
vice-versa if d € (1(C))*(7) then a;l(d) €Y.

Inductive case: T = Record Ay:Ty,...,Ar:Tr End and ¢(T') = RecType N
Vap(Ar)ap(Ty) M 371p(Ay) M- 1 Vap(Ag)ap(T) N 3= 14p(Ag). We assume that v € T
iff ay(v) € ((T;))*s), for i € {1,...,k}, and show that v € TV iff ay(v) € (h(T))*s),

Suppose that v € T, ie., v = [Ay:v1,...,Ap:vp]] with & > k and v; € Tij for
i € {1,...,k}. By induction hypothesis oy (v;) € ((T;))*s(), for i € {1,...,k}, and by
definition of ag, ay(v) € RecType®sT), (ay(v), ay(v;)) € (P(4;))*) for i € {1,...,k},
and all roles 1(A) corresponding to attribute names are functional. Therefore, ay(v) €
(W(T))2s (),

Conversely, suppose that d = ay(v) € ((T))*57). Then, foreach i € {1,...,k} thereis
exactly one d; € A7) such that (d,d;) € ((4;))*s7), and moreover d; € (1(T;))*s).
By definition of as we have v = [Aj:v1,...,Ap:vp), with A > k and v; = a;l(di), for
i € {1,...,k}. By induction hypothesis v; € Tij, for i € {1,...,k}, and therefore v €
(Record A1: Tl, ce ,Ak: Tk M)j

The cases for T = Union T1,...,T; End and T = Set-of 7" can be treated analogously.

(2) Given a finite model Z of ¢)(S) of depth m, we define a legal database instance 8s(Z)
as follows:

e [y is a function mapping every element of AZim into a distinct element of Vs (1) such
that the following conditions are satisfied:

— 08s() C Vss(z) is the set of elements By (d) such that d € AbstractClass®im.
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— If d € RecTypeli™, (d,d;) € ((A;))*™, for i € {1,...,k}, and there is no
other individual d’ € AZim and attribute A’ such that (d,d’) € ()(A’))T™, then
By(d) = [Ar: By(dr), ..., Ag: By (di)]-

— If d € SetTypellm, (d,d;) € member?m for i € {1,...,k}, and there is no
other individual d € ATim such that (d,d') € (member)fim, then fBy(d) =
{By(d1),...,By(dk)}

e For every class name C, W’BS(I)(C) = {Bv(d) | d € (y(C))FIm}.
PY p/BS(I) = {(0,1)) | BV(dl) =0, ﬂv(dQ) =, and (dl,dg) S valueI‘m}.

We first prove that for each concept 1(7T'), which is the translation of a type expression
T of S, and each d € AZim, d € (¢(T))%m if and only if By(d) € TP, The proof is
by induction on the structure of the concept expression. Again for the inductive part we
restrict our attention to the case of record types.

Base case: T = C (i.e., ¢(T) is an atomic concept). If d € (p(C))Fm then By(d) €
CPs@) and vice-versa if o € C#(D) then B, (0) € (y(C))Fm.

Inductive case: 1 (T) = RecType M Vtp(A1).1p(Ty) M I7p(Ar) M-+ 11 Vap(Ag).1h(Ty) M
3=L4(Ag) and T = Record A;:Ti,...,Ap: T End. We assume that d € (4(T}))5m iff
By(d) € TP for i € {1,...,k}, and show that d € ((T))%m iff By(d) € TPsD.

Suppose that d € (4(T))F™. Then d € RecTypell™ and for each i € {1,...,k} there
is an individual d; such that d; € (¢(T;))*™ and (d,d;) € (¥(4;))%™. By construction
By(d) = [Ai:v1,...,Ap:vp] for some h > k. Moreover, by induction hypothesis By (d;) €
Ti’gs(z) and therefore 3y (d) € TP,

Conversely, suppose that Gy (d) € T?D) | ie., By(d) = [Ar:v1,..., Ap:vp]] with b > k
and v; € fl“iﬂ‘S(I) for i € {1,...,k}. By induction hypothesis d; = ;' (v;) € (¢(T3))Fm,
for i € {1,...,k}, and by definition of By, d € RecTypel™ and (d,d;) € (p(A;))%m,
for i € {1,...,k}. Since all roles ¢(A) corresponding to attribute names are functional,
d € ((T))m.

It remains to show that for each declaration

Class C is-a C1,...,C), type-is T

in D, (a) CPs(D) C Cf‘g(z) for each i € {1,...,n}, and (b) pPs@(CPs(D)) C TFs(D),

(a) follows from the fact that ¢(S) contains the assertion 1 (C) =< (Cy) M --- M(Cy)
and from the definition of 7#s().

(b) follows from what we have shown above and from the fact that Z,,, still satisfies the
assertion ¢(C') < AbstractClass M Vvalue.t)(T). In fact, for some d € (1(C))? let d' be
the unique individual such that (d,d’) € value’. Since Z is a model of 1(S), d' € (y(T))~.
We argue that also d’ € ((T))%m. If d' is not part of a bad cycle in Z, then Z and
I} coincide on the sub-structure rooted at d" and formed by the individuals reached via
member and roles corresponding to attributes, and we are done. Otherwise, in Z,, such
sub-structure is expanded into a finite tree. Since by construction the depth of this tree
is at least depth(T'), and the connections between individuals in Z are preserved in Zj,,,, it
follows that d' € (y(T))%m. O

230



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

The basic reasoning services considered in object-oriented databases are subtyping
(check whether a type denotes a subset of another type in every legal instance) and type
consistency (check whether a type is consistent in a legal instance). Based on Proposi-
tion 5.9, we can show that these forms of reasoning are fully captured by finite concept
consistency and finite concept subsumption in ALUNI knowledge bases.

Theorem 5.10 Let S be an object-oriented schema, T, T" two type expressions in S, and
P(8S) the translation of S. Then the following holds:

1. T is consistent in S if and only if P(S) W5 p(T) < L.
2. T is a subtype of T' in S if and only if Y(S) |=¢ P(T') = P(T").

Proof. The proof is analogous to the proof of Theorem 4.9, but it makes use of Proposi-
tion 5.9 instead of Proposition 4.8. O

Again, the correspondence with ALUNI established by Theorem 5.10 allows us to make
use of the reasoning techniques developed for ALUNI to reason on object-oriented schemas.
Observe that reasoning in object-oriented models is already PSPACE-hard (Bergamaschi
& Nebel, 1994) and thus the known algorithms are exponential. However, by resorting
to ALUNI, it becomes possible to take into account for reasoning also various extensions
of the object-oriented formalism. Such extensions are useful for conceptual modeling and
have already been proposed in the literature (Cattell & Barry, 1997). First of all, the same
considerations developed for the ER model with regard to the use of arbitrary boolean
constructs on classes can be applied also in the object-oriented setting, which provides
disjunction but does not admit any form of negation. Additional features that can be added
to object oriented models are inverses of attributes, cardinality constraints on set-valued
attributes, and more general forms of restrictions on the values of attributes.

6. Related Work

In this section we briefly discuss recent results on the correspondence between class-based
formalisms and on techniques for reasoning in ALUNI and in class-based representation
formalisms.

6.1 Relationships among Class-Based Formalisms

In the past there have been several attempts to establish relationships among class-based
formalisms. Blisius, Hedstiick, and Rollinger (1990), Lenzerini, Nardi, and Simi (1991)
carry out a comparative analysis of class-based languages and attempt to provide a unified
view. The analysis makes it clear that several difficulties arise in identifying a common
framework for the formalisms developed in different areas. Some recent papers address this
problem. For example, an analysis of the relationships between frame-based languages and
types in programming languages has been carried out by Borgida (1992), while Bergamaschi
and Sartori (1992), Piza, Schewe, and Schmidt (1992) use frame-based languages to enrich
the deductive capabilities of semantic and object-oriented data models.
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Artale, Cesarini, and Soda (1996) study reasoning in object-oriented data models by
presenting a translation to DLs in the style of the one discussed in Section 5. However, the
proposed translation is applicable only in the case where the shema contains no recursive
class declarations. This limitation is not present in the work by Bergamaschi and Nebel
(1994), where a formalism derived from DLs is used to model complex objects and an
algorithm for computing subsumption between classes is provided.

A recent survey on the application of DLs to the problem of data management has been
presented by Borgida (1995) . The application to the task of data modeling of reasoning
techniques derived from the correspondences presented in Sections 4 and 5 is discussed in
more detail by Calvanese, Lenzerini, and Nardi (1998).

Recently, there have also been proposals to integrate the object-oriented and the logic
programming paradigms (Kifer & Wu, 1993; Kifer, Lausen, & Wu, 1995). These proposals
are however not directly related to the present work, since they aim at providing mechanisms
for computing with structured objects, rather than means for reasoning over a conceptual
(object-oriented) representation of the domain of interest.

6.2 Reasoning in ALUNI and in Class-Based Representation Formalisms

ALUNI is equipped with techniques to reason both with respect to unrestricted and with
respect to finite models. We briefly sketch the main ideas underlying reasoning in both

contexts. A detailed account of the reasoning techniques has been carried out by Calvanese
(1996¢).

6.2.1 UNRESTRICTED MODEL REASONING

We remind that reasoning on a knowledge base with respect to unrestricted models amounts
to check either concept consistency, i.e., determine whether the knowledge base admits a
(possibly infinite) model in which a given concept has a nonempty extension, or concept
subsumption, i.e., determine whether the extension of one concept is contained in the ex-
tension of another concept in every model (including the infinite ones) of the knowledge
base.

The method to reason in ALUNI with respect to unrestricted models exploits a well known
correspondence between DLs and Propositional Dynamic Logics (PDLs) (Kozen & Tiuryn,
1990), which are a class of logics specifically designed to reason about programs. The
correspondence, which has first been pointed out by Schild (1991), relies on a substantial
similarity of the interpretative structures of both formalisms, and allows one to exploit the
reasoning techniques developed for PDLs to reason in the corresponding DLs. In particular,
since ALUNT, the description language of ALUNI, includes the construct for inverse roles,
for the correspondence one has to resort to converse-PDL, a variant of PDL that includes
converse programs (Kozen & Tiuryn, 1990). However, because of the presence of number
restrictions in ALUNT which have no direct correspondence in PDLs, we cannot rely on
traditional techniques for reasoning in PDLs. Recently, encoding techniques have been
developed, which allow one to eliminate number restrictions from a knowledge base while
preserving concept consistency and concept subsumption (De Giacomo & Lenzerini, 1994a).
The encoding is applicable to knowledge bases formulated in expressive variants of DLs, and
in particular it can be used to reduce unrestricted model reasoning on ALUNI knowledge
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bases (both concept consistency and concept subsumption) to deciding satisfiability of a
formula of converse-PDL. Reasoning in converse-PDL is decidable in EXPTIME (Kozen &
Tiuryn, 1990), and since the encoding is polynomial (De Giacomo & Lenzerini, 1994a) we
obtain an EXPTIME decision procedure for unrestricted concept consistency and concept
subsumption in ALUNI knowledge bases. A simplified form of the encoding, which can be
applied to decide unrestricted concept consistency in ALUNI has also been presented by
Calvanese et al. (1994).

6.2.2 FINITE MODEL REASONING

We remind that reasoning on a knowledge base with respect to finite models amounts to
check either finite concept consistency or finite concept subsumption, for which only the
finite models of the knowledge base must be considered.

For finite model reasoning, the techniques based on a reduction to reasoning in PDLs
are not applicable. Indeed, the PDL formula corresponding to an ALUNI knowledge base
contains constructs both for converse programs (corresponding to inverse roles) and for
functionality of direct and inverse programs, and thus is a formula of a variant of PDL
which does not have the finite model property (Vardi, 1985). However, after encoding
functionality, one obtains a converse-PDL formula, and since converse-PDL has the finite
model property (Fischer & Ladner, 1979), this formula is satisfiable if and only if it is
finitely satisfiable. This shows that the encoding of number restrictions (and in particular
the encoding of functionality), while preserving unrestricted satisfiability does not preserve
finite satisfiability (De Giacomo & Lenzerini, 1994a).

For finite model reasoning in ALUNI one can adopt a different technique, which is based
on the idea of separating the reasoning process in two distinct phases (see Calvanese, 1996c,
for full details). The first phase deals with all constructs except number restrictions, and
builds an “expanded knowledge base” in which these constructs are embedded implicitly
in the concepts and roles. In the second phase the assertions involving number restrictions
are used to derive from this expanded knowledge base a system of linear inequalities. The
system is defined in such a way that its solutions of a certain type (acceptable solutions) are
directly related to the finite models of the original knowledge base. In particular, from each
acceptable solution one can directly deduce the cardinalities of the extensions of all concepts
and roles in a possible finite model. The proposed method allows one to establish for ALUNI
EXPTIME decidability for finite concept consistency and for special cases of finite concept
subsumption. By resorting to a more complicated encoding one can obtain a 2EXPTIME
decision procedure for finite concept subsumption in ALUNI in general (Calvanese, 1996a,
1996¢).

Reasoning with respect to finite models has also been investigated in the context of de-
pendency theory in databases. As shown by Casanova, Fagin, and Papadimitriou (1984) for
the relational model, when functional and inclusion dependencies interact, the dependency
implication problem in the finite case differs from the one in the unrestricted case. While
the implication problem for arbitrary functional and inclusion dependencies is undecidable
(Chandra & Vardi, 1985; Mitchell, 1983), for functional and unary inclusion dependencies
it is solvable in polynomial time, both in the finite and the unrestricted case (Cosmadakis
et al., 1990).
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Consistency with respect to finite models of schemata expressed in an enriched Entity-
Relationship model with cardinality constraints has been shown decidable in polynomial
time by Lenzerini and Nobili (1990). Calvanese and Lenzerini (1994b) extend the decid-
ability result to include also ISA relationships, and Calvanese and Lenzerini (1994a) show
EXPTIME decidability of reasoning in an expressive object-oriented model. An algorithm
for computing a refinement ordering for types (the analogue to a concept hierarchy) in the
framework of the Oy object oriented model in discussed by Lecluse and Richard (1989).

Reasoning in the strict sublanguage of ALUNI obtained by omitting inverse roles and
number restrictions is already EXPTIME-hard (Calvanese, 1996b). Therefore, the known
algorithms for deciding unrestricted concept consistency and subsumption and finite concept
consistency are essentially optimal.

7. Conclusions

We have presented a unified framework for representing information about class structures
and reasoning about them. We have pursued this goal by looking at various class-based
formalisms proposed in different fields of computer science, namely frame based systems
used in knowledge representation, and semantic and object-oriented data models used in
databases, and rephrasing them in the framework of description logics. The resulting de-
scription logic, called ALUNI includes a combination of constructs that was not addressed
before, although all of the constructs had previously been considered separately.

The major achievement of the paper is the demonstration that class-based formalisms
can be given a precise characterization by means of a powerful fragment of first-order logic,
which thus can be regarded as the essential core of the class-based representation formalisms
belonging to all three families mentioned above. This has several consequences.

First of all, any of the formalisms considered in the paper can be enriched with constructs
originating from other formalisms and treated in the general framework. In this sense, the
work reported here not only provides a common powerful representation formalism, but
may also contribute to significant developments for the languages belonging to all the three
families. For example, the usage of inverse roles in concept languages greatly enhances the
expressivity of roles, while the combination of ISA, number restrictions, and union enriches
the reasoning capabilities available in semantic data models.

Secondly, the comparison of class-based formalisms from the fields of knowledge rep-
resentation and conceptual data modeling makes it feasible to address the development of
reasoning tools to support conceptual modeling (Calvanese et al., 1998). In fact, reason-
ing capabilities become especially important in complex scenarios such as those arising in
heterogenous database applications and Data Warehousing. This line of work was among
the motivations for developing systems based on expressive description logics (Horrocks,
1998; Horrocks & Patel-Schneider, 1999), and has lead to further extending the language of
description logics to support Information Integration and, more specifically, the conceptual
modeling of Data Warehouses (Calvanese, De Giacomo, Lenzerini, Nardi, & Rosati, 1998).

234



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

References

Abiteboul, S., Kanellakis, P., Ramaswamy, S., & Waller, E. (1992). Method schemas. Tech.
rep. CS-92-33, Brown University. An earlier version appeared in Proc. of the 9th
Symp. on Principles of Database Systems PODS-90.

Abiteboul, S., & Kanellakis, P. (1989). Object identity as a query language primitive. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp- 159-173.

Abrial, J. R. (1974). Data semantics. In Klimbie, J. W., & Koffeman, K. L. (Eds.), Data
Base Management, pp. 1-59. North-Holland Publ. Co., Amsterdam.

Albano, A., Ghelli, G., & Orsini, R. (1991). A relationship mechanism for strongly typed
Object-Oriented database programming languages. In Proceedings of the Seven-
teenth International Conference on Very Large Data Bases (VLDB’91), pp. 565-575
Barcelona.

Artale, A., Cesarini, F., & Soda, G. (1996). Describing database objects in a concept
language environment. IEEE Transactions on Knowledge and Data Engineering, 8(2),
345-351.

Atzeni, P., & Parker Jr., D. S. (1986). Formal properties of net-based knowledge represen-
tation schemes. In Proceedings of the Second IEEE International Conference on Data
Engineering (ICDE’86), pp. 700-706 Los Angeles.

Baader, F. (1991). Augmenting concept languages by transitive closure of roles: An al-
ternative to terminological cycles. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI’91) Sydney, Australia.

Baader, F. (1996). Using automata theory for characterizing the semantics of terminological
cycles. Annals of Mathematics and Artificial Intelligence, 18, 175-219.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, California.

Bergamaschi, S., & Nebel, B. (1994). Acquisition and validation of complex object database
schemata supporting multiple inheritance. Applied Intelligence, 4 (2), 185-203.

Bergamaschi, S., & Sartori, C. (1992). On taxonomic reasoning in conceptual design. ACM
Transactions on Database Systems, 17(3), 385-422.

Blasius, K. H., Hedstiick, U., & Rollinger, C.-R. (Eds.). (1990). Sorts and Types in Artificial
Intelligence, Vol. 418 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

Borgida, A. (1992). From type systems to knowledge representation: Natural semantics
specifications for description logics. Journal of Intelligent and Cooperative Information
Systems, 1(1), 93-126.

Borgida, A. (1995). Description logics in data management. IEEE Transactions on Knowl-
edge and Data Engineering, 7(5), 671-682.

235



CALVANESE, LENZERINI, & NARDI

Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82, 353-367.

Borgida, A., & Weddell, G. E. (1997). Adding functional dependencies to description logics.
In Proceedings of the Fifth International Conference on Deductive and Object-Oriented
Databases (DOOD’97).

Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-based
description languages. In Proceedings of the Fourth National Conference on Artificial
Intelligence (AAAI’8/), pp. 34-37.

Brachman, R. J., & Levesque, H. J. (Eds.). (1985). Readings in Knowledge Representation.
Morgan Kaufmann, Los Altos.

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., Alperin Resnick, L., & Borgida,
A. (1991). Living with CLASSIC: When and how to use a KL-ONE-like language. In
Sowa, J. F. (Ed.), Principles of Semantic Networks, pp. 401-456. Morgan Kaufmann,
Los Altos.

Bresciani, P., Franconi, E., & Tessaris, S. (1995). Implementing and testing expressive
description logics: Preliminary report. In Borgida, A., Lenzerini, M., Nardi, D., &
Nebel, B. (Eds.), Working Notes of the 1995 Description Logics Workshop, Technical
Report, RAP 07.95, Dipartimento di Informatica e Sistemistica, Universita di Roma
“La Sapienza”, pp. 131-139 Rome (Italy).

Buchheit, M., Donini, F. M., Nutt, W., & Schaerf, A. (1998). A refined architecture for
terminological systems: Terminology = schema + views. Artificial Intelligence, 99(2),
209-260.

Buchheit, M., Donini, F. M., & Schaerf, A. (1993). Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1, 109—
138.

Calvanese, D. (1996a). Finite model reasoning in description logics. In Aiello, L. C., Doyle,
J., & Shapiro, S. C. (Eds.), Proceedings of the Fifth International Conference on the
Principles of Knowledge Representation and Reasoning (KR’96), pp. 292-303. Morgan
Kaufmann, Los Altos.

Calvanese, D. (1996b). Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Wahlster, W. (Ed.), Proceedings of the Twelfth European Confer-
ence on Artificial Intelligence (ECAI’96), pp. 303-307. John Wiley & Sons.

Calvanese, D. (1996c). Unrestricted and Finite Model Reasoning in Class-
Based Representation Formalisms. Ph.D. thesis, Dipartimento di Infor-
matica e Sistemistica, Universitdh di Roma “La Sapienza”. Available at

http://www.dis.uniromal.it/pub/calvanes/thesis.ps.gz.

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., & Rosati, R. (1998). Description
logic framework for information integration. In Proceedings of the Sizth International

236



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp.
2-13.

Calvanese, D., & Lenzerini, M. (1994a). Making object-oriented schemas more expressive.
In Proceedings of the Thirteenth ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS’94), pp. 243-254 Minneapolis. ACM Press
and Addison Wesley.

Calvanese, D., & Lenzerini, M. (1994b). On the interaction between ISA and cardinality
constraints. In Proceedings of the Tenth IEEE International Conference on Data
Engineering (ICDE’94), pp. 204-213 Houston (Texas). IEEE Computer Society Press.

Calvanese, D., Lenzerini, M., & Nardi, D. (1994). A unified framework for class based rep-
resentation formalisms. In Doyle, J., Sandewall, E., & Torasso, P. (Eds.), Proceedings
of the Fourth International Conference on the Principles of Knowledge Representation
and Reasoning (KR’94), pp. 109-120 Bonn. Morgan Kaufmann, Los Altos.

Calvanese, D., Lenzerini, M., & Nardi, D. (1998). Description logics for conceptual data
modeling. In Chomicki, J., & Saake, G. (Eds.), Logics for Databases and Information
Systems, pp. 229-264. Kluwer Academic Publisher.

Casanova, M. A., Fagin, R., & Papadimitriou, C. H. (1984). Inclusion dependencies and
their interaction with functional dependencies. Journal of Computer and System
Sciences, 28(1), 29-59.

Cattell, R. G. G. (Ed.). (1994). The Object Database Standard: ODMG-93. Morgan Kauf-
mann, Los Altos. Release 1.1.

Cattell, R. G. G., & Barry, D. K. (Eds.). (1997). The Object Database Standard: ODMG
2.0. Morgan Kaufmann, Los Altos.

Chandra, A. K., & Vardi, M. Y. (1985). The implication problem for functional and inclusion
dependencies is undecidable. SIAM Journal on Computing, 14(3), 671-677.

Chen, P. P. (1976). The Entity-Relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

Cosmadakis, S. S., & Kanellakis, P. C. (1986). Functional and inclusion dependencies - A
graph theoretical approach. In Kanellakis, P. C., & Preparata, F. P. (Eds.), Advances
in Computing Research, Vol. 3, pp. 163-184. JAI Press.

Cosmadakis, S. S., Kanellakis, P. C., & Vardi, M. (1990). Polynomial-time implication
problems for unary inclusion dependencies. Journal of the ACM, 37(1), 15-46.

De Giacomo, G., & Lenzerini, M. (1994a). Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI’94), pp. 205-212. AAAI Press/The MIT
Press.

237



CALVANESE, LENZERINI, & NARDI

De Giacomo, G., & Lenzerini, M. (1994b). Concept language with number restrictions and
fixpoints, and its relationship with p-calculus. In Proceedings of the Eleventh European
Conference on Artificial Intelligence (ECAI’94), pp. 411-415.

Di Battista, G., & Lenzerini, M. (1993). Deductive entity-relationship modeling. IEEFE
Transactions on Knowledge and Data Engineering, 5(3), 439-450.

Donini, F. M., Lenzerini, M., Nardi, D., & Nutt, W. (1997). The complexity of concept
languages. Information and Computation, 134, 1-58.

Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., & Schaerf, A. (1994). Queries, rules and
definitions. In Foundations of Knowledge Representation and Reasoning. Springer-
Verlag.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A. (1996). Reasoning in description
logics. In Brewka, G. (Ed.), Principles of Knowledge Representation, Studies in Logic,
Language and Information, pp. 193-238. CSLI Publications.

Donini, F. M., Nardi, D., & Rosati, R. (1995). Non-first-order features in concept lan-
guages. In Gori, M., & Soda, G. (Eds.), Proceedings of the Fourth Conference of the
Italian Association for Artificial Intelligence (AI*IA’95), Vol. 992 of Lecture Notes in
Artificial Intelligence, pp. 91-102. Springer-Verlag.

Ferg, S. (1991). Cardinality concepts in entity-relationship modeling. In Proceedings of the
Tenth International Conference on the Entity-Relationship Approach (ER’91), pp.
1-30.

Fikes, R., & Kehler, T. (1985). The role of frame-based representation in reasoning. Com-
munications of the ACM, 28(9), 904-920.

Fischer, M. J., & Ladner, R. E. (1979). Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18, 194-211.

Grant, J., & Minker, J. (1984). Numerical dependencies. In Gallaire, H., Minker, J., &
Nicolas, J.-M. (Eds.), Advances in Database Theory II. Plenum Publ. Co., New York.

Hayes, P. J. (1979). The logic of frames. In Metzing, D. (Ed.), Frame Conceptions and Text
Understanding, pp. 46-61. Walter de Gruyter and Co. Republished in (Brachman &
Levesque, 1985).

Horrocks, 1. (1998). Using an expressive description logic: FaCT or fiction?. In Proceedings
of the Sizth International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), pp. 636—647.

Horrocks, 1., & Patel-Schneider, P. F. (1999). Optimizing description logic subsumption.
Journal of Logic and Computation, 9(3), 267-293.

Hull, R. B., & King, R. (1987). Semantic database modelling: Survey, applications and
research issues. ACM Computing Surveys, 19(3), 201-260.

238



UNIFYING CLASS-BASED REPRESENTATION FORMALISMS

Karp, P. D. (1992). The design space of knowledge representation systems. Tech. rep. SRI
AT Technical Note 520, SRI International, Menlo Park, CA.

Karp, P. D., Myers, K. L., & Gruber, T. (1995). The generic frame protocol. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI’95),
Vol. A, pp. 768-774 Montreal, Canada.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of Object-Oriented and frame-
based languages. Journal of the ACM, 42(4), 741-843.

Kifer, M., & Wu, J. (1993). A logic for programming with complex objects. Journal of
Computer and System Sciences, 47, 77-120.

Kim, W. (1990). Introduction to Object-Oriented Databases. The MIT Press.

Kim, W., & Lochovsky, F. H. (Eds.). (1989). Object-Oriented Concepts, Databases, and
Applications. ACM Press and Addison Wesley, New York.

Kozen, D., & Tiuryn, J. (1990). Logics of programs. In van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science — Formal Models and Semantics, pp. 789-840. Elsevier
Science Publishers (North-Holland), Amsterdam.

Lecluse, C., & Richard, P. (1989). Modeling complex structures in object-oriented databases.
In Proceedings of the Fighth ACM SIGACT SIGMOD SIGART Symposium on Prin-
ciples of Database Systems (PODS’89), pp. 362-369.

Lehmann, F. (Ed.). (1992). Semantic Networks in Artificial Intelligence. Pergamon Press,
Oxford.

Lenzerini, M., Nardi, D., & Simi, M. (Eds.). (1991). Inheritance Hierarchies in Knowledge
Representation and Programming Languages. John Wiley & Sons, Chichester.

Lenzerini, M., & Nobili, P. (1990). On the satisfiability of dependency constraints in entity-
relationship schemata. Information Systems, 15(4), 453-461.

Mitchell, J. C. (1983). The implication problem for functional and inclusion dependencies.
Information and Control, 56, 154-173.

Motschnig-Pitrik, R., & Mylopoulous, J. (1992). Classes and instances. Journal of Intelli-
gent and Cooperative Information Systems, 1(1).

Nebel, B. (1991). Terminological cycles: Semantics and computational properties. In Sowa,
J. F. (Ed.), Principles of Semantic Networks, pp. 331-361. Morgan Kaufmann, Los
Altos.

Piza, B., Schewe, K.-D., & Schmidt, J. W. (1992). Term subsumption with type construc-
tors. In Yesha, Y. (Ed.), Proceedings of the International Conference on Information
and Knowledge Management (CIKM’92), pp. 449-456 Baltimore.

239



CALVANESE, LENZERINI, & NARDI

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI’91), pp. 466-471 Sydney, Australia.

Schild, K. (1994). Terminological cycles and the propositional u-calculus. In Doyle, J.,
Sandewall, E., & Torasso, P. (Eds.), Proceedings of the Fourth International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR’94), pp.
509-520 Bonn. Morgan Kaufmann, Los Altos.

Schmidt-Schauf§, M., & Smolka, G. (1991). Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1), 1-26.

Sowa, J. F. (Ed.). (1991). Principles of Semantic Networks. Morgan Kaufmann, Los Altos.

Teorey, T. J. (1989). Database Modeling and Design: The Entity-Relationship Approach.
Morgan Kaufmann, Los Altos.

Thalheim, B. (1992). Fundamentals of cardinality constraints. In Pernoul, G., & Tjoa,
A. M. (Eds.), Proceedings of the Eleventh International Conference on the Entity-
Relationship Approach (ER’92), pp. 7-23. Springer-Verlag.

Thalheim, B. (1993). Fundamentals of the Entity Relationship Model. Springer-Verlag.

Vardi, M. Y. (1985). The taming of converse: Reasoning about two-way computations.
In Parikh, R. (Ed.), Proc. of the 4th Workshop on Logics of Programs, Vol. 193 of
Lecture Notes in Computer Science, pp. 413-424. Springer-Verlag.

Woods, W. A., & Schmolze, J. G. (1992). The KL-ONE family. In Lehmann, F. W. (Ed.),
Semantic Networks in Artificial Intelligence, pp. 133-178. Pergamon Press. Published
as a special issue of Computers € Mathematics with Applications, Volume 23, Number
2-9.

Ye, X., Parent, C., & Spaccapietra, S. (1994). Cardinality consistency of derived objects in
DOOD systems. In Loucopoulos, P. (Ed.), Proceedings of the Thirteenth International
Conference on the Entity-Relationship Approach (ER’9/4), Vol. 881 of Lecture Notes
in Computer Science, pp. 278-295 Manchester (UK). Springer-Verlag.

240



