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Abstract

We investigate the problem of reasoning in the propositional fragment of MBNF, the

logic of minimal belief and negation as failure introduced by Lifschitz, which can be con-

sidered as a unifying framework for several nonmonotonic formalisms, including default

logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We

characterize the complexity and provide algorithms for reasoning in propositional MBNF.

In particular, we show that skeptical entailment in propositional MBNF is �
p

3
-complete,

hence it is harder than reasoning in all the above mentioned propositional formalisms for

nonmonotonic reasoning. We also prove the exact correspondence between negation as

failure in MBNF and negative introspection in Moore's autoepistemic logic.

1. Introduction

Research in the formalization of commonsense reasoning has pointed out the need of for-
malizing agents able to reason introspectively about their own knowledge and ignorance
(Moore, 1985; Levesque, 1990). Modal epistemic logics have thus been proposed, in which
modalities are interpreted in terms of knowledge or belief. Generally speaking, the conclu-
sions an introspective agent is able to draw depend on both what she knows and what she
does not know. Hence, any such conclusion may be retracted when new facts are added to
the agent's knowledge. For this reason, many nonmonotonic modal formalisms have been
proposed in order to characterize the reasoning abilities of an introspective agent.

Among the nonmonotonic modal logics proposed in the literature, the logic of minimal
belief and negation as failure MBNF (Lifschitz, 1991, 1994) is one of the most studied for-
malisms (Chen, 1994; Bochman, 1995; Beringer & Schaub, 1993). Roughly speaking, such
a logic is built by adding to �rst-order logic two distinct modalities, a \minimal belief"
modality B and a \negation as failure" modality not . The logic thus obtained is char-
acterized in terms of a nice model-theoretic semantics. MBNF has been used in order to
give a declarative semantics to very general classes of logic programs (Lifschitz & Woo,
1992; Schwarz & Lifschitz, 1993; Inoue & Sakama, 1994), which generalize the stable model
semantics of negation as failure in logic programming (Gelfond & Lifschitz, 1988, 1990,
1991). Also, MBNF can be viewed as an extension of the theory of epistemic queries to
databases (Reiter, 1990), which deals with the problem of querying a �rst-order database
about its own knowledge. Due to its ability of expressing many features of nonmonotonic
logics (Lifschitz, 1994; Schwarz & Lifschitz, 1993), MBNF is generally considered as a unify-
ing framework for several nonmonotonic formalisms, including default logic, autoepistemic
logic, circumscription, epistemic queries, and logic programming.
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Although several aspects of the logic MBNF have been thoroughly investigated (Schwarz
& Lifschitz, 1993; Chen, 1994; Bochman, 1995), the existing studies concerning the com-
putational properties of MBNF are limited to subclasses of propositional MBNF theories
(Inoue & Sakama, 1994) or to a very restricted subset of the �rst-order case (Beringer &
Schaub, 1993).

In this paper we present a computational characterization of deduction in the proposi-
tional fragment of MBNF. In particular, we show that logical implication in the proposi-
tional fragment of MBNF is a �p3-complete problem: hence, it is harder (unless the poly-
nomial hierarchy collapses) than reasoning in all the best known propositional formalisms
for nonmonotonic reasoning, like autoepistemic logic (Niemel�a, 1992; Gottlob, 1992), de-
fault logic (Gottlob, 1992), circumscription (Eiter & Gottlob, 1993), (disjunctive) logic
programming (Eiter & Gottlob, 1995), and several McDermott and Doyle's logics (Marek
& Truszczy�nski, 1993). As shown in the following, this result also implies that minimal
knowledge is computationally harder than negation as failure.

Moreover, we study the subclass of 
at MBNF theories, i.e. MBNF theories with-
out nested occurrences of modalities, showing that in this case logical implication is �p2-
complete. This case is the most interesting one from the logic programming viewpoint.
Indeed, it implies that, under the stable model semantics, increasing the syntax of program
rules, by allowing propositional formulas as goals in the rules, does not a�ect the worst-case
complexity of query answering for disjunctive logic programs with negation as failure.

Furthermore, we provide algorithms for reasoning both in MBNF and in its 
at fragment,
which are optimal with respect to worst-case complexity. Notably, such deductive methods
can be considered as generalizations of known methods for reasoning in nonmonotonic
formalisms such as default logic, autoepistemic logic, and logic programming under stable
model semantics.

We also show that the \negation as failure" modality in MBNF exactly corresponds
to negative introspection in autoepistemic logic (Moore, 1985). This result implies that
the logic MBNF can be considered as the \composition" of two epistemic modalities: the
\minimal knowledge" operator due to Halpern and Moses (1985) and Moore's autoepistemic
operator.

Besides its theoretical interest, we believe that such a computational and epistemological
analysis of MBNF has interesting implications for the development of knowledge represen-
tation systems with nonmonotonic abilities, since it allows for a better understanding and
comparison of the di�erent nonmonotonic formalisms captured by MBNF. The interest in
de�ning deductive methods for MBNF also arises from the fact that such a logic, originally
developed as a framework for the comparison of di�erent logical approaches to nonmono-
tonic reasoning, has recently been considered as an attractive knowledge representation
formalism. In particular, it has been shown (Donini, Nardi, & Rosati, 1997a) that the full
power of MBNF is necessary in order to logically formalize several features of implemented
frame-based knowledge representation systems.

In the following, we �rst brie
y recall the logic MBNF. In Section 3 we address the
relationship between MBNF and Moore's autoepistemic logic. Then, in Section 4 we study
the problem of reasoning in propositional MBNF: we �rst consider the case of general MBNF
theories, then we deal with 
at MBNF theories. In Section 5 we present the computational
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characterization of reasoning in MBNF. We conclude in Section 6. This paper is an extended
and thoroughly revised version of (Rosati, 1997).

2. The Logic MBNF

In this section we brie
y recall the logic MBNF (Lifschitz, 1994), which is a modal logic
with two epistemic operators: a \minimal belief" modality B and a \negation as failure"
(also called \negation by default") modality not . We use L to denote a �xed propositional
language built in the usual way from: (i) an alphabet A of propositional symbols; (ii) the
symbols true, false; (iii) the propositional connectives _;^;:;�. We denote as LM the
modal extension of L with the modalities B and not . We say that a formula ' 2 LM
has (modal) depth i (with i � 0) if each subformula in ' lies within the scope of at most
i modalities, and there exists a subformula in ' which lies within the scope of exactly i

modalities.

We denote as LSM the set of subjective MBNF formulas, i.e. the subset of formulas from
LM in which each occurrence of a propositional symbol lies within the scope of at least one
modality, and with L1

M the set of 
at MBNF formulas, that is the set of formulas from LM
in which each propositional symbol lies within the scope of exactly one modality. We call a
modal formula ' from LM positive (resp. negative) if the modality not (resp. B) does not
occur in '. LB denotes the set of positive formulas from LM , while LSB denotes the set of
positive formulas from LSM .

We now recall the notion of MBNF model. An interpretation is a set of propositional
symbols. An MBNF structure is a triple (I;Mb;Mn), where I is an interpretation (also called
initial world) and Mb;Mn are non-empty sets of interpretations (worlds). Satis�ability of a
formula in an MBNF structure is de�ned inductively as follows:

1. if ' is a propositional symbol, ' is satis�ed by (I;Mb;Mn) i� ' 2 I;

2. :' is satis�ed by (I;Mb;Mn) i� ' is not satis�ed by (I;Mb;Mn);

3. '1 ^ '2 is satis�ed by (I;Mb;Mn) i� '1 is satis�ed by (I;Mb;Mn) and '2 is satis�ed
by (I;Mb;Mn);

4. '1 _ '2 is satis�ed by (I;Mb;Mn) i� either '1 is satis�ed by (I;Mb;Mn) or '2 is
satis�ed by (I;Mb;Mn);

5. '1 � '2 is satis�ed by (I;Mb;Mn) i� either '1 is not satis�ed by (I;Mb;Mn) or '2
is satis�ed by (I;Mb;Mn);

6. B' is satis�ed by (I;Mb;Mn) i�, for every J 2Mb, ' is satis�ed by (J;Mb;Mn);

7. not ' is satis�ed by (I;Mb;Mn) i� there exists J 2Mn such that ' is not satis�ed by
(J;Mb;Mn).

We write (I;Mb;Mn) j= ' to indicate that ' is satis�ed by (I;Mb;Mn). We say that
a theory � � LM is satis�ed by (I;Mb;Mn) (and write (I;Mb;Mn) j= �) i� each formula
from � is satis�ed by (I;Mb;Mn). If ' 2 LSM , then the evaluation of ' is insensitive to
the initial interpretation I: thus, in this case we also write (Mb;Mn) j= '. Analogously, if
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' 2 LSB , then the evaluation of ' is insensitive both to the initial interpretation I and to
the set Mn, and we also write Mb j= '. If ' 2 L then the evaluation of ' does not depend
on the sets Mb;Mn, and in this case we write I j= '.

In order to relate MBNF structures to standard interpretation structures in modal
logic (i.e. Kripke structures), we remark that, due to the above notion of satis�ability,
we can consider the sets Mb, Mn in an MBNF interpretation structure as two distinct
universal Kripke structures, i.e. possible-world structures in which each world is connected
to all worlds of the structure. In fact, since the accessibility relation in such a structure is
universal, without loss of generality it is possible to identify a universal Kripke structure
with the set of interpretations contained in it. We recall that the class of universal Kripke
structures characterizes the logic S5 (Marek & Truszczy�nski, 1993, Theorem 7.52).

The nonmonotonic character of MBNF is obtained by imposing the following preference
semantics over the interpretation structures satisfying a given theory.

De�nition 2.1 A structure (I;M;M), where M 6= ;, is an MBNF model of a theory

� � LM i� (I;M;M) j= � and, for each interpretation J and for each set of interpretations

M 0, if M 0 �M then (J;M 0;M) 6j= �.

We say that a formula ' is entailed (or logically implied) by � in MBNF (and write
� j=MBNF ') i� ' is satis�ed by every MBNF model of �. In order to simplify notation,
we denote the MBNF model (I;M;M) with the pair (I;M), and, if � 2 LSM , we denote
(I;M;M) withM , since in this case the evaluation of � is insensitive to the initial world I,
namely, if (I;M) is a model for �, then, for each interpretation J , (J;M) is a model for �.

Example 2.2 Let � = fBpg. The only MBNF models for � are of the form (I;M), with
M = fI : I j= pg. Hence, � j=MBNF Bp, and � j=MBNF :B for each  2 L such that the
propositional formula p �  is not valid. Therefore, the agent modeled by � has minimal
belief, in the sense that she only believes p and the objective facts logically implied by p.

Example 2.3 Let � = fnot married � B hasNoChildreng. It is easy to see that the only
models for � are of the form (I;M) such that M = fI : I j= hasNoChildreng, since married
can be assumed not to hold by the agent modeled by �, which is then able to conclude
BhasNoChildren . Notably, the meaning of � is analogous to the default rule ::married

hasNoChildren
in

Reiter's default logic (Lifschitz, 1994). Also, let � = fB bird ^not:
ies � B 
ies ; B birdg.
In a way analogous to the previous case, it can be shown that the only MBNF models for
� are of the form (I;M), with M = fI : I j= bird ^ 
iesg. Therefore, � j=MBNF B 
ies . As
shown by Lifschitz (1994), � corresponds to the default theory (f bird :
ies


ies
g; bird ).

Given a set of interpretations M , Th(M) denotes the set of formulas B' such that
B' 2 LB and M j= B'. Let M1;M2 be sets of interpretations. We say that M1 is
equivalent to M2 i� Th(M1) = Th(M2).

De�nition 2.4 A set of interpretations M is maximal i�, for each set of interpretations

M 0, if M 0 is equivalent to M then M 0 �M .
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It turns out that, when restricting to theories composed of subjective positive formulas,
MBNF corresponds to the modal logic of minimal knowledge due to Halpern and Moses
(1985), also known as ground nonmonotonic modal logic S5G (Kaminski, 1991; Donini,
Nardi, & Rosati, 1997b). In fact, S5G is obtained from modal logic S5 by imposing the
following preference order over the universal Kripke structures satisfying a theory � 2 LB :
M is a model for � i� M j= � and, for each M 0, if M 0 j= � then M 0 6� M (Shoham,
1987). In fact, it is immediate to see that the MBNF semantics of theories composed of
subjective positive formulas corresponds to the above semantics according to S5G. Hence,
the following property holds.

Proposition 2.5 Let � � LB. Then, M is an S5G model for � i�, for each I, (I;M) is
an MBNF model for fB' : ' 2 �g.

The previous proposition implies that, when � � LSB, a set of interpretations M sat-
isfying � is compared with all other sets of interpretations satisfying �, while, in the case
� � LM , M is only compared with the sets M 0 such that (M 0;M) satis�es �.

Hence, the main di�erence between MBNF and S5G lies in the fact that in S5G all models
are maximal with respect to set containment (or minimal with respect to the objective
knowledge which holds in the model), while in MBNF this property is not generally true.
E.g., the theory � = fnot married _B marriedg has two types of models, for each possible
choice of the initial world J : (J;M1), whereM1 corresponds to the set of all interpretations
(which represents the case in which married is not assumed to hold); and (J;M2), where
M2 = fI : I j= marriedg. Namely, if married is assumed to hold, then � forces one to
conclude Bmarried : that is, the initial assumption is justi�ed by the knowledge derived on
the basis of such an assumption (Lin & Shoham, 1992). We remark that, by Proposition 2.5,
the interpretation of the MBNF operator B exactly corresponds to the interpretation of the
modality B in S5G.

3. Relating MBNF to Autoepistemic Logic

In this section we study the relationship between autoepistemic logic and MBNF. First, we
brie
y recall Moore's autoepistemic logic (AEL). In order to keep notation to a minimum,
we change the language of AEL, using the modality B instead of L. Thus, in the following
a formula of AEL is a formula from LB.

De�nition 3.1 A propositionally consistent set of formulas T � LB is a stable expansion
for a set of initial knowledge � � LB if T satis�es the following equation:

T = Cn(� [ fB' j ' 2 Tg [ f:B' j ' 62 Tg) (1)

where Cn(S) denotes the propositional deductive closure of the modal theory S � LB.

Given a theory � � LB and a formula ' 2 LB, we write � j=AEL ' i� ' belongs to
all the stable expansions of �. Each stable expansion T is a stable set according to the
following de�nition (Stalnaker, 1993).

De�nition 3.2 A modal theory T � LB is a stable set if
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1. T = Cn(T );

2. for every ' 2 LB, if ' 2 T then B' 2 T ;

3. for every ' 2 LB, if ' 62 T then :B' 2 T .

We recall that a stable set T corresponds to a maximal universal Kripke structure MT

such that T is the set of formulas satis�ed by MT (Marek & Truszczy�nski, 1993). With the
term AEL model for � we will thus refer to a set of interpretationsM whose set of theorems
Th(M) corresponds to a stable expansion for � in AEL.

Finally, notice that we have adopted the notion of consistent autoepistemic logic (Marek
& Truszczy�nski, 1993), i.e. in (1) we do not allow the inconsistent theory T = LB composed
of all modal formulas to be a (possible) stable expansion. The results presented in this
section can be easily extended to this case (corresponding to Moore's original proposal):
however, this requires to slightly change the semantics of MBNF, allowing in De�nition 2.1
the empty set of interpretations to be a possible component of MBNF structures.

In the following, we use the term embedding (or translation) to indicate a transformation
function �(�) for modal theories. We are interested in �nding a faithful embedding (Gottlob,
1995; Schwarz, 1996; Janhunen, 1998), in the following sense: �(�) is a faithful embedding
of AEL into MBNF if, for each theory � � LB and for each model M , M is an AEL model
for � i� M is an MBNF model for �(�).

It is already known that AEL theories can be embedded into MBNF theories. In par-
ticular, it has been proven (Lin & Shoham, 1992; Schwarz & Truszczy�nski, 1994) that AEL
theories with no nested occurrences of B (called 
at theories) can be embedded into MBNF;
now, since in AEL any theory can be transformed into an equivalent 
at theory (which has
in general size exponential in the size of the initial theory), it follows that any AEL theory
can be embedded into MBNF.

However, we now prove a much stronger result: negation as failure in MBNF exactly
corresponds to negative introspection in AEL, i.e. AEL's modality :B and MBNF's modal-
ity not are semantically equivalent. Hence, such a correspondence is not only limited to
modal theories without nested modalities, and induces a polynomial-time embedding of any
AEL theory into MBNF.

We �rst de�ne the translation �(�) of modal theories from AEL to MBNF theories.

De�nition 3.3 Let ' 2 LB. Then, �(') is the MBNF formula obtained from ' by substi-

tuting each occurrence of B with :not. Moreover, if � � LB, then �(�) denotes the MBNF
theory fB�(')j' 2 �g.

We now show that the translation �(�) embeds AEL theories into MBNF. To this aim, we
exploit the semantic characterization of AEL de�ned by Schwarz (1992). Roughly speaking,
according to such a preference semantics over possible-world structures, an AEL model for
� is a set of interpretationsM satisfying � such that, for any interpretation J not contained
in M , the pair (J;M) does not satisfy �. Formally:

Proposition 3.4 (Schwarz, 1992, Proposition 4.1) Let � � LB. Then, M is an AEL
model for � i�, for each interpretation I 2 M , (I;M) j= � and, for each interpretation

J 62M , (J;M) 6j= �.
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In the following, we say that an occurrence of a subformula  in a formula ' 2 LM is
strict if it does not lie within the scope of a modal operator. E.g., let � = B'^not(B _�).
The occurrence of B' in � is strict, while the occurrence of B is not strict.

Theorem 3.5 Let � � LB. Then, M is an AEL model for � i�, for each I, (I;M) is an
MBNF model of �(�).

Proof. If part. Suppose (I;M) is an MBNF model of �(�). Then, for each M 0 � M ,
(M 0;M) 6j= �(�). Since �(�) is a set of formulas of the form B', where ' does not contain
any occurrence of the operator B, it follows that, for each subformula of the form not '

occurring in �(�), (M 0;M) j= not ' i� (M;M) j= not '. Now let B' 2 �(�), let '0 denote
the propositional formula obtained from ' by replacing each strict occurrence in ' of a
formula of the form not  with true if (M;M) j= not  and with false otherwise, and let
�0 = f'0 : B' 2 �(�)g. Now suppose there exists an interpretation J such that J j= �0

and J 62 M . Then, from the de�nition of satis�ability in MBNF structures it follows that
(M [fJg;M) j= �(�), thus contradicting the hypothesis that (I;M) is an MBNF model for
�(�). Hence, M = fI : I j= �0g. Now consider a pair (J;M): again, from the de�nition of
satis�ability in MBNF structures it follows immediately that (J;M) j= � i� J j= �0. And
sinceM contains all the interpretations satisfying �0, it follows that, for each interpretation
J 62M , (J;M) 6j= �, therefore by Proposition 3.4 it follows that M is an AEL model for �.

Only-if part. Suppose M is an AEL model for �. Then, by Proposition 3.4, for each
interpretation I 2 M , (I;M) j= � and, for each interpretation J 62 M , (J;M) 6j= �. For
each ' 2 �, let '00 denote the propositional formula obtained from ' by replacing each strict
occurrence of a formula of the form B with true if M j= B and with false otherwise, and
let �00 = f'00 : ' 2 �g. Then, suppose there exists an interpretation J such that J j= �00

and J 62 M . Then, from the de�nition of satis�ability in MBNF structures it follows that
(J;M) j= �, thus contradicting the hypothesis that M is an AEL model for �. Hence,
M = fI : I j= �00g. Now suppose that, for some interpretation I, (I;M) is not an MBNF
model for �(�). Then, there existsM 0 �M such that (M 0;M) j= �(�). From the de�nition
of �(�), it follows that each interpretation inM 0 satis�es �00, and, sinceM 0 �M , there exists
J 62M such that J j= �00. Contradiction. Therefore, (I;M) is an MBNF model for �.

We remark that the above theorem could alternatively be proved from the fact that
the K-free fragment of the logic MKNF (Lifschitz, 1991) is equivalent to AEL, which is
stated (although without proof) by Schwarz and Truszczy�nski (1994, page 123), and from
the correspondence between MBNF and MKNF (Lifschitz, 1994).

The previous theorem implies that the interpretation of the modality not in MBNF and
of the modal operator in autoepistemic logic are the same. This property extends previous
results relating MBNF with AEL (Lin & Shoham, 1992; Schwarz & Lifschitz, 1993; Chen,
1994), and has interesting consequences both in the logic programming framework and in
nonmonotonic reasoning. In particular, since MBNF generalizes the stable model semantics
for logic programs (Gelfond & Lifschitz, 1988), the above result strengthens the idea that
AEL is the true logic of negation as failure (as interpreted according to the stable model
semantics). Moreover, positive theories have the same interpretation both in MBNF and
in the logic of minimal knowledge S5G (Halpern & Moses, 1985): consequently, the logic
MBNF generalizes both Halpern and Moses' S5G and Moore's AEL.
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4. Reasoning in MBNF

In this section we present algorithms for reasoning in propositional MBNF: in particular, we
study the entailment problem in MBNF. From now on, we assume to deal with �niteMBNF
theories �, therefore we refer to a single formula � (which corresponds to the conjunction
of all the formulas contained in the �nite theory �).

4.1 Characterizing MBNF Models

We now present a �nite characterization of the MBNF models of a formula � 2 LM . As
in several methods for reasoning in nonmonotonic modal logics (Gottlob, 1992; Marek
& Truszczy�nski, 1993; Eiter & Gottlob, 1992; Niemel�a, 1992; Donini et al., 1997b), the
technique we employ is based on the de�nition of a correspondence between the preferred
models of a theory and the partitions of the set of modal subformulas of the theory. In
fact, such partitions can be used in order to provide a �nite characterization of a universal
Kripke structure: speci�cally, a partition satisfying certain properties identi�es a particular
universal Kripke structureM , by uniquely determining a propositional theory such that M
is the set of all interpretations satisfying such a theory.

We extend such known techniques in order to deal with the preference semantics of
MBNF. In particular, we characterize the properties that a partition of modal subformulas
of a formula � 2 LM must satisfy in order to identify an MBNF model for �. In this way,
we provide a method that does not rely on a modal logic theorem prover, but reduces the
problem of reasoning in a bimodal logic to a number of reasoning problems in propositional
logic.

First, we introduce some preliminary de�nitions. We call a formula of the form B' or
not ', with ' 2 LM , a modal atom.

De�nition 4.1 Let � 2 LM . We call the set of modal atoms occurring in � the modal
atoms of � (and denote such a set as MA(�)).

De�nition 4.2 Let � 2 LM and let (P;N) be a partition of a set of modal atoms. We

denote as �(P;N) the formula obtained from � by substituting each strict occurrence in �

of a formula in P with true, and each strict occurrence in � of a formula in N with false.

Observe that only the occurrences in � of modal subformulas which are not within the
scope of another modality are replaced; notice also that, if P [ N contains MA(�), then
�(P;N) is a propositional formula. In this case, the pair (P;N) identi�es a guess on the
modal subformulas from �, i.e. P contains the modal subformulas of � assumed to hold,
while N contains the modal subformulas of � assumed not to hold.

De�nition 4.3 Let � 2 LM and let (P;N) be a partition ofMA(�). We denote as ob(P;N)
the propositional formula

ob(P;N) =
^

B'2P

'(P;N)

Roughly speaking, the propositional formula ob(P;N) represents the \objective knowl-
edge" implied by the guess (P;N) on the formulas of the form B' belonging to P . From the
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semantic viewpoint, in each structure (I;M;M 0) satisfying the guess on the modal atoms
given by (P;N), the propositional formula ob(P;N) constrains the interpretations of M ,
since in each such structure the propositional formula ob(P;N) must be satis�ed by each
interpretation J 2M , i.e. J j= ob(P;N).

Example 4.4 Let
� = (Ba _ not(b ^ c)) ^ d ^ :B(:f _ g)

Then, MA(�) = fBa;not(b ^ c); B(:f _ g)g. Now suppose that

P = fBa;not(b ^ c)g

N = fB(:f _ g)g

Then, �(P;N) = (true _ true) ^ d ^ :false (which is equivalent to d), and ob(P;N) = a.

De�nition 4.5 We say that a pair of sets of interpretations (M;M 0) induces the partition

(P;N) of MA(�) if, for each modal atom � 2MA(�), � 2 P i� (M;M 0) j= �.

Lemma 4.6 Let ' 2 LM , let I be an interpretation, let M;M 0 be sets of interpretations,

and let (P;N) be the partition induced by (M;M 0) on a set of modal atoms S. Then,

(I;M;M 0) j= ' i� (I;M;M 0) j= '(P;N).

Proof. Follows immediately from De�nitions 4.2 and 4.5, and from the de�nition of
satis�ability in MBNF structures.

We now show that, if (I;M) is an MBNF model for � which induces the partition (P;N)
of MA(�), then the formula ob(P;N) completely characterizes the set of interpretations
M .

Theorem 4.7 Let � 2 LM , let (I;M) be an MBNF model for �, and let (P;N) be the

partition of MA(�) induced by (M;M). Then, M = fJ : J j= ob(P;N)g.

Proof. Let M 0 = fJ : J j= ob(P;N)g. Since (M;M) induces the partition (P;N), by
De�nition 4.5 it follows that each interpretation inM must satisfy ob(P;N), henceM �M 0.
Now suppose M � M 0, and consider the structure (I;M 0;M). We prove that each modal
atom � 2 MA(�) belongs to P i� (I;M 0;M) j= �. The proof is by induction on the depth
of formulas in MA(�).

First, consider a modal atom not  such that  2 L: from the de�nition of satis�ability
of a formula in an MBNF structure, it follows immediately that not  2 P i� (I;M 0;M) j=
not  . Then, consider a modal atom B such that  2 L: if B 2 P , then, by de�nition of
ob(P;N), the propositional formula ob(P;N) �  is valid, therefore (I;M 0;M) j= B . If
B 2 N , then there exists an interpretation J in M such that J 6j=  , and since M 0 � M ,
it follows that (I;M 0;M) 6j= B . Hence, each modal atom � 2 MA(�) of depth 1 belongs
to P i� (I;M 0;M) j= �.

Suppose now that � 2 P i� (I;M 0;M) j= � for each modal atom � in MA(�) of depth
less or equal to i. Consider a modal atom B of MA(�) of depth i + 1: by the induction
hypothesis, and by Lemma 4.6, (I;M 0;M) j= B i� M 0 j= B( (P;N)). Now, if B 2 P ,
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then, by de�nition of ob(P;N), the propositional formula ob(P;N) �  (P;N) is valid, and
since M 0 = fJ : J j= ob(P;N)g, it follows that M 0 j= B( (P;N)), which in turn implies
(I;M 0;M) j= B ; on the other hand, if B 2 N , then there exists an interpretation J inM
such that (J;M;M) 6j=  , hence, by the induction hypothesis and Lemma 4.6, J 6j=  (P;N).
Now, since M 0 � M , it follows that M 0 6j= B( (P;N)), hence (I;M 0;M) 6j= B . In the
same way it is possible to show that a modal atom of the form not  of depth i+1 belongs
to P i� (I;M 0;M) j= not  .

We have thus proved that each modal atom � 2MA(�) belongs to P i� (I;M 0;M) j= �:
this in turn implies that (I;M 0;M) j= � i� I j= �(P;N), and since by hypothesis (I;M;M)
satis�es � and (P;N) is the partition of MA(�) induced by (M;M), by Lemma 4.6 it
follows that I j= �(P;N). Therefore, (I;M 0;M) j= �, which contradicts the hypothesis
that (I;M) is an MBNF model for �. Consequently, M 0 =M , which proves the thesis.

Informally, the above theorem states that each MBNF model for � can be associated with
a partition (P;N) of the modal atoms of �; moreover, the propositional formula ob(P;N)
exactly characterizes the set of interpretations M of an MBNF model (I;M), in the sense
that M is the set of all interpretations satisfying ob(P;N). This provides a �nite way to
describe all MBNF models for �.

We now de�ne the notion of a partition of a set of modal atoms induced by a pair of
propositional formulas.

De�nition 4.8 Let � 2 LM , '1; '2 2 L. We denote as Prt(�; '1; '2) the partition of

MA(�) induced by (M1;M2), where M1 = fI : I j= '1g, M2 = fI : I j= '2g.

In order to simplify notation, we denote as Prt(�; ') the partition Prt(�; '; '). The
following theorem provides a constructive way to build the partition Prt(�; ';  ).

Theorem 4.9 Let � 2 LM , '; 2 L. Let (P;N) be the partition ofMA(�) built as follows:

1. start from P = N = ;;

2. for each modal atom B� in MA(�) such that �(P;N) 2 L, if the propositional formula

' � �(P;N) is valid, then add B� to P , otherwise add B� to N ;

3. for each modal atom not � in MA(�) such that �(P;N) 2 L, if the propositional
formula  � �(P;N) is not valid, then add not � to P , otherwise add not � to N ;

4. iteratively apply the above rules until P [N =MA(�).

Then, (P;N) = Prt(�; ';  ).

Proof. The proof is by induction on the structure of the formulas in MA(�). First,
from the fact that Prt(�; ';  ) is the partition induced by (M;M 0), with M = fI : I j=
'g, M 0 = fI : I j=  g, and from the de�nition of satis�ability in MBNF structures, it
follows that, if � 2 L, then (M;M 0) j= B� if and only if ' � � is a valid propositional
formula, and (M;M 0) j= not � if and only if  � � is not a valid propositional formula.
Therefore, (P;N) agrees with Prt(�; ';  ) on all modal atoms of modal depth 1. Suppose
now that (P;N) and Prt(�; ';  ) agree on all modal atoms of modal depth less or equal

286



Reasoning about minimal belief and negation as failure

to i. Consider a modal atom B� of MA(�) of modal depth i + 1. From Lemma 4.6 and
from the de�nition of satis�ability in MBNF structures, it follows that (M;M 0) j= B� if
and only if ' � �(Prt(�; ';  )) is a valid propositional formula, and since by De�nition 4.2
the value of the formula �(Prt(�; ';  )) only depends on the guess of the modal atoms of
modal depth less or equal to i in Prt(�; ';  ), by the induction hypothesis it follows that
�(Prt(�; ';  )) = �(P;N), hence B� belongs to P if and only if (M;M 0) j= B�. Analogously,
it can be proven that any modal atom of depth i+ 1 of the form not � belongs to P if and
only if (M;M 0) j= not �. Therefore, (P;N) and Prt(�; ';  ) agree on all modal atoms of
modal depth i+ 1.

The algorithms we present in the following for reasoning in MBNF use the above shown
properties of partitions of modal subformulas of a formula �, together with additional
conditions on such partitions (that vary according to the di�erent classes of theories accepted
as inputs), in order to identify all the MBNF models for �.

As for the entailment problem � j=MBNF ', we point out that the occurrences of not in
' are equivalent to occurrences of :B, since in each MBNF model for � both modalities in
' are evaluated on the same set of interpretations. Therefore, as in the original formulation
of MBNF (Lifschitz, 1994), we restrict query answering in MBNF to positive formulas.

Let ' 2 LB ,  2 L, and M = fJ : J j=  g. We denote as '( ) the propositional
formula obtained from ' by substituting each strict occurrence of a modal atom B� of
' with true if M j= B�, and with false otherwise. It can be immediately veri�ed that
'( ) = '(Prt('; )).

Theorem 4.10 Let �; ' 2 LM . Let (I;M) be an MBNF model for � and let (P;N) be

the partition of MA(�) induced by (M;M). Then, ' is satis�ed by (I;M;M) i� I j=
'(ob(P;N)).

Proof. The proof follows immediately from the fact that, by Theorem 4.9, '(ob(P;N)) =
'(Prt('; ob(P;N))), and from Lemma 4.6.

We now show that the entailment problem in MBNF is related to the membership
problem for stable sets (Gottlob, 1995), which in turn is related to the notion of (objective)
kernel that has been used to characterize stable expansions of autoepistemic theories (Marek
& Truszczy�nski, 1993).

De�nition 4.11 Let  2 L. We denote as ST ( ) the (unique) stable set T � LB such

that

T \ L = f' 2 Lj � ' is validg

Theorem 4.12 Let � 2 LM , ' 2 LSB. Then, � 6j=MBNF ' i� there exists an MBNF model

(I;M) for � such that ' 62 ST (ob(P;N)), where (P;N) is the partition of MA(�) induced
by (M;M).

Proof. LetM = fI : I j= ob(P;N)g: from the above de�nition and De�nition 3.2, it follows
immediately that ST (ob(P;N)) = Th(M). Therefore, if ' 2 LSB then (I;M;M) j= ' i�
' 2 ST (ob(P;N)).
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Algorithm MBNF-Not-Entails(�; ')
Input: formula � 2 LM , formula ' 2 LB;
Output: true if � 6j=MBNF ', false otherwise.
begin

if there exists partition (P;N) of MA(�)
such that

(a) (P;N) = Prt(�; ob(P;N)) and
(b) �(P;N) ^ :'(ob(P;N)) is satis�able and
(c) for each partition (P 0; N 0) 6= (P;N) of MA(�),

(c1) �(P 0; N 0) is not satis�able or
(c2) (P 0; N 0) 6= Prt(�; ob(P 0; N 0); ob(P;N)) or
(c3) ob(P;N) ^ :ob(P 0; N 0) is satis�able

then return true

else return false

end

Figure 1: Algorithm MBNF-Not-Entails.

4.2 Reasoning in Propositional MBNF

We now de�ne a deductive method for reasoning in general propositional MBNF theories.
Speci�cally, we present the algorithm MBNF-Not-Entails, reported in Figure 1, for com-
puting entailment in MBNF.

The algorithm exploits the �nite characterization of MBNF models given by Theorem 4.7
and an analogous �nite characterization, in terms of partitions of MA(�), of all the models
relevant for establishing whether a partition (P;N) of MA(�) identi�es an MBNF model.

The algorithm checks whether there exists a partition (P;N) of MA(�) satisfying the
three conditions (a), (b), (c). Intuitively, the partition cannot be self-contradictory (con-
dition (a)): in particular, the condition (P;N) = Prt(�; ob(P;N)) establishes that the
objective knowledge implied by the partition (P;N) (that is, the formula ob(P;N)) iden-
ti�es a set of interpretations M = fI : I j= ob(P;N)g such that (M;M) induces the same
partition (P;N) on MA(�). Moreover, the partition must be consistent with � and :'
(condition (b)): such a condition implies that there exists an interpretation I such that
both � is satis�ed in (I;M;M) and ' is not satis�ed in the structure (I;M;M). Finally,
condition (c) corresponds to check whether such a structure (I;M;M) identi�es an MBNF
model for � according to De�nition 2.1, i.e. whether there is no pair (J;M 0) such that
M 0 � M and (J;M 0;M) satis�es �. Again, the search of such a structure is performed by
examining whether there exists a partition ofMA(�), di�erent from (P;N), which does not
satisfy any of the conditions (c1), (c2), (c3).

We illustrate the algorithm through the following simple example.

Example 4.13 Suppose

� = B(a _Bb) ^ (not(c _ :d) _B:not b) ^ c
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' = :Bb _ (:b ^B(a ^ b))

Then, MA(�) = fB(a _Bb); Bb;not(c _ :d); B:not b;not bg. Now suppose that (P;N) =
(P1; N1), where

P1 = fB(a _Bb);not(c _ :d);not bg

N1 = fBb;B:not bg

Then, �(P;N) = true^ (true_ false)^ c (which is equivalent to c), and ob(P;N) = a_ false

(which is equivalent to a). Now, let M = fI : I j= ag: it is easy to see that (M;M)
satis�es the modal atoms in P , while it does not satisfy the modal atoms in N , hence
(P;N) = Prt(�; ob(P;N)), thus satisfying condition (a) of the algorithm. Then, since
a � a ^ b is not a valid propositional formula, M 6j= B(a ^ b), hence :'(ob(P;N)) =
:(true_ (:b^ false)), which is equivalent to false. Therefore, �(P;N)^:'(ob(P;N)) is not
satis�able, thus condition (b) does not hold.

Suppose now that (P;N) = (P2; N2), where

P2 = fB(a _Bb);not(c _ :d); Bb;B:not bg

N2 = fnot bg

Then, �(P;N) = true^(true_true)^c (which is equivalent to c), and ob(P;N) = (a_true)^
b^true, which is equivalent to b. Again, it is easy to see that (P;N) = Prt(�; ob(P;N)), thus
satisfying condition (a) of the algorithm. Then, since b � a ^ b is not a valid propositional
formula, :'(ob(P;N)) = :(false_(:b^false)), which is equivalent to true. Hence, �(P;N)^
:'(ob(P;N)) is equivalent to c, which implies that condition (b) holds. Finally, it is easy
to verify that either condition (c1) or condition (c2) holds for each partition of MA(�)
di�erent from (P2; N2), with the exception of (P1; N1). So let (P

0; N 0) = (P1; N1): as shown
before, ob(P 0; N 0) is equivalent to a, hence ob(P;N) ^ :ob(P 0; N 0) is equivalent to b ^ :a,
therefore condition (c3) holds for (P 0; N 0) = (P1; N1), which implies that condition (c)
holds for (P;N) = (P2; N2). Consequently, MBNF-Not-Entails(�; ') returns true. In fact,
the partition (P2; N2) identi�es the set of MBNF models for � (I;M) such that I is an
interpretation satisfying c and M = fI : I j= bg. Each such model does not satisfy the
query ': indeed, it can immediately be veri�ed that, for each interpretation I, (I;M;M) 6j=
:Bb _ (:b ^B(a ^ b)), since M 6j= B(a ^ b) and M j= Bb.

To prove correctness of the algorithm MBNF-Not-Entails we need the following prelim-
inary lemma.

Lemma 4.14 Let � 2 LM , and let (P;N) be the partition of MA(�) induced by (M 0;M).
Let M 00 = fI : I j= ob(P;N)g. Then, (P;N) is the partition induced by (M 00;M).

Proof. The proof is by induction on the depth of the modal atoms of MA(�). Let
not  2MA(�) such that  2 L: then, (M 0;M) j= not  i� there exists an interpretation
I 2 M such that I 6j=  , therefore (M 0;M) j= not  i� (M 00;M) j= not  . Now let B 2
MA(�) such that  2 L: by De�nition 4.3, (M 0;M) j= B i� the propositional formula
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ob(P;N) �  is valid, and since M 00 = fI : I j= ob(P;N)g, it follows that (M 0;M) j= B 

i� (M 00;M) j= B .

Now suppose that, for each modal atom � of depth i, (M 0;M) j= � i� (M 00;M) j= �,
and let (P 0; N 0) denote the partition of the modal atoms in MA(�) of depth less or equal
to i induced by (M 0;M). First, consider a modal atom not  of depth i + 1. Then,
by Lemma 4.6, (M 0;M) j= not  i� (M 0;M) j= not( (P 0; N 0)) and, by the inductive
hypothesis and Lemma 4.6, (M 00;M) j= not  i� (M 00;M) j= not( (P 0; N 0)). Then, since
 has depth i,  (P 0; N 0) is a propositional formula, hence (M 0;M) j= not( (P 0; N 0)) i�
there exists an interpretation I 2 M such that I 6j=  (P 0; N 0), which immediately implies
that (M 0;M) j= not  i� (M 00;M) j= not  . Now consider a modal atom B of depth
i + 1. Then, by Lemma 4.6, (M 0;M) j= B i� (M 0;M) j= B( (P 0; N 0)) and, by the
inductive hypothesis and Lemma 4.6, (M 00;M) j= B i� (M 00;M) j= B( (P 0; N 0)). By
De�nition 4.3, (M 0;M) j= B i� the propositional formula ob(P;N) �  (P 0; N 0) is valid,
and since M 00 = fI : I j= ob(P;N)g, it follows that (M 0;M) j= B i� (M 00;M) j= B ,
which proves the thesis.

We are now ready to prove correctness of the algorithm MBNF-Not-Entails.

Theorem 4.15 Let � 2 LM , ' 2 LB. Then, MBNF-Not-Entails(�; ') returns true i�

� 6j=MBNF '.

Proof. If part. Suppose � 6j=MBNF '. Then, there exists a pair (I;M) such that (I;M) is
an MBNF model for � and (I;M;M) 6j= '. Let (P;N) be the partition of MA(�) induced
by (M;M). By Theorem 4.7, M = fI : I j= ob(P;N)g. Therefore, by De�nition 4.8,
(P;N) = Prt(�; ob(P;N)). Then, since (I;M;M) 6j= ', by Theorem 4.10 it follows that
I 6j= '(ob(P;N)), and since (I;M;M) j= �, by Lemma 4.6 I j= �(P;N), therefore I j=
�(P;N)^:'(ob(P;N)). Now suppose there exists a partition (P 0; N 0) of MA(�) such that
(P 0; N 0) 6= (P;N) and none of conditions (c1), (c2), and (c3) holds. Then, since �(P 0; N 0)
is satis�able, there exists an interpretation J such that J j= �(P 0; N 0), and since (P 0; N 0) =
Prt(�; ob(P 0; N 0); ob(P;N)), from Lemma 4.6 it follows that there exists an interpretation
J such that (J;M 0;M) j= �, where M 0 = fI : I j= ob(P 0; N 0)g. Then, since condition (c3)
does not hold, the propositional formula ob(P;N) � ob(P 0; N 0) is valid, which implies that
M 0 �M . Now, if M 0 =M , then (P 0; N 0) would be the partition induced by (M;M), thus
contradicting the hypothesis (P 0; N 0) 6= (P;N). Hence, M 0 �M , and since (J;M 0;M) j= �,
it follows that (I;M) is not an MBNF model for �. Contradiction. Consequently, condition
(c) in the algorithm holds, therefore MBNF-Not-Entails(�; ') returns true.

Only-if part. Suppose MBNF-Not-Entails(�; ') returns true. Then, there exists a par-
tition (P;N) of MA(�) such that conditions (a), (b), and (c) hold. Let M = fI : I j=
ob(P;N)g. Since (P;N) = Prt(�; ob(P;N)), by De�nition 4.8 (P;N) is the partition in-
duced by (M;M). And since �(P;N)^:'(ob(P;N)) is satis�able, it follows that there exists
an interpretation I such that I j= �(P;N) and I 6j= '(ob(P;N)), hence, by Lemma 4.6,
(I;M;M) j= � and (I;M;M) 6j= '. Now suppose (I;M) is not an MBNF model for �.
Then, there exists a setM 0 and an interpretation J such thatM 0 �M and (J;M 0;M) j= �.
Let (P 0; N 0) be the partition ofMA(�) induced by (M 0;M). SinceM = fI : I j= ob(P;N)g,
it follows that M 0 contains at least one interpretation J which does not satisfy ob(P;N),
and since ob(P;N) =

V
B 2P  (P;N), J does not satisfy at least one formula of the form
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 (P;N) such that B 2 P . Therefore, P 0 6= P , which implies that (P 0; N 0) 6= (P;N).
Then, since (J;M 0;M) j= �, by Lemma 4.6 J j= �(P 0; N 0), hence �(P 0; N 0) is satis�able.
Now letM 00 = fI : I j= ob(P 0; N 0)g. By Lemma 4.14, it follows that (P 0; N 0) is the partition
induced by (M 00;M), therefore, by De�nition 4.8, (P 0; N 0) = Prt(�; ob(P 0; N 0); ob(P;N)).
Moreover, since M 0 � M , it follows that the propositional formula ob(P;N) � ob(P 0; N 0)
is valid, hence the formula ob(P;N) ^ :ob(P 0; N 0) is unsatis�able. Consequently, (P 0; N 0)
does not satisfy condition (c) in the algorithm, thus contradicting the hypothesis. There-
fore, (I;M) is an MBNF model for �, and since (I;M;M) 6j= ', it follows that � 6j=MBNF ',
thus proving the thesis.

We point out the fact that the algorithm MBNF-Not-Entails does not rely on a theorem
prover for a modal logic: thus, \modal reasoning" is not actually needed for reasoning in
MBNF. This is an interesting peculiarity that MBNF shares with other nonmonotonic
modal formalisms, like autoepistemic logic (Moore, 1985) or the autoepistemic logic of
knowledge (Schwarz, 1991).

4.3 Reasoning in Flat MBNF

We now study reasoning in 
at MBNF theories. The main reason for taking into account the

at fragment of MBNF is the fact that reasoning in many of the best known nonmonotonic
formalisms like default logic, circumscription, and logic programming, can be reduced to
reasoning in 
at MBNF theories (Lifschitz, 1994).

It is known that, if � 2 L1
M and ' 2 LSB, then it is possible to reduce the entailment

� j=MBNF ' to reasoning in logic S4FMDD, by translating MBNF formulas into unimodal
formulas of S4FMDD (Schwarz & Truszczy�nski, 1994). Thus, the procedure for deciding
entailment in the logic S4FMDD presented by Marek and Truszczy�nski (1993) can be em-
ployed for computing the entailment � j=MBNF '. In the following we study a more general
problem, that is entailment � j=MBNF ' in the case � 2 L1

M and ' 2 LB , and present a
specialized algorithm for this problem, which is simpler than the more general reasoning
method for S4FMDD.

In Figure 2 we report the algorithm Flat-Not-Entails for computing such an entailment.
In the algorithm, Pn denotes the subset of modal atoms from P pre�xed by the modality
not , i.e. Pn = fnot  : not  2 Pg.

Informally, correctness of the algorithm Flat-Not-Entails is established by the fact that,
if � 2 L1

M , then (a), (b), and (c) are necessary and su�cient conditions on a partition (P;N)
in order to establish whether it is induced by a pair (M;M) such that there exists an MBNF
model for � of the form (I;M). In particular, condition (c) states that B(ob(P;N)) must
be a consequence of �(Pn; N) in modal logic S5,1 since it can be shown that if �(Pn; N) �
B(ob(P;N)) is not valid in S5, then the guess on the modal atoms of the form B' in P is
not minimal. We illustrate this fact through the following example.

Example 4.16 Let

� = (Ba ^ not(c _ d)) _ (B(a ^ b) ^ :Bc) _Bc

1. We denote as B the modal operator used in S5.
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Algorithm Flat-Not-Entails(�; ')
Input: formula � 2 L1

M , formula ' 2 LB;
Output: true if � 6j=MBNF ', false otherwise.
begin

if there exists partition (P;N) of MA(�)
such that

(a) (P;N) = Prt(�; ob(P;N)) and
(b) �(P;N) ^ :'(ob(P;N)) is satis�able and
(c) �(Pn; N) � B(ob(P;N)) is valid in S5

then return true

else return false

end

Figure 2: Algorithm Flat-Not-Entails.

and suppose

P = fBa;B(a ^ b);not(c _ d)g

N = fBcg

Then,

�(Pn; N) = (Ba ^ true) _ (B(a ^ b) ^ :false) _ false;

which is propositionally equivalent to Ba _ B(a ^ b), and ob(P;N) = a ^ (a ^ b), which is
equivalent to a^b. Now, Ba_B(a^b) � B(a^b) is not valid in S5, which is proved by the fact
that the set of interpretationsM 0 = fI : I j= ag is such thatM 0 j= (Ba_B(a^b))^:B(a^b).
Indeed, the set of interpretationsM 0 can be immediately used in order to prove that (P;N)
does not identify any MBNF model for �. In fact, let M = fJ : J j= a^ bg: it is immediate
to see that, for each interpretation I, (I;M 0;M) j= �, and since M 0 �M , (I;M) is not an
MBNF model for �.

Finally, condition (b) corresponds to check whether there exists an interpretation I

satisfying :'(ob(P;N)): in fact, if such an interpretation exists, then (I;M) is an MBNF
model for � which does not satisfy '.

Therefore, the algorithms MBNF-Not-Entails and Flat-Not-Entails only di�er in the
way in which it is veri�ed whether the MBNF structure associated with a partition (P;N)
satis�es the preference semantics provided by De�nition 2.1, which is implemented through
condition (c) in both algorithms. In the algorithmMBNF-Not-Entails, a partition is checked
against all other partitions ofMA(�), while in the algorithm Flat-Not-Entails it is su�cient
to verify that the partition (P;N) satis�es a \local" property. As shown in the next section,
such a di�erence re
ects the di�erent computational properties of the entailment problem
in the two cases.

In order to establish correctness of the algorithm, we need a preliminary lemma.
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Lemma 4.17 Let � 2 L1
M and let (P;N) be the partition induced by a structure (M;M).

Then, (I;M) is an MBNF model for � i� for each M 0 �M the positive formula �(Pn; N)
is not satis�ed by M 0.

Proof. Suppose (I;M) is an MBNF model for �, and let (P;N) be the partition induced
by (M;M). Let M 0 be any set of interpretations such that M 0 �M . Then, (M 0;M) 6j= �.
Since � 2 L1

M and M 0 � M , this implies that for each modal atom � in N , (M 0;M) 6j= �.
Moreover, for each modal atom not  2 P , (M 0;M) j= not  . Therefore, by Lemma 4.6,
(M 0;M) 6j= �(Pn; N). Now, since � 2 L1

M , �(Pn; N) is a 
at positive formula, hence its
satis�ability only depends on the structure M 0, therefore M 0 6j= �(Pn; N).

Conversely, suppose (I;M) is not an MBNF model for �, and let (P;N) be the partition
induced by (M;M). Then, there exists a set of interpretations M 0 such that M 0 �M and
(M 0;M) j= �. As shown before, this implies that the positive formula �(Pn; N) is satis�ed
by M 0.

As observed in Section 2, the class of universal Kripke structures characterizes modal
logic S5. This immediately implies the following property.

Lemma 4.18 A formula ' 2 LSB is valid in S5 i�, for each set of interpretations M , the

formula :' is not satis�ed by M .

Based on the above property, we are now able to prove correctness of the algorithm
Flat-Not-Entails.

Theorem 4.19 Let � 2 L1
M and ' 2 LB. Then, Flat-Not-Entails(�; ') returns true i�

� 6j=MBNF '.

Proof. If-part. If � 6j=MBNF ', then there exists an MBNF model (I;M) for � such
that (I;M;M) 6j= '. Let (P;N) be the partition of MA(�) induced by (M;M). From
Theorem 4.7 it follows that M = fJ : J j= ob(P;N)g. Therefore, by De�nition 4.8,
(P;N) = Prt(�; ob(P;N)), hence condition (a) in the algorithm holds.

Now let �0 = �(Pn; N), and suppose the formula �0 � B(ob(P;N)) is not valid in S5.
Then, since the formula �0 � B(ob(P;N)) belongs to LSB , by Lemma 4.18 it follows that
there exists a set of interpretations M 0 satisfying �0 ^ :B(ob(P;N)). Let (P 0; N 0) be the
partition of MA(�0) induced by (M 0;M 0), and let M 00 = fI : I j= ob(P 0; N 0)g. Since
ob(P;N) =

V
B'2MA(�0) ', by De�nition 4.3 it follows that ob(P;N) � ob(P 0; N 0) is a valid

propositional formula, hence M 00 � M . Now, since by hypothesis M 0 j= :B(ob(P;N)), it
follows that M 00 � M . Moreover, since �0 2 LB , by Lemma 4.14 it follows that (P 0; N 0) is
the partition induced by (M 00;M 00), and sinceM 0 j= �0 and �0 is 
at, �0(P 0; N 0) is equivalent
to true, therefore M 00 j= �0(P 0; N 0) and, by Lemma 4.6, M 00 j= �0. On the other hand, since
M 00 �M , by Lemma 4.17 it follows thatM 00 6j= �0. Contradiction. Hence, �0 � B(ob(P;N))
is valid in S5, consequently condition (c) of the algorithm holds.

Finally, since (I;M;M) 6j= ' and M = fJ : J j= ob(P;N)g, by Theorem 4.10 it follows
that I 6j= '(ob(P;N)). Moreover, since (I;M;M) j= �, from Lemma 4.6 it follows that
I j= �(P;N), consequently I j= �(P;N) ^ :'(ob(P;N)), hence the propositional formula
�(P;N)^:'(ob(P;N)) is satis�able. Therefore, conditions (a), (b), and (c) in the algorithm
hold, which implies that Flat-Not-Entails(�; ') returns true.
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Only-if-part. If Flat-Not-Entails(�; ') returns true, then there exists a partition (P;N)
of MA(�) for which conditions (a), (b), and (c) of the algorithm hold. Let M = fJ : J j=
ob(P;N)g. By De�nition 4.8, (P;N) is the partition of MA(�) induced by (M;M). Now,
since �(P;N) ^ :'(ob(P;N)) is satis�able, there exists an interpretation I such that I j=
�(P;N) and I j= :'(ob(P;N)), hence by Lemma 4.6 (I;M;M) j= �, and by Theorem 4.10
(I;M;M) 6j= ', therefore we only have to show that (I;M) is an MBNF model for �. So,
let us suppose (I;M) is not an MBNF model for �. Then, by Lemma 4.17 there exists
M 0 �M such that �(Pn; N) is satis�ed in M 0. Now, condition (c) in the algorithm implies
that B(ob(P;N)) is a consequence of �(Pn; N) in S5, therefore ob(P;N) is satis�ed by each
interpretation in M 0, that is, M 0 � fJ : J j= ob(P;N)g, which contradicts the hypothesis
M 0 �M = fJ : J j= ob(P;N)g. Consequently, (I;M) is an MBNF model for �.

We remark the fact that the algorithm Flat-Not-Entails can be seen as a generalization
of known methods for query answering in Reiter's default logic, Moore's autoepistemic logic,
and (disjunctive) logic programming under the stable model (and answer set) semantics. In
particular, condition (c) in the algorithm can be seen as a generalization of the minimality
check used in (disjunctive) logic programming for verifying stability of a model of a logic
program (Gelfond & Lifschitz, 1990, 1991).

5. Complexity Results

In this section we provide a computational characterization of reasoning in MBNF.

We �rst brie
y recall the complexity classes in the polynomial hierarchy, and refer
to (Johnson, 1990; Papadimitriou, 1994) for further details about the complexity classes
mentioned in the paper. PA (NPA) is the class of problems that are solved in polynomial
time by deterministic (nondeterministic) Turing machines using an oracle for A (i.e. that
solves in constant time any problem in A). The classes �pk, �

p
k and �p

k of the polynomial

hierarchy are de�ned by �p0 = �p0 = �p
0 = P, and for k � 0, �pk+1 = NP�p

k , �pk+1 = co�pk+1
and �p

k+1 = P�p

k . In particular, the complexity class �p2 is the class of problems that are
solved in polynomial time by a nondeterministic Turing machine that uses an NP-oracle,
and �p2 is the class of problems that are complement of a problem in �p2, while �

p
3 is the

class of problems that are solved in polynomial time by a nondeterministic Turing machine
that uses an �p2-oracle, and �p3 is the class of problems that are complement of a problem
in �p3. It is generally assumed that the polynomial hierarchy does not collapse: hence,
a problem in the class �p2 or �p2 is considered computationally easier than a �p3-hard or
�p3-hard problem.

As for the complexity of entailment in MBNF, we start by establishing a lower bound
for reasoning in propositional MBNF theories. To this end, we exploit the correspondence
between MBNF and the logic of minimal knowledge S5G (Halpern & Moses, 1985). Indeed,
as stated by Proposition 2.5, there is a one-to-one correspondence between MBNF models
and S5G models of positive subjective theories.

Lemma 5.1 Let � 2 LSM and let ' 2 LB. Then, the problem of deciding whether � j=MBNF

' is �p3-hard.
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Proof. As shown by (Donini et al., 1997b), entailment in S5G is �p3-complete. Therefore,
by Proposition 2.5, for subjective (and hence for general) MBNF theories, entailment is
�p3-hard.

Then, we show that the entailment problem in propositional MBNF is complete with
respect to the class �p3.

Theorem 5.2 Let � 2 LM and let ' 2 LB. Then, the problem of deciding whether

� j=MBNF ' is �p3-complete.

Proof. Hardness with respect to �p3 follows from Lemma 5.1. As for membership in �p3,
we analyze the complexity of the algorithm MBNF-Not-Entails reported in Figure 1. In
particular, observe that:

� given (P;N), the formula ob(P;N) can be computed in polynomial time with respect
to the size of P . Moreover, by Lemma 4.9 it follows that, since MA(�) has size linear
with respect to the size of �, construction of the partition Prt(�; ob(P;N)) can be
performed through a linear number (with respect to the size of �) of calls to an NP-
oracle for propositional satis�ability. Therefore, condition (a) can be checked through
a linear number (in the size of the input) of calls to an NP-oracle;

� since '(ob(P;N)) = '(Prt('; ob(P;N))), the formula :'(ob(P;N)) can be computed
in time linear with respect to the size of '^ ob(P;N) using an NP-oracle. And since,
given � and (P;N), �(P;N) can be computed in polynomial time with respect to
the size of the input, it follows that condition (b) can be computed through a linear
number (in the size of the input) of calls to an NP-oracle;

� given a partition (P 0; N 0), each of the conditions (c1), (c2) and (c3) (analogous to
conditions (a) and (b)) can be checked in polynomial time, with respect to the size of
�, using an NP-oracle. Therefore, since the guess of the partition (P 0; N 0) of MA(�)
requires a nondeterministic choice, falsity of condition (c) can be decided in �p2, which
implies that verifying whether condition (c) holds can be decided in �p2.

Since the guess of the partition (P;N) of MA(�) requires a nondeterministic choice, it
follows that the algorithm MBNF-Not-Entails, if considered as a nondeterministic proce-
dure, decides � 6j=MBNF ' in nondeterministic polynomial time (with respect to the size of
� ^ '), using a �p2-oracle. Thus, we obtain an upper bound of �p3 for the non-entailment
problem, which implies that entailment in MBNF is in �p3.

The previous analysis also allows for a computational characterization of the logic MKNF
(Lifschitz, 1991), which is a slight modi�cation of MBNF. Indeed, it is known (Lifschitz,
1994) that, for each theory � � LM , M is an MKNF model of � i�, for each interpretation
I, (I;M) is an MBNF model of the subjective theory �0 = fB' : ' 2 �g. Therefore, from
Proposition 2.5 and from �p3-hardness of entailment in S5G (Donini et al., 1997b), it follows
that entailment in MKNF is �p3-hard. Then, since � j=MKNF ' i� �0 j=MBNF B' (Lifschitz,
1994), it follows that entailment in MKNF can be polynomially reduced to entailment in
MBNF, hence such a problem belongs to �p3. Therefore, the following property holds.

Theorem 5.3 Entailment in propositional MKNF is �p3-complete.
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Finally, the previous theorem provides a computational characterization of the logic of
grounded knowledge and justi�ed assumptions GK (Lin & Shoham, 1992). In fact, the
logic GK can be considered as a syntactic variant of the propositional fragment of MKNF.
Therefore, skeptical entailment in GK is �p3-complete.

Remark. The computational properties of MBNF and its variants relate such formalisms
to ground nonmonotonic modal logics (Eiter & Gottlob, 1992; Donini et al., 1997b; Rosati,
1999). Notably, ground nonmonotonic modal logics share with MBNF the interpretation in
terms of minimal knowledge (or minimal belief) of the modality B; speci�cally, as already
mentioned, the propositional fragment of MBNF can be considered as built upon S5G by
adding a second modality not . Therefore, it turns out that, in the propositional case, adding
a \negation by default" modality to the S5 logic of minimal knowledge does not increase
the computational complexity of reasoning, while adding a minimal knowledge modality to
AEL does increase the complexity of deduction. We can thus summarize as follows: minimal
knowledge is computationally harder than negation as failure.

We now study the complexity of entailment for 
at MBNF theories. First, it is known
that, in the case of 
at MBNF theories and subjective queries, entailment is �p2-complete:
membership in the class �p2 is a consequence of the fact that 
at MKNF theories can
be polynomially embedded into McDermott and Doyle's nonmonotonic modal logic S4F

(Schwarz & Truszczy�nski, 1994, Proposition 3.2), whose entailment problem is �p2-complete
(Marek & Truszczy�nski, 1993), while �p2-hardness follows from the existence of a polynomial-
time embedding of propositional default theories into 
at MBNF theories (Lifschitz, 1994).
Therefore, the following property holds.

Proposition 5.4 Let � 2 L1
M and let ' 2 LSB. Then, the problem of deciding whether

� j=MBNF ' is �p2-complete.

As for complexity of entailment of generic queries with respect to 
at MBNF theories,
we analyze the complexity of the algorithm Flat-Not-Entails reported in Figure 2. As shown
before, both condition (a) and condition (b) can be checked through a linear number (with
respect to the size of the input) of calls to an NP-oracle. Moreover, validity in modal logic
S5 is a coNP-complete problem (Halpern & Moses, 1992). Hence, each of the conditions in
the algorithm can be computed through a number of calls to an oracle for the propositional
validity problem which is polynomial in the size of the input, and since the guess of the
partition (P;N) of MA(�) requires a nondeterministic choice, it follows that the algorithm
runs in �p2. Therefore, the following property holds.

Theorem 5.5 Let � 2 L1
M and let ' 2 LB. Then, the problem of deciding whether

� j=MBNF ' is �p2-complete.

Proof. Membership of the problem to the class �p2 is implied by the algorithm Flat-not-
entails, whereas �p2-hardness is implied by Proposition 5.4.

Hence, the algorithm Flat-Not-Entails is \optimal" in the sense that it matches the
lower bound for the entailment problem.
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Finally, we remark that the subset of 
at MBNF theories in conjunctive normal form
can be seen as a further extension of the framework of generalized logic programming intro-
duced by Inoue and Sakama (1994), which in turn is an extension of the disjunctive logic
programming framework under the stable model semantics (Gelfond & Lifschitz, 1991).
Roughly speaking, 
at MBNF theories in conjunctive normal form correspond to rules of
generalized logic programs in which propositional formulas (instead of literals) are allowed
as goals. The above computational characterization implies that such an extension of the
framework of logic programming under the stable model semantics does not a�ect the worst-
case complexity of the entailment problem, which is �p2-complete just like entailment in logic
programs with disjunction under the stable model semantics (Eiter & Gottlob, 1995). Such
a result extends analogous properties (Marek, Truszczy�nski, & Rajasekar, 1995) to the case
of disjunctive logic programs.

6. Conclusions

In this paper we have investigated the problem of reasoning in the propositional fragment
of MBNF. The main results presented can be summarized as follows:

� the negation as failure modality not of MBNF exactly corresponds to negative intro-
spection in AEL. This implies that the logic MBNF can be viewed as the conservative
extension of two di�erent nonmonotonic modal logics: Halpern and Moses' logic of
minimal knowledge S5G and Moore's AEL;

� reasoning in the propositional fragment of MBNF lies at the third level of the polyno-
mial hierarchy, hence (unless the polynomial hierarchy does not collapse) reasoning in
MBNF is harder than reasoning in the best known propositional nonmonotonic logics,
like default logic, autoepistemic logic, and circumscription;

� we have de�ned methods for reasoning in MBNF, which subsume and generalize well-
known nonmonotonic reasoning algorithms used in logic programming (Gelfond &
Lifschitz, 1991), default logic (Gottlob, 1992), and autoepistemic logic (Marek &
Truszczy�nski, 1993);

� we have studied the 
at fragment of MBNF and its relationship with the logic pro-
gramming paradigm.

As for the computational aspects of reasoning in MBNF, the results presented in Sec-
tion 5 prove that one source of complexity is due to the presence of nested occurrences of
modalities in the theory, since reasoning in 
at MBNF is computationally easier than in
the general case.

It can be proven that another source of complexity lies in the underlying objective
language. In fact, if we consider L0 to be a tractable fragment of propositional logic, then
the complexity of reasoning in the modal language L0M built upon L0 is lower than in the
general case. In particular, it is easy to see that, under the assumption that entailment
in L0 can be computed in polynomial time, the algorithm MBNF-Not-Entails provides an
upper bound of �p2 for MBNF-entailment in the fragment L0M .
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One possible development of the present work is towards the analysis of reasoning about
minimal belief and negation as failure in a �rst-order setting: in particular, it should be
interesting to see whether it is possible to extend the techniques developed for the propo-
sitional case to a more expressive language. A �rst attempt in this direction is reported by
Donini et al. (1997a).
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