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Abstract

Partially observable Markov decision processes (POMDPs) provide an elegant math-
ematical framework for modeling complex decision and planning problems in stochastic
domains in which states of the system are observable only indirectly, via a set of imperfect
or noisy observations. The modeling advantage of POMDPs, however, comes at a price |
exact methods for solving them are computationally very expensive and thus applicable
in practice only to very simple problems. We focus on eÆcient approximation (heuristic)
methods that attempt to alleviate the computational problem and trade o� accuracy for
speed. We have two objectives here. First, we survey various approximation methods,
analyze their properties and relations and provide some new insights into their di�erences.
Second, we present a number of new approximation methods and novel re�nements of ex-
isting techniques. The theoretical results are supported by experiments on a problem from
the agent navigation domain.

1. Introduction

Making decisions in dynamic environments requires careful evaluation of the cost and ben-
e�ts not only of the immediate action but also of choices we may have in the future. This
evaluation becomes harder when the e�ects of actions are stochastic, so that we must pur-
sue and evaluate many possible outcomes in parallel. Typically, the problem becomes more
complex the further we look into the future. The situation becomes even worse when the
outcomes we can observe are imperfect or unreliable indicators of the underlying process
and special actions are needed to obtain more reliable information. Unfortunately, many
real-world decision problems fall into this category.

Consider, for example, a problem of patient management. The patient comes to the
hospital with an initial set of complaints. Only rarely do these allow the physician (decision-
maker) to diagnose the underlying disease with certainty, so that a number of disease options
generally remain open after the initial evaluation. The physician has multiple choices in
managing the patient. He/she can choose to do nothing (wait and see), order additional tests
and learn more about the patient state and disease, or proceed to a more radical treatment
(e.g. surgery). Making the right decision is not an easy task. The disease the patient su�ers
can progress over time and may become worse if the window of opportunity for a particular
e�ective treatment is missed. On the other hand, selection of the wrong treatment may
make the patient's condition worse, or may prevent applying the correct treatment later.
The result of the treatment is typically non-deterministic and more outcomes are possible.
In addition, both treatment and investigative choices come with di�erent costs. Thus, in
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a course of patient management, the decision-maker must carefully evaluate the costs and
bene�ts of both current and future choices, as well as their interaction and ordering. Other
decision problems with similar characteristics | complex temporal cost-bene�t tradeo�s,
stochasticity, and partial observability of the underlying controlled process | include robot
navigation, target tracking, machine mantainance and replacement, and the like.

Sequential decision problems can be modeled as Markov decision processes (MDPs)
(Bellman, 1957; Howard, 1960; Puterman, 1994; Boutilier, Dean, & Hanks, 1999) and their
extensions. The model of choice for problems similar to patient management is the partially
observable Markov decision process (POMDP) (Drake, 1962; Astrom, 1965; Sondik, 1971;
Lovejoy, 1991b). The POMDP represents two sources of uncertainty: stochasticity of the
underlying controlled process (e.g. disease dynamics in the patient management problem),
and imperfect observability of its states via a set of noisy observations (e.g. symptoms,
�ndings, results of tests). In addition, it lets us model in a uniform way both control and
information-gathering (investigative) actions, as well as their e�ects and cost-bene�t trade-
o�s. Partial observability and the ability to model and reason with information-gathering
actions are the main features that distinguish the POMDP from the widely known fully

observable Markov decision process (Bellman, 1957; Howard, 1960).
Although useful from the modeling perspective, POMDPs have the disadvantage of be-

ing hard to solve (Papadimitriou & Tsitsiklis, 1987; Littman, 1996; Mundhenk, Goldsmith,
Lusena, & Allender, 1997; Madani, Hanks, & Condon, 1999), and optimal or �-optimal solu-
tions can be obtained in practice only for problems of low complexity. A challenging goal in
this research area is to exploit additional structural properties of the domain and/or suitable
approximations (heuristics) that can be used to obtain good solutions more eÆciently.

We focus here on heuristic approximation methods, in particular approximations based
on value functions. Important research issues in this area are the design of new and eÆcient
algorithms, as well as a better understanding of the existing techniques and their relations,
advantages and disadvantages. In this paper we address both of these issues. First, we
survey various value-function approximations, analyze their properties and relations and
provide some insights into their di�erences. Second, we present a number of new methods
and novel re�nements of existing techniques. The theoretical results and �ndings are also
supported empirically on a problem from the agent navigation domain.

2. Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) describes a stochastic control
process with partially observable (hidden) states. Formally, it corresponds to a tuple
(S;A;�; T;O;R) where S is a set of states, A is a set of actions, � is a set of observations,
T : S�A�S ! [0; 1] is a set of transition probabilities that describe the dynamic behavior
of the modeled environment, O : S�A��! [0; 1] is a set of observation probabilities that
describe the relationships among observations, states and actions, and R : S �A� S ! IR
denotes a reward model that assigns rewards to state transitions and models payo�s asso-
ciated with such transitions. In some instances the de�nition of a POMDP also includes an
a priori probability distribution over the set of initial states S.
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Figure 1: Part of the in
uence diagram describing a POMDP model. Rectangles correspond
to decision nodes (actions), circles to random variables (states) and diamonds to
reward nodes. Links represent the dependencies among the components. st; at; ot
and rt denote state, action, observation and reward at time t. Note that an action
at time t depends only on past observations and actions, not on states.

2.1 Objective Function

Given a POMDP, the goal is to construct a control policy that maximizes an objective (value)
function. The objective function combines partial (stepwise) rewards over multiple steps
using various kinds of decision models. Typically, the models are cumulative and based on
expectations. Two models are frequently used in practice:

� a �nite-horizon model in which we maximize E(
PT

t=0 rt), where rt is a reward obtained
at time t.

� an in�nite-horizon discounted model in which we maximize E(
P1

t=0 

trt), where 0 <


 < 1 is a discount factor.

Note that POMDPs and cumulative decision models provide a rich language for modeling
various control objectives. For example, one can easily model goal-achievement tasks (a
speci�c goal must be reached) by giving a large reward for a transition to that state and
zero or smaller rewards for other transitions.

In this paper we focus primarily on discounted in�nite-horizon model. However, the
results can be easily applied also to the �nite-horizon case.

2.2 Information State

In a POMDP the process states are hidden and we cannot observe them while making a
decision about the next action. Thus, our action choices are based only on the informa-
tion available to us or on quantities derived from that information. This is illustrated in
the in
uence diagram in Figure 1, where the action at time t depends only on previous
observations and actions, not on states. Quantities summarizing all information are called
information states. Complete information states represent a trivial case.
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Figure 2: In
uence diagram for a POMDP with information states and corresponding
information-state MDP. Information states (It and It+1) are represented by
double-circled nodes. An action choice (rectangle) depends only on the current
information state.

De�nition 1 (Complete information state). The complete information state at time t (de-
noted ICt ) consists of:

� a prior belief b0 on states in S at time 0;

� a complete history of actions and observations fo0; a0; o1; a1; � � � ; ot�1; at�1; otg start-
ing from time t = 0.

A sequence of information states de�nes a controlled Markov process that we call an
information-state Markov decision process or information-state MDP. The policy for the
information-state MDP is de�ned in terms of a control function � : I ! A mapping
information state space to actions. The new information state (It) is a deterministic function
of the previous state (It�1), the last action (at�1) and the new observation (ot):

It = �(It�1; ot; at�1):

� : I ���A! I is the update function mapping the information state space, observations
and actions back to the information space.1 It is easy to see that one can always convert
the original POMDP into the information-state MDP by using complete information states.
The relation between the components of the two models and a sketch of a reduction of a
POMDP to an information-state MDP, are shown in Figure 2.

2.3 Bellman Equations for POMDPs

An information-state MDP for the in�nite-horizon discounted case is like a fully-observable
MDP and satis�es the standard �xed-point (Bellman) equation:

V �(I) = max
a2A

(
�(I; a) + 


X
I0

P (I 0jI; a)V �(I 0)

)
: (1)

1. In this paper, � denotes the generic update function. Thus we use the same symbol even if the information
state space is di�erent.
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Here, V �(I) denotes the optimal value function maximizing E(
P1

t=0 

trt) for state I. �(I; a)

is the expected one-step reward and equals

�(I; a) =
X
s2S

�(s; a)P (sjI) =
X
s2S

X
s02S

R(s; a; s0)P (s0js; a)P (sjI):

�(s; a) denotes an expected one-step reward for state s and action a.
Since the next information state I 0 = �(I; o; a) is a deterministic function of the previous

information state I, action a, and the observation o, the Equation 1 can be rewritten more
compactly by summing over all possible observations �:

V �(I) = max
a2A

(X
s2S

�(s; a)P (sjI) + 

X
o2�

P (ojI; a)V �(�(I; o; a))

)
: (2)

The optimal policy (control function) �� : I ! A selects the value-maximizing action

��(I) = argmax
a2A

(X
s2S

�(s; a)P (sjI) + 

X
o2�

P (ojI; a)V �(�(I; o; a))

)
: (3)

The value and control functions can be also expressed in terms of action-value functions
(Q-functions)

V �(I) = max
a2A

Q�(I; a) ��(I) = argmax
a2A

Q�(I; a);

Q�(I; a) =
X
s2S

�(s; a)P (sjI) + 

X
o2�

P (ojI; a)V �(�(I; o; a)): (4)

A Q-function corresponds to the expected reward for chosing a �xed action (a) in the �rst
step and acting optimally afterwards.

2.3.1 Sufficient Statistics

To derive Equations 1|3 we implicitly used complete information states. However, as
remarked earlier, the information available to the decision-maker can be also summarized
by other quantities. We call them suÆcient information states. Such states must preserve
the necessary information content and also the Markov property of the information-state
decision process.

De�nition 2 (SuÆcient information state process). Let I be an information state space
and � : I � A � � ! I be an update function de�ning an information process It =
�(It�1; at�1; ot). The process is suÆcient with regard to the optimal control when, for any

time step t, it satis�es
P (stjIt) = P (stjI

C
t )

P (otjIt�1; at�1) = P (otjI
C
t�1; at�1);

where ICt and ICt�1 are complete information states.

It is easy to see that Equations 1 | 3 for complete information states must hold also for
suÆcient information states. The key bene�t of suÆcient statistics is that they are often
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easier to manipulate and store, since unlike complete histories, they may not expand with
time. For example, in the standard POMDP model it is suÆcient to work with belief states
that assign probabilities to every possible process state (Astrom, 1965).2 In this case the
Bellman equation reduces to:

V (b) = max
a2A

(X
s2S

�(s; a)b(s) + 

X
o2�

X
s2S

P (ojs; a)b(s)V (�(b; o; a))

)
; (5)

where the next-step belief state b0 is

b0(s) = �(b; o; a)(s) = �P (ojs; a)
X
s02S

P (sja; s0)b(s0):

� = 1=P (ojb; a) is a normalizing constant. This de�nes a belief-state MDP which is a
special case of a continuous-state MDP. Belief-state MDPs are also the primary focus of
our investigation in this paper.

2.3.2 Value-Function Mappings and their Properties

The Bellman equation 2 for the belief-state MDP can be also rewritten in the value-function
mapping form. Let V be a space of real-valued bounded functions V : I ! IR de�ned on
the belief information space I, and let h : I �A�B ! IR be de�ned as

h(b; a; V ) =
X
s2S

�(s; a)b(s) + 

X
o2�

X
s2S

P (ojs; a)b(s)V (�(b; o; a)):

Now by de�ning the value function mapping H : V ! V as (HV )(b) = maxa2A h(b; a; V ),
the Bellman equation 2 for all information states can be written as V � = HV �: It is well
known that H (for MDPs) is an isotone mapping and that it is a contraction under the
supremum norm (see (Heyman & Sobel, 1984; Puterman, 1994)).

De�nition 3 The mapping H is isotone, if V;U 2 V and V � U implies HV � HU .

De�nition 4 Let k:k be a supremum norm. The mapping H is a contraction under the

supremum norm, if for all V;U 2 V, kHV �HUk � �kV � Uk holds for some 0 � � < 1.

2.4 Value Iteration

The optimal value function (Equation 2) or its approximation can be computed using dy-

namic programming techniques. The simplest approach is the value iteration (Bellman,
1957) shown in Figure 3. In this case, the optimal value function V � can be determined
in the limit by performing a sequence of value-iteration steps Vi = HVi�1, where Vi is the
ith approximation of the value function (ith value function).3 The sequence of estimates

2. Models in which belief states are not suÆcient include POMDPs with observation and action channel
lags (see Hauskrecht (1997)).

3. We note that the same update Vi = HVi�1 can be applied to solve the �nite-horizon problem in a
standard way. The di�erence is that Vi now stands for the i-steps-to-go value function and V0 represents
the value function (rewards) for end states.
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Value iteration (POMDP , �)
initialize V for all b 2 I;
repeat

V 0  V ;
update V  HV 0 for all b 2 I;

until supb j V (b)� V
0(b) j� �

return V;

Figure 3: Value iteration procedure.

converges to the unique �xed-point solution which is the direct consequence of Banach's
theorem for contraction mappings (see, for example, Puterman (1994)).

In practice, we stop the iteration well before it reaches the limit solution. The stopping
criterion we use in our algorithm (Figure 3) examines the maximum di�erence between value
functions obtained in two consecutive steps | the so-called Bellman error (Puterman, 1994;
Littman, 1996). The algorithm stops when this quantity falls below the threshold �. The
accuracy of the approximate solution (ith value function) with regard to V � can be expressed
in terms of the Bellman error �.

Theorem 1 Let � = supb jVi(b) � Vi�1(b)j = kVi � Vi�1k be the magnitude of the Bellman

error. Then kVi � V
�k � 
�

1�
 and kVi�1 � V
�k � �

1�
 hold.

Then, to obtain the approximation of V � with precision Æ the Bellman error should fall
below Æ(1�
)


 .

2.4.1 Piecewise Linear and Convex Approximations of the Value Function

The major diÆculty in applying the value iteration (or dynamic programming) to belief-
state MDPs is that the belief space is in�nite and we need to compute an update Vi = HVi�1
for all of it. This poses the following threats: the value function for the ith step may not
be representable by �nite means and/or computable in a �nite number of steps.

To address this problem Sondik (Sondik, 1971; Smallwood & Sondik, 1973) showed that
one can guarantee the computability of the ith value function as well as its �nite description
for a belief-state MDP by considering only piecewise linear and convex representations of
value function estimates (see Figure 4). In particular, Sondik showed that for a piecewise
linear and convex representation of Vi�1, Vi = HVi�1 is computable and remains piecewise
linear and convex.

Theorem 2 (Piecewise linear and convex functions). Let V0 be an initial value function

that is piecewise linear and convex. Then the ith value function obtained after a �nite

number of update steps for a belief-state MDP is also �nite, piecewise linear and convex,

and is equal to:

Vi(b) = max
�i2�i

X
s2S

b(s)�i(s);

where b and �i are vectors of size jSj and �i is a �nite set of vectors (linear functions) �i.
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1b(s  )

V (b)i
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Figure 4: A piecewise linear and convex function for a POMDP with two process states
fs1; s2g. Note that b(s1) = 1� b(s2) holds for any belief state.

The key part of the proof is that we can express the update for the ith value function
in terms of linear functions �i�1 de�ning Vi�1:

Vi(b) = max
a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

max
�i�12�i�1

X
s02S

"X
s2S

P (s0; ojs; a)b(s)

#
�i�1(s

0)

9=; : (6)

This leads to a piecewise linear and convex value function Vi that can be represented by
a �nite set of linear functions �i, one linear function for every combination of actions and

permutations of �i�1 vectors of size j�j. Let W = (a; fo1; �
j1
i�1g; fo2; �

j2
i�1g; � � � foj�j; �

jj�j

i�1g)
be such a combination. Then the linear function corresponding to it is de�ned as

�Wi (s) = �(s; a) + 

X
o2�

X
s02S

P (s0; ojs; a)�joi�1(s
0): (7)

Theorem 2 is the basis of the dynamic programming algorithm for �nding the optimal
solution for the �nite-horizon models and the value-iteration algorithm for �nding near-
optimal approximations of V � for the discounted, in�nite-horizon model. Note, however,
that this result does not imply piecewise linearity of the optimal (�xed-point) solution V �.

2.4.2 Algorithms for Computing Value-Function Updates

The key part of the value-iteration algorithm is the computation of value-function updates
Vi = HVi�1. Assume an ith value function Vi that is represented by a �nite number of linear
segments (� vectors). The total number of all its possible linear functions is jAjj�i�1j

j�j (one
for every combination of actions and permutations of �i�1 vectors of size j�j) and they can
be enumerated in O(jAjjSj2j�i�1j

j�j) time. However, the complete set of linear functions
is rarely needed: some of the linear functions are dominated by others and their omission
does not change the resulting piecewise linear and convex function. This is illustrated in
Figure 5.
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Figure 5: Redundant linear function. The function does not dominate in any of the regions
of the belief space and can be excluded.

A linear function that can be eliminated without changing the resulting value function
solution is called redundant. Conversely, a linear function that singlehandedly achieves the
optimal value for at least one point of the belief space is called useful.4

For the sake of computational eÆciency it is important to make the size of the linear
function set as small as possible (keep only useful linear functions) over value-iteration steps.
There are two main approaches for computing useful linear functions. The �rst approach is
based on a generate-and-test paradigm and is due to Sondik (1971) and Monahan (1982).
The idea here is to enumerate all possible linear functions �rst, then test the usefulness
of linear functions in the set and prune all redundant vectors. Recent extensions of the
method interleave the generate and test stages and do early pruning on a set of partially
constructed linear functions (Zhang & Liu, 1997a; Cassandra, Littman, & Zhang, 1997;
Zhang & Lee, 1998).

The second approach builds on Sondik's idea of computing a useful linear function for a
single belief state (Sondik, 1971; Smallwood & Sondik, 1973), which can be done eÆciently.
The key problem here is to locate all belief points that seed useful linear functions and
di�erent methods address this problem di�erently. Methods that implement this idea are
Sondik's one- and two-pass algorithms (Sondik, 1971), Cheng's methods (Cheng, 1988), and
the Witness algorithm (Kaelbling, Littman, & Cassandra, 1999; Littman, 1996; Cassandra,
1998).

2.4.3 Limitations and Complexity

The major diÆculty in solving a belief-state MDP is that the complexity of a piecewise
linear and convex function can grow extremely fast with the number of update steps. More
speci�cally, the size of a linear function set de�ning the function can grow exponentially (in
the number of observations) during a single update step. Then, assuming that the initial
value function is linear, the number of linear functions de�ning the ith value function is
O(jAjj�j

i�1
).

4. In de�ning redundant and useful linear functions we assume that there are no linear function duplicates,
i.e. only one copy of the same linear function is kept in the set �i.
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The potential growth of the size of the linear function set is not the only bad news. As
remarked earlier, a piecewise linear convex value function is usually less complex than the
worst case because many linear functions can be pruned away during updates. However,
it turned out that the task of identifying all useful linear functions is computationally
intractable as well (Littman, 1996). This means that one faces not only the potential
super-exponential growth of the number of useful linear functions, but also ineÆciencies
related to the identi�cation of such vectors. This is a signi�cant drawback that makes the
exact methods applicable only to relatively simple problems.

The above analysis suggests that solving a POMDP problem is an intrinsically hard
task. Indeed, �nding the optimal solution for the �nite-horizon problem is PSPACE-hard
(Papadimitriou & Tsitsiklis, 1987). Finding the optimal solution for the discounted in�nite-
horizon criterion is even harder. The corresponding decision problem has been shown to be
undecidable (Madani et al., 1999), and thus the optimal solution may not be computable.

2.4.4 Structural Refinements of the Basic Algorithm

The standard POMDP model uses a 
at state space and full transition and reward matrices.
However, in practice, problems often exhibit more structure and can be represented more
compactly, for example, using graphical models (Pearl, 1988; Lauritzen, 1996), most often
dynamic belief networks (Dean & Kanazawa, 1989; Kjaerul�, 1992) or dynamic in
uence
diagrams (Howard & Matheson, 1984; Tatman & Schachter, 1990).5 There are many ways
to take advantage of the problem structure to modify and improve exact algorithms. For
example, a re�nement of the basic Monahan algorithm to compact transition and reward
models has been studied by Boutilier and Poole (1996). A hybrid framework that combines
MDP-POMDP problem-solving techniques to take advantage of perfectly and partially ob-
servable components of the model and the subsequent value function decomposition was
proposed by Hauskrecht (1997, 1998, 2000). A similar approach with perfect information
about a region (subset of states) containing the actual underlying state was discussed by
Zhang and Liu (1997b, 1997a). Finally, Casta~non (1997) and Yost (1998) explore techniques
for solving large POMDPs that consist of a set of smaller, resource-coupled but otherwise
independent POMDPs.

2.5 Extracting Control Strategy

Value iteration allow us to compute an ith approximation of the value function Vi. However,
our ulimate goal is to �nd the optimal control strategy �� : I ! A or its close approximation.
Thus our focus here is on the problem of extraction of control strategies from the results of
value iteration.

2.5.1 Lookahead Design

The simplest way to de�ne the control function � : I ! A from the value function Vi is via
greedy one-step lookahead:

�(b) = argmax
a2A

(X
s2S

�(s; a)b(s) + 

X
o2�

P (ojb; a)Vi(�(b; o; a))

)
:

5. See the survey by Boutilier, Dean and Hanks (1999) for di�erent ways to represent structured MDPs.
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1b(s  )
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Figure 6: Direct control design. Every linear function de�ning Vi is associated with an
action. The action is selected if its linear function (or Q-function) is maximal.

As Vi represents only the ith approximation of the optimal value function, the question
arises how good the resulting controller really is.6 The following theorem (Puterman, 1994;
Williams & Baird, 1994; Littman, 1996) relates the accuracy of the (lookahead) controller
and the Bellman error.

Theorem 3 Let � = kVi � Vi�1k be the magnitude of the Bellman error. Let V LA
i be the

expected reward for the lookahead controller designed for Vi. Then kV
LA
i � V �k � 2�


1�
 .

The bound can be used to construct the value-iteration routine that yields a lookahead
strategy with a minimum required precision. The result can be also extended to the k-
step lookahead design in a straightforward way; with k steps, the error bound becomes

kV
LA(k)
i � V �k � 2�
k

(1�
) .

2.5.2 Direct Design

To extract the control action via lookahead essentially requires computing one full update.
Obviously, this can lead to unwanted delays in reaction times. In general, we can speed up
the response by remembering and using additional information. In particular, every linear
function de�ning Vi is associated with the choice of action (see Equation 7). The action is a
byproduct of methods for computing linear functions and no extra computation is required
to �nd it. Then the action corresponding to the best linear function can be selected directly
for any belief state. The idea is illustrated in Figure 6.

The bound on the accuracy of the direct controller for the in�nite-horizon case can be
once again derived in terms of the magnitude of the Bellman error.

Theorem 4 Let � = kVi � Vi�1k be the magnitude of the Bellman error. Let V DR
i be an

expected reward for the direct controller designed for Vi. Then kV
DR
i � V �k � 2�

1�
 .

The direct action choice is closely related to the notion of action-value function (or
Q-function). Analogously to Equation 4, the ith Q-function satis�es

Vi(b) = max
a2A

Qi(b; a);

6. Note that the control action extracted via lookahead from Vi is optimal for (i + 1) steps-to-go and the
�nite-horizon model. The main di�erence here is that Vi is the optimal value function for i steps to go.
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Figure 7: A policy graph (�nite-state machine) obtained after two value iteration steps.
Nodes correspond to linear functions (or states of the �nite-state machine) and
links to dependencies between linear functions (transitions between states). Every
linear function (node) is associated with an action. To ensure that the policy can
be also applied to the in�nite-horizon problem, we add a cycle to the last state
(dashed line).

Qi(b; a) = R(b; a) + 

X
o2�

P (ojb; a)Vi�1(�(b; a; o)):

From this perspective, the direct strategy selects the action with the best (maximum) Q-
function for a given belief state.7

2.5.3 Finite-State Machine Design

A more complex re�nement of the above technique is to remember, for every linear function
in Vi, not only the action choice but also the choice of a linear function for the previous
step and to do this for all observations (see Equation 7). As the same idea can be applied
recursively to the linear functions for all previous steps, we can obtain a relatively complex
dependency structure relating linear functions in Vi; Vi�1; � � � V0, observations and actions
that itself represents a control strategy (Kaelbling et al., 1999).

To see this, we model the structure in graphical terms (Figure 7). Here di�erent nodes
represent linear functions, actions associated with nodes correspond to optimizing actions,
links emanating from nodes correspond to di�erent observations, and successor nodes corre-
spond to linear functions paired with observations. Such graphs are also called policy graphs
(Kaelbling et al., 1999; Littman, 1996; Cassandra, 1998). One interpretation of the depen-
dency structure is that it represents a collection of �nite-state machines (FSMs) with many
possible initial states that implement a POMDP controller: nodes correspond to states of
the controller, actions to controls (outputs), and links to transitions conditioned on inputs

7. Williams and Baird (1994) also give results relating the accuracy of the direct Q-function controller to
the Bellman error of Q-functions.
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(observations). The start state of the FSM controller is chosen greedily by selecting the
linear function (controller state) optimizing the value of an initial belief state.

The advantage of the �nite-state machine representation of the strategy is that for the
�rst i steps it works with observations directly; belief-state updates are not needed. This
contrasts with the other two policy models (lookahead and direct models), which must keep
track of the current belief state and update it over time in order to extract appropriate
control. The drawback of the approach is that the FSM controller is limited to i steps
that correspond to the number of value iteration steps performed. However, in the in�nite-
horizon model the controller is expected to run for an in�nite number of steps. One way
to remedy this de�ciency is to extend the FSM structure and to create cycles that let us
visit controller states repeatedly. For example, adding a cycle transition to the end state of
the FSM controller in Figure 7 (dashed line) ensures that the controller is also applicable
to the in�nite-horizon problem.

2.6 Policy Iteration

An alternative method for �nding the solution for the discounted in�nite-horizon problem
is policy iteration (Howard, 1960; Sondik, 1978). Policy iteration searches the policy space
and gradually improves the current control policy for one or more belief states. The method
consists of two steps performed iteratively:

� policy evaluation: computes expected value for the current policy;

� policy improvement: improves the current policy.

As we saw in Section 2.5, there are many ways to represent a control policy for a
POMDP. Here we restrict attention to a �nite-state machine model in which observations
correspond to inputs and actions to outputs (Platzman, 1980; Hansen, 1998b; Kaelbling
et al., 1999).8

2.6.1 Finite-State Machine Controller

A �nite-state machine (FSM) controller C = (M;�; A; �; �;  ) for a POMDP is described
by a set of memory states M of the controller, a set of observations (inputs) �, a set of
actions (outputs) A, a transition function � : M �� ! M mapping states of the FSM to
next memory states given the observation, and an output function � : M ! A mapping
memory states to actions. A function  : I0 ! M selects the initial memory state given
the initial information state. The initial information state corresponds either to a prior or
a posterior belief state at time t0 depending on the availability of an initial observation.

2.6.2 Policy Evaluation

The �rst step of the policy iteration is policy evaluation. The most important property
of the FSM model is that the value function for a speci�c FSM strategy can be computed
eÆciently in the number of controller states M . The key to eÆcient computability is the

8. A policy-iteration algorithm in which policies are de�ned over the regions of the belief space was described
�rst by Sondik (1978).
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Figure 8: An example of a four-state FSM policy. Nodes represent states, links transi-
tions between states (conditioned on observations). Every memory state has an
associated control action (output).

fact that the value function for executing an FSM strategy from some memory state x is
linear (Platzman, 1980).9

Theorem 5 Let C be a �nite-state machine controller with a set of memory states M .

The value function for applying C from a memory state x 2 M , V C(x; b), is linear. Value
functions for all x 2 M can be found by solving a system of linear equations with jSjjM j
variables.

We illustrate the main idea by an example. Assume an FSM controller with four memory
states fx1; x2; x3; x4g, as in Figure 8, and a stochastic process with two hidden states S =
fs1; s2g. The value of the policy for an augmented state space S �M satis�es a system of
linear equations

V (x1; s1) = �(s1; �(x1)) + 

X
o2�

X
s2S

P (o; sjs1; �(x1))V (�(x1; o); s)

V (x1; s2) = �(s2; �(x1)) + 

X
o2�

X
s2S

P (o; sjs2; �(x1))V (�(x1; o); s)

V (x2; s1) = �(s1; �(x2)) + 

X
o2�

X
s2S

P (o; sjs1; �(x2))V (�(x2; o); s)

� � �

V (x4; s2) = �(s2; �(x4)) + 

X
o2�

X
s2S

P (o; sjs2; �(x4))V (�(x4; o); s);

where �(x) is the action executed in x and �(x; o) is the state to which one transits after
seeing an input (observation) o. Assuming we start the policy from the memory state x1,
the value of the policy is:

V C(x1; b) =
X
s2S

V (x1; s)b(s):

9. The idea of linearity and eÆcient computability of the value functions for a �xed FSM-based strategy
has been addressed recently in di�erent contexts by a number of researchers (Littman, 1996; Cassandra,
1998; Hauskrecht, 1997; Hansen, 1998b; Kaelbling et al., 1999). However, the origins of the idea can be
traced to the earlier work by Platzman (1980).
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Thus the value function is linear and can be computed eÆciently by solving a system of
linear equations.

Since in general the FSM controller can start from any memory state, we can always
choose the initial memory state greedily, maximizing the expected value of the result. In
such a case the optimal choice function  is de�ned as:

 (b) = argmax
x2M

V C(x; b);

and the value for the FSM policy C and belief state b is:

V C(b) = max
x2M

V C(x; b) = V C( (b); b):

Note that the resulting value function for the strategy C is piecewise linear and convex and
represents expected rewards for following C. Since no strategy can perform better that the
optimal strategy, V C � V � must hold.

2.6.3 Policy Improvement

The policy-iteration method, searching the space of controllers, starts from an arbitrary ini-
tial policy and improves it gradually by re�ning its �nite-state machine (FSM) description.
In particular, one keeps modifying the structure of the controller by adding or removing con-
troller states (memory) and transitions. Let C and C 0 be an old and a new FSM controller.
In the improvement step we must satisfy

V C0
(b) � V C(b) for all b 2 I;

9b 2 I such that V C0
(b) > V C(b):

To guarantee the improvement, Hansen (1998a, 1998b) proposed a policy-iteration algo-
rithm that relies on exact value function updates to obtain a new improved policy struc-
ture.10 The basic idea of the improvement is based on the observation that one can switch
back and forth between the FSM policy description and the piecewise-linear and convex
representation of a value function. In particular:

� the value function for an FSM policy is piecewise-linear and convex and every linear
function describing it corresponds to a memory state of a controller;

� individual linear functions comprising the new value function after an update can be
viewed as new memory states of an FSM policy, as described in Section 2.5.3.

This allows us to improve the policy by adding new memory states corresponding to linear
functions of the new value function obtained after the exact update. The technique can be
re�ned by removing some of the linear functions (memory states) whenever they are fully
dominated by one of the other linear functions.

10. A policy-iteration algorithm that exploits exact value function updates but works with policies de�ned
over the belief space was used earlier by Sondik (1978).
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Figure 9: A two-step decision tree. Rectangles correspond to the decision nodes (moves
of the decision-maker) and circles to chance nodes (moves of the environment).
Black rectangles represent leaves of the tree. The reward for a speci�c path
is associated with every leaf of the tree. Decision nodes are associated with
information states obtained by following action and observation choices along the
path from the root of the tree. For example, b1;1 is a belief state obtained by
performing action a1 from the initial belief state b and observing observation o1.

2.7 Forward (Decision Tree) Methods

The methods discussed so far assume no prior knowledge of the initial belief state and treat
all belief states as equally likely. However, if the initial state is known and �xed, methods
can often be modi�ed to take advantage of this fact. For example, for the �nite-horizon
problem, only a �nite number of belief states can be reached from a given initial state. In
this case it is very often easier to enumerate all possible histories (sequences of actions and
observations) and represent the problem using stochastic decision trees (Rai�a, 1970). An
example of a two-step decision tree is shown in Figure 9.

The algorithm for solving the stochastic decision tree basically mimics value-function
updates, but is restricted only to situations that can be reached from the initial belief state.
The key diÆculty here is that the number of all possible trajectories grows exponentially
with the horizon of interest.

2.7.1 Combining Dynamic-Programming and Decision-Tree Techniques

To solve a POMDP for a �xed initial belief state, we can apply two strategies: one con-
structs the decision tree �rst and then solves it, the other solves the problem in a backward
fashion via dynamic programming. Unfortunately, both these techniques are ineÆcient, one
su�ering from exponential growth in the decision tree size, the other from super-exponential
growth in the value function complexity. However, the two techniques can be combined in
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a way that at least partially eliminates their disadvantages. The idea is based on the fact
that the two techniques work on the solution from two di�erent sides (one forward and the
other backward) and the complexity for each of them worsens gradually. Then the solution
is to compute the complete kth value function using dynamic programming (value iteration)
and cover the remaining steps by forward decision-tree expansion.

Various modi�cations of the above idea are possible. For example, one can often replace
exact dynamic programming with two more eÆcient approximations providing upper and
lower bounds of the value function. Then the decision tree must be expanded only when
the bounds are not suÆcient to determine the optimal action choice. A number of search
techniques developed in the AI literature (Korf, 1985) combined with branch-and-bound
pruning (Satia & Lave, 1973) can be applied to this type of problem. Several researchers
have experimented with them to solve POMDPs (Washington, 1996; Hauskrecht, 1997;
Hansen, 1998b). Other methods applicable to this problem are based on Monte-Carlo
sampling (Kearns, Mansour, & Ng, 1999; McAllester & Singh, 1999) and real-time dynamic
programming (Barto, Bradtke, & Singh, 1995; Dearden & Boutilier, 1997; Bonet & Ge�ner,
1998).

2.7.2 Classical Planning Framework

POMDP problems with �xed initial belief states and their solutions are closely related to
work in classical planning and its extensions to handle stochastic and partially observable
domains, particularly the work on BURIDAN and C-BURIDAN planners (Kushmerick,
Hanks, & Weld, 1995; Draper, Hanks, & Weld, 1994). The objective of these planners is
to maximize the probability of reaching some goal state. However, this task is similar to
the discounted reward task in terms of complexity, since a discounted reward model can
be converted into a goal-achievement model by introducing an absorbing state (Condon,
1992).

3. Heuristic Approximations

The key obstacle to wider application of the POMDP framework is the computational
complexity of POMDP problems. In particular, �nding the optimal solution for the �nite-
horizon case is PSPACE-hard (Papadimitriou & Tsitsiklis, 1987) and the discounted in�nite-
horizon case may not even be computable (Madani et al., 1999). One approach to such
problems is to approximate the solution to some �-precision. Unfortunately, even this
remains intractable and in general POMDPs cannot be approximated eÆciently (Burago,
Rougemont, & Slissenko, 1996; Lusena, Goldsmith, & Mundhenk, 1998; Madani et al.,
1999). This is also the reason why only very simple problems can be solved optimally or
near-optimally in practice.

To alleviate the complexity problem, research in the POMDP area has focused on various
heuristic methods (or approximations without the error parameter) that are more eÆcient.11

Heuristic methods are also our focus here. Thus, when referring to approximations, we mean
heuristics, unless speci�cally stated otherwise.

11. The quality of a heuristic approximation can be tested using the Bellman error, which requires one exact
update step. However, heuristic methods per se do not contain a precision parameter.
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The many approximation methods and their combinations can be divided into two often
very closely related classes: value-function approximations and policy approximations.

3.1 Value-Function Approximations

The main idea of the value-function approximation approach is to approximate the optimal
value function V : I ! IR with a function bV : I ! IR de�ned over the same information
space. Typically, the new function is of lower complexity (recall that the optimal or near-
optimal value function may consist of a large set of linear functions) and is easier to compute
than the exact solution. Approximations can be often formulated as dynamic programming
problems and can be expressed in terms of approximate value-function updates bH. Thus,
to understand the di�erences and advantages of various approximations and exact methods,
it is often suÆcient to analyze and compare their update rules.

3.1.1 Value-Function Bounds

Although heuristic approximations have no guaranteed precision, in many cases we are
able to say whether they overestimate or underestimate the optimal value function. The
information on bounds can be used in multiple ways. For example, upper- and lower-
bounds can help in narrowing the range of the optimal value function, elimination of some
of the suboptimal actions and subsequent speed-ups of exact methods. Alternatively, one
can use knowledge of both value-function bounds to determine the accuracy of a controller
generated based on one of the bounds (see Section 3.1.3). Also, in some instances, a lower
bound alone is suÆcient to guarantee the control choice that always achieves an expected
reward at least as high as the one given by that bound (Section 4.7.2).

The bound property of di�erent methods can be determined by examining the updates
and their bound relations.

De�nition 5 (Upper bound). Let H be the exact value-function mapping and bH its ap-

proximation. We say that bH upper-bounds H for some V when ( bHV )(b) � (HV )(b) holds
for every b 2 I.

An analogous de�nition can be constructed for the lower bound.

3.1.2 Convergence of Approximate Value Iteration

Let bH be a value-function mapping representing an approximate update. Then the ap-
proximate value iteration computes the ith value function as bVi = bH bVi�1. The �xed-point
solution cV � = bH bV � or its close approximation would then represent the intended output of
the approximation routine. The main problem with the iteration method is that in general
it can converge to unique or multiple solutions, diverge, or oscillate, depending on bH and
the initial function bV0. Therefore, unique convergence cannot be guaranteed for an arbitrary
mapping bH and the convergence of a speci�c approximation method must be proved.

De�nition 6 (Convergence of bH). The value iteration with bH converges for a value func-

tion V0 when limn!1( bHnV0) exists.
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De�nition 7 (Unique convergence of bH). The value iteration converges uniquely for V
when for every V 2 V, limn!1( bHnV ) exists and for all pairs V;U 2 V, limn!1( bHnV ) =
limn!1( bHnU).

A suÆcient condition for the unique convergence is to show that bH be a contraction. The
contraction and the bound properties of bH can be combined, under additional conditions, to
show the convergence of the iterative approximation method to the bound. To address this
issue we present a theorem comparing �xed-point solutions of two value-function mappings.

Theorem 6 Let H1 and H2 be two value-function mappings de�ned on V1 and V2 such that

1. H1, H2 are contractions with �xed points V �
1 , V

�
2 ;

2. V �
1 2 V2 and H2V

�
1 � H1V

�
1 = V �

1 ;

3. H2 is an isotone mapping.

Then V �
2 � V

�
1 holds.

Note that this theorem does not require that V1 and V2 cover the same space of value
functions. For example, V2 can cover all possible value functions of a belief-state MDP,
while V1 can be restricted to a space of piecewise linear and convex value functions. This
gives us some 
exibility in the design of iterative approximation algorithms for computing
value-function bounds. An analogous theorem also holds for the lower bound.

3.1.3 Control

Once the approximation of the value-function is available, it can be used to generate a
control strategy. In general, control solutions correspond to options presented in Section
2.5 and include lookahead, direct (Q-function) and �nite-state machine designs.

A drawback of control strategies based on heuristic approximations is that they have
no precision guarantee. One way to �nd the accuracy of such strategies is to do one exact
update of the value function approximation and adopt the result of Theorems 1 and 3 for
the Bellman error. An alternative solution to this problem is to bound the accuracy of
such controllers using the upper- and the lower-bound approximations of the optimal value
function. To illustrate this approach, we present and prove (in the Appendix) the following
theorem that relates the quality of bounds to the quality of a lookahead controller.

Theorem 7 Let bVU and bVL be upper and lower bounds of the optimal value function for

the discounted in�nite-horizon problem. Let � = supb j
bVU (b) � bVL(b)j = k bVU � bVLk be

the maximum bound di�erence. Then the expected reward for a lookahead controller bV LA,

constructed for either bVU or bVL, satis�es k bV LA � V �k � �(2�
)
(1�
) .

3.2 Policy Approximation

An alternative to value-function approximation is policy approximation. As shown earlier,
a strategy (controller) for a POMDP can be represented using a �nite-state machine (FSM)
model. The policy iteration searches the space of all possible policies (FSMs) for the opti-
mal or near-optimal solution. This space is usually enormous, which is the bottleneck of the

51



Hauskrecht

method. Thus, instead of searching the complete policy space, we can restrict our attention
only to its subspace that we believe to contain the optimal solution or a good approxima-
tion. Memoryless policies (Platzman, 1977; White & Scherer, 1994; Littman, 1994; Singh,
Jaakkola, & Jordan, 1994), policies based on truncated histories (Platzman, 1977; White &
Scherer, 1994; McCallum, 1995), or �nite-state controllers with a �xed number of memory
states (Platzman, 1980; Hauskrecht, 1997; Hansen, 1998a, 1998b) are all examples of a
policy-space restriction. In the following we consider only the �nite-state machine model
(see Section 2.6.1), which is quite general; other models can be viewed as its special cases.

States of an FSM policy model represent the memory of the controller and, in general,
summarize information about past activities and observations. Thus, they are best viewed
as approximations of the information states, or as feature states. The transition model of
the controller (�) then approximates the update function of the information-state MDP
(�) and the output function of an FSM (�) approximates the control function (�) mapping
information states to actions. The important property of the model, as shown Section
2.6.2, is that the value function for a �xed controller and �xed initial memory state can be
obtained eÆciently by solving a system of linear equations (Platzman, 1980).

To apply the policy approximation approach we �rst need to decide (1) how to restrict
a space of policies and (2) how to judge the policy quality.

A restriction frequently used is to consider only controllers with a �xed number of
states, say k. Other structural restrictions further narrowing the space of policies can
restrict either the output function (choice of actions at di�erent controller states), or the
transitions between the current and next states. In general, any heuristic or domain-related
insight may help in selecting the right biases.

Two di�erent policies can yield value functions that are better in di�erent regions of
the belief space. Thus, in order to decide which policy is the best, we need to de�ne the
importance of di�erent regions and their combinations. There are multiple solutions to this.
For example, Platzman (1980) considers the worst-case measure and optimizes the worst
(minimal) value for all initial belief states. Let C be a space of FSM controllers satisfying
given restrictions. Then the quality of a policy under the worst case measure is:

max
C2C

min
b2I

max
x2MC

V C(x; b):

Another option is to consider a distribution over all initial belief states and maximize the
expectation of their value function values. However, the most common objective is to choose
the policy that leads to the best value for a single initial belief state b0:

max
C2C

max
x2MC

V C(x; b0):

Finding the optimal policy for this case reduces to a combinatorial optimization problem.
Unfortunately, for all but trivial cases, even this problem is computationally intractable.
For example, the problem of �nding the optimal policy for a memoryless case (only cur-
rent observations are considered) is NP-hard (Littman, 1994). Thus, various heuristics are
typically applied to alleviate this diÆculty (Littman, 1994).
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Figure 10: Value-function approximation methods.

3.2.1 Randomized Policies

By restricting the space of policies we simplify the policy optimization problem. On the
other hand, we simultaneously give up an opportunity to �nd the best optimal policy, replac-
ing it with the best restricted policy. Up to this point, we have considered only deterministic
policies with a �xed number of internal controller states, that is, policies with deterministic
output and transition functions. However, �nding the best deterministic policy is not al-
ways the best option: randomized policies, with randomized output and transition functions,
usually lead to the far better performance. The application of randomized (or stochastic)
policies to POMDPs was introduced by Platzman (1980). Essentially, any deterministic
policy can be represented as a randomized policy with a single action and transition, so
that the best randomized policy is no worse than the best deterministic policy. The di�er-
ence in control performance of two policies shows up most often in cases when the number
of states of the controller is relatively small compared to that in the optimal strategy.

The advantage of stochastic policies is that their space is larger and parameters of
the policy are continuous. Therefore the problem of �nding the optimal stochastic policy
becomes a non-linear optimization problem and a variety of optimization methods can be
applied to solve it. An example is the gradient-based approach (see Meuleau et al., 1999).

4. Value-Function Approximation Methods

In this section we discuss in more depth value-function approximation methods. We fo-
cus on approximations with belief information space.12 We survey known techniques, but
also include a number of new methods and modi�cations of existing methods. Figure 10
summarizes the methods covered. We describe the methods by means of update rules they

12. Alternative value-function approximations may work with complete histories of past actions and obser-
vations. Approximation methods used by White and Scherer (1994) are an example.
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Figure 11: Test example. The maze navigation problem: Maze20.

implement, which simpli�es their analysis and theoretical comparison. We focus on the fol-
lowing properties: the complexity of the dynamic-programming (value-iteration) updates;
the complexity of value functions each method uses; the ability of methods to bound the
exact update; the convergence of value iteration with approximate update rules; and the
control performance of related controllers. The results of the theoretical analysis are illus-
trated empirically on a problem from the agent-navigation domain. In addition, we use the
agent navigation problem to illustrate and give some intuitions on other characteristics of
methods with no theoretical underpinning. Thus, these results should not be generalized
to other problems or used to rank di�erent methods.

Agent-Navigation Problem

Maze20 is a maze-navigation problem with 20 states, six actions and eight observations.
The maze (Figure 11) consists of 20 partially connected rooms (states) in which a robot
operates and collects rewards. The robot can move in four directions (north, south, east
and west) and can check for the presence of walls using its sensors. But, neither \move"
actions nor sensor inputs are perfect, so that the robot can end up moving in unintended
directions. The robot moves in an unintended direction with probability of 0.3 (0.15 for
each of the neighboring directions). A move into the wall keeps the robot in the same
position. Investigative actions help the robot to navigate by activating sensor inputs. Two
such investigative actions allow the robot to check inputs (presence of a wall) in the north-
south and east-west directions. Sensor accuracy in detecting walls is 0.75 for a two-wall
case (e.g. both north and south wall), 0.8 for a one-wall case (north or south) and 0.89 for
a no-wall case, with smaller probabilities for wrong perceptions.

The control objective is to maximize the expected discounted rewards with a discount
factor of 0.9. A small reward is given for every action not leading to bumping into the wall
(4 points for a move and 2 points for an investigative action), and one large reward (150
points) is given for achieving the special target room (indicated by the circle in the �gure)
and recognizing it by performing one of the move actions. After doing that and collecting
the reward, the robot is placed at random in a new start position.

Although the Maze20 problem is of only moderate complexity with regard to the size
of state, action and observation spaces, its exact solution is beyond the reach of current
exact methods. The exact methods tried on the problem include the Witness algorithm
(Kaelbling et al., 1999), the incremental pruning algorithm (Cassandra et al., 1997)13 and

13. Many thanks to Anthony Cassandra for running these algorithms.
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Figure 12: Approximations based on the fully observable version of a two state POMDP
(with states s1; s2): (a) the MDP approximation; (b) the QMDP approximation.
Values at extreme points of the belief space are solutions of the fully observable
MDP.

policy iteration with an FSM model (Hansen, 1998b). The main obstacle preventing these
algorithms from obtaining the optimal or close-to-optimal solution was the complexity of
the value function (the number of linear functions needed to describe it) and subsequent
running times and memory problems.

4.1 Approximations with Fully Observable MDP

Perhaps the simplest way to approximate the value function for a POMDP is to assume
that states of the process are fully observable (Astrom, 1965; Lovejoy, 1993). In that case
the optimal value function V � for a POMDP can be approximated as:

bV (b) =X
s2S

b(s)V �
MDP (s); (8)

where V �
MDP (s) is the optimal value function for state s for the fully observable version of

the process. We refer to this approximation as to the MDP approximation. The idea of
the approximation is illustrated in Figure 12a. The resulting value function is linear and
is fully de�ned by values at extreme points of the belief simplex. These correspond to the
optimal values for the fully observable case. The main advantage of the approximation
is that the fully observable MDP (FOMDP) can be solved eÆciently for both the �nite-
horizon problem and discounted in�nite-horizon problems.14 The update step for the (fully
observable) MDP is:

VMDP
i+1 (s) = max

a

8<:�(s; a) + 

X
s02S

P (s0js; a)V MDP
i (s0)

9=; :

14. The solution for the �nite-state fully observable MDP and discounted in�nite-horizon criterion can be
found eÆciently by formulating an equivalent linear programming task (Bertsekas, 1995)
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4.1.1 MDP Approximation

The MDP-approximation approach (Equation 8) can be also described in terms of value-
function updates for the belief-space MDP. Although this step is strictly speaking redundant
here, it simpli�es the analysis and comparison of this approach to other approximations.

Let bVi be a linear value function described by a vector �MDP
i corresponding to values

of VMDP
i (s0) for all states s0 2 S. Then the (i+ 1)th value function bVi+1 is

bVi+1(b) =
X
s2S

b(s)max
a2A

24�(s; a) + 

X
s02S

P (s0js; a)�MDP
i (s0)

35
= (HMDP

bVi)(b):
bVi+1 is described by a linear function with components

�MDP
i+1 (s) = VMDP

i+1 (s) = max
a

(
�(s; a) + 


X
s2S

P (s0js; a)�MDP
i (s0)

)
:

The MDP-based rule HMDP can be also rewritten in a more general form that starts from
an arbitrary piecewise linear and convex value function Vi, represented by a set of linear
functions �i:

bVi+1(b) =
X
s2S

b(s)max
a2A

8<:�(s; a) + 

X
s02S

P (s0js; a) max
�i2�i

�i(s
0)

9=; :
The application of the HMDP mapping always leads to a linear value function. The

update is easy to compute and takes O(jAjjSj2 + j�ijjSj) time. This reduces to O(jAjjSj
2)

time when only MDP-based updates are strung together. As remarked earlier, the optimal
solution for the in�nite-horizon, discounted problem can be solved eÆciently via linear
programming.

The update for the MDP approximation upper-bounds the exact update, that is, H bVi �
HMDP

bVi. We show this property later in Theorem 9, which covers more cases. The intuition
is that we cannot get a better solution with less information, and thus the fully observable
MDP must upper-bound the partially observable case.

4.1.2 Approximation with Q-Functions (QMDP)

A variant of the approximation based on the fully observable MDP uses Q-functions (Littman,
Cassandra, & Kaelbling, 1995):

bV (b) = max
a2A

X
s2S

b(s)Q�
MDP (s; a);

where
Q�
MDP (s; a) = �(s; a) + 


X
s02S

P (s0js; a)V �
MDP (s

0)

is the optimal action-value function (Q-function) for the fully observable MDP. The QMDP
approximation bV is piecewise linear and convex with jAj linear functions, each corresponding
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to one action (Figure 12b). The QMDP update rule (for the belief state MDP) for bVi with
linear functions �ki 2 �i is:

bVi+1(b) = max
a2A

X
s2S

b(s)

24�(s; a) + 

X
s02S

P (s0js; a) max
�i2�i

�i(s
0)

35
= (HQMDP

bVi)(b):
HQMDP generates a value function with jAj linear functions. The time complexity of the

update is the same as for the MDP-approximation case { O(jAjjSj2+ j�ijjSj), which reduces
to O(jAjjSj2) time when only QMDP updates are used. HQMDP is a contraction mapping
and its �xed-point solution can be found by solving the corresponding fully observable MDP.

The QMDP update upper-bounds the exact update. The bound is tighter than the
MDP update; that is, H bVi � HQMDP

bVi � HMDP
bVi, as we prove later in Theorem 9. The

same inequalities hold for both �xed-point solutions (through Theorem 6).
To illustrate the di�erence in the quality of bounds for the MDP approximation and

the QMDP method, we use our Maze20 navigation problem. To measure the quality of a
bound we use the mean of value-function values. Since all belief states are equally important
we assume that they are uniformly distributed. We approximate this measure using the
average of values for a �xed set of N = 2000 belief points. The points in the set were
selected uniformly at random at the beginning. Once the set was chosen, it was �xed
and remained the same for all tests (here and later). Figure 13 shows the results of the
experiment; we include also results for the fast informed bound method that is presented in
the next section.15 Figure 13 also shows the running times of the methods. The methods
were implemented in Common Lisp and run on Sun Ultra 1 workstation.

4.1.3 Control

The MDP and the QMDP value-function approximations can be used to construct con-
trollers based on one-step lookahead. In addition, the QMDP approximation is also suitable
for the direct control strategy, which selects an action corresponding to the best (highest
value) Q-function. Thus, the method is a special case of the Q-function approach discussed
in Section 3.1.3.16 The advantage of the direct QMDP method is that it is faster than both
lookahead designs. On other the hand, lookahead tends to improve the control performance.
This is shown in Figure 14, which compares the control performance of di�erent controllers
on the Maze20 problem.

The quality of a policy b�, with no preference towards a particular initial belief state, can
be measured by the mean of value-function values for b� and uniformly distributed initial
belief states. We approximate this measure using the average of discounted rewards for

15. The con�dence interval limits for probability level 0.95 range in �(0:45; 0:62) from their respective
average scores and this holds for all bound experiments in the paper. As these are relatively small we
do not include them in our graphs.

16. As pointed out by Littman et al. (1995), in some instances, the direct QMDP controller never selects
investigative actions, that is, actions that try to gain more information about the underlying process
state. Note, however, that this observation is not true in general and the QMDP-based controller with
direct action selection may select investigative actions, even though in the fully observable version of the
problem investigative actions are never chosen.
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Figure 13: Comparison of the MDP, QMDP and fast informed bound approximations:
bound quality (left); running times (right). The bound-quality score is the
average value of the approximation for the set of 2000 belief points (chosen uni-
formly at random). As the methods upper-bound the optimal value function, we

ip the bound-quality graph so that longer bars indicate better approximations.

2000 control trajectories obtained for the �xed set of N = 2000 initial belief states (selected
uniformly at random at the beginning). The trajectories were obtained through simulation
and were 60 steps long.17

To validate the comparison along the averaged performance scores, we must show that
these scores are not the result of randomness and that methods are indeed statistically
signi�cantly di�erent. To do this we rely on pairwise signi�cance tests.18 To summarize the
obtained results, the score di�erences of 1.54, 2.09 and 2.86 between any two methods (here
and also later in the paper) are suÆcient to reject the method with a lower score being
the better performer at signi�cance levels 0.05, 0.01 and 0.001 respectively.19 Error-bars in
Figure 14 re
ect the critical score di�erence for the signi�cance level 0.05.

Figure 14 also shows the average reaction times for di�erent controllers during these
experiments. The results show the clear dominance of the direct QMDP controller, which
need not do a lookahead in order to extract an action, compared to the other two MDP-
based controllers.

4.2 Fast Informed Bound Method

Both the MDP and the QMDP approaches ignore partial observability and use the fully
observable MDP as a surrogate. To improve these approximations and account (at least to

17. The length of the trajectories (60 steps) for the Maze20 problem was chosen to ensure that our estimates
of (discounted) cumulative rewards are not far from the actual rewards for an in�nite number of steps.

18. An alternative way to compare two methods is to compute con�dence limits for their scores and inspect
their overlaps. However, in this case, the ability to distinguish two methods can be reduced due to

uctuations of scores for di�erent initializations. For Maze20, con�dence interval limits for probability
level 0.95 range in �(1:8; 2:3) from their respective average scores. This covers all control experiments
here and later. Pairwise tests eliminate the dependency by examining the di�erences of individual values
and thus improve the discriminative power.

19. The critical score di�erences listed cover the worst case combination. Thus, there may be some pairs for
which the smaller di�erence would suÆce.
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Figure 14: Comparison of control performance of the MDP, QMDP and fast informed bound
methods: quality of control (left); reaction times (right). The quality-of-control
score is the average of discounted rewards for 2000 control trajectories obtained
for the �xed set of 2000 initial belief states (selected uniformly at random).
Error-bars show the critical score di�erence value (1.54) at which any two meth-
ods become statistically di�erent at signi�cance level 0.05.

some degree) for partial observability we propose a new method { the fast informed bound

method. Let bVi be a piecewise linear and convex value function represented by a set of linear
functions �i. The new update is de�ned as

bVi+1(b) = max
a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

X
s2S

max
�i2�i

X
s02S

P (s0; ojs; a)b(s)�i(s
0)

9=;
= max

a2A

8<:X
s2S

b(s)

24�(s; a) + 

X
o2�

max
�i2�i

X
s02S

P (s0; ojs; a)�i(s
0)

359=;
= (HFIB

bVi)(b):
The fast informed bound update can be obtained from the exact update by the following

derivation:

(H bVi)(b) = max
a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

max
�i2�i

X
s02S

X
s2S

P (s0; ojs; a)b(s)�i(s
0)

9=;
� max

a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

X
s2S

max
�i2�i

X
s02S

P (s0; ojs; a)b(s)�i(s
0)

9=;
= max

a2A

X
s2S

b(s)

24�(s; a) + 

X
o2�

max
�i2�i

X
s02S

P (s0; ojs; a)�i(s
0)

35
= max

a2A

X
s2S

b(s)�ai+1(s)

= (HFIB
bVi)(b):

The value function bVi+1 = HFIB
bVi one obtains after an update is piecewise linear and

convex and consists of at most jAj di�erent linear functions, each corresponding to one
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action
�ai+1(s) = �(s; a) + 


X
o2�

max
�i2�i

X
s02S

P (s0; ojs; a)�i(s
0):

TheHFIB update is eÆcient and can be computed in O(jAjjSj2j�jj�ij) time. As the method
always outputs jAj linear functions, the computation can be done in O(jAj2jSj2j�j) time,
when many HFIB updates are strung together. This is a signi�cant complexity reduction
compared to the exact approach: the latter can lead to a function consisting of jAjj�ij

j�j

linear functions, which is exponential in the number of observations and in the worst case
takes O(jAjjSj2j�ij

j�j) time.
As HFIB updates are of polynomial complexity one can �nd the approximation for the

�nite-horizon case eÆciently. The open issue remains the problem of �nding the solution
for the in�nite-horizon discounted case and its complexity. To address it we establish the
following theorem.

Theorem 8 A solution for the fast informed bound approximation can be found by solving

an MDP with jSjjAjj�j states, jAj actions and the same discount factor 
.

The full proof of the theorem is deferred to the Appendix. The key part of the proof
is the construction of an equivalent MDP with jSjjAjj�j states representing HFIB updates.
Since a �nite-state MDP can be solved through linear program conversion, the �xed-point
solution for the fast informed bound update is computable eÆciently.

4.2.1 Fast Informed Bound versus Fully-Observable MDP Approximations

The fast informed update upper-bounds the exact update and is tighter than both the MDP
and the QMDP approximation updates.

Theorem 9 Let bVi corresponds to a piecewise linear convex value function de�ned by �i
linear functions. Then H bVi � HFIB

bVi � HQMDP
bVi � HMDP

bVi:
The key trick in deriving the above result is to swap max and sum operators (the

proof is in the Appendix) and thus obtain both to the upper-bound inequalities and the
subsequent reduction in the complexity of update rules compared to the exact update.
This is also shown in Figure 15. The UMDP approximation, also included in Figure 15,
is discussed later in Section 4.3. Thus, the di�erence among the methods boils down to
simple mathematical manipulations. Note that the same inequality relations as derived for
updates hold also for their �xed-point solutions (through Theorem 6).

Figure 13a illustrates the improvement of the bound over MDP-based approximations
on the Maze20 problem. Note, however, that this improvement is paid for by the increased
running-time complexity (Figure 13b).

4.2.2 Control

The fast informed bound always outputs a piecewise linear and convex function, with one
linear function per action. This allows us to build a POMDP controller that selects an action
associated with the best (highest value) linear function directly. Figure 14 compares the
control performance of the direct and the lookahead controllers to the MDP and the QMDP
controllers. We see that the fast informed bound leads not only to tighter bounds but also
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Figure 15: Relations between the exact update and the UMDP, the fast informed bound,
the QMDP and the MDP updates.

to improved control on average. However, we stress that currently there is no theoretical
underpinning for this observation and thus it may not be true for all belief states and any
problem.

4.2.3 Extensions of the Fast Informed Bound Method

The main idea of the fast informed bound method is to select the best linear function for
every observation and every current state separately. This di�ers from the exact update
where we seek a linear function that gives the best result for every observation and the
combination of all states. However, we observe that there is a great deal of middle ground
between these two extremes. Indeed, one can design an update rule that chooses optimal
(maximal) linear functions for disjoint sets of states separately. To illustrate this idea,
assume a partitioning S = fS1; S2; � � � ; Smg of the state space S. The new update for S is:

bVi+1(b) = max
a2A

(X
s2S

�(s; a)b(s) + 

X
o2�

24max
�i2�i

X
s2S1

X
s02S

P (s0; ojs; a)b(s)�i(s
0)+

max
�i2�i

X
s2S2

X
s02S

P (s0; ojs; a)b(s)�i(s
0) + � � �+

max
�i2�i

X
s2Sm

X
s02S

P (s0; ojs; a)b(s)�i(s
0)

359=;
It is easy to see that the update upper-bounds the exact update. Exploration of this

approach and various partitioning heuristics remains an interesting open research issue.
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4.3 Approximation with Unobservable MDP

The MDP-approximation assumes full observability of POMDP states to obtain simpler
and more eÆcient updates. The other extreme is to discard all observations available to
the decision maker. An MDP with no observations is called unobservable MDP (UMDP)

and one may choose its value-function solution as an alternative approximation.
To �nd the solution for the unobservable MDP, we derive the corresponding update

rule, HUMDP , similarly to the update for the partially observable case. HUMDP preserves
piecewise linearity and convexity of the value function and is a contraction. The update
equals:

bVi+1(b) = max
a2A

8<:X
s2S

�(s; a)b(s) + 
 max
�i2�i

X
s2S

X
s02S

P (s0js; a)b(s)�i(s
0)

9=;
= (HUMDP

bVi)(b);
where �i is a set of linear functions describing bVi. bVi+1 remains piecewise linear and convex
and it consists of at most j�ijjAj linear functions. This is in contrast to the exact update,
where the number of possible vectors in the next step can grow exponentially in the number
of observations and leads to jAjj�ij

j�j possible vectors. The time complexity of the update is
O(jAjjSj2j�ij). Thus, starting from bV0 with one linear function, the running-time complexity
for k updates is bounded by O(jAjkjSj2). The problem of �nding the optimal solution for the
unobservable MDP remains intractable: the �nite-horizon case is NP-hard(Burago et al.,
1996), and the discounted in�nite-horizon case is undecidable (Madani et al., 1999). Thus,
it is usually not very useful approximation.

The update HUMDP lower-bounds the exact update, an intuitive result re
ecting the
fact that one cannot do better with less information. To provide some insight into how
the two updates are related, we do the following derivation, which also proves the bound
property in an elegant way:

(H bVi)(b) = max
a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

max
�i2�i

X
s02S

X
s2S

P (s0; ojs; a)b(s)�i(s
0)

9=;
� max

a2A

8<:X
s2S

�(s; a)b(s) + 
 max
�i2�i

X
o2�

X
s2S

X
s02S

P (s0; ojs; a)b(s)�i(s
0)

9=;
= max

a2A

8<:X
s2S

�(s; a)b(s) + 
 max
�i2�i

X
s2S

X
s02S

P (s0js; a)b(s)�i(s
0)

9=;
= (HUMDP

bVi)(b):
We see that the di�erence between the exact and UMDP updates is that the max and
the sum over next-step observations are exchanged. This causes the choice of � vectors in
HUMDP to become independent of the observations. Once the sum and max operations are
exchanged, the observations can be marginalized out. Recall that the idea of swaps leads
to a number of approximation updates; see Figure 15 for their summary.
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4.4 Fixed-Strategy Approximations

A �nite-state machine (FSM) model is used primarily to de�ne a control strategy. Such a
strategy does not require belief state updates since it directly maps sequences of observations
to sequences of actions. The value function of an FSM strategy is piecewise linear and convex
and can be found eÆciently in the number of memory states (Section 2.6.1). While in the
policy iteration and policy approximation contexts the value function for a speci�c strategy
is used to quantify the goodness of the policy in the �rst place, the value function alone can
be also used as a substitute for the optimal value function. In this case, the value function
(de�ned over the belief space) equals

V C(b) = max
x2M

V C(x; b);

where V C(x; b) =
P

s2S V
C(x; s)b(s) is obtained by solving a set of jSjjM j linear equations

(Section 2.6.2). As remarked earlier, the value for the �xed strategy lower-bounds the
optimal value function, that is V C � V �.

To simplify the comparison of the �xed-strategy approximation to other approximations,
we can rewrite its solution also in terms of �xed-strategy updates

bVi+1(b) = max
x2M

8<:X
s2S

�(s; �(x))b(s) + 

X
o2�

X
s2S

X
s02S

P (o; s0js; �(x))b(s)�i(�(x; o); s
0)

9=; ;

= max
x2M

8<:X
s2S

b(s)

24�(s; �(x)) + 

X
o2�

X
s02S

P (o; s0js; �(x))�i(�(x; o); s
0)

359=;
= (HFSM

bVi)(b):
The value function bVi is piecewise linear and convex and consists of jM j linear functions
�i(x; :). For the in�nite-horizon discounted case �i(x; s) represents the ith approximation of
V C(x; s). Note that the update can be applied to the �nite-horizon case in a straightforward
way.

4.4.1 Quality of Control

Assume we have an FSM strategy and would like to use it as a substitute for the optimal
control policy. There are three di�erent ways in which we can use it to extract the control.
The �rst is to simply execute the strategy represented by the FSM. There is no need
to update belief states in this case. The second possibility is to choose linear functions
corresponding to di�erent memory states and their associated actions repeatedly in every
step. We refer to such a controller as a direct (DR) controller. This approach requires
updating of belief states in every step. On the other hand its control performance is no
worse than that of the FSM control. The �nal strategy discards all the information about
actions and extracts the policy by using the value function bV (b) and one-step lookahead.
This method (LA) requires both belief state updates and lookaheads and leads to the worst
reactive time. Like DR, however, this strategy is guaranteed to be no worse than the FSM
controller. The following theorem relates the performances of the three controllers.
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Figure 16: Comparison of three di�erent controllers (FSM, DR and LA) for the Maze20
problem and a collection of one-action policies: control quality (left) and re-
sponse time (right). Error-bars in the control performance graph indicate the
critical score di�erence at which any two methods become statistically di�erent
at signi�cance level 0.05.

Theorem 10 Let CFSM be an FSM controller. Let CDR and CLA be the direct and the

one-step-lookahead controllers constructed based on CFSM . Then V CFSM (b) � V CDR(b) and
V CFSM (b) � V CLA(b) hold for all belief states b 2 I.

Though we can prove that both the direct controller and the lookahead controller are
always better than the underlying FSM controller (see Appendix for the full proof of the
theorem), we cannot show the similar property between the �rst two controllers for all initial
belief states. However, the lookahead approach typically tends to dominate, re
ecting the
usual trade-o� between control quality and response time. We illustrate this trade-o� on
our running Maze20 example and a collection of jAj one-action policies, each generating a
sequence of the same action. Control quality and response time results are shown in Figure
16. We see that the controller based on the FSM is the fastest of the three, but it is also the
worst in terms of control quality. On the other hand, the direct controller is slower (it needs
to update belief states in every step) but delivers better control. Finally, the lookahead
controller is the slowest and has the best control performance.

4.4.2 Selecting the FSM Model

The quality of a �xed-strategy approximation depends strongly on the FSM model used.
The model can be provided a priori or constructed automatically. Techniques for automatic
construction of FSM policies correspond to a search problem in which either the complete or
a restricted space of policies is examined to �nd the optimal or the near-optimal policy for
such a space. The search process is equivalent to policy approximations or policy-iteration
techniques discussed earlier in Sections 2.6 and 3.2.
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4.5 Grid-Based Approximations with Value Interpolation-Extrapolation

A value function over a continuous belief space can be approximated by a �nite set of grid
points G and an interpolation-extrapolation rule that estimates the value of an arbitrary
point of the belief space by relying only on the points of the grid and their associated values.

De�nition 8 (Interpolation-extrapolation rule) Let f : I ! IR be a real-valued function

de�ned over the information space I, G = fbG1 ; b
G
2 ; � � � b

G
k g be a set of grid points and 	G =

f(bG1 ; f(b
G
1 )); (b

G
2 ; f(b

G
2 )); � � � ; (b

G
k ; f(b

G
k ))g be a set of point-value pairs. A function RG :

I � (I � IR)jGj ! IR that estimates f at any point of the information space I using only
values associated with grid points is called an interpolation-extrapolation rule.

The main advantage of an interpolation-extrapolation model in estimating the true value
function is that it requires us to compute value updates only for a �nite set of grid points
G. Let bVi be the approximation of the ith value function. Then the approximation for the
(i+ 1)th value function bVi+1 can be obtained as

bVi+1(b) = RG(b;	
G
i+1);

where values associated with every grid point bGj 2 G (and included in 	G
i+1) are:

'i+1(b
G
j ) = (H bVi)(bGj ) = max

a2A

(
�(b; a) + 


X
o2�

P (ojb; a) bVi(�(bGj ; o; a))
)
: (9)

The grid-based update can also be described in terms of a value-function mapping HG:bVi+1 = HG
bVi. The complexity of such an update is O(jGjjAjjSj2j�jCEval(RG; jGj)) where

CEval(RG; jGj) is the computational cost of evaluating the interpolation-extrapolation rule
RG for jGj grid points. We show later (Section 4.5.3), that in some instances, the need to
evaluate the interpolation-extrapolation rule in every step can be eliminated.

4.5.1 A Family of Convex Rules

The number of all possible interpolation-extrapolation rules is enormous. We focus on a
set of convex rules that is a relatively small but very important subset of interpolation-
extrapolation rules.20

De�nition 9 (Convex rule) Let f be some function de�ned over the space I, G = fbG1 ; b
G
2 ; � � � b

G
k g

be a set of grid points, and 	G = f(bG1 ; f(b
G
1 )); (b

G
2 ; f(b

G
2 )); � � � ; (b

G
k ; f(b

G
k ))g be a set of point-

value pairs. The rule RG for estimating f using 	G is called convex when for every b 2 I,
the value bf(b) is:

bf(b) = RG(b;	
G) =

jGjX
j=1

�bjf(bj);

such that 0 � �bj � 1 for every j = 1; � � � ; jGj, and
PjGj

j=1 �
b
j = 1.

20. We note that convex rules used in our work are a special case of averagers introduced by Gordon (1995).
The di�erence is minor; the de�nition of an averager includes a constant (independent of grid points and
their values) that is added to the convex combination.
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The key property of convex rules is that their corresponding grid-based update HG is a
contraction in the max norm (Gordon, 1995). Thus, the approximate value iteration based
on HG converges to the unique �xed-point solution. In addition, HG based on convex rules
is isotone.

4.5.2 Examples of Convex Rules

The family of convex rules includes approaches that are very commonly used in practice,
like nearest neighbor, kernel regression, linear point interpolations and many others.

Take, for example, the nearest-neighbor approach. The function for a belief point b is
estimated using the value at the grid point closest to it in terms of some distance metric M
de�ned over the belief space. Then, for any point b, there is exactly one nonzero parameter
�bj = 1 such that k b � bGj kM�k b � b

G
i kM holds for all i = 1; 2; � � � ; k. All other �s are

zero. Assuming the Euclidean distance metric, the nearest-neighbor approach leads to a
piecewise constant approximation, in which regions with equal values correspond to regions
with a common nearest grid point.

The nearest neighbor estimates the function value by taking into an account only one
grid point and its value. Kernel regression expands upon this by using more grid points. It
adds up and weights their contributions (values) according to their distance from the target
point. For example, assuming Gaussian kernels, the weight for a grid point bGj is

�bj = � exp�kb�b
G
j k

2
M
=2�2 ;

where � is a normalizing constant ensuring that
PjGj

j=1 �
b
j = 1 and � is a parameter that


attens or narrows weight functions. For the Euclidean metric, the above kernel-regression
rule leads to a smooth approximation of the function.

Linear point interpolations are a subclass of convex rules that in addition to constraints
in De�nition 9 satisfy

b =

jGjX
j=1

�bjb
G
j :

That is, a belief point b is a convex combination of grid points and the �s are the corre-
sponding coeÆcients. Because the optimal value function for the POMDP is convex, the
new constraint is suÆcient to prove the upper-bound property of the approximation. In
general, there can be many di�erent linear point-interpolations for a given grid. A challeng-
ing problem here is to �nd the rule with the best approximation. We discuss these issues
in Section 4.5.7.

4.5.3 Conversion to a Grid-Based MDP

Assume that we would like to �nd the approximation of the value function using our grid-
based convex rule and grid-based update (Equation 9). We can view this process also as
a process of �nding a sequence of values '1(b

G
j ); '2(b

G
j ); � � � ; 'i(b

G
j ); � � � for all grid-points

bGj 2 G. We show that in some instances the sequence of values can be computed without
applying an interpolation-extrapolation rule in every step. In such cases, the problem can
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be converted into a fully observable MDP with states corresponding to grid-points G.21 We
call this MDP a grid-based MDP.

Theorem 11 Let G be a �nite set of grid points and RG be a convex rule such that param-

eters �bj are �xed. Then the values of '(bGj ) for all b
G
j 2 G can be found by solving a fully

observable MDP with jGj states and the same discount factor 
.

Proof For any grid point bGj we can write:

'i+1(b
G
j ) = max

a2A

(
�(bGj ; a) + 


X
o2�

P (ojbGj ; a)
bV G
i (�(bGj ; a; o))

)

= max
a2A

8<:�(bGj ; a) + 

X
o2�

P (ojbGj ; a)

24 jGjX
k=1

�o;aj;k'i(b
G
k )

359=;
= max

a2A

8<:h�(bGj ; a)i+ 


jGjX
k=1

'Gi (b
G
k )

"X
o2�

P (ojbGj ; a)�
o;a
j;k

#9=;
Now denoting [

P
o2� P (ojbj ; a)

G�o;aj;k ] as P (b
G
k jb

G
j ; a), we can construct a fully observable

MDP problem with states corresponding to grid points G and the same discount factor 
.
The update step equals:

'i+1(b
G
j ) = max

a2A

8<:�(bGj ; a) + 


jGjX
k=1

P (bGk jb
G
j ; a)'

G
i (b

G
k )

9=; :

The prerequisite 0 � �bj � 1 for every j = 1; � � � ; jGj and
PjGj

j=1 �
b
j = 1 guarantees that

P (bGk jb
G
j ; a) can be interpreted as true probabilities. Thus, one can compute values '(bGj )

by solving the equivalent fully-observable MDP. 2

4.5.4 Solving Grid-Based Approximations

The idea of converting a grid-based approximation into a grid-based MDP is a basis of
our simple but very powerful approximation algorithm. Brie
y, the key here is to �nd
the parameters (transition probabilities and rewards) of a new MDP model and then solve
it. This process is relatively easy if the parameters � used to interpolate-extrapolate the
value of a non-grid point are �xed (the assumption of Theorem 11). In such a case, we
can determine parameters of the new MDP eÆciently in one step, for any grid set G. The
nearest neighbor or the kernel regression are examples of rules with this property. Note that
this leads to polynomial-time algorithms for �nding values for all grid points (recall that an
MDP can be solved eÆciently for both �nite and discounted, in�nite-horizon criteria).

The problem in solving grid-based approximation arises only when the parameters �
used in the interpolation-extrapolation are not �xed and are subject to the optimization
itself. This happens, for example, when there are multiple ways of interpolating a value

21. We note that a similar result has been also proved independently by Gordon (1995).
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at some point of the belief space and we would like to �nd the best interpolation (leading
to the best values) for all grid points in G. In such a case, the corresponding \optimal"
grid-based MDP cannot be found in a single step and iterative approximation, solving a
sequence of grid-based MDPs, is usually needed. The worst-case complexity of this problem
remains an open question.

4.5.5 Constructing Grids

An issue we have not touched on so far is the selection of grids. There are multiple ways to
select grids. We divide them into two classes { regular and non-regular grids.

Regular grids (Lovejoy, 1991a) partition the belief space evenly into equal-size regions.22

The main advantage of regular grids is the simplicity with which we can locate grid points
in the neighborhood of any belief point. The disadvantage of regular grids is that they
are restricted to a speci�c number of points, and any increase in grid resolution is paid for
in an exponential increase in the grid size. For example, a sequence of regular grids for a
20-dimensional belief space (corresponds to a POMDP with 20 states) consists of 20, 210,
1540, 8855, 42504, � � � grid points.23 This prevents one from using the method with higher
grid resolutions for problems with larger state spaces.

Non-regular grids are unrestricted and thus provide for more 
exibility when grid reso-
lution must be increased adaptively. On the other hand, due to irregularities, methods for
locating grid points adjacent to an arbitrary belief point are usually more complex when
compared to regular grids.

4.5.6 Linear Point Interpolation

The fact that the optimal value function V � is convex for a belief-state MDPs can be used
to show that the approximation based on linear point interpolation always upper-bounds
the exact solution (Lovejoy, 1991a, 1993). Neither kernel regression nor nearest neighbor
can guarantee us any bound.

Theorem 12 (Upper bound property of a grid-based point interpolation update). Let bVi be
a convex value function. Then H bVi � HG

bVi.
The upper-bound property of HG update for convex value functions follows directly

from Jensen's inequality. The convergence to an upper-bound follows from Theorem 6.
Note that the point-interpolation update imposes an additional constraint on the choice

of grid points. In particular, it is easy to see that any valid grid must also include ex-
treme points of the belief simplex (extreme points correspond to (1; 0; 0; � � �); (0; 1; 0; � � �),

22. Regular grids used by Lovejoy (1991a) are based on Freudenthal triangulation (Eaves, 1984). Essen-
tially, this is the same idea as used to partition evenly the n-dimensional subspace of IRn. In fact, an
aÆne transform allows us to map isomorphically grid points in the belief space to grid points in the
n-dimensional space (Lovejoy, 1991a).

23. The number of points in the regular grid sequence is given by (Lovejoy, 1991a):

jGj =
(M + jSj � 1)!

M !(jSj � 1)!
;

where M = 1; 2; � � � is a grid re�nement parameter.
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etc.). Without extreme points one would be unable to cover the whole belief space via
interpolation. Nearest neighbor and kernel regression impose no restrictions on the grid.

4.5.7 Finding the best interpolation

In a general, there are multiple ways to interpolate a point of a belief space. Our objective
is to �nd the best interpolation, that is, the one that leads to the tightest upper bound of
the optimal value function.

Let b be a belief point and f(bj ; f(bj))jbj 2 Gg a set of grid-value pairs. Then the best
interpolation for point b is:

bf(b) = min
�

jGjX
j=1

�jf(bj)

subject to 0 � �j � 1 for all j = 1; � � � ; jGj,
PjGj

j=1 �j = 1, and b =
PjGj

j=1 �jb
G
j .

This is a linear optimization problem. Although it can be solved in polynomial time
(using linear programming techniques), the computational cost of doing this is still relatively
large, especially considering the fact that the optimization must be repeated many times.
To alleviate this problem we seek more eÆcient ways of �nding the interpolation, sacri�cing
the optimality.

One way to �nd a (suboptimal) interpolation quickly is to apply regular grids proposed
by Lovejoy (1991a). In this case the value at a belief point is approximated using the
convex combination of grid points closest to it. The approximation leads to piecewise linear
and convex value functions. As all interpolations are �xed here, the problem of �nding
the approximation can be converted into an equivalent grid-based MDP and solved as a
�nite-state MDP. However, as pointed in the previous section, the regular grids must use a
speci�c number of grid points and any increase in the resolution of a grid is paid for by an
exponential increase in the grid size. This feature makes the method less attractive when
we have a problem with a large state space and we need to achieve high grid resolution.24

In the present work we focus on non-regular (or arbitrary) grids. We propose an inter-
polation approach that searches a limited space of interpolations and is guaranteed to run
in time linear in the size of the grid. The idea of the approach is to interpolate a point
b of a belief space of dimension jSj with a set of grid points that consists of an arbitrary
grid point b0 2 G and jSj � 1 extreme points of the belief simplex. The coeÆcients of this
interpolation can be found eÆciently and we search for the best such interpolation. Let
b0 2 G be a grid point de�ning one such interpolation. Then the value at point b satis�es

bVi(b) = min
b02G

bV b0
i (b);

where bV b0
i is the value of the interpolation for the grid point b0. Figure 17 illustrates the

resulting approximation. The function is characterized by its \sawtooth" shape, which is
in
uenced by the choice of the interpolating set.

To �nd the best value-function solution or its close approximation we can apply a value
iteration procedure in which we search for the best interpolation after every update step.

24. One solution to this problem may be to use adaptive regular grids in which grid resolution is increased
only in some parts of the belief space. We leave this idea for future work.
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Figure 17: Value-function approximation based on the linear-time interpolation approach
(a two-dimensional case). Interpolating sets are restricted to a single internal
point of the belief space.

The drawback of this approach is that interpolations may remain unchanged for many
update steps, thus slowing down the solution process. An alternative approach is to solve
a sequence of grid-based MDPs instead. In particular, at every stage we �nd the best
(minimum value) interpolations for all belief points reachable from grid points in one step, �x
coeÆcients of these interpolations (�s), construct a grid-based MDP and solve it (exactly or
approximately). This process is repeated until no further improvement (or no improvement
larger than some threshold) is seen in values at di�erent grid points.

4.5.8 Improving Grids Adaptively

The quality of an approximation (bound) depends strongly on the points used in the grid.
Our objective is to provide a good approximation with the smallest possible set of grid
points. However, this task is impossible to achieve, since it cannot be known in advance
(before solving) what belief points to pick. A way to address this problem is to build grids
incrementally, starting from a small set of grid points and adding others adaptively, but
only in places with a greater chance of improvement. The key part of this approach is a
heuristic for choosing grid points to be added next.

One heuristic method we have developed attempts to maximize improvements in bound
values via stochastic simulations. The method builds on the fact that every interpolation
grid must also include extreme points (otherwise we cannot cover the entire belief space).
As extreme points and their values a�ect the other grid points, we try to improve their
values in the �rst place. In general, a value at any grid point b improves more the more
precise values are used for its successor belief points, that is, belief states that correspond
to �(b; a�; o) for a choice of observation o. a� is the current optimal action choice for b.
Incorporating such points into the grid then makes a larger improvement in the value at
the initial grid point b more likely. Assuming that our initial point is an extreme point, we
have a heuristic that tends to improve a value for that point. Naturally, one can proceed
further with this selection by incorporating the successor points for the �rst-level successors
into the grid as well, and so forth.
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generate new grid points (G; bV G)
set Gnew = fg
for all extreme points b do

repeat until b =2 G [Gnew

set a� = argmaxa
n
�(b; a) + 


P
o2� P (ojb; a)

bV G(�(b; a; o))
o

select observation o according to P (ojb; a�)
update b = �(b; a�; o)

add b into Gnew

return Gnew

Figure 18: Procedure for generating additional grid points based on our bound improve-
ment heuristic.
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Figure 19: Improvement in the upper bound quality for grid-based point-interpolations
based on the adaptive-grid method. The method is compared to randomly
re�ned grid and the regular grid with 210 points. Other upper-bound approxi-
mations (the MDP, QMDP and fast informed bound methods) are included for
comparison.

To capture this idea, we generate new grid points via simulation, starting from one
of the extremes of the belief simplex and continuing until a belief point not currently in
the grid is reached. An algorithm that implements the bound improvement heuristic and
expands the current grid G with a set of jSj new grid points while relying on the current
value-function approximation bV G is shown in Figure 18.

Figure 19 illustrates the performance (bound quality) of our adaptive grid method on
the Maze20 problem. Here we use the combination of adaptive grids with our linear-time
interpolation approach. The method gradually expands the grid in 40 point increments up to
400 grid points. Figure 19 also shows the performance of the random-grid method in which
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Figure 20: Running times of grid-based point-interpolation methods. Methods tested in-
clude the adaptive grid, the random grid, and the regular grid with 210 grid
points. Running times for the adaptive-grid are cumulative, re
ecting the de-
pendencies of higher grid resolutions on the lower-level resolutions. The running
time results for the MDP, QMDP, and fast informed bound approximations are
shown for comparison.

new points of the grid are selected iniformly at random (results for 40 grid point increments
are shown). In addition, the �gure gives results for the regular grid interpolation (based
on Lovejoy (1991a)) with 210 belief points and other upper-bound methods: the MDP, the
QMDP and the fast informed bound approximations.

We see a dramatic improvement in the quality of the bound for the adaptive method.
In contrast to this, the uniformly sampled grid (random-grid approach) hardly changes the
bound. There are two reasons for this: (1) uniformly sampled grid points are more likely to
be concentrated in the center of the belief simplex; (2) the transition matrix for the Maze20
problem is relatively sparse, the belief points one obtains from the extreme points in one
step are on the boundary of the simplex. Since grid points in the center of the simplex
are never used to interpolate belief states reachable from extremes in one step they cannot
improve values at extremes and the bound does not change.

One drawback of the adaptive method is its running time (for every grid size we need
to solve a sequence of grid-based MDPs). Figure 20 compares running times of di�erent
methods on the Maze20 problem. As grid-expansion of the adaptive method depends on
the value function obtained for previous steps, we plot its cumulative running times. We
see a relatively large increase in running time, especially for larger grid sizes, re
ecting
the trade-o� between the bound quality and running time. However, we note that the
adaptive-grid method performs quite well in the initial few steps, and with only 80 grid
points outperforms the regular grid (with 210 points) in bound quality.

Finally, we note that other heuristic approaches to constructing adaptive grids for point
interpolation are possible. For example, a di�erent approach that re�nes the grid by ex-
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control performance
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Figure 21: Control performance of lookahead controllers based on grid-based point inter-
polation and nearest neighbor methods and varying grid sizes. The results are
compared to the MDP, the QMDP and the fast informed bound controllers.

amining di�erences in values at current grid points has recently been proposed by Brafman
(1997).

4.5.9 Control

Value functions obtained for di�erent grid-based methods de�ne a variety of controllers. Fig-
ure 21 compares the performances of lookahead controllers based on the point-interpolation
and nearest-neighbor methods. We run two versions of both approaches, one with the adap-
tive grid, the other with the random grid, and we show results obtained for 40, 200 and 400
grid points. In addition, we compare their performances to the interpolation with regular
grids (with 210 grid points), the MDP, the QMDP and the fast informed bound approaches.

Overall, the performance of the interpolation-extrapolation techniques we tested on
the Maze20 problem was a bit disappointing. In particular, better scores were achieved
by the simpler QMDP and fast informed bound methods. We see that, although heuristics
improved the bound quality of approximations, they did not lead to the similar improvement
over the QMDP and the fast informed bound methods in terms of control. This result
shows that a bad bound (in terms of absolute values) does not always imply bad control
performance. The main reason for this is that the control performance is in
uenced mostly
by relative rather than absolute value-function values (or, in other words, by the shape
of the function). All interpolation-extrapolation techniques we use (except regular grid
interpolation) approximate the value function with functions that are not piecewise linear
and convex; the interpolations are based on the linear-time interpolation technique with a
sawtooth-shaped function, and the nearest-neighbor leads to a piecewise-constant function.
This does not allow them to match the shape of the optimal function correctly. The other
factor that a�ects the performance is a large sensitivity of methods to the selection of grid
points, as documented, for example, by the comparison of heuristic and random grids.
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In the above tests we focused on lookahead controllers only. However, an alternative way
to de�ne a controller for grid-based interpolation-extrapolation methods is to use Q-function
approximations instead of value functions, and either direct or lookahead designs.25 Q-
function approximations can be found by solving the same grid-based MDP, and by keeping
values (functions) for di�erent actions separate at the end.

4.6 Approximations of Value Functions Using Curve Fitting (Least-Squares

Fit)

An alternative way to approximate a function over a continuous space is to use curve-�tting
techniques. This approach relies on a prede�ned parametric model of the value function
and a set of values associated with a �nite set of (grid) belief points G. The approach
is similar to interpolation-extrapolation techniques in that it relies on a set of belief-value
pairs. The di�erence is that the curve �tting, instead of remembering all belief-value pairs,
tries to summarize them in terms of a given parametric function model. The strategy seeks
the best possible match between model parameters and observed point values. The best
match can be de�ned using various criteria, most often the least-squares �t criterion, where
the objective is to minimize

Error(f) =
1

2

X
j

[yj � f(bj)]
2 :

Here bj and yj correspond to the belief point and its associated value. The index j ranges
over all points of the sample set G.

4.6.1 Combining Dynamic Programming and Least-Squares Fit

The least-squares approximation of a function can be used to construct a dynamic-programming
algorithm with an update step: bVi+1 = HLSF

bVi. The approach has two steps. First, we
obtain new values for a set of sample points G:

'i+1(b) = (H bVi)(b) = max
a2A

(X
s2S

�(s; a)b(s) + 

X
o2�

X
s2S

P (ojs; a)b(s) bVi(�(b; a; o))
)
:

Second, we �t the parameters of the value-function model bVi+1 using new sample-value pairs
and the square-error cost function. The complexity of the update isO(jGjjAjjSj2j�jCEval(

bVi)+
CFit(

bVi+1; jGj)) time, where CEval(
bVi) is the computational cost of evaluating bVi and

CFit(
bVi+1; jGj) is the cost of �tting parameters of bVi+1 to jGj belief-value pairs.

The advantage of the approximation based on the least-squares �t is that it requires us
to compute updates only for the �nite set of belief states. The drawback of the approach
is that, when combined with the value-iteration method, it can lead to instability and/or
divergence. This has been shown for MDPs by several researchers (Bertsekas, 1994; Boyan
& Moore, 1995; Baird, 1995; Tsitsiklis & Roy, 1996).

25. This is similar to the QMDP method, which allows both lookahead and greedy designs. In fact, QMDP
can be viewed as a special case of the grid-based method with Q-function approximations, where grid
points correspond to extremes of the belief simplex.
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4.6.2 On-line Version of the Least-Squares Fit

The problem of �nding a set of parameters with the best �t can be solved by any available
optimization procedure. This includes the on-line (or instance-based) version of the gradient
descent method, which corresponds to the well-known delta rule (Rumelhart, Hinton, &
Williams, 1986).

Let f denote a parametric value function over the belief space with adjustable weights
w = fw1; w2; � � � ; wkg. Then the on-line update for a weight wi is computed as:

wi  wi � �i(f(bj)� yj)
@f

@wi
jbj ;

where �i is a learning constant, and bj and yj are the last-seen point and its value. Note
that the gradient descent method requires the function to be di�erentiable with regard to
adjustable weights.

To solve the discounted in�nite-horizon problem, the stochastic (on-line) version of a
least-squares �t can be combined with either parallel (synchronous) or incremental (Gauss-
Seidel) point updates. In the �rst case, the value function from the previous step is �xed
and a new value function is computed from scratch using a set of belief point samples and
their values computed through one-step expansion. Once the parameters are stabilized (by
attenuating learning rates), the newly acquired function is �xed, and the process proceeds
with another iteration. In the incremental version, a single value-function model is at the
same time updated and used to compute new values at sampled points. Littman et al. (1995)
and Parr and Russell (1995) implement this approach using asynchronous reinforcement
learning backups in which sample points to be updated next are obtained via stochastic
simulation. We stress that all versions are subject to the threat of instability and divergence,
as remarked above.

4.6.3 Parametric Function Models

To apply the least-squares approach we must �rst select an appropriate value function
model. Examples of simple convex functions are linear or quadratic functions, but more
complex models are possible as well.

One interesting and relatively simple approach is based on the least-squares approx-
imation of linear action-value functions (Q-functions) (Littman et al., 1995). Here the
value function bVi+1 is approximated as a piecewise linear and convex combination of bQi+1

functions: bVi+1(b) = max
a2A

bQi+1(b; a);

where bQi+1(b; a) is the least-squares �t of a linear function for a set of sample points G.
Values at points in G are obtained as

'ai+1(b) = �(b; a) + 

X
o2�

P (ojb; a) bVi(�(b; o; a)):
The method leads to an approximation with jAj linear functions and the coeÆcients of these
functions can be found eÆciently by solving a set of linear equations. Recall that other two
approximations (the QMDP and the fast informed bound approximations) also work with
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jAj linear functions. The main di�erences between the methods are that the QMDP and
fast informed bound methods update linear functions directly, and they guarantee upper
bounds and unique convergence.

A more sophisticated parametric model of a convex function is the softmax model (Parr
& Russell, 1995):

bV (b) =
24X
�2�

"X
s2S

�(s)b(s)

#k35 1

k

;

where � is the set of linear functions � with adaptive parameters to �t and k is a \tempera-
ture" parameter that provides a better �t to the underlying piecewise linear convex function
for larger values. The function represents a soft approximation of a piecewise linear convex
function, with the parameter k smoothing the approximation.

4.6.4 Control

We tested the control performance of the least-squares approach on the linear Q-function
model (Littman et al., 1995) and the softmax model (Parr & Russell, 1995). For the softmax
model we varied the number of linear functions, trying cases with 10 and 15 linear functions
respectively. In the �rst set of experiments we used parallel (synchronous) updates and
samples at a �xed set of 100 belief points. We applied stochastic gradient descent techniques
to �nd the best �t in both cases. We tested the control performance for value-function
approximations obtained after 10, 20 and 30 updates, starting from the QMDP solution. In
the second set of experiments, we applied the incremental stochastic update scheme with
Gauss-Seidel-style updates. The results for this method were acquired after every grid point
was updated 150 times, with learning rates decreasing linearly in the range between 0:2 and
0:001. Again we started from the QMDP solution. The results for lookahead controllers are
summarized in Figure 22, which also shows the control performance of the direct Q-function
controller and, for comparison, the results for the QMDP method.

The linear-Q function model performed very well and the results for the lookahead design
were better than the results for the QMDP method. The di�erence was quite apparent for
direct approaches. In general, the good performance of the method can be attributed to
the choice of a function model that let us match the shape of the optimal value function
reasonably well. In contrast, the softmax models (with 10 and 15 linear functions) did not
perform as expected. This is probably because in the softmax model all linear functions are
updated for every sample point. This leads to situations in which multiple linear functions
try to track a belief point during its update. Under these circumstances it is hard to capture
the structure of the optimal value function accurately. The other negative feature is that
the e�ects of on-line changes of all linear functions are added in the softmax approximation,
and thus could bias incremental update schemes. In the ideal case, we would like to identify
one vector � responsible for a speci�c belief point and update (modify) only that vector.
The linear Q-function approach avoids this problem by always updating only a single linear
function (corresponding to an action).
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Figure 22: Control performance of least-squares �t methods. Models tested include: linear
Q-function model (with both direct and lookahead control) and softmax mod-
els with 10 and 15 linear functions (lookahead control only). Value functions
obtained after 10, 20 and 30 synchronous updates and value functions obtained
through the incremental stochastic update scheme are used to de�ne di�erent
controllers. For comparison, we also include results for two QMDP controllers.

4.7 Grid-Based Approximations with Linear Function Updates

An alternative grid-based approximation method can be constructed by applying Sondik's
approach for computing derivatives (linear functions) to points of the grid (Lovejoy, 1991a,
1993). Let bVi be a piecewise linear convex function described by a set of linear functions �i.
Then a new linear function for a belief point b and an action a can be computed eÆciently
as (Smallwood & Sondik, 1973; Littman, 1996)

�b;ai+1(s) = �(s; a) + 

X
o2�

X
s02S

P (s0; ojs; a)�
�(b;a;o)
i (s0); (10)

where �(b; a; o) indexes a linear function �i in a set of linear functions �i (de�ning bVi) that
maximizes the expression

X
s02S

"X
s2S

P (s0; ojs; a)b(s)

#
�i(s

0)

for a �xed combination of b; a; o. The optimizing function for b is then acquired by choosing
the vector with the best overall value from all action vectors. That is, assuming �bi+1 is a
set of all candidate linear functions, the resulting functions satis�es

�b;�i+1 = arg max
�b
i+1

2�b
i+1

X
s2S

�bi+1(s)b(s):

A collection of linear functions obtained for a set of belief points can be combined into
a piecewise linear and convex value function. This is the idea behind a number of exact
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Figure 23: An incremental version of the grid-based linear function method. The piecewise
linear lower bound is improved by a new linear function computed for a belief
point b using Sondik's method.

algorithms (see Section 2.4.2). However, in the exact case, a set of points that cover all
linear functions de�ning the new value function must be located �rst, which is a hard task
in itself. In contrast, the approximation method uses an incomplete set of belief points that
are �xed or at least easy to locate, for example via random or heuristic selection. We use
HGL to denote the value-function mapping for the grid approach.

The advantage of the grid-based method is that it leads to more eÆcient updates. The
time complexity of the update is polynomial and equals O(jGjjAjjSj2j�j). It yields a set of
jGj linear functions, compared to jAjj�ij

j�j possible functions for the exact update.
Since the set of grid-points is incomplete, the resulting approximation lower-bounds the

value function one would obtain by performing the exact update (Lovejoy, 1991a).

Theorem 13 (Lower-bound property of the grid-based linear function update). Let bVi be a
piecewise linear value function and G a set of grid points used to compute linear function

updates. Then HGL
bVi � H bVi.

4.7.1 Incremental Linear-Function Approach

The drawback of the grid-based linear function method is that HGL is not a contraction
for the discounted in�nite-horizon case, and therefore the value iteration method based on
the mapping may not converge (Lovejoy, 1991a). To remedy this problem, we propose an
incremental version of the grid-based linear function method. The idea of this re�nement is
to prevent instability by gradually improving the piecewise linear and convex lower bound
of the value function.

Assume that bVi � V � is a convex piecewise linear lower bound of the optimal value
function de�ned by a linear function set �i, and let �b be a linear function for a point b
that is computed from bVi using Sondik's method. Then one can construct a new improved
value function bVi+1 � bVi by simply adding the new linear function �b into �i. That is:
�i+1 = �i [ �b. The idea of the incremental update, illustrated in Figure 23, is similar
to incremental methods used by Cheng (1988) and Lovejoy (1993). The method can be
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Figure 24: Bound quality and running times of the standard and incremental version of
the grid-based linear-function method for the �xed 40-point grid. Cumulative
running times (including all previous update cycles) are shown for both methods.
Running times of the QMDP and the fast informed bound methods are included
for comparison.

extended to handle a set of grid points G in a straightforward way. Note also that after
adding one or more new linear functions to �i, some of the previous linear functions may
become redundant and can be removed from the value function. Techniques for redundancy
checking are the same as are applied in the exact approaches (Monahan, 1982; Eagle, 1984).

The incremental re�nement is stable and converges for a �xed set of grid points. The
price paid for this feature is that the linear function set �i can grow in size over the iteration
steps. Although the growth is at most linear in the number of iterations, compared to
the potentially exponential growth of exact methods, the linear function set describing
the piecewise linear approximation can become huge. Thus, in practice we usually stop
incremental updates well before the method converges. The question that remains open is
the complexity (hardness) of the problem of �nding the �xed-point solution for a �xed set
of grid points G.

Figure 24 illustrates some of the trade-o�s involved in applying incremental updates
compared to the standard �xed-grid approach on the Maze20 problem. We use the same
grid of 40 points for both techniques and the same initial value function. Results for 1-10
update cycles are shown. We see that the incremental method has longer running times
than the standard method, since the number of linear functions can grow after every update.
On the other hand, the bound quality of the incremental method improves more rapidly
and it can never become worse after more update steps.

4.7.2 Minimum Expected Reward

The incremental method improves the lower bound of the value function. The value func-
tion, say bVi, can be used to create a controller (with either the lookahead or direct-action
choice). In the general case, we cannot say anything about the performance quality of
such controllers with regard to bVi. However, under certain conditions the performance of
both controllers is guaranteed never to fall below bVi. The following theorem (proved in the
Appendix) establishes these conditions.

Theorem 14 Let bVi be a value function obtained via the incremental linear function method,
starting from bV0, which corresponds to some �xed strategy C0. Let CLA;i and CDR;i be two
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controllers based on bVi: the lookahead controller and the direct action controller, and V CLA;i ,
V CDR;i be their respective value functions. Then bVi � V CLA;i and bVi � V CDR;i hold.

We note that the same property holds for the incremental version of exact value iteration.
That is, both the lookahead and the direct controllers perform no worse than Vi obtained
after i incremental updates from some V0 corresponding to a FSM controller C0.

4.7.3 Selecting Grid Points

The incremental version of the grid-based linear-function approximation is 
exible and
works for an arbitrary grid.26 Moreover, the grid need not be �xed and can be changed on
line. Thus, the problem of �nding grids reduces to the problem of selecting belief points to
be updated next. One can apply various strategies to do this. For example, one can use a
�xed set of grid points and update them repeatedly, or one can select belief points on line
using various heuristics.

The incremental linear function method guarantees that the value function is always
improved (all linear functions from previous steps are kept unless found to be redundant).
The quality of a new linear function (to be added next) depends strongly on the quality of
linear functions obtained in previous steps. Therefore, our objective is to select and order
points with better chances of larger improvement. To do this we have designed two heuristic
strategies for selecting and ordering belief points.

The �rst strategy attempts to optimize updates at extreme points of the belief simplex
by ordering them heuristically. The idea of the heuristic is based on the fact that states
with higher expected rewards (e.g. some designated goal states) backpropagate their e�ects
(rewards) locally. Therefore, it is desirable that states in the neighborhood of the highest
reward state be updated �rst, and the distant ones later. We apply this idea to order
extreme points of the belief simplex, relying on the current estimate of the value function
to identify the highest expected reward states and on a POMDP model to determine the
neighbor states.

The second strategy is based on the idea of stochastic simulation. The strategy generates
a sequence of belief points more likely to be reached from some (�xed) initial belief point.
The points of the sequence are then used in reverse order to generate updates. The intent
of this heuristic is to \maximize" the improvement of the value function at the initial �xed
point. To run this heuristic, we need to �nd an initial belief point or a set of initial belief
points. To address this problem, we use the �rst heuristic that allows us to order the
extreme points of the belief simplex. These points are then used as initial beliefs for the
simulation part. Thus, we have a two-tier strategy: the top-level strategy orders extremes
of the belief simplex, and the lower-level strategy applies stochastic simulation to generate
a sequence of belief states more likely reachable from a speci�c extreme point.

We tested the order heuristics and the two-tier heuristics on our Maze20 problem, and
compared them also to two simple point selection strategies: the �xed-grid strategy, in
which a set of 40 grid points was updated repeatedly, and the random-grid strategy, in
which points were always chosen uniformly at random. Figure 25 shows the bound quality

26. There is no restriction on the grid points that must be included in the grid, such as was required for
example in the linear point-interpolation scheme, which had to use all extreme points of the belief
simplex.
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Figure 25: Improvements in the bound quality for the incremental linear-function method
and four di�erent grid-selection heuristics. Each cycle includes 40 grid-point
updates.

of the methods for 10 update cycles (each cycle consists of 40 grid point updates) on the
Maze20 problem. We see that the di�erences in the quality of value-function approximations
for di�erent strategies (even the very simple ones) are relatively small. We note that we
observed similar results also for other problems, not just Maze20.

The relatively small improvement of our heuristics can be explained by the fact that
every new linear function in
uences a larger portion of the belief space and thus the method
should be less sensitive to a choice of a speci�c point.27 However, another plausible explana-
tion is that our heuristics were not very good and more accurate heuristics or combinations
of heuristics could be constructed. EÆcient strategies for locating grid points used in some
of the exact methods, e.g. the Witness algorithm (Kaelbling et al., 1999) or Cheng's meth-
ods (Cheng, 1988) can potentially be applied to this problem. This remains an open area
of research.

4.7.4 Control

The grid-based linear-function approach leads to a piecewise linear and convex approxi-
mation. Every linear function comes with a natural action choice that lets us choose the
action greedily. Thus we can run both the lookahead and the direct controllers. Figure 26
compares the performance of four di�erent controllers for the �xed grid of 40 points, com-
bining standard and incremental updates with lookahead and direct greedy control after 1,
5 and 10 update cycles. The results (see also Figure 24) illustrate the trade-o�s between the
computational time of obtaining the solution and its quality. We see that the incremental
approach and the lookahead controller design tend to improve the control performance. The
prices paid are worse running and reaction times, respectively.

27. The small sensitivity of the incremental method to the selection of grid points would suggest that one
could, in many instances, replace exact updates with simpler point selection strategies. This could
increase the speed of exact value-iteration methods (at least in their initial stages), which su�er from
ineÆciencies associated with locating a complete set of grid points to be updated in every step. However,
this issue needs to be investigated.
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Figure 26: Control performance of four di�erent controllers based on grid-based linear func-
tion updates after 1, 5 and 10 update cycles for the same 40-point grid. Con-
trollers represent combinations of two update strategies (standard and incre-
mental) and two action-extraction techniques (direct and lookahead). Running
times for the two update strategies were presented in Figure 24. For compar-
ison we include also performances of the QMDP and the fast informed bound
methods (with both direct and lookahead designs).
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Figure 27: Control performances of lookahead controllers based on the incremental linear-
function approach and di�erent point-selection heuristics after 1, 5 and 10 im-
provement cycles. For comparison, scores for the QMDP and the fast informed
bound approximations are shown as well.

Figure 27 illustrates the e�ect of point selection heuristics on control. We compare the
results for lookahead control only, using approximations obtained after 1, 5 and 10 improve-
ment cycles (each cycle consists of 40 grid point updates). The test results show that, as
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for the bound quality, there are no big di�erences among various heuristics, suggesting a
small sensitivity of control to the selection of grid points.

4.8 Summary of Value-Function Approximations

Heuristic value-function approximations methods allow us to replace hard-to-compute exact
methods and trade o� solution quality for speed. There are numerous methods we can em-
ploy, each with di�erent properties and di�erent trade-o�s of quality versus speed. Tables 1
and 2 summarize main theoretical properties of the approximation methods covered in this
paper. The majority of these methods are of polynomial complexity or at least have eÆ-
cient (polynomial) Bellman updates. This makes them good candidates for more complex
POMDP problems that are out of reach of exact methods.

All of the methods are heuristic approximations in that they do not give solutions of a
guaranteed precision. Despite this fact we proved that solutions of some of the methods are
no worse than others in terms of value function quality (see Figure 15). This was one of the
main contributions of the paper. However, there are currently minimal theoretical results
relating these methods in terms of control performance; the exception are some results
for FSM-controllers and FSM-based approximations. The key observation here is that for
the quality of control (lookahead control) it is more important to approximate the shape
(derivatives) of the value function correctly. This is also illustrated empirically on grid-
based interpolation-extrapolation methods in Section 4.5.9 that are based on non-convex
value functions. The main challenges here are to �nd ways of analyzing and comparing
control performance of di�erent approximations also theoretically and to identify classes of
POMDPs for which certain methods dominate the others.

Finally, we note that the list of methods is not complete and other value-function approx-
imation methods or the re�nements of existing methods are possible. For example, White
and Scherer (1994) investigate methods based on truncated histories that lead to upper
and lower bound estimates of the value function for complete information states (complete
histories). Also, additional restrictions on some of the methods can change the properties
of a more generic method. For example, it is possible that under additional assumptions
we will be able to ensure convergence of the least-squares �t approximation.

5. Conclusions

POMDPs o�ers an elegant mathematical framework for representing decision processes
in stochastic partially observable domains. Despite their modeling advantages, however,
POMDP problems are hard to solve exactly. Thus, the complexity of problem solving-
procedures becomes the key aspect in the sucessful application of the model to real-world
problems, even at the expense of the optimality. As recent complexity results for the
approximability of POMDP problems are not encouraging (Lusena et al., 1998; Madani
et al., 1999), we focus on heuristic approximations, in particular approximations of value
functions.
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Method Bound Isotonicity Contraction

MDP approximation upper
p p

QMDP approximation upper
p p

Fast informed bound upper
p p

UMDP approximation lower
p p

Fixed-strategy method lower
p p

Grid-based interpolation-extrapolation - - -
Nearest neighbor -

p p

Kernel regression -
p p

Linear point interpolation upper
p p

Curve-�tting (least-squares �t) - - -

linear Q-function - - -

Grid-based linear function method lower - -

Incremental version (start from a lower bound) lower
p

- *

Table 1: Properties of di�erent value-function approximation methods: bound property,
isotonicity and contraction property of the underlying mappings for 0 � 
 < 1.
(*) Although incremental version of the grid-based linear-function method is not
a contraction it always converges.

Method Finite-horizon Discounted in�nite-horizon

MDP approximation P P

QMDP approximation P P

Fast informed bound P P

UMDP approximation NP-hard undecidable

Fixed-strategy method P P

Grid-based interpolation-extrapolation varies NA

Nearest neighbor P P

Kernel regression P P

Linear point interpolation P varies

Fixed interpolation P P

Best interpolation P ?

Curve-�tting (least-squares �t) varies NA

linear Q-function P NA

Grid-based linear function method P NA
Incremental version NA ?

Table 2: Complexity of value-function approximation methods for �nite-horizon problem
and discounted in�nite-horizon problem. The objective for the discounted in�nite-
horizon case is to �nd the corresponding �xed-point solution. The complexity
results take into account, in addition to components of POMDPs, also all other
approximation speci�c parameters, e.g., the size of the grid G in grid-based meth-
ods. ? indicates open instances and NA methods that are not applicable to one
of the problems (e.g. because of possible divergence).
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5.1 Contributions

The paper surveys new and known value-function approximation methods for solving POMDPs.
We focus primarily on the theoretical analysis and comparison of the methods, with �nd-
ings and results supported experimentally on a problem of moderate size from the agent
navigation domain. We analyze the methods from di�erent perspectives: their computa-
tional complexity, capability to bound the optimal value function, convergence properties of
iterative implementations, and the quality of derived controllers. The analysis includes new
theoretical results, deriving the properties of individual approximations, and their relations
to exact methods. In general, the relations between and trade-o�s among di�erent methods
are not well understood. We provide some new insights on these issues by analyzing their
corresponding updates. For example, we showed that the di�erences among the exact, the
MDP, the QMDP, the fast-informed bound, and the UMDP methods boil down to simple
mathematical manipulations and their subsequent e�ect on the value-function approxima-
tion. This allowed us to determine relations among di�erent methods in terms of quality of
their respective value functions which is one of the main results of the paper.

We also presented a number of new methods and heuristic re�nements of some existing
techniques. The primary contributions in this area include the fast-informed bound, grid-
based point interpolation methods (including adaptive grid approaches based on stochas-
tic sampling), and the incremental linear-function method. We also showed that in some
instances the solutions can be obtained more eÆciently by converting the original approx-
imation into an equivalent �nite-state MDP. For example, grid-based approximations with
convex rules can be often solved via conversion into a grid-based MDP (in which grid points
correspond to new states), leading to the polynomial-complexity algorithm for both the �-
nite and the discounted in�nite-horizon cases (Section 4.5.3). This result can dramatically
improve the run-time performance of the grid-based approaches. A similar conversion to
the equivalent �nite-state MDP, allowing a polynomial-time solution for the discounted
in�nite-horizon problem, was shown for the fast informed bound method (Section 4.2).

5.2 Challenges and Future Directions

Work on POMDPs and their approximations is far from complete. Some complexity results
remain open, in particular, the complexity of the grid-based approach seeking the best in-
terpolation, or the complexity of �nding the �xed-point solution for the incremental version
of the grid-based linear-function method. Another interesting issue that needs more inves-
tigation is the convergence of value iteration with least-squares approximation. Although
the method can be unstable in the general case, it is possible that under certain restrictions
it will converge.

In the paper we use a single POMDP problem (Maze20) only to support theoretical
�ndings or to illustrate some intuitions. Therefore, the results not supported theoreti-
cally (related mostly to control) cannot be generalized and used to rank di�erent methods,
since their performance may vary on other problems. In general, the area of POMDPs
and POMDP approximations su�ers from a shortage of larger-scale experimental work with
multiple problems of di�erent complexities and a broad range of methods. Experimental
work is especially needed to study and compare di�erent methods with regard to control
quality. The main reason for this is that there are only few theoretical results relating the
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control performance. These studies should help focus theoretical exploration by discovering
interesting cases and possibly identifying classes of problems for which certain approxima-
tions are more or less suitable. Our preliminary experimental results show that there are
signi�cant di�erences in control performance among di�erent methods and that not all of
them may be suitable to approximate the control policies. For example, the grid-based
nearest-neighbor approach with piecewise-constant approximation is typically inferior to
and outperformed by other simpler (and more eÆcient) value-function methods.

The present work focused on heuristic approximation methods. We investigated gen-
eral (
at) POMDPs and did not take advantage of any additional structural re�nements.
However, real-world problems usually o�er more structure that can be exploited to devise
new algorithms and perhaps lead to further speed-ups. It is also possible that some of the
restricted versions of POMDPs (with additional structural assumptions) can be solved or
approximated eÆciently, even though the general complexity results for POMDPs or their �-
approximations are not very encouraging (Papadimitriou & Tsitsiklis, 1987; Littman, 1996;
Mundhenk et al., 1997; Lusena et al., 1998; Madani et al., 1999). A challenge here is to
identify models that allow eÆcient solutions and are at the same time interesting enough
from the point of application.

Finally, a number of interesting issues arise when we move to problems with large state,
action, and observation spaces. Here, the complexity of not only value-function updates
but also belief state updates becomes an issue. In general, partial observability of hidden
process states does not allow us to factor and decompose belief states (and their updates),
even when transitions have a great deal of structure and can be represented very compactly.
Promising directions to deal with these issues include various Monte-Carlo approaches (Isard
& Blake, 1996; Kanazawa, Koller, & Russell, 1995; Doucet, 1998; Kearns et al., 1999)),
methods for approximating belief states via decomposition (Boyen & Koller, 1998, 1999),
or a combination of the two approaches (McAllester & Singh, 1999).

Acknowledgements

Anthony Cassandra, Thomas Dean, Leslie Kaelbling, William Long, Peter Szolovits and
anonymous reviewers provided valuable feedback and comments on this work. This research
was supported by grant RO1 LM 04493 and grant 1T15LM07092 from the National Library
of Medicine, by DOD Advanced Research Project Agency (ARPA) under contract number
N66001-95-M-1089 and DARPA/Rome Labs Planning Initiative grant F30602-95-1-0020.

Appendix A. Theorems and proofs

A.1 Convergence to the Bound

Theorem 6 Let H1 and H2 be two value-function mappings de�ned on V1 and V2 s.t.

1. H1, H2 are contractions with �xed points V �
1 , V

�
2 ;

2. V �
1 2 V2 and H2V

�
1 � H1V

�
1 = V �

1 ;

3. H2 is an isotone mapping.

Then V �
2 � V

�
1 holds.
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Proof By applying H2 to condition 2 and expanding the result with condition 2 again we
get: H2

2V
�
1 � H2V

�
1 � H1V

�
1 = V �

1 . Repeating this we get in the limit V �
2 � � � � � H

n
2 V

�
1 �

� � �H2
2V

�
1 � H2V

�
1 � H1V

�
1 = V �

1 , which proves the result. 2

A.2 Accuracy of a Lookahead Controller Based on Bounds

Theorem 7 Let bVU and bVL be upper and lower bounds of the optimal value function for

the discounted in�nite-horizon problem. Let � = supb j
bVU (b) � bVL(b)j = k bVU � bVLk be

the maximum bound di�erence. Then the expected reward for a lookahead controller bV LA,

constructed for either bVU or bVL, satis�es k bV LA � V �k � �(2�
)
(1�
) .

Proof Let bV denotes either an upper or lower bound approximation of V � and HLA be the
value function mapping corresponding to the lookahead policy for bV . Note, that since the
lookahead policy always optimizes its actions with regard to bV , H bV = HLA bV must hold.
The error of bV LA can be bounded using the triangle inequality

k bV LA � V �k � k bV LA � bV k+ k bV � V �k:

The �rst component satis�es:

k bV LA � bV k = kHLA bV LA � bV k
� kHLA bV LA �H bV k+ kH bV � bV k
= kHLA bV LA �HLA bV k+ kH bV � bV k
� 
k bV LA � bV k+ �

The inequality: kH bV � bV k � � follows from the isotonicity of H and the fact that bV is either
an upper or a lower bound. Rearranging the inequalities, we obtain: k bV LA � bV k = �

(1�
) .

The bound on the second term k bV � V �k � � is trivial.

Therefore, k bV LA � V �k � �[ 1
(1�
) + 1] = � (2�
)(1�
) . 2

A.3 MDP, QMDP and the Fast Informed Bounds

Theorem 8 A solution for the fast informed bound approximation can be found by solving

an MDP with jSjjAjj�j states, jAj actions and the same discount factor 
.

Proof Let �ai be a linear function for action a de�ning bVi. Let �i(s; a) denote parameters
of the function. The parameters of bVi+1 satisfy:

�i+1(s; a) = �(s; a) + 

X
o2�

max
a02A

X
s02S

P (s0; ojs; a)�i(s
0; a0):

Let
�i+1(s; a; o) = max

a02A

X
s02S

P (s0; ojs; a)�i(s
0; a0):
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Now, we can rewrite �i+1(s; a; o) for every s; a; o as:

�i+1(s; a; o) = max
a02A

8<:X
s02S

P (s0; ojs; a)

24�(s0; a0) + 

X
o02�

�i(s
0; a0; o0)

359=;
= max

a02A

8<:
24X
s02S

P (s0; ojs; a)�(s0; a0)

35+ 


24X
o02�

X
s02S

P (s0; ojs; a)�i(s
0; a0; o0)

359=;
These equations de�ne an MDP with state space S�A��, action space A and discount

factor 
. Thus, a solution for the fast informed bound update can be found by solving an
equivalent �nite-state MDP. 2

Theorem 9 Let bVi corresponds to a piecewise linear convex value function de�ned by �i
linear functions. Then H bVi � HFIB

bVi � HQMDP
bVi � HMDP

bVi:
Proof

max
a2A

8<:X
s2S

�(s; a)b(s) + 

X
o2�

max
�i2�i

X
s02S

X
s2S

P (s0; ojs; a)b(s)�i(s
0)

9=;
= (HVi)(b)

� max
a2A

X
s2S

b(s)

24�(s; a) + 

X
o2�

max
�i2�i

X
s02S

P (s0; ojs; a)�i(s
0)

35
= (HFIBVi)(b)

� max
a2A

X
s2S

b(s)

24�(s; a) + 

X
s02S

P (s0js; a) max
�i2�i

�i(s
0)

35
= (HQMDP

bVi)(b)
�

X
s2S

b(s)max
a2A

24�(s; a) + 

X
s02S

P (s0js; a) max
�i2�i

�i(s
0)

35
= (HMDP

bVi)(b) 2

A.4 Fixed-Strategy Approximations

Theorem 10 Let CFSM be an FSM controller. Let CDR and CLA be the direct and the

one-step-lookahead controllers constructed based on CFSM . Then V CFSM (b) � V CDR(b) and
V CFSM (b) � V CLA(b) hold for all belief states b 2 I.

Proof The value function for the FSM controller CFSM satis�es:

V CFSM (b) = max
x2M

V (x; b) = V ( (b); b)

where
V (x; b) = �(b; �(x)) + 


X
o2�

P (ojb; �(x))V (�(x; o); �(b; �(x); o)):
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The direct controller CDR selects the action greedily in every step, that is, it always
chooses according to  (b) = argmaxx2M V (x; b). The lookahead controller CLA selects the
action based on V (x; b) one step away:

�LA(b) = argmax
a2A

"
�(b; a) + 


X
o2�

P (ojb; a) max
x02M

V (x0; �(b; a; o))

#
:

By expanding the value function for CFSM for one step we get:

V CFSM (b) = max
x2M

V (x; b)

= max
x2M

"
�(b; �(x)) + 


X
o2�

P (ojb; �(x))V (�(x; o); �(b; �(x); o))

#
(1)

= �(b; �( (b))) + 

X
o2�

P (ojb; �( (b)))V (�(x; o); �(b; �( (b)); o))

� �(b; �( (b))) + 

X
o2�

P (ojb; �( (b))) max
x02M

V (x0; �(b; �( (b)); o)) (2)

� max
a2A

"
�(b; a) + 


X
o2�

P (ojb; a) max
x02M

V (x0; �(b; a; o))

#
= �(b; �LA(b)) + 


X
o2�

P (ojb; �LA(b)) max
x02M

V (x0; �(b; �LA(b); o)) (3)

Iteratively expanding maxx02M V (x; :) in 2 and 3 with expression 1 and substituing improved
(higher value) expressions 2 and 3 back we obtain value functions for both the direct and
the lookahead controllers. (Expansions of 2 lead to the value for the direct controller
and expansions of 3 to the value for the lookahead controller.) Thus V CFSM � V CDR

and V CFSM � V CLA must hold. Note, however, that action choices  (b) and  LA(b)
in expressions 2 and 3 can be di�erent leading to di�erent next step belief states and
subsequently to di�erent expansion sequences. Therefore, the above result does not imply
that V DR(b) � V LA(b) for all b 2 I. 2

A.5 Grid-Based Linear-Function Method

Theorem 14 Let bVi be a value function obtained via the incremental linear function method,
starting from bV0, which corresponds to some �xed strategy C0. Let CLA;i and CDR;i be two

controllers based on bVi: the lookahead controller and the direct action controller, and V CLA;i ,

V CDR;i be their respective value functions. Then bVi � V CLA;i and bVi � V CDR;i hold.

Proof By initializing the method with a value function for some FSM controller C0, the
incremental updates can be interpreted as additions of new states to the FSM controller (a
new linear function corresponds to a new state of the FSM). Let Ci be a controller after
step i. Then V CFSM;i = bVi holds and the inequalities follow from Theorem 10. 2
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