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Abstract

Partially observable Markov decision processes (POMDPs) have recently become pop-
ular among many AI researchers because they serve as a natural model for planning under
uncertainty. Value iteration is a well-known algorithm for �nding optimal policies for
POMDPs. It typically takes a large number of iterations to converge. This paper proposes
a method for accelerating the convergence of value iteration. The method has been eval-
uated on an array of benchmark problems and was found to be very e�ective: It enabled
value iteration to converge after only a few iterations on all the test problems.

1. Introduction

POMDPs model sequential decision making problems where e�ects of actions are nonde-
terministic and the state of the world is not known with certainty. They have attracted
many researchers in Operations Research and Arti�cial Intelligence because of their poten-
tial applications in a wide range of areas (Monahan 1982, Cassandra 1998b), one of which is
planning under uncertainty. Unfortunately, there is still a signi�cant gap between this po-
tential and actual applications, primarily due to the lack of e�ective solution methods. For
this reason, much recent e�ort has been devoted to �nding e�cient algorithms for POMDPs
(e.g., Parr and Russell 1995, Hauskrecht 1997b, Cassandra 1998a, Hansen 1998, Kaelbling
et al. 1998, Zhang et al. 1999).

Value iteration is a well-known algorithm for POMDPs (Smallwood and Sondik 1973,
Puterman 1990). It starts with an initial value function and iteratively performs dynamic
programming (DP) updates to generate a sequence of value functions. The sequence con-
verges to the optimal value function. Value iteration terminates when a predetermined
convergence condition is met.

Value iteration performs typically a large number of DP updates before it converges and
DP updates are notoriously expensive. In this paper, we develop a technique for reducing
the number of DP updates.

DP update takes (the �nite representation of) a value function as input and returns (the
�nite representation of) another value function. The output value function is closer to the
optimal than the input value function. In this sense, we say that DP update improves its
input. We propose an approximation to DP update called point-based DP update. Point-
based DP update also improves its input, but possibly to a lesser degree than standard DP
update. On the other hand, it is computationally much cheaper. During value iteration, we
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perform point-based DP update a number of times in between two standard DP updates.
The number of standard DP updates can be reduced this way since point-based DP update
improves its input. The reduction does not come with a high cost since point-based DP
update takes little time.

The rest of this paper is organized as follows. In the next section we shall give a brief
review of POMDPs and value iteration. The basic idea behind point-based DP update will
be explained in Section 3. After some theoretical preparations in Section 4, we shall work
out the details of point-based DP update in Section 5. Empirical results will be reported
in Section 6 and possible variations evaluated in Section 7. Finally, we shall discuss related
work in Section 8 and provide some concluding remarks in Section 9.

2. POMDPs and Value Iteration

2.1 POMDPs

A partially observable Markov decision process (POMDP) is a sequential decision model
for an agent who acts in a stochastic environment with only partial knowledge about the
state of its environment. The set of possible states of the environment is referred to as
the state space and is denoted by S. At each point in time, the environment is in one of
the possible states. The agent does not directly observe the state. Rather, it receives an
observation about it. We denote the set of all possible observations by Z. After receiving the
observation, the agent chooses an action from a set A of possible actions and executes that
action. Thereafter, the agent receives an immediate reward and the environment evolves
stochastically into a next state.

Mathematically, a POMDP is speci�ed by: the three sets S, Z, and A; a reward function

r(s; a); a transition probability function P (s0js; a); and an observation probability function

P (zjs0; a). The reward function characterizes the dependency of the immediate reward on
the current state s and the current action a. The transition probability characterizes the
dependency of the next state s0 on the current state s and the current action a. The
observation probability characterizes the dependency of the observation z at the next time
point on the next state s0 and the current action a.

2.2 Policies and Value Functions

Since the current observation does not fully reveal the identity of the current state, the agent
needs to consider all previous observations and actions when choosing an action. Informa-
tion about the current state contained in the current observation, previous observations,
and previous actions can be summarized by a probability distribution over the state space
(Astr�om 1965). The probability distribution is sometimes called a belief state and denoted
by b. For any possible state s, b(s) is the probability that the current state is s. The set of
all possible belief states is called the belief space. We denote it by B.

A policy prescribes an action for each possible belief state. In other words, it is a
mapping from B to A. Associated with a policy � is its value function V �. For each belief
state b, V �(b) is the expected total discounted reward that the agent receives by following
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the policy starting from b, that is

V �(b) = E�;b[
1X

t=0

�trt]; (1)

where rt is the reward received at time t and � (0��<1) is the discount factor. It is known
that there exists a policy �� such that V ��

(b)�V �(b) for any other policy � and any belief
state b (Puterman 1990). Such a policy is called an optimal policy. The value function of an
optimal policy is called the optimal value function. We denote it by V �. For any positive
number �, a policy � is �-optimal if

V �(b) + � � V �(b) 8b 2 B:

2.3 Value Iteration

To explain value iteration, we need to consider how belief state evolves over time. Let b
be the current belief state. The belief state at the next point in time is determined by the
current belief state, the current action a, the next observation z. We denote it by baz . For
any state s0, baz(s

0) is given by

baz(s
0) =

P
s P (z; s

0js; a)b(s)

P (zjb; a)
; (2)

where P (z; s0js; a)=P (zjs0; a)P (s0js; a) and P (zjb; a)=
P

s;s0 P (z; s
0js; a)b(s) is the renormal-

ization constant. As the notation suggests, the constant can also be interpreted as the
probability of observing z after taking action a in belief state b.

De�ne an operator T that takes a value function V and returns another value function
TV as follows:

TV (b) = max
a

[r(b; a) + �
X

z

P (zjb; a)V (baz)] 8b 2 B (3)

where r(b; a) =
P

s r(s; a)b(s) is the expected immediate reward for taking action a in belief
state b. For a given value function V , a policy � is said to be V -improving if

�(b) = arg max
a

[r(b; a) + �
X

z

P (zjb; a)V (baz)] 8b 2 B: (4)

Value iteration is an algorithm for �nding �-optimal policies. It starts with an initial
value function V0 and iterates using the following formula:

Vn = TVn�1:

It is known (e.g., Puterman 1990, Theorem 6.9) that Vn converges to V � as n goes to
in�nity. Value iteration terminates when the Bellman residual maxb jVn(b) � Vn�1(b)j falls
below �(1��)=2�. When it does, a Vn-improving policy is �-optimal (e.g., Puterman 1990).

Since there are in�nitely many belief states, value functions cannot be explicitly repre-
sented. Fortunately, the value functions that one encounters in the process of value iteration
admit implicit �nite representations. Before explaining why, we �rst introduce several tech-
nical concepts and notations.
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Figure 1: Illustration of Technical Concepts.

2.4 Technical and Notational Considerations

For convenience, we view functions over the state space vectors of size jSj. We use lower
case Greek letters � and � to refer to vectors and script letters V and U to refer to sets of
vectors. In contrast, the upper case letters V and U always refer to value functions, that is
functions over the belief space B. Note that a belief state is a function over the state space
and hence can be viewed as a vector.

A set V of vectors induces a value function as follows:

f(b) = max
�2V

��b 8b 2 B;

where ��b is the inner product of � and b, that is ��b=
P

s �(s)b(s). For convenience, we
shall abuse notation and use V to denote both a set of vectors and the value function induced
by the set. Under this convention, the quantity f(b) can be written as V(b).

A vector in a set is extraneous if its removal does not a�ect the function that the set
induces. It is useful otherwise. A set of vectors is parsimonious if it contains no extraneous
vectors.

Given a set V and a vector � in V, de�ne the open witness region R(�;V) and closed

witness region R(�;V) of � w.r.t V to be regions of the belief space B respectively given by

R(�;V) = fb 2 Bj��b > �0�b; 8�0 2 Vnf�gg

R(�;V) = fb 2 Bj��b � �0�b; 8�0 2 Vnf�gg

In the literature, a belief state in the open witness region R(�;V) is usually called a witness
point for � since it testi�es to the fact that � is useful. In this paper, we shall call a belief
state in the closed witness region R(�;V) a witness point for �.

Figure 1 diagrammatically illustrates the aforementioned concepts. The line at the
bottom depicts the belief space of a POMDP with two states. The point at the left end
represents the probability distribution that concentrates all its masses on one of the states,
while the point at the right end represents the one that concentrates all its masses on the
other state. There are four vectors �1, �2, �3, and �4. The four slanting lines represent
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VI(V; �):
1. �  �(1� �)=2�.
2. do f
3. U  DP-UPDATE(V).
4. r  maxb jU(b) �V(b)j;
5. if (r > �) V  U .
6. g while ( r > �).
7. return U .

Figure 2: Value Iteration for POMDPs.

the linear functions �i�b (i=1; 2; 3; 4) of b. The value function induced by the four vectors
is represented by the three bold line segments at the top. Vector �3 is extraneous as its
removal does not a�ect the induced function. All the other vectors are useful. The �rst
segment of the line at the bottom is the witness region of �1, the second segment is that of
�2, and the last segment is that of �4.

2.5 Finite Representation of Value Functions and Value Iteration

A value function V is represented by a set of vectors if it equals the value function induced
by the set. When a value function is representable by a �nite set of vectors, there is a
unique parsimonious set of vectors that represents the function (Littman et al. 1995a).

Sondik (1971) has shown that if a value function V is representable by a �nite set
of vectors, then so is the value function TV . The process of obtaining the parsimonious
representation for TV from the parsimonious representation of V is usually referred to as
dynamic programming (DP) update. Let V be the parsimonious set of vectors that represents
V . For convenience, we use TV to denote the parsimonious set of vectors that represents
TV .

In practice, value iteration for POMDPs is not carried out directly in terms of value
functions themselves. Rather, it is carried out in terms of sets of vectors that represent the
value functions (Figure 2). One begins with an initial set of vectors V. At each iteration,
one performs a DP update on the previous parsimonious set V of vectors and obtains a new
parsimonious set of vectors U . One continues until the Bellman residual maxb jU(b)�V(b)j,
which is determined by solving a sequence of linear programs, falls below a threshold.

3. Point-Based DP Update: The Idea

This section explains the intuitions behind point-based DP update. We begin with the
so-called backup operator.

3.1 The Backup Operator

Let V be a set of vectors and b be a belief state. The backup operator constructs a new
vector in three steps:
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1. For each action a and each observation z, �nd the vector in V that has maximum inner
product with bza | the belief state for the case when z is observed after executing action
a in belief state b. If there are more than one such vector, break ties lexicographically
(Littman 1996). Denote the vector found by �a;z.

2. For each action a, construct a vector �a by:

�a(s) = r(s; a) + 

X

z;s0

P (s0; zjs; a)�a;z(s
0);8s 2 S:

3. Find the vector, among the �a's, that has maximum inner product with b. If there
are more than one such vector, break ties lexicographically. Denote the vector found
by backup(b;V).

It has been shown (Smallwood and Sondik 1973, Littman 1996) that backup(b;V) is a
member of TV | the set of vectors obtained by performing DP update on V. Moreover, b
is a witness point for backup(b;V).

The above fact is the corner stone of several DP update algorithms. The one-pass
algorithm (Sondik 1971), the linear-support algorithm (Cheng 1988), and the relaxed-region
algorithm (Cheng 1988) operate in the following way: They �rst systematically search for
witness points of vectors in TV and then obtain the vectors using the backup operator. The
witness algorithm (Kaelbling et al. 1998) employs a similar idea.

3.2 Point-Based DP Update

Systematically searching for witness points for all vectors in TV is computationally expen-
sive. Point-based DP update does not do this. Instead, it uses heuristics to come up with
a collection of belief points and backs up on those points. It might miss witness points for
some of the vectors in TV and hence is an approximation of standard DP update.

Obviously, backing up on di�erent belief states might result in the same vector. In other
words, backup(b;V) and backup(b0;V) might be equal for two di�erent belief states b and
b0. As such, it is possible that one gets only a few vectors after many backups. One issue in
the design of point-based DP update is to avoid this. We address this issue using witness
points.

Point-based DP update assumes that one knows a witness point for each vector in its
input set. It backs up on those points.1 The rationale is that witness points for vectors in
a given set \scatter all over the belief space" and hence the chance of creating duplicate
vectors is low. Our experiments have con�rmed this intuition.

The assumption made by point-based DP update is reasonable because its input is
either the output of a standard DP update or another point-based DP update. Standard
DP update computes, as by-products, a witness point for each of its output vectors. As will
be seen later, point-based DP update also shares this property by design.

3.3 The Use of Point-Based DP Update

As indicated in the introduction, we propose to perform point-based DP update a number
of times in between two standard DP updates. To be more speci�c, we propose to modify

1. As will be seen later, point-based DP update also backs up on other points.
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VI1(V; �):
1. �  �(1� �)=2�.
2. do f
3. U  DP-UPDATE(V).
4. r  maxb jU(b) �V(b)j;
5. if (r > �) V  POINT-BASED-VI(U ; �).
6. g while ( r > �).
7. return U .

POINT-BASED-VI(U ; �):
1. do f
2. V  U .
3. U  POINT-BASED-DPU(V)
4. g while (STOP(U ;V; �)= false).
5. return V.

Figure 3: Modi�ed Value Iteration for POMDPs.

value iteration in the way as shown in Figure 3. Note that the only change is at line
5. Instead of assigning U directly to V, we pass it to a subroutine POINT-BASED-VI and
assign the output of the subroutine to V. The subroutine functions in the same way as
value iteration, except that it performs point-based DP updates rather than standard DP
updates. Hence we call it point-based value iteration.

Figure 4 illustrates the basic idea behind modi�ed value iteration in contrast to value
iteration. When the initial value function is properly selected,2 the sequence of value func-
tions produced by value iteration converges monotonically to the optimal value function.
Convergence usually takes a long time partially because standard DP updates, indicated
by fat upward arrows, are computationally expensive. Modi�ed value iteration interleaves
standard DP updates with point-based DP updates, which are indicated by the thin upward
arrows. Point-based DP update does not improve a value function as much as standard DP
update. However, its complexity is much lower. As a consequence, modi�ed value iteration
can hopefully converge in less time.

The idea of interleaving standard DP updates with approximate updates that back up
at a �nite number of belief points is due to Cheng (1988). Our work di�ers from Cheng's
method mainly in the way we select the belief points. A detailed discussion of the di�erences
will be given in Section 8.

The modi�ed value iteration algorithm raises three issues. First, what stopping criterion
do we use for point-based value iteration? Second, how can we guarantee the stopping
criterion can eventually be satis�ed? Third, how do we guarantee the convergence of the
modi�ed value iteration algorithm itself? To address those issues, we introduce the concept
of uniformly improvable value functions.

2. We will show how in Section 5.5.
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Figure 4: Illustration of the Basic Idea behind Modi�ed Value Iteration.

4. Uniformly Improvable Value Functions

Suppose V and U are two value functions. We say that U dominates V and write V�U if
V (b)�U(b) for every belief state b. A value function V is said to be uniformly improvable if
V�TV . A set U of vectors dominates another set V of vectors if the value function induced
by U dominates that induced by V. A set of vectors is unformly improvable if the value
function it induces is.

Lemma 1 The operator T is isotone in the sense that for any two value functions V and

U , V�U implies TV�TU . 2

This lemma is obvious and is well known in the MDP community (Puterman 1990).
Nonetheless, it enables us to explain the intuition behind the term \uniformly improvable".
Suppose V is a uniformly improvable value function and suppose value iteration starts
with V . Then the sequence of value functions generated is monotonically increasing and
converges to the optimal value function V �. This implies V�TV�V �. That is, TV (b) is
closer to V �(b) than V (b) for all belief states b.

The following lemma will be used later to address the issues listed at the end of the
previous section.

Lemma 2 Consider two value functions V and U . If V is uniformly improvable and

V�U�TV , then U is also uniformly improvable.

Proof: Since V�U , we have TV�TU by Lemma 1. We also have the condition U�TV .
Consequently, U�TU . That is, U is uniformly improvable. 2

Corollary 1 If value function V is uniformly improvable, so is TV . 2

5. Point-Based DP Update: The Algorithm

Point-based DP update is an approximation of standard DP update. When designing
point-based DP update, we try to strike a balance between quality of approximation and
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computational complexity. We also need to guarantee that the modi�ed value iteration
algorithm converges.

5.1 Backing Up on Witness Points of Input Vectors

Let V be a set of vectors on which we are going to perform point-based DP update. As
mentioned earlier, we can assume that we know a witness point for each vector in V. Denote
the witness point for a vector � by w(�). Point-based DP update �rst backs up on these
points and thereby obtains a new set of vectors. To be more speci�c, it begins with the
following subroutine:

backUpWitnessPoints(V):
1. U  ;.
2. for each � 2 V
3. � backup(w(�);V).
4. if � =2 U
5. w(�) w(�).
6. U  U [ f�g.
7. return U .

In this subroutine, line 4 makes sure that the resulting set U contains no duplicates and
line 5 takes note of the fact that w(�) is also a witness point for � (w.r.t TV).

5.2 Retaining Uniform Improvability

To address convergence issues, we assume that the input to point-based DP update is
uniformly improvable and require its output to be also uniformly improvable. We will
explain later how the assumption can be facilitated and how the requirement guarantees
convergence of the modi�ed value iteration algorithm. In this subsection, we discuss how
the requirement can be ful�lled.

Point-based DP update constructs new vectors by backing up on belief points and the
new vectors are all members of TV. Hence the output of point-based DP update is trivially
dominated by TV. If the output also dominates V, then it must be uniformly improvable
by Lemma 2. The question is how to guarantee that the output dominates V.

Consider the set U resulted from backUpWitnessPoints. If it does not dominate V, then
there must exist a belief state b such U(b)<V(b). Consequently, there must exist a vector
� in V such that U(b)<��b. This gives us the following subroutine for testing whether
U dominates V and for, when this is not the case, adding vectors to U so that it does.
The subroutine is called backUpLPPoints because belief points are found by solving linear
programs.

backUpLPPoints(U ;V):
1. for each � 2 V
2. do f
3. b dominanceCheck(�;U).
4. if b 6= NULL,
5. � backup(b;V).
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6. w(�) b.
7. U  U [ f�g.
8. g while (b 6= NULL).

The subroutine examines vectors in V one by one. For each � in V, it calls another subroutine
dominanceCheck to try to �nd a belief point b such that U(b)<��b. If such a point is found,
it backs up on it, resulting in a new vector � (line 5). By the property of the backup
operator, b is a witness point of � w.r.t TV (line 6). There cannot be any vector in U that
equals �.3 Consequently, the vector is simply added to U without checking for duplicates
(line 7). The process repeats for � until dominanceCheck returns NULL, that is when there
are no belief points b such that U(b)<��b. When backUpLPPoints terminates, we have
U(b)���b for any vector � in V and any belief point b. Hence U dominates V.

The subroutine dominanceCheck(�;U) �rst checks whether there exists a vector � in U
that pointwise dominates �, that is �(s)��(s) for all states s. If such an � exists, it returns
NULL right away. Otherwise, it solves the following linear program LP(�;U). It returns the
solution point b when the optimal value of the objective function is positive and returns
NULL otherwise:4

LP(�;U):
1. Variables: x, b(s) for each state s
2. Maximize: x.
3. Constraints:
4.

P
s �(s)b(s) � x+

P
s �(s)�b(b) for all �2U

5.
P

s b(s) = 1, b(s) � 0 for all states s.

5.3 The Algorithm

Here is the complete description of point-based DP update. It �rst backs up on the witness
points of the input vectors. Then, it solves linear programs to identify more belief points and
backs up on them so that its output dominates its input and hence is uniformly improvable.

POINT-BASED-DPU(V):
1. U  backUpWitnessPoints(V)
2. backUpLPPoints(U ;V)
3. return U .

In terms of computational complexity, point-based DP update performs exactly jVj
backups in the �rst step and no more than jTVj backups in the second step. It solves linear
programs only in the second step. The number of linear programs solved is upper bounded
by jTVj+jVj and is usually much smaller than the bound. The numbers of constraints in
the linear programs are upper bounded by jTVj+ 1.

3. Since b is a witness of � w.r.t TV, we have ��b=TV(b). Since V is uniformly improvable, we also
have TV(b)�V(b). Together with the obvious fact that V(b)���b and the condition ��b>U(b), we have
��b>U(b). Consequently, there cannot be any vector in U that equals �.

4. In our actual implementation, the solution point b is used for backup even when the optimal value of
the objective function is negative. In this case, duplication check is needed.
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There are several algorithms for standard DP update. Among them, the incremental
pruning algorithm (Zhang and Liu 1997) has been shown to be the most e�cient both
theoretically and empirically (Cassandra et al. 1997). Empirical results (Section 6) reveal
that point-based DP update is much less expensive than incremental pruning on a number
of test problems. It should be noted, however, that we have not proved this is always the
case.

5.4 Stopping Point-Based Value Iteration

Consider the do-while loop of POINT-BASED-VI (Figure 2). Starting from an initial set of
vectors, it generates a sequence of sets. If the initial set is uniformly improvable, then the
value functions represented by the sets are monotonically increasing and are upper bounded
by the optimal value function. As such, they converge to a value function (which is not
necessarily the optimal value function). The question is when to stop the do-while loop.

A straightforward method would be to compute the distance maxb jU(b)�V(b)j between
two consecutive sets U and V and stop when the distance falls below a threshold. To compute
the distance, one needs to solve jUj+jVj linear programs, which is time consuming. We use
a metric that is less expensive to compute. To be more speci�c, we stop the do-while loop
when

max
�2U
jU(w(�)) � V(w(�))j � �1�:

In words, we calculate the maximum di�erence between U and V at the witness points of
vectors in U and stop the do-while loop when this quantity is no larger than �1�. Here �
is the threshold on the Bellman residual for terminating value iteration and �1 is a number
between 0 and 1. In our experiments, we set it at 0:1.

5.5 Convergence of Modi�ed Value Iteration

Let Vn and V 0n be sets of vectors respectively generated by VI (Figure 1) and VI1 (Figure
2) at line 3 in iteration n. Suppose the initial set is uniformly improvable. Using Lemma 2
and Corollary 1, one can prove by induction that Vn and V 0n are uniformly improvable for
all n and their induced value functions increase with n. Moreover, V 0n dominates Vn and is
dominated by the optimal value function. It is well known that Vn converges to the optimal
value function. Therefore, V 0n must also converge to the optimal value function.

The question now is how to make sure that the initial set is uniformly improvable. The
following lemma answers this question.

Lemma 3 Let m=mins;a r(s; a), c = m=(1 � �), and �c be the vector whose components

are all c. Then the singleton set f�cg is uniformly improvable.

Proof: Use V to denote the value function induced by the singleton set. For any belief
state b, we have

TV (b) = max
a

[r(b; a) + �
X

z

P (zjb; a)V (baz)]

39



Zhang & Zhang

= max
a

[r(b; a) + �
X

z

P (zjb; a)c]

= max
a

[r(b; a) + �m=(1 � �)]

� m+ �m=(1� �)

= m=(1� �) = V (b):

Therefore the value function, and hence the singleton set, is uniformly improvable. 2

Experiments (Section 6) have shown that VI1 is more e�cient VI on a number of test
problems. It should be noted, however, that we have not proved this is always the case.
Moreover, complexity results by Papadimitriou and Tsitsiklis (1987) implies that the task
of �nding �-optimal policies for POMDPs is PSPACE-complete. Hence, the worst-case
complexity should remain the same.

5.6 Computing the Bellman Residual

In the modi�ed value iteration algorithm, the input V to standard DP update is always
uniformly improvable. As such, its output U dominates its input. This fact can be used to
simplify the computation of the Bellman residual. As a matter of fact, the Bellman residual
maxb jU(b)�V(b)j reduces maxb(U(b)�V(b)).

To compute the latter quantity, one goes through the vectors in U one by one. For each
vector, one solves the linear program LP(�;V). The quantity is simply the maximum of
the optimal values of the objective functions of the linear programs. Without uniformly
improvability, we would have to repeat the process one more time with the roles of V and
U exchanged.

6. Empirical Results and Discussions

Experiments have been conducted to empirically determine the e�ectiveness of point-based
DP update in speeding up value iteration. Eight problems are used in the experiments.
In the literature, the problems are commonly referred to as 4x3CO, Cheese, 4x4, Part
Painting, Tiger, Shuttle, Network, and Aircraft ID. We obtained the problem �les from
Tony Cassandra. Information about their sizes is summarized in the following table.

Problem jSj jZj jAj Problem jSj jZj jAj

4x3CO 11 4 11 Cheese 11 4 7
4x4 16 2 4 Painting 4 4 2

Tiger 2 2 3 Shuttle 8 2 3
Network 7 2 4 Aircraft ID 12 5 6

The e�ectiveness of point-based DP update is determined by comparing the standard
value iteration algorithm VI and the modi�ed value iteration algorithm VI1. The imple-
mentation of standard value iteration used in our experiments is borrowed from Hansen.
Modi�ed value iteration is implemented on top of Hansen's code.5 The discount factor is
set at 0:95 and round-o� precision is set at 10�6. All experiments are conducted on an
UltraSparc II machine.

5. The implementation is available on request.
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Table 1 shows the amounts of time VI and VI1 took to compute 0.01-optimal policies
for the test problems. We see that VI1 is consistently more e�cient than VI, especially on
the larger problems. It is about 1.3, 2.8, 5, 62, 141, 173, and 49 times faster than VI on the
�rst seven problems respectively. For the Aircraft ID problem, VI1 was able to compute a
0.01-optimal policy in less than 8 hours, while VI was only able to produce a 33-optimal
policy after 40 hours.

4x3CO Cheese 4x4 Paint Tiger Shuttle Network Aircraft

VI 3.2 13.9 27.15 37.84 79.14 5,199 12,478 -
VI1 2.4 5.0 5.30 .61 .56 30 253 27,676

Table 1: Time for Computing 0.01-Optimal Policies in Seconds.

Various other statistics are given in Table 2 to highlight computational properties of
VI1 and to explain its superior performance. The numbers of standard DP updates carried
out by VI and VI1 are shown at rows 1 and 3. We see that VI1 performed no more than 5
standard updates on the test problems, while VI performed more than 125. This indicates
that point-based update is very e�ective in cutting down the number of standard updates
required to reach convergence. As a consequence, VI1 spent much less time than VI in
standard updates (row 2 and 4).6

Problem 4x3CO Cheese 4x4 Paint Tiger Shuttle Network

DPU # 125 129 130 127 163 174 214
VI

Time 2.00 7.63 17.83 33.39 70.44 3,198 8,738

DPU # 4 4 3 3 3 5 5
Time .05 .09 .15 .21 .09 13 82

VI1
PBDPU # 377 219 173 244 515 455 670

Time 2.32 4.86 5.09 .37 .45 10 139

Quality Ratio .33 .58 .74 .51 .31 0.31 .32

Complexity Ratio .38 .37 .21 .0057 .002 .0012 .005

Table 2: Detailed Statistics.

Row 5 shows the numbers of point-based updates carried out by VI1. We see that those
numbers are actually larger than the numbers of standard updates performed by VI. This
is expected. To see why, recall that point-based update is an approximation of standard
update. Let V be a set of vectors that is uniformly improvable. Use T 0V to denote the
sets of vectors resulted from performing point-based update on V. For any belief state b,
we have V(b)�T 0V(b)�TV(b). This means that point-based update improves V but not as
much as standard update. Consequently, the use of point-based update increases the total

6. Note that times shown there do not include time for testing the stopping condition.

41



Zhang & Zhang

number of iterations, i.e the number of standard updates plus the number of point-based
updates.

Intuitively, the better point-based update is as an approximation of standard update,
the less the di�erence between the total number iterations that VI1 and VI need take. So,
the ratio between those two numbers in a problem can be used, to certain extent, as a
measurement of the quality of point-based update in that problem. We shall refer to it as
the quality ratio of point-based update. Row 7 shows the quality ratios in the seven test
problems. We see that the quality of point-based update is fairly good and stable across all
the problems.

Row 8 shows, for each test problem, the ratio between the average time of a standard
update performed by VI and that of a point-based update performed by VI1. Those ratios
measure, to certain extent, the complexity of point-based update relative to standard update
and hence will be referred to as the complexity ratios of point-based update. We see that,
as predicted by the analysis in Section 5.3, point-based update is consistently less expensive
than standard update. The di�erences are more than 200 times in the last four problems.

In summary, the statistics suggest that the quality of point-based update relative to
standard update is fairly good and stable and its complexity is much lower. Together with
the fact that point-based update can drastically reduces the number of standard updates,
those explain the superior performance of VI1.

To close this section, let us note that while VI �nds policies with quality7 very close to
the predetermined criterion, VI1 usually �nds much better ones (Table 3). This is because
VI checks policy quality after each (standard) update, while VI1 does not do this after
point-based updates.

Problem 4x3CO Cheese 4x4 Paint Tiger Shuttle Network

VI .0095 .0099 .0099 .01 .0098 .0097 .0098
VI1 .0008 .0008 .0009 .0007 .0007 .00015 .001

Table 3: Quality of Policies Found by VI and VI1.

7. Variations of Point-Based DP Update

We have studied several possible variations of point-based update. Most of them are based
on ideas drawn from the existing literature. None of the variations were able to signi�cantly
enhance the e�ectiveness of the algorithm in accelerating value iteration. Nonetheless a brief
discussion of some of them is still worthwhile. The discussion provides further insights about
the algorithm and shows how it compares to some of the related work to be discussed in
detail in the next section.

The variations can be divide into two categories: those aimed at improving the quality
of point-based update and those aimed at reducing complexity. We shall discuss them one
by one.

7. Quality of a policy is estimated using the Bellman residual.
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7.1 Improving the Quality of Point-Based DP Update

A natural way to improve the quality of point-based update is to back up on additional
belief points. We have explored the use of randomly generated points (Cassandra 1998a),
additional by-product points, and projected points (Hauskrecht 2000). Here additional by-
product points refer to points generated at various stages of standard update, excluding the
witness points that are already being used. Projected points are points that are reachable
in one step from points that have given rise to useful vectors.

Table 4 shows, for each test problem, the number of standard updates and the amount
of time that VI1 took with and without using projected points. We see that the use of
projected points did reduce the number of standard updates by one in 4x3CO, Cheese, and
Shuttle. However, it increased the time complexity in all test problems except for Network.
The other two kinds of points and combinations of the three did not signi�cantly improve
VI1 either. On the contrary, they often signi�cantly degraded the performance of VI1.

4x3CO Cheese 4x4 Paint Tiger Shuttle Network Aircraft

w/o 4 4 3 3 3 5 5 7
with 3 3 3 3 3 4 5 7

w/o 2.4 5.0 5.3 .61 .56 30 253 27,676
with 3.2 5.6 7.4 .69 2.3 33 140 35,791

Table 4: Number of Standard DP Updates and Time That VI1 Took With and Without
Using Projected Points.

A close examination of experimental data reveals a plausible explanation. Point-based
update, as it stands, can already reduce the number of standard updates down to a just few
and among them the last two or three are the most time-consuming. As such, the possibility
of further reducing the number standard updates is low and even when it is reduced, the
e�ect is roughly to shift the most time-consuming standard updates earlier. Consequently,
it is unlikely to achieve substantial gains. On the other hand, the use of additional points
always increases overheads.

7.2 Reducing the Complexity of Point-Based DP Update

Solving linear programs is the most expensive operation in point-based update. An obvious
way to speed up is to avoid linear programs. Point-based update solves linear programs
and backs up on the belief points found so as to guarantee uniform improvability. If the
linear programs are to be skipped, there must be some other way to guarantee uniform
improvability. There is an easy solution to this problem. Suppose V is the set of vectors
that we try to update and it is uniformly improvable. Let U be the set obtained from V by
backing up only on the witness points, which can be done without solving linear programs.
The set U might or might not be uniformly improvable. However, the union V [ U is
guaranteed to be uniformly improvable. Therefore we can reprogram point-based update
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to return the union in hope to reduce complexity. The resulting variation will be called
non-LP point-based DP update.

Another way to reduce complexity is to simplify the backup operator (Section 3.1) using
the idea behind modi�ed policy iteration (e.g., Puterman 1990). When backing up from
a set of vectors V at a belief point, the operator considers all possible actions and picks
the one that is optimal according to the V-improving policy. To speed up, one can simply
use the action found for the belief point by the previous standard update. The resulting
operator will be called the MPI backup operator, where MPI stands for modi�ed policy
iteration. If V is the output of the previous standard update, the two actions often are the
same. However, they are usually di�erent if V is the result of several point-based updates
following the standard update.

Table 5 shows, for each test problem, the number of standard updates and the amount of
time that VI1 took when non-LP point-based update was used (together with the standard
backup operator). Comparing the statistics with those for point-based update (Tables 1
and 2), we see that the number of standard updates is increased on all test problems and the
amount of time is also increased except for the �rst three problems. Here are the plausible
reasons. First, it is clear that non-LP point-based update does not improve a set of vectors
as much as point-based update. Consequently, it is less e�ective in reducing the number of
standard updates. Second, although it does not solve linear programs, non-LP point-based
update produces extraneous vectors. This means that it might need to deal with a large
number of vectors at later iterations and hence might not be as e�cient as point-based
update after all.

4x3CO Cheese 4x4 Paint Tiger Shuttle Network Aircraft

4 5 8 4 4 7 10 8
2.38 2.38 3.4 .75 .88 44 599 32,281

Table 5: Number of Standard DP Updates and Time That VI1 Took When Non-LP Point-
Based Update is Used.

Extraneous vectors can be pruned. As a matter of fact, we did prune vectors that are
pointwise-dominated by others (hence extraneous) in our experiments. This is inexpensive.
Pruning of other extraneous vectors, however, requires the solution of linear programs and
is expensive. In Zhang et al. (1999), we have discussed how this can be done the most
e�cient way. Still the results were not as good as those in Table 5. In that paper, we
have also explored the combination of non-LP point-based update with the MPI backup
operator. Once again, the results were not as good as those in Table 5. The reason is that
the MPI backup operator further compromises the quality of point-based update.

The quality of non-LP point-based update can be improved by using the Gauss-Seidel
asynchronous update (Denardo 1982). Suppose we are updating a set V. The idea is to,
after a vector is created by backup, add a copy of the vector to the set V right away. The
hope is to increase the components of later vectors. We have tested this idea when preparing
Zhang et al. (1999) and found that the costs almost always exceed the bene�ts. A reason
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is that asynchronous update introduces many more extraneous vectors than synchronous
update.

In conclusion, point-based is conceptually simple and clean. When compared to its more
complex variations, it seems to be the most e�ective in accelerating value iteration.

8. Related Work

Work presented in this paper has three levels: point-based DP update at the bottom, point-
based value iteration in the middle, and modi�ed value iteration at the top. In this section,
we discuss previous relevant work at each of the three levels.

8.1 Point-Based DP Update and Standard DP Update

As mentioned in Section 3.1, point-based update is closely related to several exact algo-
rithms for standard update, namely one-pass (Sondik 1971), linear-support (Cheng 1988),
and relaxed-region (Cheng 1988). They all backup on a �nite number of belief points.
The di�erence is that these exact algorithms generate the points systematically, which is
expensive, while point-based update generate the points heuristically.

There are several other exact algorithms for standard DP update. The enumera-
tion/reduction algorithms (Monahan 1982, Eagle 1984) and incremental pruning (Zhang
and Liu 1997, Cassandra et al. 1997) �rst generate a set of vectors that are not parsi-
monious and then prune extraneous vectors by solving linear programs. Point-based DP
update never generates extraneous vectors. It might generate duplicate vectors. However,
duplicates are pruned without solving linear programs. The witness algorithm (Kaelbling
et al. 1998) has two stages. In the �rst stage, it considers actions one by one. For each
action, it constructs a set of vectors based on a �nite number of systematically generated
belief points using an operator similar to the backup operator. In the second stage, vectors
for di�erent actions are pooled together and extraneous vectors are pruned.

There are proposals to carry out standard update approximately by dropping vectors
that are marginally useful (e.g., Kaelbling et al. 1998, Hansen 1998). Here is one idea
along this line that we have empirically evaluated. Recall that to achieve �-optimality, the
stopping threshold for the Bellman residual should be � = �(1� �)=2�. Our idea is to drop
marginally useful vectors at various stages of standard update while keeping the overall
error under �=2 and to stop when the Bellman residual falls below �=2. It is easy to see
that �-optimality is still guaranteed this way. We have also tried to start with a large error
tolerance in hope to prune more vectors and gradually decrease the tolerance level to �=2.
Reasonable improvements have been observed especially when one does not need quality
of policy to be high. However such approximate updates are much more expensive than
point-based updates. In the context of the modi�ed value iteration algorithm, they are
more suitable alternatives to standard updates than point-based update.

8.2 Point-Based Value Iteration and Value Function Approximation

Point-based value iteration starts with a set of vectors and generates a sequence of vector
sets by repeatedly applying point-based update. The last set can be used to approximate
the optimal value function.
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Various methods for approximating the optimal value function have been developed
previously.8 We will compare them against point-based value iteration along two dimen-
sions: (1) Whether they map one set of vectors to another, that is whether the can be
interleaved with standard updates, and (2) if they do, whether they can guarantee conver-
gence when interleaved with standard updates.

Lovejoy (1993) proposes to approximate the optimal value function V � of a POMDP
using the optimal value function of the underlying Markov decision process (MDP). The
latter is a function over the state space. So V � is being approximated by one vector.
Littman et al. (1995b) extend this idea and approximate V � using jAj vectors, each of
which corresponds to a Q-function of the underlying MDP. A further extension is recently
introduced by Zubek and Dietterich (2000). Their idea is to base the approximation not on
the underlying MDP, rather on a so-called even-odd POMDP that is identical to the original
POMDP except that the state is fully observable at even time steps. Platzman (1980)
suggests approximating V � using the value functions of one or more �xed suboptimal policies
that are constructed heuristically. Those methods do not start with a set of vectors and
hence do not map a set of vectors to another. However, they can easily be adapted to do so.
However, they all put a predetermined limit on the number of output vectors. Consequently,
convergence is not guaranteed when they are interleaved with standard updates.

Fast informed bound (Hauskrecht 1997a), Q-function curve �tting (Littman et al. 1995b),
and softmax curve �tting (Parr and Russell 1995) do map a set of vectors to another. How-
ever, they di�er drastically from point-based value iteration and from each other in their
ways of deriving the next set of vectors from the current one. Regardless of the size of the
current set, fast informed bound and Q-function curve �tting always produces jAj vectors,
one for each action. In softmax curve �tting, the number of vectors is also determined a
priori, although it is not necessarily related to the number of actions. Those methods can be
interleaved with standard DP updates. Unlike point-based value iteration, they themselves
may not converge (Hauskrecht 2000). Even in cases where they do converge themselves,
the algorithms resulting from interleaving them with standard updates do not necessarily
converge due to the a priori limits on the number of vectors.

Grid-based interpolation/extrapolation methods (Lovejoy 1991, Brafman 1997, Hauskrecht
1997b) approximate value functions by discretizing the belief space using a �xed or variable
grid and by maintaining values only for the grid points. Values at non-grid points are es-
timated by interpolation/extrapolation when needed. Such methods cannot be interleaved
with standard DP updates because they do not work with sets of vectors.

There are grid-based methods that work with sets of vectors. Lovejoy's method to lower
bound the optimal value function (Lovejoy 1991), for instance, falls into this category. This
method is actually identical to point-based value iteration except for the way it derives the
next set of vectors from the current one. Instead of using point-based update, it backs up on
grid points in a regular grid. Convergence of this method is not guaranteed. The algorithm
resulting from interleaving it with standard updates may not converge either.

8. Hauskrecht (2000) has conducted an extensive survey on previous value function approximation methods
and has empirically compared them in terms of, among other criteria, complexity and quality. It would
be interesting to also include point-based value iteration in the empirical comparison. This is not done
in the present paper because our focus is on using point-based value iteration to speed value iteration,
rather than using as a value function approximation method.
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The incremental linear-function method (Hauskrecht 2000) roughly corresponds to a
variation of point-based value iteration that uses non-LP point-based update (Section 7.2)
augmented with the Gauss-Seidel asynchronous update. The method does not have access to
witness point. So it starts, for the purpose of backup, with extreme points of the belief space
and supplement them with projected points. This choice of points appears poor because it
leads to a large number of vectors and consequently the backup process is \usually stopped
well before" convergence (Hauskrecht 2000).

8.3 Previous Work Related to Modi�ed Value Iteration

The basic idea of our modi�ed value iteration algorithm VI1 is to add, in between two
consecutive standard updates, operations that are inexpensive. The hope is that those
operations can signi�cantly improve the quality of a vector set and hence reduce the number
of standard updates.

Several previous algorithms work in the same fashion. The di�erences lie in the oper-
ations that are inserted between standard updates. The reward revision algorithm (White
et al. 1989) constructs, at each iteration, a second POMDP based on the current set of
vectors. It runs value iteration on the second POMDP for a predetermined number of steps.
The output is used to modify the current set of vectors and the resulting set of vectors is
fed to the next standard update.

Why is reward revision expected to speed up value iteration? Let V be the value function
represented by the current set of vectors. The second POMDP is constructed in such way
that it shares the same optimal value function as the original POMDP if V is optimal.
As such, one would expect the two POMDPs to have similar optimal value functions if V
is close to optimal. Consequently, running value iteration on the second POMDP should
improve the current value function. And it is inexpensive to do so because the second
POMDP is fully observable.

Reward revision is conceptually much more complex than VI1 and seems to be less
e�cient. According to White et al. (1989), reward revision can, on average, reduce the
number of standard updates by 80% and computational time by 85%. From Tables 1 and
2, we see that the di�erences between VI1 and VI are much larger.

The iterative discretization procedure (IDP) proposed by Cheng (1988) is very similar to
VI1. There are two main di�erences. While VI1 uses point-based update, IDP uses non-LP
point-based update. While point-based update in VI1 backs up on witness points and belief
points found by linear programs, non-LP point-based update in IDP backs up on extreme
points of witness regions found as by-products by Cheng's linear-support or relaxed region
algorithms.

Cheng has conducted extensive experiments to determine the e�ectiveness of IDP in
accelerating value iteration. It was found that IDP can cut the number of standard updates
by as much as 55% and the amount of time by as much as 80%. Those are much less
signi�cant than the reductions presented in Tables 1 and 2.

Hansen's policy iteration (PI) algorithm maintains a policy in the form of a �nite-state
controller. Each node in the controller represents a vector. At each iteration, a standard
update is performed on the set of vectors represented in the current policy. The resulting
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set of vectors is used to improve the current policy9 and the improved policy is evaluated
by solving a system of linear equations. This gives rise to a third set of vectors, which is
fed to the next standard update.

We compared the performance of Hansen's PI algorithm to VI1. Table 6 shows, for each
test problem, the number of standard updates and the amount of time the algorithm took.
Comparing with the statistics for VI1 (Table 4), we see that PI performed more standard
updates than VI1. This indicates that policy improvement/evaluation is less e�ective than
point-based value iteration in cutting down the number of standard updates. In terms of
time, PI is more e�cient than VI1 on the �rst three problems but signi�cantly less e�cient
on all other problems.

4x3CO Cheese 4x4 Paint Tiger Shuttle Network Aircraft

3 7 7 10 14 9 18 9
.14 .87 3.4 3.8 4.5 60 1,109 66,964

Table 6: Number of Standard Updates and Time That PI Took to Compute 0.01-Optimal
Policies.

It might be possible to combine VI1 and PI. To be more speci�c, one can probably
insert a policy improvement/evaluation step between two point-based updates in point-
based value iteration (Figure 2). This should accelerate point-based value iteration and
hence VI1. This possibility and its bene�ts are yet to be investigated.

9. Conclusions and Future Directions

Value iteration is a popular algorithm for �nding �-optimal policies for POMDPs. It typ-
ically performs a large number of DP updates before convergence and DP updates are
notoriously expensive. In this paper, we have developed a technique called point-based DP
update for reducing the number of standard DP updates. The technique is conceptually
simple and clean. It can easily be incorporated into most existing POMDP value itera-
tion algorithms. Empirical studies have shown that point-based DP update can drastically
cut down the number of standard DP updates and hence signi�cantly speeding up value
iteration. Moreover, point-based DP update compares favorably with its more complex
variations that we can think also. It also compares favorably with policy iteration.

The algorithm presented this paper still requires standard DP updates. This limits its
capability of solving large POMDPs. One future direction is to investigate the properties
of point-based value iteration as an approximation algorithm by itself. Another direction is
to design e�cient algorithms for standard DP updates in special models. We are currently
exploring the latter direction.

9. In Hansen's writings, policy improvement includes DP update as a substep. Here DP update is not
considered part of policy improvement.
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