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Abstract

In order to generate plans for agents with multiple actuators, agent teams, or dis-
tributed controllers, we must be able to represent and plan using concurrent actions with
interacting e�ects. This has historically been considered a challenging task requiring a
temporal planner with the ability to reason explicitly about time. We show that with
simple modi�cations, the STRIPS action representation language can be used to represent
interacting actions. Moreover, algorithms for partial-order planning require only small
modi�cations in order to be applied in such multiagent domains. We demonstrate this fact
by developing a sound and complete partial-order planner for planning with concurrent in-
teracting actions, POMP, that extends existing partial-order planners in a straightforward
way. These results open the way to the use of partial-order planners for the centralized
control of cooperative multiagent systems.

1. Introduction

In order to construct plans for agents with multiple actuators (such as multi-armed robots),
agent teams, or controllers distributed throughout an environment, we must be able to
model the e�ects and interactions of multiple actions executed concurrently, and gen-
erate plans that take these interactions into account. A viable solution to the basic
multiagent/multi-actuator planning (MAP) problem must include economical action de-
scriptions that are convenient to specify and are easily manipulable by planning algorithms,
as well as planning methods that can deal with the interactions generally associated with
concurrent actions.

Surprisingly, despite the interest in multiagent applications|for instance, in robotics
(Donald, Jennings, & Rus, 1993; Khatib, Yokoi, Chang, Ruspini, Holmberg, Casal, &
Baader, 1996) and distributed AI (e.g., see the various proceedings of the International
Conference on Multiagent Systems)|and the large body of work on distributed multiagent
planning, very little research addresses this basic problem of planning in the context of
concurrent interacting actions. Researchers in distributed AI have considered many central
issues in multiagent planning and multiagent interaction, but much existing research is
concerned mainly with problems stemming from the distributed nature of such systems,
such as task decomposition and resource allocation (Durfee & Lesser, 1989; Wilkins &
Myers, 1998; Stone & Veloso, 1999), obtaining local plans that combine to form global plans
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(Durfee & Lesser, 1991; Ephrati, Pollack, & Rosenschein, 1995), minimizing communication
needs (Wolverton & des Jardins, 1998; Donald et al., 1993), and so on. As opposed to this
form of distributed planning, our focus in this paper is on centralized planning for agent
teams (or distributed actuators).

Representation of concurrent actions has been dealt with by various researchers in the
knowledge-representation community (e.g., Lin & Shoham, 1992; Reiter, 1996; de Giacomo,
L�esperance, & Levesque, 1997; Moses & Tennenholtz, 1995; Pinto, 1998). Of particular
note are the action languages Ac (Baral & Gelfond, 1997) and C (Giunchiglia & Lifschitz,
1998) which enable the speci�cation of concurrent interacting actions and employ a non-
monotonic override mechanism to deduce the e�ects of a set of actions with con
icting
e�ects. Finally, a number of contemporary planners can handle concurrent noninteracting
actions to a certain degree|examples include Graphplan (Blum & Furst, 1995), and IPP
(Koehler, 1998), which extends Graphplan to handle resource constraints, and more recently
OBDD-based planners such as MBP (Cimatti, Giunchiglia, Giunchiglia, & Traverso, 1997)
and UMOP (Jensen & Veloso, 2000)|while Knoblock (1994) provides a good discussion of
the issue of parallelizing serial plans.

Despite these advances, one often sees in the planning community suggestions that
temporal planners are required to adequately deal with concurrent interacting actions. For
example, in his discussion of parallel execution plans, Knoblock (1994) asserts:

To handle these cases [of interacting actions] requires the introduction of an
explicit representation of time, such as that provided in temporal planning sys-
tems.

A similar perspective seems implicit in the work on parallel action execution presented by
Lingard and Richards (1998). Certainly time plays a role in planning|in any planner the
idea that sequences of actions occur embodies an implicit notion of time. However, we
disagree that time in centralized multiagent planning must be dealt with in a more explicit
fashion than in single-agent planning. The main aim of this paper is to demonstrate that the
MAP problem can be solved using very simple extensions to existing (single-agent) planners
like UCPOP (Penberthy & Weld, 1992). We provide a representation and MAP algorithm
that requires no explicit representation of time. This is not to deny that explicit temporal
representations are useful in planning|for many problems these may be necessary|but
we do not think this is the key bottleneck in planning the activities of multiagent teams.
Speci�cally, we view temporal issues to be orthogonal to the main concerns facing multiagent
planning.

The central issue in multiagent planning lies in the fact that individual agent actions
do interact. Sometimes planning is hindered as a result of action interaction: action X of
agent 1 might destroy the intended e�ect of action Y of agent 2 if executed concurrently. For
example, in a half-duplex communication line, we cannot allow simultaneous transmission
of messages from both sides. In such a case, a planning algorithm has to make sure that
X and Y are not executed at the same time. More interesting is the fact that planning
often bene�ts as a result of action interaction: action X of agent 1 might only achieve an
intended e�ect if agent 2 performs action Y concurrently. For example, opening a typical
door requires two simultaneous actions: turning the knob and pushing the door. In military
activities, di�erent units may have to coordinate their actions in order to be e�ective (e.g.,
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turn on engines or lights simultaneously, or attack at the same time). Similar situations
arise in a variety of domains. In such cases, a planning algorithm has to ensure that the
appropriate actions are executed at the same time. An action representation that makes
these interactions explicit and a planning algorithm that can, as result of these interactions,
prescribe that certain actions must or must not be executed concurrently are some of the
main features of any multiagent planner. Temporal representations may play a role in the
scheduling of such actions, but are not strictly necessary for reasoning about the e�ects of
interaction (or lack thereof).

To illustrate some of these issues, consider the following example which will be discussed
in detail later in the paper: two agents must move a large set of blocks from one room to
another. While they could pick up each block separately, a better solution would be to use
an existing table in the following manner. First, the agents put all blocks on the table,
then they each lift one side of the table. However, they must lift the table simultaneously;
otherwise, if only one side of the table is lifted, all the blocks will fall o�. Having lifted
the table, they must move it to the other room. There they put the table down. In fact,
depending on the precise goal and e�ects of actions, it may be better for one agent to drop
its side of the table, causing all of the blocks to slide o� at once. Notice how generating
this plan requires the agents to coordinate in two di�erent ways: �rst, they must lift the
table together so that the blocks do not fall; later, one of them (and only one) must drop
its side of the table to let the blocks fall.

Since the actions of distinct agents interact, we cannot, in general, specify the e�ects of
an individual's actions without taking into account what other actions might be performed
by other agents at the same time. That truly concurrent actions are often desirable precludes
the oft-used trick of \interleaving semantics" (Reiter, 1996; de Giacomo et al., 1997). Agents
lifting a table on which there are a number of items must do so simultaneously or risk the
items sliding from the table, perhaps causing damage. Interleaving individual \lift my side
of table" actions will not do.

One way to handle action interactions is to specify the e�ects of all joint actions directly.
More speci�cally, let Ai be the set of actions available to agent i (assuming n agents labeled
1 : : :n), and let the joint action space be A1�A2� � � ��An. We treat each element of this
space as a separate action, and specify its e�ects using our favorite action representation.1

The main advantage of this reduction scheme is that the resulting planning problem can
be tackled using any standard planning algorithm. However, it has some serious drawbacks
with respect to ease of representation. First, the number of joint actions increases expo-
nentially with the number of agents. This has severe implications for the speci�cation and
planning process. Second, this reduction fails to exploit the fact that a substantial frac-
tion of the individual actions may not interact at all, or at least not interact under certain
conditions. We would like a representation of actions in multiagent/multi-actuator settings
that exploits the independence of individual action e�ects to whatever extent possible. For
instance, while the lift actions of the two agents may interact, many other actions will not
(e.g., one agent lifting the table and another picking up a block). Hence, we do not need

1. Our discussion will center on the STRIPS action representation, but similar considerations apply to other
representations such as the situation calculus (McCarthy & Hayes, 1969; Reiter, 1991) and dynamic Bayes
nets (Dean & Kanazawa, 1989; Boutilier & Goldszmidt, 1996).
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to explicitly consider all combinations of these actions, and can specify certain individual
e�ects separately, combining the e�ects \as needed."

Joint actions also cause problems for the planning process itself: their use in the context
of most planners forces what seems to be an excessive degree of commitment. Whenever
the individual action of some agent can accomplish a desired e�ect, we must insert into our
plan a joint action, thereby committing all other agents to speci�c actions to be executed
concurrently, even though the actual choices may be irrelevant. For these reasons, we desire
a more \distributed" representation of actions.

We are therefore faced with the following two problems:

1. The representation problem: how do we naturally and concisely represent interactions
among concurrently executed actions.

2. The planning problem: how do we plan in the context of such a representation.

In this paper, we show how the STRIPS action representation can be augmented to
handle concurrent interacting actions and how existing nonlinear planners can be adapted
to handle such actions. In fact, it might come as a surprise that solving both problems
requires only a small number of changes to existing nonlinear planners, such as UCPOP
(Penberthy & Weld, 1992).2 The main addition to the STRIPS representation for action a

is a concurrent action list: this describes restrictions on the actions that can (or cannot) be
executed concurrently in order for a to have the speci�ed e�ect (indeed, a can have a number
of di�erent conditional e�ects depending on which concurrent actions are applied). In order
to handle this richer language, we must make a number of modi�cations to \standard"
partial-order planners: (a) we add equality (respectively, inequality) constraints on action
orderings to enforce concurrency (respectively, nonconcurrency) constraints; and (b) we
expand the de�nition of threats to cover concurrent actions that could prevent an intended
action e�ect.

We emphasize that we deal with the problem of planning the activities of multiple agents
or agents with multiple actuators in a centralized fashion, as opposed to distributed plan-
ning. Our model assumes that one has available a central controller that can decide on an
appropriate joint plan and communicate this plan to individual agents (or actuators). While
distributed planning is an important and di�cult problem, it is not the problem addressed
in this work. We also assume that some mechanism is available by which individual agents
can ensure that the execution of their concurrent plans are synchronized. Again, while an
issue of signi�cance and subtlety, it is not a task we consider in this paper.

We note that planning with parallel actions has been addressed in some detail by Lingard
and Richards (1998). Speci�cally, they provide a very general framework for understanding
constraint-posting, least-commitment planners that allow for concurrent action execution.
However, as mentioned above, their work takes an explicit temporal view of the problem
and focuses primarily on issues having to do with action duration. Furthermore, while
multiagent planning could presumably be made to �t within their model, this seems not
to be their main motivation. In fact, the planning algorithms they discuss deal with the
issue of ensuring that parallel actions do not have negative synergistic e�ects, and explicitly

2. Moreover, other planning algorithms (e.g., Blum & Furst, 1995; Kautz & Selman, 1996) should prove
amenable to extension to planning with concurrent interacting actions using similar ideas.
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exclude the possibility of positive synergy. In our work, we abstract away from the temporal
component and focus precisely on planning in the presence of such synergies, both positive
and negative.

In the following section we describe our STRIPS-style representation for concurrent,
interacting actions and multiagent plans. In Section 3 we describe the Partial-Order Multi-
agent Planning algorithm (POMP), a modi�ed version of the UCPOP algorithm that can be
used to generate plans for multiagent teams or multiactuator devices. Section 4 illustrates
the POMP algorithm on an extended example. In Section 5 we discuss the soundness and
completeness of the POMP algorithm. We conclude in Section 6 with a discussion of some
issues raised by this work.

2. Representing Concurrent Actions and Plans

We begin by considering the representation of concurrent actions and partially ordered plans
using a simple extension of traditional planning representations. We �rst describe a stan-
dard action representation based on the STRIPS model, speci�cally that used by UCPOP

(Penberthy & Weld, 1992). We then describe the extension of this representation to repre-
sent concurrent interacting actions and its semantics, and �nally describe the representation
and semantics of partially ordered multiagent plans.

2.1 The STRIPS Action Representation

Variants of the STRIPS action representation language (Fikes & Nilsson, 1971) have been
employed in many planning systems. We assume a �nite set of predicates and domain
objects (generally typed) that characterize the domain in question. States of this system
are truth assignments to ground atomic formulae of this language. A state is represented
as a set (or conjunction) of those ground atoms true in that state, such as

fOnTable(B1);Holding(A;B2)g

thus embodying the closed world assumption (Reiter, 1978). Actions induce state transitions
and can be viewed as partial mappings from states to states. An action A is represented
using a precondition and an e�ect, each a conjunction of literals (sometimes referred to
as the precondition or e�ect list). If a state does not satisfy the conjunction of literals
in the precondition list, the e�ect of applying the action is unde�ned. Otherwise, the
state resulting from performing action A is determined by deleting from the current state
description all negative literals appearing in the e�ect list of A and adding all positive
literals appearing in the e�ect list.

As an example, the action of picking up a particular block B from the 
oor is described
in Figure 1, using the usual LISP-style notation of many planning systems. This action can
be executed when the agent's hand is empty and block B is clear and on the 
oor. After
the action is executed, the agent's hand is no longer empty (it holds B), and B is not on
the 
oor.

Since the action of picking up a block from a location is essentially the same, regardless
of the particular block and location, a whole class of such actions can be described using an
action schema or operator with free variables denoting the object to be picked up and the
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(define (action pickup-block-B-from-floor)

:precondition (and (on floor B) (handempty) (clear B))

:effect (and (not (handempty)) (not (on floor B)) (holding B))))

Figure 1: The Pickup-block-B-from-
oor action

(define (operator pickup)

:parameters (?x ?y)

:precondition (and (on ?x ?y) (handempty) (clear ?x) (not (= ?x ?y)))

:effect (and (not (handempty)) (not (on ?x ?y)) (holding ?x))))

Figure 2: The Pickup action schema

pickup location. An action schema speci�cation is similar to the speci�cation of a single
action except for the use of free variables. The precondition list of an action schema can
contain, along with predicates (or more precisely, proposition \schemata"), equality and
inequality constraints on the variables.

Figure 2 illustrates an action schema for the pickup action. It has two variables, ?x and
?y, which stand for the object being picked up and the location of the object, respectively.
The precondition list includes the requirements that ?x be on ?y, that the hand is empty,
that ?x is clear, and that ?x and ?y designate di�erent objects (i.e., one cannot pickup an
object from atop itself).

The STRIPS representation can be enhanced, obtaining a more expressive language that
allows for a form of universal quanti�cation in the action description (e.g., as in UCPOP

Penberthy & Weld, 1992). In addition, conditional e�ects can be captured using a when
clause consisting of an antecedent and a consequent. The semantics of the action description
is similar to the original semantics except that in states s that satisfy the preconditions of
the action and the antecedent of the when clause, the actual e�ect of the action is the union
of the \standard" e�ect speci�ed in the e�ect list and the consequent of the when clause.

The when clause does not change the expressiveness of the language|each conditional
action description can be expressed using separate non-conditional actions in the classic
STRIPS representation to capture each when clause. However, it allows for a more econom-
ical and natural speci�cation of actions. For example, in the classic STRIPS blocks world,
after putting some block B1 on a destination block B2, block B2 is no longer clear. However,
after putting B1 on the table, the table remains clear. Hence, a di�erent putdown schema is
required to describe moving a block to the table. Using a when clause, we can use a single
schema with a conditional e�ect that modi�es the standard e�ect of the action in case the
destination is not the table (i.e., the when clause will state that when the destination is not
the table, it will become unclear). In addition, conditional e�ects may allow us to postpone
commitment during planning (e.g., we may decide to put a block down, but we don't have
to commit to whether the destination is the table or not).

2.2 Representing Concurrent Actions in STRIPS

The introduction of concurrent interacting actions requires us to address two issues speci�c
to the multiagent setting: who is performing the action, and what other actions are being
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(define (operator pickup)

:parameters (?a1 ?x ?y)

:precondition (and (on ?x ?y)(handempty ?a1) (clear ?x)(not (= ?x ?y)))

:concurrent (not (and (pickup ?a2 ?x ?y) (not (= ?a1 ?a2))))

:effect (and (not (handempty ?a1)) (not (on ?x ?y)) (holding ?a1 ?x)))

Figure 3: The multiagent Pickup schema

performed at the same time. First, we deal with the identity of the performing agent by
introducing an agent variable to each action schema. When the schema is instantiated, this
variable is bound to a constant denoting the particular agent that is carrying out the action.
Second, we must take into account the fact that for an action to have a particular e�ect,
certain actions may or may not be performed concurrently. We capture such constraints by
adding a concurrent action list to the existing precondition and e�ect lists in the speci�ca-
tion of an action. The concurrent action list is a list of action schemata and negated action
schemata, some of which can be partially instantiated. If an action schema A0 appears in
the concurrent action list of an action A then an instance of schema A0 must be performed
concurrently with action A in order to have the intended e�ect. If an action schema A0

appears negated in the concurrent action list of an action A then no instance of schema A0

can be performed concurrently with action A if A is to have the prescribed e�ect.
The concurrent action list is similar to the precondition list in the following sense:

when the constraints it speci�es on the environment in which the action is performed are
satis�ed, the action will have the e�ects speci�ed in the e�ect list. Notice that positive
action schemata are implicitly existentially quanti�ed|one instance of that schema must
occur concurrently|whereas negated action schema are implicitly universally quanti�ed|
no instance of this schema should be performed concurrently.

A schema A0 appearing in the concurrent action list of schema A can be partially instan-
tiated or constrained: if A0 contains free variables appearing in the parameter list of A, then
these variables must be instantiated as they are instantiated in A. In addition, constraints
that restrict the possible instantiations of the schema A can appear within the concurrent
action list. This can be seen in the description of the multiagent setting version of the action
pickup shown in Figure 3. The multiagent pickup schema has an additional parameter, ?a1,
signifying the performing agent. Its list of preconditions and e�ects is similar to that of the
single-agent pickup schema, but it also has the concurrent action list:

(not (and (pickup ?a2 ?x ?y) (not (= ?a1 ?a2))))

The \not" pre�x restricts the set of actions that can be performed concurrently with any
instance of the schema Pickup(?a1; ?x; ?y). In particular, we disallow concurrent execution
of any instance of the schema Pickup(?a2; ?x; ?y) such that ?a2 is di�erent from ?a1. That
is, no other agent should attempt to pickup the object ?x at the same time.

Using this representation, we can represent actions whose e�ects are modi�ed by the
concurrent execution of other actions. For example, suppose that when agent a1 lifts up
one side of a table all blocks on it are dumped onto the 
oor as long as no other agent
a2 lifts the other side; but if some agent a2 does lift the other side of the table then the
e�ect is simply to raise the side of the table. Clearly, we can distinguish between these two
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(define (operator lower)

:parameters (?a1 ?s1)

:precondition (and (holding ?a1 ?s1) (raised ?s1))

:effect (and (not (raised ?s1))

(forall ?x

(when ((ontable ?x)

(not (and (lower ?a2 ?s2)(not (= ?s1 ?s2)))))

(and (onfloor ?x) (not (ontable ?x)))))))

Figure 4: The Lower action schema

cases using the concurrency conditions (not (lift ?a2 ?side)) and (lift ?a2 ?side).
However, treating them as standard concurrency conditions essentially splits the action into
two separate actions with similar e�ects. As in single-agent representations, we can treat
such \modi�ers" using a when clause; but now, the antecedent of the when clause has two
parts: a list of additional preconditions and a list of additional concurrency conditions. The
general form of the when clause is now (when antecedent effect), where the antecedent
itself consists of two parts: (preconditions concurrency-constraints). The latter list
has the same form as that of the concurrent-action list, and similar semantics. Thus,
whenever the precondition part of the antecedent is satis�ed in the current state and the
concurrency condition is satis�ed by the actions executed concurrently, the actual e�ect of
the action is obtained by conjoining the standard e�ect with the consequent of the when
clause.

The syntax of when clauses is illustrated in the table-lowering action described in Fig-
ure 4. Notice that this operator contains a universally quanti�ed e�ect, that is, an e�ect
of the form (forall ?x (effect ?x)). This allows us to state that the conditional e�ect,
described by the when clause, applies to any object ?x that satis�es its precondition (e.g., to
every object on the table in this case). The use of universally quanti�ed conditional e�ects
in �nite domains is well understood (see Weld's (1994) discussion). However, to simplify
our presentation, we do not treat it formally in this paper.

When we lower one side of the table, that side is no longer raised. In addition, if there
is some object on the table, then lowering one side of the table will cause that object to fall,
as long as the other side of the table is not being lowered at the same time. Here, we use
universal quanti�cation to describe the fact that this will happen to any object that is on
the table. Notice that in the concurrent part of the antecedent we see a constrained schema
again. It stipulates that the additional e�ect (i.e., the objects falling to the 
oor from the
table) will occur if no instance of the schema lower(?a2; ?s2) is executed concurrently, where
?s1 is di�erent than ?s2.3

An action description can have no when clause, one when clause, or multiple when
clauses. In the latter case, the preconditions of all the when clauses must be disjoint.4

One might insist that the set of when clauses be exhaustive as well; however, we do not

3. In certain cases we might also insist that ?a1 6=?a2, if agents can perform only one action at a time.
But an agent with multiple e�ectors (to take one example) might be able to lower one or both sides
concurrently. See below for more on this.

4. In the case of multiple clauses, the disjointness restriction can be relaxed if the e�ects are independent,
much like in a Bayes net action description (Boutilier & Goldszmidt, 1996).
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require this. If no when clause is satis�ed when an action is performed, we assume that the
\additional" e�ect is null; that is, the e�ect of the action is simply that given by the main
e�ect list. When we discuss the when clauses of a speci�c action in our formal de�nitions
below, we will generally assume the existence of an implicit when clause whose precondition
consists of the negation of preconditions of the explicitly speci�ed when clauses, and whose
e�ect list is empty. This allows our de�nitions to be stated more concisely.5

2.3 The Semantics of Concurrent Action Speci�cations

The semantics of individual actions is, of course, di�erent in our multiagent setting than in
the single-agent case. It is not individual actions that transform one state of the world into
another state of the world. Rather it is joint actions that de�ne state transitions. Joint
actions describe the set of individual actions (some of which could be no-ops) performed by
each of the agents; that is, they are n-tuples of individual actions.

Given a joint action a = ha1; � � � ; ani, we refer to the individual actions ai as the elements
of a. We say that the concurrent action list of an element ai of a is satis�ed with respect
to a just when, for every positive schema A in this list, a contains some element aj(j 6= i)
which is an instance of A, and for every negative schema A0 in the list, none of the elements
aj (1 � j � n) is an instance of A0. Ignoring for the moment the existence of when clauses,
we can de�ne the notion of joint action consistency in a straightforward manner:

De�nition Let a = ha1; � � � ; ani be a joint action where no individual action ai contains a
when clause. We say a is consistent if

� The precondition lists pi of each ai are jointly (logically) consistent (i.e., they do
not contain a proposition and its negation).

� The e�ect lists ei of each ai are jointly consistent.

� The concurrent action list of each element of a is satis�ed w.r.t. a.

Given a state s, a consistent joint action a = ha1; � � � ; ani can be executed in s if the
precondition lists of all elements of a are satis�ed in s. The resulting state t is obtained by
taking the union of the e�ect lists of each of the elements of a and applying it to s, as in
the single-agent case. In fact, a consistent joint action a can be viewed as a single-agent
action whose preconditions are the union of the preconditions of the various ai and whose
e�ects are the union of the e�ects of the ai.

Notice that under this semantics, a joint action is inconsistent if some individual action
a causes Q to be true, and another b causes Q to be false. It is the responsibility of the
axiomatizer of the planning domain to recognize such con
icts and either state the true
e�ect when a and b are performed concurrently (by imposing conditional e�ects with con-
current action conditions) or to disallow concurrent execution (by imposing nonconcurrency
conditions).6

5. We do not assume that such a clause is ever explicitly constructed for planning purposes|it is merely a
conceptual device.

6. One can easily preprocess actions descriptions in order to check for consistency. If actions a and b are
discovered to have con
icting e�ects, but the speci�cation allows them to be executed concurrently,
an algorithm could automatically add a nonconcurrency constraint to each action description, thus
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With when clauses the de�nition of consistency is a bit more involved. Consistent joint
actions without when clauses can be applied consistently at all possible states (if they are
applicable at all). In contrast, joint actions with when clauses may be consistent when
applied at some states, but inconsistent at others. Given a joint action a = ha1; � � � ; ani
and a speci�c state s, exactly one when clause of each action ai will be satis�ed; that is,
just one clause will have its preconditions and concurrency constraints satis�ed.7 Thus the
joint action and the state together determine which conditional e�ects are selected.

De�nition Given a joint action a = ha1; � � � ; ani and state s, the active when clause wi of
ai relative to s and a is the (unique) when clause that is satis�ed by s and a (i.e.,
whose preconditions are satis�ed by s and whose concurrency constraints are satis�ed
by a).

We thus relativize the notion of consistency in this case.

De�nition Let a = ha1; � � � ; ani be a joint action (where individual actions ai may contain
when clauses). Let s be some state, let wi be the active when clause for ai (w.r.t. s,
a), and let wi have preconditions wpi, concurrency constraints wci, and e�ects wei.
We say a is consistent at state s if:

� The precondition lists pi and active when-preconditions wpi of each ai are mu-
tually consistent.

� The e�ect lists ei and active when-e�ects wei of each ai are mutually consistent.

� The concurrent action list of each element of a is satis�ed w.r.t. a.

Note that we do not require that the concurrent action lists in the when clauses be satis�ed,
since they are \selected" by a. Note also that this de�nition reduces to the \whenless"
de�nition if the individual actions have no when clauses|an action is consistent with respect
to s i� it is consistent in the original sense.

Given a state s, a joint action a = ha1; � � � ; ani (involving when clauses) that is consistent
with respect to s can be executed in s if the precondition lists of all elements of a are satis�ed
in s. The resulting state t is obtained by taking the union of the e�ect lists of each of the
elements of a, together with the e�ect lists of each of the active when clauses, and applying
it to s.

Several interesting issues arise in the speci�cation of actions for multiple agents. First,
we assume throughout the rest of the paper that each agent can perform only one action
at a time, so any possible concurrent actions must be performed by distinct agents. This
allows our action descriptions to be simpler than they otherwise might. When a single
agent can perform more than one action at a time, it can be captured using a group of
\agents" denoting its di�erent actuators. If these agents can only perform certain actions

preventing problems from arising during the planning process. This would be valid only if a and b could
not, in fact, be (meaningfully) performed concurrently. If they can, then it is important that the domain
axiomatizer specify what the true interacting e�ect is (e.g., maybe action a dominates). We note that
this automatic inconsistency detection and repair admits a certain additional degree of convenience in
domain speci�cation.

7. We assume an implicit when clause corresponding to the negation of explicitly stated clauses as described
above.
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concurrently, this can be captured by adding extra concurrency constraints. More generally,
di�erent agents may have di�erent capabilities, and it would be useful to have the ability
to explicitly specify these capabilities in the form of constraints on the types of actions that
di�erent agents can execute. One way to handle such constraints is via a preprocessing
step that augments the action descriptions with additional preconditions or concurrency
conditions that capture these constraints. An alternative is to alter the planning algorithm
to take such constraints into account explicitly. When these are simple constraints|for
instance, the fact that there are n agents might imply that only n actions can be executed
concurrently|this can be done in a simple and e�cient manner. This is the approach
we take in the planning algorithm we develop in Section 3. However, when the capability
constraints are complex, the former method seems better.

Another issue that must be addressed is the precise e�ect of a joint action, one of
whose individual actions negates some precondition of a concurrently executed individual
action. We make no special allowances for this, simply retaining the semantics described
above. While this does not complicate the de�nition of joint actions, we note that some
such combinations may not make sense. For example, the concurrent writing of variable p
to q and variable q to p in a computer program might be seen as each action destroying
the preconditions of the other; yet the net e�ect of the individual actions is simply a swap
of values. Hence, in certain circumstances, it may be acceptable to describe the actions
this way, and in others this may not be the true e�ect of the joint action. Again, we can
treat this issue in several ways: we can allow the speci�cation of such actions and design
the planner so that it excludes such combinations when forming concurrent plans unless an
explicit concurrency condition is given (this means the axiomatizer need not think about
such interactions); or we can allow such combinations, in general, but explicitly exclude
problematic cases by adding nonconcurrency constraints.

Finally, an undesirable (though theoretically unproblematic) situation can arise if we
provide \incongruous" concurrency lists. For example, we may require action a to be concur-
rent with b in order to have a particular e�ect, while b may be required to be nonconcurrent
with a (this can span a set of actions with more than two elements, naturally). Hence, a and
b cannot occur together in a consistent joint action, and we would not be able to achieve
the intended e�ect of a. Although the planner will eventually \recognize" this fact, such
speci�cations can lead to unnecessary backtracking during the planning process. Again,
this is something that is easily detected by a preprocessor, and we will generally assume
that concurrency lists are congruous.

2.4 Concurrent Plan Representation

Before moving on to discuss the planning process, we describe our representation for multi-
agent plans, which is a rather straightforward extension of standard single-agent, partially
ordered plan representations. A (single-agent) nonlinear plan consists of: (1) a set of action
instances; (2) various strict ordering constraints using the relations < and > on the order-
ing of these actions; and (3) codesignation and non-codesignation constraints on the values
of variables appearing in these actions, forcing them to have the same or di�erent values,
respectively (Weld, 1994; Penberthy & Weld, 1992). A plan of this sort represents its set of
possible linearizations, the set of totally ordered plans formed from its action instances that
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do not violate any of the ordering, codesignation, and non-codesignation constraints.8 We
say a plan is consistent if it has some linearization. The set of linearizations can be seen as
the \semantics" of a nonlinear plan in some sense. A (consistent) nonlinear plan satis�es a
goal set G, given starting state s, if any linearization is guaranteed to satisfy G.

A concurrent nonlinear plan for n agents (labeled 1; : : :n) is similar: it consists of a set
of action instances (with agent arguments, though not necessarily instantiated) together
with a set of arbitrary ordering constraints over the actions (i.e., <;>;= and 6=) and the
usual codesignation and non-codesignation constraints. Unlike single-agent nonlinear plans,
we allow equality and inequality ordering constraints so that concurrent or nonconcurrent
execution of a pair of actions can be imposed. Our semantics must allow for the concurrent
execution of actions by our n agents. To this end we extend the notion of a linearization:

De�nition Let P be a concurrent nonlinear plan for agents 1; : : :n. An n-linearization of
P is a sequence of joint actions A1; � � �Ak for agents 1; : : :n such that

1. each individual action instance in P is a member of exactly one joint action Ai;

2. no individual action occurs in A1; � � �Ak other than those in P , or individual
No-op actions;

3. the codesignation and non-codesignation constraints in P are respected; and

4. the ordering constraints in P are respected. More precisely, for any individual
action instances a and b in P , and joint actions Aj and Ak in which a and b

occur, any ordering constraints between a and b are true of Aj and Ak ; that is,
if af<;>;=; 6=gb, then jf<;>;=; 6=gk.

In other words, the actions in P are arranged in a set of joint actions such that the ordering
of individual actions satis�es the constraints, and \synchronization" is ensured by no-ops.
Note that if we have a set of k actions (which are allowed to be executed by distinct
agents) with no ordering constraints, the set of linearizations includes the \short" plan
with a single joint action where all k actions are executed concurrently by di�erent agents
(assuming k � n), a \strung out" plan where the k actions are executed one at a time by a
single agent, with all others doing nothing (or where di�erent agents take turns doing the
individual actions), \longer" plans stretched out even further by joint no-ops, or anything
in between.

Example Suppose our planner outputs the following plan for a group of three agents: the
set of actions is

fa(1); b(2); c(2); d(3); e(1); f(2)g

with the ordering constraints

fe(1) = b(2); c(2) 6= d(3); a(1)< e(1); d(3)< f(2)g

Here, the numerical arguments denote the agent performing the action. Joint actions
involve one action for each of the three agents. A simple 3-linearization of this plan|
depicted as the �rst linearization in Figure 5, and using N to denote no-ops for the

8. Concurrent execution has also been considered in this context for non-interacting actions; see Knoblock's
discussion of this issue (Knoblock, 1994).
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Figure 5: Two possible linearizations of a partially ordered multiagent plan

corresponding agents|is:

ha(1); N (2); N (3)i; he(1); b(2); N (3)i; hN (1); c(2);N (3)i; hN (1);N (2); d(3)i; hN (1); f(2); N (3)i

We can insert additional tuples of the form hN(1); N(2); N(3)i in any location we
wish. Another possible 3-linearization (the second in Figure 5) is:

ha(1); c(2);N(3)i; he(1); b(2); d(3)i; hN(1); f(2); N(3)i

In fact, this is the shortest 3-linearization of the plan.

The de�nition of n-linearization requires that no agent perform more than one action at
a time. This conforms with the assumption we made in the last section, though the de�ni-
tion could quite easily be relaxed to allow this. Because of no-ops, our n-linearizations do
not correspond to shortest plans, either in the concurrently on nonconcurrently executed
senses of the term. However, it is a relatively easy matter to \sweep through" a concur-
rent nonlinear plan and construct some shortest n-linearization, one with the fewest joint
actions, or taking the least amount of \time." Though we do not have an explicit notion
of time, the sequence of joint actions in an n-linearization implicitly determines a time line
along which each agent must execute its individual actions. The fact that concurrency and
nonconcurrency constraints are enforced in the linearizations ensure that the plan is coor-
dinated and synchronized. We note that in order to execute such a plan in a coordinated
fashion the agents will need some synchronization mechanism. This issue is not dealt with
in this paper.

3. Planning with Concurrent Actions

In Figure 6, we present the POMP algorithm, a version of Weld's POP algorithm (Weld,
1994) modi�ed to handle concurrent actions. To keep the discussion simple, we begin
by describing POMP without considering conditional action e�ects. Below we describe
the simple modi�cations required to add conditionals (i.e., to build the analog of CPOP).
Though we do not discuss universal quanti�cation in this paper, our algorithm could easily
be extended to handle universally quanti�ed e�ects in much the same way as Penberthy
and Weld's (1992) full UCPOP algorithm.
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POMP(hA;O;L;NC;Bi,agenda)

Termination: If agenda is empty, return hA;O; L;NC;Bi.

Goal Selection: Let hQ;Aneedi be a pair on the agenda. (Aneed is an action and Q is a conjunct from its
precondition list.)

Action Selection: Let Aadd = Choose an action one of whose e�ects uni�es with Q subject to the con-
straints in B. (This may be a newly instantiated action from � or an action that is already in A

and can be ordered consistently prior to Aneed). If no such action exists, then return failure. Let

L0 = L [ fAadd
Q
! Aneedg. Form B0 by adding to B any codesignation constraints that are needed

in order to force Aadd to have the desired e�ect. Let O0 = O [ fAadd < Aneedg. If Aadd is newly
instantiated, then A0 = A [ fAaddg and O

0 = O0 [ fA0 < Aadd < A1g (otherwise, let A
0 = A).

Concurrent Action Selection: If Aadd is newly instantiated then apply the following steps to all positive
actions �conc in its concurrent list: Let Aconc = Choose a newly instantiated action from � or an
action that is already in A and can be ordered consistently concurrently with Aadd. Make sure that
there is a free agent that can perform this action concurrently with Aadd and any other concurrently
scheduled actions. If no such action exists then return failure. Let O0 = O [ fAconc = Aneedg. If
Aconc is newly instantiated, then A0 = A [ fAaddg and O0 = O0 [ fA0 < Aconc < A1g (otherwise,
let A0 = A). If aadd is the agent variable in Aadd and aconc is the agent variable in Aconc, then
add aadd 6= aconc to B0, as well as all similar non-codesignation constraints for actions A such that
A = Aadd 2 O.

Re-apply this step to Aconc, if needed.

For every negative action A:conc in Aadd concurrent list let NC 0 = NC [ fA:conc 6= Aaddg. Add to
B0 any codesignation constraints associated with A:conc.

Updating of Goal State: Let agenda0 = agenda� fhQ;Aneedig.

If Aadd is newly instantiated, then add fhQj ;Aaddig to agenda0 for every Qj that is a logical precon-
dition of Aadd. Add the other preconditions to B0. If additional concurrent actions were added, add
their preconditions as well.

Causal Link Protection: For every action At that might threaten a causal link Ap
R
! Ac perform one of

(a) Demotion: Add At < Ap to O0.

(b) Weak Promotion: Add At � Ac to O
0. If no agent can perform At concurrently with Ac, add

At > Ac, instead.

If neither constraint is consistent, then return failure.

Nonconcurrency Enforcement For every action At that threatens a nonconcurrency constraint A 6= A

(i.e., At is an instance of the schema A that does not violate any constraint in B0) add a consistent
constraint, either

(a) Demotion: Add At < A to O0.

(b) Promotion: Add At > A to O0.

If neither constraint is consistent, then return failure.

Recursive Invocation: POMP(hA0;O0; L0; NC 0;B0i,agenda')

Figure 6: The Partially Ordered Multiagent Planning algorithm
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We assume the existence of a function MGU(Q;R;B) which returns the most general
uni�er of the literals Q and R with respect to the codesignation constraints in B. This is
used wherever uni�cation of action schemata is required (see the Action Selection step in
Figure 6 and our discussion of NC-threats below). The algorithm has a number of input
variables: the set A contains all action instances inserted into the plan so far; the set O
contains ordering constraints on elements of A; the set L contains causal links; the set
NC contains nonconcurrency constraints; and the set B contains the current codesignation
constraints. The set NC does not appear in the POP algorithm and contains elements of
the form A 6= a, where A 2 � is an action schema and a is an action instance from A.
Intuitively, a nonconcurrency constraint of this form requires that no action instance a0

that matches the schema A subject to the (non) codesignation constraints should appear
concurrently with a in the plan.

The agenda is a set of pairs of the form hQ;Ai, listing preconditions Q that have not
been achieved yet and the actions A that require them. Initially, the sets L, NC, and B

are empty, while A contains the two �ctitious actions A0 and A1, where A0 has the initial
state propositions as its e�ects and A1 has the goal state conditions as its preconditions.
The agenda contains all pairs hQ;A1i such that Q is one of the conjuncts in the description
of the goal state. This speci�cation of the initial agenda is identical to that used in POP
(Weld, 1994). Finally, we note that the choose operator, which appears in the Action
Selection and Concurrent Action Selection steps, denotes nondeterministic choice.
Again, this device is just that used in POP to make algorithm speci�cation independent of
the search strategy actually used for planning. Intuitively, a complete planner will require
one to search over nondeterministic choices, backtracking over those that lead to failure.

Many of the structures and algorithmic steps of POMP correspond exactly to those
used in POP. Rather than describe these in detail, we focus our discussion on the elements
of POMP that di�er from POP. Apart from the additional data structure NC mentioned
above, one key di�erence is the additional Concurrent Action Selection step in POMP,
which takes care of the concurrency requirements of each newly instantiated action.

One �nal key distinction is the notion of a threat used in POMP, which is more general
than that used by POP. Much like POP, given a plan hA;O; L;NCi, we say that At

threatens the causal link Ap
Q
! Ac when O [ fAp � At < Acg is consistent, and At has :Q

as an e�ect. Threats are handled using demotion (much like in POP), or weak promotion.
The latter di�ers from the standard promotion technique used in POP: it allows At to be
ordered concurrently with Ac, not just after Ac.

9

Apart from handling conventional threats in a di�erent manner, we have another form of
threat in concurrent plans, namely, NC-threats . We say that action instance At threatens the
nonconcurrency constraint A 6= Ac if O[ fAt = Acg is consistent and At is an instantiation
of A that does not violate any of the codesignation constraints. Demotion and promotion
can be used to handle NC-threats, just as they do more conventional threats. Notice that
although the set NC contains negative (inequality) constraints, they will ultimately be
grounded in the set of positive constraints in O. Following the approach suggested by Weld

9. If we wish to exclude actions that negate some precondition of another concurrent action (see discussion
in Section 2), we must use O [ fAp � At � Acg in the de�nition of threat, and we must change weak
promotion to standard promotion.
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(1994), we do not consider an action to be a threat if some of its variables can be consistently
instantiated in a manner that would remove the threat.

The POMP algorithm must check for the consistency of ordering constraints in several
places: in Action Selection where an action chosen to achieve an e�ect must be con-
sistently ordered before the consumer of that e�ect; in Concurrent Action Selection

where each concurrency requirement added to the plan must be tested for consistency; and
in Nonconcurrency Enforcement where demotion or promotion is used to ensure that
no nonconcurrency requirements are violated. The consistency testing of a set of ordering
constraints is very similar to that employed in POP (see Weld (1994) for a nice discus-
sion), with one key di�erence: the existence of equality (=) and inequality (6=) ordering
constraints as opposed to simple strict inequalities (i.e., < and >). However, with minor
modi�cations, standard consistency-checking algorithms for strict ordering constraints can
be used. Equality can be dealt with by simply \merging" actions that must occur con-
currently (i.e., treating them as a single action for the purposes of consistency testing).
Inequalities are easily handled by assuming all actions occur at di�erent points whenever
possible. Non-strict inequalities (i.e., � and �) do not arise directly in our algorithm
(though these two can be easily dealt with). We refer to Ghallab and Alaoui (1989) for
further details on processing such constraints.

The POMP algorithm as described can easily be modi�ed to handle conditional e�ects,
just as the POP algorithm can be extended to CPOP. The main fact to note is that in the
action selection phase, we can use an action whose conditional e�ects achieve the chosen
subgoal. In that case, we do not just add the preconditions of the selected action to the
agenda, but also the antecedent of the particular conditional e�ect (this to ensure that
the action has this particular e�ect). We handle the additional concurrency conditions in
the antecedent much like the regular concurrency conditions. As in the CPOP algorithm,
we must consider the possibility that a particular conditional e�ect of an added action
threatens an established causal link. In this case, we can, aside from using the existing
threat resolution techniques, consider a form of confrontation, where we add the negation
of the conditional e�ect's antecedent to the agenda. Again, we have several ways to do
this: we could add the negation of some literal in the antecedent's condition to the agenda;
but we can also add a concurrent action to negate a negative concurrency condition in the
antecedent, or post a nonconcurrency constraint to o�set a positive concurrency constraint
in the antecedent. The details of such steps are straightforward and look similar to those
involved in the unconditional algorithm.

4. An Example of the POMP Algorithm

In this section, we formalize the example alluded to in the introduction and describe the
construction of a concurrent plan for this problem using the POMP algorithm.

In the initial state, two agents, Agent1 and Agent2, are located in Room1, together with
a table and a set of blocks scattered around the room. Their goal is to ensure that all of
the blocks are in Room2 and the table is on the 
oor. In order to simplify this example, we
assume there is only one block B, we omit certain natural operators, and we simplify action
descriptions. In order to compactly represent the multiple block version of this, we would
require the introduction of universal quanti�cation. As shown by Weld (1994), this can
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be done with little di�culty. Intuitively, the agents should gather the blocks in the room
(in this case only one), put them on the table, carry the table to the other room, dump
the blocks from the table, and then put the table down. While this is not the best plan
for a single block, it illustrates how such a plan would be constructed for multiple blocks
(in which case this strategy is better than that of agents making multiple trips carrying
individual blocks). We use the following actions:

� Pickup(a; b): agent a picks up a block b

� PutDown(a; b): agent a puts block b on the table

� ToTable(a; s): agent a moves to side s (left, right) of the table

� MoveTable(a; r): agent a moves to room r with the table

� Lift(a; s): agent a lifts side s of the table

� Lower(a; s): agent a lowers side s of the table

The a variables are of type agent , b variables are of type block , r variables are of type room,
and s variables are of type table-side. (We omit other natural actions since they won't be
used in the plan of interest.)

The domain is described using the following predicates:

� OnTable(b): block b is on the table

� OnFloor(b): block b is on the 
oor

� AtSide(a; s): agent a is at side s (left, right) of the table

� Up(s): side s of the table is raised

� Down(s): side s of the table is on the 
oor

� InRoom(x; r): object x (agent, block, table) is in room r

� HandEmpty(a): the hand of agent a is empty

� Holding(a; x): agent a is holding x (block, side of table)

The operator descriptions are de�ned in Figure 7.

The initial state of our planning problem is:

fInRoom(B;Room1); OnFloor(B); InRoom(Agent1;Room1); InRoom(Agent2;Room1);

InRoom(Table;Room1); Down(LeftSide); Down(RightSide)g

The goal propositions are:

fInRoom(B;Room2); OnFloor(B); Down(LeftSide); Down(RightSide)g

We now consider how a concurrent nonlinear plan for this multiagent planning problem
might be generated by POMP.
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(define (operator pickup)

:parameters (?a1 ?x)

:precondition (and (inroom ?a1 ?r1) (inroom ?x ?r1)

(handempty ?a1) (onfloor ?x))

:concurrent (and (not (pickup ?a2 ?x)) (not (= ?a1 ?a2)))

:effect (and (not (handempty ?a1)) (not (onfloor ?x)) (holding ?a1 ?x)))

(define (operator putdown)

:parameters (?a1 ?x)

:precondition (and (inroom ?a1 ?r1) (inroom ?x ?r1) (inroom Table ?r1)

(holding ?a1 ?x))

:concurrent (not (lift ?a2 ?s1))

:effect (and (not (holding ?a1 ?x)) (ontable ?x) (handempty ?a1)))

(define (operator totable)

:parameters (?a1 ?s1)

:precondition (and (inroom ?a1 ?r1) (inroom Table ?r1) (not (atside ?a2 ?s1)))

:concurrent (and (not (totable ?a2 ?s1)) (not (= ?a1 ?a2)))

:effect (atside ?a1 ?s1))

(define (operator movetable)

:parameters (?a1 ?r1)

:precondition (holding ?a1 Table)

:concurrent (and (movetable ?a2 ?r1) (not (= ?a1 ?a2)))

:effect (and (inroom ?r1 Table) (inroom ?r1 ?a1)

(when ((ontable ?x) ()) (inroom ?r1 ?x))))

(define (operator lower)

:parameters (?a1 ?s1)

:precondition (and (holding ?a1 ?s1) (up ?s1))

:concurrent (and (not (lift ?a2 ?s2)) (not (= ?a1 ?a2)) (not (= ?s1 ?s2)))

:effect (and (not (up ?s1))(down ?s1) (not (holding ?a1 ?s1))

(when ((and (ontable ?x) (up ?s2) (not (= ?s1 ?s2)))

(and (not (lower ?a2 ?s2)) (not (= ?a2 ?a1))))

(and (onfloor ?x) (not (ontable x))))))

(define (operator lift)

:parameters (?a1 ?s1)

:precondition (and (atside ?s1 ?a1) (down ?s1) (down ?s2) (not (= ?s1 ?s2)))

:concurrent (and (not (lower ?a2 ?s2)) (not (= ?a1 ?a2)) (not (= ?s1 ?s2)))

:effect (and (not (down ?s1)) (up ?s1) (holding ?a1 ?s1)

(when ((and (ontable ?x) (down ?s2) (not (= ?s1 ?s2)))

(and (not (lift ?a2 ?s2))))

(and (onfloor ?x) (not (ontable x))))))

Figure 7: The table movers domain
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Suppose that InRoom(B;Room2) is the �rst goal selected. This can be achieved by per-
forming A1 = MoveTable(a1;Room2) via its conditional e�ect (note that a1 is an agent vari-
able, so there is no commitment to which agent performs this action).10 We must add both
Holding(a1;Table) and OnTable(B) to the agenda and insert the appropriate causal links.
In addition, the concurrent list forces us to add the action A2 = MoveTable(a2;Room2) to
the plan together with the non-codesignation constraint a1 6= a2. The ordering constraint
A1 = A2 is added as well. When we add A2, we must add its precondition Holding(a2;Table)
to the agenda as well. The structure of the partially constructed plan might be viewed as
follows:11

MoveTable(a2,R2)

GOAL

InRoom(Block, R2)

MoveTable(a1,R2)

2

1

A

A

C

Next, we choose the subgoal OnTable(B) from the agenda (which we just added). We
add the action A3 = PutDown(a3; B) to the plan with the appropriate ordering constraint
A3 < A1; its preconditions are added to the agenda and a causal link is added to L. In
addition, we must add to NC the nonconcurrency constraint not(Lift(a; s)): no agent can
lift any side of the table while the block is being placed on it if the desired e�ect is to be
achieved.

C

MoveTable(a1,R2)

MoveTable(a2,R2)

GOAL

InRoom(Block, R2)

A1

A2

A3
PutDown(a3,Block)

OnTable(Block)

10. We do not pursue the notion of heuristics for action selection here; but we do note that this action is
a plausible candidate for selection in the multi-block setting. If the goal list asserts that a number of
blocks should be in the second room, the single action of moving the table will achieve all of these under
the appropriate conditions (i.e., all the blocks are on the table). If action selection favors (conditional)
actions that achieve more goals or subgoals, this action will be considered before the actions needed for
\one by one" transport of the blocks by the individual agents. So this choice is not as silly as it might
seem in the single-block setting.

11. In the plan diagrams that follow, we indicate actions as Ai with the name of the action below it. Variables
are indicated by lower-case names (we do not indicate co-designation constraints in the diagrams). An
arrow from one action to another denotes a causal link (from producer to consumer), labeled by the
proposition being produced. Large arrows labeled with a C (resp. NC) denote concurrency (resp.
nonconcurrency) constraints between actions. We use left-to-right ordering to denote the temporal
ordering of actions, if such constraints exist.
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Now we choose the subgoal Holding(a1;Table). This can be achieved using A4 =
Lift(a1; s1), with the ordering constraint A4 < A1. All the preconditions are added to
the agenda, but no concurrency conditions are added (yet!) for this action, since we do not
yet need to invoke the conditional e�ects of that action induced by simultaneous lifting of
the other side of the table:

C

MoveTable(a2,R2)

GOAL

Holding(a1,Table)

GOAL
A1

A2

A3

A4
Lift(a1,LS)

NC OnTable(Block)

PutDown(a3,Block)

InRoom(Block, R2)

MoveTable(a1,R2)

We now note that the conditional e�ect of A4 poses a threat to the causal link A3
ontable
!

A1; this is because lifting a single side of the table will dump the block from the table. In
addition, the nonconcurrency constraint associated with A3, that no lifting be performed
concurrently with A3, is threatened by A4 (an NC-threat), as indicated in the plan diagram
above. The confrontation strategy is used to handle the �rst threat, and the action A5 =
Lift(a4; s2) scheduled concurrently with A4. The constraints s1 6= s2 and a4 6= a1 are also
imposed. This ensures that the undesirable e�ect will not occur. We resolve the NC threat
by ordering A3 before A4.12 The resulting partially completed plan is now free of threats:

C

C MoveTable(a1,R2)

MoveTable(a2,R2)

Holding(a1,Table)

A1

A2

A4

A5

3A

Lift(a2,RS)

Lift(a1,LS)

PutDown(a3,Block)

OnTable(Block)
InRoom(Block, R2)

GOAL

Next, we choose the subgoal Down(LeftSide). This is achieved using the action A6 =
Lower(a1;LeftSide) and its preconditions are added to the agenda. In a completely similar
way, A7 = Lower(a2;RightSide) is added to achieve Down(RightSide) (again, we anticipate
the uni�cation of these agent variables).

12. In anticipation of a subsequent step, we use variable a2 in the plan diagram instead of a4, since they
will soon be uni�ed. To keep things concrete, we have also replaced s1 and s2 with particular sides of
the table, LeftSide and RightSide, to make the discussion a bit less convoluted.
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C

C

A1

A2

A1

A2

Lower(a1,LS)
A 6

Down(LS)

A7

A3

A5

A4

Lift(a2,RS)

Lower(a2,RS)
Down(RS)

GOAL

InRoom(Block, R2)

MoveTable(a2,R2)

MoveTable(a1,R2)

Holding(a1,Table)

OnTable(Block)

PutDown(a3,Block)

Lift(a1,LS)

We now choose to work on the preconditions of A6 and A7. Both of the preconditions,
Up(s) and Holding(a; s), are e�ects of Lift, so we use A4 and A5 as their producers. At this
stage, both A6 and A7 are constrained to follow A4 and A5, but there are no constraints
on the relative ordering of A6 and A7 themselves. We also see that both A6 and A7

\potentially" threaten the causal link A3
ontable
! A1; that is, they each have a conditional

e�ect that would cause the block to fall from the table. There are several ways to resolve
these two threats, including confrontation. We choose strict promotion, and order both A6

and A7 to occur after A1 and A2.

C

C

A1

A2

A1

A2

Holding(a1,Table)

A3

Lift(a1,LS)

Lift(a2,RS)

A4

A5

Holding(a1,LS)

Up(a1,LS)

Up(a2,RS)

Down(LS)

Down(RS)

Holding(a2,RS)

MoveTable(a2,R2)

MoveTable(a1,R2)

InRoom(Block, R2)

GOAL

OnTable(Block)

PutDown(a3,Block)

Lower(a2,RS)
A7

Lower(a1,LS)
A 6

Now, we choose the subgoal OnFloor(B), which is a conditional e�ect of the Lower
action. We choose to accomplish it using an existing action, A6. In order to obtain the
desired e�ect, we ensure the antecedent of the when clause for this e�ect holds: this involves
adding the conditions of the antecedent (OnTable(B) and Up(LeftSide)) to the agenda, and
imposing the nonconcurrency constraint of the antecedent, namely, that no concurrent
Lower action can take place. This constraint is threatened by the action A7, so we order
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A6 before A7 by posting the constraint A6 < A7.
13 The conditions of the antecedent,

OnTable(B) and Up(LeftSide), can use A3 and A5 as the producers, respectively.

C

C
A1A1

Holding(a1,Table)

Holding(a1,LS)

Up(a1,LS)

OnTable(Block)

OnTable(Block)

Down(LS)
OnFloor(Block)

Up(a2,RS)

Holding(a2,RS)

Down(RS)

A3

Lift(a1,LS)

Lift(a2,RS)

A4

A5

PutDown(a3,Block)

A2Holding(a2,Table)
MoveTable(a2,R2)

MoveTable(a1,R2)

InRoom(Block, R2)

GOAL

Lower(a2,RS)
A7

Lower(a1,LS)
A 6

The only unsolved subgoal is the precondition of the initial PutDown(a3; B) action
(others, such as Down(LeftSide) for the Lift action, are produced by the initial state). We
don't illustrate it, but it is a simple matter to introduce the Pickup(a3; B) action before
PutDown(a3; B).

We now have the following plan: �rst, the block is picked up and put on the table by
some agent a3 (either of Agent1 or Agent2 can do this). This is followed by two concurrent
lift actions and two concurrent move actions which get the table to the other room with the
block on top. Next, we have a single lower action, which makes the block fall o�, followed
by another lower action which ensures that both sides of the table are on the 
oor. We
note that the plan does not care which of the agents (the one who lifts the LeftSide or the
RightSide) initially puts the block on the table.14

5. Soundness and Completeness of the POMP Algorithm

We say that a planning algorithm is sound if it generates only plans that are guaranteed
to achieve the goals posed to it; a complete algorithm is guaranteed to generate a plan if
a successful plan exists.15 In the case of concurrent nonlinear plans, we will say that an
algorithm is sound if each n-linearization of the plan produced for a given problem will
reach a goal state, and an algorithm is complete if it successfully generates a concurrent
nonlinear plan whenever there is a sequence of joint actions (i.e., an n-linearization of some

13. The other ordering A7 < A6 could have been used to resolve this threat; but it would cause an \unre-
solvable" threat to the conditions of the antecedent, which require that the other side remain up. It is,
of course, only \unresolvable" in the sense that it would require the agents to pick up the block, etc.,
essentially introducing a cycle in the plan.

14. Further examples of MAP problems, the plans produced by POMP, and code implementing the POMP
algorithm can be obtained at http://www.cs.bgu.ac.il/�ishayl/project/.

15. For formal de�nitions of these concepts, we refer the reader to (Penberthy & Weld, 1992).
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concurrent plan) that achieves the goal from the initial state. We now show that the POMP
algorithm is both sound and complete.

The soundness proof is straightforward. Suppose that the generated plan is not sound.
Thus, some n-linearization of the plan does not achieve the goal or some required subgoal
(i.e., a precondition of one of the plan's actions). Because of the agenda mechanism, it
is clear that for each needed goal or precondition there exists an action in the plan that
achieves that subgoal (goal or precondition). Moreover, there is an explicit causal link in
the plan for that particular subgoal as well as an ordering constraint requiring that the
producing action to appear prior to the consuming action (or the goal). Any n-linearization
of a plan is another plan obtained from the original plan by adding new, consistent, strict
(i.e. <;>) ordering constraints. Recall that the original plan's ordering constraints must
have been consistent, otherwise it would not constitute a solution, and that there were no
threats. Clearly, by adding new strict ordering constraints we cannot cause any new threats
to causal links or violate a nonconcurrency constraint. Hence, the resulting n-linearization
respects all causal links of the original plan and all ordering constraints of the original plan.

To complete the proof, we must be convinced that POMP actually considers all possible,
relevant interactions between actions. Consider some e�ect P of an action a needed by some
action b which is ordered after a. Given the semantics of actions, there are only two reasons
why P will not hold prior to the execution of b: (1) some action c between a and b (possibly
concurrent with a) has an e�ect :P ; or (2) a did not actually have P as an e�ect. Case (1)
contradicts the fact that there are no threats (in our extended sense, covering the possibility
of c occurring concurrently with a) in the context of this plan. Case (2) implies that either
P is an e�ect of a subject to some concurrency or nonconcurrency condition that is violated
in this n-linearization. Any such problem would have been taken care of by the Action
Selection or Nonconcurrency Enforcement steps (and by the ordering constraints).
Thus it should be clear that any n-linearization of a plan produced by POMP does in fact
achieve all its goals; that is, POMP is sound.

The completeness proof rests on three key elements:

1. A reduction from multiagent planning problems to single agent planning problems.

2. The fact that POMP can solve a multiagent planning problem i� POP can solve the
single agent planning problem obtained via this reduction.

3. The fact that POP is sound and complete (Penberthy & Weld, 1992).

First, we show how given a multiagent planning problem, a similar single agent planning
problem can be obtained. We shall refer to the generated problem as the equivalent single
agent planning problem (or the ESA problem). This reduction has the property that a plan
for the multiagent planning problem exists if and only if a plan for the ESA problem exists.
In the introduction, we discussed such a reduction via the use of joint actions. Here, we will
use a similar idea, but with a little more care so that both POMP and POP will perform
similar steps in the solution of the original problem and the ESA problem, respectively.
Combining these results with the fact that POP is sound and complete, we can deduce that
POMP is sound and complete as well.
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In the discussion below, we ignore conditional e�ects to avoid undue and, for the most
part, uninteresting complications. The extension of the arguments to deal with conditional
e�ects is straightforward. We �rst recall the following facts relevant to our argument:

(a) POP and POMP are nondeterministic planning algorithms and, although there
are various ways of making them deterministic, this issue is orthogonal to the
proof. Thus, in showing the correspondence between POP and POMP alluded to
in point (2) above, we can utilize the 
exibility awarded to us by each planner's
use of nondeterministic choice. In particular, it is su�cient to show that for a
given solution path for one planner, a similar solution path exists for the other.

(b) The choice of the next agenda element to work on is immaterial for both POP
and POMP|it can a�ect the running time (e.g., by causing backtracking) but
not the existence of a solution. Hence, we are 
exible in ordering the subgoals
achieved, as long as we respect causality (i.e., we cannot achieve a goal that is
derived from a precondition of an action that was not introduced yet).

(c) By introducing additional ordering constraints consistent with current constraints
in a valid plan, we obtain a valid plan for the given problem.

(d) The precise order in which actions and ordering constraints are inserted does
not a�ect the validity of the solution. In fact, as is well known in the planning
community, one can postpone the threat resolution step without a�ecting the
soundness or completeness of the algorithm, as long as all threats are eventually
resolved.

Our proof will proceed in two stages. In the �rst stage, we will limit ourselves to a
restricted set of planning problems for which we can show the connections with POP in a
straightforward fashion. We then relax this restriction to show the correspondence between
the two planners in the general case.

Recall that in Section 2.3 we suggested a possible restriction on the set of actions one
is allowed to execute concurrently, namely, that no two actions a and b are permitted to
occur concurrently if one's e�ects negate any of the other's preconditions. We remarked
that this concurrent, non-clobbering condition, if not enforced in the action speci�cation
itself, is easily enforced by the POMP algorithm if we modify the de�nition of a threat and
use promotions instead of weak promotions to resolve threats. Let us restrict attention, for
the time being, to domains respecting this condition.

We �rst note the following fact. Let M be some POMP plan, and consider some n-
linearization of M in which a1 and a2 occur concurrently, but where M is such that no
future actions require the e�ects produced by the concurrent execution of these actions.
That is, actions a1 and a2 are not forced to occur concurrently by plan M . In this case,
any similar n-linearization in which a1 is ordered before a2, or vice versa, and no other
ordering constraints are violated (some such linearization must exist) will also achieve the
goal. The only case in which this might not happen is when one of a1 or a2 clobbers the
other's preconditions; but this has been explicitly disallowed in our restricted setting (by
the imposition of a nonconcurrency constraint or \precondition").
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Now consider the ESA problem, where the actions available to the agent are as follows:
for each individual action a that has no concurrency constraints in the multiagent problem,
we create an action corresponding to the joint action where a is performed by its \owning"
agent, and no-ops are executed by every other agent; and for each individual action a that
has concurrency conditions, requiring that actions b1; � � �bk be executed concurrently, we
create an action corresponding to the joint action where a and each of the bi are performed,
but no other actions apart from no-ops are performed.16 We note that nonconcurrency
constraints are ignored in the ESA problem de�nition.

Clearly, if a joint action sequence exists for a given problem, there also exists a con-
current nonlinear plan for that problem. In addition, by the argument above involving
the assumption that no concurrent action clobber another's precondition, it is also easy
to see that, if a concurrent nonlinear plan can be found for a problem, there also exists a
concurrent nonlinear plan in which the only concurrency constraints involve actions whose
speci�cation requires the concurrent execution of another action (or set of actions) in order
to obtain a particular e�ect. This implies that, should a problem be solvable, it is solvable
by a sequence of joint actions of the type constructed above, using only single-agent indi-
vidual actions together with a set of no-ops, or at most involving minimal sets of interacting
actions. In other words, a concurrent nonlinear plan exists for a given problem i� a plan for
the ESA problem exists. We note that the structure of any solution for the ESA problem
(or any linearization of a nonlinear single-agent plan for the ESA problem) is very speci�c:
actions occur concurrently only if they are forced to. In other words, solutions to the ESA
problem are strung out plans, in which agents \take turns" performing their actions.

Next, we want to show that (in our restricted setting) POMP's solution path for a given
planning problem and POP's solution path for its ESA problem resemble each other. This
becomes apparent once we combine POMP's action selection and concurrent action selection
steps. We obtain a step that is equivalent to the action selection step of POP for the ESA
problem (i.e., whenever POMP chooses an action which requires another concurrent action,
the required concurrent action is immediately inserted as well; this is equivalent to inserting
the proper ESA action). In fact, now POP and POMP look almost identical, except for
POMP's Nonconcurrency Enforcement step. However, because of the fashion in which
the ESA problem was de�ned, all nonconcurrency constraints are automatically \imposed"
in the plan produced by POP since they refer to di�erent joint actions. Any linearization
of these joint actions enforces the nonconcurrency of all joint actions. Therefore, the only
(single-agent) actions that can occur together in POP's solution to the ESA problem are
those that have to occur together and on which there is no nonconcurrency constraint. (In
fact, on these actions there is an explicit concurrency constraint.)17

The above argument demonstrates that POP and POMP generate \identical" sets of
plans, except for two small di�erences. First, POMP's semantics allows for concurrent
execution of certain actions, even though they need not be executed concurrently in order

16. It is important to note that a single action schema gives rise to n individual actions, one for each
agent (e.g., Lift(Agent1; s) and Lift(Agent2; s) are distinct actions, and separate joint actions for these
will be created). Similarly, when the concurrency conditions involve action schemata, any permitted
combination of agent instantiations will give rise to a distinct joint action.

17. This assumes that concurrency lists are congruous, as described in Section 2; but if, not, a simple
rede�nition of the ESA problem can be given so that no \incongruous" concurrent actions are admitted.
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to solve the problem, while POP (for the ESA problem) cannot generate plans that admit
this. However, this di�erence cannot a�ect the completeness argument (since it means that
POMP is more 
exible than POP).18 Second, POMP commits to a particular ordering of
actions for which there is a nonconcurrency constraint, while POP will not make such a
commitment if both orderings are consistent. However, if both are consistent (and remain
unordered in the �nal plan for the ESA problem) then the choice POMP makes cannot
impact the solution (and POMP can produce either alternative if the ordering does matter).
Now, using the fact that POP is sound and complete, the virtual equivalence of POMP and
POP steps, and our facts about strung out plans and the ESA problem, we see that POMP
is sound and complete for the special case where concurrent actions do not destroy each
other's preconditions.

Finally, we wish to remove the restrictions placed on concurrent actions, and admit
problems where a concurrent action can clobber the precondition of another. We note that
problems of this type exist that cannot be solved by a strung out plan in the sense de�ned
above. For instance, consider the following problem. We have two actions:

� Action a: Precondition P ; e�ect Q

� Action b: Precondition :Q; e�ect :P

Actions a and b have no nonconcurrency constraints, thus they are not required to be
concurrent to have their speci�ed e�ects when considered in isolation. Suppose our initial
state is fP;:Qg and the goal state is f:P;Qg. The only plan that achieves this goal requires
that a and b be executed concurrently. If we order one before the other, we will destroy the
ability to perform the second, and the goal will not be reachable. Thus, POMP can solve
this problem while POP could not solve the ESA problem (as formulated above).

To deal with the more general case, we extend the construction of the ESA problem by
including (in addition to the actions used in the restricted case) a joint action in the ESA
problem for any set of actions A satisfying the following conditions:

� Each element of A is permitted to be executed concurrently (but need not be forced
to be concurrent).

� Each element of A clobbers the precondition of some other element of A.

� No element of A can be removed without destroying this property.

In other words, we create a joint action corresponding to the concurrent execution of each
element of such a set A. We'll call these \self-clobbering" joint actions. It should be evident
that a concurrent nonlinear plan exists for an arbitrary multiagent planning problem i� there
exists a sequence of joint actions (allowing self-clobbering actions) that solve the problem,
and hence (by the soundness and completeness of POP) i� POP can �nd a plan for this
generalized ESA problem. We have already seen that POMP can emulate any step of POP

18. This additional 
exibility impacts only the soundness of POMP (and is addressed above). In fact, we
could have used the current line of reasoning as part of an integrated soundness and completeness proof
based on the POP/POMP correspondence, in which case, we would need to explain why this last point
does not hinder the soundness of POMP.
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involving actions other than self-clobbering actions. We simply have to show that POMP
can emulate POP's introduction of self-clobbering actions to show completeness.

Let A be some self-clobbering joint action. We claim that POP is complete (for the
generalized ESA problem) if it only ever considers adding A to an incomplete plan when
each of its elements ai 2 A has an e�ect that satis�es some subgoal on the agenda. Suppose,
to the contrary, that ai 2 A has no consumer on the current agenda. Then either A is not
necessary in a successful plan (since some subset of the actions in A can be used), or the
actions that consume the e�ects of some ai have not yet been introduced. We can discount
the former case by considering only executions of POP that do not use this action. POP
will be complete even if this action is never considered, since it is able to introduce the
individual components (or concurrent subsets) of A that do produce the necessary e�ects.
We can discount the latter case, since there must be a valid execution of POP that introduces
the (ultimate) consumers of each element of ai before introducing A. Thus, without loss of
generality, we assume that each element ai 2 A satis�es some subgoal on the agenda if A is
introduced by POP.

Now suppose POP introduces a self-clobbering action A. Since all ai 2 A satisfy some
agenda item, POMP can simulate this step as follows: introduce each ai in turn to satisfy
some agenda item, postponing threat resolution among the ai; resolve the self-threats among
the ai through weak promotion in the Causal Link Protection step (so that we impose
ordering constraint ai � aj for ai that threatens aj). In the example above, for instance,
once actions a and b are added to achieve subgoals Q and :P , respectively, the only way
to resolve the mutual threat is by weak promotion of both actions; that is, we impose a � b

and b � a. In other words, they are forced to be concurrent. Thus any introduction of
a self-clobbering joint action by POP (under the assumptions stated above) has a strong
correspondence with a sequence of possible steps in POMP. Since POP can always �nd
a plan under these assumptions, so can POMP. Thus the completeness of POMP in the
general case of arbitrary multiagent planning problems is demonstrated.

6. Concluding Remarks

One often �nds assertions in the planning literature that planning with interacting actions
is an inherently problematic a�air, requiring substantial extension to existing single-agent
planning representations and algorithms. Thus, it is somewhat surprising that only minor
changes are needed to enable the STRIPS action representation language to capture inter-
acting actions, and that relatively small modi�cations to existing nonlinear planners are
required to generate concurrent plans. Our solution involves the addition of a concurrent
action list to the standard action description, specifying which actions should or should
not be scheduled concurrently with the current action in order to achieve a desired e�ect.
The POP planner is augmented by two steps: one which handles the insertion of required
concurrent actions, and one which handles threats emanating from the potential concurrent
execution of two interfering actions. In addition, explicit reasoning with equality and in-
equality constraints is introduced. Because of the strong resemblance between our solution
for the multiagent case and the solution for the single agent case, little overhead is incurred
when actions do not interact. In fact, in the extreme case of non-interacting actions, both
our extension to STRIPS and to POP reduce to their single-agent equivalents.
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There is a close connection between our speci�cation method and Knoblock's (1994)
approach to generating parallel execution plans. Knoblock adds to the action description a
list that describes the resources used by the action: actions that require the same resource
(e.g., access to a database) cannot be scheduled at the same time. Hence, Knoblock's
resource list actually characterizes one form of nonconcurrency constraint.19 In fact, we
believe that certain nonconcurrency constraints are more naturally described using such a
resource list than with the general method proposed here|augmenting our language with
such lists should not prove di�cult.

The treatment of concurrent actions in the speci�cation languages Ac (Baral & Gel-
fond, 1997) and C (Giunchiglia & Lifschitz, 1998) has many features in common with our
extension of STRIPS (although C, in particular, is a very expressive language with many
additional features). These languages allow the use of complex actions|which are sets of
primitive actions|analogous to the ability we provide to combine a number of elements
into a joint action. Typically, complex actions inherit their e�ects from the primitive ac-
tions contained in them. However, explicit speci�cation of the e�ects of complex actions is
possible, overriding this inheritance. This overriding mechanism can extend to an arbitrary
number of levels (e.g., an action a can have some e�ect, which is overridden when a and b

are performed concurrently, but this e�ect is itself overridden when c is performed as well,
etc.). In these action description languages, an implicit view of time is adopted, much like
in our treatment, and concurrent actions are assumed to be performed simultaneously. Un-
til quite recently, there were no tools for actually synthesizing plans for domains described
in languages such as C. However, recent progress in model-based techniques had led to
a number of new algorithms, including a SAT encoding for the language C (Giunchiglia,
2000).

When the e�ects of one agent's actions depend on the actions performed by other agents
at the same time, action speci�cation becomes a complex task. The STRIPS representation is
useful because it admits a relatively simple planning algorithm. However, despite STRIPS's
semantic adequacy and its ability, in principle, to represent any set of actions, verifying that
a domain description is accurate becomes more di�cult when interactions must be taken into
account. Consequently, we believe that the use of dynamic Bayes nets, in conjunction with
conditional outcome (or probability) trees (Boutilier & Goldszmidt, 1996), can provide a
more natural and concise representation of actions in multiagent settings. This speci�cation
technique makes clear the in
uence of di�erent context conditions on an action's e�ects,
and allows one to exploit the independence of di�erent e�ects. While this representation
can be used for stochastic domains, dynamic Bayes nets o�er these advantages even in the
case of purely deterministic actions. The POMP algorithm naturally extends to this form
of domain description, and a more complete treatment of this issue would be an interesting
direction for future research.

While adapting existing nonlinear planners to handle interacting actions is conceptually
simple, we expect that the increase in domain complexity will inevitably lead to poor com-
putational performance. Indeed, in our experiments with the POMP algorithm, we have
found that performance is greatly a�ected by the ordering of agenda items. Hence, adequate
heuristics for making the various choices the planner is faced with|namely, choosing sub-

19. In principle, any nonconcurrency constraint can be handled in this manner by introducing �ctitious
resources.
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goals, choosing actions that achieve them, and choosing threat-resolution strategies|will
become even more critical. Of course, the same issues are central for single-agent nonlinear
planners, though we anticipate that the multiagent case with its interacting actions will
require di�erent, or additional, heuristics.

An interesting topic for future work would be extending newer planning algorithms
such as Graphplan (Blum & Furst, 1995) to handle our multiagent representation language.
Indeed, the model-based algorithm of Cimatti, et al. (1997) seems to o�er promising devel-
opments in this direction. Naturally, all representational issues raised in this paper arise
regardless of the particular planning algorithm used, although with di�erent implications.
For example, the question of whether or not to allow for concurrent actions that destroy
one another's preconditions a�ected which threat removal operators were valid in POMP,
whereas in Graphplan they would a�ect the de�nition of interfering actions (and conse-
quently, the question of which actions are considered mutually exclusive).

Finally, we note that the approach we have considered is suitable for a team of agents
with a common set of goals. It assumes that some central entity generates the plan, and
that the agents have access to a global clock or some other synchronization mechanism
(this is typically the case for a single agent with multiple e�ectors, and applies in certain
cases to more truly distributed systems). An important research issue is how such plans
can be generated and executed in a distributed fashion, and how their execution should
be coordinated and controlled. This is an important question to which some answers have
emerged in the DAI literature (des Jardins, Durfee, Ortiz Jr., & Wolverton, 1999; Grosz,
Hunsberger, & Kraus, 1999; des Jardins & Wolverton, 1999; Boutilier, 1996, 1999; Brafman,
Halpern, & Shoham, 1998) and the distributed systems literature (Fagin, Halpern, Moses,
& Vardi, 1995).
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