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Abstract

Functional relationships between objects, called \attributes", are of considerable impor-
tance in knowledge representation languages, including Description Logics (DLs). A study
of the literature indicates that papers have made, often implicitly, di�erent assumptions
about the nature of attributes: whether they are always required to have a value, or whether
they can be partial functions. The work presented here is the �rst explicit study of this
di�erence for subclasses of the Classic DL, involving the same-as concept constructor.
It is shown that although determining subsumption between concept descriptions has the
same complexity (though requiring di�erent algorithms), the story is di�erent in the case
of determining the least common subsumer (lcs). For attributes interpreted as partial
functions, the lcs exists and can be computed relatively easily; even in this case our results
correct and extend three previous papers about the lcs of DLs. In the case where attributes
must have a value, the lcs may not exist, and even if it exists it may be of exponential size.
Interestingly, it is possible to decide in polynomial time if the lcs exists.

1. Introduction

Knowledge representation systems based on Description Logics (DLs) have been the sub-
ject of continued attention in Arti�cial Intelligence, both as a subject of theoretical studies
(Borgida, 1994; Baader, 1996; Baader & Sattler, 2000; Giacomo & Lenzerini, 1996; Cal-
vanese, Giacomo, & Lenzerini, 1999b) and in applications (Artale, Franconi, Guarino, &
Pazzi, 1996; Brachman, McGuinness, Patel-Schneider, & Borgida, 1999; McGuinness &
Patel-Schneider, 1998). More impressively, DLs have found applications in other areas in-
volving information processing, such as databases (Borgida, 1995; Calvanese, Lenzerini,
& Nardi, 1999), semi-structured data (Calvanese, Giacomo, & Lenzerini, 1998, 1999a),
information integration (Calvanese, Giacomo, Lenzerini, Nardi, & Rosati, 1998; Borgida
& K�usters, 2000), as well as more general problems such as con�guration (McGuinness
& Wright, 1998) and software engineering (Borgida & Devanbu, 1999; Devanbu & Jones,
1997). In fact, wherever the ubiquitous term \ontology" is used these days (e.g., for pro-
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viding the semantics of web/XML documents), DLs are prime contenders because of their
clear semantics and well-studied computational properties.

In Description Logics, one takes an object-centered view, where the world is modeled as
individuals, connected by binary relationships (here called roles), and grouped into classes
(called concepts). For those more familiar with Predicate Logic, objects correspond to
constants, roles to binary predicates, and concepts to unary predicates. In every DL system,
the concepts of the application domain are described by concept descriptions that are built
from atomic concepts and roles using the \constructors" provided by the DL language. For
example, consider a situation where we want a concept describing individual cars that have
had frequent (at least 10) repairs, and also record the fact that for cars, their model is the
same as their manufacturer's model. Concepts can be thought of as being built up from
(possibly nested) simpler noun-phrases, so the above concept, called Lemon in the sequel,
might be captured as the conjunction of

(objects that are Cars)
(things all of whose model values are in concept Model)
(things all of whose madeBy values are in concept Manufacturer)
(things whose model value is the same as the model of the madeBy attribute)
(things with at least 10 repairs values)
(things all of whose repairs values are RepairReport).

Using the syntax of the classic language, we can abbreviate the above, while emphasizing
the term-like nature of descriptions and the constructors used in each:

(and Car

(all model Model)
(all madeBy Manufacturer)
(same-as (model) (madeBy Æ model))
(at-least 10 repairs)
(all repairs RepairReport))

So, for example, the concept term (at-least n p) has constructor at-least, and denotes
objects which are related by the relationship p to at least n other objects; in turn, (all p
C) has as instances exactly those objects which are related by p only to instances of C.

Finally, we present the same concept in a mathematical notation which is more succinct
and preferred in formal work on DLs:

Lemon := Car u
8model:Model u
8madeBy:Manufacturer u
madeBy # (model Æ madeBy) u
� 10 repairs u
8repairs:RepairReport

Unlike preceding formalisms, such as semantic networks and frames (Quillian, 1968; Minsky,
1975), DLs are equipped with a formal semantics, which can be given by a translation into
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�rst-order predicate logic (Borgida, 1994), for example. Moreover, DL systems provide their
users with various inference capabilities that allow them to deduce implicit knowledge from
the explicitly represented knowledge. For instance, the subsumption algorithms allow one to
determine subconcept-superconcept relationships: C is subsumed by D (C v D) if and only
if all instances of C are also instances of D, i.e., the �rst description is always interpreted
as a subset of the second description. For example, the concept Car obviously subsumes the
concept description Lemon, while (at-least 10 repairs) is subsumed by (at-least 8 repairs).

The traditional inference problems for DL systems, such as subsumption, inconsistency
detection, membership checking, are by now well-investigated. Algorithms and detailed
complexity results for realizing such inferences are available for a variety of DLs of di�ering
expressive power | see, e.g., (Baader & Sattler, 2000) for an overview.

1.1 Least Common Subsumer

The least common subsumer (lcs) of concepts is the most speci�c concept description sub-
suming the given concepts. Finding the lcs was �rst introduced as a new inference problem
for DLs by Cohen, Borgida, and Hirsh (1992). One motivation for considering the lcs is to
use it as an alternative to disjunction. The idea is to replace disjunctions like C1 t � � � tCn

by the lcs of C1; : : : ; Cn. Borgida and Etherington (1989) call this operation knowledge-base

vivi�cation. Although, in general, the lcs is not equivalent to the corresponding disjunction,
it is the best approximation of the disjunctive concept within the available language. Using
such an approximation is motivated by the fact that, in many cases, adding disjunction
would increase the complexity of reasoning.1

As proposed by Baader et al. (Baader & K�usters, 1998; Baader, K�usters, & Molitor,
1999), the lcs operation can be used to support the \bottom-up" construction of DL knowl-
edge bases, where, roughly speaking, starting from \typical" examples an lcs algorithm
is used to compute a concept description that (i) contains all these examples, and (ii) is
the most speci�c description satisfying property (i). Baader and K�usters have presented
such an algorithm for cyclic ALN -concept descriptions; ALN is a relatively simple lan-
guage allowing for concept conjunction, primitive negation, value restrictions, and number
restrictions. Also, Baader et al. (1999) have proposed an lcs algorithm for a DL allowing
existential restrictions instead of number restrictions.

Originally, the lcs was introduced as an operation in the context of inductive learning
from examples (Cohen et al., 1992), and several papers followed up this lead. The DLs
considered were mostly sublanguages of Classic which allowed for same-as equalities, i.e.,
expressions like (same-as (madeBy) (model Æ madeBy)). Cohen et al. proposed an lcs
algorithm for ALN and a language that allows for concept conjunction and same-as, which
we will call S. The algorithm for S was extended by Cohen and Hirsh (1994a) to Core-

Classic, which additionally allows for value restrictions (see (Cohen & Hirsh, 1994b) for
experimental results). Finally, Frazier and Pitt (1996) presented an lcs algorithm for full
Classic.

1. Observe that if the language already allows for disjunction, we have lcs(C1; : : : ; Cn) � C1 t � � � tCn. In
particular, this means that, for such languages, the lcs is not really of interest.
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1.2 Total vs. Partial Attributes

In most knowledge representation systems, including DLs, functional relationships, here
called attributes (also called \features" in the literature), are distinguished as a subclass
of general relationships, at least in part because functional restrictions occur so frequently
in practice2. In the above example, clearly madeBy and model are meant to be attributes,
thus making unnecessary number restrictions like (and (at-most 1 madeBy) (at-least

1 madeBy)). In addition, distinguishing attributes helps identify tractable subsets of DL
constructors: in Classic, coreferences between attribute chains (as in the above examples)
can be reasoned with eÆciently (Borgida & Patel-Schneider, 1994), while if we changed to
roles, e.g., allowed (same-as (repairs) (ownedBy Æ repairsPaidFor)), the subsump-
tion problem becomes undecidable (Schmidt-Schau�, 1989).

Whereas the distinction between roles and attributes in DLs is both theoretically and
practically well understood, we have discovered that another distinction, namely the one be-
tween attributes being interpreted as total functions (total attributes) and those interpreted
as partial functions (partial attributes), has \slipped through the cracks" of contemporary
research. A total attribute always has a value in \the world out there", even if we do not
know it in the knowledge base currently. A partial attribute may not have a value. This
distinction is useful in practice, since there is a di�erence between a car possibly, but not
necessarily, having a CD player, and the car necessarily having a manufacturer (which just
may not be known in the current knowledge base). The latter is modeled by de�ning the
attribute madeBy to be a total attribute. Note that with madeBy being a total attribute,
every individual in the world of discourse (not only cars) must have a �ller for madeBy.
Since, however, no structural information is provided for �llers of madeBy of non-car indi-
viduals, all implications drawn about these �llers are trivial. Thus, making madeBy a total
attribute seems reasonable in this case. A car's CD player, on the other hand, should be
modeled by a partial attribute to express the fact that cars are not required to have a CD
player. To indicate that a particular car does have a CD player, one would have to add the
description (at-least 1 CDplayer).

1.3 New Results

As mentioned above, in conjunction with the same-as constructor, roles and attributes
behave very di�erently with respect to subsumption. The main objective of this paper is to
show that the distinction between total and partial attributes induces signi�cantly di�erent
behaviour in computing the lcs, in the presence of same-as. More precisely, the purpose of
this paper is twofold.

First, we show that with respect to the complexity of deciding subsumption there is no
di�erence between partial and total attributes. Borgida and Patel-Schneider (1994) have
shown that when attributes are total, subsumption of classic concept descriptions can
be decided in polynomial time. As shown in the present work, slight modi�cations of the
algorithm proposed by Borgida and Patel-Schneider suÆce to handle partial attributes.

2. Readers coming from the Machine Learning community should be aware of the di�erence between our
\attributes" (functional roles) and their \attributes", which are components of an input feature vector
that usually describes an exemplar.
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Moreover, these modi�cations do not change the complexity of the algorithm. Thus, partial
and total attributes behave very similarly from the subsumption point of view.

Second, and this is the more surprising result of this paper, the distinction between
partial and total attributes does have a signi�cant impact on the problem of computing the
lcs. Previous results on sublanguages of classic show that if partial attributes are used,
the lcs of two concept descriptions always exists, and can be computed in polynomial time.
If, however, only total attributes are involved, the situation is very di�erent. The lcs need
no longer even exist, and in case it exists its size may grow exponential in the size of the
given concept descriptions. Nevertheless, the existence of the lcs of two concept descriptions
can be decided in polynomial time.

Speci�cally, in previous work (Cohen et al., 1992; Cohen & Hirsh, 1994a; Frazier &
Pitt, 1996) concerning the lcs computation in classic, constructions and proofs have been
made without realizing the di�erence between the two types of attributes. Without going
into details here, the main problem for lcs is that merely �nite graphs have been employed,
making the constructions applicable only for the partial attribute case. In addition to �xing
these problems, this paper also presents the proper handling of inconsistent concepts in the
lcs algorithm for classic presented by Frazier and Pitt (1996).

Although our results about subsumption are not as intriguing, the proofs to show the
results on the lcs make extensive use of the corresponding subsumption algorithms, which
is one reason we present them beforehand in this paper.

Returning to the general di�erences between the cases of total and partial attributes,
one could say that the fundamental cause for the di�erences lies in the same-as constructor,
whose semantics normally requires that (i) the two chains of attributes each have a value,
and (ii) that these values coincide. In the case of total attributes, same-as obeys the principle

C v u # v implies C v u Æ w # v Æ w

where u,v, and w are sequences of total attributes, e.g., (madeBy Æmodel), because condition
(i) is ensured by the total aspect of all the attributes. In the case of partial attributes, the
above implication does not hold, because w, and hence uÆw, is no longer guaranteed to have
a value, implying that the same-as restriction may not hold. Clearly, this implication a�ects
the results of subsumption. As far as lcs is concerned, a certain graph (representing the lcs
of the two given concepts) may be in�nite in the case of total attributes, thus jeopardizing
the existence of the lcs.

The more general signi�cance of our result is that knowledge representation language
designers and users need to explicitly check at the beginning whether they deal with to-
tal or partial attributes because the choice can have signi�cant e�ects. Although in some
situations total attributes are convenient, to guarantee the existence of attributes without
having to resort to number restrictions, our results show that they can have drawbacks.
All things considered, requiring all attributes to be total appears to be less desirable. Con-
cerning classic, the technical results in this paper support the use of partial attributes
because these ensure the existence of the lcs and its computation in polynomial time as
well as the eÆcient decision of subsumption. Moreover, the current implementation of the
classic subsumption algorithm does not require major changes in order to handle partial
attributes.
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The outline of this paper is as follows: In the following section, the basic notions neces-
sary for our investigations are introduced. Then, in the two subsequent sections, subsump-
tion and lcs computation in classic with partial attributes is investigated. More precisely,
in Section 3 we o�er a subsumption algorithm for the sublanguage classic

� of classic,
which contains all main classic-constructors; in Section 4, we present an lcs algorithm
for classic� concept descriptions, along the lines of that proposed by Cohen and Hirsh
(1994a), and formally prove its correctness, thereby resolving some shortcomings of previous
lcs algorithms, which did not handle inconsistencies properly. Finally, Section 5 covers the
central new result of this paper, i.e., the lcs computation in presence of total attributes.
For this section, we restrict our investigations to the sublanguage S of classic� in order to
concentrate on the changes caused by going from partial to total attributes. Nevertheless,
we strongly conjecture that all the results proved in this section can easily be extended to
classic

� and classic using similar techniques as the one employed in the two previous
sections.

2. Formal Preliminaries

In this section, we introduce the syntax and semantics of the description languages consid-
ered in this paper and formally de�ne subsumption and equivalence of concept descriptions.
Finally, the least common subsumer of concept descriptions is speci�ed.

De�nition 1 Let C, R, and A be disjoint �nite sets representing the set of concept names,
the set of role names, and the set of attribute names. The set of all classic�-concept
descriptions over C, R, and A is inductively de�ned as follows:

� Every element of C is a concept description (concept name, like Car).

� The symbol > is a concept description (top concept, denoting the universe of all
objects).

� If r 2 R is a role and n � 0 is a nonnegative integer, then �nr and �nr are concept
descriptions (number restrictions, like � 10 repairs).

� If C and D are concept descriptions, then C u D is a concept description (concept
conjunction).

� If C is a concept description and r is a role or an attribute, then 8r:C is a concept

description (value restriction, like 8madeBy:Manufacturer).

� If k; h � 0 are non-negative integers and a1; : : : ; ak; b1; : : : ; bh 2 A are attributes, then

a1 Æ � � � Æ ak # b1 Æ � � � Æ bh is a concept description (same-as equality, like madeBy #
model Æ madeBy). Note that the two sequences may be empty, i.e., k = 0 or h = 0.
The empty sequence is denoted by ".

Often we dispense with Æ in the composition of attributes. For example, the sequence
a1 Æ � � � Æak is simply written as a1 � � � ak. Moreover, we will use 8r1 � � � rn:C as abbreviation
of 8r1:8r2 � � � 8rn:C, where we have 8":C in case n = 0, and this denotes C.

As usual, the semantics of classic� is de�ned in a model-theoretic way by means of
interpretations.
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De�nition 2 An interpretation I consists of a nonempty domain �I and an interpretation
function �I . The interpretation function assigns extensions to atomic identi�ers as follows:

� The extension of a concept name E is some subset EI of the domain.

� The extension of a role name r is some subset rI of �I ��I.

� The extension of an attribute name a is some partial function aI from �I to �I , i.e.,

if (x; y1) 2 aI and (x; y2) 2 aI then y1 = y2.

Given roles or attributes ri, we use (r1 � � � rn)I to denote the composition of the binary

relations rIi . If n = 0 then the result is "I , which denotes the identity relation, i.e., "I :=
f(d; d) j d 2 �Ig. For an individual d 2 �I, we de�ne rI(d) := fe j (d; e) 2 rIg. If the ri's
are attributes, we say that (r1 � � � rn)I is de�ned for d i� (r1 � � � rn)I(d) 6= ;; occasionally,
we will refer to (r1 � � � rn)(d)I as the image of d under (r1 � � � rn)I(d).

The extension CI of a concept description C is inductively de�ned as follows:

� >I := �I;

� (� n r)I := fd 2 �I j cardinality(fe 2 �I j (d; e) 2 rIg) � ng;

� (� n r)I := fd 2 �I j cardinality(fe 2 �I j (d; e) 2 rIg) � ng;

� (C uD)I := CI \DI ;

� (8r:C)I := fd 2 �I j rI(d) � CIg where r is a role or an attribute;

� (a1 � � � ak # b1 � � � bh)
I := fd 2 �I j (a1 � � � ak)

I and (b1 � � � bh)
I are de�ned for d

and (a1 � � � ak)
I(d) = (b1 � � � bh)

I(d)g:

Note that in the above de�nition attributes are interpreted as partial functions. Since the
main point of this paper is to demonstrate the impact of di�erent semantics for attributes,
we occasionally restrict the set of interpretations to those that map attributes to total

functions. Such interpretations are called t-interpretations and the attributes interpreted
in this way are called total attributes in order to distinguish them from partial ones.

We stress, as remarked in the introduction, that in the de�nition of (a1 � � � ak # b1 � � � bh)
I ,

a1 � � � ak and b1 � � � bh must be de�ned on d in order for d to satisfy the same-as restriction.
Although this is the standard semantics for same-as equalities, one could also think of
relaxing this restriction. For example, the same-as condition might be speci�ed to hold if
either both paths are unde�ned or both images are de�ned and have identical values. A
third de�nition might be satis�ed if even just one of the paths is unde�ned. Each of these
de�nitions of the semantics of same-as might lead to di�erent results. However, in this
paper we only pursue the standard semantics.

The subsumption relationship between concept descriptions is de�ned as follows.

De�nition 3 A concept description C is subsumed by the concept description D (C v D
for short) if and only if for all interpretations I, CI � DI. If we consider only total

interpretations, we get t-subsumption: C vt D i� CI � DI for all t-interpretations I.
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Having de�ned subsumption, equivalence of concept descriptions is de�ned in the usual way:
C � D if and only if C v D and D v C. T-equivalence C �t D is speci�ed analogously.

As already mentioned in the introduction, the main di�erence between partial and total
attributes with respect to subsumption is that u # v vt u Æ w # v Æ w holds for all attribute
chains u; v; w, whereas it is not necessarily the case that u # v v u Æ w # v Æ w.

Finally, before introducing the lcs operation formally and concluding this section, we
comment on the expressive power of classic�, since (syntactically) classic� lacks some
common constructors. Although classic

�, as introduced here, does not contain the bottom
concept ? explicitly, it can be expressed by, e.g., (� 1 r) u (� 0 r). We will use ? as an
abbreviation for inconsistent concept descriptions. Furthermore, primitive negation, i.e.,
negation of concept names, can be simulated by number restrictions. For a concept name
E one can replace every occurrence of E by (� 1 rE) and the negation :E of E by (� 0 rE)
where rE is a new role name. Finally, for an attribute a the following equivalences hold:
(� n a) � ? for n � 2; (� 1 a) � (a # a); (� 0 a) � >; (� n a) � > for n � 1; and
(� 0 a) � (8a:?). These show that we do not lose any expressive power by not allowing
for number restrictions on attributes. Still, full classic is somewhat more expressive than
classic�. This is mainly due to the introduction of individuals (also called nominals) in
classic. For the sake of completeness we give the syntax of the full classic language.3

This requires a further set, O, representing the set of individual names. Then we can de�ne
two additional concept constructors

� fe1; :::; emg, for individuals ei 2 O (enumeration as in fFall; Summer; Springg)

� p : e for a role or attribute p, and an individual e (�lls as in currentSeason : Summer).

In a technical report, K�usters and Borgida (1999) extend some of the results presented in
this work to full classic, in the case when individuals have a non-standard semantics.

The least common subsumer of a set of concept descriptions is the most speci�c concept
subsuming all concept descriptions of the set:

De�nition 4 The concept description D is the least common subsumer (lcs) of the concept
descriptions C1; : : : ; Cn (lcs(C1; : : : ; Cn) for short) i� i) Ci v D for all i = 1; : : : ; n and ii)

for every D0 with that property D v D0. Analogously, we de�ne lcst(C1; : : : ; Cn) using vt

instead of v.

Note that the lcs of concept descriptions may not exist, but if it does, by de�nition it is
uniquely determined up to equivalence. In this sense, we may refer to the lcs.

In the following two sections, attributes are always interpreted as partial functions; only
in Section 5 do we consider total attributes.

3. Characterizing Subsumption in classic
�

In this section we modify the characterization of t-subsumption for Classic, as proposed
by Borgida and Patel-Schneider (1994), to handle the case of partial attributes. We do

3. Even here we are omitting constructs dealing with integers and other so-called \host individuals", which
cannot have roles of their own and can only act as role/attribute �llers.
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so in detail, because the tools used for deciding subsumption are intimately related to the
computation of lcs.

T-subsumption in Classic is decided by a multi-part process. First, descriptions are
turned into description graphs. Next, description graphs are put into canonical form, where
certain inferences are explicated and other redundancies are reduced by combining nodes
and edges in the graph. Finally, t-subsumption is determined between a description and a
canonical description graph.

In order to \inherit" the proofs, we have tried to minimize the necessary adjustments to
the speci�cation in (Borgida & Patel-Schneider, 1994). For this reason, roughly speaking,
attributes are treated as roles unless they form part of a same-as equality. (Note that
attributes participating in a same-as construct must have values!) To some extent, this
will allow us to adopt the semantics of the original description graphs, which is crucial for
proofs. However, the two di�erent occurrences of attributes, namely, in a same-as equality
vs. a role in a value-restriction, require us to modify and extend the de�nition of description
graphs, the normalization rules, and the subsumption algorithm itself.

In the following, we present the steps of the subsumption algorithm in detail. We start
with the de�nition of description graphs.

3.1 Description Graphs

Intuitively, description graphs re
ect the syntactic structure of concept descriptions. A
description graph is a labeled, directed multigraph, with a distinguished node. Roughly
speaking, the edges (a-edges) of the graph capture the constraints expressed by same-as
equalities. The labels of nodes contain, among others, a set of so-called r-edges, which
correspond to value restrictions. Unlike the description graphs de�ned by Borgida and
Patel-Schneider, here the r-edges are not only labeled with role names but also with attribute
names. (We shall comment later on the advantage of this modi�cation in order to deal with
partial attributes.) The r-edges lead to nested description graphs, representing the concepts
of the corresponding value restrictions.

Before de�ning description graphs formally, in Figure 1 we present a graph corresponding
to the concept description Lemon de�ned in the introduction. We use G(Manufacturer),
G(Model), as well as G(RepairReport) to denote description graphs for the concept names
Manufacturer, Model, and RepairReport. These graphs are very simple; they merely consist
of one node, labeled with the corresponding concept name. In general, such graphs can
be more complex since a value restriction like 8r:C leads to a (possibly complex) nested
concept description C.

Although number restrictions on attributes are not allowed, r-edges labeled with at-
tributes, like model and madeBy, always have the restriction [0; 1] in order to capture the
semantics of attributes. Formally, description graphs, nodes, and edges are de�ned mutually
recursively as follows:

De�nition 5 A description graph G is a tuple (N;E; n0; l), consisting of a �nite set N of

nodes; a �nite set E of edges (a-edges); a distinguished node n0 2 N (root of the graph);
and a function l from N into the set of labels of nodes. We will occasionally use the notation

G:Nodes, G:Edges, and G:root to access the components N , E and n0 of the graph G.
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madeBy

model

madeBy

madeBy [0; 1]

f>g

f>g

model [0; 1]repairs

[10;1]

G(RepairReport) G(Model)

G(Manufacturer)

fCar;>g

Figure 1: A description graph for Lemon, where the large node is the root of the graph

An a-edge is a tuple of the form (n1; a; n2) where n1, n2 are nodes and a is an attribute

name.

A label of a node is de�ned to be ? or a tuple of the form (C;H), consisting of a �nite

set C of concept names (the atoms of the node) and a �nite set H of tuples (the r-edges of

the node). Concept names in a description graph stand for atomic concept names and >.
We will occasionally use the notation n:Atoms and n:REdges to access the components C
and H of the node n.

An r-edge is a tuple, (r;m;M;G0), consisting of a role or attribute name, r; a min, m,

which is a non-negative integer; a max, M , which is a non-negative integer or 1; and a

(recursively nested) description graph G0. The graph G0 will often be called the restriction
graph of the node for the role r. We require the nodes of G0 to be distinct from all the nodes

of G and other nested description graphs of G. If r is an attribute, then we require: m = 0
and M 2 f0; 1g.

Given a description graph G and a node n 2 G:Nodes, we de�ne Gjn to be the graph
(N;E; n; l); Gjn is said to be rooted at n. A sequence p = n0a1a2 � � � aknk with k � 0 and
(ni�1; ai; ni) 2 G:Edges, i = 1; : : : ; k, is called path in G from the node n0 to nk (p 2 G
for short); for k = 0 the path p is called empty; w = a1 � � � ak is called the label of p (the
empty path has label "); p is called rooted if n0 is the root of G. Occasionally, we write
n0a1 � � � aknk 2 G omitting the intermediate nodes.

Throughout this work we make the assumption that description graphs are connected.
A description graph is said to be connected if all nodes of the graph can be reached by a
rooted path and all nested graphs are connected. The semantics of description graphs (see
De�nition 6) is not altered if nodes that cannot be reached from the root are deleted.

In order to merge description graphs we need the notion of \recursive set of nodes" of
a description graph G: The recursive set of nodes of G is the union of the nodes of G and
the recursive set of nodes of all nested description graphs of G.

Just as for concept descriptions, the semantics of description graphs is de�ned by means
of an interpretation I. We introduce a function � which assigns an individual of the domain
of I to every node of the graph. This ensures that all same-as equalities are satis�ed.
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De�nition 6 Let G = (N;E; n0; l) be a description graph and let I be an interpretation.
An element, d, of �I is in GI , i� there is some total function, �, from N into �I such

that

1. d = �(n0);

2. for all n 2 N , �(n) 2 nI; and

3. for all (n1; a; n2) 2 E we have (�(n1);�(n2)) 2 aI .

The extension nI of a node n with label ? is the empty set. An element, d, of �I is in nI,
where l(n) = (C;H), i�

1. for all B 2 C, we have d 2 BI; and

2. for all (r;m;M;G0) 2 H,

(a) there are between m and M elements, d0, of the domain such that (d; d0) 2 rI;
and

(b) d0 2 G0I for all d0 such that (d; d0) 2 rI.

Cohen and Hirsh (1994a) de�ned the semantics of description graphs in a di�erent way,
avoiding the introduction of a total function �. The problem with their de�nition is,
however, that it is only well-de�ned for acyclic graphs, which, for example, excludes same-
as equalities of the form " # spouse Æ spouse, or even p # p Æ q.

The semantics of the graphs proposed by Borgida and Patel-Schneider (1994) is similar
to De�nition 6. However, in that paper a-edges captured not only same-as equalities but
also all value restrictions on attributes. Still, in the context of partial attributes, we could
not de�ne the semantics of description graphs by means of a total function � since some
attributes might not have �llers. Specifying the semantics of description graphs in terms
of partial mappings � would make the de�nition even longer. Furthermore, the proofs in
(Borgida & Patel-Schneider, 1994) would not carry over as easily. Therefore, in order to
keep � a total function, value restrictions of attributes are initially always translated into r-
edges. The next section will present the translation of concept descriptions into description
graphs in detail.

Having de�ned the semantics of description graphs, subsumption and equivalence be-
tween description graphs (e.g., H v G) as well as concept descriptions and description
graphs (e.g., C v G) is de�ned in the same way as subsumption and equivalence between
concept descriptions.

3.2 Translating Concept Descriptions into Description Graphs

Following Borgida and Patel-Schneider (1994), a classic� concept description is turned
into a description graph by a recursive process. In this process, nodes and description
graphs are often merged.

De�nition 7 The merge of two nodes, n1 � n2, is a new node n with the following label:

if n1 or n2 have label ?, then the label of n is ?. Otherwise if both labels are not equal to

?, then n:Atoms = n1:Atoms [ n2:Atoms and n:REdges = n1:REdges [ n2:REdges.
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If G1 = (N1; E1; n1; l1) and G2 = (N2; E2; n2; l2) are two description graphs with disjoint
recursive sets of nodes, then the merge of G1 and G2, G := G1�G2 = (N;E; n0; l), is de�ned
as follows:

1. n0 := n1 � n2;

2. N := (N1 [N2 [ fn0g) n fn1; n2g;

3. E := (E1[E2)[n1=n0; n2=n0], i.e., E is the union of E1 and E2 where every occurrence

of n1; n2 is substituted by n0;

4. l(n) := l1(n) for all n 2 N1 n fn1g; l(n) := l2(n) for all n 2 N2 n fn2g; and l(n0) is
de�ned by the label obtained by merging n1 and n2.

Now, a classic
�-concept description C can be turned into its corresponding description

graph G(C) by the following translation rules.

1. > is turned into a description graph with one node n0 and no a-edges. The only atom
of the node is > and the set of r-edges is empty.

2. A concept name is turned into a description graph with one node and no a-edges. The
atoms of the node contain only the concept name and the node has no r-edges.

3. A description of the form (�nr) is turned into a description graph with one node and
no a-edges. The node has as its atoms > and it has a single r-edge (r; n;1; G(>))
where G(>) is speci�ed by the �rst translation rule.

4. A description of the form (� n r) is turned into a description graph with one node
and no a-edges. The node has as its atom > and it has a single r-edge (r; 0; n;G(>)).

5. A description of the form a1 � � � ap # b1 � � � bq is turned into a graph with pairwise
distinct nodes n1; : : : ; np�1;m1; : : : ;mq�1, the root m0 := n0, and an additional node
np = mq := n; the set of a-edges consists of (n0; a1; n1), (n1; a2; n2); : : : ; (np�1; ap; np)
and (m0; b1;m1), (m1; b2;m2), : : :, (mq�1; bq;mq), i.e., two disjoint paths which coin-
cide on their starting point, n0, and their �nal point, n. (Note that for p = 0 the �rst
path is the empty path from n0 to n0 and for q = 0 the second path is the empty path
from n0 to n0.) All nodes have > as their only atom and no r-edges.

6. A description of the form 8r:C, where r is a role, is turned into a description graph
with one node and no a-edges. The node has the atom f>g and it has a single r-edge
(r; 0;1; G(C)).

7. A description of the form 8a:C, where a is an attribute, is turned into a description
graph with one node and no a-edges. The node has the atom f>g and it has a single
r-edge (a; 0; 1; G(C)). (In the work by Borgida and Patel-Schneider, the concept
description 8a:C is turned into an a-edge. As already mentioned, this would cause
problems for attributes interpreted as partial functions when de�ning the semantics
by means of � as speci�ed in De�nition 6.)
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8. To turn a description of the form C uD into a description graph, construct G(C) and
G(D) and merge them.

Figure 1 shows the description graph built in this way for the concept Lemon of our example.
It can easily be veri�ed that the translation preserves extensions:

Theorem 1 A concept description C and its corresponding description graph G(C) are

equivalent, i.e.,CI = G(C)I for every interpretation I.

The main diÆculty in the proof of this theorem is in showing that merging two description
graphs corresponds to the conjunction of concept descriptions.

Lemma 1 For all interpretations I, if n1 and n2 are nodes, then (n1 � n2)
I = nI1 \ n

I
2 ; if

G1 and G2 are description graphs then (G1 �G2)
I = GI

1 \GI
2 .

The proof of the preceding statement is rather simple and like the one in (Borgida & Patel-
Schneider, 1994).

3.3 Translating Description Graphs to Concept Descriptions

Although the characterization of subsumption does not require translating description
graphs back to concept descriptions, this translation is presented here to show that con-
cept descriptions and description graphs are equivalent representations of classic� concept
descriptions. In subsequent sections, we will in fact need to turn graphs into concept de-
scriptions.

The translation of a description graph G can be speci�ed in a rather straightforward
recursive de�nition. The main idea of the translation stems from Cohen and Hirsh (1994a),
who employed spanning trees to translate same-as equalities. A spanning tree of a (con-
nected) graph is a tree rooted at the same node as the graph and containing all nodes of the
graph. In particular, it coincides with the graph except that some a-edges are deleted. For
example, one possible spanning tree T for G in Figure 1 is obtained by deleting the a-edge
labeled madeBy, whose origin is the root of G.

Now, let G be a connected description graph and T be a spanning tree for it. Then,
the corresponding concept description CG is obtained as a conjunction of the following
descriptions:

1. CG contains (i) a same-as equality v # v for every leaf n of T , where v is the label
of the rooted path in T to n; and (ii) a same-as equality v1 Æ a # v2 for each a-edge
(n1; a; n2) 2 G:Edges not contained in T , where vi is the label of the rooted path to
ni in T , i = 1; 2.

2. for every node n in T , CG contains a value restriction 8v:Cn, where v is the label of
the rooted path in T to n, and Cn denotes the translation of the label of n, i.e., Cn is
a conjunction obtained as follows:

� every concept name in the atoms of n is a conjunct in Cn;

� for every r-edge (r;m;M;G0) of n, Cn contains (a) the number restrictions (�mr)
and (�Mr) (in case r is a role andM 6=1) and (b) the value restriction 8r:CG0 ,
where CG0 is the recursively de�ned translation of G0.
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In case the set of atoms and r-edges of n is empty, de�ne Cn := >.

Referring to the graph G in Figure 1, CG contains the same-as equalities model ÆmadeBy #
model ÆmadeBy and madeBy # model ÆmadeBy. Furthermore, if n0 denotes the root of G,
CG has the value restrictions 8":Cn0 , 8model:>, and 8modelmadeBy:>, where Cn0 corre-
sponds to Lemon as de�ned in the introduction, but without the same-as equality. Note
that, although in this case the same-as equality model ÆmadeBy # model ÆmadeBy is not
needed, one cannot dispense with 1.(i) in the construction above, as illustrated by the fol-
lowing example: Without 1.(i), the description graph G(a # a) would be turned into the
description >, which is not equivalent to a # a since the same-as equality requires that the
path a has a value, which may not be the case.

It is easy to prove that the translation thus de�ned is correct in the following sense
(K�usters & Borgida, 1999).

Lemma 2 Every connected description graph G is equivalent to its translation CG, i.e., for

all interpretations I: GI = CI
G.

3.4 Canonical Description Graphs

In the following we occasionally refer to \marking a node incoherent"; this means that the
label of this node is changed to ?. \Marking a description graph as incoherent" means that
the description graph is replaced by the graph G(?) corresponding to ?, i.e., the graph
consisting only of one node with label ?.

One important property of canonical description graphs is that they are deterministic,
i.e., every node has at most one outgoing edge (a-edge or r-edge) labeled with the same
attribute or role name. Following Borgida and Patel-Schneider (1994), in order to turn a
description graph into a canonical graph we need to merge a-edges and r-edges. In addition,
di�erent from their work, it might be necessary to \lift" r-edges to a-edges.

To merge two a-edges (n; a; n1) and (n; a; n2) in a description graph G, replace them
with a single new edge (n; a; n0) where n0 is the result of merging n1 and n2. In addition,
replace n1 and n2 by n0 in all other a-edges of G.

In order to merge two r-edges (r; s1; k1; G1), (r; s2; k2; G2) replace them by the new r-edge
(r;max(s1; s2);min(k1; k2); G1 �G2).

To lift up an r-edge (a;m;M;Ga) of a node n in a concept graph G with an a-edge
(n; a; n1), remove it from n:REdges, and augment G by adding Ga:Nodes to G:Nodes,
Ga:Edges to G:Edges, as well as adding (n; a;Ga:Root) to G:Edges. A precondition for
applying this transformation is that M = 1, or M = 0 and Ga corresponds to the graph
G(?). The reason for this precondition is that if an r-edge of the form (a; 0; 0; Ga) is lifted
without Ga being inconsistent, the fact that no a-successors are allowed is lost. Normaliza-
tion rule 5 (see below) will guarantee that this precondition can always be satis�ed.

A description graph G is transformed into canonical form by exhaustively applying the
following normalization rules. A graph is called canonical if none of these rules can be
applied.

1. If some node in G is marked incoherent, mark the description graph as incoherent.
(Reason: Even if the node is not a root, attributes corresponding to a-edges must always
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have a value (since they participate in same-as equalities), and this value cannot belong to the

empty set.)

2. If some r-edge in a node has its min greater than its max, mark the node incoherent.
(Reason: � 2 r u� 1 r � ?)

3. Add > to the atoms of every node, if absent.

4. If some r-edge in a node has its restriction graph marked incoherent, change its max
to 0. (Reason: (� 0 r) � 8r:?.)

5. If some r-edge in a node has a max of 0, mark its restriction graph as incoherent.
(Reason: See 4.)

6. If some r-edge is of the form (r; 0;1; G0) where G0 only contains one node with empty
set of atoms or with the atoms set to f>g and no r-edges, then remove this r-edge.
(Reason: 8r:> � >.)

7. If some node has two r-edges labeled with the same role, merge the two edges, as
described above. (Reason: 8r:C u 8r:D � 8r:(C uD).)

8. If some description graph has two a-edges from the same node labeled with the
same attribute, merge the two edges, as described above. (Reason: 8a:C u 8a:D �

8a:(C uD).)

9. If some node in a graph has both an a-edge and an r-edge for the same attribute, then
\lift up the r-edge" if the precondition is satis�ed (see above). (Reason: The value

restrictions imposed on attributes that participate in same-as equalities must be made explicit

and gathered at one place similar to the previous to cases.)

We need to show that the transformations to canonical form do not change the semantics
of the graph. The main diÆculty is in showing that the merging processes and the lifting
preserve the semantics. The only di�erence from (Borgida & Patel-Schneider, 1994) is that
in addition to merging r-edges and a-edges we also need to lift up r-edges. Therefore,
we omit the proofs showing that merging edges preserves extensions. The proofs of the
following two lemmas are routine and quite similar to the one of Lemma 5.

Lemma 3 Let G = (N;E; n0; l) be a description graph with two mergeable a-edges and let
G0 = (N 0; E0; n0; l0) be the result of merging these two a-edges. Then, G � G0.

Lemma 4 Let n be a node with two mergeable r-edges and let n0 be the node with these
edges merged. Then, nI = n0I for every interpretation I.

Lemma 5 Let G = (N;E; n0; l) be a description graph with node n and a-edge (n; a; n00).
Suppose n has an associated r-edge (a;m;M;Ga). Provided that the precondition for lifting
r-edges is satis�ed and that G0 = (N 0; E0; n0; l0) is the result of this transformation, then

G � G0.

Proof. It is suÆcient to show that GI
jn = G0I

jn, since only the label of n is changed in G0

and only n obtains an additional a-edge, which points to the graph Ga not connected to
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fModel;>g

fManufacturer;>g

model

madeBy

model

fCar;>g

repairs

[10;1]

GRepairReport

Figure 2: The canonical description graph for Lemon, where the left-most node is the root.

the rest of G0. W.l.o.g. we therefore may assume that n is the root of G, i.e., n = n0. Let
d 2 GI . Thus, there is a function � from N into �I as speci�ed in De�nition 6 and an
individual e such that d = �(n), e = �(n00), and (d; e) 2 aI . This implies e 2 GI

a . Hence,
there exists a function �0 from Ga:Nodes into �I for Ga and e satisfying the conditions in
De�nition 6. Since the sets of nodes of G and Ga are disjoint, we can de�ne �00 to be the
union of � and �0, i.e., �00(m) := �(m) for all nodes m in G and �00(m) := �0(m) for all
nodes m in Ga. Since, by construction, for the additional a-edge (n; a;Ga:Root) 2 E0 we
have (�00(n);�00(Ga:Root)) 2 aI , it follows that all conditions in De�nition 6 are satis�ed
for d and G0, and thus, d 2 G0I .

Now let d 2 G0I . Thus, there is a function �00 from N 0 into �I according to De�nition 6.
Let e := �00(Ga:Root) = �00(n00). Let G00 be the description graph we obtain from G0 by
deleting the nodes corresponding to Ga, which is the same graph as G without the r-edge
(a;m;M;Ga). If we restrict �

00 to the nodes of G00, then it follows d 2 G00I . Furthermore,
restricting �00 to the nodes of Ga yields e 2 GI

a . In particular, Ga can not be marked
incoherent. Then, our precondition ensures M = 1. Thus, since e is the only a-successor of
d, we can conclude d 2 GI . ut

Having dealt with the issue of merging and lifting, it is now easy to verify that \normaliza-
tion" does not a�ect the meaning of description graphs.

Theorem 2 If G is a description graph and G0 is the corresponding canonical description

graph, then G � G0.

As an example, the canonical description graph of the graph given in Figure 1 is depicted
in Figure 2.

3.5 Subsumption Algorithm

The �nal part of the subsumption process is checking to see if a canonical description graph
is subsumed by a concept description. As in Borgida and Patel-Schneider (1994), where
attributes are total, it turns out that it is not necessary to turn the potential subsumer
into a canonical description graph. The subsumption algorithm presented next can also be
considered as a characterization of subsumption.
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Algorithm 1 (Subsumption Algorithm) Given a concept description D and descrip-
tion graph G = (N;E; n0; l), subsumes?(D;G) is de�ned to be true if and only if one of the

following conditions hold:

1. The description graph G is marked incoherent.

2. D is a concept name or >, and D is an element of the atoms of n0.

3. D is (� n r) and i) some r-edge of n0 has r as its role, and min greater than or equal
to n; or ii) n = 0.

4. D is (� n r) and some r-edge of n0 has r as its role, and max less than or equal to n.

5. D is a1 � � � an # b1 � � � bm, and there are rooted paths with label a1 � � � an and b1 � � � bm
in G ending at the same node.

6. D is 8r:C, for a role r, and either (i) some r-edge of n0 has r as its role and G0

as its restriction graph with subsumes?(C;G0); or (ii) subsumes?(C;G(>)). (Reason:
8r:> � >.)

7. D is 8a:C, for an attribute a, and (i) some a-edge of G is of the form (n0; a; n
0), and

subsumes?(C; (N;E; n0; l)); or (ii) some r-edge of n0 has a as its attribute, and G0 as

its restriction graph with subsumes?(C;G0); or (iii) subsumes?(C;G(>)).

8. D is E u F and both subsumes?(E;G) and subsumes?(F;G) are true.

There are only two di�erences between this algorithm and the one for total attributes pre-
sented by Borgida and Patel-Schneider (see also Algorithm 2). First, in the partial attribute
case, given D = 8a:C, one needs to look up the value restriction either in some a-edge or
some r-edge of G, since attributes can label both a-edges and r-edges. (In the total attribute
case, attributes can only label a-edges so that examining r-edges was not necessary.) The
second and most important distinction is the treatment of same-as equalities. As shown in
the above algorithm, with D = a1 � � � an # b1 � � � bm one only needs to check whether there
exist two paths labeled v := a1 � � � an and w := b1 � � � bm leading the same node in G. In the
total attribute case, however, it suÆces if there exist pre�xes v0 and w0 of v and w with this
property, as long as the remaining suÆxes are identical.

Soundness and completeness of this algorithm is stated in the following theorem.

Theorem 3 Let C, D be classic� descriptions. Then, C v D i� subsumes?(D;GC),
where GC is the canonical form of G(C).

The soundness of the subsumption algorithm, i.e., the if direction in the theorem stated
above, is pretty obvious. As in (Borgida & Patel-Schneider, 1994), the main point of the
only-if direction (proof of completeness) is that the canonical graph GC is deterministic,
i.e., from any node, given a role or attribute name r, there is at most one outgoing r-edge
or a-edge with r as label. We point the reader to (Borgida & Patel-Schneider, 1994) for
the proof, since it is almost identical to the one for total attributes already published there.
These proofs reveal that, for the if direction of Theorem 3, description graphs need not be
normalized. Thus, one can also show:
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Remark 1 Let G be some (not necessarily normalized description graph) and let D be a
classic

� concept description. Then, subsumes?(D;G) implies G v D.

Borgida and Patel-Schneider argue that the canonical description graph G of a concept
description C can be constructed in time polynomial in the size of C. Furthermore, Al-
gorithm 1 runs in time polynomial in the size of G and D. It is not hard to see that the
changes presented here do not increase the complexity. Thus, soundness and completeness
of the subsumption algorithm provides us with the following corollary.

Corollary 1 Subsumption for classic
� concept descriptions C and D, where attributes

are interpreted as partial functions, can be decided in time polynomial in the size of C and

D.

4. Computing the LCS in classic
�

In this section, we will show that the lcs of two classic� concept descriptions can be stated
in terms of a product of canonical description graphs. A similar result has been proven by
Cohen and Hirsh (1994a) for a sublanguage of classic�, which only allows for concept
names, concept conjunction, value restrictions, and same-as equalities. In particular, this
sublanguage does not allow for inconsistent concept descriptions (which, for example, can be
expressed by con
icting number-restrictions). Furthermore, the semantics of the description
graphs provided by Cohen and Hirsh restricts the results to the case when description graphs
are acyclic. This excludes, for example, same-as equalities of the form � # spouse Æ spouse.

In the following, we �rst de�ne the product of description graphs. Then, we show that
for given concept descriptions C and D, the lcs is equivalent to a description graph obtained
as the product of GC and GD. Our constructions and proofs will be quite close to those in
(Cohen & Hirsh, 1994a).

4.1 The Product of Description Graphs

A description graph represents the constraints that must be satis�ed by all individuals in the
extension of the graph. Intuitively, the product of two description graphs is the intersection
of these constraints|as the product of �nite automata corresponds to the intersection of the
words accepted by the automata. However, in the de�nition of the product of description
graphs special care has to be taken of incoherent nodes, i.e., nodes labeled with ?. Also,
since attributes may occur both in r-edges and a-edges, one needs to take the product
between restriction graphs of r-edges, on the one hand, and the original graphs G1 or G2

(rooted at certain nodes), on the other hand.

De�nition 8 Let G1 = (N1; E1; n1; l1) and G2 = (N2; E2; n2; l2) be two description graphs.

Then, the product G := G1 �G2 := (N;E; n0; l) of the two graphs is recursively de�ned as
follows:

1. N := N1 �N2;

2. n0 := (n1; n2);

3. E :=f((n; n0); a; (m;m0)) j (n; a;m) 2 E1 and (n0; a;m0) 2 E2g;
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4. Let n 2 N1 and n0 2 N2. If l1(n) = ?, then let l((n; n0)) := l2(n
0) and, analogously,

if l2(n
0) = ?, then l((n; n0)) := l1(n). Otherwise, for l1(n) = (S1;H1) and l2(n

0) =
(S2;H2), de�ne l((n; n

0)) := (S;H) where

(a) S := S1 \ S2;

(b) H :=

f(r;min(p1; p2);max(q1; q2); G
0
1 �G0

2) j (r; p1; q1; G
0
1) 2 H1, (r; p2; q2; G

0
2) 2 H2g [

f(a; 0; 1; G1jm �G0
2) j (n; a;m) 2 E1, (a; p2; q2; G

0
2) 2 H2g [

f(a; 0; 1; G0
1 �G2jm) j (a; p1; q1; G

0
1) 2 H1, (n

0; a;m) 2 E2g.

According to this de�nition, if in the tuple (n; n0) some node, say n, is incoherent, then
the label of (n; n0) coincides with the one for n0. The reason for de�ning the label in this
way is that lcs(?; C) � C for every concept description C. This has been overlooked by
Frazier and Pitt (1996), thus making their constructions and proofs only hold for concept
descriptions that do not contain inconsistent subexpressions.

Note that G, as de�ned here, might not be connected, i.e., it might contain nodes that
cannot be reached from the root n0. Even if G1 and G2 are connected this can happen
because all tuples (n1; n2) belong to the set of nodes of G regardless of whether they are
reachable from the root or not. However, as already mentioned in Section 3.1 we may
assume G to be connected.

Also note that the product graph can be translated back into a classic� concept
description since the product of two description graphs is once again a description graph.

4.2 Computing the LCS

We now prove the main theorem of this subsection, which states that the product of two
description graphs is equivalent to the lcs of the corresponding concept descriptions.

Theorem 4 Let C1 and C2 be two concept descriptions, and let G1 and G2 be corresponding

canonical description graphs. Then, CG1�G2
� lcs(C1; C2).

Proof. Let G := G1�G2. We will only sketch the proof showing that CG subsumes C1 and,
by symmetry, also C2 (see (K�usters & Borgida, 1999) for details). By construction, if there
are two rooted paths to a common node in G, then G1 has corresponding paths leading to
the same node as well. Thus, by Theorem 3, the same-as equalities in CG subsume the ones
in C1. Now, let T be a spanning tree of G, (m1;m2) be a node in G, and v be the label of
the rooted path in T to (m1;m2). Then, by construction it follows that there exists a rooted
path in G1 to m1 labeled v. Furthermore, a rather straightforward inductive proof shows
that the concept description E corresponding to the label of (m1;m2) subsumes G1jm1

.
This implies 8v:E w G1. As a result, we can conclude G w G1.

The more interesting part of the proof is to show that CG is not only a common subsumer
of C1 and C2, but the least common subsumer.

We now show by induction over the size of D, C1, and C2 that if D subsumes C1 and
C2, then D subsumes CG: We distinguish di�erent cases according to the de�nition of
\subsumes?". Let G1 = (N1; E1; n1; l1) be the canonical description graph of C1, G2 =
(N2; E2; n2; l2) be the canonical description graph of C2, and G = (N;E; n0; l) = G1 �G2.
In the following, we assume that C1 v D and C2 v D; thus, subsumes?(D;G1) and
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subsumes?(D;G2). We show that subsumes?(D;G). Then, Remark 1 implies G v D, and
thus, CG v D. Note that one cannot use Theorem 3 since G might not be a canonical
description graph.

1. If G is incoherent, then there is nothing to show.

2. If D is a concept name, >, or a number-restriction, then by de�nition of the label of
n0 it is easy to see that subsumes?(D;G).

3. If D is v # w, then there exist nodes m1 in G1 and m2 in G2 such that there are two
paths from n1 to m1 with label v and w, respectively, as well as two paths from n2 to
m2 with label v and w. Then, by de�nition of G it is easy to see that there are two
paths from n0 = (n1; n2) to (m1;m2) with label v and w, respectively. This shows
subsumes?(D;G).

4. If D is 8r:C, r a role or attribute, then one of several cases applies:

(i) n1 and n2 have r-edges with role or attribute r, and restriction graphs G0
1 and G0

2,
respectively, such that subsumes?(C;G0

1) and subsumes?(C;G0
2);

(ii) without loss of generality, n1 has an a-edge pointing to m1 with attribute r, such
that subsumes?(C;G0

1), where G0
1 := G1jm1

; and n2 has an r-edge with restriction
graph G0

2 such that subsumes?(C;G0
2).

In both cases (i) and (ii), subsumes?(C;G0
1�G0

2) follows by induction. Furthermore,
by de�nition of G there is an r-edge with role r and restriction graph G0

1 �G0
2 for n0.

This implies subsumes?(D;G).

(iii) n1 and n2 have a-edges with attribute r leading to nodes m1 and m2, respec-
tively. Then, subsumes?(C;G1jm1

) and subsumes?(C;G2jm2
). By induction, we know

subsumes?(C;G1jm1
�G2jm2

). It is easy to see that Gj(m1;m2) = G1jm1
�G2jm2

. Fur-
thermore, by de�nition there is an a-edge with attribute r from (n1; n2) to (m1;m2)
in G. This shows subsumes?(D;G).

(iv) (without loss of generality) n1 has no r-edge and no a-edge with role or attribute
r. This implies subsumes?(C;G(>)), which also ensures subsumes?(D;G).

5. If D is EuF , then by de�nition of the subsumption algorithm, subsumes?(E;G1) and
subsumes?(E;G2) hold. By induction, we have subsumes?(E;G), and analogously,
subsumes?(F;G). Thus, subsumes?(D;G). ut

As stated in Section 3.5, a canonical description graph for a classic� concept description
can be computed in time polynomial in the size of the concept description. It is not hard
to verify that the product of two description graphs can be computed in time polynomial in
the size of the graphs. In addition, the concept description corresponding to a description
graph can be computed in time polynomial in the size of the graph. Thus, as a consequence
of Theorem 4 we obtain:

Corollary 2 The lcs of two classic� concept descriptions always exists and can be com-

puted in time polynomial in the size of the concept descriptions.
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aj , j 6= i aj , j 6= iai

ai

Figure 3: The canonical description graph for Di, without node labels.

As intimated in (Cohen et al., 1992), this statement does not hold for sequences of concept
descriptions. Intuitively, generalizing the lcs algorithm to sequences of, say, n concept de-
scriptions, means computing the product of n description graphs. The following proposition
shows that the size of such a product graph may grow exponentially in n. Thus, the lcs
computed in this way grows exponentially in the size of the given sequence. However, this
does not imply that this exponential blow-up is unavoidable. There might exist a smaller,
still equivalent representation of the lcs. Nevertheless, we can show that the exponential
growth is inevitable.

Proposition 1 For all integers n � 2 there exists a sequence D1; : : : ;Dn of classic�

concept descriptions such that the size of every classic� concept description equivalent to

lcs(D1; : : : ;Dn) is at least exponential in n where the size of the Di
0s is linear in n.

Proof. As in Cohen et al. (1992), for a given n, de�ne the concept descriptions Di as
follows:

Di := u
j 6=i

(" # aj) u u
j 6=i

(ai # aiaj) u (" # aiai)

where a1; : : : ; an denote attributes. The canonical description graph for Di is depicted in
Figure 3. Using Algorithm 1 it is easy to see that Di v v # w i� the number of ai

0s in v and
the number of ai

0s in w are equal modulo 2 where v; w are words over fa1; : : : ; ang. This
implies that

D1; : : : ;Dn v v # w i� for all 1 � i � n the number of ai
0s in v and

the number of ai
0s in w are equal modulo 2.

(1)

Let s � f1; : : : ; ng be a non-empty set. We de�ne vs := ai1 � � � aik where i1 < � � � < ik
are the elements of s and ws := ai1

3ai2
3 � � � aik

3 with aj
3 := ajajaj. Now let E be the lcs

of D1; : : : ;Dn, and let GE be the corresponding canonical description graph with root n0.
From (1) we know that E v vs # ws for every s � f1; : : : ; ng. Algorithm 1 implies that
the paths from n0 in GE labeled vs and ws exist and that they lead to the same node qs.
Assume there are non-empty subsets s; t of f1; : : : ; ng, s 6= t, such that qs = qt. This would
imply E v vs # vt in contradiction to (1). Thus, s 6= t implies qs 6= qt. Since there are
2n � 1 non-empty subsets of f1; : : : ; ng, this shows that GE contains at least 2n � 1 nodes.
The fact that the size of GE is linear in the size of E completes the proof. ut

This proposition shows that algorithms computing the lcs of sequences are necessarily worst-
case exponential. Conversely, based on the polynomial time algorithm for the binary lcs
operation, an exponential time algorithm can easily be speci�ed employing the following
identity lcs(D1; : : : ;Dn) � lcs(Dn; lcs(Dn�1; lcs(� � � lcs(D2;D1) � � �).

187



K�usteres, Borgida

Corollary 3 The size of the lcs of sequences of classic� concept descriptions can grow
exponentially in the size of the sequences and there exists an exponential time algorithm for

computing the lcs.

5. The LCS for Same-as and Total Attributes

In the previous sections, attributes were interpreted as partial functions. In this section,
we will present the signi�cant changes in computing the lcs that occur when considering
total functions instead of partial functions. More precisely, we will look at a sublanguage
S of classic� that only allows for concept conjunction and same-as equalities, but where
we have the general assumption that attributes are interpreted as total functions.

We restrict our attention to the language S in order to concentrate on the changes
caused by going from partial to total functions. We strongly conjecture, however, that the
results represented here can easily be transfered to classic

� by extending the description
graphs for S as in Section 4.

First, we show that in S the lcst of two concept descriptions does not always exist.
Then, we will present a polynomial decision algorithm for the existence of an lcst of two
concept descriptions. Finally, it will be shown that if the lcst of two concept descriptions
exists, then it might be exponential in the size of the given concept descriptions and it can
be computed in exponential time.

In the sequel, we will simply refer to the lcst by lcs. Since throughout the section
attributes are always assumed to be total, this does not lead to any confusion.

Once again, it may be useful to keep in mind that for total (though not partial) attributes
we have (u # v) vt (u Æ w # v Æ w) for any u;w; v 2 A�, where A� is the set of �nite words
over A, the �nite set of attribute names. Indeed, all the di�erences between partial and
total attributes shown in this section �nally trace back to this property.

5.1 The Existence of the LCS

In this subsection, we prove that the lcs of two concept descriptions in S does not always
exist. Nevertheless, there is always an in�nite representation of the lcs, which will be used
in the next subsection to characterize the existence of the lcs.

To accomplish the above, we return to the graph-based characterization of t-subsumption
proposed by Borgida and Patel-Schneider (1994), and modi�ed for partial attributes in Sec-
tion 3. For a concept description C, let GC denote the corresponding canonical description
graph, as de�ned in Section 3.4. Its semantics is speci�ed as in Section 3.1, although now
the set of interpretations is restricted to allow attributes to be interpreted as total functions
only.

Since S contains no concept names and does not allow for value-restrictions, the nodes
in GC do not contain concept names and the set of r-edges is empty. Therefore, GC can
be de�ned by the triple (N;E; n0) where N is a �nite set of nodes, E is a �nite set over
N �A�N , and n0 is the root of the graph.

As a corollary of the results of Borgida and Patel-Schneider, subsumption C vt D of
concept descriptions C and D in S can be decided with the following algorithm, which also
provides us with a characterization of t-subsumption.
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a
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a

b

d

d

c

cGC0
: GD0

:

Figure 4: The canonical graphs for C0 and D0

Algorithm 2 Let C, D be concept descriptions in S, and GC = (N;E; n0) be the canonical
description graph of C. Then, subsumest?(D;GC) is de�ned to be true if and only if one

of the following conditions hold:

1. D is v # w and there are words v0; w0; u 2 A� such that v = v0u and w = w0u, and
there are rooted paths in GC labeled v0 and w0, respectively, ending at the same node.

2. D is D1 uD2 and both subsumest?(D1; GC) and subsumest?(D2; GC) are true.

Apart from the additional constructors handled by Algorithm 1, Algorithm 2 only di�ers
from Algorithm 1 in that, for total attributes, as considered here, it is suÆcient if pre�xes
of rooted paths v and w lead to a common node, as long as the remainder in both cases is
the same path.

Theorem 5 There are concept descriptions in S such that the lcs of these concept descrip-

tions does not exist in S.

This result corrects the statement of Cohen et al. (1992) that the lcs always exists, a
statement that inadvertently assumed that attributes were partial, not total.

As proof, we o�er the following S-concept descriptions, which are shown not to have an
lcs:

C0 := a # b;

D0 := a # ac u b # bc u ad # bd:

The graphs for these concepts are depicted in Figure 4.
The following statement shows that an lcs E of C0 and D0 would satisfy a condition

which does not have a \regular structure". This statement can easily be veri�ed using
Algorithm 2.

E vt v # w i� v = w or there exists a nonnegative integer n and u 2
A� such that v = acndu and w = bcndu or vice versa.

Given this description of the lcs of C0 and D0, one can show, again, by employing Algo-
rithm 2, that no �nite description graph can be equivalent to E. However, we omit this
elementary proof here, because the absence of the lcs also follows from Theorem 6, where
in�nite graphs are used to characterize the existence of an lcs. Note that in the partial
attribute case, the lcs of C0 and D0 is equivalent to a # a u b # b, a result that can be
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obtained by the lcs algorithm presented in the previous section. The corresponding (�-
nite) description graph consists of a root and two additional nodes, where the root has two
outgoing edges leading to the two nodes and labeled a and b, respectively.

To state Theorem 6, we �rst introduce in�nite description graphs and show that there
always exists an in�nite description graph representing the lcs of two S-concept descriptions.

An in�nite description graph G is de�ned, like a �nite graph, by a triple (N;E; n0)
except that the set of nodes N and the set of edges E may be in�nite. As in the �nite case,
nvn0 2 G means that G contains a path from n to n0 labeled with the word v 2 A�. The
semantics of in�nite graphs is de�ned as in the �nite case. Furthermore, in�nite graphs are
translated into concept descriptions as follows: take an (in�nite) spanning tree T of G, and,
as in the �nite case, for every edge of G not contained in it, add to CG a same-as equality.
Note that in contrast to the partial attribute case, CG need not contain same-as equalities of
the form v # v since, for total attributes, v # v � >. Still, CG might be a concept description
with an in�nite number of conjuncts (thus, an in�nite concept description). The semantics
of such concept descriptions is de�ned in the obvious way. Analogously to Lemma 2, one
can show that an (in�nite) graph G and its corresponding (in�nite) concept description CG

are equivalent, i.e., CG � G.
We call an (in�nite) description graph G deterministic if, and only if, for every node n

in G and every attribute a 2 A there exists at most one a-successor for n in G. The graph
G is called complete if for every node n in G and every attribute a 2 A there is (at least)
one a-successor for n in G. Clearly, for a deterministic and complete (in�nite) description
graph, every path is uniquely determined by its starting point and its label.

Algorithm 2 (which deals with �nite description graphs GC) can be generalized to de-
terministic and complete (in�nite) description graphs G in a straightforward way. To see
this, �rst note that a (�nite) description graph coming from an S-concept description is
canonical i� it is deterministic in the sense just introduced. Analogously, a deterministic
in�nite graph can be viewed as being canonical. Thus, requiring (in�nite) graphs to be
deterministic satis�es the precondition of Algorithm 2. Now, if in addition these graphs are
complete, then (unlike the condition stated in the subsumption algorithm) it is no longer
necessary to consider pre�xes of words because a complete graph contains a rooted path
for every word. More precisely, if v0 and w0 lead to the same node, then this is the case for
v = v0u and w = w0u as well, thus making it unnecessary to consider the pre�xes v0 and w0

of v and w, respectively. Summing up, we can conclude:

Corollary 4 Let G = (N;E; n0) be a deterministic and complete (in�nite) description

graph and v; w 2 A�. Then,

G vt v # w i� n0vn 2 G and n0wn 2 G for some node n:

We shall construct an (in�nite) graph representing the lcs of two concept descriptions in S
as the product of the so-called completed canonical graphs. This in�nite representation of
the lcs will be used later to characterize the existence of an lcs in S, i.e., the existence of a
�nite representation of the lcs.

We now de�ne the completion of a graph. Intuitively, a graph is completed by iteratively
adding outgoing a-edges labeled with an attribute a for every node in the graph that does
not have such an outgoing a-edge. This process might extend a graph by in�nite trees. As
an example, the completion of GC0

(cf. Figure 4) is depicted in Figure 5 withA = fa; b; c; dg.
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Figure 5: The complete graph for C0

Formally, completions are de�ned as follows: Let G be an (in�nite) description graph.
The graph G0 is an extension of G if for every node n in G and for every attribute a 2 A
such that n has no outgoing edges labeled a, a new node mn;a is added, as well as an edge
(n; a;mn;a). Now, let G

0; G1; G2; : : : be a sequence of graphs such that G0 = G and Gi+1 is
an extension of Gi; for i � 0. If Gi = (Ni; Ei; n0), then

G1 := (
[
i�0

Ni;
[
i�0

Ei; n0)

is called the completion of G. By construction, G1 is a complete graph. Furthermore, if
G is deterministic, then G1 is deterministic as well. Finally, it is easy to see that a graph
and its extension are equivalent. Thus, by induction, G1 �t G.

The nodes in
S
i�1Ni, i.e., the nodes in G

1 that are not in G, are called tree nodes; the
nodes of G are called non-tree nodes. By construction, for every tree node t in G1 there is
exactly one direct predecessor of t in G1, i.e., there is exactly one node n and one attribute
a such that (n; a; t) is an edge in G1; n is called a-predecessor of t. Furthermore, there is
exactly one youngest ancestor n in G of a tree node t in G1; n is the youngest ancestor of
t if there is a path from n to t in G1 which does not contain non-tree nodes except for n.
Note that there is only one path from n to t in G1. Finally, observe that non-tree nodes
have only non-tree nodes as ancestors.

Note that the completion of a canonical description graph is always complete and de-
terministic.

In the sequel, let C, D be two concept descriptions in S, GC = (NC ; EC ; nC), GD =
(ND; ED; nD) be their corresponding canonical graphs, and G1

C , G1
D be the completions of

GC , GD. The products G := GC�GD and G�
1 := G1

C �G1
D are speci�ed as in De�nition 1.

As usual, we may assume G and G�
1 are connected, i.e., they only contain nodes that are

reachable from the root (nC ; nD); otherwise, one can remove all those nodes that cannot be
reached from the root without changing the semantics of the graphs.

We denote the product G1
C � G1

D by G�
1 instead of G1 (or G1

� ) because otherwise
this graph could be confused with the completion of G. In general, these graphs do not
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coincide. As an example, take the products GC0
�GD0

and G1
C0
�G1

D0
(see Figure 4 for the

graphs GC0
and GD0

). The former product results in a graph that consists of a root with
two outgoing a-edges, one labeled a and the other one labeled b. (As mentioned before, this
graph corresponds to the lcs of C0 and D0 in the partial attribute case.) The product of
the completed graphs, on the other hand, is a graph that is obtained as the completion of
the graph depicted in Figure 6 (the in�nite trees are omitted for the sake of simplicity).

As an easy consequence of the fact that GC � G1
C and Corollary 4, one can prove the

following lemma.

Lemma 6 C vt v # w i� nCvn 2 G1
C and nCwn 2 G1

C for a node n in G1
C .

But then, by the construction of G�
1 we know:

Proposition 2 C vt v # w and D vt v # w i� (nC ; nD)vn 2 G�
1 and (nC ; nD)wn 2 G�

1

for a node n in G�
1.

In particular, G�
1 represents the lcs of the concept descriptions C and D in the following

sense:

Corollary 5 The (in�nite) concept description CG�1
corresponding to G�

1 is the lcs of C
and D, i.e., i) C;D vt CG�1

and ii) C;D vt E
0 implies CG�1

vt E
0 for every S-concept

description E0.

5.2 Characterizing the Existence of an LCS

Let C, D be concept descriptions in S and let the graphs GC , GD, G, G
1
C , G1

D , and G�
1

be de�ned as above.

We will show that G�
1 not only represents a (possibly in�nite) lcs of the S-concept

descriptions C and D (Corollary 5), but that G�
1 can be used to characterize the existence

of a �nite lcs. The existence depends on whether G�
1 contains a �nite or an in�nite number

of so-called same-as nodes.

De�nition 9 A node n of an (in�nite) description graph H is called a same-as node if

there exist two direct predecessors of n in H. (The a-edges leading to n from these nodes

may be labeled di�erently.)

� � �

a

b

d

d

d

d

d

d

c c c

c c c

Figure 6: A subgraph of G1
C0
�G1

D0
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For example, the graph depicted in Figure 6 contains an in�nite number of same-as nodes.
We will show that this is a suÆcient and necessary condition for the lcs of C0 and D0 not
to exist.

It is helpful to observe that same-as nodes in G�
1 have one of the forms (g; f), (f; t),

and (t; f), where g and f are non-tree nodes and t is a tree node. There cannot exist a
same-as node of the form (t1; t2), where both t1 and t2 are tree nodes, since tree nodes
only have exactly one direct predecessor, and thus (t1; t2) does. Moreover, if G�

1 has an
in�nite number of same-as nodes, it must have an in�nite number of same-as nodes of the
form (f; t) or (t; f), because there only exist a �nite number of nodes in G�

1 of the form
(g; f). For this reason, in the following lemma we only characterize same-as nodes of the
form (f; t). (Nodes of the form (t; f) can be dealt with analogously.) To state the lemma,
recall that with n0u�n1�vn2 2 H, for some graph H, we describe a path in H labeled uv
from n0 to n2 that passes through node n1 after u (i.e., n0un1 2 H and n1vn2 2 H); this
is generalized the obvious way to interpret n0u1�n1�u2�n2�u3n3 2 H.

G

G�1

e1 6= e2

v w v 6= w

a a

(e1; q0) (e2; q0)

..

. xx
..
.

n = (f; t)

(nC ; nD)

(h1; p0) (h2; p0) h1 6= h2

Figure 7: same-as nodes in G�
1

Lemma 7 Given a node f in GC and a tree-node t in G1
D , the node n = (f; t) in G�

1 is a

same-as node i�

� there exist nodes (h1; p0), (h2; p0) in G, h1 6= h2;

� there exist nodes (e1; q0), (e2; q0) in G�
1, where e1, e2 are distinct nodes in GC and

q0 is a node in G1
D ; and

� there exists an attribute a 2 A and v; w; x 2 A�, v 6= w, where A is the set of attributes

in C,

such that

(nC ; nD)v�(h1; p0)�x�(e1; q0)�a(f; t) and (nC ; nD)w�(h2; p0)�x�(e2; q0)�a(f; t)

are paths in G�
1 (see Figure 7). For the direct successors (h01; p

0
0) and (h02; p

0
0) of (h1; p0)

and (h2; p0) in this paths, we, in addition, require p00 to be a tree node in G1
D .4

4. Note that since G�1 is deterministic, the successors of (h1; p0) and (h2; p0) in the two paths must in fact
be of the form (�; p00).

193



K�usteres, Borgida

Proof. The if direction is obvious. We proceed with the only-if direction and assume that
n is a same-as node in G�

1. Let p0 be the (uniquely determined) youngest ancestor of t in
G1
D . In particular, p0 is a node in GD and there exists p0x�q0�at in G1

D with a 2 A and
x 2 A� such that the successor of p0 in this path is a tree node in GD.

Since n is a same-as node and t can only be reached via q0 and the attribute a, there
must exist e1, e2 in GC , e1 6= e2, with (e1; q0)a(f; t); (e2; q0)a(f; t) 2 G�

1. Since G�
1 is

connected, there are paths from (nC ; nD) to (e1; q0) and (e2; q0). Every path from nD to q0
must pass through p0 and the suÆx of the label of this path is x. Consequently, there exist
nodes h1; h2 in GC such that (h1; p0)x�(e1; q0)�a(f; t) and (h2; p0)x�(e2; q0)�a(f; t) are paths
in G�

1. In particular, xa is a label of a path from h1 to f in GC , and the label xa only
consists of attributes contained in C. If h1 = h2, then this, together with the fact that GC

is deterministic, would imply e1 = e2. Hence, h1 6= h2. Let v, w be the labels of the paths
from (nC ; nD) to (h1; p0) and (h2; p0), respectively. As G is deterministic and h1 6= h2, it
follows that v 6= w. ut

The main results of this section is stated in the next theorem. As a direct consequence of
this theorem, we obtain that there exists no lcs in S for the concept descriptions C0 and
D0 of our example.

Theorem 6 The lcs of C and D exists i� the number of same-as nodes in G�
1 is �nite.

Proof. We start by proving the only-if direction. For this purpose, we assume that G�
1

contains an in�nite number of same-as nodes and show that there is no (�nite) lcs for C
and D in S.

As argued before, we may assume that G�
1 contains an in�nite number of same-as nodes

of the form (f; t) or (t; f), where t is a tree node and f is a non-tree node. More precisely,
say G�

1 contains for every i � 1 nodes ni = (fi; ti) such that fi is a node in GC and ti is
a tree node in G1

D . According to Lemma 7, for every same-as node ni there exist nodes
h1;i; h2;i; e1;i; e2;i in GC , p0;i in GD, and q0;i in G1

D as well as ai 2 A and xi 2 A� with the
properties required in Lemma 7.

Since GC and GD are �nite description graphs, the number of tuples of the form
h1;i; h2;i; e1;i; e2;i; fi; ai is �nite. Thus, there must be an in�nite number of i's yielding
the same tuple h1; h2; e1; e2; f; a. In particular, h1 6= h2 and e1 6= e2 are nodes in GC and
there is an in�nite number of same-as nodes of the form ni = (f; t1;i). Finally, as in the
lemma, let v, w be the label of paths (in G) from (nC ; nD) to (h1; p0) and (h2; p0).

Now, assume there is an lcs E of C and D in S. According to Corollary 5, E �t CG�1
.

Let GE be the �nite canonical graph for E with root n0. By Proposition 2 and Lemma 7
we know E vt vxia # wxia. From Algorithm 2 it follows that there are words v0, w0, and u
such that vxia = v0u and wxia = w0u, where the paths in GE starting from n0 labeled v0,
w0 lead to the same node in GE .

If u 6= ", then u = u0a for some word u0. Then, Algorithm 2 ensures E vt vxi # wxi.
However, by Lemma 7 we know that the words vxi and wxi lead to di�erent nodes in
G�
1, namely, (e1; q0;i) and (e2; q0;i), which, with Proposition 2, leads to the contradiction

E � G�
1 6vt vxi # wxi. Thus, u = ".

As a result, for every i � 1 there exists a node qi in GE such that n0vxiaqi and n0wxiaqi
are paths in GE . Because GE is a �nite description graph, there exist i; j � 1, i 6= j, with
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qi = qj. By Algorithm 2, this implies E vt vxia # wxja. On the other hand, the path in
G�
1 starting from (nC ; nD) with label vxia leads to the node ni and the one for wxja leads

to nj. Since ni 6= nj , Proposition 2 implies E 6vt vxia # wxja, which is a contradiction. To
sum up, we have shown that there does not exist an lcs for C and D in S.

This shows that there is no lcs of C, D in S which completes the proof of the only-if
direction.

We now prove the if direction of Theorem 6. For this purpose, we assume that G�
1 has

only a �nite number of same-as nodes. Note that every same-as node in G�
1 has only a

�nite number of direct predecessors. To see this, two cases are distinguished: i) a node of
the form (g1; g2) in G has only predecessors in G; ii) if t is a tree node and g a non-tree node,
then a predecessor of (g; t) in G�

1 is of the form (g0; t0) where t0 is the unique predecessor
(tree or non-tree node) of t and g0 is a non-tree node. Since the number of nodes in GC

and GD is �nite, in both cases we only have a �nite number of predecessors. But then, the
spanning tree T of G�

1 coincides with G�
1 except for a �nite number of edges because, if T

does not contain a certain edge, then this edge leads to a same-as node. As a result, CG�1
is an S-concept description because it is a �nite conjunction of same-as equalities. Finally,
Corollary 5 shows that CG�1

is the lcs of C and D. ut

If v # w is a conjunct in CG�1
, then v and w lead from the root of G�

1 to a same-as node.
As mentioned before, same-as nodes are of the form (f; g); (f; t), or (t; f), where t is a tree
node and f; g are non-tree nodes. Consequently, v and w must be paths in GC or GD.
Thus, they only contain attributes occurring in C or D.

Corollary 6 If the lcs of two concept description C and D in S exists, then there is a

concept description in S only containing attributes occurring in C or D that is equivalent

to the lcs.

Therefore, when asking for the existence of an lcs, we can w.o.l.g. assume that the set of
attributes A is �nite. This fact will be used in the following two subsections.

5.3 Deciding the Existence of an LCS

From the following corollary we will derive the desired decision algorithm for the existence
of an lcs of two concept descriptions in S. To state the corollary we need to introduce the
language LGC

(q1; q2) := fw 2 A� j there is a path from the node q1 to q2 in GC labeled wg.
Since description graphs can be viewed as �nite automata, such a language will be regular.
Moreover, let aA� denote the set faw j w 2 A�g for an attribute a 2 A, where A is a �nite
alphabet.

Corollary 7 G�
1 contains an in�nite number of same-as nodes i� either

(i) there exist nodes (h1; p0), (h2; p0) in G as well as nodes f , e1, e2 in GC , and attributes

a; b 2 A such that

1. h1 6= h2, e1 6= e2;

2. p0 does not have a b-successor in GD;

3. (e1; a; f), (e2; a; f) are edges in GC ; and
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4. LGC
(h1; e1) \ LGC

(h2; e2) \ bA� is an in�nite set of words;

or

(ii) the same statement as (i) but with rôles of C and D switched.

Proof. We �rst prove the only-if direction. Assume that G�
1 contains an in�nite number

of same-as nodes. Then, w.l.o.g., we �nd the con�guration in G�
1 described in the proof

of Theorem 6. This con�guration satis�es the conditions 1. and 3. stated in the corollary.
If, for i 6= j, the words xi and xj coincide, we can conclude ni = nj because G�

1 is a
deterministic graph. However, by de�nition, ni 6= nj. Hence, xi 6= xj. Because A is �nite,
we can, w.l.o.g., assume that all xi's have b 2 A as their �rst letter for some �xed b. Thus,
condition 4. is satis�ed as well. According to the con�guration, the b-successor of (�; p0) in
G�
1 is of the form (�; p00) where p

0
0 is a tree node. Thus, p0 does not have a b-successor in

GD, which means that condition 3. is satis�ed.

We now prove the if direction of the corollary. For this purpose, let bx 2 LGC
(h1; e1) \

LGC
(h2; e2) \ bA�. Since p0 has no b-successor in GD it follows that there are tree nodes

t; t0 in G1
D such that p0bx�t�at0 2 G1

D . Thus, we have (h1; p0)bx�(e1; t)�a(f; t0) 2 G�
1 and

(h2; p0)bx�(e2; t)�a(f; t0) 2 G�
1. Since e1 6= e2, we can conclude (e1; t) 6= (e2; t). This means

that (f; t0) is a same-as node. Analogously, for by 2 LGC
(h1; e1) \ LGC

(h2; e2) \ bA� there
are tree nodes s; s0 in G1

D such that p0by�s�as0 2 G1
D and (f; s0) is a same-as node in G�

1.
Since bx and by both start with b, and the b-successor of p0 in G1

D is a tree node, x 6= y
implies s0 6= t0. Hence, (f; t0) and (f; s0) are distinct same-as nodes. This shows that if the
set LGC

(h1; e1)\LGC
(h2; e2)\ bA� is in�nite, G�

1 must have an in�nite number of same-as
nodes. ut

For given nodes (h1; p0), (h2; p0) in G, attributes a; b 2 A, nodes f; e1; e2 2 GC the condi-
tions 1. to 3. in Corollary 7 can obviously be checked in time polynomial in the size of the
concept descriptions C and D. As for the last condition, note that an automaton accepting
the language LGC

(h1; e1)\LGC
(h2; e2)\ bA� can be constructed in time polynomial in the

size of C. Furthermore, for a given �nite automaton it is decidable in time polynomial in
the size of the automaton if it accepts an in�nite language (see the book by Hopcroft and
Ullman (1979) for details). Thus, condition 4. can be tested in time polynomial in the size
of C and D as well. Finally, since the size of G and GC is polynomial in the size of C and D,
only a polynomial number of con�gurations need to be tested. Together with Corollary 7
these complexities provide us with the following corollary.

Corollary 8 For given concept descriptions C and D in S it is decidable in time polynomial

in the size of C and D whether lcs of C and D exists in S.

5.4 Computing the LCS

In this subsection, we �rst show that the size of an lcs of two S-concept descriptions may
grow exponentially in the size of the concept descriptions. This is a stronger result than
that presented for partial attributes, where it was only shown that the lcs of a sequence of
concept descriptions in S can grow exponentially. Then, we present an exponential time lcs
algorithm for S-concept descriptions.
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Figure 8: The canonical description graphs for C 0 and Dk

In order to show that the lcs may be of exponential size, we consider the following
example, where A := fa; b; c; dg.We de�ne

C 0 := a # b;

Dk :=
k

u
i=1

aci # adi u
k

u
i=1

bci # bdi u acka # bcka:

The corresponding canonical description graphs GC0 and GDk
are depicted in Figure 8.

A �nite graph representing the lcs of C 0 and Dk is depicted in Figure 9 for k = 2.
This graph can easily be derived from G1

C0 � G1
Dk
. The graph comprises two binary trees

of height k, and thus, it contains at least 2k nodes. In the following, we will show that
there is no canonical description graph GEk

(with root n0) representing the lcs Ek of C 0

and Dk with less than 2k nodes. Let x 2 fc; dgk be a word of length k over fc; dg, and let
v := axa, w := bxa. Using the canonical description graphs GC0 and GDk

it is easy to see
that C 0 vt v # w and Dk vt v # w. Thus, Ek vt v # w. By Algorithm 2, this means that
there are words v0; w0; u such that v = v0u, w = w0u, and there are paths from n0 labeled
v0 and w0 in GEk

leading to the same node in GEk
. Suppose u 6= ". Then, Algorithm 2

implies Ek vt ax # bx. But according to GD, D 6vt ax # bx. Therefore u must be the empty

a b

c d

c

c d

d d

d c

c

d c

a a a a a a a a

2

Figure 9: A �nite graph representing the lcs of C 0 and D2
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word ". This proves that in GEk
there is a path from n0 labeled axa for every x 2 fc; dgk .

Hence, there is a path for every ax. Now, let y 2 fc; dgk be such that x 6= y. If the paths
for ax and ay from n0 in GEk

lead to the same node, then this implies Ek vt ax # ay in
contradiction to C 0 6vt ax # ay. As a result, ax and ay lead to di�erent nodes in GEk

. Since
fc; dgk contains 2k words, this shows that GEk

has at least 2k nodes. Finally, taking into
account that the size of a canonical description graph of a concept description in S is linear
in the size of the corresponding description we obtain the following theorem.

Theorem 7 The lcs of two S-concept descriptions may grow exponentially in the size of

the concepts.

The following (exponential time) algorithm computes the lcs of two S-concept descriptions
in case it exists.

Algorithm 3

Input: concept descriptions C, D in S, for which the lcs exists in S;

Output: lcs of C and D in S;

1. Compute G0 := GC �GD;

2. For every combination

� of nodes (h1; p0), (h2; p0) in G = GC �GD, h1 6= h2;

� a 2 A, e1; e2; f in GC , e1 6= e2, where (e1; a; f) and (e2; a; f) are edges in GC

extend G0 as follows: Let Gh1;t, Gh2;t be two trees representing the (�nite) set of words

in

L :=

0
@LGC

(h1; e1) \ LGC
(h2; e2) \

[
b 62succ(p0)

bA�

1
A [

(
f"g; if a 62 succ(p0)
; ; otherwise

where succ(p0) := fb j p0 has a b-successorg and the set of nodes of Gh1;t, Gh2;t, and

G0 are assumed to be disjoint. Now, replace the root of Gh1;t by (h1; p0), the root of

Gh2;t by (h2; p0), and extend G0 by the nodes and edges of these two trees. Finally,

add a new node nv for every word v in L, and for each node of the trees Gh1;t and
Gh2;t reachable from the root of Gh1;t and Gh2;t by a path labeled v, add an edge with

label a from it to nv. The extension is illustrated in Figure 10.

3. The same as in step 2, with rôles of C and D switched.

4. Compute the canonical graph of G0, which is called G0 again. Then, output the concept

description CG0 of G
0.

Proposition 3 The translation CG0 of the graph G0 computed by Algorithm 3 is the lcs E
of C and D.
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Figure 10: The extension at the nodes (h1; p0), (h2; p0) in G0 where L = fb; bc; badg

Proof. It is easy to see that if there are two paths in G0 labeled y1 and y2 leading from
the root (nC ; nD) to the same node, then G�

1 contains such paths as well. Consequently,
(E �t)G

�
1 vt G

0.
Now, assume E vt y1 # y2, y1 6= y2. By Proposition 2 we know that there are paths

in G�
1 labeled y1 and y2 leading to the same node n. W.l.o.g, we may assume that n is a

same-as node in G�
1. Otherwise, there exist words y1

0; y2
0; u with y1 = y1

0u, y2 = y2
0u such

that y1
0 and y2

0 lead to a same-as node. If we can show that G0 contains paths labeled y1
0

and y2
0 leading to the same node, then, by Algorithm 2, this is suÆcient for G0 vt y1 # y2.

So let n be a same-as node. We distinguish two cases:

1. If n is a node in G = GC �GD, then the paths for y1 and y2 are paths in G. Since G
is a subgraph of G0 this holds for G0 as well. Hence, CG0 vt y1 # y2.

2. Assume n is not a node in G. Then, since n is a same-as node, we know that n is of the
form (f; t) or (t; f) where f is a non-tree node and t is a tree node. By symmetry, we
may assume that n = (f; t). Now it is easy to see that there exist nodes h1; h2; e1; e2 in
GC , p0 in GD, and a tree node q0 in G

1
D as well as a 2 A and x; v; w 2 A� as speci�ed

in Lemma 7 such that y1 = vxa and y2 = wxa. But then, with h1; h2; e1; e2; p0; f and
a the preconditions of Algorithm 3 are satis�ed and x 2 L. Therefore, by construction
of G0 there are paths labeled y1 and y2, respectively, leading from the root to the same
node. ut

We note that the product G of GC and GD can be computed in time polynomial in the
size of C and D. Furthermore, there is only a polynomial number of combinations of nodes
(h1; p0), (h2; p0) in G, e1; e2; f in GC , a 2 A. Finally, the �nite automaton for L can be
computed in time polynomial in the size of C and D. In particular, the set of states of this
automaton can polynomially be bounded in the size of C and D. If L contained a word
longer than the number of states, the accepting path in the automaton contains a cycle. But
then, the automaton would accept in�nitely many words, in contradiction to the assumption
that L is �nite. Thus, the length of all words in L can be bounded polynomially in the
size of C and D. In particular, this means that L contains only an exponential number of
words. Trees representing these words can be computed in time exponential in the size of
C and D.
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Corollary 9 If the lcs of two S-concept descriptions exists, then it can be computed in time
exponential in the size of the concept descriptions.

6. Conclusion

Attributes | binary relations that can have at most one value { have been distinguished
in many knowledge representation schemes and other object-centered modeling languages.
This had been done to facilitate modeling and, in description logics, to help identify tractable
sets of concept constructors (e.g., restricting same-as to attributes). In fact, same-as restric-
tions are quite important from a practical point of view, because they support the modeling
of actions and their components (Borgida & Devanbu, 1999).

A second distinction, between attributes as total versus partial functions, had not been
considered so essential until now. This paper has shown that this distinction can sometime
have signi�cant e�ects.

In particular, we have �rst shown that the approach for computing subsumption of
Classic concepts with total attributes, presented by Borgida and Patel-Schneider (1994),
can be modi�ed to accommodate partial attributes, by treating partial attributes as roles
until they participate in same-as restrictions, in which case they are \converted" to to-
tal attributes. As a result, we obtain polynomial-time algorithms for subsumption and
consistency checking in this case also.

In the case of computing least common subsumers, which was introduced as a technique
for learning non-propositional descriptions of concepts, we �rst noted that several of the
papers in the literature (Cohen & Hirsh, 1994a; Frazier & Pitt, 1996) (implicitly) used
partial attributes, when considering Classic. Furthermore, these papers used a weaker
version of the \concept graphs" employed in (Borgida & Patel-Schneider, 1994), which
make the results only hold for the case of same-as restrictions that do not generate \cycles".
Furthermore, the algorithm proposed by Frazier and Pitt (1996) does not handle inconsistent
concepts, which can easily arise in Classic concepts as a result of con
icts between lower
and upper bounds of roles.

Therefore, we have provided an lcs algorithm together with a formal proof of correctness
for a sublanguage of Classic with partial attributes, which allows for same-as equalities
and inconsistent concepts | the algorithm and proofs can easily be extended to fullClassic
(K�usters & Borgida, 1999). In this case, the lcs always exists, and it can be computed in
time polynomial in the size of the two initial concept descriptions. As shown by Cohen et al.
(1992), there are sequences of concept descriptions for which the lcs may grow exponentially
in the size of the sequence.

To complete the picture, and as the main part of the paper, we then examined the
question of computing lcs in the case of total attributes. Surprisingly, the situation here
is very di�erent from the partial attribute case (unlike with subsumption). First, for the
language S the lcs may not even exist. (The existence of the lcs mentioned by Cohen et al.
(1992) is due to an inadvertent switch to partial semantics for attributes.) Nevertheless,
the existence of the lcs of two concept descriptions can be decided in polynomial time. But
if the lcs exists, it may grow exponentially in the size of the concept descriptions, and hence
the computation of the lcs may take time exponential in the size of the two given concept
descriptions.
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As an aside, we note that it has been pointed out by Cohen et al. (1992) that concept
descriptions in S correspond to a �nitely generated right congruence. Furthermore, in this
context the lcs of two concept descriptions is the intersection of right congruences. Thus,
the results presented in this paper also show that the intersection of �nitely generated
right congruences is not always a �nitely generated right congruence, and that there is a
polynomial algorithm for deciding this question. Finally, if the intersection can be �nitely
generated, then the generating system may be exponential and can be computed with
an exponential time algorithm in the size of the generating systems of the given right
congruences.

The results in this paper therefore lay out the scope of the e�ect of making attributes
be total or partial functions in a description logic that supports the same-as constructor.
Moreover, we correct some problems and extend results in the previous literature.

We believe that the disparity between the results in the two cases should serve as a
warning to other researchers in knowledge representation and reasoning, concerning the
importance of explicitly considering the di�erence between total and partial attributes.
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