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Abstract 

 
This paper presents GRT, a domain-independent heuristic planning system for STRIPS worlds. 

GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between 
each fact and the goals of the problem, in a backward direction. Then, in the search phase, these 
estimates are used in order to further estimate the distance between each intermediate state and the 
goals, guiding so the search process in a forward direction and on a best-first basis. The paper 
presents the benefits from the adoption of opposite directions between the preprocessing and the 
search phases, discusses some difficulties that arise in the pre-processing phase and introduces 
techniques to cope with them. Moreover, it presents several methods of improving the efficiency of 
the heuristic, by enriching the representation and by reducing the size of the problem. Finally, a 
method of overcoming local optimal states, based on domain axioms, is proposed. According to it, 
difficult problems are decomposed into easier sub-problems that have to be solved sequentially. The 
performance results from various domains, including those of the recent planning competitions, 
show that GRT is among the fastest planners. 

1. Introduction 

So far, planning problems have been considered as a special kind of particularly difficult search 
problems (Newell & Simon, 1972) and many algorithms for decomposition, abstraction, least 
commitment etc. have been proposed to cope with them. In the early 90's, researchers were arguing 
that plan-space planning is more efficient than state-space planning (Barrett & Weld, 1994; 
McAllester & Rosenblitt, 1991; Minton, Bresina & Drummond, 1994; Penberthy & Weld, 1992). 
In the mid 90's, new algorithms appeared that achieved even better performance by transforming 
planning problems either into graph solving problems (Blum & Furst, 1995, 1997) or into 
satisfiability ones (Kautz & Selman, 1992, 1996, 1998). However, it has been shown that simple 
search strategies with the use of domain-dependent heuristics can solve large problems (Gupta & 
Nau, 1992; Korf & Taylor, 1996; Pearl, 1983; Slaney & Thiebaux, 1996). 

In recent years, part of the planning community turned towards heuristic planning, adopting 
known search strategies and developing powerful domain-independent heuristics that achieve 
significant performance. The first planner was UNPOP (McDermott 1996, 1999) and was followed 
by ASP (Bonet, Loerings & Geffner, 1997), HSP (Bonet & Geffner, 1998), HSPr (Bonet & Geffner, 
1999), GRT (Refanidis & Vlahavas, 1999b), FF (Hoffmann & Nebel, 2000) and ALTALT  (Nigenda, 
Nguyen & Kambhampati, 2000). These domain independent heuristic planners search for solutions 
either in the state-space or in the regression space. Most of them use variations of a relatively 
simple idea as a guide: they estimate the distance between two states, based on estimates of the 
distances between each fact of the problem and one of the two states. 
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The above planners can primarily be classified based on the forward or backward direction, in 
which the heuristic is constructed and the state-space is traversed. We distinguish the following 
three categories: 

� Forward heuristic construction, forward search (ASP, HSP, FF). 

� Forward heuristic construction, backward search (HSPr, ALTALT ). 

� Backward heuristic construction, forward search (UNPOP, GRT). 

Generally, the forward direction seems to be more advantageous than the backward one, both 
when constructing the heuristic and when searching, because in the backward direction and in case 
of incomplete goal states, problems with invalid states and unreachable facts usually arise. 
However, using the forward direction for both tasks requires reconstructing the heuristic function 
for each visited state, spending in this way a significant portion of the processing time, while using 
opposite directions for both tasks allows constructing the heuristic once, in a pre-processing phase. 

This paper presents the GRT planning system. It is the only domain independent heuristic 
planner that constructs the heuristic once, in a backward direction and in a pre-processing phase. 
UNPOP, although it uses the same directions, reconstructs the heuristic from scratch for each visited 
state. GRT, in a pre-processing phase estimates the distance between each fact and the goals of the 
problem. During the search phase, these estimates are used in order to further estimate the distance 
between each visited state and the goals, guiding so the search process in a forward direction and 
on a best-first basis. Constructing the heuristic once offers the ability to evaluate states very 
quickly, while traversing the state-space in a forward direction allows the planner to avoid invalid 
states that arise in the regression space.  

The paper substantially extends previous work (Refanidis & Vlahavas, 1999b, 1999c, 2000a 
and 2000b), in that it presents and proves the fundamental theory of the planner, along with many 
new techniques developed on it, it extensively tests the contribution of each technique to its overall 
performance and provides a thorough comparison to other planning systems. 

The rest of the paper is organized as follows: Section 2 presents the data structures and the main 
algorithms of the planner. Section 3 discusses the difficulties that incomplete goal states cause to 
the backward direction of the construction of the heuristic and presents methods to cope with them. 
The same methods are also applied to identify and enrich poor domain representations. 

Two approaches to reduce the problem's size are presented in Section 4. The first one deals with 
the identification and elimination of irrelevant objects and the second one concerns the adoption of 
a numerical representation of resources. 

Section 5 deals with the problem of local optimal states and proposes a method to cope with 
them. Specifically, the XOR-constraints are introduced and used in order to decompose difficult 
problems into easier sub-problems that have to be solved sequentially. Section 6 presents the 
operation of GRT, Section 7 presents the related work and Section 8 presents performance results, 
which show that GRT is among the fastest domain-independent planners. Finally, Section 9 
concludes the paper and poses future directions. 

2. The GRT Heuristic 

In STRIPS (Fikes & Nilsson, 1971), each action a is represented by three sets of facts: the 
precondition list Pre(a), the add-list Add(a) and the delete-list Del(a), where Del(a) ⊆ Pre(a). A 
state S is defined as a finite set of facts. An action a is applicable to a state S if: 

Pre(a) ⊆ S (1) 

The state resulting from the application of an action a to state S is defined as: 
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S' = res(S,a) = S \ Del(a) ∪ Add(a) (2) 

Inductively we can define the state resulting from the application of a sequence of actions (a1, 
a2, ..., aN) to a state S as: 

S' = res(S, (a1, a2, ..., aN)) = res( res(S, (a1, a2, ..., aN-1)), aN) (3) 

with the requirement that each action ai is applicable to the state res(S, (a1, a2, ..., ai-1)), for each 
i=1, 2, ..., N. In the formalization used henceforth, the set of problem constants is assumed to be 
finite and no function symbols are used, so the set of actions is finite.  

A planning problem P is a triplet P=(O, Initial , Goals), where O is the set of ground actions, 
Initial  is the initial state and Goals is a set of facts. The task is to find a sequence of actions a1, a2, 
..., aN that can be applied to the initial state, so that the state resulting from their application will be 
a superset of Goals. The sequences of actions are called Plans. A plan that can be applied to the 
initial state is called a valid plan. A valid plan that achieves the Goals is called a solution of the 
planning problem. A planning problem may have several or no solutions. In the latter case the 
problem is described as unsolvable. 

The next sub-section gives a brief presentation of the ASP heuristic, which was our motivation 
and helps to understand the following concepts, whereas the subsequent sub-sections present the 
GRT heuristic in detail. 

2.1 The ASP Heuristic 

In the ASP heuristic, for each action a and for each fact p ∈ Add(a), a rule C→p is formed, where 
C=Pre(a). Assuming a set of rules, it is said that a fact p is reachable from a state S if p ∈ S or 
there is a rule C → p such that each fact q ∈ C is reachable from S. 

So, a function g(p,S) is defined, which inductively assigns a number i to each fact p, where i is 
an estimate of the number of steps needed to achieve p from S, i.e. the distance of p from S. More 
specifically, g(p,S) is set to 0 for every fact p ∈ S, while g(p,S) is set to i+1 , i ≥ 0, for each fact p 
for which a rule C → p exists, such that ∑

∈

=
Cr

iSrg ),( . Thus: 

0, if p ∈ S 

i+1,  if for some C→p, ∑
∈

=
Cr

iSrg ),(  def

Spg =),(  {
 ∞,  if p is not reachable from S 

(4) 

In the case where there are more than one rules C→p for a fact p, the rule with the minimum 
cost is chosen. Note that a fact p that was initially achieved by a rule C1→p, may be re-achieved, 
later, by another rule C2→p with smaller cost. That is because not all the preconditions of the 
second rule had been achieved at the time when the first rule was applied. The task of applying 
rules continues until no rule that can achieve a fact with smaller cost exists. The distances 
computed in this way are unique. 

For a set of facts P, their distance from S is defined as: 

∑
∈

=
Pp

def

SpgSPg ),(),(  (5) 

The ASP planner uses g(P,S) to estimate the distances between each intermediate state S and the 
Goals. So, the ASP heuristic function is defined as:  
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),()( SGoalsgS
def

ASPH =  (6) 

The ASP heuristic does not take into account the delete lists of the actions. The simplified 
problem that is created by ignoring the delete lists is referred to as the relaxed problem and the 
corresponding actions are referred to as the relaxed actions. The complexity for constructing 
HASP(S) is linear, with respect to the number of ground actions and the number of ground facts. 

2.2 Backward Heuristic Construction 

Instead of estimating the distance between each fact and the current state in a forward direction, as 
ASP does, GRT estimates the distance between each fact and the goals in a backward direction. This 
task is performed once, in a pre-processing phase. During the search phase, these estimates are 
used to estimate the distance between each intermediate state and the goals. The backward or 
forward estimation of the distance between two states often results in different values, since no 
heuristic is precise. However, the two directions result in estimates of equal quality on average. 

The estimates of the distances between each fact and the goals are stored in a table, the records 
of which are indexed by the facts. We call this table the Greedy Regression Table (by which the 
acronym GRT comes from), since its estimates are obtained through greedy regression from the 
goals. 

In order to construct the heuristic backwards, the actions of the problem have to be inverted. Let 
a be an action and S and S' be two states, such that a is applicable in S and S' = res(S,a). The 
inverted action a' of a is an action applicable in S', such that S = res(S', a'). The inverted action is 
defined by the original action as follows: 

Pre(a')=Add(a) ∪ Pre(a) \ Del(a) 

Del(a')=Add(a) 

Add(a')=Del(a) 

(7) 

The inverted ground actions are applied to the goals, assigning progressively to each ground 
fact p an estimate of its distance from the goals, in a way similar to ASP. Applying inverted actions 
to the goals presupposes that the goals form a complete state. In Section 2 it is assumed that this is 
always the case, whereas in Section 3 the case of incomplete goal states is treated. 

2.3 Related Facts 

In order to obtain more precise estimates, GRT heuristic tries to track the interactions that arise 
when estimating the distances between each fact and the goals. By the word 'interaction' we mean 
that achieving a fact may affect achieving other facts positively or negatively. In order to track 
these interactions the notion of the related facts is introduced. 
 

Definition 1 (Related facts). A fact q is related to another fact p, if achieving p causes fact q to be 
achieved as well.  

 
We will use the notation pq

rel%  to denote that q is related to p. The set of all facts related to a 

specific fact p is denoted as rel(p), i.e.: 

}:{)( pqqprel
rel%=  (8) 

The set of related facts of a set of facts P is defined as the union of the related facts of P-facts: 



BACKWARD HEURISTIC CONSTRUCTION IN FORWARD STATE-SPACE PLANNING 
 
 
 

 
119

�
Pp

prelPrel
∈

= )()(  (9) 

Proposition 1. For an inverted action a achieving a fact p, the related facts of p are defined as: 

rel(p) = Pre(a) ∪ rel(Pre(a)) ∪ Add(a) \ Del(a) (10) 

Proof: Formula 10 is inductive, since it defines the related facts of a fact p based on the related 
facts of the preconditions of the action achieving the fact. Thus, we prove it by induction. The 
formula holds for the goal facts, for which we suppose that there is a hypothetical inverted action 
without preconditions achieving them. So, the goal facts are related to each other. Then, suppose 
that Formula 10 holds for the preconditions of an inverted action a. It is enough to prove that it 
holds also for the facts that action a adds. Let p be such a fact. The facts that hold after the 
application of the action, which are the related facts of p, are the same that hold before its 
application, i.e. the preconditions of the action together with their related facts, plus the facts that 
the action achieves, minus the facts that the action deletes, exactly as Formula 10 states.   � 

 
According to Formula 10, facts achieved by the same action have the same related facts. 

Moreover, each fact is at least related to itself. 
If there was a single path to achieve a specific fact, then its related facts would be defined in a 

unique way. However, this is a rare situation. Thus, there are many actions that achieve a fact, 
many paths that achieve the preconditions of these actions; therefore, there is an extremely large 
number of possible combinations. Storing, for each fact, the related facts for all the possible ways 
of achieving it, requires huge amounts of time and space. For efficiency reasons we decided to 
store only one set of related facts for each fact, the set that corresponds to the shortest path that 
achieves the fact, according to the heuristic. 

 
Proposition 2. The relation %rel

 is reflexive, but it is neither symmetric, nor transitive. 

 
Proof: The relation %rel

 is reflexive, since each fact is related to itself. The relation %rel
 is not 

symmetric, since for a fact q, which is pre-requisite to achieve p, q%rel
p may hold (if the action 

achieving p does not delete q) while p%rel
q may not hold, since q may have been achieved before 

p. Finally, the relation %rel
 is not transitive, since from the relations q%rel

p and p%rel
r we 

cannot conclude that q%rel
r holds, since it is possible for the action achieving r to delete q.   � 

 
For a fact p, dist(p) denotes its estimated distance from the goals. Next, we present some axioms 

concerning the distances of the facts. 
 

Axiom 1. The cost of achieving a set of facts {p1, p2, ..., pN} simultaneously, cannot be lower than 
the maximum of their individual distances.  

dist({ p1, p2, ..., pN}) ≥ max
1

N

i=
(dist(pi)) (11) 

 
Axiom 2. If an inverted action a achieves a fact p, the distance of p is equal to the cost of 
simultaneously achieving a's preconditions plus one. 

dist(p)=dist({ p1,p2, ...})+1, where pi ∈ Pre(a) (12) 
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Proposition 3. If q%rel
p is true for two facts q and p, then dist(q)�dist(p). 

 

Proof: We will prove Proposition 3 by induction. Proposition 3 holds for the Goals, since all the 
goal facts have zero distances and are related to each other. Suppose now that Proposition 3 holds 
for the set of the currently achieved facts Facts. It suffices to prove that for an action a, such that 
Pre(a)⊆Facts, Proposition 3 holds for the set Facts∪Add(a). 

Suppose that there is a fact p∈Add(a) that has just been achieved, or re-achieved with smaller 
cost. If there is another fact q ∈ Facts∪Add(a), such that q%rel

p, then either q has also just been 

achieved by a and hence dist(q)=dist(p), or q is a precondition of a and then, according to Axiom2, 
dist(q)<dist(p), or finally q is a related fact of an a's precondition, say q' and then dist(q')<dist(p) 
(Axiom 2) and dist(q)≤dist(q') (Proposition 3 holds for Facts), so dist(q)<dist(p). 

Let us suppose now that there is another fact q, such that p%rel
q. If q has been achieved by a, 

then dist(p)=dist(q). If q has not been achieved by a, then q has previously been achieved by 
another action, so q ∈ Facts. In this case, p would also have been previously achieved by another 
action, before being re-achieved by a, so also p ∈ Facts. Since Proposition 3 holds for Facts, 
distOLD(p)≤dist(q), where distOLD(p) the previous distance of p. But the new distance of p is smaller 
than its previous distance, dist(p)<distOLD(p), so dist(p)<dist(q). Therefore, Proposition 3 holds in 
every case.   � 

 
Corollary 1. If q%rel

p and p%rel
q, then dist(p)=dist(q). 

 

Corollary 2. If q%rel
p but not p%rel

q, then q has been achieved before p. 

 
The above two corollaries follow directly from Proposition 3. Concerning Corollary 2, the 

expression 'has been achieved before' means that in the pre-processing phase, when the distances 
from the goals are estimated progressively, dist(q) has been computed before dist(p). In case where 
a fact has been re-achieved with smaller distance, we consider the last time. 

 
Corollary 3. For a sequence of facts p1, p2, ..., pN, N>2, for which pi%rel

pi+1, i=1,2,...,N-1, hold, 

without pi+1%rel
pi also holding, it is impossible to have pN%rel

p1. 

 
Corollary 3 follows directly from Corollary's 2 time ordering relation. 
 

Proposition 4. Facts related to each other have been achieved by the same action. 
 

Proof: Let p and q be two facts related to each other, i.e. q%rel
p and p%rel

q. Let a1 be the action 

that achieves p and a2 the action that achieves q, so p∈Add(a1) and q∈Add(a2). We will prove that 
a1≡a2. Suppose that a1≠a2. Since q%rel

p, q may be an add effect of a1, a precondition of a1, or a 

related fact of an a1's precondition. However, according to Corollary 1, dist(p)=dist(q). Thus, q 
cannot be anything else than an add effect of a1, because in other case dist(q) < dist(p) would hold. 
In the same way we can prove that p∈Add(a2). Thus, {p,q} ⊆Add(a1)∩Add(a2). However, in this 
case, the first action applied when computing the distances would achieve both facts. So, the facts 
have been achieved by the same action.   � 
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The related facts play a critical role when estimating the cost of achieving a set of facts 
simultaneously. GRT groups the related facts and sums the maximum individual cost of each group. 
For example, if q%rel

p, p%rel
r and q%rel

r hold for three facts q, p and r, these three facts are 

grouped together and contribute to the total cost only with their maximum cost, which is dist(r). 
However, if q%rel

r does not hold (since the relation %rel
 is not transitive), then p and r are 

grouped together, while q is not included in the same group. In this case, q belongs to another 
group, which contributes separately to the total cost. 

The aggregation process is performed by the function AGGREGATE, which is described below. 
The function takes a set of facts {p1, p2, ...., pN} as input, together with their distances dist(pi) and 
their lists of related facts rel(pi), and estimates the cost of achieving them simultaneously. The 
function is used both in the pre-processing phase, in order to estimate the application cost of the 
inverted actions, and in the search phase, in order to estimate the distance of each intermediate state 
from the goals. 

 

Function AGGREGATE  
Input: A set of facts {p1, p2, ..., pN }, their distances dist(pi) and their lists of related facts rel(pi). 
Output: An estimate of the cost of achieving the facts simultaneously. 

1. Set M1 = { p1, p2, ..., pN }. Set Cost  = 0. 

2. While ( M1 ≠ ∅) do: 

a) Let M2 be the set of facts pi  ∈ M1 that are not included in any list 
of related facts of another fact pj  ∈ M1, without pj  being also 
included in their list of related facts. More formally: 

M2 = { pi : pi  ∈ M1, ∀ pj  ∈ M1, pi  ∈ rel ( pj ) ⇒ pj  ∈ rel ( pi ) } 

b) Let M3 be the set of those facts of M1 that are not included in M2, 
but are included in at least one of the lists of related facts of 
the elements of M2. 

M3 = { pi : pi  ∈ M1 \  M2, ∃ pj  ∈ M2, pi  ∈ rel ( pj ) } 

c) Divide M2 in disjoint groups of facts that are related to each 
other. For each group add the common cost of its facts to Cost .  

d) Set M1 = M1 \ ( M2∪M3). 

3. Return Cost  

 
The AGGREGATE function is illustrated with the blocks-world problem of Figure 1. Part of the 

Greedy Regression Table for this problem is shown in Table 1. For simplicity, for each fact p we 
do not consider as related the facts that have zero distances (i.e. the Goals) and the fact p itself. 
This simplification does not affect the estimated distances. 

 

a b 

c 

c 

b 

a 

Initial State Goal State 
 

Figure 1: A 3-blocks problem. 
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Let us compute the distance between the initial and the goal state. The initial state consists of 
the following set of facts: 

( (on a table) (clear a) (on b table) (on c b) (clear c) )1 

As it results from Table 1, all the initial state facts are related to (on c b), whereas (on c b) is not 
related to any other fact. Thus, in the first iteration of the AGGREGATION loop, M2 is set to ((on c 
b)) (step 2a) and M3 is set to ((on a table) (clear a) (on b table) (clear c)) (step 2b). So, Cost 
becomes equal to the distance of (on c b), i.e. 3 (step 2c) and M1 becomes empty. A second 
iteration is not performed and value 3, which is the actual distance between the initial and the goal 
state, is returned. 

 

Fact 
Distance from 

goals 
Related facts 

(on c table) 0 ( ) 

(on b c) 0 ( ) 

(on a b) 0 ( ) 

(clear a) 0 ( ) 

(on a table) 1 ( (clear b) ) 

(clear B) 1 ( (on a table) ) 

(on b table) 2 ( (on a table) (clear a) (clear b) (clear c) ) 

(clear c) 2 ( (on a table) (clear a) (clear b) (on b table) ) 

(on c b) 3 ( (on a table) (clear a) (on b table) (clear c) ) 

... ... ... 

Table 1: Part of the Greedy Regression Table for the 3-blocks problem. 

Corollary 3 ensures that set M2 (step 2a of function AGGREGATE) will never be empty. 
Proposition 4 ensures that M2 can always be partitioned in groups of facts that have been achieved 
by the same action (step 2c). The number of iterations that function AGGREGATE performs is 
bounded by the initial size of M1, however usually a single iteration is performed. 

2.4 The Pre-Processing Algorithm 

The estimation of the distance between each fact and the Goals and the computation of the lists of 
the related facts for each facts of a problem are performed through the following algorithm: 

                                                      
1 For the representation of facts, actions and states we adopt the PDDL (Planning Domain Definition Language) syntax 

throughout this paper. A manual for the PDDL language can be found at the URL 
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz 
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The Pre-Processing Algorithm 
Input: The action and predicate definitions of a domain and the objects of a problem. 
Output: The distance estimate from the goals dist(p) and the related facts rel(p) for each 

ground fact p of a problem. 

1. Let Actions  be the set of all inverted ground actions in the given 
problem. For each α ∈ Actions , set dist ( α)=+ ∞. 

2. Let Agenda  be a list of inverted actions. Set Agenda =∅. 

3. Let Facts  be the set of all problem's ground facts. For each f ∈ 
Facts set  dist(f)= +∞. 

4. For each f  ∈ Goals set  dist(f)= 0 and rel ( f )= Goals . 

5. For each action α ∈ Actions , if A GGREGATE( Pre ( α))<+ ∞, then set 
dist ( α)=A GGREGATE( Pre ( α))+1 and add α at the end of the Agenda . 

6. While Agenda  ≠ ∅ do: 

a) Extract the first action from the Agenda , say α. 

b) For every fact f  ∈ Add( α), if dist ( f )> dist ( α), then: 

- dist ( f )= dist ( α) 

- rel ( f ) = Pre ( α) ∪ rel ( Pre ( α)) ∪ Add ( α)\ Del ( α) 

- For every action b ∈ Actions , such that f  ∈ Pre ( b), if 
AGGREGATE( Pre ( b))+1< dist ( b), then dist ( b)=A GGREGATE( Pre ( b))+1 and 
push action b at the end of the Agenda . 

 

The Agenda works on a FIFO basis. An action can be re-inserted in the Agenda if its cost 
becomes smaller. Thus, each fact can be achieved several times, each time with a smaller cost. The 
cost of applying the Pre-Processing Algorithm is polynomial in the number of problem ground 
facts and ground actions. 

 
Proposition 5. The Pre-Processing Algorithm preserves Axiom 2. 

Proof: In step 6b, the cost of applying an action is set to be equal to the cost of achieving 
simultaneously the preconditions of the action plus one. This cost is assigned to the add effects of 
the action, except if lower costs have already been assigned to them. Thus, Axiom 2 is preserved.   
� 
 

Proposition 6. Function AGGREGATE preserves Axiom 1. 

Proof: We will prove Proposition 6 by induction. Axiom 1 holds for the Goals, which have zero 
distances from themselves and are related to each other. Besides, Propositions 3 and 4 and 
Corollaries 1, 2 and 3 hold also for them. Suppose next that Axiom 1 and all the induced 
Propositions and Corollaries hold for the currently achieved facts Facts. It suffices to prove that for 
any action a, such that Pre(a) ⊆ Facts, Axiom 1 holds for the new set of achieved facts 
Facts'=Facts ∪ Add(a). 

Consider a set of facts P ⊆ Facts'. We will prove that function AGGREGATE preserves Axiom 1, 
with regard to the randomly selected set P. Let p be the fact with the maximum distance among the 
facts of P. According to the definition of AGGREGATE function, it suffices to prove that p or 
another fact of equal distance is included in M2. 
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If p ∈ P\Add(a), then for every other fact q∈P\Add(a), if p%rel
q, then dist(q)≥dist(p) 

(according to Proposition 3, which holds for Facts) and finally dist(q)=dist(p), because p has the 
maximum distance among the facts of P (the same rationale can be used in the case where there is a 
sequence of facts q1, q2, ..., qN, such that p%rel

q1 and qi%rel
qi+1, i=1, 2, ..., N-1). If q ∈Add(a) and 

p%rel
q, p would be a precondition of a, or a related fact of a precondition of a. However, in that 

case it would not be possible that p%rel
q, because the distance of q would be greater than the cost 

of p (according to Axiom 2, which holds for the preconditions of action a) and this is in 
contradiction with the hypothesis that p has the maximum distance among the facts of P. 

Let us consider the case where p ∈ Add(a). If p has just been firstly achieved, then the only facts 
q, for which p%rel

q hold, are certainly the other just achieved or re-achieved add effects of action 

a, which have the same application cost. If p has been re-achieved by a with smaller cost, then it is 
impossible to hold p%rel

q for another fact q ∈ P\Add(a). Actually, in this hypothetical case we 

would have dist(q)≥distOLD(p), since Proposition 3 holds for q and the previous distance of p, and 
distOLD(p)>distNEW(p), so dist(q)>distNEW(p), which is in contradiction with the hypothesis that p 
has the maximum distance among the facts of P. Therefore, in any case, p or another fact of equal 
cost is included in M2 and the cost of achieving simultaneously the facts of P is equal to or higher 
than their maximum distance.   � 

 

We close this section by mentioning the two types of facts, the static facts and the dynamic 
facts, that can be found in a problem. The first type concerns the facts that are neither added nor 
deleted by any action, while the second concerns the rest of the facts. GRT classifies automatically 
the facts, by analyzing the action schemas of the domain. All the procedures presented in Section 2, 
i.e. the distance estimates and the related facts, concern only the dynamic facts. 

3. Detecting and Enhancing Incomplete States 

Backward heuristic construction induces a problem: In most of the problems the goals do not 
constitute a complete state description, so it is not possible to apply inverted actions to them. For 
example, in the commonly used logistics problems, where packages have to be moved between 
several locations via trucks and planes, the goals do not determine the final locations of the trucks 
and the planes. The source of the problem is that the GRT heuristic is constructed using a stricter 
than usual regression, i.e. it uses actions, the add effects and the non-deleted preconditions of 
which (i.e. the preconditions of the corresponding inverted actions) are included within the goals 
(in the usual regression, actions with at least one add effect within the goals are used). In this way 
GRT succeeds in obtaining more precise estimates and avoiding unreachable facts. 

The solution adopted by GRT to confront the problem of incomplete goal states is to enhance the 
goals with new facts, which are not in contradiction to the existing ones. For example, since the 
goals of the 'logistics.a' problem (Veloso, 1992) do not determine the final locations of the two 
planes, it is supposed that each one of the planes could be at any of the three airports. So, the 
ground facts: 

(at plane1 pgh_air) (at plane1 bos_air) (at plane1 la_air) 
(at plane2 pgh_air) (at plane2 bos_air) (at plane2 la_air) 

can be added to the new goal state, which is called henceforth the enhanced goal state. 
It should be noted that the enhanced goal state is only used in the pre-processing phase, for the 

construction of the heuristic. During the search phase, attention is paid only to reach the original 



BACKWARD HEURISTIC CONSTRUCTION IN FORWARD STATE-SPACE PLANNING 
 
 
 

 
125

goals. In this way, completeness is never lost, even in the case where wrong facts have been 
selected to enhance the Goals. However, selecting wrong facts may significantly affect the 
efficiency of the heuristic function. 

Two issues arise when trying to enhance the goals: The first one is how to detect the candidate 
new goal facts and the second one is which of them to use. Sections 3.1 and 3.2 examine these 
issues, while in Section 3.3 a similar technique is used for identifying and enriching poor domain 
representations. 

3.1 Detecting Missing Goal Facts  

Regarding the identification of the candidate facts to enhance the goals, there are two automatic 
approaches. The first one consists of a forward GRAPHPLAN-like (Blum & Furst, 1999) pre-
preprocessing phase that computes all binary mutual exclusion relations (or simply "mutex" 
relations) among the facts of the problem. A number of optimizations of this approach are 
presented in (Refanidis & Vlahavas, 1999c), based primarily on the monotonic behavior of the 
mutual exclusion relations (Long & Fox, 1999; Smith & Weld, 1999) and secondly on the fact that 
it is not necessary to construct a complete planning graph, since it will not be used for extracting a 
plan. After the computation of the mutual exclusion relations, all the facts that are not mutually 
exclusive with any goal fact are considered candidates for the enhancement of the goals. Its 
advantage is that no extra information is needed, apart from the usual STRIPS domain 
representation. Moreover, mutual exclusion relations that are not easily recognized by a human 
expert can be detected in this way. Finally, this approach can be also exploited as a coarse-grained 
reachability analysis for the problem's facts. The disadvantages of this approach are that it is time 
consuming and that it does not detect mutual exclusion relations of higher order than two. 

The second approach is to use domain specific knowledge in the form of axioms. For example, 
an axiom can state that a truck or a plane is always located at some place. So, if the goals do not 
determine where a truck is, we can deduce a set of candidate goal facts using this axiom. The 
advantage of this approach is that the time needed to deduce the candidate facts is negligible, in 
comparison with the time needed for the rest of the planning process. Moreover, more complicated 
relations than simple binary mutual exclusion ones can be encoded. The disadvantage is that extra 
labor is required in the domain encoding. However, several methods for automatic discovery of 
domain axioms have been proposed, e.g. the DISCOPLAN system (Gerevini & Schubert, 1998) and 
the work of Fox and Long on the automated inference of invariants (Fox & Long, 2000), and it is in 
our future plans to adopt such a method in GRT. 

The GRT planner uses the first approach to detect the missing goal facts. Thus, an overhead in 
total solution time is imposed by the extra pre-processing work. The contribution of this work to 
the total problem solving time varies from less than 10% in domains like blocks-world, to more 
than 20% in domains like logistics. The ratio depends on the difficulty of the domain, i.e. how 
much time is consumed by the search phase. Logistics problems are easier than blocks-world 
problems, so in this domain the overhead is more severe. In the future, we intend to adopt an 
automatic method for detecting domain axioms, in order to avoid this overhead. 

3.2 Enhancing the Goals 

GRT supports three methods of selecting among the candidate new goal facts: 

� Select all candidate facts. 
� Use the initial state facts. 
� Favor the most promising facts. 
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The first method considers all the found facts as goal facts and assigns zero distances to them. 
In most cases, the enhanced goal state obtained in this way is not a valid state, since the new facts 
may be mutually exclusive to each other (but not to the original goals). The advantage of this 
approach is that the heuristic construction is very fast, since many facts are achieved at the 
beginning and a large number of actions become initially applicable. The disadvantage is that the 
obtained heuristic is less informative, since there are small differences between the obtained 
estimates. So, the best-first strategy tends towards breadth-first, visits more states, consumes more 
time, but generally produces better plans than the other two methods. 

The second method enhances the goals with the candidate facts that are also included in the 
initial state, whereas the facts that are mutually exclusive with the selected ones, are rejected. The 
advantage of this method, compared to the first one, is that it results in greater differences between 
the facts' distances, and therefore in faster search phase. On the other hand, a preference for the 
initial state facts is a risk, because if these are not or - even worse - they cannot be included within 
the goals, the search process may become disoriented, leading to longer plans. This method is more 
suitable to problems, where there are objects' properties that are unnecessary to solve the problem 
and are left undetermined in the goals. 

The third method tries to combine the advantages of the other two. In contrast to them, where 
the enhancement of the goals is performed in a single step, prior to the construction of the heuristic, 
this method adds facts to the goals progressively, in parallel with the heuristic construction. 
Actually, facts are added to the goals only in the case where Agenda (Section 2.4) becomes empty. 
In this case, candidate facts are progressively assigned zero distances, until a new inverted action 
satisfies its preconditions. Each time a fact is selected, other candidate facts that are mutually 
exclusive with the selected one are rejected from the set of candidate facts.  

The method favors facts that can be combined with already achieved facts, in order to make an 
inverted action applicable. The following four rules are applied in decreasing preference: 

 

− The facts that can be combined with the original goals are selected first. 

− Then, the facts that can be combined with other already achieved facts are selected. 
− Next, the facts that are included in the initial state are selected. 

− Finally, the remaining candidate facts are selected randomly. 
 

Generally, this method results in the best solving speed and, in many cases, produces equal or 
even better plans than the first two methods. However, especially in terms of plan quality, there are 
many exceptions depending on the specific problem. It is not difficult to create problems such that 
any of the methods presented above performs best. The default method for the GRT planner is the 
first one, which is the only method that has been used in the AIPS-00 competition2. 

Note that there are domains, like blocks-world, freecell and elevator of the AIPS-00 competition, 
or the gripper and the movie domains from the AIPS-98 competition3, where the goals are complete 
or near-complete state descriptions; therefore the method used in these domains does not affect 
neither solution time nor solution quality. In other domains, as the mystery (AIPS-98), it is 
impossible to predict, without solving the planning problem, which of the candidate facts could 
actually be goal facts, so in this case the only acceptable method for goal completion is the first 
one. 

                                                      
2 The official WEB page of the AIPS-00 competition can be found at the URL http://www.cs.toronto.edu/aips2000/. 
3 The official WEB page of the AIPS-98 competition can be found at the URL 

ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html 



BACKWARD HEURISTIC CONSTRUCTION IN FORWARD STATE-SPACE PLANNING 
 
 
 

 
127

3.3 Domain Enrichment 

In this section, we present an approach adopted by the GRT planner, in order to deal with poor 
domain descriptions. By the word 'poor' we refer to domains where negative facts are implicitly 
present in the initial state and in the actions' preconditions. GRT faced this problem twice, with the 
movie and the elevator domains. 

In order to explain the problem, let us consider the elevator domain, where there is one elevator, 
several floors and several passengers. Each passenger is located in an initial floor and wants to 
move to her/his destination floor. The domain is described by four action schemas, (board Floor 
Passenger) and (depart Floor Passenger) for boarding and leaving the elevator and (up Floor1 
Floor2) and (down Floor1 Floor2) for moving the elevator. 

The action schema (board Floor Passenger) is defined by the following PDDL formula: 

(:action board 
  :parameters (?f ?p) 
  :precondition (and (floor ?f) (passenger ?p) 
   (lift-at ?f) (origin ?p ?f)) 
  :effect (boarded ?p)) 

The only dynamic predicate in the definition of action schema board is boarded, an add effect 
denoting that the passenger has boarded the elevator. There is no precondition requiring that the 
passenger is not boarded. The problem with this definition is twofold. Firstly, the action can be 
applied several times to the same passenger in the same plan, i.e. a passenger may board the 
elevator although she/he has already boarded. Secondly, and specifically to GRT, it is not stated 
explicitly that the passengers are not initially boarded. Actually, the initial state contains static facts 
only, which are not removed in the successive states. However, GRT takes into account dynamic 
facts only in order to estimate distances. The result is that the initial state and all the subsequent 
states are assigned zero distances from the Goals and the best-first strategy behaves as a breadth-
first one. 

What is needed is the definition of a new predicate, say not_boarded. Facts of this predicate 
should be added to the initial state, denoting that each passenger is initially not boarded, and the 
action schema board should be changed accordingly. 

GRT performs domain enrichment at run-time. The identification of the above situation is 
performed in a way similar to the identification of the incomplete goal states. In this case, GRT 
looks for dynamic facts of a problem that are not mutually exclusive with any initial state fact. In 
case of such facts, the negations of the identified facts are defined at run-time and added to the 
initial state. Furthermore, the negations are added to the preconditions lists and the delete lists of 
the actions that achieve the identified facts. 

In the elevator domain this is the case with the board and depart actions and the boarded and 
served predicates. The not_boarded and not_served predicates are defined at run-time, the initial 
state is enhanced with facts determining that each passenger is neither boarded nor served yet and 
the actions board and depart are transformed accordingly. For example, the action schema board is 
transformed into the following definition: 

(:action board 
  :parameters (?f ?p) 
  :precondition (and (floor ?f) (passenger ?p)(lift-at ?f) 
   (origin ?p ?f) (not_boarded ?p)) 
  :effect (and (not (not_boarded ?p))(boarded ?p)) 
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A similar situation arises in the movie domain. In this domain, the goal is to have enough snacks 
so as to watch a movie. There are several action schemas of the form: 

(:action get-chips 
           :parameters (?x) 
           :precondition (and (chips ?x)) 
           :effect (and (have-chips))) 

This action schema has the static fact (chips ?x) as precondition and produces the dynamic fact 
(have-chips). The action can be applied several times, however once is enough to achieve the goal 
of having chips. The difficulty in this domain is that the initial state implicitly declares that we do 
not have chips (and dips and pops etc), but there is not any specific dynamic fact to make this clear. 
Therefore, in case no domain enrichment process takes place, GRT assigns to the initial state a zero 
distance from the goals. With the domain enrichment feature, GRT detects that there are facts like 
the have-chips, have-dips etc that are not mutually exclusive with the initial state, defines their 
negations (not_have-chips, not_have-dips etc.), adds them to the initial state and transforms the 
actions accordingly. 

In both of the above domains, without the domain enrichment feature the GRT planner could 
only solve some of the easiest problems. However, with this feature it was able to tackle all 
problems very efficiently. 

Adding negative predicates in the preconditions of the actions may lead to loss of completeness, 
since the actions may not be able to be applied in some states, where otherwise they could. In order 
to prevent completeness, GRT treats the new preconditions as conditional preconditions, i.e. they 
are not necessary for the application of an action to a state, however, if they are present in the 
current state they are removed from the successor one. 

4. Reducing the Size of the Problems 

In this section, two methods to reduce the size of a problem, i.e. the number of ground facts and 
actions, are presented. The first method refers to the identification and elimination of objects, 
which are certainly not part of any solution. The second method concerns the adoption of a 
numerical representation of resources, instead of the problematic atom-based representation of 
numbers that has been used in domains like mystery and freecell. Reducing the size of a problem 
reduces the effort needed to solve it, especially in the pre-processing phase, where distances for all 
facts of a problem have to be computed. 

4.1 Eliminating Irrelevant Objects 

In many domains, there are objects that are irrelevant to any solution. The most typical examples 
can be found in the transportation domains, like logistics, mystery and elevator, where some 
packages are initially found in their destinations or for which no specific destination is determined. 
So, these objects, together with all the facts and actions containing them, can be removed from the 
problem description, without losing completeness. 

In GRT we developed a method that detects and removes irrelevant objects. The method 
concerns pure STRIPS domains without negation in the preconditions of the actions or in the goal 
formula; however, it can be easily extended to cover these cases. The objects are identified before 
the pre-processing phase using the following two rules: 

 
An object is irrelevant to any solution for a specific planning problem, if: 
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� It does not appear in any goal fact, unless the same fact is also included in the initial state, and 

� there is no action containing this object in its preconditions, unless the object is also contained 
in all the action's effects. 
 
The above conditions are very strict, but they ensure that any detected object is certainly 

irrelevant, so they maintain the completeness of the problem solving process. 
 

Proposition 7. Any object satisfying the above rules can safely be removed from the problem 
description, without sacrificing completeness. 
 
Proof: Suppose that an object obj has been identified, for which the above two rules hold. We will 
show that obj is not necessary to achieve any other goal fact, which does not contain obj. Let us 
assume that there is a fact g ∈ Goals, which does not contain obj. Suppose that there is an action 
that achieves g, with a precondition containing obj. In this case, the second rule is violated, since 
there is an action including obj in its preconditions, without obj appearing in an effect. So, fact g 
can be achieved only by actions without preconditions containing obj. Thus, if we regress the goals 
using actions achieving g, the established subgoals do not contain obj. However, in the same way 
we can reject actions including obj in their preconditions and achieve the new established subgoals. 
So, obj is not necessary to achieve any goal or subgoal of the problem. Moreover, there is no goal 
fact containing obj, which has to be achieved; even if there is one, it is already present in the initial 
state. Therefore, obj can safely be removed from the problem.   � 

 
The application of the above rules for the elimination of irrelevant objects can be done 

progressively. Let us consider an enhanced logistics domain, where we added colors. Specifically, 
we define a dynamic predicate (painted ?object ?color) denoting the color of a package, a static 
predicate (color ?color) declaring the available colors, and an action schema (paint ?object 
?old_color ?new_color) for painting a package. Let us assume that the goal state does not 
determine the colors of the packages. In this case, the colors are irrelevant objects and can be safely 
removed, together with all the facts and actions that include colors. 

Suppose also that there are brushes that are used to perform the paint operation. There are two 
new action schemas, (get ?brush) and (leave ?brush) and a predicate (have ?brush), which is an 
effect of the get action and a precondition in the enhanced action (paint ?package ?color ?brush). 
In this case, brushes are also irrelevant and should be eliminated. However, since the action paint 
needs brushes and has effects not containing them (i.e. (painted ?package ?color) ), the brushes are 
not removed, due to the second rule. However, after removing all the color objects, all the paint 
actions are removed; thus, brushes do not violate the second rule for the remaining actions and can 
be safely removed. 

The disadvantage of this approach for the elimination of irrelevant objects is that it does not 
remove objects that can eventually appear in a plan, but there are other better (i.e. shorter) plans not 
using them. For example, in the logistics domain, suppose that we have three cities, city1, city2 and 
city3 and a package that has to be transferred from one location of city1 to another location of city2. 
In this case, city3, together with its locations and its truck, are not necessary to solve the planning 
problem, since the package can be transferred directly from city1 to city2, without going via city3. 
However, it is not easy to identify the irrelevance of city3. Actually, there are plans that transport 
packages from city1 to city2 via city3. If we decide to remove city3 and its objects from the 
problem representation, we take the risk of sacrificing completeness, since the problem may 
become unsolvable. Deciding safely, without loss of completeness, that city3 and its objects can be 
removed, can be as hard as solving the original problem. 
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Other approaches on the elimination of irrelevant or redundant information, in order to achieve 
better performance, have been proposed by Nebel, Dimopoulos & Koehler (1997), Scholz (1999) 
and Haslum & Jonsson (2000). The work of Nebel, Dimopoulos & Koehler concerns ignoring 
irrelevant facts and actions (not objects), based on heuristics that approximate a plan by 
backchaining from the goals without taking into account any conflicts. Although this approach is 
more powerful, in terms of elimination, than the one presented in this section, it is not solution 
preserving. Furthermore, it may be more time-consuming, since it demands the construction of an 
initial approximate plan. 

Scholz introduces action constraints, i.e. patterns of action sequences that can be applied to the 
same states and produce the same overall effects. Action constraints can be used for pruning 
purposes by the state-space planners, reducing the size of the search space to the levels of the 
partial-order planners (Minton, Bresina & Drummond, 1994), without losing completeness. The 
work of Scholz is actually a re-investigation of the sleep sets of actions that were originally 
presented by Godefroid & Kabanza (1991) and have been also examined by us, under the name 
prohibited actions, in an earlier version of GRT (1999a). The experience of the authors is that 
detecting and pruning redundant actions sequences is time consuming, while a more effective 
approach is to employ a closed list of visited states, paying however a cost in terms of memory. 
The latter approach is adopted by the GRT planning system. However Scholz considers only action 
sequences of length two, which makes his approach fast enough but less effective than a closed list 
of visited states structure. 

Haslum and Jonsson compute a reduced set of actions for a problem, by ignoring actions that 
can be equivalently replaced by sequences of other actions. Their approach is solution preserving, 
it can be adopted by any STRIPS planner that pre-instantiates all the actions of a problem, and 
results, for some planners, in considerable speed-up but also in longer plans. 

4.2 Numerical Representation of Resources 

In this section, we present an enhanced STRIPS formalism, where resources are represented by 
numbers, instead of atoms. The work has been motivated by the mystery domain, but it is suitable 
for any domain with resources. Moreover, it can easily be extended to cover domains where 
reasoning with numbers is required. 

GRT supports an explicit representation of resources in the most natural format, i.e. the 
numerical format. According to this, resources are distinguished from other types of objects and are 
separately declared using the following statement: 

(: resources R1 R2  ... RN ) 

where Ri are the various resources. Furthermore, declarations of the following form are added to 
the initial state description : 

( amount R1 V1 ) ( amount R2 V2 ) ... ( amount RN VN ) 

denoting the initial quantity of each resource. Moreover, it is allowed for resources to participate in 
relations with other atomic facts. Finally, action definitions are enhanced, so as to declare explicitly 
the consumed resources. 

As an example, we consider the mystery domain, which comprises some cities, connected via 
edges, some packages that have to be transferred from their initial locations to their destinations 
and some trucks. In the beginning, each city has an amount of fuel. For a truck to travel from a city 
c1 to an adjacent city c2, c1 must have at least one unit of fuel. After the journey, the fuel of c1 is 
decreased by one. 
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In the original domain representation, the different fuel quantities are represented by relations of 
the form4: 

( fuel  fuel0 ) ( fuel  fuel1 ) ( fuel  fuel2 ) etc. 

while the orderings between these quantities are represented by relations as follows: 

( adjacent_fuel fuel0 fuel1 ) ( adjacent_fuel fuel1 fuel2 ) etc. 

and the initial amount of resources in each city as: 

( city_fuel city1 fuel3 ) etc. 

Finally, the actions that consume resources, e.g. moving a truck, are of the following form: 

(: action move 
: parameters ( ?tr ?c1 ?c2 ?f1 ?f2 ) 
: precondition  ( and ( truck ?tr ) ( city ?c1 ) ( city ?c2 ) 
( adjacent_cities ?c1 ?c2 ) ( fuel ?f1 ) ( fuel ?f2 ) ( at ?tr ?c1 )  
( adjacent_fuel ?f1 ?f2 ) ( city_fuels ?c1 ?f2 )) 
: effect  ( and ( not ( at ?tr ?c1 )) ( not ( city_fuel ?c1 ?f2 ))  
( at ?tr ?c2 ) ( city_fuel ?c1 ?f1 ))) 

In order to have an idea of how resources are represented in GRT, let us consider the STRIPS-
MYSTY-X-1 problem of the mystery domain. This problem has 6 cities, so 6 resource objects are 
declared: 

(: resources r1 r2 r3 r4 r5 r6 ) 

The resources are related with their corresponding cities: 

( city_fuel city1 r1 ) ( city_fuel city2 r1 ) ... ( city_fuel city6 r6 ) 

Propositions are added to the initial state, denoting the initial availability of each resource: 

( amount r1 1 ) ( amount r2 2 ) ... ( amount r6 3 ) 

Finally, action move is defined in a way that separates the resource requirements from the 
precondition and the effect lists: 

(: action move 
: parameters ( ?tr ?c1 ?c2 ?f ) 
: precondition ( and ( truck ?tr ) ( city ?c1 ) ( city ?c2 ) ( at ?tr ?c1 ) 
( adjacent_cities ?c1 ?c2 ) ( city_fuel ?c1 ?f )) 
: effect  ( and ( not ( at ?tr ?c1 )) ( at ?tr ?c2 )) 
: resources  ( amount ?f 1 )) 

Table 2 shows the number of ground facts and ground actions for the first five problems of the 
mystery distribution, for the two alternative resource representations. As it is clear from this table, 
through the numerical representation of resources there is an important reduction in the number of 
ground facts, which is more considerable in the case of ground actions. What is even more 
important is that the size of the problem in the atom-based representation can grow illimitably, if 
more levels of resource availability are added, whereas in the numerical representation the size of 
the problem remains constant. 

 

                                                      
4 In the AIPS-98 competition, different predicate and object names have been used; however, in this paper we have 

translated them into more meaningful ones for simplicity. 
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Atom representation Numerical Representation 

Problem ground facts ground actions ground facts ground actions 

strips-mysty-x-1 101 150 56 48 
strips-mysty-x-2 359 3596 310 1200 
strips-mysty-x-3 277 1676 230 816 
strips-mysty-x-4 178 210 144 168 
strips-mysty-x-5 299 2325 269 1032 

Table 2: Size of the problem (number of ground facts and actions) 
for the two alternative resource representations. 

5. Using XOR Constraints to avoid Local Optimal States 

In this section, we tackle the problem of local optimal states. Firstly, we illustrate the problem, then 
we introduce XOR-constraints and finally we present how these are exploited by GRT in order to 
avoid local optima. 

5.1 Local Optimal States 

During the search phase, GRT always selects to expand the most promising state, according to its 
heuristic. If the various facts of a problem were independent or even if GRT always managed to 
track their interactions through the related facts, this strategy would be optimal. However, this is 
not always the case and some times the search is led to local optimal states. Therefore, the planner 
should temporarily backtrack to less promising states, before selecting the most promising ones. 
Figure 2 presents an example situation: 

 
 Initial state   Goal state 
2 K    2   K 
1     1    
0 R    0   R 
 0 1 2   0 1 2 

Figure 2: A 3x3 grid problem. 

The problem refers to a grid-like domain (McDermott, 1999), where K is a key and R is a robot. 
The robot can only proceed to adjacent positions. The valid actions are get and leave the key and 
move the robot. Table 3 shows part of the Greedy Regression Table for the problem of Figure 2. 

According to this Table, the distance between the initial and the goal state is 10. There are two 
applicable to the initial state actions, moving R to n1_0 and moving R to n0_1. After moving R to 
n1_0 the resulting state has a distance from the goals equal to 9, whereas after moving R to n0_1 
the resulting state has a distance from the goals equal to 11. So the planner decides to move R to 
n1_0 and subsequently to n2_0. However, it is obvious that the optimal first movements are 
moving the robot to n0_1, next to n0_2, getting the key etc. 
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Fact 
Distance 

from Goals 
Related Facts 

(at R n2_0) 0 ( ) 
(at K n2_2) 0 ( ) 
(at R n1_0) 1 ( ) 
(at R n0_0) 2 ( ) 
(at R n0_1) 3 ( ) 
(at R n2_1) 1 ( ) 
(at R n2_2)  2 ( ) 

(in R K) 3 ( (at R n2_2) ) 
(at R n1_2) 3 ( ) 
(at K n1_2) 7 ( (at R n1_2) ) 
(at R n0_2) 4 ( ) 
(at K n0_2) 8 ( (at R n0_2) ) 

Table 3: Part of the Greedy Regression Table for the 3x3 grid problem. 

Initially the planner does not select the optimal action, since it leads to a state with a greater 
distance from the goals, according to the heuristic. In order to decide to move the robot towards the 
key, the planner should go through all the other valid plans, then backtrack and move the robot to 
worse states (this requires that the planner maintains a closed list of visited states and does not 
revisit them). In difficult problems, the number of states that the planner has to visit before 
following the optimal direction, is extremely large. This is the main reason why GRT, like many 
other heuristic planners, does not handle grid-like domains efficiently.  

For the 3x3 grid problem of Figure 2, an ideal planner should detect that, in order to move the 
key from n0_2 to n2_2, it is necessary that the robot gets the key, so the fact (at R n0_2) should be 
achieved before the fact (at R n2_0). However, the planner does not know that the facts (at R 
n0_0), (at R n2_0) and (at R n0_2) are related in some way, because the domain definition does not 
provide this piece of information. Therefore, it is necessary to provide the planner with information 
about relations that hold between the facts of the problem. 

5.2 Defining XOR-constraints 

In order to avoid local optimal states, we provide GRT with knowledge of relations between facts, 
where exactly one of the facts can hold in each state. We call these relations XOR-constraints. 

 

Definition 2 (XOR-constraint). An XOR-constraint is a relation between ground facts. The 
relation is valid in a state, if exactly one of the participating facts holds in that state. 
 

The general form of an XOR-constraint schema is the following: 

((xor  f1  f2 ...)  c1  c2 ...) 

where fi are the facts that cannot co-appear in any state and ci are static facts that provide 
supplementary conditions such as type constraints, relations between objects, etc. 

XOR-constraints can be formalized for almost any domain. For example, in the logistics domain 
we could define the following XOR-constraints: 

( (xor ( at ?Truck * ) )  ( truck ?Truck ) ) 
( (xor ( at ?Plane * ) )  ( plane ?Plane ) ) 
( (xor ( at ?Package * )  (in ?Package * ) ) ( package ?Package )) 
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Question marks (?) precede named variables, whereas asterisks (*) denote no-named ones. The 
definitions mean that for every instantiation of the named variables that appear in an XOR-
constraint and for all the valid instantiations of the no-named variables, according to the predicate 
definitions, exactly one ground fact can hold in each valid and complete state. The above XOR-
constraints schemas are general definitions that can be grounded in several ways, according to the 
different ways in which their named variables can be instantiated. 

In some cases, it is possible to have XOR-constraints that incorporate AND relations. For 
example, if in the logistics domain the predicate (out ?Package) is defined, which means that a 
package is not loaded either in a truck or in a plane, then the relevant constraint should be written: 

( ( xor ( and ( ( at ?Package *  ) ( out ?Package ) )  ( in ?Package *  ) )  ( package ?Package ) ) 

Note that some facts may not appear in any XOR-constraint, while some others may appear in 
more than one. Henceforth, we refer to facts that appear in at least one XOR-constraint as XOR-
constrained facts. 

It is a requirement of the current version of GRT that the XOR-constraints are included in the 
domain definition. However, they could be computed analytically, based on the mutual exclusion 
relations between the facts of a problem, since mutually exclusive facts cannot appear 
simultaneously in any valid state. However, providing them manually allows for some form of 
guidance, since the domain engineer can leave out some of them, since they would lead to pointless 
decompositions. 

The notion of XOR-constraints is not new in planning. Gerevini and Schubert (1998) proposed 
a method for the automatic inference of state constraints from the action definitions and the initial 
state. Single valuedness constraints or sv constraints are the closest to the XOR-constraints. But sv 
constraints concern instantiations of the same predicate, while XOR-constraints can be relations 
between ground facts of different predicates. However, in more recent work (2000a, 2000b), they 
extended their work to also infer XOR-constraints. 

The object oriented domain specification formalism introduced by McCluskey & Porteous 
(1997) is similar to XOR-constraints. According to this, states are not defined as collections of 
facts but as collections of objects, each object having its own internal status. So, XOR-constraints 
can be implicitly defined from the requirement that all object attributes are single valued. 

5.3 Decomposing Problems into Sub-problems using XOR-constraints 

In this section we illustrate how GRT exploits XOR-constraints within the pre-processing phase, in 
order to avoid local optimal states. Specifically, using them GRT manages to establish new ordered 
subgoals that have to be achieved before achieving the original goals. These subgoals are grouped 
into ordered intermediate states, thus the original difficult problem is decomposed in a sequence of 
easier subproblems that have to be solved sequentially. 

We will present the steps of the problem decomposition process through the example of Figure 
3, a 4x4 grid problem with two keys (K1 and K2) and two robots (R1 and R2).  

 
 Initial State   Goal State 
3    K2  3 R2 K2   
2   R2   2     
1      1  K1   
0  R1  K1  0 R1    
 0 1 2 3   0 1 2 3 

Figure 3: A 4x4 grid problem. 
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For this domain the following XOR-constraints can be defined: 

( ( xor ( at ?Robot * ) )  ( robot ?Robot ) ) 
( ( xor ( at ?Key * )  ( holding ?Key ) )  ( key ?Key ) ) 

The above definitions have four ground instantiations, one for each Robot and one for each Key. 
Henceforth the notation XOROBJ will refer to the ground XOR-constraint concerning object OBJ.  

The first information that can be extracted is pairs of facts, one from the initial state and one 
from the goals, which belong to the same ground XOR-constraint. For the problem of Figure 3 the 
following pairs can be identified: 

XORR1: (at R1 n1_0)  -  (at R1 n0_0) 

XORR2: (at R2 n2_2)  -  (at R2 n0_3) 

XORK1: (at K1 n3_0)  -  (at K1 n1_1) 

XORK2: (at K2 n3_3)  -  (at K2 n1_3) 

The original GRT planner did not store information about the inverted actions, which achieved 
the various facts in the heuristic construction phase. However, in order to exploit the XOR-
constraints, this information has to be stored. By storing these actions, the table structure used by 
the GRT heuristic is transformed to a directed acyclic graph. We call this structure Greedy 
Regression Graph or simply GRG. 

The nodes of this graph are labeled with the facts of the problem. Each node retains also the 
estimated distance between its fact and the goals and the corresponding related facts. It retains also 
the name of the inverted action that achieved its fact. The arcs that point to a node originate from 
the nodes of the preconditions of the inverted action that achieved the node's fact. Figure 4 shows 
part of the GRG structure for the 4x4 grid problem (the related facts are omitted). 

Based on GRG, for every ground XOR-constraint, a sequence of actions which is able to 
transform the initial state fact to the corresponding goal state fact can be derived. We are interested 
only in the actions that change the XOR-constraint's facts and not in actions that provide auxiliary 
preconditions. For the problem of Figure 3, the actions' sequences are shown in Table 4: 

(at R1 n0_0) 
distance=0 

- 

(at R1 n1_0) 
distance=1 

(move R1 n1_0 n0_0) 

(at R1 n1_1) 
distance=2 

(move R1 n1_1 n1_0) 

(at R1 n2_0) 
distance=2 

(move R1 n2_0 n1_0) 

(at R1 n3_0) 
distance=3 

(move R1 n3_0 n2_0) 

(at K1 n3_0) 
distance=7 

(get R1 K1 n3_0) 

(holding R1 K1)
distance=3 

(leave R1 K1 n1_1) 

(at K1 n1_1) 
distance=0 

- 

(at R2 n0_3) 
distance=0 

- 

(at R2 n1_3) 
distance=1 

(move R2 n1_3 n0_3) 

(at R2 n2_3) 
distance=2 

(move R1 n2_3 n1_3) 

(at R2 n2_2) 
distance=3 

(move R2 n2_2 n2_3) 

(at R2 n3_3) 
distance=3 

(move R2 n3_3 n2_3) 

(at K2 n3_3) 
distance=6 

(get R2 K2 n3_3) 

(holding R2 K2)
distance=2 

(leave R2 K2 n1_3) 

(at K2 n1_3) 
distance=0 

- 

Figure 4: Part of the Greedy Regression Graph for the 4x4 Grid problem. 

Goal facts 
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XOR 
constraints 

Initial State 
Facts 

Goal State 
Facts 

Sequences of actions 

XORR1 (at R1 n1_0) (at R1 n0_0) (move R1 n1_0  n0_0) 
XORR2 (at R2 n2_2) (at R2 n0_3) (move R2  n2_2  n2_3) (move R2  n2_3 n1_3) 

(move R2  n1_3 n0_3) 
XORK1 (at K1 n3_0) (at K1 n1_1) (get R1 K1 n3_0)  (leave R1 K1 n1_1) 
XORK1 (at K2 n3_3) (at K2 n1_3) (get R2 K2  n3_3)  (leave R2 K2  n1_3) 

Table 4: Sequences of actions that transform the initial state facts 
to the corresponding goal facts. 

Checking the preconditions of the above actions, we can find facts that are members of foreign 
XOR-constraints. These facts are subgoals that have to be temporarily established, before 
achieving the original goals, in the forward search phase. In Table 4, the actions (get R1 K1 n3_0) 
and (leave R1 K1 n1_1) of the XORK1 sequence have (at R1 n3_0) and (at R1 n1_1) as 
preconditions respectively, which are members of the XORR1 relation. Similarly, the actions (get 
R2 K2 n3_3) and (leave R2 K2 n1_3) of the XORK2 sequence have (at R2 n3_3) and (at R2 n1_3) 
as preconditions respectively, which are members of the XORR2 relation.  

There are two types of subgoals. These are the XOR-constrained facts that are either:  

(I) preconditions of a ground action in a foreign XOR sequence, or 
(II) add-effects of an action, in their own XOR sequence, which has a foreign precondition. 

From the identified subgoals, we can construct a graph, conjoining the new subgoals with arcs 
that denote ordering constraints, using the following rules:  

1. All the subgoals are ordered after their initial state fact and before their goal fact (if any). 
2. Subgoals of type (II) that are members of the same XOR-constraint are ordered according to 

the ordering of their actions. 
3. Subgoals of type (I) are ordered together with the corresponding subgoals of type (II), which 

have resulted by the same action.  
4. For a specific XOR-constraint, subgoals of type (I) are ordered before the subgoals of type (II).  

 

(at R1 n1_0) 
 

(at R1 n0_0) 
 

(at R1 n3_0) 
 

(at R1 n1_1) 

 

(at R2 n2_2) 
 

(at R2 n0_3) 
 

(at R2 n3_3) 
 

(at R2 n1_3) 

 

(at K1 n3_0) 
 

(at K1 n1_1) 

 

(at K2 n3_3) 
 

(at K2 n1_3) 

Figure 5: The ordering graph for the 4x4 grid problem. 
 

Initial state           Intermediate goals         Goal state 

XORR1 

XORR2 

XORK1 

XORK2 

 

(holding R1 K1) 

 

(holding R2 K2) 
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We call the resulted graph the ordering graph of the problem, since it denotes the order in 
which the subgoals have to be achieved. Figure 5 shows the ordering graph for the problem of 
Figure 3. Lines with arcs denote ordering constraints. Double-lines without arcs denote that the two 
facts are ordered together. 

 
Proposition 8. The ordering graph is an acyclic graph. 
 
Proof sketch: The proof can be based on the way in which the facts are achieved in the Pre-
Processing Algorithm (Section 2.4). Actually, facts are achieved in a specific time order (in case 
where a fact has been re-achieved with smaller cost, we consider the last time it has been 
achieved). We define the ordering relation < between facts, denoting that a fact has been achieved 
before another in the Pre-Processing Algorithm. Similarly we define the ≤ relation. 

Ordering relations between the subgoals originate in two ways. Firstly, subgoals of type (II) of 
the same XOR-constraint are ordered explicitly to each other, according to the time they have been 
achieved (in Figure 5 these ordering relations are denoted with non-dashed lines with arcs). 
Secondly, each subgoal of type (I) is ordered before than or at least at the same time with the 
previous one of its corresponding type (II) subgoal (in Figure 5 these ordering relations are denoted 
with dashed lines with arcs). Using the above equivalences, we can transform the ordering graph to 
an equivalent time-ordering graph. Since a time-ordering relation cannot include cycles, the same 
happens for the ordering graph.   � 
 

The ordering graph makes it possible to construct intermediate, possibly incomplete, states, 
which have to be achieved sequentially. Starting from the initial state, GRT attempts to insert one 
subgoal from each XOR-constraint in each intermediate state. This fact must have the following 
properties: 

� It has not been inserted in a previous intermediate state,  
� it is not ordered after some other fact of the same XOR-constraint that has not yet been inserted 

in a previous intermediate state, and finally 
� it is not ordered together with a fact of another XOR-constraint that cannot be inserted in the 

current intermediate state. 
 

In case where there are more than one facts with the above properties for a single XOR-
constraint, the selection among them is done arbitrarily. Finally, in case where no fact with the 
above properties exists for an XOR-constraint, the intermediate state is left incomplete. 

Corollary 4. It is always possible to construct the intermediate states.  

Corollary 4 follows from Proposition 8. Since the ordering graph is a directed acyclic graph, it 
is always possible to find at least one subgoal to be included in the next intermediate state. The 
number of subgoals is an upper bound for the number of the intermediate states that will be 
constructed.  

From the ordering graph of Figure 5, the following intermediate states can be extracted: 

Intermediate state 1:  ( (at R1 n3_0)  (at R2 n3_3)  (in K1 R1)  (in K2 R2) ) 

Intermediate state 2:  ( (at R1 n1_1)  (at R2 n1_3)  (at K1 n1_1)  (at K2 n1_3) ) 

Intermediate state 3:  ( (at R1 n0_0)  (at R2 n0_3)  (at K1n1_1)  (at K2 n1_3) ) 

where the last state is the goal state.  
After the construction of the intermediate states, the planner has to solve three sub-problems, 

which are easier than the original one; thus, the overall time to solve them is shorter than the time 
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needed to solve the original problem. Note, however, that this decomposition may lead to loss of 
completeness. In domains where no deadlock exists, some solutions may be pruned. In domains 
where deadlocks do exist, the decomposition may produce unsolvable sub-problems. In order to 
maintain completeness, the algorithm should backtrack to all the possible inverted actions that 
could achieve the facts in the Pre-Processing Algorithm, even those with large application costs. 
However, due to the combinatorial explosion problem, this approach is not adopted by GRT. 

A usual situation is the case where the sub-problems need further decomposition. This situation 
arises in two cases. The first is when two objects need each other to achieve their goals, as in the 
case of grid domain, with the keys and the robot, and the second case is when there is a sequential 
interaction between three or more objects. In these cases, the ordering graph of the initial problem 
encodes one aspect of the interaction, while the ordering graphs of the sub-problems encode other 
aspects. However, in order to avoid infinite decompositions, a cutoff level is defined. 

6. The GRT Operation 

GRT has been implemented in C++5. Its operation consists of several stages, which are shown in 
Figure 6a. 

 

(a) The GRT operation stages 

(b) The problem processing stage 

Figure 6: The overall operation of the GRT planning system. 

In the first stage the domain and problem files are parsed and the initial data structures are 
constructed. The second stage consists of computing the facts and the actions of the problem. The 
facts are stored in a tree structure, which is indexed by their predicates and their objects and allows 
for fast access, while the actions are stored in a linked list. Moreover, multiple pointers connect 
each fact with the actions, where the fact appears. The computation of the facts and actions is 
performed incrementally, by repeatedly applying the following steps: 
� If a fact has been reached, create new actions that include this fact and others already reached, 

in their preconditions. 
� If an action has been created, add its add effects in the tree structure. 

The process starts with the initial state facts and continues until no more facts and actions can 
be reached. This approach is time efficient and succeeds in not generating many unreachable facts 
and actions. For example, in the logistics domain, the facts denoting that a truck is located in a city 

                                                      
5 GRT is available on-line at http://www.csd.auth.gr/~lpis/GRT/main.html.  
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different than its initial location, and the corresponding actions, are not created. Note that in this 
stage, both the normal and the inverted actions are computed; the former are used in the mutex 
computation stage, while the latter are used in the heuristic construction stage. However, no pre-
instantiated actions are used during the state-space search, where the applicable actions to each 
state are computed by progressively instantiating the action schemas, using constraint satisfaction 
techniques (forward checking and intelligent backtracking). 

The stages that follow are the computation of the mutual exclusion relations, the enrichment of 
the domain, and the problem processing. The latter stage consists of several sub-stages, as it is 
shown in Figure 6b, where the most important ones are the construction of the heuristic and the 
state-space search. Note that when we refer to the pre-processing phase of GRT, we mean all stages 
that precede the state-space search. 

In the case where XOR-constraints are provided, GRT attempts to decompose the current 
problem into sub-problems. If this attempt is successful, the problem processing stage is executed 
recursively for each sub-problem, otherwise the current problem is solved. Finally, in the case of 
decompositions, the partial solutions are merged and the overall solution is returned. 

7. Related Work 

This section briefly presents other domain independent heuristic state-space planning systems, by 
emphasizing their similarities and differences to GRT, in terms of the way in which they construct 
their heuristic and the direction they traverse the state-space. We omit certain pieces of related 
work that concern specific pre-processing techniques implemented in GRT, as for example the 
elimination of irrelevant objects, since they have already been presented in previous sections. 

The recent evolvement of the domain independent heuristic planning started with the work of 
Drew McDermott (1996, 1999) on UNPOP (UN-Partial Order Planner, UN- stands for non-). 
McDermott's planner is not restricted to pure STRIPS representations, supporting the more 
expressive language ADL (Pednault, 1989). The planner proceeds forward in the state-space. 
Distance estimates between states are based on the so-called regression graph, which is built from 
the goals using non fully-instantiated actions. UNPOP does not consider subgoals interactions and 
reconstructs the regression graph from scratch for each intermediate state. Although this planner is 
not competitive enough, compared to the subsequent heuristic planners, it was the faster one at the 
time of its appearance. However, we have to note that UNPOP has been developed in LISP, whereas 
the other heuristic planners are highly optimized C or C++ programs. 

Although UNPOP was the first domain independent heuristic planner, the area has been pushed 
forward by the ASP (Action Selection Planner, Bonet, Loerings & Geffner, 1997) and HSP 
(Heuristic Search Planner, Bonet & Geffner, 1998) planners. The attractive feature of these 
planners is the simple way the heuristic is constructed, presented in Section 2.1. ASP used a best-
first strategy with limited agenda, while HSP uses a hill-climbing one with limited plateau search 
and restarts (an in-depth presentation of the state-space search algorithms is given by Zhang, 1999). 

Both ASP and HSP reconstruct their heuristic from scratch for each intermediate state. A 
variation, called HSPr (r stands for regression), constructs the heuristic only once (Bonet & 
Geffner, 1999). This approach resembles GRT, although HSPr constructs the heuristic forward and 
searches backwards. Both approaches have the problem of incomplete goal states, however it arises 
in different phases of the planning process. GRT faces this problem in the pre-processing phase, by 
enhancing the goals, as it has been described in Section 3. In HSPr, the problem arises in the search 
phase, in the form of invalid states in the regression state space. To cope with the problem, HSPr 
computes mutual exclusion relations and checks each state in the regression state space for any 
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possible violation of these relations. The disadvantage of this approach is that it is considerably 
more time consuming than the GRT approach, since the HSPr has to check each visited state. 

A variation of HSP, named HSP-2, changed the hill-climbing strategy to a best-first one, thus 
preserving completeness and producing better plans (Bonet & Geffner, 2001). Moreover, HSP-2 
uses a weighted A* algorithm (WA*) (Pearl, 1983) of the form f(S)=g(S)+W�h(S), where S is an 
intermediate state, g(S) is the accumulated cost from the initial state, h(S) is the estimated cost to 
reach the Goals and W is a parameter. For W=0, the search algorithm behaves as a breadth-first 
one, for W=1 it behaves as the typical A* and for WÆ∞ it behaves as best-first. For the h(S) 
function, HSP-2 supports several heuristic functions, apart from the one presented in Section 2.1. 

Recently, two new planners, FF and ALTALT , appeared, which use a GRAPHPLAN-based 
approach to estimate distances between the intermediate states and the goals. ALTALT  (A Little of 
This, A Little of That) is a regression planner based on HSPr, which faces the same problems with 
invalid states as HSPr (Nigenda, Nguyen & Kambhampati, 2000). ALTALT  creates a planning graph 
in a pre-processing phase and uses several techniques to extract heuristic estimates of the distances 
between the intermediate states and the initial state. For example, one of them returns the level in 
the planning graph, where all the facts of the intermediate state appear, without any mutual 
exclusion relation between them. 

FF (Fast Forward) is a forward heuristic planner (Hoffmann & Nebel, 2001). In order to 
estimate the distance between an intermediate state and the goals, FF creates a planning graph from 
the state to the goals, using relaxed actions. Since there are no delete effects, there are no mutual 
exclusion relations in the planning graph. From this graph, FF extracts a relaxed plan, the length of 
which is the distance estimate. Note that, since there are no mutual exclusion relations, no 
backtracking occurs during the extraction of the relaxed plan, thus the extraction is accomplished 
fast enough. The FF heuristic resembles the GRT one, in that both aim in obtaining under-estimates, 
but they adopt different approaches. The relaxations that FF performs are stronger, since it 
completely ignores the delete effects. So the FF estimates are usually smaller than the GRT's ones 
and most of the times are underestimates, whereas GRT not-rarely produces overestimates. 

FF adopts a variation of the hill-climbing strategy, called enforced hill climbing, according to 
which, the planner always seeks to move to a state closer to the goals, according to its heuristic. FF 
achieves that by performing a bounded breadth-first search from the current state, with a maximum 
depth defined by the user; so the improving state does not have to be a direct successor of the 
current state. Once that an improving state is found, the new actions are added to the end of the 
current plan and the hill-climbing search continues from the new state. In the case where the 
bounded breadth-first search does not find an improving state, FF restarts the search from the initial 
state adopting a best-first search strategy. 

FF exhibited distinguishable performance at the AIPS-00 planning competition. One of the 
features of FF resulting in its good performance is that it does not compute the applicable actions 
for each intermediate state. Actually, FF gives priority to the first level actions of the relaxed plan. 
Once that an action that produces a better state is found, it is applied and the next state is processed. 
Moreover, at most of the times, no new relaxed plan has to be constructed, since it suffices to 
remove the lastly applied action from the beginning of the previous relaxed plan. So, FF succeeds 
in reducing drastically the cost of processing each intermediate state, paying however the cost of 
loosing completeness. 

The bottleneck that occurs while determining the applicable actions for each intermediate state 
has also been identified by Vrakas et al. (1999, 2000). In this work, the process of finding and 
applying the applicable actions has been parallelized, resulting in almost linear speedup. 
Parallelizing the process of finding the applicable actions, instead of ignoring most of them, as FF 
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does, presents the advantage of preserving completeness; however, the cost is that a parallel 
machine is required. 

We close the reference to other heuristic state-space planners with the STAN planning system 
(Fox & Long, 1998; Long & Fox, 1999). STAN is not a heuristic state-space planner, at least in its 
basic architecture, but a graph-based planner, which uses several pre-processing techniques for 
extracting useful domain information that is exploited for more efficient graph construction and 
solution extraction. However, in the AIPS-00 competition a hybrid architecture was used (Long & 
Fox, 2000; Fox & Long, 2001), where a heuristic state-space planning module was employed to 
solve specific identified sub-problems. Thus STAN succeeded in improving its performance, 
especially in cases of transportation domains. 

Concerning problem decomposition, work has been done on goal ordering (Cheng & Irani, 
1989; Drummond & Currie, 1989). Recently a similar approach has been proposed by Koehler 
(1998) and has been extended by Koehler and Hoffmann (2000). This approach automatically 
derives an ordering relation between the goal facts, which can be used by any planner to search for 
increasing sets of subgoals. The advantage of this approach is that no extra information is needed, 
except for the usual domain definition, while the disadvantage, with respect to the XOR-constraints 
approach, is that only the goal facts are taken into account in the intermediate states that are 
constructed. This approach has been adopted by the FF planning system. 

8. Performance Results 

In this section, we present performance results from several domains, taken from the literature and 
from the two planning competitions. First, we investigate how the several techniques of GRT 
contribute to its overall performance and then we compare GRT to other planners. 

The measurements that follow were taken on a SUN Enterprise 3000 machine running at 
167MHz, with 256 MB main memory and operating system Solaris 2.5.1. In the experiments we 
set a 5 minutes time limit for all experiments and planners6. 

8.1 Measuring the Effectiveness of the Related Facts 

In order to measure the contribution of the related facts to the overall performance of GRT, we 
tested the planner, with and without related facts, on problems from various domains. The results 
(solution length and time) are presented in Figure 7 (a-f). 
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(a) Logistics problems (the goals have been enhanced with the most promising facts selection method) 

                                                      
6 In the URL http://www.csd.auth.gr/~lpis/GRT/JAIR/OnlineAppendix1.html 
it can be found the executable files of all planners that took part in the comparison, the source code of GRT, the detailed 
results (in MS-Excel format), the original data files, the problem description files and the script files for each planner. 
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(b) Blocks-world problems with 4 action schemas (push, pop, pick-up, put-down) 
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(c) Blocks-world problems with 3 action schemas (several cases of move) 
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(d) FreeCell Problems 
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(e) Elevator problems 
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(f) Puzzle problems 

Figure 7: Solution length and time (in msecs) with and without the use of related facts 
for problems from several domains. 
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We can classify the above domains in three groups. The first group includes the domains where 
the use of related facts clearly improves both the solution length and time. This group comprises 
the logistics domain (6a), the blocks-world, when a 3-action schemas representation (move actions) 
is used (6c), and the puzzle domain (6f). In these domains, there were many cases where GRT 
without related facts did not solve the problems, while with the related facts it did. Moreover, in 
most cases when both versions solved a problem, the version with the related facts was faster and 
came up with a shorter plan. 

The second group includes domains where the use of related facts does not affect the 
effectiveness of the planning process. This group comprises the elevator domain, along with the 
gripper, the movie and the mystery ones. In these domains, there is usually a single way to achieve 
the goals, so both versions produce identical plans. However, due to the processing overhead, 
imposed by the computation of the related facts, the version with the related facts is slightly slower 
than the version without them. 

Finally, the third group includes the domains where there is no apparent predominance between 
the two versions. The freecell domain and the blocks-world domain, when a 4-action schemas 
representation is used (push, pop, pick-up, put-down), fall into this class. In these domains the two 
versions do not have equal performance, but there are problems where one version surpasses the 
other and vice-versa. 

The conclusion drawn from the above measurements is that the effectiveness of the related facts 
depends on the domain. They are more suitable in domains where there are several ways to achieve 
the goals, as logistics or blocks-world. 

Additionally, their efficiency depends on the way the domain is codified. A typical example is 
the blocks-world domain and the 4- and 3-action schemas representations. The problem with the 4-
action schemas representation is that pushing and stacking a block anywhere has always the same 
fact as precondition, i.e. that the block is held by the arm. The consequence is that neither the 
related facts, nor the distances are computed correctly. However this is not a problem of the related 
facts, it is a common problem in domain independent heuristic planning, as it results from the last 
planning competition. On the other hand, if a 3-action schemas representation is used, then the 
paths to achieve the facts of the domain are better tracked, so larger problems can be solved and the 
contribution of the related facts is significant. We believe, finally, that also in the freecell domain 
there is a representation inefficiency, however we have not yet tried to construct an alternative one. 

8.2 Using Several Methods to Enhance the Goals 

In order to measure the effectiveness of the three proposed methods to enhance the goals, we ran 
GRT using them in the logistics problems of the AIPS-00 competition. We selected this domain, 
since in the other domains of the competition the goal state is either complete, or near complete, so 
there is no difference among the three methods. Figure 8 shows the solution length and time for the 
easiest of the logistics problems. 

With regard to solution length, the first method, which considers all the candidate facts as goal 
facts, always came up with better plans. As we mentioned in Section 3.2, this method produces 
small differences among the estimated distances, so the search process tends to be breadth-first. 
However, in most of the cases, the third method found plans of equal quality. With regard to the 
solution time, the last two methods work faster, since they produce greater differences between the 
distances. 

In Section 3.3 we also presented a method of enriching the domain representation. As already 
mentioned, we were motivated by the need to treat domains like the movie or the elevator. We do 
not present comparative performance results between the domain enrichment method and the pure 
GRT planner for these domains, since without this technique it is impossible for GRT to solve the 



REFANIDIS & V LAHAVAS  
 
 
 

 
144 

problems. However, it would be interesting to test the efficiency of this method to other heuristic 
state space planners. 
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Figure 8: Results for logistics problems using different methods to complete the goals. 

All = Consider all the candidate facts as goal facts. 
Initial = Select the initial state facts. 

Greedy = Favor the most promising facts. 

8.3 Reducing the Size of the Problem 

The work of detecting and eliminating irrelevant objects has been motivated by the need to 
simplify the sub-problems resulting after the decomposition of a problem, when using XOR-
constraints. Performance results for this case are presented in Section 8.4. This section presents 
indicative results concerning the effectiveness of the technique in the colored logistics domain that 
has been mentioned in Section 4.1. For this purpose we enhanced the first group of logistics 
problems of the AIPS-00 competition with the required predicates and actions and we added 
propositions defining the original color of each package to the initial states. Figure 9 presents the 
time needed to solve the problems, with and without the irrelevant objects elimination technique. 
As it results from the experimental data, there is an improvement in the solution time of about 20%. 
Note that in both cases the same plans have been found; however, this would probably not be the 
case in other domains. 

In order to measure the efficiency of the numerical representation of resources, we ran GRT both 
in the original mystery domain and in a modified domain, where resources have been represented 
by numbers. Figure 10 presents the time needed to solve the problems with both cases of GRT. 
Note that in these experiments only the solvable mystery problems have been taken into account. 
As it results from Figure 10, GRT was significantly faster, when a numerical representation is used. 
The improvement is 65% on average. As for the solution length, in both cases the same have been 
found again. 

Both techniques evaluated in this section gain their speedup mainly from the pre-processing 
phase, since distances for a significantly smaller number of facts have to be estimated. As for the 
search phase, there is also a speedup, but is less important. Actually, the number of applicable 
actions to each state is the same with the two alternative representations of resources, since these 
are equivalent. Moreover, the detection of the applicable actions in the atom-based representation 
takes about the same time, due to the effective constraint-satisfaction techniques that GRT uses 
when instantiating the action schemata. Concerning the elimination of irrelevant objects, without 
this technique, there are more applicable actions to a state, which however are usually not selected, 
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since they do not lead to an improving state. However, the time spent in the detection of these 
actions may be not negligible. 

The significance of the two techniques lies in that the overall time needed to solve the problems 
remains about the same, in the case where more irrelevant objects are used, and exactly the same, 
in the case where more resource levels are used. In the case of more irrelevant objects, these are 
detected (in negligible cost) and eliminated from the subsequent stages (Figure 6). However, there 
is some overhead imposed by the stages that precede the irrelevant objects elimination stage, from 
where these objects have not been eliminated. 

In the case of more resource levels, these do not lead to the generation of new ground facts and 
actions, so all the pre-processing stages consume exactly the same time. As for the state-space 
search, this is also executed in the same time, but only in the case where neither the initial 
availability of resources, nor their consumption by the actions, nor finally the constraints over them 
have been changed. If this is not the case, then we are dealing with a different planning problem, 
which may be harder to solve. 
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Figure 9: Time (in msecs) needed to solve the colored logistics problems, 

with and without the irrelevant object elimination technique. 
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Figure 10: Time (in msecs) needed to solve the solvable mystery problems, 

when the original atom-based or a number-based representation for resources is used. 

8.4 XOR Constraints 

We tested the efficiency of the XOR-constraints based decomposition in two domains: A simplified 
mystery domain, where resources have been removed, and the grid domain of the AIPS-98 
competition. We did not use the logistics domain for these experiments, since logistics problems 
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are not difficult for the original GRT and the small profit from solving the easier sub-problems is 
compensated by the extra pre-processing cost of each sub-problem.  

We removed resources from the original mystery domain because otherwise it would be 
probable to obtain unsolvable subproblems. As it has been noted in Section 5, decomposing a 
problem may lead to loss of completeness, thus the technique is unsuitable for domains where 
deadlocks may arise, as the original mystery one. Note that by removing resources, all mystery 
problems become solvable. 

The XOR-constraints that have been defined for the simplified mystery domain were the 
following: 

( ( xor ( at ?Truck * ) ) (truck ?Truck )) 
( ( xor ( at ?Package * ) (in ?Package * ) ) ( package ?Package ) ) 

while for the grid domain were the following ones: 

( ( xor ( at-robot * ) ) ) 
( ( xor ( locked ?Place ) ( open ?Place ) ) ( place ?Place ) ) 
( ( xor ( at ?Key * ) ( holding ?Key ) ) ( key ?Key ) ) 

Note that in the grid domain an XOR-constraint denoting that the arm is either empty, or the 
robot holds a key has not been defined, since this would lead to pointless decompositions. 

In both domains, we ran GRT with and without the problem decomposition technique. 
Additionally, in order to demonstrate the contribution of the irrelevant objects elimination 
technique when solving the sub-problems, we conducted experiments for this case in the simplified 
mystery domain. We did not consider this case in the grid domain, because no irrelevant objects 
can be detected there. Figure 11 presents the results. 
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(a) Simplified Mystery 
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(b) Grid Domain 

Figure 11: Solution time (in msecs) and length with and without 
the XOR-constraints based problem decomposition technique. 
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As for the simplified mystery domain, GRT without the problem decomposition technique 
generally produced shorter plans, as expected. On the other hand, the use of the XOR-constraints 
accelerated the problem decomposition process, especially in case of difficult problems. Actually, 
if we only consider the seven most difficult problems, the improvement achieved by the 
decomposition is 60% on average. Note however that, when the irrelevant objects elimination 
technique was not used, there was no improvement. In not difficult problems there is no 
acceleration, since, as in the case of the logistics problems, the small profit from the faster solution 
of the easier sub-problems is compensated by the cost of repeating the pre-processing phase for 
each one of them. 

The grid domain was the most difficult one of the AIPS-98 competition. The contestants 
managed to solve only the first problem. GRT without XOR-constraints could only solve the first 
problem, too. On the other hand, with the XOR-constraints based decomposition, GRT was able to 
solve the first four problems in the time limit of 5 minutes, while in the fifth problem it ran out of 
memory. It is worth noting that this domain produces multiple levels of decompositions. Figure 12 
presents these levels for the strips-grid-y-2 problem. 

As far as we know, the only planner that can cope with the grid problems effectively is FF. We 
ran FF in the five grid problems and it solved the first four, within the time limit of 5 minutes, with 
the following results (length/time): 14/230, 39/840, 40/7810 and 45/3280, which are considerably 
better compared to the performance of GRT. 

 
Figure 12: Decomposition for the strips-grid-y-2 problem using XOR-constraints. 

 

8.5 Best-First and Hill-Climbing Strategies 

Recently we equipped GRT planner with two new features: a second optional search strategy, the 
well known hill-climbing, and a closed-list of visited states, in order to avoid revisiting them. 

GRT adopts the enforced hill-climbing strategy, originally presented in Hoffmann & Nebel 
(2001), according to which, from each intermediate state a limited breadth first search is 
performed, until an improving state is reached. When an improving state cannot be found, GRT 
restarts the search from the initial state with the typical best-first strategy. 

 Moreover, the hill-climbing strategy has been enhanced with a fast action selection mechanism. 
As it has been presented in Section 5.3, when GRT estimates the distances between the problem's 
facts and the goals in the pre-processing phase, it stores in the GRG structure the action that 
achieved each fact. So, in order to find an improving successor state quickly, the hill-climbing 
search strategy first attempts to apply the actions that achieved the current state's facts. Once that 

Main problem 

Sub-problem 1 Sub-problem 2 Sub-problem 3 Sub-problem 4 

Sub-problem 3.1 Sub-problem 3.2 Sub-problem 3.3 

Sub-problem 4.1 Sub-problem 4.2 Sub-problem 4.3 Sub-problem 3.1.1 Sub-problem 3.1.2 Sub-problem 3.1.3 

Sub-problem 3.1.1.1 Sub-problem 3.1.1.2 Sub-problem 3.1.1.3 
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an improving successor state is found, the remaining of the actions are not processed, thus avoiding 
to compute all the applicable to the current state actions. Note however that it is not guaranteed that 
these actions can always be applied to the current state. In case where no improving state can be 
found, the remaining of the applicable to the current state actions are taken into account. 

Figure 13 presents comparative performance results in logistics and elevator problems, using 
both search strategies. In the logistics problems, the most promising facts selection method of 
enhancing the goals has been used. As it results from the experimental data, in the logistics 
problems and with the use of the hill-climbing strategy, there is a significant reduction in the 
solution time of about 52%. The cost is an increment of about 3% in the length of the plans. In the 
elevator problems, there is also a reduction in the solution time of about 29%, whereas the 
produced plans are identical. 
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(a) Logistics domain 
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(b) Elevator domain 

Figure 13: Comparative results (solution length and time) between the hill-climbing 
and the best-first strategies. 

We tested the efficiency of the fast action selection mechanism, by also running GRT with the 
hill-climbing strategy but without this mechanism in the same logistics and elevator problems. 
Concerning the logistics problems, the speedup was about 47%, while the increment in the solution 
length was 3% on average again. Concerning the elevator problems, the speedup was 28%, whereas 
the produced plans were again identical. The conclusion from these additional measurements is that 
the speedup is primarily due to the hill-climbing strategy and secondly due to the fast action 
selection mechanism. The contribution of this mechanism depends on the domain and it is more 
important in the logistics and less in the elevator. Its inefficiency in the elevator domain means that 
the actions that are selected by this mechanism do not usually lead to an improving state or they are 
not applicable, so all the applicable actions have to be computed. 

Results for other domains, like blocks-world and freecell, are not presented, since in these 
domains hill-climbing usually fails to find a plan and GRT restarts on a best-first basis. However, in 
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these domains the closed-list of states has been proved invaluable, improving drastically the 
performance of GRT. For example, in the freecell domain and without the closed list of visited 
states, the GRT planner in the AIPS-00 planning competition succeeded in solving problems with up 
to 6 cards per suit, while with this data structure it can solve some of the more difficult ones (13 
cards per suit). Note that for an efficient implementation of the closed-list of visited states a hash-
table data structure has been adopted. 

8.6 Comparison to other Planners 

In this section, we present comparative results between the GRT planner and other planners. We 
decided to use HSP-2 (Bonet & Geffner, 2001), FF (Hoffman & Nebel, 2001), STAN (Long & Fox, 
2000; Fox & Long, 2000, 2001) and ALTALT  (Nigenda, Nguyen & Kambhampati, 2000)7. All these 
planners took part in the domain independent track of the AIPS-00 planning competition. We 
selected these planners because HSP-2 and STAN are state-of–the-art planning systems, FF has been 
awarded for its outstanding performance in the last competition and ALTALT  is a new but very 
promising domain-independent state-space heuristic planner. 

The aim of our experiments is to have an overall view of the performance of the evaluated 
systems. Performing pair wise comparisons between specific optimization techniques is not 
possible, since these techniques are implemented on top of different systems. Moreover, this kind 
of comparisons is out of the scope of this paper, which focuses in the use of specific directions for 
constructing the heuristic and traversing the space of the states, in the area of domain-independent 
heuristic state-space planning, and not in the evaluation of the numerous pre-processing 
optimization techniques. However, in the cases where we identify the contribution of a specific 
feature in the performance of a planner, we comment on this. 

In order to have fair comparisons, we used exactly the same problem and domain description 
files for all planners. So, GRT ran without XOR-constraints or numerical representation of 
resources. Moreover, although the irrelevant object elimination technique is an integral feature of 
GRT, it had no contribution in these domains, since there were not irrelevant objects. We believe 
that the absence of irrelevant objects in these domains does not mean that this technique has limited 
applicability, but it is an indication that more real domains for testing purposes have to be used in 
the future, since the planning tasks in our real-life are full of irrelevant objects. Finally, the domain 
enrichment technique proved valuable for the elevator domain only. However, this technique, as 
well as the goal enhancement one, has not to be seen as an optimization technique, but as a way to 
overcome the problems that arise from the backward direction of the heuristic construction. 

We tested the planners in several domains taken from the planning competitions and from the 
literature, in the same workstation and within the 5 minutes time limit. The results are presented in 
the following. 

8.6.1 LOGISTICS 

For the logistics domain we used the test suite of the AIPS-00 competition. The results are shown in 
Figure 14. In this domain GRT, as well as FF and STAN, performed well, solving all the problems. 
HSP and ALTALT  failed to solve the large problems within the time-limit. In general, best plans are 
found by STAN, which uses special domain-dependent heuristics for problems identified as 

                                                      
7  STAN is available at http://www.dur.ac.uk/~dcs0www/research/stanstuff/stanpage.html 

FF is available at http://www.informatik.uni-freiburg.de/~hoffmann/ff.html 
HSP-2 is available at http://www.ldc.usb.ve/~hector/ 
ALTALT  is available at http://rakaposhi.eas.asu.edu/altweb/altalt.html 
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transportation problems. Best solution times are achieved by FF and STAN in the small problems 
and by GRT in the large ones. 
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Figure 14: Solution length and time (msecs) for the logistics problems of the AIPS-00 competition. 

The logistics problems in Figure 14 have incomplete goal states. GRT ran with the most 
promising facts goals-completion method and with the hill-climbing strategy. However, the 
incompleteness of the goal state is an advantage for the planners that construct the heuristic in a 
forward direction. Motivated by this remark, we forced all the planners to solve logistics problems 
with complete goal states, requiring all the trucks and planes to return to their initial location. The 
results are shown in Figure 15. 
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Figure 15: Solution length and time (msecs) for logistics problems with complete goal states. 

In the new logistics problems, GRT, STAN and HSP-2 exhibited stable performance, solving the 
problems in about the same time. For GRT, this means that the goal completion mechanism behaves 
well, at least in this domain. FF failed to solve the large problems. Finally, ALTALT  solved some 
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more problems and this is because the regression mechanism did not encounter invalid states. Note 
that, although the goal state was complete in this case, GRT treated these problems as usual, 
attempting to enhance the goals. 

8.6.2 BLOCKS-WORLD 

For blocks-world problems in the AIPS-00 competition a four-actions representation was used, i.e. 
actions push, pop, stack and unstack. This representation is unsuitable for GRT, as it has been 
explained in Section 7.1. So, GRT did not solve most of the blocks-world problems. Figure 16 
presents the results of all planners in all blocks-world problems.  

As shown in Figure 16, FF exhibits the best performance, solving the majority of the problems 
and producing better plans than the other planners. The superiority of FF in this domain is due to a 
technique called Added Goal Deletion, according to which the goal facts are ordered and achieved 
in a progressive manner (Hoffmann & Nebel, 2001; Koehler and Hoffmann, 2000). This technique 
is especially suited for the blocks-world domain and the 4-action schemas representation. However, 
this technique does not always succeeds to produce good orderings and this is the reason why FF 
fails to solve some of the easiest problems, which have been solved by the other planners. 

As for the remaining planners, HSP-2 succeeded in solving all problems with up to 18 blocks 
and one problem with 24 blocks, GRT and ALTALT  solved problems up to 14 blocks and STAN up 
to 12 blocks. Moreover, GRT produced plans of low quality. 
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Figure 16: Solution length and time (msecs) for the blocks-world problems 

using the 4-action schemas domain representation. 

In order to demonstrate the influence of the domain representation in the efficiency of GRT, we 
ran all the planners in the same problems using the alternative 3-action schemas domain 
representation. The results are shown in Figure 17. 

The performance of GRT is significantly improved, solving problems with up to 33 blocks and 
producing better plans than the other planners. Moreover, with the exception of the smallest 
problems, GRT is faster than the other planners, but FF. The latter solved less large problems, but 
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solved all the smallest ones. HSP-2 solved all the problems with up to 19 blocks, while ALTALT  and 
STAN stopped at 14 blocks. 

/HQJWK

�

��

��

��

��

���

���

� � �� �� �� �� �� �� �� �� ��

))

*57

+63��

$OW$OW

67$1

 

7LPH

��

���

����

�����

������

�������

� � �� �� �� �� �� �� �� �� ��

))

*57

+63��

$OW$OW

67$1

 
Figure 17: Solution length and time (msecs) for the blocks-world problems 

using the 3-action schemas domain representation. 

8.6.3 FREECELL  

Freecell is the famous card game taken from the MS-Windows 98 distribution. The domain was 
initially introduced in the AIPS-00 competition and proved one of the most difficult domains. 
Figure 18 presents the performance results in this domain. Note that ALTALT  could not solve these 
problems and this was also the case in the competition.  

In the freecell domain, the only planners that succeeded to solve some of the difficult problems 
were GRT and FF. Actually, these planners solved some problems with 12 and 13 cards per suit. 
HSP-2 solved problems with up to 6 cards per suit and STAN up to 3 cards per suit. Regarding the 
solution quality, GRT produced better plans than FF. Regarding the solution time, FF was faster in 
the small problems, whereas in the big ones the two planners had equal performance. 

8.6.4 ELEVATOR 

The elevator (or miconic-10) domain has been presented in Section 3.3. At least in its pure STRIPS 
version, it is a relatively easy domain. So, all planners found plans of equal quality (with the 
exception of HSP-2, which produced slightly more lengthy plans). However, the planners have 
different performance in terms of solution time. 

Specifically, FF was the fastest, followed by STAN, then GRT, then HSP-2 and finally ALTALT . 
This domain favors FF, because the relaxed plan produced by its heuristic mechanism for the initial 
state is actually the solution, since the original actions of the domain do not contain any delete lists. 
STAN identifies this domain as a transportation domain and uses suitable techniques to solve the 
problem. Finally, GRT is faster than HSP-2 and ALTALT , since GRT constructs its heuristic faster 
than HSP-2. The results are presented in Figure 19. 
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Figure 18: Solution length and time (msecs) in the freecell domain. 
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Figure 19: Solution time (in msecs) in the elevator domain. 

8.6.5 GRIPPER 

The gripper domain was introduced in the AIPS-98 planning competition. The domain concerns a 
robot with two grippers that must transport a set of balls from one room to another. In the AIPS-98 
competition, only HSP managed to solve the 20 problems. Figure 20 presents the results in this 
domain. 
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Figure 20: Solution length and time (msecs) in the gripper domain. 

Regarding the solution length, the five planners have been divided into two groups: GRT, 
ALTALT  and STAN produced identical plans of higher quality, while FF and HSP-2 produced 
identical plans of lower quality. Regarding solution time, GRT is the fastest planner in all problems 
apart from some of the easiest, followed closely by STAN, next comes FF, next ALTALT  and last 
HSP-2. Note that in this domain STAN takes advantage of its symmetry analysis, which identifies 
the set of the balls and the two grippers as symmetric objects (Fox and Long, 1999). 

8.6.6 HANOI 

We ran the planners in 6 hanoi problems, taken by Bonet and Geffner (2001). The six problems 
have three to eight disks respectively. Figure 21 presents the results. 
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Figure 21: Solution length and time (msecs) in the hanoi domain. 

 
Regarding the solution length, all the planners found identical plans, with the exception of the 

last two problems, where GRT found worse plans. Regarding the solution time, FF was the faster, 
then came GRT and HSP-2, then ALTALT  and last came STAN. 
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8.6.7 PUZZLE 

We ran the planners in four 8-puzzle problems and in two 15-puzzle ones, taken by Bonet and 
Geffner (2001). Two of the four 8-puzzle are hard and their optimal solution involves 31 actions, 
the maximum plan length in this domain. The 15-puzzle problems are of medium difficulty. Figure 
22 presents the results. 
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Figure 22: Solution length and time (msecs) in the puzzle domain. 

STAN solved only the 8-puzzle instances, but it produced the best plans. The other planners 
solved all the problems, but they presented variations in the quality of their plans, with the FF 
planning system producing worst plans in most of the cases. Regarding solution time, FF was the 
fastest in the easier problems and GRT in the more difficult ones, followed by HSP-2 and ALTALT . 
STAN was the slowest planner in this domain. 

9. Conclusion and Future Work 

In this paper we presented the GRT planning system, a heuristic state-space planner, which 
constructs its heuristic in a domain-independent way. The fundamental difference between GRT 
and other heuristic state-space planners is that GRT constructs its heuristic once, in a pre-processing 
phase and in a backward direction, using regression from the goals. GRT attempts to track the 
positive and negative interactions that occur between the problem facts when trying to achieve 
them, in order to produce better estimates. 

GRT employs several new techniques that improve its efficiency. These are the automated 
identification of incomplete goal states, the identification and enrichment of inadequate domain 
representations, the elimination of irrelevant objects and the adoption of a numerical representation 
of resources. Finally, a knowledge-based method that uses domain axioms in the form of XOR-
constraints, in order to decompose difficult problems into easier sub-problems that have to be 
solved sequentially, has adopted. 

The paper presented extensive comparative results in a large number of domains. In the 
comparisons, besides GRT, four of the most powerful domain independent planners took part. The 
results showed that no planner clearly outperforms all the others. 

Concerning solution time, in most of the domains GRT and FF were the fastest planners. The 
explanation behind this observation lies in that these planners construct their heuristic either once 
(in the case of GRT), or a few times only (in the case of FF). For example, in the elevator domain, 
where delete effects do not exist and FF constructs a relaxed planning graph only once, it is 
extremely fast. On the contrary, in the gripper and the puzzle domains, where FF needs to 



REFANIDIS & V LAHAVAS  
 
 
 

 
156 

reconstruct the relaxed planning graphs, its efficiency decreases drastically with respect to the 
GRT's one. 

HSP-2 was not faster than the other planners in any domain, being always outperformed by FF. 
This was expected, since the two planners use the forward direction both for the construction of 
their heuristics and for traversing the state-space, however FF constructs its heuristic less times than 
HSP-2. Our impression is that the FF heuristic is also more informative and more accurate than the 
one of HSP-2. Concerning ALTALT , although it constructs its heuristic once, it did not manage to be 
faster than the others in any domain and this is (we believe) due to the problems that arise from the 
backward direction in which it traverses the state-space. So, this is an indication that in the case 
where opposite directions are used for the heuristic construction and the search phase, as GRT, 
ALTALT  and HSPr do, it is preferable to use the backward direction for the heuristic construction 
and the forward direction for the search phase. This is why the problems that arise when 
constructing the heuristic backwards may be confronted more easily than the problems that arise 
when traversing the state-space backwards. 

Domain analysis techniques, which occur in pre-processing phase, also play an important role. 
STAN, which is primarily based on these techniques, had many variations in its performance. In 
transportation domains, like the logistics and the elevator ones, where STAN exploits specialized 
heuristics, it was among the fastest planners. In the gripper domain, where STAN exploits its 
symmetry analysis, its performance was also excellent. In other domains, as for example the 
freecell or the blocks, it was not competitive due to its GRAPHPLAN basic architecture, which is not 
considered a fast technology any more.  

FF also employed a domain analysis technique concerning goal ordering, which played an 
important role in the blocks problems. It would be very interesting to see the adaptation and the 
impact of this technique to other planners as well. As far as we know, HSP-2 and ALTALT  are not 
using any domain analysis technique. GRT exploited only the domain enrichment technique in the 
elevator domain, however this technique is an integral part of its heuristic mechanism, in order to 
overcome some problems that arise from the backward heuristic construction. 

An interesting observation concerns the performance of GRT in the bigger problems of the 
logistics, freecell, gripper and puzzle domains, where GRT exhibited better performance than in the 
smaller problems of the same domains, compared to the other planners. We believe that this is due 
to the fact that GRT constructs its heuristic once, while the repeated construction of the heuristics 
for the other planners is an inhibitory factor in the bigger problems. 

The conclusions drawn above ignore a significant factor, which is the specific implementation, 
i.e. the approaches adopted by the various planners for "trivial" tasks, such as the computation of 
all the ground facts and actions of a problem or the computation of the applicable actions to a given 
state, the optimization of the code and of course potential "bugs". For example, in order to find the 
applicable actions to a state, GRT uses constraint satisfaction techniques to progressively instantiate 
the action schemas for each state, whereas most of the other planners exploit connectivity graphs 
between the facts of a problem and the pre-instantiated actions. Our experiments with GRT have 
shown that a significant portion of the processing time is spent in the determination of the 
applicable actions to a state. This is the reason why we have developed a parallel version of GRT, 
named PGRT (Vrakas et. al., 1999; 2000), which makes use of this observation and has been 
proved very efficient in all domains. However, it is in our future plans to develop a connectivity 
graph also in GRT and to compare it to the existent approach. 

Differences that are due to the code optimization or potential "bugs" cannot be easily detected, 
but we believe that all the planners, both the oldest and the newest ones are well-optimized 
programs. In the future we would like to see theoretical comparisons between the computational 



BACKWARD HEURISTIC CONSTRUCTION IN FORWARD STATE-SPACE PLANNING 
 
 
 

 
157

complexities of the various techniques and algorithms, apart from their experimental evaluation 
that is usually adopted. 

Concerning plan length, GRT produced better plans than the other planners in the freecell 
domain, in the gripper domain (along with other planners), in many blocks problems when a 3-
action schemas representation was used and in some logistics problems. STAN exhibited the best 
behavior in most of the domains and we believe this is due to its GRAPHPLAN basic architecture, 
which always produces optimal parallel plans and, in many cases, sequential plans also. FF behaved 
well in the logistics and the blocks problems, with the 4-action schemas representation (in the latter 
case probably due to the goal ordering technique), however it produced lengthy plans in other 
domains, as the freecell, the gripper and the puzzle ones. 

HSP-2 produced longer plans than GRT in many domains, as for example the logistics, the 
freecell and the gripper domains and the blocks one, when a 3-actions representation was used. 
This observation means that in these domains the related facts employed by the GRT heuristic 
proved more valuable than the forward and repeated reconstruction of the HSP-2 heuristic. Finally, 
ALTALT  has not been distinguished for the quality of its plans in any domain. 

Our general impression from the experiments is that there are specific domains that favor 
specific planners. So, what is important is to investigate the reasons for that. We are currently 
working in exploring the internal characteristics of each domain, classifying them into more 
general categories that share common features, and associate these features with specific heuristic 
search techniques. A first attempt for a domain classification can also be found in (Hoffmann, 
2001). 

An alternative view of the above problem concerns the way a domain is encoded. The same 
planner in the same domain may alter its performance when a different representation is adopted. 
We faced this problem with the blocks-world, with the 4- and 3-actions schemas domain 
representations, where the performance of GRT varies significantly, while the performance of other 
planners is also altered. We also faced this problem with the elevator and movie domains, which 
were the motivation for the development of the domain enrichment technique. Our conviction is 
that domain-independent planning is strongly domain-representation dependent. 

Concerning GRT, we plan to extend it so as to handle more expressive domains, supporting most 
of the features of the PDDL language (types, quantifications, negations, disjunctions, etc). At this 
time we are working with an extension of GRT, which has the ability to take into account multiple 
criteria (i.e. solution time, resources, safety, profit etc.). We are also interested in incorporating 
domain analysis techniques, as they have been developed in STAN and DISCOPLAN, in order to take 
advantage of specialized methods for handling specific types of problems or sub-problems. Finally, 
we will investigate the possibility and the utility of combining domain independent planning 
techniques with domain dependent ones, without loosing the generality of the planning system. 
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