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Abstract

Inductive logic programming, or relational learning, is a powerful paradigm for machine
learning or data mining. However, in order for ILP to become practically useful, the
efficiency of ILP systems must improve substantially. To this end, the notion of a query pack
is introduced: it structures sets of similar queries. Furthermore, a mechanism is described
for executing such query packs. A complexity analysis shows that considerable efficiency
improvements can be achieved through the use of this query pack execution mechanism.
This claim is supported by empirical results obtained by incorporating support for query
pack execution in two existing learning systems.

1. Introduction

Many data mining algorithms employ to some extent a generate-and-test approach: large
amounts of partial or complete hypotheses are generated and evaluated during the data
mining process. This evaluation usually involves testing the hypothesis on a large data set,
a process which is typically linear in the size of the data set. Examples of such data mining
algorithms are APRIORI (Agrawal et al., 1996), decision tree algorithms (Quinlan, 1993a;
Breiman et al., 1984), algorithms inducing decision rules (Clark & Niblett, 1989), etc.

Even though the search through the hypothesis space is seldom exhaustive in practical
situations, and clever branch-and-bound or greedy search strategies are employed, the num-
ber of hypotheses generated and evaluated by these approaches may still be huge. This is
especially true when a complex hypothesis space is used, as is often the case in inductive
logic programming (ILP), where the sheer size of the hypothesis space is an important
contribution to the high computational complexity of most ILP approaches. This compu-
tational complexity can be reduced, however, by exploiting the fact that there are many
similarities between hypotheses.
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Most ILP systems build a hypothesis one clause at a time. This search for a single clause
is what we will be concerned with in the rest of this paper, and so the word “hypothesis”
further on will usually refer to a single clause. The clause search space is typically structured
as a lattice. Because clauses close to one another in the lattice are similar, the computations
involved in evaluating them will be similar as well. In other words, many of the computations
that are performed when evaluating one clause (which boils down to executing a query
consisting of the body of the clause) will have to be performed again when evaluating the
next clause. Storing certain intermediate results during the computation for later use could
be a solution (e.g., tabling as in the XSB Prolog engine, Chen & Warren, 1996), but may be
infeasible in practice because of its memory requirements. It becomes more feasible if the
search is reorganised so that intermediate results are always used shortly after they have
been computed; this can be achieved to some extent by rearranging the computations. The
best way of removing the redundancy, however, seems to be to re-implement the execution
strategy of the queries in such a way that as much computation as possible is effectively
shared.

In this paper we discuss a strategy for executing sets of queries, organised in so-called
query packs, that avoids the redundant computations. The strategy is presented as an ad-
aptation of the standard Prolog execution mechanism. The adapted execution mechanism
has been implemented in ILPROLOG, a Prolog system dedicated to inductive logic program-
ming. Several inductive logic programming systems have been re-implemented to make use
of this dedicated engine, and using these new implementations we obtained experimental
results showing in some cases a speed-up of more than an order of magnitude. Thus, our
work significantly contributes to the applicability of inductive logic programming to real
world data mining tasks. In addition, we believe it may contribute to the state of the art in
query optimisation in relational databases. Indeed, in the latter field there has been a lot of
work on the optimisation of individual queries or relatively small sets of queries, but much
less on the optimisation of large groups of very similar queries, which understandably did
not get much attention before the advent of data mining. Optimisation of groups of queries
for relational databases seems an interesting research area now, and we believe techniques
similar to the ones proposed here might be relevant in that area.

The remainder of this paper is structured as follows. In Section 2 we precisely describe
the ILP problem setting in which this work is set. In Section 3 we define the notion of a
query pack and indicate how it would be executed by a standard Prolog interpreter and what
computational redundancy this causes. We further describe an execution mechanism for
query packs that makes it possible to avoid the redundant computations that would arise if
all queries in the pack were run separately, and show how it can be implemented by making a
few small but significant extensions to the WAM, the standard Prolog execution mechanism.
In Section 4 we describe how the query pack execution strategy can be incorporated in two
existing inductive logic programming algorithms (TILDE and WARMR). In Section 5 we
present experimental results that illustrate the speed-up that these systems achieve by
using the query pack execution mechanism. In Section 6 we discuss related work and in
Section 7 we present conclusions and some directions for future work.
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2. Inductive Logic Programming

Inductive logic programming (Muggleton & De Raedt, 1994) is situated in the intersection
of machine learning or data mining on the one hand, and logic programming on the other
hand. It shares with the former fields the goal of finding patterns in data, patterns that can
be used to build predictive models or to gain insight in the data. With logic programming
it shares the use of clausal first order logic as a representation language for both data
and hypotheses. In the remainder of this text we will use some basic notions from logic
programming, such as literals, conjunctive queries, and variable substitutions. We will use
Prolog notation throughout the paper. For an introduction to Prolog and logic programming
see Bratko (1990).

Inductive logic programming can be used for many different purposes, and the problem
statements found in ILP papers consequently vary. In this article we consider the so-called
learning from interpretations setting (De Raedt & Dzeroski, 1994; De Raedt, 1997). It
has been argued elsewhere that this setting, while slightly less powerful than the standard
ILP setting (it has problems with, e.g., learning recursive predicates), is sufficient for most
practical purposes and scales up better (Blockeel et al., 1999).

We formulate the learning task in such a way that it covers a number of different problem
statements. More specifically, we consider the problem of detecting for a set of conjunctive
queries for which instantiations of certain variables each query succeeds. These variables
are called key variables, and a grounding substitution for them is called a key instantiation.
The intuition is that an example in the learning task is uniquely identified by a single key
instantiation.

The link with ILP systems that learn clauses is then as follows. The search performed
by an ILP system is directed by regularly evaluating candidate clauses. Let us denote such
a candidate clause by Head(X) < Body(X,Y) where X represents a vector of variables
appearing in the head of the clause and Y represents additional variables that occur in the
body. We assume that the head is a single literal and that a list of examples is given, where
each example is of the form Head(X )6 with 6 a substitution that grounds X. Examples
may be labelled (e.g., as positive or negative), but this is not essential in our setting. While
an example can be represented as a fact Head(X )6 when learning definite Horn clauses, we
can also consider it just a tuple X#. Both notations will be used in this paper.

Intuitively, when positive and negative examples are given, one wants to find a clause
that covers as many positive examples as possible, while covering few or no negatives.
Whether a single example Head(X)6 is covered by the clause or not can be determined
by running the query ? — Body(X,Y)#. In other words, evaluating a clause boils down to
running a number of queries consisting of the body of the clause. For simplicity of notation,
we will often denote a conjunctive query by just the conjunction (without the 7— symbol).

In some less typical ILP settings, the ILP algorithm does not search for Horn clauses
but rather for general clauses, e.g., CLAUDIEN (De Raedt & Dehaspe, 1997) or for frequent
patterns that can be expressed as conjunctive queries, e.g., WARMR(Dehaspe & Toivonen,
1999). These settings can be handled by our approach as well: all that is needed is a mapping
from hypotheses to queries that allow to evaluate these hypotheses. Such a mapping is
defined by De Raedt and Dehaspe (1997) for CLAUDIEN; for WARMR it is trivial.
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Given a set of queries S and a set of examples F, the main task is to determine which
queries ) € S cover which examples e € E. We formalise this using the notion of a result
set:

Definition 1 (Result set) The result set of a set of queries S in a deductive database D
for key K and example set F, is

RS(S,K,D,FE) ={(K0,i)|Q; € S and KO € E and Q;0 succeeds in D}

Similar to the learning from interpretations setting defined in (De Raedt, 1997), the
problem setting can now be stated as:

Given: a set of conjunctive queries .S, a deductive database D, a tuple K of variables
that occur in each query in S, and an example set £

Find: the result set RS(S, K, D, F); i.e., find for each query @ in S those ground
instantiations # of K for which K6 € E and Q@ succeeds in D.

Example 1 Assume an ILP system learning a definition for grandfather/2 wants to eval-
uate the following hypotheses:

grandfather(X,Y) :- parent(X,Z), parent(Z,Y), male(X).
grandfather(X,Y) :- parent(X,Z), parent(Z,Y), female(X).

Examples are of the form grandfather(gf,gc) where gf and gc are constants; hence
each example is uniquely identified by a ground substitution of the tuple (X,Y). So in the
above problem setting the set of Prolog queries S equals {(?- parent(X,Z), parent(Z,Y),
male (X)), (?- parent(X,Z), parent(Z,Y), female(X))} and the key K equals (X,Y).
Given a query Q; € S, finding all tuples (x,y) for which ((z,y),i) € R (with R the result
set as defined above) is equivalent to finding which of the grandfather(z,y) facts in the
example set are predicted by the clause grandfather (X,Y) :- Q;.

The generality of our problem setting follows from the fact that once it is known which
queries succeed for which examples, the statistics and heuristics that typical ILP systems
use can be readily obtained from this. A few examples:

e discovery of frequent patterns (Dehaspe & Toivonen, 1999): for each query @Q; the
number of key instantiations for which it succeeds just needs to be counted, i.e.,
freq(Qi) = |[{K0|(K0,i) € R}| with R the result set.

e induction of Horn clauses (Muggleton, 1995; Quinlan, 1993b): the accuracy of a
clause H :- @; (defined as the number of examples for which body and head hold,
divided by the number of examples for which the body holds) can be computed as

HK%%&’@S;%? 11‘3:}{{9}‘ with R the result set.

e induction of first order classification or regression trees (Kramer, 1996; Blockeel &
De Raedt, 1998; Blockeel et al., 1998): the class entropy or variance of the examples
covered (or not covered) by a query can be computed from the probability distribution
of the target variable; computing this distribution involves simple counts similar to
the ones above.
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After transforming the grandfather/2 clauses into

grandfather((X,Y)),I) :- parent(X,Z), parent(Z,Y), male(X), I = 1.
grandfather ((X,Y)),I) :- parent(X,Z), parent(Z,Y), female(X), I = 2.

the result set can clearly be computed by collecting for all grounding 0’s where K6 € E the
answers to the query ?- grandfather(K6,I) . In Section 3 the queries will have a literal
I = i at the end or another goal which by side-effects results in collecting the result set.
In practice, it is natural to compute the result set using a double loop: one over examples
and one over queries and one has the choice as to which is the outer loop. Both the “examples
in outer loop” and the “queries in outer loop” have been used in data mining systems; in
the context of decision trees, see for instance Quinlan (1993a) and Mehta et al. (1996). We
shall see further that the redundancy removal approach we propose uses the “examples in
outer loop” strategy. In both approaches however, given a query and a key instantiation, we
are interested only in whether the query succeeds for that key instantiation. This implies
that after a particular query has succeeded on an example, its execution can be stopped.
In other words: computing the result set defined above boils down to evaluating each
query on each example, where we are only interested in the existence of success for each such
evaluation. Computing more than one solution for one query on one example is unnecessary.

3. Query Packs

For simplicity, we make abstraction of the existence of keys in the following examples. What
is relevant here, is that for each query we are only interested in whether it succeeds or not,
not in finding all answer substitutions.

Given the following set of queries

p(X), I =1.
p(X), q(X,a), I = 2.
p(X), q(X,b), I = 3.

p(X), q(X,Y), t(X), I = 4.
p(X), qX,V), t(X), r(¥,1), I = 5.

we can choose to evaluate them separately. Since we are only interested in one — the first —
success for each query, we would evaluate in Prolog the queries

once((p(X), I = 1)).

once((p(X), q(X,a), I = 2)).

once((p(X), q(X,b), I = 3)).

once((p(X), q(X,Y), t(X), I = 4)).
once((p(X), qX,¥V), t(X), r(Y,1), I =5)).

The wrapper once/1 is a pruning primitive and prevents the unnecessary search for more
solutions. Its definition in Prolog is simply

once(Goal) :- call(Goal), !.
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An alternative way to evaluate the queries consists in merging them into one (nested)
disjunction as in:

p(X), (I=1 ; q(X,a), I=2 ; q(X,b), I=3 ; q(X,V), t(X), (I=4 ; r(Y,1), I=5)).

The set of queries can now be evaluated as a whole: the success of one branch in the
disjunctive query corresponds to the success of the corresponding individual query.

Compared to the evaluation of the individual queries, the disjunctive query has both an
advantage and a disadvantage:

+ all the queries have the same prefix p(X), which is evaluated once in each individual
query, while in the disjunctive query, the goal p(X) is evaluated only once; depending
on the evaluation cost of p/1, this can lead to arbitrary performance gains.

— the usual Prolog pruning primitives are not powerful enough to prevent all the un-
necessary backtracking after a branch in the disjunctive query has succeeded; this is
explained further in Example 2.

Example 2 In this example the literals I = 1 have been left out, because they do not
contribute to the discussion:

p(X), qX).
p(X), r(X).

Evaluating these queries separately means evaluating

once((p(X), q(X))).
once((p(X), r(X))).

or equivalently

p(X), q(X), !.
pX), r(X), !.

The corresponding disjunctive query s
p(X), (q(X) ; r(X)).

We can now try to place a pruning primitive in the disjunctive query: /0 at the end of
each branch results in

pX), (X)), ! ; r(X), D
The scope of the first cut is clearly too large: after the goal q(X) has succeeded, the cut
will prevent entering the second branch. It means that adding the cut in the disjunctive

query leads to a wrong result.
Using once/1 in the disjunctive query results in

p(X), (once(q(X)) ; once(r(X)))
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This results in a correct query. However, both branches are still executed for every
binding that the goal p(X) produces, even if both branches have succeeded already.

The combination of the advantage of the disjunctive query with the advantage of the
individual query with pruning (once or cut) results in the notion of the query pack. Syn-
tactically, a query pack looks like a disjunctive query where the ; control construct is
replaced by a new control construct denoted by or. So the query pack corresponding to the
disjunctive query above is

p(X), (I=1 or q(X,a), I=2 or q(X,b), I=3 or q(X,Y), t(X), (I=4 or r(Y,1), I=5))

This query pack can be represented as the tree in Figure 1. For a query pack Q such a
tree has literals or conjunctions of literals in the nodes. Each path from the root to a leaf
node represents a conjunctive query () which is a member of Q, denoted @@ € Q. The or
construct is implicit in the branching points.

p(X)

T

=1 q(X.a), qX,b), aX.c), aX)Y) t(X)
1=2 =3 =4

=5 r(y,1), r(yY,2),
=6 =7

Figure 1: A query pack.

The intended procedural behaviour of the or construct is that once a branch has suc-
ceeded, it is effectively pruned away from the pack during the evaluation of the query pack
on the current example. This pruning must be recursive, i.e., when all branches in a subtree
of the query pack have succeeded, the whole subtree must be pruned. Evaluation of the
query pack then terminates when all subtrees have been pruned or all of the remaining
queries fail for the example.

The semantics of the or construct and its efficient implementation is the subject of the
rest of this section. It should however be clear already now that in the case that all the
answers of each query are needed, pruning cannot be performed and the disjunctive query
is already sufficient, i.e., query packs are useful when a single success per query suffices.

3.1 Efficient Execution of Query Packs

In Section 3.1.2, a meta-interpreter is given that defines the behaviour of query packs. In
practice this meta-interpreter is not useful, because in many cases the meta-interpreter itself
causes more overhead than the use of query packs can compensate for. Indeed, previously
reported results (Demoen et al., 1999; Blockeel, 1998) indicate that the overhead involved
in a high-level Prolog implementation destroys the efficiency gain obtained by redundancy
reduction. Moreover as discussed in Section 3.1.2, the meta-interpreter does not have the
desired time-complexity. This shows that the desired procedural semantics of or can be
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implemented in Prolog itself, but not with the desired performance because Prolog lacks
the appropriate primitives.

The conclusion is that changes are needed at the level of the Prolog engine itself. This
requires an extension of the WAM (Warren Abstract Machine) which is the underlying
abstract machine for most Prolog implementations. The extended WAM provides the or
operator as discussed above: it permanently removes branches from the pack that do not
need to be investigated anymore. This extended WAM has become the basis of a new Prolog
engine dedicated to inductive logic programming, called ILPROLOG. This section continues
with the introduction of some basic terminology for query packs and explains at a high level
how query pack execution works. Next our meta-interpreter for the query pack execution
is given and finally the changes needed for the WAM are clarified.

3.1.1 PRINCIPLES OF QUERY PACKS (EXECUTION)

Before we discuss query pack execution in detail, note the following two points: (1) during
the pack execution, the pruning of a branch must survive backtracking; (2) when executing
a pack we are not interested in any variable instantiations, just in whether a member of the
pack succeeds or not. In our previous description we were interested in the binding to the
variable I. Since each branch can bind I to only one value — the query number — we collect
these values in practice by a side effect denoted in Section 3.2 by report_success.

The starting point for the query pack execution mechanism is the usual Prolog execution
of a query @ given a Prolog program P. By backtracking Prolog will generate all the
solutions for () by giving the possible instantiations € such that Q@ succeeds in P.

A query pack consists of a conjunction of literals and a set of alternatives, where each
alternative is again a query pack. Note that leaves are query packs with an empty set of
alternatives. For each query pack Q, conj(Q) denotes the conjunction and children(Q)
denotes the set of alternatives. A set of queries is then represented by a so-called root query
pack. For every query pack Q, there is a path of query packs starting from the root query
pack Qpo0t and ending at the query pack itself, namely < Q,o0r , @1, ..., Qpn, @ >. The
query packs in this path are the predecessors of Q. Every query pack has a set of dependent
queries, dependent_queries(Q). Let < Qroot , Qiyy -y i, @ > be the path to Q, then
dependent_queries(Q) = {conj(Qroot) Nconj(Qi ) A...Aconj(Q;,) Aconj(Q) Aconj(Qj,) A
.. Neong(Qj,. ) ANeonj(Qp) | < Q,Q4, ..y Qjy @ > is a path from O to a leaf Q;}. Note
that dependent_queries(Qroot) are actually the members of the query pack as described
earlier.

Example 3 For the query pack in Figure 1, Qpoor is the root of the tree. conj(Qroot) 1S
p(X). The set children(Qyoot) contains the 4 query packs which correspond to the trees
rooted at the 4 sons of the root of the tree. Suppose that these query packs are named (from
left to right) Qq, Qa, Qs, and Q4. Then conj(Qs) equals (q(X,a),I = 2), children(Q2)
equals the empty set, conj(Q4) equals (¢(X,Y),t(X)), and dependent_queries(Q4) equals
{(p(X),¢(X,Y),t(X), I =4), (p(X),q(X,Y),t(X),r(Y,1),I =5)}.

Execution of a root query pack Q. aims at finding out which queries of the set

dependent_queries(Qroor) succeed. If a query pack is executed as if the ors were usual
disjunctions, backtracking occurs over queries that have already succeeded and too many
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0 execute_qp( pack Q, substitution ) {

1 while ( o < next_solution( conj(Q)6)

2 {

3 for each Qcp;1q in children(Q) do

4 {

5 if ( execute_qp( Qcpilg , 0) == success)

6 children(Q) « children(Q) \ {Qehia}
7 ¥

8 if ( children(Q) is an empty set) return(success)
9 ¥

10  return(fail)

11}

Figure 2: The query pack execution algorithm.

successes are detected. To avoid this, it should be the case that as soon as a query succeeds,
the corresponding part of the query pack should no longer be considered during backtrack-
ing. Our approach realises this by reporting success of queries (and of query packs) to
predecessors in the query pack. A (non-root) query pack Q can be safely removed if all the
queries that depend on it (i.e., all the queries in dependent_queries(Q)) succeeded once.
For a leaf Q (empty set of children), success of conj(Q) is sufficient to remove it. For a
non-leaf Q, we wait until all the dependent queries report success or equivalently until all
the query packs in children(Q) report success.

At the start of the evaluation of a root query pack, the set of children for every query
pack in it contains all the alternatives in the given query pack. During the execution, query
packs can be removed from children sets and thus the values of the children(Q) change
accordingly. When due to backtracking a query pack is executed again, it might be the case
that fewer alternatives have to be considered.

The execution of a query pack Q6 is defined by the algorithm ezecute_gp(Q, 0) (Figure
2) which imposes additional control on the usual Prolog execution.

The usual Prolog execution and backtracking behaviour is modelled by the while loop
(line 1) which generates all possible solutions o for the conjunction in the query pack. If
no more solutions are found, fail is returned and backtracking will occur at the level of the
calling query pack.

The additional control manages the children(Q). For each solution o, the necessary
children of @ will be executed. It is important to notice that the initial set of children of a
query pack is changed destructively during the execution of this algorithm. Firstly, when a
leaf is reached, success is returned (line 8) and the corresponding child is removed from the
query pack (line 6). Secondly, when a query pack that initially had several children, finally
ends up with an empty set of children (line 6), also this query pack is removed (line 8).
The fact that children are destructively removed, implies that when due to backtracking
the same query pack is executed again for a different o, not all of the alternatives that
were initially there, have to be executed any more. Moreover, by returning success the
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5P
ch 3)
ch(2)
b @ £ a) E)
ch(l) ch(3)
c @ d@ edd® ha®) j ae©) J a?)

Figure 3: Query pack numbers gp(i), Query numbers ¢(i) and Child numbers ch(i) in our
example.

backtracking over the current query pack conjunction conj(Q) is stopped: all branches
have reported success.

3.1.2 A META-INTERPRETER FOR QUERY PACKS

The first implementation of the query pack execution algorithm is the meta-interpreter
meta_execute_qp(@Q). The meta-interpreter uses the following labelling in its representation
of a query pack:

e Query pack number All the non-leaf query packs in the tree are numbered, depth
first, from left to right (gp(7)).

¢ Query number Each leaf is numbered, from left to right. If the original queries were
numbered sequentially, then the numbers at the leaves correspond with these (¢(7)).

e Child number For each non-leaf query pack with N children, all children are numbered
from 1 up to N sequentially (ch(i)).

Consider the query pack a, (b, (c or d or e) or f or g, (h or i or j)). Note that the
atoms in the example could in general be arbitrary conjunctions of non-ground terms. Its
labelling is shown in Figure 3.

A labelled query pack Q is then represented as a Prolog term as follows (with Q the
father of Q):

e A leaf Q is represented by the term (c,leaf(qpnbf,chnb, gnb)) with ¢ the conj(Q),
gpnbf the query pack number of Qf, chnb the child number of Q w.r.t. Qf, and gnb
the query number of Q.

e A non-leaf Q is represented by the term (c, or(cs, gpnbf, gpnb, chnb, totcs) with ¢ the
conj(Q), cs the list children(Q), gpnbf the query pack number of Qy, gpnb the query
pack number of Q, chnb the child number of Q w.r.t. Qf, and totcs the total number
of children(Q)). The query pack number of the father of the root query pack is
assumed to be zero.
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The example of Figure 3 has the following representation (as a Prolog term):

(a, or([(b,or([(c,leaf(2,1,1)),(d,leaf(2,2,2)), (e,1leaf(2,3,3))],1,2,1,3)),
(f,leaf(1,2,4)),
(g,or([(h,leaf(3,1,5)),(i,leaf(3,2,6)),(j,leaf(3,3,7))]1,1,3,3,3))1],

0,1,1,3))

During the execution of the meta-interpreter, solved/2 facts are asserted. Each fact
solved(gpnb, chnb) denotes that the child with number chnb from query pack with number
gpnb has succeeded. Such facts are asserted when reaching a leaf and also when all children
of a query pack have succeeded. The meta-interpreter only executes children for which no
solved/2 fact has been asserted.

Note that the time-complexity of this meta-interpreter is not yet as desired. Execution
of a query pack will always be dependent on the number of original children, instead of the
number of remaining (as yet unsuccessful) children.

run_QueryPack(Q) :-
preprocess(Q, Qlabeled, O, 1, 1, 1, _, ),
% The code for preprocessing is given in Appendix A
retractall(solved(_, _.)),
meta_execute_gp(Qlabeled),
solved(0, ), .

meta execute qp((A,B)) :- !,
call(h),
meta_execute_gp(B).
meta_execute_gqp(or(Cs, QpNbF, QpNb, ChildNb, TotCs)) :-
!', % ’or’ corresponds to a non-leaf query pack
handlechildren(Cs, QpNb, 1),
all_solved(QpNb, 0, TotCs),
assert(solved (QpNbF,ChildNb)) .
meta_execute_qp(leaf (QpNbF, ChildNb , QueryNb)) :-
!, % ’leaf’ corresponds to the end of a query
write(succeed(QueryNb)), nl,
assert(solved (QpNbF,ChildNb)) .

handlechildren([], _, _).
handlechildren([C|_], QpNb, ChildNb) :-
not (solved(QpNb,ChildNb)),
once (meta execute_gp(C)), fail.
handlechildren([_ICs], QpNb, ChildNb) :-
ChildNbl is ChildNb + 1,
handlechildren(Cs, QpNb, ChildNb1l).

all _solved(QpNb, ChildNb, TotCs) :-
(ChildNb = TotCs -> true
; ChildNbl is ChildNb + 1,
solved (QpNb, ChildNb1l),
all_solved(QpNb, ChildNbi, TotCs)
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3.1.3 WAM EXTENSIONS

To fully exploit the potential of a query pack (shared computation and avoidance of unne-
cessary backtracking) changes have to be made at the level of the Prolog engine itself. The
explanation assumes a WAM-based Prolog engine (Ait-Kaci, 1991) but a short explanation
of the execution of disjunction in Prolog is given first, so that it becomes more easy to see
what was newly introduced in the WAM.

Assume that the body of a clause to be executed is a, (b,c ; d ; e). Assume also that
all predicates have several clauses. At the moment that execution has reached the first
clause of ¢, the choice point stack looks like Figure 4(a): there are choice points for the
activation of a, the disjunction itself, b and c¢. The choice points are linked together so that
backtracking can easily pop the top most one. Each choice point contains a pointer to the
next alternative to be tried: only for the disjunction choice point, this alternative pointer
is shown. It points to the beginning of the second branch of the disjunction. After all
alternatives for b and ¢ have been exhausted, this second branch is entered and d becomes
active: this is the situation shown in Figure 4(b). At that point, the alternative of the
disjunction choice point refers to the last alternative branch of the disjunction. Finally,
once e is entered, the disjunction choice point is already popped.

a,(b,c;d;e a,(bc;d;e a(bc;d;e
b d
[_ C
(a) Choice points just (b) Choice points just (c) Choice points just
after entering c. after entering d. after entering e.

Figure 4: Tllustration of execution of disjunction in the WAM.

When the goal a produces a new solution, all branches of the disjunction must be tried
again. It is exactly this we want to avoid for query packs: a branch that has succeeded once,
should never be re-entered. We therefore adapt the disjunction choice point to become an
or-choice point which is set up to point into a data structure that contains references to
each alternative in the or disjunction. This data structure is named the pack table. Figure
5(a) shows the state of the execution when it has reached c: it is similar to Figure 4(a). The
or-choice point now contains the information that the first branch is being executed. As the
execution proceeds, there are two possibilities: either this first branch succeeds or it fails.
We describe the failing situation for the first branch and explain what happens on success of
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the second branch. If the first branch has no solution, backtracking updates the alternative
in the or-choice point, to point to the next branch in the pack table. The situation after
the second branch is entered is shown in 5(b) and is again similar to 4(b). Suppose now
that the branch with the goal d succeeds: the entry in the pack table with or-alternatives
is now adapted by erasing the second alternative branch, backtracking occurs, and the next
alternative branch of the or-choice point is taken. This is shown in 5(c).

When a produces a new solution and the or-disjunction is entered again, the pack table
does no longer contain the second alternative branch and it is never re-entered. The pack
table is actually arranged in such a way that entries are really removed instead of just erased
so that they cause no overhead later.

a (b,c or d or e a (b,c or d or € a (b,c or d or €

2l

[ 1

(a) The choice points just (b) The choice points just (¢) The choice points just
after entering c. after entering d (the first after entering e (d suc-
branch did not succeed). ceeded).

Figure 5: Tllustration of execution of pack disjunction on the WAM.

Two more issues must be explained: first, the pack table with alternatives must be
constructed at runtime every time the query pack is entered for evaluation. This is done by
emitting the necessary instructions in the beginning of the code for the query pack. As an
example, we show the code for the query pack a, (b,c or d or e) in Figure 6.

Finally, in the example it is clear that at the moment that all alternatives of an or-
disjunction have succeeded, a can stop producing more solutions. So the computation can
be stopped. In general - with nested query packs - it means that one pack table entry of
the next higher or-node can be erased and this in a recursive way. The recursive removal
of entries from the pack tables, is done by the instruction query_pack_prune.

We have implemented this schema in ILPROLOG. Section 5 presents some measurements
in ILPROLOG.

3.2 Using Query Packs

Figure 7 shows an algorithm that makes use of the pack execution mechanism to compute
the result set R as defined in our problem statement. The set S of queries is here typically
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construct_pack_table @1, @2, @3
call a
query_pack_try
@1: call b
call ¢
query_pack_prune
@2: call d
query_pack_prune
@3: call e
query_pack_prune

Figure 6: Abstract machine code for a, (b,c or d ore) .

the set of all refinements of a given query, i.e., it does not correspond to the whole hypothesis
space. From a query pack Q containing all queries in S, a derived pack Q' is constructed
by adding a report_success/2 literal to each leaf of the pack; the (procedural) task of
report_success(K,4) is simply to add (K,i) to the result set R. Obviously a specific
ILP system not interested in the result set itself could provide its own report_success/2
predicate and thus avoid the overhead of explicitly building the result set.'

1 evaluate(set of examples F, pack Q, key K) {
2 Q «+ Q;

3 q < 1;

4 for each leaf of Q' do {

5 add report_success (K, ¢) to the right of the conjunction in the leaf
6 increment ¢

7 ¥

8 C <+ (evaluate_pack(K) :- Q');

9 compile_and_load(C);

10 for each example e in F do {

11 evaluate_pack(e);

12 }

13 }

Figure 7: Using query packs to compute the result set.

Note that the algorithm in Figure 7 follows the strategy of running all queries for each
single example before moving on to the next example: this could be called the “examples in
outer loop” strategy, as opposed to the “queries in outer loop” strategy used by most ILP

1. In our current implementation the result set is implemented as a bit-matrix indexed on queries and
examples. This implementation is practically feasible (on typical computers at the time of writing) even
when the number of queries in the pack multiplied by the number of examples is up to a billion, a bound
which holds for most current ILP applications.
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systems. The “examples in outer loop” strategy has important advantages when processing
large data sets, mainly due to the ability to process them efficiently without having all data
in main memory at the same time (Mehta et al., 1996; Blockeel et al., 1999).

3.3 Computational Complexity

We estimate the speedup factor that can be achieved using query pack execution in two
steps: first we consider one-level packs, then we extend the results towards deeper packs.

Lower and upper bounds on the speedup factor that can be achieved by executing a
one-level pack instead of separate queries can be obtained as follows. For a pack containing
n queries ¢; = (a, b;), let T; be the time needed to compute the first answer substitution of
q; if there are any, or to obtain failure otherwise. Let ¢; be the part of T; spent within a
and t; the part of T; spent in b;. Then Ty = Y,(t; + t;) and T}, = max(t;) + >, t; with Ty
representing the total time needed for executing all queries separately and 7}, the total time
needed for executing the pack. Introducing ¢ = Y, ¢;/ >, ¢;, which roughly represents the
ratio of the computational complexity in the shared part over that in the non-shared part,
we have

Ty Yaititdatp _ c+1 1)
T, max;t;+ 3t —Hixlt'fz +1
Now defining K as the ratio of the maximal ¢; over the average t;, i.e.
max; ti
K =
Zi ti/n
we can rewrite Equation (1) as
T. c+1
Ts = K 1 (2)
p EC +

Since Lt <maxt; <) ;t; we know 1 < K < n, which leads to the following bounds:

n

+1
+1

o

T
1<2< < min(c+ 1,n) (3)
Ty

Sla

Thus the speedup factor is bounded from above by the branching factor n and by the
ratio ¢ of computational complexity in the shared part over the computational complexity
of the non-shared part; and a maximal speedup can be attained when maxt; ~ 3 ¢;/n (or,
K ~ 1), in other words when the ¢; for all queries are approximately equal.

For multi-level packs, we can estimate the efficiency gain as follows. Given a query g¢;,
let T; be defined as above (the total time for finding 1 answer to ¢; or obtaining failure).
Instead of ¢; and ¢}, we now define ¢;; as the time spent on level / of the pack when solving g;;
counting the root as level 0 and denoting the depth of the pack with d we have T; = Eflzo tig-
Further define T;; as the time spent on level [ or deeper: T;; = E?:l t;,j with d the depth
of the pack. (Thus T; = T;.). We will assume a constant branching factor b in the pack.
Finally, we define ¢, = 3, ¢;;/n with n = b%. For simplicity, in the formulae we implicitly
assume that ¢ always ranges from 1 to n with n the number of queries, unless explicitly
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specified otherwise. We then have

b

Tp—maxt g—i-ZTl—maxtlowLZmaxt“wLZle (4)
i J i€G;

where j = 1...b is the index of a child of the root and G; is the set of indexes of the
queries belonging to that child. Now define Ky = max;t;/ to and define K as the smallest
number such that max;eq, ;1 < Kif;,1 with £, = EieGj ti1/b. Note 1 < Ko, Ky <b. It

then follows that
b b

E maxtz 1 < K1 E t] 1= Klbtl (5)
z€ j
j=1

which allows us to rewrite Equation (4) into

T, < Koto + Kibty + Y _ T (6)
2

where the equality holds if max;eq; ;1 is equal in all G;. The reasoning can be continued
up till the lowest level of the pack, yielding

T, < Koty + bK ) + 0 Koty + - + b "Ky_1tao1 + Y tig (7)
7
and finally
T, < Koto + bK 1ty + b Koty +--- + b4 Ky 1tq 1 + %y (8)

with all K; between 1 and b. We will further simplify the comparison with T by assuming
Vi : K; = 1; the K; can then be dropped and the inequality becomes an equality (because
all maxima must be equal):

T, = to + bty + bzfz +--+ bd_lfdfl + bdfd (9)
Note that for T, we have
T, = by + b%, + b%o + - - + by 1 + by (10)

It is clear, then, that the speedup will be governed by how the 4%, terms compare to the
b*1), terms. (In the worst case, where Kj = b, the latter become b*+1Z,.) We therefore
introduce Ry, as follows:
Yy bt
LRSS A
D ket U¥E
The R coefficients are always between 1 (if £,,, dominates) and 6™~ (if £, strongly dominates);
for all ¢; equal, Ry, is approximately m — .
Further, similar to ¢ in our previous analysis, define

(11)

I kT
o = > k—0 Dtk (12)

y d
Dke=i+1 b
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Some algebra then gives
Ty bRy, + Riy1a

s 1
T, aq+1 (13)

which needs to hold for all [. We can interpret this as follows: for a certain level [, ¢; roughly
reflects the speedup gained by the fact that the part up till level [ needs to be executed
only once; the R factors reflect the speedup obtained within these parts because of the pack
mechanism.

This inequality holds for all I, hence we will find the best lower bound for the spee-
dup factor by maximizing the right hand side. Note that ¢; increases and b%~' decreases
monotonically with [. It is clear that if at some point ¢; becomes much larger than 1, a
speedup factor of roughly b%~ is obtained. On the other hand, if ¢; is smaller than 1, then
the behaviour of b%~!¢; is crucial. Now,
fl+%fl,1+"'+ﬁ70
1

bd—l = _ _ a )
tg+ pta—1 + - + gl

C

Our conclusion is similar to that for the one-level pack. If for some [, ¢; >> 1, i.e., if in
the upper part of the pack (up till level [) computations take place that are so expensive
that they dominate all computations below level [ (even taking into account that the latter
are performed b~! times more often), then a speedup of b~ can be expected. If ¢; << 1,
which will usually be the case for all [ except those near d, the speedup can roughly be
estimated as t;/t4. The maximum of all these factors will determine the actual speedup.

4. Adapting ILP Algorithms to Use Query Packs

In this section we discuss how the above execution method can be included in ILP al-
gorithms, and illustrate this in more detail for two existing ILP algorithms. Experimental
results concerning actual efficiency improvements this yields are presented in the next sec-
tion.

4.1 Refinement of a Single Rule

Many systems for inductive logic programming use an algorithm that consists of repeatedly
refining clauses. Any of these systems could in principle be rewritten to make use of a query
pack evaluation mechanism and thus achieve a significant efficiency gain. We first show this
for a concrete algorithm for decision tree induction, then discuss the more general case.

4.1.1 INDUCTION OF DECISION TREES

The first algorithm we discuss is TILDE (Blockeel & De Raedt, 1998), an algorithm that
builds first-order decision trees. In a first-order decision tree, nodes contain literals that
together with the conjunction of the literals in the nodes above this node (i.e., in a path
from the root to this node) form the query that is to be run for an example to decide which
subtree it should be sorted into. When building the tree, the literal (or conjunction of
literals) to be put in one node is chosen as follows: given the query corresponding to a path
from the root to this node, generate all refinements of this query (a refinement of a query
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is formed by adding one or more literals to the query); evaluate these refinements on the
relevant subset of the data,? computing, e.g., the information gain (Quinlan, 1993a) yielded
by the refinement; choose the best refinement; and put the literals that were added to the
original clause to form this refinement in the node.

At this point it is clear that a lot of computational redundancy exists if each refinement
is evaluated separately. Indeed all refinements contain exactly the same literals except those
added during this single refinement step. Organising all refinements into one query pack, we
obtain a query pack that essentially has only one level (the root immediately branches into
leaves). When TILDE’s lookahead facility is used (Blockeel & De Raedt, 1997), refinements
form a lattice and the query pack may contain multiple (though usually few) levels.

Note that the root of these packs may consist of a conjunction of many literals, giving
the pack a broom-like form. The more literals in the root of the pack, the greater the benefit
of query pack execution is expected to be.

Example 4 Assume the node currently being refined has the following query associated with
it: ?7- circle(A,C),leftof (A,C,D),above(A,D,E), i.e., the node covers all examples A
where there is a circle to the left of some other object which is itself above yet another object.

The query pack generated for this refinement could for instance be

triangle(A,F)
circle(A,H)

circle(A,C), leftof(A,C,D), above(A,D,E)|  in(A CM)

leftof (A,E,Q
leftof (A,D,R)
leftof(A.C,S)

When evaluating this pack, all backtracking through the root of the pack (the “stick”
of the broom) will happen only once, instead of once for each refinement. In other words:
when evaluating queries one by one, for each query the Prolog engine needs to search once
again for all objects C, D and E fulfilling the constraint circle(A,C), leftof(A,C,D),
above (A,D,E); when executing a pack this search is done only once.

4.1.2 OTHER ALGORITHMS BASED ON RULE REFINEMENT

As mentioned, any ILP algorithm that consists of repeatedly refining clauses could in prin-
ciple be rewritten to make use of a query pack evaluation mechanism and thus achieve a
significant efficiency gain. Consider, e.g., a rule induction system performing an A* search
through a refinement lattice, such as PROGOL (Muggleton, 1995). Since A* imposes a cer-
tain order in which clauses will be considered for refinement, it is hard to reorganise the
computation at this level. However, when taking one node in the list of open nodes and
producing all its refinements, the evaluation of the refinements involves executing all of
them; this can be replaced by a pack execution, in which case a positive efficiency gain is
guaranteed. In principle one could also perform several levels of refinement at this stage,

2. Le., that subset of the original data set for which the parent query succeeded; or, in the decision tree
context: the examples sorted into the node that is being refined.
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adding all of the refinements to A*’s queue; part of the efficiency of A* is then lost, but
the pack execution mechanism is exploited to a larger extent. Which of these two effects
is dominant will depend on the application: if most of the first-level refinements would
be further refined anyway at some point during the search, clearly there will be a gain in
executing a two-level pack; otherwise there may be a loss of efficiency. For instance, if
executing a two-level pack takes z times as much time as a one-level pack, it will bring an
efficiency gain only if at least x of the first level refinements would afterwards be refined
themselves.

4.2 Level-wise Frequent Pattern Discovery

An alternative family of data mining algorithms scans the refinement lattice in a breadth-
first manner for queries whose frequency exceeds some user-defined threshold. The best-
known instance of these level-wise algorithms is the APRIORI method for finding frequent
item-sets (Agrawal et al., 1996). WARMR (Dehaspe & Toivonen, 1999) is an ILP variant of
attribute-value based APRIORI.

Query packs in WARMR, correspond to hash-trees of item-sets in APRIORI: both are used
to store a subgraph of the total refinement lattice down to level n. The paths from the root
down to level n — 1 in that subgraph correspond to frequent patterns. The paths from root
to the leaves at depth m correspond to candidates whose frequency has to be computed.
Like hash-trees in APRIORI, query packs in WARMR exploit massive similarity between
candidates to make their evaluation more efficient. Essentially the WARMR algorithm starts
with an empty query pack and iterates between pack evaluation and pack extension (see
Figure 8). The latter is achieved by adding all potentially frequent refinements? of all leaves
in the pack, i.e., adding another level of the total refinement lattice.

5. Experiments

The goal of this experimental evaluation is to empirically investigate the actual speedups
that can be obtained by re-implementing ILP systems so that they use the pack execution
mechanism. At this moment such re-implementations exist for the TILDE and WARMR
systems, hence we have used these for our experiments. These re-implementations are
available within the ACE data mining tool, available for academic use upon request.* We
attempt to quantify (a) the speedup of packs w.r.t. to separate execution of queries (thus
validating our complexity analysis), and (b) the total speedup that this can yield for an
ILP system.
The data sets that we have used for our experiments are the following:

e The Mutagenesis data set : an ILP benchmark data set, introduced to the ILP com-
munity by Srinivasan et al. (1995), that consists of structural descriptions of 230
molecules that are to be classified as mutagenic or not. Next to the standard Muta-
genesis data set, we also consider versions of it where each example occurs n times;

3. Refinements found to be specialisations of infrequent queries cannot be frequent themselves, and are
pruned consequently.
4. See http://www.cs.kuleuven.ac.be/"dtai/ACE/.
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EXPAND

circle(A,B) triangle(A,B) - = circle(A,B) triangle(A,B)
N\
leftof(A,B,C) above(A,B,C) leftof(A,B,C) leftof(A,B,C) above(A,B,C) leftof(A,B,C)

circle(A,C)triangle(A,C) circle(A,C)triangle(A,C) circle(A,C)triangle(A,C)

EVALUATE

circle(A,B) triangle(A,B) EXPAND circle(A,B)  triangle(A,B)
/ \ - -
above(A,B,C) leftof(A,B,C) above(A,B,C) leftof(A,B,C)
triangle(A,C) circle(A,C)triangle(A,C)  triangle(A,C) circle(A,C) triangle(A,C)

| N |

leftof (A,C,D) leftof(A,C,D) above(A,C,D) leftof(A,C,D)

Figure 8: A sequence of 4 query packs in WARMR. Refinement of the above left query
pack results in the 3-level pack above right. Removal of queries found infrequent
during pack evaluation results in the bottom left pack. Finally, another level is
added in a second query expansion step to produce the bottom right pack. This
iteration between expansion and evaluation continues until the pack is empty.

this allows us to easily generate data sets of larger size where the average example
and query complexity are constant and equal to those of the original data set.

e Bongard data sets : introduced in ILP by De Raedt and Van Laer (1995), the so-called
“Bongard problems” are a simplified version of problems used by Bongard (1970) for
research on pattern recognition. A number of drawings are shown containing each a
number of elementary geometrical figures; the drawings have to be classified according
to relations that hold on the figures in them. We use a Bongard problem generator
to create data sets of varying size.

The experiments were run on SUN workstations: a Sparc Ultra-60 at 360 MHz for
TILDE, a Sparc Ultra-10 at 333 Mhz for WARMR. TILDE and WARMR were run with their
default settings, except where mentioned differently.

5.1 Tilde
We consider three different ways in which TILDE can be run in its ILPROLOG implementa-

tion:

1. No packs: the normal implementation of TILDE as described by Blockeel and De Raedt
(1998), where queries are generated one by one and each is evaluated on all relevant
examples. Since queries are represented as terms, each evaluation of a query involves
a meta-call in Prolog.
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2. Disjoint execution of packs: a query pack is executed in which all queries in the pack
are put beside one another; i.e., common parts are not shared by the queries. The
computational redundancy in executing such a pack is the same as that in executing
all queries one after another; the main difference is that in this case all queries are
compiled.

3. Packed execution of packs: a compiled query pack is executed where queries share as
much as possible.

The most interesting information is obtained by comparing (a) the actual query eval-
uation time in settings 2 and 3: this gives a view of the efficiency gain obtained by the
removal of redundant computation itself (we will abbreviate this as ezec in the tables);
and (b) the total execution time in settings 1 and 3: this provides an indication of how
much is gained by implementing packs in an ILP system, taking all other effects into ac-
count (re-implementation of the computation of heuristics via a bit matrix, use of compiled
queries instead of meta-calls, etc.), or in other words: what the net effect of the whole
re-implementation is (indicated as net in the tables).

In a first experiment we used Bongard problems, varying (1) the size of the data sets;
(2) the complexity of the target hypothesis; and (3) TILDE’s lookahead parameter. The
complexity of the target hypothesis can be small, medium, or none. In the latter case the
examples are random, which causes TILDE to grow ever larger trees in an attempt to find
a good hypothesis; the size of the final tree then typically depends on the size of the data
set. The lookahead parameter is used to control the number of levels the pack contains;
with lookahead n, packs of depth n + 1 are generated.

Table 1 gives an overview of results for the Bongard problems. The total induction
time is reported, as well as (for pack-based execution mechanisms) the time needed for
pack compilation and pack execution. Note that the total time includes not only pack
compilation and execution, but also all other computations not directly related to packs
(e.g., the computation of heuristics from the bitmatrix). The results can be interpreted as
follows.

First of all, the table shows that significant speedups can be obtained by using the pack
mechanism; net speedups of over a factor 5.5 are obtained, while the execution itself is up
to 75 times faster compared to disjoint execution.

A further observation is that for more complex target hypotheses greater speedups are
obtained. This can be explained by the broom-like form of the packs in TILDE. Complex
target hypotheses correspond to deep trees, and refinement of a node at a lower level of
such a tree yields a pack with a long clause before the branching, which in accordance with
our previous analysis should yield a speedup closer to the branching factor b in the case
of lookahead 0 (and more generally, closer to b'*! for lookahead I, although the latter is
much harder to achieve). Note that the maximum branching factor occurring in each pack
is included in the table in column bf.

Finally, deeper packs also yield higher speedups, and this effect is larger for more complex
theories. This is understandable considering the following. Let us call the clause that is
being refined c. With lookahead [, conjunctions of [ 4+ 1 literals are added to the clause. In
some cases the first of these [ 4 1 literals may fail immediately, which causes this branch of
the pack to have almost no execution time, while cutting away b’ queries. Remember that
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LA | bf | original disjoint packed speedup
total comp exec | total comp exec | met exec
Simple target hypothesis
1007 examples
0 16 0.7 0.62 0.14 0.13 0.49 0.05 0.07 | 1.51 1.86
1 24 2.44 1.64 0.35 0.45 1.09 0.14 0.11 | 2.2/ 4.09
2 18 7.49 4.07 0.8 1.57 | 2.15 027 0.16 | 3.48 9.81
3 21 29.9 16.52  3.65 7.26 7.18 1.26 0.28 | 4.17 25.9
2473 examples
0 16 1.82 1.48 017 0.34 | 1.18 0.07 0.16 | 1.61 2.13
1 24 5.72 3.34 0.34 1.17 | 2.24 0.11 0.3 | 2.55 3.9
2 18 17.2 8.45  0.78 3.95 4.4 0.27 0.39 | 3.92 10.1
3 21 69.8 38.0  3.57 17.5 18.7 113 0.69 | 5.11 25.4
4981 examples
0 19 3.69 2.72 029 0.67 | 2.16 0.12 0.32 | 1.71 2.09
1 24 11.4 6.22 0.35 2.41 | 4.17 013 0.63 | 2.7/ 3.83
2 18 34.7 16.0 0.74 8.14 | 8.24 0.25 0.88 | /.21 9.25
3 21 142 62.4 3.61 36.5 | 24.9 1.09 1.45 | 569 25.1
Medium complexity target hypothesis
1031 examples
0 19 1.01 0.93 029 0.18 0.66 0.11 0.07 | 1.58 2.57
1 21 3.26 2.8 0.98 0.56 1.66 035 0.14 | 1.96 4
2 15 6.36 3.47  0.68 1.22 1.95 025 0.15 | 8.26 8.13
3 18 27.2 14.6  3.75 5.75 6.71 1.20 0.27 | 4.06 21.3
2520 examples
0 22 3.16 2.82 0.89 0.62 1.91 0.3 0.24 | 1.65 2.58
1 24 8.38 5.88 1.5 1.86 3.3 0.44 0.41 | 2.5/ 4.54
2 27 38.5 29.8 13.14 9.52 10.8 2.44 0.6 | 3.73 15.9
3 18 124 58.02 10.3 28.6 | 23.9 3.00 1.11 | 5.271 25.7
5058 examples
0 25 6.35 5.41 1.47 1.3 3.73 056 0.53 | 1.70 2.45
1 24 18.14 12.98 3.2 4.15 7.5 0.93 0.91 | 2.42 4.56
2 27 119 93.2  38.1 31.0 | 85.8 9.09 1.7 | 3.36 18.2
3 27 384 275 108 89.1 106 259 2.83 | 3.62 31.5
No target hypothesis
1194 examples
0 28 4.74 6.656 334 094 | 398 098 0.20 | 1.21 4.70
1 24 16.32 | 21.29 1097 2.24 | 11.65 341 0.31 | 1.4J0 T7.23
2 24 87.5 130 82.3 13.8 54.7 204 0.57 | 1.60 24.1
3 |30 373 519 316 61.1 220 749 1.34 | 1.70 45.6
2986 examples
0 |31 12.7 16.5 7.04  2.68 9.8 216 0.56 | 1.30 4.79
1 36 65.1 83.7 429 10.7 | 42.47 112 1.14 | 1.58 9.39
2 33 430 606 396 84 211.3 82.58 2.57 | 2.03 32.6
3 | 33 1934 2592 1610 375 946 332 6.58 | 2.0/ 57.0
6013 examples
0 |31 25.3 30.3 11.8 5.53 18.3 3.53 1.27 | 1.38 4.35
1 39 154 198 91.2 33.4 | 99.9 22.0 3.13 | 1.54 10.7
2 39 1185 1788 1076 358 504 197 9 2.35 39.8
3 | 42 4256 6932 4441 1091 | 2006 695 14.5 | 2.12 75.4

Table 1: Timings of TILDE runs on the Bongard data sets. LA = lookahead setting; bf =
maximum branching factor. Reported times (in seconds) are the total time needed
to build a tree, and the time spent on compilation respectively execution of packs.
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LA | original disjoint packed speedup ratio
total comp exec | total comp exec net  exec
Regression, 230 examples

0 31.5 52.9 196 25.5 | 45.5 1.02 19.25 | 0.69 1.33

1 194.99 | 248 559 109 | 107 126 16.6 | 1.82 6.53

2 2193 - - - 891 192 32.0 | 2.46 -

Classification, 230 examples

0 27.6 278 183 4.71 | 25.4 113 3.42 | 1.09 1.38

1 38.02 | 40.8 7.55 9.09 | %0.6 3.11 3.65 | 1.2/ 2.49

2 638 - - - 149 743 6.16 | 4.2 —

Table 2: Timings of TILDE runs for Mutagenesis. A — in the table indicates that that run
ended prematurely.

according to our analysis, the speedup can in the limit approximate b' if the complexity of
clause ¢ dominates over the complexity of the rest of the pack; such “early failing branches”
in the pack cause the actual situation to approximate closer this ideal case.

We have also run experiments on the Mutagenesis data set (Table 2), both in a regression
and a classification setting. Here, query packs are much larger than for the Bongard data set
(there is a higher branching factor); with a lookahead of 2 the largest packs had over 20000
queries. For these large packs a significant amount of time is spent compiling the pack, but
even then clear net speedups are obtained.®> A comparison of execution times turned out
infeasible because in the disjoint execution setting the pack structures consumed too much
memory.

5.2 Warmr

5.2.1 USED IMPLEMENTATIONS

For WARMR we consider the following implementations:

1. No packs: the normal implementation of WARMR, where queries are generated, and
for all examples the queries are evaluated one by one.

2. With packs: An implementation where first all queries for one level are generated and
put into a pack, and then this pack is evaluated on each example.

5.2.2 DATASETS

Mutagenesis We used the Mutagenesis dataset of 230 molecules, where each example is
repeated 10 times to make more accurate timings possible and to have a better idea of the
effect on larger datasets. We used three different language biases. ’small’ is a language

5. In one case, with a relatively small pack, the system became slower. The timings indicate that this is
not due to the compilation time, but to other changes in the implementation which for this relatively
simple problem were not compensated by the faster execution of the packs.
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Mutagenesis
Level small medium large
Queries | Frequent | Queries | Frequent | Queries | Frequent
1 8 5 37 26 45 31
2 60 14 481 48 1071 211
3 86 24 688 114 3874 1586
4 132 31 699 253
5 37 21 697 533
6 29 18 1534 1149
7 23 15 - -
8 17 12 - -
9 4 4 - -

Table 3: Number of queries for the Mutagenesis experiment with WARMR.

bias that was chosen so as to generate a limited number of refinements (i.e., a relatively
small branching factor in the search lattice); this allows us to generate query packs that are
relatively deep but narrow. ’medium’ and ’large’ use broader but more shallow packs.
Table 3 summarises the number of queries and the number of frequent queries found for
each level in the different languages.

Bongard We use Bongard-6013 for experiments with WARMR as this system does not
construct a theory and hence the existence of a simple theory is not expected to make much
difference.

5.2.3 REsSULTS

In Tables 4, 5 and 6 the execution times of WARMR on Mutagenesis are given, with maximal
search depth varying from 3 for the large language to 9 levels for the small language. Here,
'total’ is the total execution time and ’exec’ is the time needed to test the queries against
the examples. In Table 7 the execution times of WARMR on Bongard are given.

5.2.4 DISCUSSION

The execution time of WARMR has a large component that is not used to evaluate queries.
This is caused by the fact that WARMR needs to do a lot of administrative work. In
particular, theta-subsumption tests should be done on the queries to check wether a query
is equivalent to another candidate, or if a query is a specialisation of an infrequent one.
In the propositional case (the APRIORI algorithm), these tests are very simple, but in the
first order case they require exponential time in the size of the queries. Of course, when
using larger datasets, the relative contribution of these administrative costs will decrease
proportionally. It can be observed that at deeper levels, these costs are less for the setting
using packs. One of the causes is the fact that the no-packs version also uses more memory
than the packs setting (and hence causes proportionally more memory management).

Here again, the most important numbers are the speedup factors for the execution of
queries. Speedup factors of query execution do not always increase with increasing depth of
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Level No packs With packs ILPROLOG | speedup ratio

total exec total exec net  exec
1 0.35 0.23 0.18 0.15 1.94 1.53
2 6.27 5.60 4.56 4.12 1.38 1.36
3 36.93 31.49 14.01 9.87 2.6/ 3.19
4 117.33  84.45 45.14 16.27 2.60 5.19
5 215.95 104.36 | 129.37 20.78 1.67 5.02
6 336.35 111.28 | 249.41 22.39 1.35  4.97
7 569.14 115.80 | 497.86 24.63 1.1, 4.70
8 902.72 120.99 | 831.30 25.98 1.09 4.66
9 1268.16 119.60 | 1148.23 32.28 1.10 3.71

Table 4: Results for WARMR on the Mutagenesis dataset using a small language.

Level No packs With packs ILPROLOG | speedup ratio
total exec total exec net exec

1 2.58 2.27 2.16 2.09 1.19 1.09

2 112.98 42.32 34.35 13.39 3.29 3.16

3 735.19 128.67 | 262.83 34.70 2.80 3.71

4 4162.15 287.72 | 1476.06 54.10 2.82 5.32

5 17476.98 444.44 | 6870.16 73.11 2.5/ 6.08

6 65138.72 866.85 | 25921.73 104.81 2.51 8.27

Table 5: Results for WARMR on the Mutagenesis dataset using a medium language.

Level No packs With packs ILPROLOG | speedup ratio
total exec total exec net exec
1 2.82 2.42 2.28 2.11 1.2/ 1.15
408.85 102.38 | 102.29 50.67 4.00  2.02
3 27054.33 1417.76 | 3380.19 370.44 8.00 3.83

Table 6: Results for WARMR on the Mutagenesis dataset using a large language.
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Level No packs With packs ILPROLOG | speedup ratio

total exec total exec net  exec
1 0.24 0.22 0.24 0.23 1.00 0.96
2 0.83 0.75 0.77 0.68 1.08 1.10
3 3.28 2.82 2.34 1.92 1.40 1.47
4 11.56  9.31 6.08 4.28 1.90 2.18
5 38.34 28.11 | 16.20 8.15 2.37 3.45
6 75.51 46.97 | 36.57 12.22 2.06 3.84
7 135.64 71.60 | 68.96 15.59 1.97 4.59
8 186.23 84.93 | 102.46 17.82 1.82 4.77
9 210.82 88.97 | 120.76 18.52 1.75 4.80
10 | 216.61 89.38 | 125.84 18.88 1.72 4.73

Table 7: WARMR results on Bongard.

the packs, in contrast to TILDE where larger packs yielded higher speedups. At first sight
we found this surprising; however it becomes less so when the following observation is made.
When refining a pack into a new pack by adding a level, WARMR prunes away branches that
lead only to infrequent queries. There are thus two effects when adding a level to a pack:
one is the widening of the pack at the lowest level (at least on the first few levels, a new
pack typically has more leaves than the previous one), the second is the narrowing of the
pack as a whole (because of pruning). Since the speedup obtained by using packs largely
depends on the branching factor of the pack, speedup factors can be expected to decrease
when the narrowing effect is stronger than the widening-at-the-bottom effect. This can
be seen, e.g, in the small-mutagenesis experiment, where at the deepest levels queries are
becoming less frequent. For the mutagenesis experiment with the medium size language,
query execution speedup factors are larger as the number of queries increases much faster.
For the mutagenesis experiment with the large language, it is the total speedup that is large,
as the language generates so many queries that the most time-consuming part becomes the
administration and storage in memory. The packs version is much faster as it stores the
queries in trees, requiring significantly less memory.

5.3 Comparison with Other Engines

Implementing a new special-purpose Prolog engine, different from the already existing ones,
carries a risk: given the level of sophistication of popular Prolog engines, it is useful to check
whether the new engine performs comparably with these existing engines, at least for the
tasks under consideration here. The efficiency gain obtained through query pack execution
should not be offset by a less efficient implementation of the engine itself.

Originally the TILDE and WARMR systems were implemented in MASTERPROLOG.
In an attempt to allow them to run on other platforms, parts of these systems were re-
implemented into a kind of “generic” Prolog from which implementations for specific Pro-
log engines (SICSTUS, ILPROLOG) can easily be derived (the low level of standardisation of
Prolog made this necessary). Given this situation, there are two questions to be answered:
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Data set LA | MasTERPROLOG  ILPROLOG(original) 1LPROLOG(packs)
Bongard-1194 0 7.8 4.74 3.93
Bongard-2986 0 17.8 12.7 9.8
Bongard-6013 0 35 25 18
Bongard-1007 0 0.77 0.74 0.49
Bongard-2473 0 2.07 1.82 1.13
Bongard-4981 0 4.1 3.7 2.2
Bongard-1007 2 7.1 7.5 2.2
Bongard-2473 2 17.7 17.2 4.4
Bongard-4981 2 38 35 8.2

Table 8: ILPROLOG compared to other engines (times in seconds) for several data sets and
lookahead settings.

(a) does the move from MASTERPROLOG to other Prolog engines influence performance in
a negative way; and (b) does the performance loss, if any, reduce the performance improve-
ments due to the use of packs?

TiLDE and WARMR have been tuned for fast execution on MASTERPROLOG and IL-
PRrROLOG but not for SICSTUS, which makes a comparison with the latter unfair; therefore
we just report on the former 2 engines. Table 8 shows some results. These confirm that
ILPROLOG is competitive with state-of-the-art Prolog engines.

5.4 Summary of Experimental Results

Our experiments confirm that (a) query pack execution in itself is much more efficient than
executing many highly similar queries separately; (b) existing ILP systems (we use TILDE
and WARMR as examples) can use this mechanism to their advantage, achieving significant
speedups; and c¢) although a new Prolog engine is needed to achieve this, the current state
of development of this engine is such that with respect to execution speed it can compete
with state-of-the-art engines. Further, the experiments are consistent with our complexity
analysis of the execution time of packs.

6. Related Work

The re-implementation of TILDE is related to the work by Mehta et al. (1996) who were
the first to describe the “examples in outer loop” strategy for decision tree induction. The
query pack execution mechanism, here described from the Prolog execution point of view,
can also be seen as a first-order counterpart of APRIORI’s mechanism for counting item-sets
(Agrawal et al., 1996).

Other lines of work on efficiency improvements for ILP involves stochastic methods
which trade a certain amount of optimality for efficiency by, e.g., evaluating clauses on a
sample of the data set instead of the full data set (Srinivasan, 1999), exploring the clause
search space in a random fashion (Srinivasan, 2000), or stochastically testing whether a
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query succeeds on an example (Sebag & Rouveirol, 1997). The first of these is entirely
orthogonal to query pack execution and can easily be combined with it.

The idea of optimising sets of queries instead of individual queries has existed for a
while in the database community. The typical context considered in earlier research on
multi-query optimisation (e.g., Sellis, 1988) was that of a database system that needs to
handle disjunctions of conjunctive queries, or of a server that may receive many queries from
different clients in a brief time interval. If several of these queries are expected to compute
the same intermediary relations, it may be more efficient to materialise these relations
instead of having them recomputed for each query. Data mining provides in a sense a new
context for multi-query optimisation, in which the multi-query optimisation approach is at
the same time easier (the similarities among the queries are more systematic, so one need
not look for them) and more promising (given the huge number of queries that may be
generated at once).

Tsur et al. (1998) describe an algorithm for efficient execution of so-called query flocks
in this context. Like our query pack execution mechanism, the query flock execution mech-
anism is inspired to some extent by APRIORI and is set in a deductive database setting.
The main difference between our query packs and the query flocks described by Tsur et al.
(1998) is that query packs are more hierarchically structured and the queries in a pack are
structurally less similar than the queries in a flock. (A flock is represented by a single query
with placeholders for constants, and is equal to the set of all queries that can be obtained
by instantiating the placeholders to constants. Flocks could not be used for the applications
we consider here.)

Dekeyser and Paredaens (2001) describe work on multi-query optimisation in the context
of relational databases. They also consider tree-like structures in which multiple queries are
combined; the main difference is that their trees are rooted in one single table from which
the queries select tuples, whereas our queries correspond to joins of multiple tables. Further,
Dekeyser and Paredaens define a cost measure for trees as well as operators that map trees
onto semantically equivalent (but less costly) trees, whereas we have considered only the
creation of packs and an efficient top-down execution mechanism for them. Combining both
approaches seems an interesting topic for further research.

Finally, other optimisation techniques for ILP have been proposed that exploit results
from program analysis (Santos Costa et al., 2000; Blockeel et al., 2000) or from propositional
data mining technology (Blockeel et al., 1999). These are complementary to our pack
execution optimisation. Especially the approach of Blockeel et al. (1999) can easily be
combined with our pack mechanism. The techniques discussed by Santos Costa et al.
(2000) and Blockeel et al. (2000) involve optimisations for single query execution, some of
which can to some extent be upgraded to the pack setting. This is future work.

7. Conclusions

There is a lot of redundancy in the computations performed by most ILP systems. In this
paper we have identified a source of redundancy and proposed a method for avoiding it:
execution of query packs. We have discussed how query pack execution can be incorporated
in ILP systems. The query pack execution mechanism has been implemented in a new
Prolog system called ILPROLOG and dedicated to data mining tasks, and two ILP systems
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have been re-implemented to make use of the mechanism. We have experimentally evaluated
these re-implementations, and the results of these experiments confirm that large speedups
may be obtained in this way. We conjecture that the query pack execution mechanism can
be incorporated in other ILP systems and that similar speedups can be expected.

The problem setting in which query pack execution was introduced is very general, and
allows the technique to be used for any kind of task where many queries are to be executed
on the same data, as long as the queries can be organised in a hierarchy.

Future work includes further improvements to the ILPROLOG engine and the implement-
ation of techniques that will increase the suitability of the engine to handle large data sets.
In the best case one might hope to combine techniques known from database optimisation
and program analysis with our pack execution mechanism to further improve the speed of
ILP systems.
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Appendix A. Preparing the Query for the Meta-interpreter

Note that the following preprocessor assumes that the pack of the form a, (b, (c or d
or e) or f or g, (h or i or j)) was already transformed to the form a , or([(b,
or([c,d,e]l)), £, (g, or([h,i,j1))]).

preprocess((A,B), (A,NewB) ,PrevNode,NodeNr0,LeafNr0,BranchNr ,NodeNri,LeafNrl):- !,
preprocess (B,NewB,PrevNode,NodeNr0,LeafNr0,BranchNr,NodeNr1,LeafNrl) .
preprocess (or (Querys) , or (NQuerys,PrevNode,NodeNr0,BranchNr,Length),
PrevNode,NodeNr0O,LeafNr0O,BranchNr, NodeNrl1,LeafNri1):- !,
NodeNr2 is NodelNr0O + 1,
preprocessbranches (Querys,NQuerys,NodeNrO,NodeNr2,LeafNr0,
1,NodeNr1,LeafNrl,Length) .
preprocess (A, (A,leaf (PrevNode,BranchNr,LeafNr0)),
PrevNode,NodeNr0O,LeafNr0O, BranchNr,NodeNrO,LeafNr1l):-
LeafNrl is LeafNrO + 1.

preprocessbranches([], []1,_,NodeNr,LeafNr,BranchNr, NodeNr,LeafNr,BranchNr).
preprocessbranches([Query}Querys],[Neruery}Neruerys],PrevNode,
NodeNrO,LeafNrO,BranchNr, NodeNrl,LeafNrl,Length):-
preprocess (Query,NewQuery,
PrevNode,NodeNr0,LeafNr0,BranchNr, NodeNr2,LeafNr2),
BranchNr1 is BranchNr + 1,
preprocessbranches (Querys,NewQuerys, PrevNode,
NodeNr2,LeafNr2,BranchNrl, NodeNrl,LeafNr1l,Length).
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