Journal of Artificial Intelligence Research 17 (2002) 137-170 Submitted 12/01; published 8/02

Inducing Interpretable Voting Classifiers without Trading
Accuracy for Simplicity: Theoretical Results, Approximation
Algorithms, and Experiments

Richard Nock RNOCK@MARTINIQUE.UNIV-AG.FR
Université Antilles-Guyane

GRIMAAG-Département Scientifique Interfacultaire

Campus Universitaire de Schoelcher

B.P. 7209

97275 Schoelcher, Martinique, France

Abstract

Recent advances in the study of voting classification algorithms have brought empirical
and theoretical results clearly showing the discrimination power of ensemble classifiers. It
has been previously argued that the search of this classification power in the design of
the algorithms has marginalized the need to obtain interpretable classifiers. Therefore,
the question of whether one might have to dispense with interpretability in order to keep
classification strength is being raised in a growing number of machine learning or data
mining papers. The purpose of this paper is to study both theoretically and empirically
the problem. First, we provide numerous results giving insight into the hardness of the
simplicity-accuracy tradeoff for voting classifiers. Then we provide an efficient “top-down
and prune” induction heuristic, WIDC, mainly derived from recent results on the weak
learning and boosting frameworks. It is to our knowledge the first attempt to build a voting
classifier as a base formula using the weak learning framework (the one which was previ-
ously highly successful for decision tree induction), and not the strong learning framework
(as usual for such classifiers with boosting-like approaches). While it uses a well-known
induction scheme previously successful in other classes of concept representations, thus
making it easy to implement and compare, WIDC also relies on recent or new results
we give about particular cases of boosting known as partition boosting and ranking loss
boosting. Experimental results on thirty-one domains, most of which readily available,
tend to display the ability of WIDC to produce small, accurate, and interpretable decision
committees.

1. Introduction

Recent advances in the study of voting classification algorithms have brought empirical and
theoretical results clearly showing the discrimination power of ensemble classifiers (Bauer
& Kohayvi, 1999; Breiman, 1996; Dietterich, 2000; Opitz & Maclin, 1999; Schapire & Singer,
1998). These methods basically rely on voting the decision of individual classifiers inside
an ensemble. It is widely accepted, and formally proven in certain cases (Schapire, Freund,
Bartlett, & Lee, 1998; Schapire & Singer, 1998), that their power actually relies on the
ability to build potentially very large classifiers. It has even been observed experimentally
that such an ensemble can sometimes be as large as (or larger than) the data used to
build the ensemble (Margineantu & Dietterich, 1997) ! Then, a simple question arises,
namely what is the interest a customer can have in using such a classifier, instead of simple

(©2002 AT Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Nock

lookups in the data, and using algorithms such as nearest neighbor classifiers (Margineantu
& Dietterich, 1997) ?

After some of the most remarkable recent studies in voting classification algorithms,
some authors have pointed out the interest to bring this classification power to data mining,
and more precisely to make interpretability a clear issue in voting classification algorithms
(Bauer & Kohavi, 1999; Ridgeway, Madigan, Richardson, & O’Kane, 1998). Some authors
go even further, and argue that the importance of interpretability has been marginalized
in the design of these algorithms, and put behind the need to devise classifiers with strong
classification power (Ridgeway et al., 1998). But interpretability also governs the quality of
a model by providing answers to how it is working, and, most importantly, why. According
to Bauer & Kohavi (1999), striving for comprehensibility in voting models is one of the
principal problems requiring future investigations. They also remark that “voting techniques
usually result in incomprehensible classifiers that cannot easily be shown to users”.

Comprehensibility is, on the other hand, a hard mining issue (Buja & Lee, 2001) :
it depends on parameters such as the type of classifiers used, the algorithm inducing the
classifiers, the user mining the outputs, etc. . Though the quantification of interpretability
is still opened in the general case (Buja & Lee, 2001), there are some clues coming from
theory and practice of machine learning/data mining indicating some potentially interesting
requirements and compromises to devise an efficient learning/mining algorithm.

A first requirement for the algorithm is obviously its generalization abilities: without
classification strength, it is pointless to search for interesting models of the data. A second
requirement, more related to mining, is the size of the classifiers (Nock & Gascuel, 1995;
Nock & Jappy, 1998). If accurate, a classifier with restricted size can lead to faster and
deeper understanding. This is obviously not an absolute rule, rather an approximate proxy
for interpretability : pathologic cases exist in which, for example, a large and unbalanced
tree can be very simple to understand (Buja & Lee, 2001). Note that in this example,
the authors explain that the tree is simple because all its nodes can be described using few
clauses. Therefore, simplicity is also associated to a short description, but using a particular
class of concept representation.

A third parameter influencing comprehensibility is the nature of the algorithm’s output.
Inside the broad scope of symbolic classifiers, some classes of concept representations appear
to offer a greater comfort for interpretation. Decision trees belong to this set (Breiman,
Freidman, Olshen, & Stone, 1984), though they also raise some interpretability problems :
Kohavi & Sommerfield (1998) quote that

“the clients [business users] found some interesting patterns in the decision trees,
but they did not feel the structure was natural for them. They were looking for
those two or three attributes and values (e.g. a combination of geographic and
industries) where something “interesting” was happening. In addition, they felt
it was too limiting that the nodes in a decision tree represent rules that all start
with the same attributes.”

Although not limiting from a classification viewpoint, the ordering of nodes prior to
classification can therefore make it uncomfortable to mine a decision tree. Notice that this
problem might hold for any class of concept representation integrating an ordering prior
to classification: decision lists (Rivest, 1987), alternating decision trees (Freund & Mason,

138

INTERPRETABLE VOTING CLASSIFERS

1999), branching programs (Mansour & McAllester, 2000), etc. . There exists, however, a
type of classifiers on which related papers appear to be generally unanimous on their mining
abilities : disjunctive normal form formulas (DNF's, and their numerous extensions), that is,
disjunctions of conjunctions. Interestingly enough, this is the class which motivated early
works (and a great amount of works afterwards) on the well-known PAC theory of learning
(Valiant, 1984, 1985), partly because of the tendency humans seem to have to represent
knowledge using similarly shaped rules (Valiant, 1985). This class is also the dual of the
one implicitly used by Buja & Lee (2001) to cast their size measure for decision trees (to
state whether the concept represented is simple or not).

It is our aim in this paper to propose theoretical results and approximation algorithms
related to the induction of very particular voting classifiers, drawing their roots on simple
rule sets (like DNF), with the objective to keep a tradeoff between simplicity and accuracy.
Our aim is also to prove that, in the numerous induction algorithms already proposed
throughout the machine learning and data mining communities, some of them, previously
used in decision trees and decision lists induction, can be easily adapted to cope with this
objective, thereby leading to easy-to-implement (and compare) algorithms. The next section
presents a synthesis of our contribution, which is detailed in the rest of the paper.

2. Our Contribution

This paper is principally concerned with the theoretical and experimental study of a set of
voting classifiers which we think is likely to provide an accurate answer to the simplicity-
accuracy tradeoff: decision committees (DC) (Nock & Gascuel, 1995). DC is informally the
Boolean multiclass extension of polynomial discriminant functions. A decision committee
contains rules, each of these being a pair (monomial, vector). Each monomial is a condition
that, when fired, returns its vector. After each monomial has been tested, the sum of
the returned vectors is used to take the decision. This additive fashion for combining
rules is absent from classical Boolean classifiers such as Decision Trees (DT) or Decision
Lists (DL). Furthermore, unlike these two latter classes, the classifier contains absolutely no
ordering, neither on variables (unlike DT), nor on monomials (unlike DL). When sufficiently
small DCs are built and adequate restrictions are taken, a new dimension in interpreting
the classifier is obtained, which does not exist for DT or DL. Namely, any example can
satisfy more than one rule, and a DC can therefore be interpreted by means of various rule
subsets (in a naive conversion of a DT or a DL into rule sets, any example satisfies exactly
one rule). Decision committees resemble or generalize other rule sets (Cohen & Singer,
1999). In this paper, the authors consider DNF-shaped formulas, in which the output
of a monomial is not a class (called “positive”), but a (non-negative) confidence in the
classification as positive. A default class predicts the other class, called “negative” (this is a
setting with two classes). Computing the class of an observation boils down to summing the
confidences of the rules it satisfies, and then deciding the positive class if the sum is greater
than zero, and the negative class otherwise. Decision committees are a generalization of
these formulas, in which we remove the setting’s constraint (two classes) and authorize the
membership prediction to arbitrary classes, thereby leading to a true voting classifier. This
voting fashion is a feature that decision committees share with decision tables (Kohavi &
Sommerfield, 1998). However, decision tables classifiers are based on majority voting of the

139

Nock

examples (and not of rules), over a restricted “window” of the description variables. They
necessitate the storing of many examples, and the interpretations of the data can only be
made through this window, according to this potentially large set of examples. Decision
committees rather represent an efficient way to encode a voting method into a small number
of rules, and the way a class is given can be brought back to early works in machine learning
(Clark & Boswell, 1991). More formal details are provided in the next section.

Among our theoretical results, that are presented in the following section, we provide
formal proofs that the simplicity-accuracy tradeoff is also hard to achieve for DC, as well as
for the construction of complex votes involving DT. This last result shows that, while mixing
C4.5 with boosting provides one of the most powerful classification algorithms (Friedman,
Hastie, & Tibshirani, 2000), pruning boosting is essentially heuristic (Margineantu & Diet-
terich, 1997).

The algorithm we propose for the induction of DC, WIDC (for Weak Induction of
Decision Committees), has the following key features. It uses recent results on partition
boosting, ranking loss boosting (Schapire & Singer, 1998) and some about pruning Boolean
formulas (Kearns & Mansour, 1998). WIDC follows a scheme close to C4.5’s for decision
trees (Quinlan, 1994), or ICDL’s for decision lists (Nock & Jappy, 1998) ; as such, it differs
from previous studies in voting classifiers (boosting, bagging (Breiman, 1996)) by features
such as the fact that no modification is made on the example’s distribution during induction.
It is also one if its differences with the SLIPPER rule induction approach (Cohen & Singer,
1999).

On multiclass and multilabel problems, WIDC proposes a very fast and simple solution
to ranking loss boosting, optimal in fairly general cases, and asymptotically optimal in most
of the remaining ones. The general problem of ranking loss boosting was previously conjec-
tured NP-Hard (Schapire & Singer, 1998). Though our ranking loss boosting algorithm is
not always optimal, we also show that the general ranking loss boosting problem related to
Schapire & Singer (1998) is actually not N P-Hard, and can be solved in polynomial time,
though it seems to require the use of complex and time-expensive algorithms, related to the
minimization of (symmetric) submodular functions. This also partially justifies the use of
our simple and fast approximation algorithm.

The last section of this paper presents experimental results obtained with WIDC on
thirty-one domains, most of which are readily available and can be found on the UCI
repository of machine learning database (Blake, Keogh, & Merz, 1998).

In order to keep the paper self-contained and as concise and readable as possible, we
have chosen to put an appendix at the end of the paper containing all proofs of our results.

3. Decision Committees

Let ¢ be the number of classes. Unless otherwise specified, an example e is a couple e =
(0,¢,) where o is an observation described over n variables, and ¢, its corresponding class
among {0,1,...,c—1} ; to each example (0, ¢,) is associated a weight w((o, ¢,)), representing
its appearance probability with respect to a learning sample LS which we dispose of. LS
is itself a subset of a whole domain which we denote X. Obviously, we do not have entire
access to X (LS C X) : in general, we even have |LS| < |X| (|.| denotes the cardinality; we
suppose in all that follows that X is discrete with finite cardinality). In the particular case

140

INTERPRETABLE VOTING CLASSIFERS

where ¢ = 2, the two classes are noted “-” (¢, = 0) and “+” (¢, = 1), and called respectively
the negative and positive class. The learning sample is the union of two samples, noted
LS~ and LS, containing respectively the negative and positive examples. It is worthwhile
to think the positive examples as belonging to a subset of X containing all possible positive
examples, usually called the target concept.

As part of our goal in machine learning, is the need to build a reliable approximation
to the true classification of the examples in X, that is, a good approximation of the target
concept, by using only the examples in LS. Good approximations shall have a high accuracy
over X, although we do not have access to this quantity, but rather to its estimator: a more
or less reliable accuracy computable over LS. We refer the reader to standard machine
learning books (Mitchell, 1997) for further considerations about this issue. A DC contains
two parts:

e A set of unordered pairs (or rules) {(¢;, 7;) }i=1,2,.. where each ¢; is a monomial (a con-
junction of literals) over {z1,T1, 22, %2, ..., T, Tn}" (n being the number of description
variables, each z; is a positive literal and each Z; is a negative literal), and each %
is a vector in IR¢. For the sake of readability, this vectorial notation shall be kept
throughout all the paper, even for problems with only two classes. One might choose
to add a single real rather than a 2-component vector in that case.

e A Default Vector D in [0,1]¢. Again, in the two-class case, it is sufficient to replace
D by a default class in {+, —}.

For any observation o and any monomial ¢;, the proposition “o satisfies ¢;” is denoted
by o = t;. The opposite proposition “o does not satisfy ¢;” is denoted by “o # t;”. The
classification of any observation o is made in the following way: define V,, as follows

Vo = > -
o=1;

The class assigned to o is then:
e argmax; V, if | arg max; V,| =1, and

® AZMAX; e o, 7 D otherwise.

In other words, if the maximal component of V:) is unique, then the index gives the class
assigned to o. Otherwise, we take the index of the maximal component of D corresponding
to the maximal component of 17:] (ties are solved by a random choice among the maximal
components).

DC contains a subclass which is among the largest classes of Boolean formulas to be
PAC-learnable (Nock & Gascuel, 1995), however this class is less interesting from a practical
viewpoint since rules can be numerous and hard to interpret. Nevertheless, a subclass of
DC (Nock & Gascuel, 1995) presents an interesting compromise between representational
power and interpretability power. In this class, which is used by WIDC, each of the
vector components are restricted to {—1,0,+1} and each monomial is present at most once.

141

Nock

The values —1, 0, +1 allow natural interpretations of the rules, being either in favor of
the corresponding class (+1), neutral with respect to the class (0), or in disfavor of the
corresponding class (—1). This subclass, to which we relate as DCy_; ¢ 11}, is, as we now
prove, suffering the same algorithmic drawbacks as DT (Hyafil & Rivest, 1976) and DL
(Nock & Jappy, 1998): even without restricting the components of the vectors, or with any
restriction to a set containing at least one real value, the construction of small formulas
with sufficiently high accuracy is hard. This is a clear motivation for using heuristics in
decision committee’s induction.

4. Building Small Accurate Decision Committees (and Alike) is Hard

We now show that building decision committees is a hard algorithmic task when one strives
to obtain both small and accurate formulas. There are two usual notions of size which can
naturally be used for decision committees. The first one is the whole number of literals of
the formula (if a literal is present 7 times, it is counted i times) (Nock & Gascuel, 1995;
Nock & Jappy, 1998), the second one is the number of rules of the formula (Kearns, Li,
Pitt, & Valiant, 1987). Our results imply that regardless of the restriction over the values
of the vectors (as long as they are elements of a set with cardinality > 2), and already for
two-classes problems, minimizing the size of a decision committee for both size definitions
is as hard as solving well-known N P-Hard problems. Therefore, the task is also hard for
DCy_1,0,41) with the particular values —1, 0, +1 for the vectors.

4.1 The Size of a DC is Measured as its Whole Number of Literals

Theorem 1 When the size of a DC is measured as its whole number of literals, it is N P-
Hard to find the smallest decision committee consistent with a set of examples LS.

Proof: See the Appendix. m|

We can easily adapt Theorem 1 to the case where the rules are replaced by weighted
DT as advocated in boosted C4.5 (Schapire & Singer, 1998). Here, each tree returns a
class € {+1,—1}, and each tree is given a real weight to leverage its vote. The sign of
the linear combination gives the class of an example. The following theorem holds again
with any limitations on the leveraging coefficients (as long as at least one non-zero value is
authorized), or without limitation on the coefficients. By this, we mean that for each of the
applicable limitations (or without), the problem is N P-Hard. The size notion is the sum,
over all trees, of their number of nodes.

Theorem 2 [t is NP-Hard to find the smallest weighted linear combinations of DT con-
sistent with a set of examples LS, without limitation on the leveraging coefficients, or for
any possible limitation, as long as at least one non-zero value is authorized.

While it is well known that boosting results in a rapid decreasing of the error over LS
which can easily and rapidly drop down to zero (as long as it is possible), Theorem 2 shows
that attempts to efficiently reduce the size of the vote when boosting DT is N P-Hard. If
the problem is simplified to the to pruning of a large consistent vote of DT (Margineantu &
Dietterich, 1997), to obtain a smaller consistent (or with limited error) vote with restricted
size, it is again possible (using the same reduction) to show that this brings N P-Hardness.

142

INTERPRETABLE VOTING CLASSIFERS

4.2 The Size of a DC is Measured as its Number of Rules

We now state and prove the equivalent of Theorem 1 with this new size notion.

Theorem 3 When the size of a DC is measured as its number of rules, it is NP-Hard
to find the smallest decision committee consistent with a set of examples LS. The result
holds even when the concept labeling the examples is a monotone-DNF formula, that is, a
disjunction of conjunction (DNF'), each without negative literals.

Proof: See the Appendix. m|

A previous work (Kearns et al., 1987) proves a similar theorem concerning the mini-
mization of the size of a DNF. Theorem 3 can be shown to be more general, as the class of
DCy_1,0,41) with two rules strictly contains that of DNF with two monomials.

The statement of Theorems 1, 2, 3 as optimization problems was chosen for pure con-
venience ; replacing them by their associated decision problems (decide whether there exist
a consistent formula whose size is no more than some fixed threshold) would trivially make
the problems not only N P-Hard, but also N P-Complete.

5. Overview of WIDC

An algorithm, IDC, was previously proposed (Nock & Gascuel, 1995) for building decision
committees. It proceeds in two stages. The first stage builds a potentially large subset
of different rules, each of which is actually a DCy_; 9 41} with only one rule. In a second
stage, it gradually clusters the decision committees, using the property that the union of
two DCy_y 0, 41}s with different rules is stilla DC{_1 o y1}. At the end of this procedure, the
user obtains a set of DCs, and the most accurate one is chosen and returned. Experimental
results display the ability of IDC to build small DCs. In that paper, we provide an algorithm
for learning decision committees which has a different structure since it builds only one DC.
More precisely, WIDC is a three stage algorithm. It first builds a set of rules derived from
results on boosting decision trees (Schapire & Singer, 1998). It then calculates the vectors
using a scheme derived from Ranking loss boosting (Schapire & Singer, 1998). It finally
prunes the final DCy_; ¢ 1} using two possible schemes: a natural pruning which we call
“pessimistic pruning”, and pruning using local convergence results (Kearns & Mansour,
1998), which we call “optimistic pruning”. The default vector is always chosen to be the
observed distribution of ambiguously classified examples.

5.1 Building a Large Decision Committee using Partition Boosting

Suppose that the hypothesis (not necessarily a decision committee, it might be e.g. a deci-
sion tree) we build realizes a partition of the domain X into disjoint subsets X1, Xo, ..., X .
Fix as [r] the function returning the truth value of a predicate 7. Define

Wit = 3 w((o,c))(0,¢0) € XjAeo=1]
(0,c0)ELS

Wit = 3 w((o,c))[(0,co) € Xj Aco £1] -
(0,c0)€ELS

143

Nock

In other words, Wi’l represents the fraction of examples of class [present in subset X,
and W represents the fraction of examples of classes # [present in subset X;. According
to Schapire & Singer (1998), a weak learner should minimize the criterion:

z = 233 ywitwit . (1)
j 1

In the case of a decision tree, the partition is that which is built at the leaves of the
tree (Quinlan, 1994) ; in the case of a decision list, the partition is that which is built at
each rule, to which we add the subset associated to the default class (Nock & Jappy, 1998).
Suppose that we encode the decision tree in the form of a subset of monomials, by taking
for each leaf the logical-A of all attributes from the root to the leaf. Measuring Z over the
tree’s leaves is equivalent to measure Z over the partition realized by the set of monomials.
However, the monomials are disjoint from each other (each example satisfies exactly one
monomial). Due to this property, only ¢ subsets can be realized with ¢ monomials, or
equivalently with a tree having ¢ leaves.

Suppose that we generalize this observation by removing the disjointness condition over
the monomials. Then a number of subsets of order O(2!) is now possible with only ¢
monomials, and it appears that the number of realized partitions can be exponentially
larger using decision committees than decision trees. However, the expected running time
is not bigger when using decision committees, since the number of partitions is in fact
bounded by the number of examples, |LS|. Thus, we may expect some reduction in the size
of the formula we build when using decision committee, which is of interest to interpret the
classifier obtained.

Application of this principle in WIDC is straightforward: a large decision committee is
built by growing iteratively, in a top-down fashion, a current monomial. In this monomial,
the literal added at the current step is the one which minimizes the current Z criterion, over
all possible addition of literals, and given that the new monomial does not exist already in
the current decision committee (in order to prevent multiple additions of a single monomial).
The Z criterion is computed using the partition induced over LS by the current set of
monomials built (if two examples satisfy the same monomials, they belong to the same
subset of the partition). When no further addition of a literal decreases the Z value, a
new monomial is created and initialized at (), and then is grown using the same principle.
When no further creation of a monomial decreases the Z value, the algorithm stops and
returns the current, large decision committee with still empty vectors. In the following step,
WIDC calculates these vectors. In a previous approach to building rule sets for problems
with two classes (Cohen & Singer, 1999), an iterative growing-pruning algorithm is designed
(SLIPPER). The rule-growing approach of SLIPPER is certainly close to what WIDC does
for growing a DC since it optimizes a Z criterion, yet a notable difference is that it does
not compute Z over a partition induced by a set of rules. Rather, the choice of SLIPPER
is to grow at each step a single monomial, prune it, and then grow a second monomial,
prune it, and so on until a final DNF-shaped formula is complete and returned. Notice
that SLIPPER also modifies the weight of the examples, in accordance with Boosting’s
standards (Schapire & Singer, 1998).

144

INTERPRETABLE VOTING CLASSIFERS

5.2 Calculating Rule Vectors using Ranking Loss Boosting

Schapire & Singer (1998) have investigated classification problems where the aim of the
procedure is not to provide an accurate class for some observation. Rather, the algorithm
outputs a set of values (one for each class) and we expect the class of the observation to
receive the largest value of all, thus being ranked higher than all others. This approach is
particularly useful when a given example can belong to more than one class (multilabel
problems), a case where we expect each of these classes to receive the greatest values
compared to the classes the examples does not belong to.

The ranking loss represents informally the number of times the hypothesis fails to rank
the class of an example higher than a class to which it does not belong. Before going further,
we first generalize our classification setting, and replace the common notation (o, ¢,) for an
example by the more general one (o, ¢c,). Here, ¢, € {0,1}¢ is a vector giving, for each class,
the membership to the class (“0” is no and “1” is yes) of the corresponding observation o.
It is important to note that this setting is more general than the usual Bayesian setting,
in which there can exist examples (o,¢,) and (0',c,) (using the non-vector notation) for
which 0 = o but ¢, # ¢y. Ranking loss generalizes Bayes to the multilabel problems, and
postulates that there can be some examples for which we cannot provide a single class at a
time, even if e.g. any of the classes to which the example belongs are susceptible to appear
independently later with the same observation.

Ranking loss Boosting replaces each example (0, c,) by a set of 1z x (c—1z,) examples,
where 1z denotes the Hamming weight of &, (i.e. the number of classes to which the
example belongs). Each of these new examples is denoted (o, k, j), where j and k span all
values in {0,1,...,c — 1}2. The distribution of the new examples is renormalized, so that
w((o,k,j)) = % whenever ¢,[j] = 1 and &,[k] = 0, and 0 otherwise.

Take some monomial ¢ obtained from the large DC, and all examples satisfying it. We
now work with this restricted subset of examples, while calculating the corresponding vector
¥ of t. Schapire & Singer (1998) propose a cost function which we should minimize in order
to minimize the ranking loss. This function is

Z = Y w((o,k,j)) x e 70U 2)
Oajak

Here, « is a tunable parameter which, intuitively, represents the confidence in the choice
of ¥, and leverages its quality. The better ¢ is at classifying examples, the larger is |a|. In
our case however, authorizing a # 1 is equivalent to authorizing components for ¥’ in sets
{—z,0,z} for arbitrary z. To really constrain the components of ¥ in {—1,0,+1}, we have
chosen to optimize the criterion

Z = Z w((o, k, 7)) x o~ 3 (@71 Tlk]) 5

0,5,k

(therefore forcing o = 1). Schapire & Singer (1998) conjecture that finding the optimal
vector minimizing Z in eq. (2) (which is similar to an oblivious hypothesis according to
their definitions), or Z given a particular value of «, is N P-Hard when c is not fixed, and
when the components of ¥ are in the set {—1,+1}. The following section addresses directly
the setting of Schapire & Singer (1998), and presents complexity-theoretic results showing

145

Nock

that the minimization of Z is actually polynomial, but highly complicated to achieve, all
the more for what it is supposed to bring to the minimization of Z in our setting. A
striking result we also give, not related to the purpose of the paper, is that it is actually
the maximization of Z which is N P-Hard.

Then, we present the approximation algorithm we have built and implemented to opti-
mize the computation of ¥ in our setting (components of ¥ in the set {—1,0,+1}), along with
its properties. While we feel that the ideas used to minimize Z in the setting of Schapire &
Singer (1998) can be adapted to our setting to provide an algorithm that is always optimal,
our algorithm has the advantage to be simple, fast, and also optimal for numerous cases.
In many other cases, we show that it is still asymptotically optimal as ¢ increases.

5.2.1 OPTIMIZING Z IN THE SETTING OF SCHAPIRE & SINGER (1998)

In the case where each component of ¥ is restricted to the set {—1,+1}, Schapire & Singer
(1998) give a way to choose « to minimize Z for any possible choice of 7 (using our notation):

1 w+
a = Elog (F) , (4)

with:

Wt = Y w((o,k,j)[7l] — k] =2] , (5)

0,k,j

W= = Y w((o,k,j)[7l5] - 9lk] = —2] . (6)

o7k,j

Replacing this value of « in eq. (2), gives the following new expression for Z:
Z = Wiyovw+w- (7)

with W0 =32, ¢ sw((o,k,))[7[j] — #]k] = 0]. Schapire & Singer (1998) raise the prob-
lem of minimizing Z as defined in equations (2) and (7). We now show that it is polynomial.

Theorem 4 Minimizing Z as defined either in equations (2), (3) or (7) is polynomial when
the components of v; are restricted to the set {—1,+1}.

Proof: See the Appendix. m|

A rather striking result given the conjecture of Schapire & Singer (1998) is that it is
the maximization of Z, and not its minimization, which is NP-Hard. While this is not
the purpose of the present paper (we are interested in minimizing Z), we have chosen to
give here a brief proof sketch of the result, which uses classical reductions from well-known
N P-Hard problems.

Theorem 5 Mazimizing Z as defined either in equations (2), (3) or (7) is NP-Hard when
the components of v; are restricted to the set {—1,+1}.

Proof sketch: See the Appendix. m|

146

INTERPRETABLE VOTING CLASSIFERS

5.2.2 OPTIMIZING Z IN OUR SETTING

As previously argued in Theorem 4, minimizing Z in the setting of Schapire & Singer (1998)
can be done optimally, but at the expense of complex optimization procedures, with large
complexities. One can wonder whether such procedures, to optimize only the computation
of 7 (a small part of WIDC), are really well worth the adaptation to our setting, in which
more values are authorized. We are now going to show that a much simpler combinatorial
procedure, with comparatively very low complexity, can bring optimal results in fairly
general situations. The most simple way to describe most of these situations is to make the
following assumption on the examples:

(A) Each example used to compute ¥ has only one “1” in its class vector.

A careful reading of assumption (A) reveals that it implies that each example belongs
to exactly one class, but it does not prevent an observation to be element of more than one
class, as long as different examples sharing the same observation have different classes (the
“1” of the class vectors is in different positions among these examples). Therefore, even if it
does not integrate the most general features of the ranking loss setting, our assumption still
authorizes to consider problems with non zero Bayes optimum. This is really interesting, as
many commonly used datasets fall into the category of our assumption, as for example many
datasets of the UCI repository of Machine Learning database (Blake et al., 1998). Finally,
even if the assumption does not hold, we show that in many of the remaining (interesting)
cases, our approximation algorithm is asymptotically optimal, that is, finds solutions closer
to the minimal value of Z as ¢ increases.

Suppose for now that (A) holds. Our objective is to calculate the vector ¥ of some
monomial ¢. We use the shorthands WJ’ ,W1+ , ,Wct 1 to denote the sum of weights of
the examples satisfying ¢ and belonging respectively to classes 0,1,...,c — 1. We want to
minimize Z as proposed in eq. (3). Suppose without loss of generality that

Wt <W; < LL<WH

otherwise, reorder the classes so that they verify this assertion. Given only three possible
values for each component of ¥, the testing of all 3¢ possibilities for ¥ is exponential and
time-consuming. But we can propose a very fast approach. We have indeed

Lemma 1 V1 < j < k <, t]j] < v[k] .

Proof: See the Appendix. m|

Thus, the optimal ¥ does not belong to a set of cardinality 3¢, but to a set of cardinality
O(c?). Our algorithm is then straightforward: simply explore this set of O(c?) elements,
and keep the vector having the lowest value of Z. Note that this combinatorial algorithm
has the advantage to be adaptable to more general settings in which / particular values are
authorized for the components of ¥/, for any fixed [not necessarily equal to 3. In that case,
the complexity is larger, but limited to O(c'~1).

There are slightly more general settings in which our algorithm remains optimal, in
particular when we can certify V7, k, ((Wj+ > W) & (Vi G, k: W, > W)V ((Wj+ <
W) & (Vi # j,k : Wj; > Wy;)). Here, W, denotes the sum of weights of the examples
belonging at least to class z, and W, denotes the sum of weights of the examples belonging

147

Nock

at least to class z, and not belonging at least to class y. This shows that even for some
particular multilabel cases, our approximation algorithm can remain optimal. One can
wonder if the optimality is preserved in the unrestricted multilabel framework. We now
show that, if optimality is not preserved, we can still prove the quality of our algorithm for
general multilabel cases, showing asymptotic optimality as ¢ increases.

Our approximation algorithm is run in the multilabel case by transforming the examples
as follows: each example (o,¢é,) for which 1z > 1 is transformed into 1z examples, having
the same description o, and only one “1” in their vector, in such a way that we span the
1z, > 1 “1” of the original example. Their weight is the one of the original example, divided
by 1z,. We then run our algorithm on this new set of examples satisfying assumption (A).

Now, suppose that for any example (o,c,), we have 1z < k for some k. There are two
interesting vectors we use. The first one is 7*, the optimal vector (or an optimal vector)
minimizing Z over the original set of examples, the second one is ¥, the vector we find
minimizing Z over the transformed set of examples. What we want is to estimate the
quality of ¥ with respect to the optimal value of Z over the original set of examples, Z(7*)
using our notation. The following theorem gives an answer to this problem, by quantifying
its convergence towards Z (7).

Theorem 6 Z(7) < Z(7*) (1+ (;%)).

Proof: See the Appendix. m|

Therefore, in the set of all problems for which for some 8 < 1, & < B¢, we obtain
Z(v) = (140(1))Z(v™), and our bound converges to the optimum as ¢ increases in this class
of problems. By means of words, our simple approximation algorithm is quite efficient for
problems with large number of classes. Note that using a slightly more involved proof, we
could have reduced the constant “e” factor in Theorem 6 to the slightly smaller “e—(1/e)”.
Now, to fix the ideas, the following subsection displays the explicit (and simple) solution
when there are only two classes.

5.2.3 EXPLICIT SOLUTION IN THE TwO-CLASSES CASE

For the sake of simplicity, rename W, = W~ and W;" = W™ representing the fraction of
examples from the negative and positive class respectively, satisfying ¢. The rule to choose
¥ is the following:

Lemma 2 The following table gives the rule to choose ¥ :

If then we choose
W >3 7= (~1,+1)
\/ES%<€% 7=(-1,0) or ¥ = (0,41)
T < Wt <ve | T=(=1,-1) or#=(0,0) or ¥ = (+1,+1)
w. - .
eL%SW—f<% 7=1(0,—1) or 7= (+1,0)
% < —13— 7= (+1’_1)
—~ 3
Proof: See the Appendix. m|

148

INTERPRETABLE VOTING CLASSIFERS

5.3 Pruning a DC

The algorithm is a single-pass algorithm: each rule is tested only once, from the first
rule to the last one. For each possible rule, a criterion Criterion(.) returns “TRUE” or
“FALSE” depending on whether the rule should be removed or not. There are two versions
of this criterion. The first one, which we call “pessimistic”, is based on conventional error
minimization. The second one, called “optimistic”, is derived from a previous work on
pruning decision-trees (Kearns & Mansour, 1998).

5.3.1 PESSIMISTIC PRUNING

Pessimistic pruning builds a sequence of DC from the initial one. At each step, we remove
one rule, such that its removal brings the lowest error among all possible removals of rule
in the current DC. Each time the error of the current DC is not greater than the lowest
error found already, Criterion(.) returns true for all rules already tested for removal. This
pruning returns the smallest DC having the lowest error of the sequence. This pruning is
rather natural (and simple), and motivated by the fact that the induction of the large DC
before pruning does not lead to a conventional error minimization. Such a property is rather
seldom in “top-down and prune” induction algorithms. For example, common decision tree
induction algorithms in this scheme incorporate very sophisticated pruning criteria (CART
(Breiman et al., 1984), C4.5 (Quinlan, 1994)).

5.3.2 OpTIMISTIC PRUNING

Kearns & Mansour (1998) present a novel algorithm to prune decision trees, based on a
test over locally observed errors. Its principle is simple: each internal node of a DT is
tested only once in a bottom-up fashion, and we estimate the local error over the learning
examples reaching this node, before and after the removal of the node. If the local error
after removal is not greater than the local error before, plus a penalty term, then we remove
the node and its subtree. The penalty term makes the pruning essentially optimistic, that
is, we tend to overprune the decision tree. However, thanks to local uniform convergence
results, and due to the fact that certain sub-classes of decision trees are reasonably large,
Kearns & Mansour (1998) are able to prove that with high probability, the overpruning
will not be too severe with respect to the optimal subtree of the initial DT. We refer the
reader to their paper for further theoretical results, not needed here. The point is that by
using the results of Kearns & Mansour (1998), we can obtain a similar test for DC. We
emphasize that our bound might not enjoy the same theoretical properties as for decision
trees, because of the cardinality reasons briefly outlined before. However, such a test is
interesting since it may lead especially to very small and interpretable decision committees,
with the obvious hope that their accuracy will not decrease too much. Furthermore, the
paper of Kearns & Mansour (1998) does not contain experimental results. We think our
criterion as a way to test heuristically the experimental feasibility of some of the results of
Kearns & Mansour (1998). The principle of our criterion is exactly the same as the original
test of Kearns & Mansour (1998) : “can we compare, when testing some rule (t,7) and
using the examples that satisfy the rule, the errors before and after removing the rule”?
Let €(1,57 represent the error before removing the rule, on the local sample LS(; 5 satisfying
monomial ¢. Denote ¢j as the error before removing (¢, ¥), still measured on the local sample

149

Nock

LS. Then we define the heuristic “penalty” (proof omitted: it is a rough upperbound
of Kearns & Mansour (1998), Lemma 1) :

, B (Set((t,7)) + 2) log(n) + log1/d
“en LS| '

(8)

Set((t,7)) denotes the maximum number of literals of all rules except (¢,7) in the cur-
rent DC, that an arbitrary example could satisfy. The fast calculability of a’(+,7) is obtained
at the expense of a greater risk of overpruning, whose effects on some small datasets were
experimentally dramatic for the accuracy. In our experiments, which contain very small
datasets, we have chosen to tune a parameter limiting the effects of this combinatorial up-
perbound. More precisely, We have chosen to uniformly resample LS into a larger subset
of 5000 examples, when the initial LS contained less than 5000 examples. By this, we
artificially increase |LS(; 5| and mimic for the small domains new domains with an identi-
cal larger size, with the additional benefits that reasonable comparisons may be made on
pruning.

The value of Criterion((t, %)) is therefore “TRUE” iff €, 5 + O"(t,a) > €.

6. Experiments

Following are three experimental sections, aimed at testing WIDC on three issues. The
first presents extensive results on the tradeoff simplicity-accuracy obtained by WIDC, and
compares the results with those obtained for state-of-the-art algorithms. The second goes
on in depth analyzes for the mining/interpretability issue, and the third presents results on
noise tolerance.

6.1 Tradeoff Simplicity-Accuracy

Experiments were carried out using three variants of WIDC: with optimistic pruning
(0), with pessimistic pruning (p), and without pruning (). Table 1 presents some re-
sults on various datasets, most of which were taken from the UCI repository of machine
learning database (Blake et al., 1998). For each dataset, the eventual discretization of
attributes was performed following previous recommendations and experimental setups
(de Carvalho Gomes & Gascuel, 1994). The results were computed using a ten-fold strati-
fied cross validation procedure (Quinlan, 1996). The least errors for WIDC are underlined
for each domain. For the sake of comparisons, column “Others” points out various results
for other algorithms, intended to help getting a general picture of what can be the per-
formances of efficient approaches with different outputs (decision lists, trees, committees,
etc.), in terms of errors (and, when applicable, sizes). Some of the most relevant results for
WIDC are summarized in the scatterplots of Table 2.

The interpretation of Table 1 using only errors gives the advantage to WIDC with
pessimistic pruning, all the more as WIDC(p) has the advantage of providing simpler
formulas than WIDC()), and has a much simpler pruning stage than WIDC(0). Results
also compare favorably to the “Other” results, building either DLs, DTs, or DCs. They
are all the more interesting if we compare the errors in the light of the sizes obtained. For
the “Echo” domain, WIDC with pessimistic pruning beats improved CN2 by two points,

150

INTERPRETABLE VOTING CLASSIFERS

WIDC(o) WIDC(p) WIDC(0)
Domain ert% | rpc | Ipc | ert% | rpe | Ipc || ert% | rpe | Ipc || Other
Australian || 15.57 | 1.1 1.8 || 16.00 1.6 4.1 || 18.14 | 4.8 | 17.5 | 15.1399 f
Balance 22.38 | 4.1 | 10.5 || 14.76 9.9 | 27.3 || 14.29 | 18.7 | 44.9 || 20.1g9 f
Breast-W 7.46 1.1 4.5 4.08 | 5.0 | 21.0 6.90 7.7 1293 || 4.9918 T

Bupa 36.57 | 3.2| 124 | 3714 | 4.3 |16.6 || 37.14 | 7.7 | 28.4 || 37.3370 f
Echo 3214 | 1.8 | 3.9 27.86 | 4.7 | 11.1 | 31.42 | 24.6 | 38.8 || 32.3354 a
Glass2 2176 | 1.5 | 4.7 || 2117 | 1.7| 5.4 | 2647 | 4.3 | 12.5 || 26.3s f

Heart-S 2407 | 31| 89 1948 | 85| 314 || 21.85 | 12.5 | 408 || 21.5 ¢

Heart-C 2290 | 29| 9.1 | 21.85| 6.5 | 274 | 25.48 | 13.3 | 46.2 || 22.5520 @
Heart-H 22.67 | 39109 2045 | 84| 24.2 || 20.00 | 14.3 | 43.5 || 21.860.3 @
Hepatitis 2059 | 34| 871924 | 7.0 | 17.0 | 15.29 | 11.4 | 26.7 || 19.2340 a

Horse 15.26 | 1.7| 3.6 || 15,57 | 3.8 | 10.4 | 20.26 | 12.5 | 31.7 || 15.7134 f
Iris 533 | 1.9 | 4.6 533 | 29| 7.1 2067 | 3.7 79| 85c
Labor 15.00 | 29| 5.0 15.00 | 3.7 | 6.6 || 16.67 | 3.8 | 6.7 | 16.315 d
LED7 31.09 | 69| 84| 24.82|16.2 | 21.3 || 24.73 | 19.0 | 25.4 || 25.73122 d

LEDeven 13.17 | 27| 6.1 1243 | 3.8 | 9.2 || 2463 | 9.9 21.9 | 13.0019 f
LEDeven2 | 30.00 | 4.1 | 16.4 || 23.15 | 7.1 | 26.1 || 21.70 | 24.4 | 83.8 || 23.1954 f

Lung 4250 | 1.3 | 3.8 4250 | 2.6 | 7.1 | 4250 | 2.7 | 7.2 | 46.6 e
Monk1 15.00 | 4.1 | 9.5 | 15.00 | 5.2 |13.0 || 15.00 | 9.4 | 17.9 || 16.665¢ d
Monk2 2443 | 9.0 | 384 | 21.48 | 18.2 | 61.3 || 31.80 | 24.8 | 82.1 || 29.39180 d
Monk3 3.04 | 36| 4.8 9.89 | 4.7 | 89| 1250 | 9.3 | 123 || 2.6720 d
Pima 29.61 | 2.2 | 59| 26.17 | 80| 29.4 | 32.99 | 22.2 | 68.9 || 259 ¢
Pole 36.67 | 1.5 | 4.1 | 33.52 | 4.2 | 12.7 || 37.64 | 24.0 | 65.8 || 35.5816 f
Shuttle 3.27 | 1.0 20| 327 | 10| 2.0 451 | 2.0 4.0 | 17998 f

TicTacToe || 22.47 | 5.7 | 14.4 || 20.10 | 6.7 | 17.6 || 23.50 | 15.9 | 43.7 || 18.31309 f
Vehicle2 26.47 | 2.8 | 7.8 | 26.70 | 4.0 | 11.2 || 33.18 | 16.4 | 46.5 || 25.643,0 f

Vote0 6.81 1 1.9 3.0 840 | 4.5 | 8.5 | 10.00 | 9.5 | 189 | 4.3496 a
Votel 1090 | 2.0 | 3.5 9.98 | 7.0 | 14.9 || 12.50 | 13.6 | 29.7 || 10.89.4 d
Waveform | 30.49 | 4.8 | 8.2 23.47 | 7.5 | 173 || 20.24 | 40.1 | 65.0 || 33.5218 b
Wine 10.00 | 3.0 | 6.2 947 | 3.7 | 8.1 789 | 42| 89| 228e
XD6 16.73 | 52| 144 || 17.50 | 6.2 | 17.1 | 22.69 | 19.8 | 52.0 || 21.258 f

Table 1: Experimental results using WIDC.

Conventions: Ip¢ is the whole number of literals of a DC, rp¢ is its number of rules. For
“Others”, numbers are given on the form eITOT (5765 where a is improved CN2 (CN2-POE)
building DLs, size is the number of literals (Domingos, 1998). b is ICDL building DLs,
notations follow a (Nock & Jappy, 1998). c is C4.5 (Franck & Witten, 1998). d is IDC
building DCs, notations follow a (Nock & Gascuel, 1995). e is 1-Nearest Neighbor rule and
f is C4.5 (pruned, default parameters) building DTs; the size of a tree is its whole number
of nodes.

but the DC obtained contains roughly eight times fewer literals than CN2-POE’s decision
list. If we except “Vote(”, on all other problems on which we dispose of CN2-POE’s

151

Nock

50 ‘ 50 50
5 5 5
I £ e %0
e ® o °® ° B
) o, < g Oy < o By
£ &% P P
5% g5 o b §5 o B o
U o % ~O» DE% ~6 0 g %
a2 b gar 8 olpal aor B o o
315 D,@G 35 Qj o 25 E] o
g (2 o [nk
10 i 10 ol 10 0./
ob g b b
5 w 0 5 El 5 El
0 o L L L L L L L L L 0 |~ L L L L L L L L L 0 |~ L L L L L L L L L
0 5 1015 20 25 30 35 4 4 % 0 5 10 15 20 25 30 35 & & 5 0 5 10 15 20 25 30 35 & & 5
WIDC(p) err. (%) WIDC(p) er. (%) WIDC(o) er. (%)
100 100 100
[a]
& % . D % 0
0 n 0 0
g g 0o g e
z 60 2 60 £ 60
S g o F
g g 0 8 g
~ = o = o
g w0 o ¢ wf p” %o o w DE@
a a o a
32 H EEH/’ 3 %DD
20 DED/’,,,, 20 kg
o
&0 60 80 100 0 20 Q0 60 80 100 0 20 Q0 60 80 100
WIDC(p) #itterals WIDC(p) #itterds WIDC(o) #itterds

Table 2: Scatterplots summarizing some results of Table 1 for the three flavors of WIDC, in
terms of error (first row) and size (Ip¢, second row), on the thirty datasets. Each
point above the z = y line depicts a dataset for which the algorithm in abscissa

performs better.

results, we outperform CN2-POE on both accuracy and size. Finally, on “Vote0”, note that
WIDC with optimistic pruning is slightly outperformed by CN2-POE by 2.51%, but the
DC obtained is fifteen times smaller than the decision list of CN2-POE. If we dwell on the
results of C4.5, similar conclusions can be brought: on 12 out of 13 datasets on which we
ran C4.5, WIDC(p) finds smaller formulas, and still beats C4.5’s accuracy on 9 of them.
A quantitative comparison of [pc against the number of nodes of the DTs shows that on
4 datasets out of the 13 (Pole, Shuttle, TicTacToe, Australian), the DCs are more than 6
times smaller, while they only incur a loss in accuracy for 2 of them, and limited to 1.8%.
For this latter problem (TicTacToe), a glimpse at Table 1 shows that the DCs, with less than
7 rules on average, keeps comparatively most of the information contained in DTs having
more than a hundred leaves. On many problems where mining issues are crucial, such a size
reduction would be well worth the (comparatively slight) loss in accuracy, because we keep
a significant part of the information on very small classifiers, thus likely to be interpretable.

6.2 Interpretability Issues

In the XD6 domain, each example has 10 binary variables. The tenth is irrelevant in the
strongest sense (John, Kohavi, & Pfleger, 1994). The target concept f is a 3-DNF (a

152

INTERPRETABLE VOTING CLASSIFERS

— +
Zo A Al A Z9 -1 1
T3 N T4 N\ x5 -1 1
ze N T7 N\ T8 -1 1
1 N5 0 -1
To N\ T2 1 -1
T 1 -1

default D [0.963 | 0.037 |

Figure 1: A DC obtained on the XD6 domain with WIDC(p). The first three rules exactly
encode the target concept, and the irrelevant variable is absent from the DC.

Yes No

2 I el 71 el O) O el BT R
ol I e el el Y =] [
=] [

Figure 2: Part of a DT obtained on the XD6 domain with C4.5. Positive literals label the
internal nodes. To classify an observation, the left edge of a node is followed when
an observation contains (“Yes”) the positive literal, and the right edge is followed
otherwise (i.e. the literal is negative in the observation). The bold square is used
to display the presence of the irrelevant variable in the tree. A naive conversion
of this tree in rules for both classes generates 30 rules, for a total of 179 literals.

153

Nock

DNF with each monomial containing at most three literals) over the first nine variables:
(zo Ay Axo) V (23 Ay Ax5) V (26 A z7 A z8). Such a formula is typically hard to encode
using a small decision tree. In our experiments with WIDC(o) and WIDC(p), we have
remarked that the target formula itself is almost always an element of the classifier built,
and the irrelevant attribute is always absent. Figure 1 shows an example of DC which was
obtained on a run of WIDC. Note that the concept returned is a 3-DC. Figure 2 depicts a
part of a tree obtained on this domain with C4.5. While the tree appears to be quite large
for the domain, note the presence of the irrelevant variable in the tree, which it contributes
to enlarge while making it harder to mine. On many other domains, we observed persistent
rules or subconcepts through the 10 cross-validation runs. Similarly to XD6, whenever we
could mine the results with a sufficiently accurate knowledge of the domain, these patterns
were most interesting. For example, the DCs obtained on the LEDeven domain contained
most of the time a combination of two rules with one literal each, which represented a very
accurate way to classify 9 out of the 10 possible classes. On the Vote0 and Votel domains,
we also observed constant patterns, some of which are well known (Blake et al., 1998) to
provide a very accurate classification for a tiny size. Even for Votel where classical studies
often report errors over 12%, and almost never around 10% (Holte, 1993), we observed
on most of the runs a DC containing an accurate rule with two literals only, with which
WIDC(p) provided on average an error under 10%.

WIDC was also compared to C4.5 on a real world domain on which mining issues are
as crucial as classification strength: agriculture. An experiment is being carried out in
Martinique by the DDAF (Departmental Direction of Agriculture and Forest), to achieve
better understanding of the behavior of farmers, in particular regarding their willingness
to contract a CTE (Farming Territorial Contract). Usual farming contracts with either the
state (France) or Europe did not contain commitments for the farmer to satisfy. In a CTE,
each farmer commits to adapt and/or change his agricultural techniques or productions,
to ensure sustainable development for local agriculture. In exchange for this, he receives
the guarantee to obtain financial help for this contract, and to be trained to new agricul-
tural techniques. Such a domain is a good test bed to evaluate a method on the basis of
predictability and interpretability, because of the place of uncertainty in agriculture, and
the fact that obtaining data can be a hard and long task : the DDAF has to be as ac-
curate as possible in its predictions and interpretations, to manage as best as possible its
relationships with farmers, and in the case of CTEs, to make the best promotion campaign
for these new contracts. Agriculture is also very sensitive to a “showcase effect”: provided
even few representative farmers will have subscribed to the contracts, comparatively many
others are likely to follow.

In this study, from the description of 52 variables for about 60 representative farmers
satisfying the criteria to adhere to a CTE, the aim is to develop models for those who
are actually willing to adhere, those not willing to adhere, and those currently uncertain.
Variables are data on each agricultural exploitation (size, terrain nature, financial data,
type of production, etc .), as well as more personal data on the farmers (education, family
status, objectives, personal answer to a questionnaire, etc.). This represents a small dataset
to mine, but, interestingly, the results obtained were different when processing it with C4.5
or WIDC(p).

154

INTERPRETABLE VOTING CLASSIFERS

adhere ? —adhere

(No_ongoing_project) A (No_education) -1 -1 1
(No_ongoing_project) A (Lengthy_proc) A (No_-W holesaler) 1 -1 1
default D 0.32 | 0.68 0

Figure 3: The DC obtained on the agricultural data (see text for the interpretation of the
variables).

We ran both algorithms in a 10-fold stratified cross-validation experiment. WIDC(p)
obtained a 2.8% average error. In 6 out of 10 runs, the same DC was induced. It is presented
in Figure 3. Basically, this DC proves that predicting the “—adhere” class is the easiest task,
followed by the prediction of the “adhere” class. The “?” (uncertain farmers) is predicted
only by the default vector. This seems rather natural: whereas the extreme behaviors tend
to be clear to determine, the uncertainty is the hardest to predict.

C4.5 (default parameters) induced a DT which was almost the exact transcription of
rule 1, a rule which says that farmers with no education (without any agricultural diploma
or traineeships) and no ongoing project are not willing to adhere. This rule is mostly
interesting because it proves that education is a strong factor determining the “—adhere”
answer. The DTs induced also contained one or two more literals separating the “adhere”
and “?” classes (average error: 6.7%), but only few other things could be mined from the
trees of C4.5, in the light of the problem addressed.

Rule 2 in Figure 3 did not have the equivalent in the DTs induced. What it says
is interesting for the DDAF, because it brings the following conclusion: farmers without
ongoing projects, and not selling their products only to a wholesaler, are on the knife edge
for their membership (either in “adhere”, or in “-—adhere”). Without going further into
local agricultural considerations, this rule, for the DDAF Engineers, represents an accurate
view of the farmers actually controlling their exploitation costs, being either for or against
CTEs, and that education pushes towards the membership (combination of rules 1 and 2),
probably because it allows them to see the future potential benefits of the contract, better
than its current constraints.

6.3 Noise Handling

Noise handling is a crucial issue for boosting (Bauer & Kohavi, 1999; Opitz & Maclin,
1999), even considered (Bauer & Kohavi, 1999) as its potential main problem. Experimental
studies show that substantial noise levels can alter the vote to the point that its accuracy
is lower than that of a single of its classifier (Opitz & Maclin, 1999). Opitz & Maclin
(1999) point out the reweighting scheme of the examples in boosting as being a potential
reason for this behavior. Though we do not use any reweighting scheme, we have chosen for
the sake of completeness to address the behavior of WIDC(p) against noise, and compare
its results with perhaps the major induction algorithm with which we share the “top-
down and prune” induction scheme: C4.5 (Quinlan, 1994). This study relies on the XD6
domain, in which we replace the original 10% class noise (Buntine & Niblett, 1992) by
various increasing amounts of class noise ranging from 0% to 40% by steps of 2%, or various

155

Nock

05 T T 0.35 T T ; S
WIDC —— WIDC —— N
045 F CA5 o 03| G458 e
04l Bayes - g XM | Bayes - r
035 P 025 e
g 03¢ /X,x" g 02 A
5 025 4 5 *
5 ool ’ 5 015t /
05t 01}
01+
005t
005 | ’
0k L L L L L L L 0 L L L L L L L
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
classnoise (%) attribute noise (%)
100 110 .
WIDC —— H WIDC ——
N 05 100 | C45 o 1
ol Bayes(DC) PR 90 I Bayes (DC)
Bayes (DT) e Bayes (DT)
0} 0y
60 ’\\x\ P N ’X "/ e o
ol T o g oy A
(9} D5t x e bV *. R x\
40 + 1 0l b k /x/x\x“%
0t] 0l
ot] 0l
10 1 10+
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 03 04
classnoise (%) attribute noise (%)

Figure 4: Plots of the errors (up) and sizes (down) of WIDC(p), C4.5 and Bayes rule
against various class noise levels (left) and attribute noise levels (right).

increasing amounts of attribute noise in the same range. The XD6 domain has the advantage
that the target concept is known, and it has been addressed in a substantial amount of
previous experimental works. We have simulated corresponding datasets of 512 examples
each, for each noise level. Each such dataset was processed by WIDC(p) and C4.5, using a
10-fold-cross-validation procedure. Figure 4 depicts the results obtained for the errors and
for the sizes of the classifiers. The size of a DC is its whole number of literals, and that of
a DT is its number of internal nodes.

While the resistance against noise seems to be relatively well distributed among WIDC(p)
and C4.5 (WIDC(p) seems to perform better for class noise, while C4.5 seems to perform
better for attribute noise), a phenomenon more interesting comes from the sizes of the for-
mulas induced. First, the DCs have very small size fluctuations compared to the DTs : for
class noises greater than 20%, the DTs have size increasing by a factor of 1.5-2. Second,
note that the ratio between the number of nodes of the target DT, and the number of literals

156

INTERPRETABLE VOTING CLASSIFERS

of the target DC is 3. For a majority of class or attribute noise levels, the ratio between
the DTs build and the DCs built is > 3, with a pathologic case for 10% attribute noise, for
which the ratio is > 6. These remarks, along with the fact that the DCs built have a very
reasonable size when compared to that of the target DC for any type and level of noise, tend
to show a good noise handling for WIDC(p). Apart from these considerations, glimpses
at the DCs output by WIDC(p) show that even for large noise levels, it manages to find
concepts syntactically close to the target DC. For example, one of the DCs output at 30%
class noise is exactly the target DC; also, it is only for class noise > 12% (and attribute
noise > 16%) that some DCs found do not syntactically include the target DC anymore.

7. Conclusion

Recent advances in the study of voting classification algorithms have brought empirical and
theoretical results clearly showing the discrimination power of ensemble classifiers. This
paper addresses from a theoretical and empirical point of view the question of whether one
might have to dispense with interpretability in order to keep classification strength. In
order to cope with this problem, we have chosen to study a class of concept representations
resembling multilinear discriminant polynomials, adequate for mining issues when dealing
with voting procedures, which we define as Decision Committees. Our theoretical results
show that striving for simplicity is, like for many other classes of concept representations, a
hard computational problem when dealing with DC or other complex voting procedures, and
proves the heuristic nature of other results trying to prune adaptive boosting. This paper
proposes to adapt a previous scheme to build weak learners, successful for the induction
of decision trees and decision lists, to the case of DC. This is an original approach if we
refer to the state-of-the-art algorithms building complex votes procedures, usually working
in the strong learning framework. Our algorithm, WIDC, relies on recents or new results
about partition boosting, ranking loss boosting, and pruning. It comes with two flavors, one
with optimistic pruning and one with pessimistic pruning. Both obtained experimentally
good results on the simplicity-accuracy tradeoff, but whereas optimistic pruning clearly
outperforms other algorithms in the light of the size of the formulas obtained, pessimistic
pruning tends to achieve a more reasonable tradeoff, with high accuracies obtained on small
formulas. This is all the more interesting as pessimistic pruning is based on a natural and
simple pruning procedure.

8. Acknowledgments

Thanks are due to DDAF Martinique, ENESAD (Etablissement National d’Enseignement
Supérieur Agronomique de Dijon) and Lise Jean-Louis for having provided the agricultural
data, for stimulating discussions around our results, and for having authorized the publi-
cation of some of the results obtained. Thanks to Ahmed Ainouche for having pointed out
the interest in minimizing submodular functions. Finally, the author wishes to thank Pedro
Domingos and the reviewers for their valuable suggestions.

157

Nock

Appendix A
Proof of Theorem 1

Since the hardness results of Theorems 1 and 3 are stated for the two-classes case, we shall
use the notation A = 9;)[1] — #(;[0] for some arbitrary rule (t(;), #;)), where ;[0] is the
value for class “-” and %(;[1] is the value for class “+”. A positive value for A(;) means
that 2(;) is in favor of class “+” whereas a negative value gives a t(;) in favor of class “-”.
Value 0 for A(;) gives a t(;) neutral with respect to the classes. We use a reduction from the
N P-Hard problem “Minimum Cover” (Garey & Johnson, 1979):

e Name : “Minimum Cover”.
e Instance : A collection C of subsets of a finite set S. A positive integer K, K < |C|.

e Question : Does C contain a cover of size at most K, that is, a subset C' C C with
|C'| < K, such that any element of S belongs to at least one member of C' ?

The reduction is constructed as follows : from a “Minimum Cover” instance we build a
learning sample LS such that if there exists a cover of size |C'| < K of S, then there exists
a decision committee with |C’| literals consistent with LS, and, reciprocally, if there exists
a decision committee with k literals consistent with LS, then there exists a cover of size k
of S. Hence, finding the smallest decision committee consistent with LS is equivalent to
finding the smallest K for which there exists a solution to “Minimum Cover”, and this is
intractable if P # NP.

Let c; denote the 4§ element of C, and s;j the j" element of S. We define a set
of |C| Boolean variables in one to one correspondence with the elements of C, which
we use to describe the examples of LS. The corresponding set of literals is denoted
{z1,%1, 22, T2, ..., 7c|,T|c }- The sample LS contains two disjoint subsets : the set of posi-
tive examples LS, and the set of negative ones LS~. LS™ contains |S| examples, denoted
by ei", e;', ey e"E.'. We construct each positive example so that it encodes the membership
of the corresponding element of S in the elements of C. More precisely,

V1<i<|S|,ef = N zi|rl A 75 - (9)
jisi€cy Jisicj

LS~ contains a single negative example, defined by:
J=[C]
ee = N\ 7. (10)
=1

e Suppose there exists a cover C’ of S satisfying |C’'| < K. We create a decision committee
consisting of K monomials, each with one literal only and associated to a positive A. Each
monomial codes one of the sets in C'. The default class is “-”. This decision committee
is consistent with the examples of LS™ U LS, otherwise some element of S would not be
covered. If there are only two values authorized for the vectors and they are < 0, we simply
create a DC consisting of one monomial with negative literals associated to a negative A

158

INTERPRETABLE VOTING CLASSIFERS

monomial %; A;
I M >0
II M <0
111 N >0
v N <0
v MN >0
VI MN <0

Figure 5: The six possible cases of rules.

(the value for the negative class is greater than the one of the positive class); each of the
negative literals codes one of the sets in C’. The default class is “+”.

e Suppose now that there exists a decision committee f with at most k literals consistent
with LS. Denote t1, 1, ...,%|s| each monomial of f, in no specific order, and Ay, Ag, ..., Ay
their associated values for A. The monomials of f can belong to three types of subsets of
monomials:

e monotonous monomials (without negative literals),
e monomials containing only negative literals,
e monomials containing positive and negative literals.

Let us call respectively M, N, M N these three classes. Given that each monomial of
f can be associated to a positive or a negative A, there exists on the whole six classes of
rules, presented in Figure 5.

Any monomial of f containing at least one positive literal can only be satisfied by
positive examples. Therefore, if there exists rules belonging to class IT or VI, we can remove
them without losing consistency. Furthermore, since e~ contains only negative literals, if we
remove their negative literals from all rules belonging to class V (making them go to class
I), we do not lose consistency. As a consequence, we can suppose without loss of generality
that all rules of f are in class I, III, or IV.

We now treat independently two cases, depending on whether the default class of f is
“+” or “_’7.

1. The default class is “-”. Any positive example satisfies therefore a monomial in f.
There can exist two types of positive examples: those satisfying at least one rule of
class I, and those not satisfying any class I rule (therefore satisfying at least one rule
of class III). e~ satisfies all class III and IV rules. Therefore,

> A; <0 . (11)
(t;,5;)efn(class IIT u class IV)

This shows that, if a positive example not satisfying any class I rules would satisfy all
class IV rules, then it would be misclassified, which is impossible by the consistency
hypothesis. This gives an important property, namely that any positive example not

159

Nock

satisfying any class I rule cannot satisfy all class IV rules. Let us call P this property
in what follows. We now show how to build a valid solution to “Minimum Cover”
with at most k elements. For any positive example e?’,

o if e satisfies at least one class I rule, choose in C a subset of S corresponding
to a positive literal of some satisfied class I rule. This subset contains e?’.

o if e;L does not satisfy any class I rule, there exists from P some class IV rule
which is not satisfied. Among all negative literals of a class IV rule which is not
satisfied by e, choose one which is positive in e; (causing it not to satisfy the
rule), and then choose the corresponding element of C. This subset of S contains

+
ez'.

Tterating the above procedure for all positive examples, we obtain a cover of S con-

sisting of at most k subsets of S.

2. The default class is “+”. e~ satisfies all class IIT and IV rules. Therefore,

> A; <0 . (12)
(t;,5;)efn(class IIT u class IV)

Even if the inequality is now strict, it gives the same procedure for efficiently build-
ing the solution to “Minimum Cover” with at most k elements, by using the same
argument as in the preceeding case.

This ends the proof of Theorem 1.

Proof of Theorem 3
We use a reduction from the N P-Hard problem “2-NM-Colorability” (Kearns et al., 1987):

e Name : “2-NM-Colorability”.

e Instance : A finite set S = {s1, s9, ...,s|5‘} and a collection of constraints over S,
C = {c1,¢2, .-, €|}, such that Vi € {1,2,....|C[},¢; C S.

e Question : Does there exist a 2-NM-Coloration of the elements of S, i.e. a function
X : S — {1,2} such that

(Vi€ {1,2,..,|C|}), 3sk,s1 € ¢i) : x(sk) # x(s1) ?

The reduction is constructed as follows : from a “2-NM-Colorability” instance, we build
a learning sample LS such that if there exists a 2-NM-Coloration of the elements of S, then
there exists a decision committee with two rules consistent with LS, and, reciprocally, if
there exists a decision committee with two rules consistent with LS, then there exists a 2-
NM-Coloration of the elements of S. Furthermore, there never exists a decision committee
with only one rule consistent with L.S. Hence, finding the decision committee with the small-
est number of rules consistent with LS is at least as hard as solving “2-NM-Colorability”,
and this is intractable if P # N P.

160

INTERPRETABLE VOTING CLASSIFERS

Let c; denote the j* element of C, and sj the j* element of S. We define a set
of |S| Boolean variables in one to one correspondence with the elements of S, which
we use to describe the examples of LS. The corresponding set of literals is denoted
{zl,fl,zz,@,...,m|5‘,f|5‘}. Our reduction is made in the two-classes framework. The
sample LS contains two disjoint subsets : the set of positive examples LS, and the set of
negative ones LS. LST contains |S| examples, denoted by e, ej, ...,el'gl. We construct
each positive example so that it represents an element of S. More precisely,

j=IS|
Vi<i<|Slef = mA N T (13)
J=Lj#1

LS~ contains |C| examples, denoted by e, es ""’GIJE'\' We construct each negative

example so that it encodes each of the constraints of C. More precisely:

V1<i<|Clef = (/\ @-)/\(A xj> . (14)

jisj€c; jis;éc;
Without loss of generality, we make four assumptions on the instance of “2-NM-Colorability”
due to the fact that it is not trivial:

1. There does not exist some element of S present in all constraints. In this case indeed,
the trivial coloration consists in giving to one of such elements one color, and the
other color to all other elements of S.

2. V(i,5,k,1) € {1,2,...,|S|}* withi # j and k # 1,

Joe{1,2,...,|C|}, {si,si} Lco N {sk,s1} L co - (15)
Otherwise indeed, there would exist (i,4,k,1) € {1,2,...,|S|}* with i # j and k # I
such that

Vo € {1327 R3] |C|},{Si,3j} - Co V {skasl} - Co » (16)

and in that case, a trivial solution to “2-NM-Colorability” would consist in giving to
s; one color and to s; the other one, and to s; one color and to s; the other one.

3. Each element of S belongs to at least one constraint in C'. Otherwise, it can be
removed.

4. BEach constraint contains at least two elements from S. Otherwise it can be removed.

e Suppose there exists a solution to “2-NM-Colorability”. We build the DNF with two
monomials of (Kearns et al., 1987) consistent with the examples. Then, we build two rules
by associating the two monomials to some (arbitrary) positive value. The default class is
“.”_ This leads to a decision committee with two rules consistent with LS.

e Suppose that there exists a decision committee f with at most two rules consistent with
LS. We now show that there exists a valid 2-NM-Coloration of the elements of S. We
first show three lemmas which shall be used later on. Then, we show that the decision
committee is actually equivalent to a DNF with two monomials consistent with LS. We
conclude by using previous results (Kearns et al., 1987) on how to transform this DNF into
a valid 2-NM-Coloration of the elements of S.

161

Nock

Lemma 3 If a monomial is not satisfied by any positive example,
o cither it contains at least two negative literals, or

e it is the monomial containing all positive literals:

j=5|

A s
j=1

(Proof straightforward).
Lemma 4 If a monomial is satisfied by all positive examples, it is empty.

(Indeed, for any variable, there exist two positive examples having the corresponding
positive literal, and the corresponding negative literal).

Lemma 5 f contains exactly two rules.

Proof: Suppose that f contains one rule, whose monomial is called ¢;. If the default
class is “-”, all positive examples satisfy ¢1, which is impossible by Lemma 4: the monomial
would be empty, and f could not be consistent. If the default class is “4”, the negative
examples are classified by ¢; and therefore Ay < 0. Thus, no positive example satisfies t;.
From Lemma 3, either t; = /\;-jlsl z; and no negative example can satisfy it (impossible),
or t; contains at least two negative literals, and the constraints all have in common two
elements of S. Thus, the instance of “2-NM-Colorability” is trivial, which is impossible.
This ends the proof of Lemma, 5. m|

We now show that the default class of f is “-”. For the sake of simplicity, we write the
two monomials of f by ¢; and t;. The default class is denoted 8 € {7, “+”}. Making
the assumption that 8 =“+” implies that all negative examples must satisfy at least one
monomial in f.

e Suppose that A; < 0 and Ay < 0. Then, no positive example can satisfy either #;
or t9. From the two possibilities of Lemma 3, only the first one is valid (/\;-Z'f' z;
cannot be satisfied by any negative example). Thus, ¢; and ¢o contain each at least

two negative literals:
{Z,7;} C 1, (17)
{Tk,fl} C ity . (18)

We are in the second case of triviality of the instance of “2-NM-Colorability”, since
making the assumption that f is consistent implies:

Joe{1,2,...,|C|}, {sirsj} Lco N {sg,s1} L co - (19)

e Suppose that A; < 0 and Ay > 0. All negative examples must satisfy ¢1. ¢ is forced
to be monotonous since otherwise (given that g =“+”) all negative examples would
share a common negative literal, thus all constraints would share a common element
of S, and the instance of “2-NM-Colorability” would be trivial. ¢5 being satisfied

162

INTERPRETABLE VOTING CLASSIFERS

by at least one positive example (otherwise, f would be equivalent to a single-rule
decision committee, and we fall in the contradiction of Lemma 5), it contains at
most one negative literal. If it contains exactly one negative literal, it is satisfied by
exactly one positive example, and we can replace it by the monotonous monomial with
|S| — 1 positive literals (we leave empty the position of the initial negative literal).
Consequently, similarly for ¢;, we can suppose that ¢t is monotonous. We distinguish
two cases.

— If |Aq] > |A2l, no positive example can satisfy ¢;. By fact 3, t; = ;:'15‘ zj, and

no negative example can satisfy it, a contradiction (f cannot be consistent).

— If |Aq] < |Ag|. t2 cannot be empty; therefore it contains a certain number
of positive literals. Each positive example satisfying to must also satisfy %1,
since otherwise f is not consistent; Since ¢; and t3 are monotonous, t2 is a
generalization of #1, and any example satisfying ¢; (in particular, the negative
examples) must satisfy ¢5, a contradiction.

Therefore 8 =“-". This forces all positive examples to satisfy at least one monomial of
f- Recall that f contains two monomials. Suppose that A; > 0 and Ay < 0. It comes
t1 = 0 (Lemma 4). All negative examples must satisfy ¢2, and we also have |A;| < |Ag].
No positive example can satisfy t2, and Lemma 3 gives either ¢; = /\;-i'ls| z; (satisfied by
no example, impossible) or ¢, contains at least two negative literals, whose corresponding
elements of S are shared by all constraints, and we obtain again that the instance of “2-
NM-Colorability” is trivial.

Therefore, A; > 0 and As > 0, and each monomial is satisfied by at least one positive
example. f is thus equivalent to a DNF with the same two monomials, and we can use
a previous solution (Kearns et al., 1987) to build a valid 2-NM-Coloration. First, we can
suppose that f is again monotonous (Kearns et al., 1987). Then, since each positive example
satisfies at least one monomial (8 =%-"), then for all variable, there exists a monomial which
does not contain the corresponding positive literal. The 2-Coloration is then

Vi€ (12 |8k x(s) = min {jmgt) (20)

Could this be invalid ? That would mean that there exists a constraint ¢; such that
Vs; € ¢, x(sj) = K = cst. This would mean that the corresponding negative example
satisfies g, a contradiction (Kearns et al., 1987). This ends the proof of Theorem 3.

Proof of Theorem 4
Define the function f : 2{0:1¢=1} 5 R such that

VA - {07 1’ sy € 1}af[A:| = Z w((oakaj))QA(ja k)) (21)
0,k,j

with

a1 k) =e®[j € ANk g Al +e °[j ¢ ANk € AJ+ [€ ANk AV (i€ ANk g A) .

163

Nock

coefficient of w((o, k, 7)) in
ke|lell fIAUB] + fIANB] | f[A] + fB]
S| St 2 2
Sy Sy e *+1 e *+1
S1 S3 e *“+1 e *+1
Sy | Sy 2e¢ 2e ¢
Sy S1 e*+1 e*+1
So | S 2 2
Sy S3 2 et +e @
So | Sy 1+e @ 1+e@
S3 S e“+1 e*+1
S3 | S 2 e*+e @
S3 | S 2 2
S3 | Sa 1+e™@ 14+e™@
S4 Sl 2e® 2e®
Sy | Sa 1+e® 1+e”
Sy | S3 1+4+e” 14 e*
Sy | Sy 2 2

Table 3: Possible coefficients of w((o,k,7)). We have fixed for short S; = {0,1,...,c —
1\(AUB), S = A\B, S3 = B\A, S, = AN B.

Note that f generalizes the three expressions of Z in equations (2), (3), and (7) with
adequate values for a.. Now, we check that f satisfies the submodular inequality:

< flAl+f[B],

for all subsets A,B C {0,1,...,c — 1}. The key is to examine the coefficient of each
w((o,k, 7)), for each set {0,1,....,c — 1}\(A U B), A\B, B\A, AN B to which j or k can
belong. Table 3 presents these coeflicients. We get from Table 3 :

fIAU B+ f[AN B] - (f[A] + f[B]) =

2—e*—e) > w((ok,4)[(j € AABAk€B\A)V (j € B\AAk € A\B)] .
0,k,j

f[AUB] + f[AN B (22)

This last quantity is < 0 for any possible choice of a. Therefore, minimizing Z in any of
its three forms of eq. (2), (3), and (7) boils down to minimizing f on the submodular system
({0,1,...,¢ — 1}, f) (with the adequate values of). This problem admits polynomial-time
solving algorithms (Grotschel, Lovasz, & Schrijver, 1981; Queyranne, 1998). What is much
interesting is that the algorithms known are highly complicated and time consuming for the
general minimization of f (Queyranne, 1998). However, when using the value of « as in
eq. (4) and Z as in eq. (7), the corresponding function f becomes submodular symmetric
(flA] = fI[{0,1,....,c — 1}\A]). As such, more efficient (and simpler) algorithms exist to
minimize f. For example, there exists a powerful combinatorial algorithm working in O(c?)
(Queyranne, 1998). Note that this is still a very large complexity.

164

INTERPRETABLE VOTING CLASSIFERS

Proofsketch of Theorem 5

The reduction is made from the N P-Hard problem 3SAT5 (Feige, 1996). This is the classical
3SAT problem (Garey & Johnson, 1979), but each variable appears in exactly 5 clauses.
Using a well-known reduction (Garey & Johnson, 1979), page 55, with an additional simple
gadget, we can make a reduction from 3SAT5 to vertex cover (thus, independent set),
obtaining a graph G in which all vertices have degree either 5, or 0, and for which the largest
independent set (for satisfiable instances of 3SAT5) has size |V|/2, where |V| is the number
of vertices of G. From this particular graph, we build a simple reduction to our problem of
maximizing Z. Note that since we are searching for an oblivious hypothesis, the observations
are not important (we can suppose that all examples have the same observation). That is
why the reduction only builds class vectors (over |V| classes), encoding the class membership
of any of these identical observations. The idea is that the classes are in one-to-one mapping
with the vertices, and there are two sets of class vectors built from G:

e a set with |V vectors, encoding the vertices of G. Each one is a class vector with only
one “1” corresponding to the vertex, and the remaining components are zeroes. Each
of the corresponding examples have weight W,,.

e a set with |E| vectors, where |E| is the number of edges of G. Each one encodes an
edge, and therefore contains two “1” (and the remaining are zeroes) corresponding to
the two vertices of the edge. Each of the corresponding examples have weight W,.

Consider formulas (2), (3) for example. They are the sum of the contribution to Z of
the examples having weight W,,, and the examples having weight W,. In these cases, we
can rewrite Z using the generic expression:

Z = Zy+Z., (23)
Zy = Wy (e ®k(|[VI=k)+k(k—1)+(VI-k)(V|-k—1)+e*k(V|- k) , (29)
Ze = We(e (VI -k)2C+U)+e"k(2M + 1)) . (25)

Here, C is the number of edges having their two vertices in the set corresponding to the
+1 values in ¥;, M is the number of edges having their two vertices in the set corresponding
to the —1 values in ;, and U is the number of edges having one of their vertices in the +1
set, and the other one in the —1 set. k is the number of +1 values in 7;.

Suppose that W, > W, (e.g. W, > |[V|*W,). Then the maximization of Z is the maxi-
mization of Z,, followed by the maximization of Z.. Z, admits a maximum for k = |V|/2,
and with this value for k, it can be shown that maximizing Z, boils down to maximize
2M + U, that is, the (weighted) number of edges not falling entirely into the set cor-
responding to the +1 values; whenever the 3SAT5 instance is satisfiable (and using the
particular degrees of the vertices), this set corresponds to the largest independent set of G.

Proof of Lemma 1

The proof of this lemma, is quite straightforward, but we give it for completeness. Z can be
rewritten as

7 = ZZ-,k, (26)
j#k

165

Nock

with
Wi W 1
y . — J __A(]ak) —k _A(jak)
Vi #k,Zjg P 2 —I—c_le2 , (27)
where A(j,k) = 9[j] — U[k]. Suppose for contradiction that for some j < k, A =
A(j,k) > 0. We simply permute the two values 9]j] and ¥[k], and we show that the new
value of Z after, Za, is not greater than Z before permuting, Z},. The difference between
Za and Zy, can be easily decomposed using the notation Z(ij)b (1,7 € {0,1,...,c—1},i # j)
as the value of Z; ; (eq. (27)) in Zy,, and Z(; jya (4,5 € {0,1,...,c — 1},i # j) as the value
of Z; j (eq. (27)) in Za. We also define:

Vi, j,k € {0,1,...,c =1} i # 5 £k, Zg jma = Zik)a t Zkia + Zik,at Zikga - (28)

We define in the same way Z)b We obtain

(i,d:k
C

Za~Zy = (Ziwa~Zyup) + Zaz{) (Zixia = Zgrap) - 29
i=1i¢{jk

Proving that Za — Z3, < 0 can be obtained as follows. First,
(W = w;)e2a

_ A
Zijka~ Zinb = c—1 (1 —€) <0.
We also have Vi € {1,2,...,c}\{j, k}:

oW+ 1 oW.F 1 2W 1 QW

— J s k 505 _ J 50 _ k_ 54

Z(j;k,i)a_Z(j,k:,i)b - C_162 ’k+c_162 ! C_162 ! C_162 k

2(W - wy)

. 7 lAz’,' . lAi,k

= —c 1 (e2 J €2)

_ 2 (Wk+ —CIiV]:) 3 (1) eA) <

Here we have use the fact that A; , = A; ; + A. This shows that Za — Zy, < 0, and ends
the proof of Lemma, 1.

Proof of Theorem 6

To avoid confusion, we call Z’ the value of Z computed over the transformed set of examples,
and U(w) for U € {Z,Z'} and u € {v*,v} as the value of criterion U using vector 4. It is
simple to obtain a “sufficient” bound to check the theorem. We have

2@) = 2@~ Y %(Ze%ﬁmx > e‘%ﬁ[j]>a (30)

SCv i€s JESNi)
|S] > 1
2@ = 2@+ Y (T ek ¥ 3l (31)
S|
SCv i€s JESNi}
|S] >1

166

INTERPRETABLE VOTING CLASSIFERS

Here, W is the sum of weights of the examples in the original set, whose vectors have
“1” matching the elements of S. Note that Z'(¥) < Z'(9*), since our algorithm is optimal,
and we obtain

Z(%)
< Z@)+)] % (Z [eéﬁ*[i]x 3 o= 37 _ o370 > e_%ng
SCV 151 €S jes\{i} jeS\{i}
|S| > 1

By taking only the positive part of the right-hand side, and remarking that

e VS C VIS > 1LVi €S, iesype =0 U < e (i) Tjeps 727 I (the right sum
is > (¢ — |S|)e_% and the left one is < (|S| — 1)4/e),

e the coefficient of Wg in Z* is pg = Y ;e e3? il ZjeV\S e*%ﬁ*fj],

we get
Sl—1
20) < 2@+ Y e Dwep,
|S](c = [S])
SCV
|S] > 1
k-1
< Z('D'*)Jreu > Wsps
k(c—k)
SCV
|S] >1
< Z("*)(1+< ‘))
v c—k ’
as claimed.

Proof of Lemma 2

Z becomes in that case

Z = Wye 2+ W_ez? | (32)
where A = 9[1] — 7[0]. There are five different values for A, giving rise to nine different
¥
A= 42 =>7=(-1,+41),
A= +1 =7=(-1,00vi=(0,+1) ,
= 0 =27=(-1,-1)vi=(0,0)VT=(+1,+41) ,
= -1 =47=(0,-1)vi=(+1,0),
A= -2 =i=(+1,-1)

167

Nock

Fix A = k where k € {-2,-1,0,1,2}. Vk € {-1,0,1,2}, the value A = k should be
preferred to the value A = k — 1 iff the corresponding Z is smaller, that is :

k-1

< Wixe T +W._xes | (33)

k
2

W+X67§+W,X6

Rearranging terms gives W_ < W, x k—l_?r This leads to the rule of the lemma.
€

References

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36, 105-139.

Blake, C. L., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases..
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

Breiman, L., Freidman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth.

Buja, A., & Lee, Y.-S. (2001). Data mining criteria for tree-based regression and classifica-
tion. In Proceedings of the 7" International Conference on Knowledge Discovery in
Databases, pp. 27-36.

Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for Decision-Tree
induction. Machine Learning, 8, 75-85.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: some recent improvements. In
Proceedings of the 6 ™ European Working Session in Learning, pp. 155-161.

Cohen, W. W., & Singer, Y. (1999). A Simple, Fast and Effective Rule Learner. In Pro-
ceedings of the 16" National Conference on Artificial Intelligence, pp. 335-342.

de Carvalho Gomes, F. A., & Gascuel, O. (1994). SDL, a stochastic algorithm for learning
decision lists with limited complexity. Annals of Mathematics and Artificial Intelli-
gence, 10, 281-302.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning,
40, 139-157.

Domingos, P. (1998). A Process-oriented Heuristic for Model selection. In Proceedings of
the 15 ** International Conference on Machine Learning, pp. 127-135.

Feige, U. (1996). A threshold of In n for approximating set cover. In Proceedings of the
28 ™ ACM Symposium on the Theory of Computing, pp. 314-318.

Franck, E., & Witten, I. (1998). Using a Permutation Test for Attribute selection in Decision
Trees. In Proceedings of the 15 ™ International Conference on Machine Learning, pp.
152-160.

Freund, Y., & Mason, L. (1999). The alternating decision tree learning algorithm. In
Proceedings of the 16 ' International Conference on Machine Learning, pp. 124-133.

168

INTERPRETABLE VOTING CLASSIFERS

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression : a Statistical
View of Boosting. Annals of Statistics, 28, 337-374.

Garey, M., & Johnson, D. (1979). Computers and Intractability, a guide to the theory of
NP-Completeness. Bell Telephone Laboratories.

Grotschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1, 169-197.

Holte, R. (1993). Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11, 63-91.

Hyafil, L., & Rivest, R. (1976). Constructing optimal decision trees is NP-complete. Infor-
mation Processing Letters, 5, 15-17.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection
problem. In Proceedings of the 11 ™ International Conference on Machine Learning,
pp- 121-129.

Kearns, M. J., & Mansour, Y. (1998). A Fast, Bottom-up Decision Tree Pruning algo-
rithm with Near-Optimal generalization. In Proceedings of the 15 ™ International
Conference on Machine Learning, pp. 269-277.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). On the learnability of boolean formulae. In
Proceedings of the 19 ™ ACM Symposium on the Theory of Computing, pp. 285-295.

Kohavi, D., & Sommerfield, D. (1998). Targetting Business users with Decision Table
Classifiers. In Proceedings of the 4 International Conference on Knowledge Discovery
in Databases, pp. 249-253.

Mansour, Y., & McAllester, D. (2000). Boosting using branching programs. In Proceedings
of the 18 "™ International Conference on Computational Learning Theory, pp. 220—
224.

Margineantu, D., & Dietterich, T. G. (1997). Pruning adaptive boosting. In Proceedings of
the 14 ™ International Conference on Machine Learning, pp. 211-218.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Nock, R., & Gascuel, O. (1995). On learning decision committees. In Proceedings of the 12
International Conference on Machine Learning, pp. 413-420. Morgan Kaufmann.

Nock, R., & Jappy, P. (1998). On the power of decision lists. In Proceedings of the 15t
International Conference on Machine Learning, pp. 413-420. Morgan Kaufmann.

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: a survey. Journal of Artificial
Intelligence Research, 11, 169-198.

Queyranne, M. (1998). Minimizing symmetric submodular functions. Mathematical Pro-
gramming, 82, 3-12.

Quinlan, J. R. (1994). C4.5 : programs for machine learning. Morgan Kaufmann.

Quinlan, J. R. (1996). Bagging, Boosting and C4.5. In Proceedings of the 13" National
Conference on Artificial Intelligence, pp. 725-730.

169

Nock

Ridgeway, G., Madigan, D., Richardson, T., & O’Kane, J. (1998). Interpretable boosted
naive bayes classification. In Proceedings of the 4** International Conference on
Knowledge Discovery in Databases, pp. 101-104.

Rivest, R. (1987). Learning decision lists. Machine Learning, 2, 229-246.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the Margin : a
new explanation for the effectiveness of Voting methods. Annals of statistics, 26,
1651-1686.

Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using confidence-rated
predictions. In Proceedings of the 11 ** International Conference on Computational
Learning Theory, pp. 80-91.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134—
1142.

Valiant, L. G. (1985). Learning disjunctions of conjunctions. In Proceedings of the 9t

International Joint Conference on Artificial Intelligence, pp. 560-566.

170

