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Abstract

We develop, analyze, and evaluate a novel, supervised, specific-to-general learner for a sim-
ple temporal logic and use the resulting algorithm to learn visual event definitions from video
sequences. First, we introduce a simple, propositional, temporal, event-description language called
AMA that is sufficiently expressive to represent many events yet sufficiently restrictive to support
learning. We then give algorithms, along with lower and upper complexity bounds, for the sub-
sumption and generalization problems for AMA formulas. We present a positive-examples—only
specific-to-general learning method based on these algorithms. We also present a polynomial-
time—computable “syntactic” subsumption test that implies semantic subsumption without being
equivalentto it. A generalization algorithm based on syntactic subsumption can be used in place of
semantic generalization to improve the asymptotic complexity of the resulting learning algorithm.
Finally, we apply this algorithm to the task of learning relational event definitions from video and
show that it yields definitions that are competitive with hand-coded ones.

1. Introduction

Humans conceptualize the world in terms of objects and events. This is reflected in the fact that
we talk about the world using nouns and verbs. We perceive events taking place between objects,
we interact with the world by performing events on objects, and we reason about the effects that
actual and hypothetical events performed by us and others have on objects. Wsaalistew
object and event types from novel experience. In this paper, we present and evaluate novel imple-
mented techniques that allow a computer to learn new event types from examples. We show results
from an application of these techniques to learning new event types from automatically constructed
relational, force-dynamic descriptions of video sequences.

We wish the acquired knowledge of event types to support multiple modalities. Humans can
observe someorfaxing a letter for the first time and quickly be able to recognize future occurrences
of faxing, perform faxing, and reason about faxing. It thus appears likely that humans use and
learn event representations that are sufficiently general to support fast and efficient use in multiple
modalities. A long-term goal of our research is to allow similar cross-modal learning and use of
event representations. We intend the same learned representations to be used for vision (as described
in this paper), planning (something that we are beginning to investigate), and robotics (something
left to the future).

A crucial requirement for event representations is that they capturientagants of an event
type. Humans classify both picking up a cup off a table and picking up a dumbbell off the floor
aspicking up This suggests that human event representationeelional. We have an abstract
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relational notion ofpicking upthat is parameterized by the participant objects rather than distinct
propositional notions instantiated for specific objects. Humans also classify an eveiokiag

up no matter whether the hand is moving slowly or quickly, horizontally or vertically, leftward or
rightward, or along a straight path or circuitous one. It appears that it is not the characteristics of
participant-object motion that distinguigticking upfrom other event types. Rather, it is the fact

that the object being picked up changes from being supported by resting on its initial location to
being supported by being grasped by the agent. This suggests that the primitive relations used to
build event representations dmce dynamiqTalmy, 1988).

Another desirable property of event representations is that th@etspicuous Humans can
introspect and describe the defining characteristics of event types. Such introspection is what al-
lows us to create dictionaries. To support such introspection, we prefer a representation language
that allows such characteristics to be explicitly manifest in event definitions and not emergent con-
sequences of distributed parameters as in neural networks or hidden Markov models.

We develop a supervised learner for an event representation possessing these desired charac-
teristics as follows. First, we present a simple, propositional, temporal logic called AMA that is a
sublanguage of a variety of familiar temporal languages (e.g. linear temporal logic, or LTL Bac-
chus & Kabanza, 2000, event logic Siskind, 2001). This logic is expressive enough to describe a
variety of interesting temporal events, but restrictive enough to support an effective learner, as we
demonstrate below. We proceed to develop a specific-to-general learner for the AMA logic by giv-
ing algorithms and complexity bounds for the subsumption and generalization problems involving
AMA formulas. While we show that semantic subsumption is intractable, we provide a weaker syn-
tactic notion of subsumption that implies semantic subsumption but can be checked in polynomial
time. Our implemented learner is based upon this syntactic subsumption.

We next show means to adapt this (propositional) AMA learner to learn relational concepts.
We evaluate the resulting relational learner in a complete system for learning force-dynamic event
definitions from positive-only training examples given as real video sequences. This is not the first
system to perform visual-event recognition from video. We review prior work and compare it to
the current work later in the paper. In fact, two such prior systems have been built by one of the
authors. HHWARD (Siskind & Morris, 1996) learns to classify events from video using temporal,
relational representations. But these representations are not force dynamaclARD (Siskind,

2001) classifies events from video using temporal, relational, force-dynamic representations but
does not learn these representations. It uses a library of hand-code representations. This work adds
a learning component to HONARD, essentially duplicating the performance of the hand-coded
definitions automatically.

While we have demonstrated the utility of our learner in the visual-event—learning domain, we
note that there are many domains where interesting concepts take the form of structured tempo-
ral sequences of events. In machine planning, macro-actions represent useful temporal patterns of
action. In computer security, typical application behavior, represented perhaps as temporal pat-
terns of system calls, must be differentiated from compromised application behavior (and likewise
authorized-user behavior from intrusive behavior).

In what follows, Section 2 introduces our application domain of recognizing visual events and
provides an informal description of our system for learning event definitions from video. Section 3
introduces the AMA language, syntax and semantics, and several concepts needed in our analysis
of the language. Section 4 develops and analyzes algorithms for the subsumption and generalization
problems in the language, and introduces the more practical notion of syntactic subsumption. Sec-
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tion 5 extends the basic propositional learner to handle relational data and negation, and to control
exponential run-time growth. Section 6 presents our results on visual-event learning. Sections 7
and 8 compare to related work and conclude.

2. System Overview

This section provides an overview of our system for learning to recognize visual events from video.
The aim is to provide an intuitive picture of our system before providing technical details. A formal
presentation of our event-description language, algorithms, and both theoretical and empirical re-
sults appears in Sections 3—-6. We first introduce the application domain of visual-event recognition
and the LEONARD system, the event recognizer upon which our learner is built. Second, we describe
how our positive-only learner fits into the overall system. Third, we informally introduce the AMA
event-description language that is used by our learner. Finally, we give an informal presentation of
the learning algorithm.

2.1 Recognizing Visual Events

LEONARD (Siskind, 2001) is a system for recognizing visual events from video camera input—
an example of a simple visual event is “a hand picking up a block.” This research was originally
motivated by the problem of adding a learning componentgoNARD—allowing LEONARD to

learn to recognize an event by viewing example events of the same type. Below, we give a high-level
description of the EONARD system.

LEONARD s a three-stage pipeline depicted in Figure 1. The raw input consists of a video-frame
image sequence depicting events. First, a segmentation-and-tracking component transforms this
input into a polygon movie: a sequence of frames, each frame being a set of convex polygons placed
around the tracked objects in the video. Figure 2a shows a patrtial video sequenmekafipevent
that is overlaid with the corresponding polygon movie. Next, a model-reconstruction component
transforms the polygon movie into a force-dynamic model. This model describes the changing
support, contact, and attachment relations between the tracked objects over time. Constructing
this model is a somewhat involved process as described in Siskind (2000). Figure 2b shows a
visual depiction of the force-dynamic model corresponding tqoibk upevent. Finally, an event-
recognition component armed with a library of event definitions determines which events occurred
in the model and, accordingly, in the video. Figure 2c shows the text output and input of the
event-recognizer for thpick upevent. The first line corresponds to the output which indicates
the interval(s) during which pick upoccurred. The remaining lines are the text encoding of the
event-recognizer input (model-reconstruction output), indicating the time intervals in which various
force-dynamic relations are true in the video.

The event-recognition component oEQNARD represents event types with event-logic formu-
las like the following simplified example, representingicking upy off of z.

=

PICKUP(z,y, z) = (SUPPORTSz,y) A CONTACTS(z,y)); (SUPPORTSz,y) A ATTACHED(z,y))

This formula asserts that an eventizopicking upy off of z is defined as a sequence of two states
wherez supportsy by way of contact in the first state andsupportsy by way of attachment in

the second state. UWPORTS CONTACTS, and ATTACHED are primitive force-dynamic relations.
This formula is a specific example of the more general class of AMA formulas that we use in our
learning.
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Figure 1: The upper boxes represent the three primary componensoofARD’s pipeline. The
lower box depicts the event-learning component described in this paper. The input to the
learning component consists of training models of target events (e.g., mopakafp
events) along with event labels (e.gicRUP(hand, red, green)) and the output is an
event definition (e.g., a temporal logic formula definingPUP(z, y, 2)).

2.2 Adding a Learning Component

Prior to the work reported in this paper, the definitions iBONARD'S event-recognition library

were hand coded. Here, we add a learning component@RRD so that it can learn to recognize
events. Figure 1 shows how the event learner fits into the overall system. The input to the event
learner consists of force-dynamic models from the model-reconstruction stage, alongveith

labels and its output consists of event definitions which are used by the event recognizer. We take
a supervised-learning approach where the force-dynamic model-reconstruction process is applied
to training videos of a target event type. The resulting force-dynamic models along with labels
indicating the target event type are then given to the learner which induces a candidate definition of
the event type.

For example, the input to our learner might consist of two models corresponding to two videos,
one of a hand picking up a red block off of a green block with labekRJp(hand, red, green) and
one of a hand picking up a green block off of a red block with labek®JP(hand, green red)—the
output would be a candidate definition ofdRUP(z, y, z) that is applicable to previously unseen
pick upevents. Note that our learning component is positive-only in the sense that when learning
a target event type it uses only positive training examples (where the target event occurs) and does
not use negative examples (where the target event does not occur). The positive-only setting is of
interest as it appears that humans are able to learn many event definitions given primarily or only
positive examples. From a practical standpoint, a positive-only learner removes the often difficult
task of collecting negative examples that are representative of what is not the event to be learned
(e.g., what is a typical “non-pickup” event?).

The construction of our learner involves two primary design choices. First, we must choose an
event representation language to serve as the learner’s hypothesis space (i.e., the space of event def-
initions it may output). Second, we must design an algorithm for selecting a “good” event definition
from the hypothesis space given a set of training examples of an event type.

2.3 The AMA Hypothesis Space

The full event logic supported byHONARD is quite expressive, allowing the specification of a
wide variety of temporal patterns (formulas). To help support successful learning, we use a more
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Figure 2: LEONARD recognizes @ick upevent. (a) Frames from the raw video input with the auto-
matically generated polygon movie overlaid. (b) The same frames with a visual depiction
of the automatically generated force-dynamic properties. (c) The text input/output of the
event classifier corresponding to the depicted movie. The top line is the output and the
remaining lines make up the input that encodes the changing force-dynamic properties.
GREEN represents the block on the table and RED represents the block being picked up.

(PICK-UP HAND RED GREEN)@{[[0,1],[14,22])}

(SUPPORTED? RED)@{[[0:22])}
(SUPPORTED? HAND)@{[[1:13]), [[24:26])}
(SUPPORTS? RED HAND)@{[[1:13]), [[24:26])}
(SUPPORTS? HAND RED)@{[[13:22])}
(SUPPORTS? GREEN RED)@{[[0:14])}
(SUPPORTS? GREEN HAND)@{[[1:13])}
(CONTACTS? RED GREEN)@{[[0:2]), [[6:14])}
(ATTACHED? RED HAND)@{[[1:26])}
(ATTACHED? RED GREEN)@{[[1:6])}
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restrictive subset of event logic, call&dA, as our learner’s hypothesis space. This subset excludes
many practically useless formulas that may “confuse” the learner, while still retaining substantial
expressiveness, thus allowing us to represent and learn many useful event types. Our restriction to
AMA formulas is a form of syntactic learning bias.

The most basic AMA formulas are callsthteswhich express constant properties of time inter-
vals of arbitrary duration. For exampleyBPORTSz, y) A CONTACTS(z, y) is a state which tells us
thatz must support and be in contact withIn general, a state can be the conjunction of any number
of primitive propositiongin this case force-dynamic relations). Using AMA we can also describe
sequences of states. For examflBUPPORTSz,y) A CONTACTS(z,y)) ; (SUPPORTSZ,y) A
ATTACHED(z,y)) is a sequence of two states, with the first state as given above and the second
state indicating that must support and be attachedsto This formula is true whenever the first
state is true for some time interval, followed immediately by the second state being true for some
time interval “meeting” the first time interval. Such sequences are cMigdimelinessince they
are theMeets ofAnds. In general, MA timelines can contain any number of states. Finally, we can
conjoin MA timelines to get AMA formulasAnds ofMA’s). For example, the AMA formula

[(SUPPORTYz,y) A CONTACTS(z2,y)) ; (SUPPORTSz,y) A ATTACHED(z,y))] A
[(SUPPORTSu,v) A ATTACHED(u,v)) ; (SUPPORTSw, v) A CONTACTS(w, v))]

defines an event where two MA timelines must be true simultaneously over the same time interval.
Using AMA formulas we can represent events by listing various property sequences (MA timelines),
all of which must occur in parallel as an event unfolds. It is important to note, however, that the
transitions between states of different timelines in an AMA formula can occur in any relation to one
another. For example, in the above AMA formula, the transition between the two states of the first
timeline can occur before, after, or exactly at the transition between states of the second timeline.
An important assumption leveraged by our learner is that the primitive propositions used to con-
struct states describiguid properties(Shoham, 1987). For our purposes, we say that a property is
liquid if when it holds over a time-interval it holds over all of its subintervals. The force-dynamic
properties produced byHONARD are liquid—e.g., if a hand @& PoORTSa block over an interval
then clearly the hand supports the block over all subintervals. Because primitive propositions are
liquid, properties described by states (conjunctions of primitives) are also liquid. However, proper-
ties described by MA and AMA formulas are not, in general, liquid.

2.4 Specific-to-General Learning from Positive Data

Recall that the examples that we wish to classify and learn from are force-dynamic models, which
can be thought of (and are derived from) movies depicting temporal events. Also recall that our
learner outputs definitions from the AMA hypothesis space. Given an AMA formula, we say that
it coversan example model if it is true in that model. For a particular target event type (such as
PickUP), the ultimate goal is for the learner to output an AMA formula that covers an example
model if and only if the model depicts an instance of the target event type. To understand our
learner, it is useful to define a generality relationship between AMA formulas. We say that AMA
formula ¥, is more general (less specific) than AMA formula if and only if 5 covers every
example that¥; covers (and possibly moré).

1. In our formal analysis, we will use two different notions of generality (semantic and syntactic). In this section, we
ignore such distinctions. We note, however, that the algorithm we informally describe later in this section is based on
the syntactic notion of generality.
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If the only learning goal is to find an AMA formula that is consistent with a set of positive-
only training data, then one result can be the trivial solution of returning the formula that covers
all examples. Rather than fix this problem by adding negative training examples (which will rule
out the trivial solution), we instead change the learning goal to be that of findirlgabkegeneral
formula that covers all of the positive exampfedhis learning approach has been pursued for a
variety of different languages within the machine-learning literature, including clausal first-order
logic (Plotkin, 1971), definite clauses (Muggleton & Feng, 1992), and description logic (Cohen &
Hirsh, 1994). It is important to choose an appropriate hypothesis space as a bias for this learning
approach or the hypothesis returned may simply be (or resemble) one of two extremes, either the
disjunction of the training examples or the universal hypothesis that covers all examples. In our
experiments, we have found that, with enough training data, the least-general AMA formula often
converges usefully.

We take a standard specific-to-general machine-learning approach to finding the least-general
AMA formula that covers a set of positive examples. The approach relies on the computation of two
functions: the least-general covering formula (LGCF) of an example model and the least-general
generalization (LGG) of a set of AMA formulas. The LGCF of an example model is the least general
AMA formula that covers the example. Intuitively, the LGCF is the AMA formula that captures the
most information about the model. The LGG of any set of AMA formulas is the least-general AMA
formula that is more general than each formula in the set. Intuitively, the LGG of a formula set is
the AMA formula that captures the largest amount of common information among the formulas.
Viewed differently, the LGG of a formula set covers all of the examples covered by those formulas,
but covers as few other examples as possible (while remaining in AMA).

The resulting specific-to-general learning approach proceeds as follows. First, use the LGCF
function to transform each positive training model into an AMA formula. Second, return the LGG
of the resulting formulas. The result represents the least-general AMA formula that covers all of
the positive training examples. Thus, to specify our learner, all that remains is to provide algo-
rithms for computing the LGCF and LGG for the AMA language. Below we informally describe
our algorithms for computing these functions, which are formally derived and analyzed in Sec-
tions 3.4 and 4.

2.5 Computing the AMA LGCF

To increase the readability of our presentation, in what follows, we dispense with presenting exam-
ples where the primitive properties are meaningfully named force-dynamic relations. Rather, our
examples will utilize abstract propositions suchzeandb. In our current application, these propo-
sitions correspond exclusively to force-dynamic properties, but may not for other applications. We
now demonstrate how our system computes the LGCF of an example model.

Consider the following example mod€dla@[1, 4], b@Q[3, 6], cQ[6, 6], dQ[1, 3], dQ[5, 6]}. Here,
we take each number (1,., 6) to repesent a time interval of arbitrary (possibly varying with the
number) duration during which nothing changes, and then each®ct;| indicates that propo-
sition p is continuously true throughout the time intervals numberédoughj. This model can
be depicted graphically, as shown in Figure 3. The top four lines in the figure indicate the time

2. This avoids the need for negative examples and corresponds to finding the specific boundary of the version space
(Mitchell, 1982).

3. The existence and uniqueness of the LGCF and LGG defined here is a formal property of the hypothesis space and is
proven for AMA in Sections 3.4 and 4, respectively.
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Figure 3: LGCF Computation. The top four horizontal lines of the figure indicate the in-
tervals over which the propositions,b,¢ and d are true in the model given by
{a@[1, 4],bQ[3, 6], cQ[6, 6], dQ[1, 3], dQ[5,6]}. The bottom line shows how the model
can be divided into intervals where no transitions occur. The LGCF is an MA timeline,
shown at the bottom of the figure, with a state for each ofitvransitionintervals. Each
state simply contains the true propositions within the corresponding interval.

intervals over which each of the propositiongs, ¢, andd are true in the model. The bottom line

in the figure shows how the model can be divided into five time intervals where no propositions
change truth value. This division is possible because of the assumption that our propositions are
liquid. This allows us, for example, to break up the time-interval wheigetrue into three consec-

utive subintervals where is true. After dividing the model into intervals with no transitions, we
compute the LGCF by simply treating each of those intervals as a state of an MA timeline, where
the states contain only those propositions that are true during the corresponding time interval. The
resulting five-state MA timeline is shown at the bottom of the figure. We show later that this simple
computation returns the LGCF for any model. Thus, we see that the LGCF of a model is always an
MA timeline.

2.6 Computing the AMA LGG

We now describe our algorithm for computing the LGG of two AMA formulas—the LGGnof
formulas can be computed via a sequencerof 1 pairwise LGG applications, as discussed later.
Consider the two MA timelines?; = (aAbAc); (bAcAd);e and @2 = (aAbAe);a; (e Ad).
It is useful to consider the various ways in which both timelines can be true simultaneously along
an arbitrary time interval. To do this, we look at the various ways in which the two timelines
can be aligned along a time interval. Figure 4a shows one of the many possible alignments of
these timelines. We call such alignmeitgerdigitations—in general, there are exponentially many
interdigitations, each one ordering the state transitions differently. Note that an interdigitation is
allowed to constrain two transitions from different timelines to occur simultaneously (though this is
not depicted in the figuré).

4. Thus, an interdigitation provides an “ordering” relation on transitions that need not be anti-symmetric, but is reflexive,
transitive, and total.
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Figure 4: Generalizing the MA timelinda A b Ac); (bAcAd);e and (a AbAe);a; (e Ad). (a)
One of the exponentially many interdigitations of the two timelines. (b) Computing the
interdigitation generalization corresponding to the interdigitation from part (a). States are
formed by intersecting aligned states from the two timelines. The &takerepresents a
state with no propositions.

Given an interdigitation of two timelines, it is easy to construct a new MA timeline that must be
true whenever either of the timelines is true (i.e., to construct a generalization of the two timelines).
In Figure 4b, we give this construction for the interdigitation given in Figure 4a. The top two
horizontal lines in the figure correspond to the interdigitation, only here we have divided every state
on either timeline into two identical states, whenever a transition occurs during that state in the other
timeline. The resulting pair of timelines have only simultaneous transitions and can be viewed as
a sequence of state pairs, one from each timeline. The bottom horizontal line is then labeled by
an MA timeline with one state for each such state pair, with that state being the intersection of the
proposition sets in the state pair. Heteue represents the empty set of propositions, and is a state
that is true anywhere.

We call the resulting timeline aimterdigitation generalization (IGpf ®; and®,. It should be
clear that this 1G will be true whenever eith@; or &, are true. In particular, ifv; holds along a
time-interval in a model, then there is a sequence of consecutive (meeting) subintervals where the
sequence of states iy, are true. By construction, the IG can be aligned relativéalong the
interval so that when we view states as sets, the states in the IG are subsets of the corresponding
aligned state(s) i®;. Thus, the IG states are all true in the model under the alignment, showing
that the IG is true in the model.

In general, there are exponentially many IGs of two input MA timelines, one for each possible
interdigitation between the two. Clearly, since each IG is a generalization of the input timelines,
then so is the conjunction of all the IGs. This conjunction is an AMA formula that generalizes the
input MA timelines. In fact, we show later in the paper that this AMA formula is the LGG of the
two timelines. Below we show the conjunction of all the IGsdgf and ®; which serves as their
LGG.
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[(@a A D); b; e;true; e] A

[(a A Db); b;true; e] A

[(a A D); b; true; true;e] A
[(a A Db); b;true; e] A

[(a A D); b;true; d;e] A

[(a A b); true; true; e] A
[(a A D); true;e] A

[(a A D);true;d;e] A

[(a A b); a; true; true;e] A
[(a A D);a;true;e] A

[(a AD);a;true;d;e] A

[(a AD);a;d;e] A

[(a Ab);a

a A b);a;true;d;e]

While this formula is an LGG, it contains redundant timelines that can be pruned. First, it is
clear that different IGs can result in the same MA timelines, and we can remove all but one copy
of each timeline from the LGG. Second, note that if a timeliiés more general than a timeline
®, then® A &' is equivalent tob—thus, we can prune away timelines that are generalizations of
others. Later in the paper, we show how to efficiently test whether one timeline is more general
than another. After performing these pruning steps, we are left with only the first and next to last
timelines in the above formula—thuga A b); a; d; e] A [(a A b); b; e; true;e] is an LGG of®; and
D,.

We have demonstrated how to compute the LGG of pairs of MA timelines. We can use this
procedure to compute the LGG of pairs of AMA formulas. Given two AMA formulas we compute
their LGG by simply conjoining the LGGs of all pairs of timelines (one from each AMA formula)—
i.e., the formula

m n
A\ /\LGG(®;, @)
(]

is an LGG of the two AMA formulagp; A -+ A @, and®j A --- A &5, where thed; and ®’; are
MA timelines.

We have now informally described the LGCF and LGG operations needed to carry out the
specific-to-general learning approach described above. In what follows, we more formally develop
these operations and analyze the theoretical properties of the corresponding problems, then discuss
the needed extensions to bring these (exponential, propositional, and negation-free) operations to
practice.

3. Representing Events with AMA

Here we present a formal account of the AMA hypothesis space and an analytical development of the
algorithms needed for specific-to-general learning for AMA. Readers that are primarily interested in
a high-level view of the algorithms and their empirical evaluation may wish to skip Sections 3 and 4
and instead proceed directly to Sections 5 and 6, where we discuss several practical extensions to
the basic learner and then present our empirical evaluation.

We study a subset of an interval-based logic calbegnt logic(Siskind, 2001) utilized by
LEONARD for event recognition in video sequences. This logic is interval-based in explicitly rep-
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resenting each of the possible interval relationships given originally by Allen (1983) in his calculus
of interval relations (e.g., “overlaps,” “meets,” “during”). Event-logic formulas allow the definition
of event types which can specify static properties of intervals directly and dynamic properties by
hierarchically relating sub-intervals using the Allen relations. In this paper, the formal syntax and
semantics of full event logic are needed only for Proposition 4 and are given in Appendix A.

Here we restrict our attention to a much simpler subset of event logic we call AMA, defined
below. We believe that our choice of event logic rather than first-order logic, as well as our restriction
to the AMA fragment of event logic, provide a useful learning bias by ruling out a large number of
“practically useless” concepts while maintaining substantial expressive power. The practical utility
of this bias is demonstrated via our empirical results in the visual-event-recognition application.
AMA can also be seen as a restriction of LTL (Bacchus & Kabanza, 2000) to conjunction and
“Until,” with similar motivations. Below we present the syntax and semantics of AMA along with
some of the key technical properties of AMA that will be used throughout this paper.

3.1 AMA Syntax and Semantics

It is natural to describe temporal events by specifying a sequence of properties that must hold over
consecutive time intervals. For example, “a hand picking up a block” might become “the block

is not supported by the hand and then the block is supported by the hand.” We represent such
sequences WitMA timelines, which are sequences of conjunctive state restrictions. Intuitively, an

MA timeline is given by a sequence of propositional conjunctions, separated by semicolons, and is
taken to represent the set of events that temporally match the sequence of consecutive conjunctions.
An AMA formula is then the conjunction of a number of MA timelines, representing events that
can be simultaneously viewed as satisfying each of the conjoined timelines. Formally, the syntax of
AMA formulas is given by,

state ::= true | prop| prop A state
MA := (state | (state; MA /I may omit parens
AMA = MA|MAAAMA

whereprop is any primitive proposition (sometimes called a primitive event type). We take this
grammar to formally define the termidA timeline, MA formula, AMA formula, and state A k-
MA formula is an MA formula with at most states, and &-AMA formula is an AMA formula
all of whose MA timelines aré-MA timelines. We often treat states as proposition sets with
true the empty set and AMA formulas as MA-timeline sets. We may also treat MA formulas as
sets of states—it is important to note, however, that MA formulas may contain duplicate states,
and the duplication can be significant. For this reason, when treating MA timelines as sets, we
formally intend sets obtate-index pairgwhere the index gives a states position in the formula).
We do not indicate this explicitly to avoid encumbering our notation, but the implicit index must be
remembered whenever handling duplicate states.

The semantics of AMA formulas is defined in terms of temporal models. A temporal model
M = (M, I) over the set PROP of propositions is a pair of a mapgihérom the natural numbers
(representing time) to the truth assignments over PROP, and a closed natural-number Interval
We note that Siskind (2001) gives a continuous-time semantics for event logic where the models

5. MA stands for “Meets/And,” an MA timeline being the “Meet” of a sequence of conjunctively restricted intervals.
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are defined in terms of real-valued time intervals. The temporal models defined here use discrete
natural-number time-indices. However, our results here still apply under the continuous-time se-
mantics. (That semantics bounds the number of state changes in the continuous timeline to a count-
able number.) It is important to note that the natural numbers in the domaihare representing

time discretely, but that there is no prescribed unit of continuous time represented by each natural
number. Instead, each number represents an arbitrarily long period of continuous time during which
nothing changed. Similarly, the states in our MA timelines represent arbitrarily long periods of time
during which the conjunctive restriction given by the state holds. The satisfiability relation for AMA
formulas is given as follows:

e A states is satisfied by a moddlV/, I') iff M[x] assignsP true for everyz € I andP € s.

e An MA timeline s1;s9;...; 5, is satisfied by a mode|M, [t,t']) iff there exists some”
in [t,#'] such that{(M, [t,t"]) satisfiess; and either(M, [t",¢]) or (M, [t" + 1,t']) satisfies
§25...58np:

e An AMA formula ®; A &5 A --- A @, is satisfied byM iff each ®; is satisfied byM.

The condition defining satisfaction for MA timelines may appear unintuitive at first due to the
fact that there are two ways thaf; . . . ; s,, can be satisfied. The reason for this becomes clear by re-
calling that we are using the natural numbers to represent continuous time intervals. Intuitively, from
a continuous-time perspective, an MA timeline is satisfied if there are consecutive continuous-time
intervals satisfying the sequence of consecutive states of the MA timeline. The transition between
consecutive stateg ands; 1 can occur either within an interval of constant truth assignment (that
happens to satisfy both states) or exactly at the boundary of two time intervals of constant truth
value. In the above definition, these cases correspong to. ; s,, being satisfied during the time
intervals[t”, t'] and[t" + 1, '] respectively.

WhenM satisfiesd we say thatM is a model of® or that® coversM. We say that AMAY,
subsumedMA U, iff every model of U5 is a model ofl, written ¥y < ¥y, and we say tha¥,
properly subsume$,, written ¥y < ¥, when we also havé; £ ¥,. Alternatively, we may state
¥y < Uy by saying thatl’; is more general (or less specific) than, or that¥; covers¥,. Siskind
(2001) provides a method to determine whether a given model satisfies a given AMA formula.

Finally, it will be useful to associate a distinguished MA timeline to a model. MAgrojection
of a modelM = (M, [i, j]) written as MARM) is an MA timelines; s1;. . . ; sj—; where statey,
gives the true propositions it/ (i 4+ k) for 0 < k£ < j — 7. Intuitively, the MA projection gives
the sequence of propositional truth assignments from the beginning to the end of the model. Later
we show that the MA projection of a model can be viewed as representing that model in a precise
sense.

The following two examples illustrate some basic behaviors of AMA formulas:

Example 1 (Stretchability). Sl; SQ; S3, Sl; Sg; Sg; ey SQ; S3, and Sl; Sl; Sl; SQ; S3; S3; S5 are

all equivalent MA timelines. In general, MA timelines have the property that duplicating any state
results in a formula equivalent to the original formula. Recall that, given a modé€|7), we

view each truth assignme [xz] as representing a continuous time-interval. This interval can
conceptually be divided into an arbitrary number of subintervals. Thus if sfatesatisfied by

(M, [z, z]), then so is the state sequenggs;...;S.
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Example 2 (Infinite Descending Chains).Given propositionsd and B, the MA timeline & =

(A A B) is subsumed by each of the formuldsB, A;B;A;B, A;B;A;B;A; B, .... Thisis
intuitively clear when our semantics are viewed from a continuous-time perspective. Any interval
in which bothA and B are true can be broken up into an arbitrary number of subintervals where
both A and B hold. This example illustrates that there can be infinite descending chains of AMA
formulas where the entire chain subsumes a given formula (but no member is equivalent to the given
formula). In general, any AMA formula involving only the propositighand B will subsumed.

3.2 Motivation for AMA

MA timelines are a very natural way to capture stretchable sequences of state constraints. But
why consider the conjunction of such sequences, i.e., AMA? We have several reasons for this lan-
guage enrichment. First of all, we show below that the AMA least-general generalization (LGG)
is unigue—this is not true for MA. Second, and more informally, we argue that parallel conjunc-
tive constraints can be important to learning efficiency. In particular, the space of MA formulas
of length & grows in size exponentially witlk, making it difficult to induce long MA formulas.
However, finding several shorter MA timelines that each charactgareof a long sequence of
changes is exponentially easier. (At least, the space to search is exponentially smaller.) The AMA
conjunction of these timelines places these shorter constraints simultaneously and often captures a
great deal of the concept structure. For this reason, we analyze AMA as well as MA and, in our
empirical work, we considet-AMA.

The AMA language is propositional. But our intended applications are relational, or first-order,
including visual-event recognition. Later in this paper, we show that the propositional AMA learn-
ing algorithms that we develop can be effectively applied in relational domains. Our approach to
first-order learning is distinctive in automatically constructing an object correspondence across ex-
amples (cf. Lavrac, Dzeroski, & Grobelnik, 1991; Roth & Yih, 2001). Similarly, though AMA
does not allow for negative state constraints, in Section 5.4 we discuss how to extend our results to
incorporate negation into our learning algorithms, which is crucial in visual-event recognition.

3.3 Conversion to First-Order Clauses

We note that AMA formulas can be translated in various ways into first-order clauses. It is not
straightforward, however, to then use existing clausal generalization techniques for learning. In
particular, to capture the AMA semantics in clauses, it appears necessary to define subsumption and
generalization relative to a background theory that restricts us to a “continuous-time” first-order—
model space.

For example, consider the AMA formulals; = A A B and®, = A; B where A and B are
propositions—from Example 2 we know thé@i < ®,. Now, consider a straightforward clausal
translation of these formulas givin@, = A(I) AB(I) andCy = A(Iy) AB(I2) AMEETS(I1, I2) A
I = SPAN(I4, I), where thel andI; are variables that represent time intervals Vs indicates
that two time intervals meet each other, arehS is a function that returns a time interval equal
to the union of its two time-interval arguments. The meaning we intend to capture is for satisfying
assignments of in Cy andCs to indicate intervals over whicf; and®, are satisfied, respectively.

It should be clear that, contrary to what we watt, £ Cs (i.e., = C; — C3), since it is easy to
find unintended first-order models that satigfy, but notCs. Thus such a translation, and other
similar translations, do not capture the continuous-time nature of the AMA semantics.
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In order to capture the AMA semantics in a clausal setting, one might define a first-order theory
that restricts us to continuous-time models—for example, allowing for the derivation “if praBerty
holds over an interval, then that property also holds over all sub-intervals.” Given such aXheory
we have that = C; — Cs, as desired. However, it is well known that least-general generaliza-
tions relative to such background theories need not exist (Plotkin, 1971), so prior work on clausal
generalization does not simply subsume our results for the AMA language.

We note that for a particular training set, it may be possible to compile a continuous-time back-
ground theoryX into a finite but adequate set of ground facts. Relative to such ground theories,
clausal LGGs are known to always exist and thus could be used for our application. However,
the only such compiling approaches that look promising to us require exploiting an analysis sim-
ilar to the one given in this paper—i.e., understanding the AMA generalization and subsumption
problem separately from clausal generalization and exploiting that understanding in compiling the
background theory. We have not pursued such compilations further.

Even if we are given such a compilation procedure, there are other problems with using exist-
ing clausal generalization techniques for learning AMA formulas. For the clausal translations of
AMA we have found, the resulting generalizations typically fall outside of the (clausal translations
of formulas in the) AMA language, so that the language bias of AMA is lost. In preliminary empir-
ical work in our video-event recognition domain using clausal inductive-logic-programming (ILP)
systems, we found that the learner appeared to lack the necessary language bias to find effective
event definitions. While we believe that it would be possible to find ways to build this language bias
into ILP systems, we chose instead to define and learn within the desired language bias directly, by
defining the class of AMA formulas, and studying the generalization operation on that class.

3.4 Basic Concepts and Properties of AMA

We use the following convention in naming our results: “propositions” and “theorems” are the key
results of our work, with theorems being those results of the most technical difficulty, and “lemmas”
are technical results needed for the later proofs of propositions or theorems. We number all the
results in one sequence, regardless of type. Proofs of theorems and propositions are provided in the
main text—omitted proofs of lemmas are provided in the appendix.

We give pseudo-code for our methods in a non-deterministic style. In a non-deterministic lan-
guage functions can return more than one value non-deterministically, either because they contain
non-deterministic choice points, or because they call other non-deterministic functions. Since a non-
deterministic function can return more than one possible value, depending on the choices made at
the choice points encountered, specifying such a function is a natural way to specify a richly struc-
tured set (if the function has no arguments) or relation (if the function has arguments). To actually
enumerate the values of the set (or the relation, once arguments are provided) one can simply use
a standard backtracking search over the different possible computations corresponding to different
choices at the choice points.

3.4.1 SUBSUMPTION AND GENERALIZATION FOR STATES

The most basic formulas we deal with are states (conjunctions of propositions). In our propositional
setting computing subsumption and generalization at the state level is straightforward. & state
subsumes; (S, < 5;) iff Sy is a subset ob5, viewing states as sets of propositions. From this, we
derive that the intersection of states is the least-general subsumer of those states and that the union
of states is likewise the most general subsumee.
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3.4.2 INTERDIGITATIONS

Given a set of MA timelines, we need to consider the different ways in which a model could si-
multaneously satisfy the timelines in the set. At the start of such a model (i.e., the first time point),
the initial state from each timeline must be satisfied. At some time point in the model, one or more
of the timelines can transition so that the second state in those timelines must be satisfied in place
of the initial state, while the initial state of the other timelines remains satisfied. After a sequence
of such transitions in subsets of the timelines, the final state of each timeline holds. Each way of
choosing the transition sequence constitutes a différgatdigitationof the timelines.

Viewed differently, each model simultaneously satisfying the timelines inducesacurrence
relation on tuples of timeline states, one from each timeline, identifying which tuples co-occur at
some point in the model. We represent this concept formally as a set of tuples of co-occurring states,
i.e., a co-occurrence relation. We sometimes think of this set of tuples as ordered by the sequence
of transitions. Intuitively, the tuples in an interdigitation represent the maximal time intervals over
which no MA timeline has a transition, with those tuples giving the co-occurring states for each
such time interval.

A relation R on X; x --- x X,, is simultaneously consistentith orderings<y,... <y, if,
wheneverR(z1, . ..,z,) andR(z!,. .., ), eitherz; <; z!, for all i, or z} <; z;, for all . We say
R is piecewise totaif the projection ofR onto each component is total—i.e., every state in &py
appears imR.

Definition 1 (Interdigitation). An interdigitation! of a set{®4, ..., ®,} of MA timelines is &o-
occurrenceelation over®; x --- x &, (viewing timelines as sets of statpthat is piecewise total
and simultaneously consistent with the state orderings of éachie say that two statese @;
ands’ € ®; for i # j co-occur in! iff some tuple of contains boths ands’. We sometimes refer to
I as a sequence of tuples, meaning the sequence lexicographically orderedihystate orderings.

We note that there are exponentially many interdigitations of even two MA timelines (relative to the
total number of states in the timelines). Example 3 on page 396 shows an interdigitation of two MA
timelines. Pseudo-code for non-deterministically generating an arbitrary interdigitation for a set of

MA timelines can be found in Figure 5. Given an interdigitatibof the timeliness;; so;...; sm
andtq; to; . . . ; t, (@and possibly others), the following basic properties of interdigitations are easily
verifiable:

1. Fori < j, if s; andty, co-occur in | then for alk’ < k&, s; does not co-occur withy in 1.
2. I(Sl, tl) andI(sm, tn).

We first use interdigitations to syntactically characterize subsumption between MA timelines.

Definition 2 (Witnessing Interdigitation).  An interdigitation of two MA timelinesb; and ®,
is awitnessto ®; < @, iff for every pair of co-occurring states € ®; ands,; € ®5, we have that
s9 is a subset ofq (i.e.,s1 < s9).

The following lemma and proposition establish the equivalence between witnessing interdigitations
and MA subsumption.

6. Recall, that, formally, MA timelines are viewed as sets of state-index pairs, rather than just sets of states. We ignore
this distinction in our notation, for readability purposes, treating MA timelines as though no state is duplicated.
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1. an-interdigitatiof{ ®;, ®s,...,®,})

2: /[ Input: MA timelinesd®,..., o,

3: /I Output: an interdigitation of @4, ..., ®,}
4: So := (head®,), ..., head®,));

5 ifforalll <i<mn, |®;)] =1

6: then return (Sp);

7: T' := {®; such that®;| > 1};

8: T" := a-non-empty-subset-@f");

9: fori:=1ton

10: if &, € T"

12: then @/ := res{®;)

12: else®, := @;;

13: return extend-tupléSy, an-interdigitatiof{®/, ..., @/ }));

Figure 5: Pseudo-code for an-interdigitation(), which non-deterministically computes an interdig-
itation for a set{®,,...,®,} of MA timelines. The function head) returns the first
state in the timelineb. rest®) returns® with the first state removed. extend-tupldl)
extends a tupld by adding a new first elementto form a longer tuple. a-non-empty-
subset-off) non-deterministically returns an arbitrary non-empty subsét of

Lemma l. For any MA timelined and any modelM, if M satisfiesd, then there is a witnessing
interdigitation for MAR M) < ®.

Proposition 2. For MA timelines®; and®,, ®; < ®, iff there is an interdigitation that withesses
P, < Oy,

Proof: We show the backward direction by induction on the number of staiegimeline ®;. If
n = 1, then the existence of a witnessing interdigitation®gr< ®, implies that every state i,
is a subset of the single statedn, and thus that any model @f, is a model of®, so that®; < ®s.
Now, suppose for induction that the backward direction of the theorem holds whehgvasn
or fewer states. Given an arbitrary model of ann + 1 state®; and an interdigitatiori¥ that
witnessesp; < &5, we must show thaM is also a model o, to conclude®; < ®, as desired.

Write &, assi; . ..;s,11 and®y asty; . .. ; t,. As awitnessing interdigitatiort) must identify
some maximal prefixy;...; ¢, of &3 made up of states that co-occur with and thus that are
subsets of;. SinceM = (M, [t,t]) satisfies?;, by definition there must exist# € [t,#'] such
that (M, [t,t"]) satisfiess; (and thusty;...;t,) and(M, I') satisfiessy;. .. ;s,41 for I’ equal to
either[t” '] or [t" + 1,t']. In either case, it is straightforward to construct, fréf) a witnessing
interdigitation forssy; ... 5 sp4+1 < tpra1;- - -t @nd use the induction hypothesis to then show that
(M, I'y must satisfyt,,s 11; .. .;tn. It follows that M satisfiesP, as desired.

For the forward direction, assume that < ®,, and let M be any model such thak; =
MAP(M). It is clear that such aM exists and satisfie®,. It follows that M satisfies®,.
Lemma 1 then implies that there is a witnessing interdigitation for N < ®, and thus for
D, < Oy, O
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3.4.3 LEAST-GENERAL COVERING FORMULA

A logic can discriminate two models if it contains a formula that satisfies one but not the other. It
turns out that AMA formulas can discriminate two models exactly when much riotesnal posi-

tive event logidIPEL) formulas can do so. Internal formulas are those that define event occurrence
only in terms of properties within the defining interval. That is, satisfactiofMy) depends only

on the proposition truth values given By inside the intervall. Positive formulas are those that

do not contain negation. Appendix A gives the full syntax and semantics of IPEL (which are used
only to state and prove Lemma 3 ). The fact that AMA can discriminate models as well as IPEL
indicates that our restriction to AMA formulas retains substantial expressive power and leads to
the following result which serves as the least-general covering formula (LGCF) component of our
specific-to-general learning procedure. Formally, an LGCF of madetithin a formula language

L (e.g. AMA or IPEL) is a formula inC that coversM such that no other covering formula in

L is strictly less general. Intuitively, the LGCF of a model, if unique, is the “most representative”
formula of that model. Our analysis uses the concephofiel embeddingWe say that modeM
embeds modeM’ iff MAP (M) < MAP(M').

Lemma 3. ForanyFE € IPEL, if modelM embeds a model that satisfig’s then M satisfiesE.

Proposition 4. The MA projection of a model is its LGCF for internal positive event logic (and
hence for AMA), up to semantic equivalence.

Proof: Consider modelM. We know that MARM) covers M, so it remains to show that
MAP (M) is the least general formula to do so, up to semantic equivalence.

Let £ be any IPEL formula that coverst. Let M’ be any model that is covered by MAP{)—
we want to show tha# also coversM’. We know, from Lemma 1, that there is a witnessing
interdigitation for MARM') < MAP(M). Thus, by Proposition 2, MARPM') < MAP(M)
showing thatM’ embedsM. Combining these facts with Lemma 3 it follows th&talso covers
M’ and hence MAPM) < E. O

Proposition 4 tells us that, for IPEL, the LGCF of a model exists, is unique, and is an MA
timeline. Given this property, when an AMA formull covers all the MA timelines covered by
another AMA formula¥’, we havel’ < W. Thus, for the remainder of this paper, when considering
subsumption between formulas, we can abstract away from temporal models and deal instead with
MA timelines. Proposition 4 also tells us that we can compute the LGCF of a model by constructing
the MA projection of that model. Based on the definition of MA projection, it is straightforward to
derive an LGCF algorithm which runs in time polynomial in the size of the nfod&k note that
the MA projection may contain repeated states. In practice, we remove repeated states, since this
does not change the meaning of the resulting formula (as described in Example 1).

3.4.4 OMBINING INTERDIGITATION WITH GENERALIZATION OR SPECIALIZATION

Interdigitations are useful in analyzing both conjunctions and disjunctions of MA timelines. When
conjoining a set of timelines, any model of the conjunction induces an interdigitation of the timelines
such that co-occurring states simultaneously hold in the model at some point (viewing states as
sets, the the states resulting from unioning co-occurring states must hold). By constructing an

7. We take the size of a modét = (M, I') to be the sum ovet € I of the number of true propositions M (z).

395



FERN, GIVAN, & SISKIND

interdigitation and taking the union of each tuple of co-occurring states to get a sequence of states,
we get an MA timeline that forces the conjunction of the timelines to hold. We call such a sequence
aninterdigitation specializatioof the timelines. Dually, amterdigitation generalizatiomvolving
intersections of states gives an MA timeline that holds whenever the disjunction of a set of timelines
holds.

Definition 3. Aninterdigitation generalization (specialization) of a 0f MA timelines is an MA
timelinesy;...; sy, such that, for some interdigitatioh of > with m tuples, s; is the intersection
(respectively, union) of the components of the j'th tuple of the sequerdee set of interdigitation
generalizations (respectively, specializations}af calledIG(X) (respectively)S(X)).

Example 3. Suppose thaty, so, s3,t1, t2, andts are each sets of propositions (i.e., states). Con-
sider the timelines = s1; s9; 83 andT' = t1;t9;t3. The relation

{ (s1,t1), (s2,t1) , (83, %2) , (s3,t3) }

is an interdigitation ofS and T in which statess; and so co-occur witht;, and s3 co-occurs with
to andts. The correspondingG and1S members are

S1 Mty soMNity; s3Nite; s3Nity € |G({S,T})
st Uty sgUty; s3Utg; s3Uts € |S({S,T})

If t; Cs1,t1 Csg,ta C 83, andts C s3, then the interdigitatiorwitnessess < T'.

Each timeline in 1GX) (dually, IS(3)) subsumes (is subsumed by) each timelinE+rthis is
easily verified using Proposition 2. For our complexity analyses, we note that the number of states
in any member of IGX) or IS(X) is bounded from below by the number of states in any of the
MA timelines inX and is bounded from above by the total number of states in all the MA timelines
in 3. The number of interdigitations Aaf, and thus of members of I&) or IS(X), is exponen-
tial in that same total number of states. The algorithms that we present later for computing LGGs
require the computation of both (&) and ISX). Here we give pseudo-code to compute these
guantities. Figure 6 gives pseudo-code for the function an-IG-member that non-deterministically
computes an arbitrary member of (5) (an-IS-member is the same, except that we replace inter-
section by union). Given a s&t of MA timelines we can compute I&) by executing all possible
deterministic computation paths of the function call an-IG-meniberie., computing the set of
results obtainable from the non-deterministic function for all possible decisions at non-deterministic
choice points.

We now give a useful lemma and a proposition concerning the relationships between conjunc-
tions and disjunctions of MA concepts (the former being AMA concepts). For convenience here,
we use disjunction on MA concepts, producing formulas outside of AMA with the obvious inter-
pretation.

Lemmab5. Given an MA formulaP that subsumes each member of asef MA formulas® also
subsumes some memkidgrof IG(X). Dually, when®d is subsumed by each membebhfwe have
that @ is also subsumed by some membeof I1S(X). In each case, the length @&f is bounded by
the size of.
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an-IG-membei{ @4, o, ..., P, })

/[ Input: MA timelines®,, ..., o,
/I Output: a member dG({®y, Po,..., P, })

return map(intersect-tuplean-interdigitation{®4, ..., ®,}));

Figure 6: Pseudo-code for an-IG-member, which non-deterministically computes a member of
IG(T') whereT is a set of MA timelines. The function intersect-tugletakes a tupld
of sets as its argument and returns their intersection. The higher-order functiofi, fap(
takes a functiory and a tuplel as arguments and returns a tuple of the same lengkth as
obtained by applying to each element af and making a tuple of the results.

Proposition 6. The following hold:

1. (and-to-or) The conjunction of a sBtof MA timelines equals the disjunction of the timelines
inI1S(X).

2. (or-to-and) The disjunction of a sEtof MA timelines is subsumed by the conjunction of the
timelines iNIG(X).

Proof: To prove or-to-and, recall that, for arly € ¥ and any®’ € IG(X), we have that < @'
From this it is immediate that\/ ¥) < (AIG(X)). Using a dual argument, we can show that
(VIS(E)) < (AX). It remains to show thatA £) < (V/ IS(X)), which is equivalent to showing
that any timeline subsumed I9y\ ) is also subsumed b}/ IS(X)) (by Proposition 4). Consider
any MA timeline® such thatb < (/A £)—this implies that each member Bfsubsume®. Lemma

5 then implies that there is son# € I1S(X) such that < @'. From this we get thad < (\/ IS(X))

as desired. O

Using and-to-or, we can now reduce AMA subsumption to MA subsumption, with an exponen-
tial increase in the problem size.

Proposition 7. For AMA ¥, and ¥, ¥; < Wy if and only if for all ®; € IS(¥;) and @, €
Uy, @1 < Ps.

Proof: For the forward direction we show the contrapositive. Assume ther@isaIS(¥;) and a
d, € Uy such thad; £ ®y. Thus, there is an MA timelin@ such thai® < &, but® £ &,. This
tells us thatd < (\/I1S(¥,)) and thatd £ s, thus(\ IS(¥,)) £ ¥, and by “and-to-or” we get
that ¥ ﬁ s,

For the backward direction assume that fordall € 1IS(¥;) and®, € U, that®; < ®,. This
tells us that for eacl®; € I1S(¥4), that®; < Uo—thus, ¥y = (\VIS(¥1)) < Ty, O

4. Subsumption and Generalization

In this section we study subsumption and generalization of AMA formulas. First, we give a
polynomial-time algorithm for deciding subsumption between MA formulas and then show that
deciding subsumption for AMA formulas is coNP-complete. Second we give algorithms and com-
plexity bounds for the construction of least-general generalization (LGG) formulas based on our
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MA-subsumeg®;, ®5)
[I'Input: @1 = s15...;8, and®y = 1q;... ¢,
// Output: &, < &y

1. if there is a path from; ; to vy, , in SG(®;, ®2) then return TRUE. For example,

(a) Create an array Reachab)¢) of boolean values, all FALSE, fdr < 7 < m and
0<7<n.
(b) for i:=1tom, Reachablg,0) := TRUE;
for j := 1to n, Reachabl@®, j) := TRUE;
fori:=1tom
forj:=1ton
Reachablg, j) := (t; C s; A (Reachablg — 1, 7) V
Reachablg,j — 1) v
Reachablg — 1,7 — 1));

(c) if Reachablén,n) then return TRUE;

2. Otherwisereturn FALSE;

Figure 7: Pseudo-code for the MA subsumption algorittsf6:(®,, ®-) is the subsumption graph
defined in the main text.

analysis of subsumption, including existence, uniqueness, lower/upper bounds, and an algorithm for
the LGG on AMA formulas. Third, we introduce a polynomial-time—computable syntactic notion

of subsumption and an algorithm that computes the corresponding syntactic LGG that is exponen-
tially faster than our semantic LGG algorithm. Fourth, in Section 4.4, we give a detailed example
showing the steps performed by our LGG algorithms to compute the semantic and syntactic LGGs
of two AMA formulas.

4.1 Subsumption

All our methods rely critically on a novel algorithm for deciding the subsumption que$tion ®-
between MA formulasb; and®, in polynomial-time. We note that merely searching the possible
interdigitations of®; and®, for a witnessing interdigitation provides an obvious decision procedure
for the subsumption question—however, there are, in general, exponentially many such interdigi-
tations. We reduce the MA subsumption problem to finding a path in a graph on pairs of states
in ®; x ®,, a polynomial-time operation. Pseudo-code for the resulting MA subsumption algo-
rithm is shown in Figure 7. The main data structure used by the MA subsumption algorithm is the
subsumption graph.

Definition 4. The subsumption graph of two MA timelinegs = sq;---; s, and®y = t1;---;t,
(written SG(®1, ®2)) is a directed graphy = (V, E) with V' = {v; ; |1 <i <m,1 <j <n}.
The (directed) edge sét equals{(v; j, vir jr) | si <tj, sy <tj, 1 <i <i+1,7<j <j+1}.

To achieve a polynomial-time bound one can simply use any polynomial-time pathfinding algo-
rithm. In our case the special structure of the subsumption graph can be exploited to determine if
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the desired path exists i(mn) time, as the example method shown in the pseudo-code illustrates.
The following theorem asserts the correctness of the algorithm assuming a correct polynomial-time
path-finding method is used.

Lemma8. Given MA timelinesP; = sq;...;8, and ®y = ty;...;t,, there is a witnessing
interdigitation for ®; < &, iff there is a path in the subsumption grapte:(®;, ®2) fromv; ; to

VUm,n-

Theorem 9. Given MA timelinesb; and ®5, MA-subsumesy(;, ®;) decidesd; < &, in polyno-
mial time.

Proof: The algorithm clearly runs in polynomial time. Lemma 8 tells us that line 2 of the algorithm
will return TRUE iff there is a witnessing interdigitation. Combining this with Proposition 2 shows
that the algorithm returns TRUE iff; < ®,. O

Given this polynomial-time algorithm for MA subsumption, Proposition 7 immediately suggests
an exponential-time algorithm for deciding AMA subsumption—by computing MA subsumption
between the exponentially many IS timelines of one formula and the timelines of the other formula.
Our next theorem suggests that we cannot do any better than this in the worst case—we argue that
AMA subsumption is coNP-complete by reduction from boolean satisfiability. Readers uninterested
in the technical details of this argument may skip directly to Section 4.2.

To develop a correspondence between boolean satisfiability problems, which include negation,
and AMA formulas, which lack negation, we imagine that each boolean variable has two AMA
propositions, one for “true” and one for “false.” In particular, given a boolean satisfiability problem
overn variablespq, ..., p,, we take the set PRQRo be the set containin@n AMA propositions
True, and Falsg for eachk betweenl andn. We can now represent a truth assignménno thep;
variables with an AMA state 4 given as follows:

sa={Trug |1 <i<n, A(p;) =true} U {Falsg | 1 <i < n, A(p;) = false}

As Proposition 7 suggests, checking AMA subsumption critically involves the exponentially
many interdigitation specializations of the timelines of one of the AMA formulas. In our proof, we
design an AMA formula whose interdigitation specializations can be seen to correspond to truth
assignmentsto boolean variables, as shown in the following lemma.

Lemma 10. Given some, let ¥ be the conjunction of the timelines

n

U {(PROR,; Trug;; False; PROR,), (PROR,; Falsg; Trug;; PROR,) }.
i=1

We have the following facts about truth assignments to the Boolean varjables, p,,:

1. For any truth assignmemt, PROR,; s 4; PROR, is semantically equivalent to a member
of IS().

2. For each® € IS(V) there is a truth assignment such thatd < PROR,; s4; PROR,.

8. Atruth assignment is a function mapping boolean variables to true or false.
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With this lemma in hand, we can now tackle the complexity of AMA subsumption.
Theorem 11. Deciding AMA subsumption is coNP-complete.

Proof: We first show that deciding the AMA-subsumption ®f by ¥ is in coNP by providing
a polynomial-length certificate for any “no” answer. This certificate for non-subsumption is an
interdigitation of the timelines o', that yields a member of [¥;) not subsumed bys. Such
a certificate can be checked in polynomial time: given such an interdigitation, the corresponding
member of 1$¥;) can be computed in time polynomial in the sizedf, and we can then test
whether the resulting timeline is subsumed by each timelininsing the polynomial-time MA-
subsumption algorithm. Proposition 7 guarantees fhat{ ¥, iff there is a timeline in 1$¥)
that is not subsumed by every timelinedn, so that such a certificate will exist exactly when the
answer to a subsumption query is “no.”

To show coNP-hardness we reduce the problem of deciding the satisfiability of a 3-SAT formula
S = Ci A---ACy, to the problem of recognizing non-subsumption between AMA formulas. Here,
eachC;is (I;1 V l;2 V l;3) and eachl; ; either a propositiop chosen fromP = {pi,...,p,} or
its negation—p. The idea of the reduction is to construct an AMA formudigor which we view
the exponentially many members of(IB) as representing truth assignments. We then construct an
MA timeline ® that we view as representingS and show thab is satisfiable iffi £ .

Let ¥ be as defined in Lemma 10. Létbe the formulas;.. . ; s,,, Where

s; = {Falsg |l;} = p; for somek} U
{True; | I; , = —p; for somek}.

Eachs; can be thought of as asserting “nGt.” We start by showing that ifS is satisfiable
then¥ £ ®. Assume thatS is satisfied via a truth assignmeAt—we know from Lemma 10
that there is ab’ € IS(V) that is semantically equivalent to PRQR 4; PROR,. We show that
PROR;; s 4; PROR, is not subsumed by, to conclude¥ «£ & using Proposition 7, as desired.
Suppose for contradiction that PRQR 4; PROR, is subsumed byp—then the state 4, must be
subsumed by some statgin ®. Consider the corresponding clauSgof S. SinceA satisfiesS
we have that; is satisfied and at least one of its literglg must be true. Assume that, = p; (a
dual argument holds fdg , = —p;), then we have that; contains Falsewhile s 4 contains Trug
but not False—thus, we have that, £ s; (sinces; Z sa), contradicting our choice af

To complete the proof, we now assume tlais unsatisfiable and show thét < ®. Using
Proposition 7, we consider arbitra®/ in 1S(¥)—we will show that®’ < ®. From Lemma 10 we
know there is some truth assignmehsuch that®’ < PROR,; s 4; PROR,. SinceS is unsatisfiable
we know that some&”; is not satisfied byA and hence-C; is satisfied byA. This implies that
each primitive proposition irs; is in s4. Let W be the following interdigitation betweefi =
PROR;; s 4; PROR, and® = s1;...; S

{(PROR,, s1) (PROR,, 52) - - - (PROR,, 5;) (5.4, 5i) (PROR,, 5;) (PROR,, si41) - - - (PROR,, 515) }

We see that in each tuple of co-occurring states given above that the staté isosubsumed by
the state fromP. ThusW is a witnessing interdigitation to PR@Fs 4; PROR, < @, which then
holds by Proposition 2—combining this wiff < PROR,; s 4; PROR, we getthatd’ < &. O

Given this hardness result we later define a weaker polynomial-time—computable subsumption
notion for use in our learning algorithms.
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4.2 Least-General Generalization.

An AMA LGG of a set of AMA formulas is an AMA formula that is more general than each
formula in the set and not strictly more general than any other such formula. The existence of
an AMA LGG is nontrivial as there can be infinite chains of increasingly specific formulas all of
which generalize given formulas. Example 2 demonstrated such chains for an MA subsumee and
can be extended for AMA subsumees. For example, each member of theltlainP; Q; P; @,

P;Q; P;Q; P;Q, ...covers¥; = (PAQ);Q andV¥y = P; (PAQ). Despite such complications,

the AMA LGG does exist.

Theorem 12. There is an LGG for any finite s& of AMA formulas that is subsumed by all other
generalizations oF.

Proof: LetT' be the se{Jyyx, IS(T’). Let ¥ be the conjunction of all the MA timelines that
generalizel’ while having size no larger than. Since there are only a finite number of primitive
propositions, there are only a finite number of such timelines; sowell defined. We show that
¥ is a least-general generalizationf First, note that each timeline ¥ generalized™ and thus
¥ (by Proposition 6), sal must generalizeé.. Now, consider arbitrary generalizatiolf of X.
Proposition 7 implies tha?’ must generalize each formulaih Lemma 5 then implies that each
timeline of ¥’ must subsume a timelink that is no longer than the size Bfand that also subsumes
the timelines ofl". But then® must be a timeline o¥, by our choice of¥, so that every timeline of
¥’ subsumes a timeline d@f. It follows that ¥’ subsumedr, and that¥ is an LGG of subsumed
by all other LGGs of:, as desired. O

Given that the AMA LGG exists and is unique we now show how to compute it. Our first step is to
strengthen “or-to-and” from Proposition 6 to get an LGG for the MA sublanguage.

Theorem 13. For a set¥ of MA formulas, the conjunction of all MA timelinesl®(X) is an AMA
LGG of¥.

Proof: Let ¥ be the specified conjunction. Since each timeline of$iissubsumes all timelines
in X, ¥ subsumes each member ¥f To showV is a least-general such formula, consider an
AMA formula ¥’ that also subsumes all membersbfSince each timeline of’ must subsume all
members of2, Lemma 5 implies that each timeline & subsumes a member of (&) and thus
each timeline oft’ subsumed. This implies¥ < ¥'. O

We can now characterize the AMA LGG using IS and IG.
Theorem 14. 1G(Uycx IS(¥)) is an AMA LGG of the sef of AMA formulas.

Proof: LetY = {¥y,...,¥,} andE = ¥ vV --- vV ¥,,. We know that the AMA LGG of2
must subsume?, or it would fail to subsume one of th&;. Using “and-to-or” we can represent
E as a disjunction of MA timelines given biy = (\/IS(¥y)) V --- vV (VIS(¥,)). Any AMA
LGG must be a least-general formula that subsuifiesi.e., an AMA LGG of the set of MA
timelines J{IS(¥)|¥ € X}. Theorem 13 tells us that an LGG of these timelines is given by
IG(U{IS(T)|¥ € £}). O

9. There must be at least one such timeline, the timeline where the only statesis
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1 semantic-LGG{ V¥, Uy,..., ¥, })

2: /[ Input: AMA formulas¥,..., ¥,

3: /I Output: LGG of{¥y,..., U}

4: S = {},

5: fori:=1tom

6: for each® in all-valuegan-1S-membei¥; ) )
7 if (V®'eS.d L P)

8: then §':= {®" € S| ?" < ®};
9: S:=(S-95)u{o};

10: G:={};

11 for each® in all-valuegan-IG-membe(S))

12: if (V®' e G.d' £ D)

13: then G’ :={@" ¢ G| ® < ?"};

14: G:=(G-G)u{o}

15: return (A G)

Figure 8: Pseudo-code for computing the semantic AMA LGG of a set of AMA formulas.

Theorem 14 leads directly to an algorithm for computing the AMA LGG—Figure 8 gives
pseudo-code for the computation. Lines 4-9 of the pseudo-code correspond to the computation
of U{IS(¥)|¥ € X}, where timelines are not included in the set if they are subsumed by timelines
already in the set (which can be checked with the polynomial time MA subsumption algorithm).
This pruning, accomplished by thietest in line 7, often drastically reduces the size of the time-
line set for which we perform the subsequent IG computation—the final result is not affected by
the pruning since the subsequent IG computation is a generalization step. The remainder of the
pseudo-code corresponds to the computation ¢EJHES(¥)| ¥ € X}) where we do not include
timelines in the final result that subsume some other timeline in the set. This pruning stiépehe
in line 12) is sound since when one timeline subsumes another, the conjunction of those timelines
is equivalent to the most specific one. Section 4.4.1 traces the computations of this algorithm for an
example LGG calculation.

Since the sizes of both (§ and IG-) are exponential in the sizes of their inputs, the code in
Figure 8 is doubly exponential in the input size. We conjecture that we cannot do better than this,
but we have not yet proven a doubly exponential lower bound for the AMA case. When the input
formulas are MA timelines the algorithm takes singly exponential time, singgbl§ = ® when
® is in MA. We now prove an exponential lower bound when the input formulas are in MA. Again,
readers uninterested in the technical details of this proof can safely skip forward to Section 4.3.

For this argument, we take the available primitive propositions to be those in thg; getl <
i <n, 1<j<n}, and consider the MA timelines

D1 = 8143524545 8n%
and ®; = 5,1;542;...; 5«0, Where
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Six = DPit N ADin
and Sxj = D1, N NDnyj-

We will show that any AMA LGG of®; and®, must contain an exponential number of timelines.
In particular, we will show that any AMA LGG is equivalent to the conjunction of a subset of
IG({®:, ®2}), and that certain timelines may not be omitted from such a subset.

Lemma 15. Any AMA LGGV of a setX of MA timelines is equivalent to a conjuncti@n of
timelines fromG(X) with |¥'| < ||

Proof: Lemma 5 implies that any timelin@ in ¥ must subsume some timelidg € IG(X). But

then the conjunctio’ of such®’ must be equivalent t&, since it clearly coverX and is covered

by the LGGY¥. Since¥’ was formed by taking one timeline from (&) for each timeline in¥,

we have|¥’| < |¥|. O We can complete our argument then by showing that exponentially many

timelines in IG{®,, ®,}) cannot be omitted from such a conjunction while it remains an LGG.
Notice that for any, j we have thas; .Ns. ; = p; j. Thisimplies that any state in G, ®>})

contains exactly one proposition, since each such state is formed by intersecting a stdie &ain

®,. Furthermore, the definition of interdigitation, applied here, implies the following two facts for

any timelinegy; g2; . . . ; g IN IG({ @1, P2 }):

lg= P11 andg,, = Pnn-

2. For consecutive stat% pz j andgy1 = py jr, i is eitheri ori + 1, j' is eitherj or j + 1,
and not both = 7" andj = 5.

Together these facts imply that any timeline i{@, ®2}) is a sequence of propositions starting
with p; ; and ending withp,, , such that any consecutive propositigng; p;/ ;- are different with

i’ equal toi or i + 1 andj’ equal toj or j + 1. We call a timeline in 1G{®,, ®-}) squareif

and only if each pair of consecutive propositigng andp; ;: have eithei’ = 7 or j/ = j. The
following lemma implies that no square timeline can be omitted from the conjunction of timelines
inIG(®q, ®,) if itis to remain an LGG ofp; and®,.

Lemma 16. Let®; and &, be as given above and l& = A IG({®,®5}). For any ¥’ whose
timelines are a subset of thoseunthat omits some square timeline, we have: ¥'.

The number of square timelines in (3>, ®-}) is equal t02"721 and hence is exponen-
tial in the size of®; and®,. We have now completed the proof o? t&1e ?ollowing result.

Theorem 17. The smallest LGG of two MA formulas can be exponentially large.

Proof: By Lemma 15, any AMA LGGY' of ®; and®, is equivalent to a conjunction of the same
number of timelines chosen from (GP;, ®5}). However, by Lemma 16, any such conjunction

must have at IeasEtL timelines, and then so must’, which must then be exponentially
large. O

Conjecture 18. The smallest LGG of two AMA formulas can be doubly-exponentially large.
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We now show that our lower-bound on AMA LGG complexity is not merely a consequence of
the existence of large AMA LGGs. Even when there is a small LGG, it can be expensive to compute
due to the difficulty of testing AMA subsumption:

Theorem 19. Determining whether a formulé is an AMA LGG for two given AMA formulaks,;
and ¥, is co-NP-hard, and is in co-NEXP, in the size of all three formulas together.

Proof. To show co-NP-hardness we use a straightforward reduction from AMA subsumption. Given
two AMA formulas ¥; and ¥, we decide¥; < ¥, by asking whethe®, is an AMA LGG of ¥y
and¥,. Clearly ¥, < U, iff ¥y is an LGG of the two formulas.

To show the co-NEXP upper bound, note that we can check in exponential time wiigtked
and¥, < ¥ using Proposition 7 and the polynomial-time MA subsumption algorithm. It remains
to show that we can check wheth&iis notthe “least” subsumer. Since Theorem 14 shows that the
LGG of ¥; and ¥y is IG(IS(¥;) U IS(Vy)), if ¥ is not the LGG thenl £ IG(IS(¥;) U IS(¥y)).

Thus, by Proposition 7, if is not a least subsumer, there must be timelifhgse 1S(¥) and

Oy € IG(IS(¥1) U IS(¥2)) such thatd; £ ®,. We can then use exponentially long certificates

for “No” answers: each certificate is a pair of an interdigitatfgrof ¥ and an interdigitatiorls of
IS(¥;)UIS(¥2), such that the corresponding memb@ise IS(V) and®, € IG(IS(V;) UIS(¥3))

have®; £ ®,. Given the pair of certificates, andI,, ®; can be computed in polynomial time,

®, can be computed in exponential time, and the subsumption between them can be checked in
polynomial time (relative to their size, which can be exponential) ¥ lis the LGG then¥ <
IG(IS(¥y) UIS(¥s)), so that no such certificates will exist. O

4.3 Syntactic Subsumption and Syntactic Least-General Generalization.

Given the intractability results for semantic AMA subsumption, we now introduce a tractable gen-
erality notion, syntactic subsumption, and discuss the corresponding LGG problem. The use of
syntactic forms of generality for efficiency is familiar in ILP (Muggleton & De Raedt, 1994)—
where, for exampled-subsumption is often used in place of the entailment generality relation.
Unlike AMA semantic subsumption, syntactic subsumption requires checking only polynomially
many MA subsumptions, each in polynomial time (via Theorem 9).

Definition 5. AMA VY, is syntactically subsumed by AMIA (written ¥y <sy, W) iff for each MA
timeline®, € Wy, there is an MA timelin®@; € ¥; such thatd; < ®,.

Proposition 20. AMA syntactic subsumption can be decided in polynomial time.

Syntactic subsumption trivially implies semantic subsumption—however, the converse does not
hold in general. Consider the AMA formulds!; B) A (B; A), and A; B; A where A and B are
primitive propositions. We havéA; B) A (B; A) < A; B; A; however, we have neithet; B <
A;B; A nor B; A < A; B; A, so thatA; B; A does not syntactically subsunte; B) A (B; A).
Syntactic subsumption fails to recognize constraints that are only derived from the interaction of
timelines within a formula.

Syntactic Least-General Generalization. A syntactic AMA LGGs a syntactically least-general
AMA formula that syntactically subsumes the input AMA formulas. Here, “least” means that no
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formula properly syntactically subsumed by a syntactic LGG can syntactically subsume the input
formulas. Based on the hardness gap between syntactic and semantic AMA subsumption, one might
conjecture that a similar gap exists between the syntactic and semantic LGG problems. Proving such
a gap exists requires closing the gap between the lower and upper bounds on AMA LGG shown in
Theorem 14 in favor of the upper bound, as suggested by Conjecture 18. While we cannot yet
show a hardness gap between semantic and syntactic LGG, we do give a syntactic LGG algorithm
that is exponentially more efficient than the best semantic LGG algorithm we have found (that of
Theorem 14). First, we show that syntactic LGGs exist and are unique up to mutual syntactic
subsumption (and hence up to semantic equivalence).

Theorem 21. There exists a syntactic LGG for any AMA formula Sethat is syntactically sub-
sumed by all syntactic generalizationsXaf

Proof. Let ¥ be the conjunction of all the MA timelines that syntactically generalizevhile
having size no larger thaR. As in the proof of Theorem 12¥ is well defined. We show that
¥ is a syntactic LGG foix. First, note thatl syntactically generalizes because each timeline
of ¥ generalizes a timeline in every memberfby the choice of'. Now consider an arbitrary
syntactic generalizatio®’ of ¥. By the definition of syntactic subsumption, each timekinén

¥’ must subsume some timelide, in each membet of X. Lemma 5 then implies that there is a
timeline @' of size no larger thal that subsumes all thé,, while being subsumed b§. By our
choice of¥, the timeline®’ must be a timeline of. It follows then thatl’ syntactically subsumes
¥, and that¥ is a syntactic LGG oE subsumed by all other syntactic generalization® of O

In general, we know that semantic and syntactic LGGs are different, though clearly the syntactic
LGG is a semantic generalization and so must subsume the semantic LGG. For examplen
(B; A), andA; B; A have a semantic LGG of; B; A, as discussed above; but their syntactic LGG
is (A; B;true) A (true; B; A), which subsumes!; B; A but is not subsumed by; B; A. Even
so, for MA formulas:

Proposition 22. For MA @ and AMAY, & <, ¥ is equivalent teP < 0.

Proof: The forward direction is immediate since we already know syntactic subsumption implies
semantic subsumption. For the reverse direction, notedh&t ¥ implies that each timeline of
subsume®—thus sinced is a single timeline each timeline & subsumes “some timeline” i®
which is the definition of syntactic subsumption.0

Proposition 23. Any syntactic AMA LGG for an MA formula setis also a semantic LGG fox.

Proof: Now, consider a syntactic LG& for X. Proposition 22 implies tha¥ is a semantic
generalization oE. Consider any semantic LG®' of . We show that? < ¥’ to conclude thaf
is a semantic LGG foE. Proposition 22 implies thab’ syntactically subsumes. It follows that
U’ A ¥ syntactically subsumes. But, U/ A ¥ is syntactically subsumed by, which is a syntactic
LGG of X—it follows that ¥’ A ¥ syntactically subsume®, or ¥ would not be deastsyntactic
generalization of. But then¥ < (¥’ A ¥), which implies¥ < ¥/, as desired. O

We note that the stronger result stating that a forndula a syntactic LGG of a sét of MA formu-
las if and only if itis a semantic LGG af is notan immediate consequence of our results above. At
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first examination, the strengthening appears trivial, given the equivalenee<ofl and® <gyn ¥

for MA ®. However, being semantically leastist necessarily a stronger condition than being syn-
tactically least—we have not ruled out the possibility that a semantically least generalizatiay
syntactically subsume another generalization that is semantically (but not syntactically) equivalent.
(This question is open, as we have not found an example of this phenomenon either.)

Proposition 23 together with Theorem 21 have the nice consequence for our learning approach
that the syntactic LGG of two AMA formulas is a semantic LGG of those formulas, as long as the
original formulas are themselves syntactic LGGs of sets of MA timelines. Because our learning ap-
proach starts with training examples that are converted to MA timelines using the LGCF operation,
the syntactic LGGs computed (whether combining all the training examples at once, or incremen-
tally computing syntactic LGGs of parts of the training data) are always syntactic LGGs of sets of
MA timelines and hence are also semantic LGGs, in spite of the fact that syntactic subsumption is
weaker than semantic subsumption. We note, however, that the resulting semantic LGGs may be
considerably larger than the smallest semantic LGG (which may not be a syntactic LGG at all).

Using Proposition 23, we now show that we cannot hope for a polynomial-time syntactic LGG
algorithm.

Theorem 24. The smallest syntactic LGG of two MA formulas can be exponentially large.

Proof. Suppose there is always a syntactic LGG of two MA formulas that is not exponentially large.
Since by Proposition 23 each such formula is also a semantic LGG, there is always a semantic LGG
of two MA formulas that is not exponentially large. This contradicts Theorem 12.

While this is discouraging, we have an algorithm for the syntactic LGG whose time complexity
matches this lower-bound, unlike the semantic LGG case, where the best algorithm we have is
doubly exponential in the worst case. Theorem 14 yields an exponential time method for computing
the semantic LGG of a set of MA timelinés—since for a timelineb, IS(®) = &, we can simply
conjoin all the timelines of IGX). Given a set of AMA formulas, the syntactic LGG algorithm uses
this method to compute the polynomially-many semantic LGGs of sets of timelines, one chosen
from each input formula, and conjoins all the results.

Theorem 25. The formulaAg cy, IG({®1,...,®,}) is a syntactic LGG of the AMA formulas
Ty,..., 0.

Proof: Let ¥ be A\g,cy, IG({®1,. .., P, }). Each timeline of ¥ must subsume each; because
® is an output of 1G on a set containing a timelinelgf—thus ¥ syntactically subsumes eadh.

To show that¥ is a syntactically least such formula, considal¥’dhat syntactically subsumes every
;. We show thatl' <gy, ¥’ to conclude. Each timelin®’ in ¥’ subsumes a timelin&; € T;,
for eachi, by our assumption thalt; <sy, ¥’. But then by Lemma 5p" must subsume a member
of IGH{T,...,T,})—and that member is a timeline 8—so each timelin@’ of ¥’ subsumes a
timeline of U. We concludel <gy U’ as desired. O

This theorem yields an algorithm that computes a syntactic AMA LGG in exponential time—
pseudo-code for this method is given in Figure 9. The exponential time bound follows from the fact
that there are exponentially many ways to chodse. . ., ®,, in line 5, and for each of these there
are exponentially many semantic-LGG members in line 6 (sinc@ttare all MA timelines)—the
product of these two exponentials is still an exponential.
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=

syntactic-LGG{ ¥, ¥s,..., ¥, })
I Input: AMA formulas{¥,...,¥,,}
/I Output: syntactic LGG of ¥y,...,¥,,}
G:={};
for each(®q,...,®,,) € Uy x --- x ¥,
for each® in semantic-LGG{®1,...,P,,})
if (V&' € G.d' £ D)
then G’ :={@" ¢ G| ® < ?"};
G:=(G-G)u{o}

iy
Q

return (A G)

Figure 9: Pseudo-code that computes the syntactic AMA LGG of a set of AMA formulas.

The formula returned by the algorithm shown is actually a subset of the syntactic LGG given
by Theorem 25. This subset is syntactically (and hence semantically) equivalent to the formula
specified by the theorem, but is possibly smaller due to the pruning achieved ibstatement in
lines 7-9. A timeline is pruned from the set if it is (semantically) subsumed by any other timeline in
the set (one timeline is kept from any semantically equivalent group of timelines, at random). This
pruning of timelines is sound, since a timeline is pruned from the output only if it subsumes some
other formula in the output—this fact allows an easy argument that the pruned formula is syntacti-
cally equivalent to (i.e. mutually syntactically subsumed by) the unpruned formula. Section 4.4.2
traces the computations of this algorithm for an example LGG calculation. We note that in our em-
pirical evaluation discussed in Section 6, there was no cost in terms of accuracy for using the more
efficient syntactic vs. semantic LGG. We know this because our learned definitions made errors in
the direction of being overly specific—thus, since the semantic-LGG is at least as specific as the
syntactic-LGG there would be no advantage to using the semantic algorithm.

The method does an exponential amount of work even if the result is small (typically because
many timelines can be pruned from the output because they subsume what remains). It is still an
open question as to whether there is an output-efficient algorithm for computing the syntactic AMA
LGG—this problem is in coNP and we conjecture that it is coNP-complete. One route to settling
this question is to determine the output complexity of semantic LGG for MA input formulas. We
believe that problem also to be coNP-complete, but have not proven this; if that problem is in P,
there is an output-efficient method for computing syntactic AMA LGG based on Theorem 25.

A summary of the algorithmic complexity results from this section can be found in Table 3 in
the conclusions section of this paper.

4.4 Examples: Least-General Generalization Calculations

Below we work through the details of a semantic and a syntactic LGG calculation. We consider the
AMA formulas ¥ = (A; B) A (B; A) and® = A; B; A, for which the semantic LGG id; B; A
and the syntactic LGG i€4; B; true) A (true; B; A).
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4.4.1 EMANTIC LGG EXAMPLE

The first step in calculating the semantic LGG, according to the algorithm given in Figure 8, is to
compute the interdigitation-specializations of the input formulas (i.€®)J&nd IS ¥)). Trivially,

we have that I8P) = ® = A; B; A. To calculate I$¥), we must consider the possible interdigita-
tions of ¥, for which there are three,

{ (4,B),(B,B),(B,4) }
{ (4,B),(B,A) }
{ (4,B),(4,4),(B,4) }

Each interdigitation leads to the corresponding member (@F J®y unioning (conjoining) the states
in each tuple, so I8V) is

{ (AAB);B;(ANB),
(AN B),
(AANB);A;(AANB) }.

Lines 5-9 of the semantic LGG algorithm compute theSetvhich is equal to the union of the
timelines in I3Y) and IS ®), with all subsumed timelines removed. For our formulas, we see that
each timeline in I8¥) is subsumed byp—thus, we have that = ® = A; B; A.

After computingS, the algorithm returns the conjunction of timelines in(83, with redundant
timelines removed (i.e., all subsuming timelines are removed). In our ca$8) I& A; B; A,
trivially, as there is only one timeline ifi, thus the algorithm correctly computes the semantic LGG
of U and® to be 4; B; A.

4.4.2 SINTACTIC LGG EXAMPLE

The syntactic LGG algorithm, shown in Figure 9, computes a series of semantic LGGs for MA
timeline sets, returning the conjunction of the results (after pruning). Line 5 of the algorithm, cycles
through timeline tuples from the cross-product of the input AMA formulas. In our case the tuples
in® x ¥ areTy; = (A;B; A, A;B) andT, = (A; B; A, B; A)—for each tuple, the algorithm
computes the semantic LGG of the tuple’s timelines.

The semantic LGG computation for each tuple uses the algorithm given in Figure 8, but the
argument is always a set of MA timelines rather than AMA formulas. For this reason, lines 4—
9 are superfluous, as for an MA timelirg, 1S(®') = ®'. In the case of tupld?, lines 4-9
of the algorithm just computé = {A; B; A, A; B}. It remains to compute the interdigitation-
generalizations of (i.e., IG(S)), returning the conjunction of those timelines after pruning (lines
10-15 in Figure 8). The set of all interdigitations.$fre,

{ (4,4),(B,4),(B,B),(B,4) }
[ (A.4).(B.B),(B, 4) }
{ (4,4),(4,B),(B,B),(B,4) }
{ (4,4),(A,B), (B, A) }
{ (4,4),(4,B),(A,4),(B,4) }

By intersecting states in interdigitation tuples we get3@

{ A;true; B;true, A; B;true, A;true; B;true, A;true;true, A;true; A;true }
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Since the timelined; B; true is subsumed by all timelines in &), all other timelines will be
pruned. Thus the semantic LGG algorithm retufa3; true as the semantic LGG of the timelines
in T;.

Next the syntactic LGG algorithm computes the semantic LGG of the timeliriBs irollowing
the same steps as o}, we find that the semantic LGG of the timelinesIiis true; B; A. Since
A; B;true andtrue; B; A do not subsume one another, the Getomputed by lines 5-9 of the
syntactic LGG algorithm is equal 0A; B; true, true; B; A }. Thus, the algorithm computes the
syntactic LGG of® andV¥ to be(A; B; true) A (true; B; A). Note that, in this case, the syntactic
LGG is more general than the semantic LGG.

5. Practical Extensions

We have implemented a specific-to-general AMA learning algorithm based on the LGCF and syn-
tactic LGG algorithms presented earlier. This implementation includes four practical extensions.
The first extension aims at controlling the exponential complexity by limiting the length of the
timelines we consider. Second we describe an often more efficient LGG algorithm based on a
modified algorithm for computing pairwise LGGs. The third extension deals with applying our
propositional algorithm to relational data, as is necessary for the application domain of visual event
recognition. Fourth, we add negation into the AMA language and show how to compute the cor-
responding LGCFs and LGGs using our algorithms for AMA (without negation). Adding negation
into AMA turns out to be crucial to achieving good performance in our experiments. We end this
section with a review of the overall complexity of our implemented system.

5.1 k-AMA Least-General Generalization

We have already indicated that our syntactic AMA LGG algorithm takes exponential time relative
to the lengths of the timelines in the AMA input formulas. This motivates restricting the AMA
language tok-AMA in practice, where formulas contain timelines with no more tliastates.
As k is increased the algorithm is able to output increasingly specific formulas at the cost of an
exponential increase in computational time. In the visual-event—recognition experiments shown
later, as we increaséq the resulting formulas became overly specific before a computational bottle-
neck is reached—i.e., for that application the best valuéswére practically computable and the
ability to limit £ provided a useful language bias.

We use &-coveroperator in order to limit our syntactic LGG algorithmieAMA. A k-cover
of an AMA formula is a syntactically least generalAMA formula that syntactically subsumes
the input—it is easy to show thatfacover for a formula can be formed by conjoining &MA
timelines that syntactically subsume the formula (i.e., that subsume any timeline in the formula) .
Figure 10 gives pseudo-code for computing theover of an AMA formula. It can be shown that
this algorithm correctly computeskacover for any input AMA formula. The algorithm calculates
the set of least generatMA timelines that subsume each timeline in the input—the resultihgA
formulas are conjoined and “redundant” timelines are pruned using a subsumption test. We note that
the k-cover of an AMA formula may itself be exponentially larger than that formula; however, in
practice, we have founk-covers not to exhibit undue size growth.

Given thek-cover algorithm we restrict our learner (oAMA as follows: 1) Compute the
k-cover for each AMA input formula. 2) Compute the syntactic AMA LGG of the resulfing
AMA formulas. 3) Return thé-cover of the resulting AMA formula. The primary bottleneck of
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=

k-cover(k, Ai<jcm Pi)

2: /l'lnput: positive natural numbek, AMA formula/\; <;<,,,
3 /I Output: k-cover of Ay ;<,, ®;
4: G = {},
5: fori:=1tom
6: for eachP := (Py, ..., P,) in all-valuega-k-partition k, ®;))
7: = (NP5 (NPn);
8: if (V@' € G.®' £ D)
: then G' .= {®" € G| & < 9"},
10: G:=(G-G)U{o};
11 return (A G)

12:  a-k-partition(k, s1;...;s;)

13: /I Input: positive natural numbek, MA timelines;. .. ; s;

14: /I Output: atuple of < k sets of consecutive states that partitiens. . ., s;
15: if 7 <kthenreturn ({s1},...,{s;j});

17: if & =1thenreturn ({s1,...,s;});

18: [ := a-member-of{1,2,...,5 —k+1}); [/ pick next block size

19: Py ={s1,...,s1}; /I construct next block

20: return extend-tupléPy, a-k-partition(k — 1, ;415 ...;5;));

Figure 10: Pseudo-code for non-deterministically computing a k-cover of an AMA formula, along
with a non-deterministic helper function for selectingcak block partition of the states
of a timeline.

the original syntactic LGG algorithm is computing the exponentially large set of interdigitation-
generalizations—thé&-limited algorithm limits this complexity as it only computes interdigitation-
generalizations involving-MA timelines.

5.2 Incremental Pairwise LGG Computation

Our implemented learner computes the syntactic k-AMA LGG of AMA formula sets—however,

it does not directly use the algorithm describe above. Rather than compute the LGG of formula
sets via a single call to the above algorithm, it is typically more efficient to break the computation
into a sequence of pairwise LGG calculations. Below we describe this approach and the potential
efficiency gains.

It is straightforward to show that for both syntactic and semantic subsumption we have that
LGG(Vy,...,¥,,) = LGG(V¥,LGG(V,,...,¥,,)) where the¥; are AMA formulas. Thus, by
recursively applying this transformation we can incrementally compute the LG& AMA for-
mulas via a sequence af — 1 pairwise LGG calculations. Note that since the LGG operator is
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commutative and associative the final result does not depend on the order in which we process the
formulas. We will refer to this incremental pairwise LGG strategy asnbemental approaclnd

to the strategy that makes a single call to the k-AMA LGG algorithm (passing in the entire formula
set) as thalirect approach

To simplify the discussion we will consider computing the LGG of an MA formula®setthe
argument can be extended easily to AMA formulas (and hence to k-AMA). Recall that the syntactic
LGG algorithm of Figure 9 computes LG&) by conjoining timelines in IGX) that do not sub-
sume any of the others, eliminating subsuming timelines in a form of pruning. The incremental
approach applies this pruning step after each pair of input formulas is processed—in contrast, the
direct approach must compute the interdigitation-generalization of all the input formulas before any
pruning can happen. The resulting savings can be substantial, and typically more than compensates
for the extra effort spent checking for pruning (i.e. testing subsumption between timelines as the
incremental LGG is computed). A formal approach to describing these savings can be constructed
based on the observation that bIf G (s, 3,}) ICH{ P} U ) andUs | GG(a, 0,) ICH{PIUT)
can be seen to compute the LGG3fJ {®4, ®,}, but with the latter being possibly much cheaper
to compute due to pruning. That is, LG, ®,) typically contains a much smaller number of
timelines than IG{®;, ®;}).

Based on the above observations our implemented system uses the incremental approach to
compute the LGG of a formula set. We now describe an optimization used in our system to speedup
the computation of pairwise LGGs, compared to directly running the algorithm in Figure 9. Given a
pair of AMA formulas¥; = @, 1 A--- A @y, andWy = @y A--- A Dy, let U be their syntactic
LGG obtained by running the algorithm in Figure 9. The algorithm constnlicksy computing
LGGs of all MA timeline pairs (i.e., LGGP, ;, ®, ;) for all i andj) and conjoining the results
while removing subsuming timelines. It turns out that we can often avoid computing many of these
MA LGGs. To see this consider the case when there exaitslj such that®, ; < @, ;, we know
LGG(®,;, P2, ;) = P2 ; Which tells us that thad, ; will be considered for inclusion int& (it may
be pruned). Furthermore we know that any other LGG involving will subsume®, ; and thus
will be pruned fromW. This shows that we need not compute any MA LGGs involving;, rather
we need only to consider addidg, ; when constructingy.

The above observation leads to a modified algorithm (used in our system) for computing the
syntactic LGG ofa pair of AMA formulas. The new algorithm only computes LGGs between
non-subsuming timelines. Given AMA formulds, and ¥,, the modified algorithm proceeds as
follows: 1) Compute theubsumer sef = {® € U | 3P’ € Uy 5.t. &' < DU {P € Ty | D' €
U, s.t. @ < @}, 2) Let AMA U (0)) be the result of removing timelines frody, (¥5) that are
in S. 3) Let¥’ be the syntactic LGG o¥, and ¥/, computed by running the algorithm in Figure 9
(if either ¥’ is empty then?’ will be empty). 4) LetS’ be the conjunction of timelines ifi that do
not subsume any timeline #'. 5) Return¥ = ¥’ A S’. This method avoids computing MA LGGs
involving subsuming timelines (an exponential operation) at the cost of performing polynomially
many MA subsumption tests (a polynomial operation). We have noticed a significant advantage to
using this procedure in our experiments. In particular, the advantage tends to grow as we process
more training examples. This is due to the fact that as we incrementally process training examples
the resulting formulas become more general—thus, these more general formulas are likely to have
more subsuming timelines. In the best case wligrksy, ¥ (i.€., all timelines in¥, are subsum-
ing), we see that step 2 produces an empty formula and thus step 3 (the expensive step) performs no
work—in this case we return the sgt= ¥, as desired.
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5.3 Relational Data

LEONARD produces relational models that involve objects and (force dynamic) relations between
those objects. Thus event definitions include variables to allow generalization over objects. For
example, a definition for BRKUP(z, y, z) recognizes both ik Up(hand, block, table) as well as
PickUpP(man, box, floor). Despite the fact that ourAMA learning algorithm is propositional, we

are still able to use it to learn relational definitions.

We take a straightforward object-correspondence approach to relational learning. We view the
models output by EONARD as containing relations applied to constants. Since we (currently)
support only supervised learning, we have a set of distinct training examples for each event type.
There is an implicit correspondence between the objects filling the same role across the differ-
ent training models for a given type. For example, models showiog Br(hand, block, table)
and RckUP(man, box, floor) have implicit correspondences given fhand, man), (block, boxy),
and (table, floor). We outline two relational learning methods that differ in how much object-
correspondence information they require as part of the training data.

5.3.1 GOMPLETE OBJECTCORRESPONDENCE

This first approach assumes that a complete object correspondence is given, as input, along with
the training examples. Given such information, we can propositionalize the training models by
replacing corresponding objects with unique constants. The propositionalized models are then given
to our propositionak-AMA learning algorithm which returns a propositionalAMA formula. We

then lift this propositional formula by replacing each constant with a distinct variable. Lavrac et al.
(1991) has taken a similar approach.

5.3.2 RARTIAL OBJECTCORRESPONDENCE

The above approach assumes complete object-correspondence information. While it is sometimes
possible to provide all correspondences (for example, by color-coding objects that fill identical
roles when recording training movies), such information is not always available. When only a
partial object correspondence (or even none at all) is available, we can automatically complete the
correspondence and apply the above technique.

For the moment, assume that we have an evaluation function that takes two relational models
and a candidate object correspondence, as input, and yields an evaluation of correspondence qual-
ity. Given a set of training examples with missing object correspondences, we perform a greedy
search for the best set of object-correspondence completions over the models. Our method works
by storing a seP of propositionalized training examples (initially empty) and al$eif unproposi-
tionalized training examples (initially the entire training set). For the first step, Whsempty, we
evaluate all pairs of examples frabh, under all possible correspondences, select the pair that yields
the highest score, remove the examples involved in that pair ffppropositionalize them accord-
ing to the best correspondence, and add thef.tBor each subsequent step, we use the previously
computed values of all pairs of examples, one fronand one fromP, under all possible corre-
spondences. We then select the example ftband correspondence that yields the highest average
score relative to all models iR—this example is removed froiii, propositionalized according to
the winning correspondence, and added’toFor a fixed number of objects, the effort expended
here is polynomial in the size of the training set; however, if the number of oldjéteét appear in a
training example is allowed to grow, the number of correspondences that must be considered grows
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asb’. For this reason, it is important that the events involved manipulate only a modest number of
objects.

Our evaluation function is based on the intuition that object roles for visual events (as well as
events from other domains) can often be inferred by considering the changes between the initial
and final moments of an event. Specifically, given two models and an object correspondence, we
first propositionalize the models according to the correspondence. Next, we compute ADD and
DELETE lists for each model. The ADD list is the set of propositions that are true at the final
moment but not the initial moment. The DELETE list is the set of propositions that are true at the
initial moment but not the final moment. These add and delete lists are motivated by STRIPS action
representations (Fikes & Nilsson, 1971). Given such ARBd DELETE lists for modelsl and2,
the evaluation function returns the sum of the cardinalities of ADDADD, and DELETH N
DELETE,. This heuristic measures the similarity between the ADD and DELETE lists of the two
models. The intuition behind this heuristic is similar to the intuition behind the STRIPS action-
description language—i.e., that most of the differences between the initial and final moments of an
event occurrence are related to the target event, and that event effects can be described by ADD and
DELETE lists. We have found that this evaluation function works well in the visual-event domain.

Note, that when full object correspondences are given to the learner (rather than automatically
extracted by the learner), the training examples are interpreted as specifying that the target event
took place as well as which objects filled the various event roles (elgk UP(a,b,c)). Rather,
when no object correspondences are provided the training examples are interpreted as specifying the
existence of a target event occurrence but do not specify which objects fill the roles (i.e., the training
example is labeled byIBkUP rather than REkUpP(a,b,c)). Accordingly, the rules learned when no
correspondences are provided only allow us to infer that a target event occurred and not which
objects filled the event roles. For example when object correspondences are manually provided the
learner might produce the rule,

A | (SUPPORTSz,y) A CONTACTS(z,y));
PICKUP(z,y,2) = l (SUPPORTSz,y) A ATTACHED(z, 7))

whereas a learner that automatically extracts the correspondences would instead produce the rule,

A

PickUp 2 [ (SUPPORTSz,y) A CONTACTS(2,¥)); ]

(SUPPORTSz,y) A ATTACHED(z, y))

Its worth noting, however, that upon producing the second rule the availability of a single training
example with correspondence information allows the learner to determine the roles of the variables,
upon which it can output the first rule. Thus, under the assumption that the learner can reliably
extract object correspondences, we need not label all training examples with correspondence infor-
mation in order to obtain definitions that explicitly recognize object roles.

5.4 Negative Information

The AMA language does not allow negated propositions. Negation, however, is sometimes neces-
sary to adequately define an event type. In this section, we consider the language Miigh is a
superset of AMA, with the addition of negated propositions. We first give the syntax and semantics
of AMA ~, and extend AMA syntactic subsumption to AMANext, we describe our approach to
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learning AMA~ formulas using the above-presented algorithms for AMA. We show that our ap-
proach correctly computes the AMALGCF and the syntactic AMA LGG. Finally, we discuss
an alternative, related approach to adding negation designed to reduce the overfitting that appears to
result from the full consideration of negated propositions.

AMA ~ has the same syntax as AMA, only with a new grammar for building states with negated
propositions:

literal ::= true | prop| —<prop
state ::= literal | literal A state

wherepropis any primitive proposition. The semantics of AMAare the same as for AMA except
for state satisfaction.

e A positive literal P (negative literal-< P) is satisfied by model)M, I') iff M|[z] assignsP
true (false), for every: € 1.10

e Astatel; A--- Al is satisfied by mode|M, I) iff each literall; is satisfied by(M, I).

Subsumption. An important difference between AMA and AMAIs that Proposition 2, estab-
lishing the existence of witnessing interdigitations to MA subsumption, is no longer true for. MA
In other words, if we have two timelinas,;, &, € AMA ~, such thatb; < ®,, there need not be an
interdigitation that withesseB; < ®,. To see this, consider the AMAtimelines:

&, = (aAbACe);bya;b;(aANbA—oC)

Dy = bja;ca;bja;—ocarb
We can then argue:

1. There is no interdigitation that witness@s < ®,. To see this, first show that, in any such
witness, the second and fourth statesbef(each just ") must interdigitate to align with
either the first and fifth, or the fifth and ninth states®ef (also, each justs”). But in either
of these cases, the third statedgf will interdigitate with states ofb, that do not subsume it.

2. Even so, we still have thdt; < ®,. To see this, consider any mod@l/, I) that satisfie®; .
There must be an interv@l, , i2] within I such that M, [i1, i2]) satisfies the third state @f,
that is the stated.” We have two cases:

(a) The propositior is true at some point i, [i1,i2]). Then, one can verify that\/, I')
satisfies botlp; and®, in the following alignment:

o, = (a ANb A c);b; a; b; (aANbA=ocC)
o, = b; a; ¢ a; b; a;—ocab

10. We note that it is important that we use the notatiGhP rather than just-P. In event-logic, the formulanP
is satisfied by a model whenevér is false as some instant in the model. Rather, event-logic interpref® as
indicating thatP is never true in the model (as defined above). Notice that the first form of negation does not yield a
liquid property—i.e.P can be true along an interval but not necessarily during all subintervals. The second form of
negation, however, does yield a liquid property provided that liquid. This is important to our learning algorithms,
since they all assume states are built from liquid properties.
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(b) The propositiort is false everywhere iGM, [i1,2]). Then, one can verify thgtM, )
satisfies bothb; and®, in the following alignment:
D (a ANbAc); b; a; b;(aANbA—oc)
dy = b; a; c; a; b; a; o a; b

It follows that®; < ®s.

In light of such examples, we conjecture that it is computationally hard to compute AMA
subsumption even between timelines. For this reason, we extend our definition of syntactic sub-
sumption to AMA™ in a way that provides a clearly tractable subsumption test analogous to that
discussed above for AMA.

Definition 6. AMA~ ¥, is syntactically subsumed BYMA = W, (written ¥; <gyn W») iff for
each timelined, € U,, there is a timelinegb; € ¥ such that there is a withessing interdigitation
for ®; < ®,.

The difference between the definition here and the previous one for AMA is that here we only need
to test for witnessing interdigitations between timelines rather than subsumption between timelines.
For AMA formulas, we note that the new and old definition are equivalent (due to Proposition 2);
however, for AMA™ the new definition is weaker, and will result in more general LGG formulas. As
one might expect, AMA syntactic subsumption implies semantic subsumption and can be tested
in polynomial-time using the subsumption graph described in Lemma 8 to test for witnesses.

Learning. Rather than design new LGCF and LGG algorithms to directly handle AM&e
instead compute these functions indirectly by applying our algorithms for AMA to a transformed
problem. Intuitively, we do this by adding new propositions to our models (i.e., the training exam-
ples) that represent the proposition negations. Assume that the training-example models are over the
set of propositions® = {p1,...,p,}. We introduce a new s&® = {pi,...,p,} of propositions
and use these to construct new training models @ver P by assigning true tg; at a time in a
model iff p; is false in the model at that time. After forming the new set of training models (each
with twice as many propositions as the original models) we compute the least general AMA formula
that covers the new models (by computing the AMA LGCFs and applying the syntactic AMA LGG
algorithm), resulting in an AMA formul& over the proposition® U P. Finally we replace eaghy
in ¥ with =<p; resulting in an AMA™ formula ¥’ over propositions inlP—it turns out that under
syntactic subsumptio’ is the the least general AMA formula that covers the original training
models.

We now show the correctness of the above transformational approach to computing the AMA
LGCF and syntactic LGG. First, we introduce some notation. kkbe the set of all models over
P. Let M be the set of models ove? U P, such that at any time, for eag¢hexactly one ofp;
andp; is true. LetT be the following mapping froravt to M: for (M, I) € M, T[(M,I)] is the
unique (M’, I) € M such that for allj € I and alli, M'(j) assignsp; true iff M(j) assigng;
true. Notice that the inverse @fis a functional mapping fronM to M. Our approach to handling
negation using purely AMA algorithms begins by applyifigo the original training models. In
what follows, we consider AMA formulas over the propositions iR, and AMA formulas over
the propositions iP U P.

Let F' be a mapping from AMA to AMA where for¥ € AMA —, F[¥] is an AMA formula
identical to¥ except that each<p; in VU is replaced withp;. Notice that the inverse df is a func-
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tion from AMA to AMA ~ and corresponds to the final step in our approach described above. The
following lemma shows that there is a one-to-one correspondence between satisfaction of AMA
formulas by models iV and satisfaction of AMA formulas by models .iv(.

Lemma 26. Forany modelM,I) € M and anyl € AMA —, ¥ covers(M, I) iff F[¥]covers
T[(M,I)].

Using this lemma, it is straightforward to show that our transformational approach computes the
AMA ~ LGCF under semantic subsumption (and hence under syntactic subsumption).

Proposition 27. For any (M,I) € M, let ® be the AMA LGCF of the mod#I[(M, I)]. Then,
F~1®] is the uniqueAMA ~ LGCF of (M, I), up to equivalence.

Proof: We know that® coversT'[(M, I)], therefore by Lemma 26 we know that ! [®] covers

(M, I). We now show thaf"~1[®] is the least-general formula in AMAthat coversM, I). For

the sake of contradiction assume that sebhec AMA ~ covers(M, I) but that®’' < F~1[®]. It
follows that there is some modéM’, Iy that is covered by [®] but not by®’. By Lemma 26

we have thatF'[®'] coversT[(M, I)] and sinced is the unique AMA LGCF ofT'[(M, I)], up to
equivalence, we have thét < F[®']. However, we also have that[(M’, I')] is covered byd

but not by F[®'] which gives a contradiction. Thus, no suéhcan exist. It follows that is an

AMA ~ LGCF. The uniqueness of the AMALGCF up to equivalence follows because AMAs
closed under conjunction; so that if there were any two non-equivalent LGCF formulas, they could
be conjoined to get an LGCF formula strictly less than one of ther.

Below we use the fact that thé operator preserves syntactic subsumption. In particular, given
two MA™ timelines®,, ®,, itis clear that any witnessing interdigitation ®f < ®, can be trivially
converted into a witness fdf[®,] < F[®2] (and vice versa). Since syntactic subsumption is defined
in terms of witnessing interdigitations, it follows that for ady, ¥» € AMA =, (¥ <gyn ¥») iff
(F[¥1] <syn F[¥3]). Using this property, it is straightforward to show how to compute the syntactic
AMA ~ LGG using the syntactic AMA LGG algorithm.

Proposition 28. For any AMA~ formulas ¥,...,¥,,, let ¥ be the syntactic AMA LGG of
{F[¥],...,F[¥,,]}. Then,F~![¥] is the unique syntactibMA = LGG of {V,...,¥,,}.

Proof: We know that for each, F[¥;] <syn ¥—thus, sinceF"~! preserves syntactic subsumption,
we have that for each ¥; <syn F~1[¥]. This shows that’~![T] is a generalization of the inputs.
We now show that"~![¥] is the least such formula. For the sake of contradiction assume that
F~1[T] is not least. It follows that there must beld € AMA ~ such thatl’ <., F~1[¥] and for
eachi, ¥; <syn ¥'. Combining this with the fact thal’ preserves syntactic subsumption, we get
that F[¥'] <¢yn ¥ and for each, F[¥;] < F[¥']. But this contradicts the fact thdt is an LGG;

so we must have that—![¥] is a syntactic AMA" LGG. As argued elsewhere, the uniqueness of
this LGG follows from the fact that AMA is closed under conjunction. O

These propositions ensure the correctness of our transformational approach to computing the
syntactic LGG within AMA". For the case of semantic subsumption, the transformational approach
does not correctly compute the AMALGG. To see this, recall that above we have given two time-
lines®;, ®, € AMA ~, such that®; < ®,, but there is no witnessing interdigitation. Clearly under

416



LEARNING TEMPORAL EVENTS

semantic subsumption, the AMALGG of &; and®; is ®,. However, the semantic AMA LGG of
F[®,] andF[®4] is notF'[®9]. The reason for this is that since there is no witneds|tb; | < F[P]

(and theF[®;] are MA timelines), we know by Proposition 2 thB{®;] £ F[®;]. Thus,F|[®,]

cannot be returned as the AMA LGG, since it does not subsume both input formulas—this shows
that the transformational approach will not retupn = F~[F[®,]]. Here, the transformational
approach will produce an AMA formula that is more general thar.

On the computational side, we note that, since the transformational approach doubles the num-
ber of propositions in the training data, algorithms specifically designed for AMray be more
efficient. Such algorithms might leverage the special structure of the transformed examples that our
AMA algorithms ignore—in particular, that exactly onemfor p; is true at any time.

Boundary Negation. In our experiments, we actually compare two methods for assigning truth
values to thep; propositions in the training data models. The first method, cdllédchegation
assigns truth values as described above, yielding the syntactically least-general fa#ula that
covers the examples. We found, however, that using full negation often results in learning overly
specific formulas. To help alleviate this problem, our second method places a bias on the use of
negation. Our choice of bias is inspired by the idea that, often, much of the useful information for
characterizing an event type is in its pre- and post-conditions. The second methodboattetry
negationdiffers from full negation in that it only allows; to be true in the initial and final moments

of a model (and then only j; is false).p; must be false at all other times. That is, we only allow
“informative” negative information at the beginnings and ends of the training examples. We have
found that boundary negation provides a good trade-off between no negation (i.e., AMA), which
often produces overly general results, and full negation (i.e., AMAvhich often produces overly
specific and much more complicated results.

5.5 Overall Complexity and Scalability

We now review the overall complexity of our visual event learning component and discuss some
scalability issues. Given atraining set of temporal models (i.e., a set of movies), our system does the
following: 1) Propositionalize the training models, translating negation as descried in Section 5.4.
2) Compute the LGCF of each propositional model. 3) Computé&tASA LGG of the LGCFs.

4) Return a lifted (variablized) version of the LGG. Steps two and four require little computational
overhead, being linear in the sizes of the input and output respectively. Steps one and three are
the computational bottlenecks of the system—they encompass the inherent exponential complexity
arising from the relational and temporal problem structure.

Step One. Recall from Section 5.3.2 that our system allows the user to annotate training exam-
ples with object correspondence information. Our technique for propositionalizing the models was
shown to be exponential in the number of unannotated objects in a training example. Thus, our
system requires that the number of objects be relatively small or that correspondence information
be given for all but a small number of objects. Often the event class definitions we are interested
in do not involve a large number of objects. When this is true, in a controlled learning setting we
can manage the relational complexity by generating training examples with only a small number (or
zero) irrelevant objects. This is the case for all of the domains studied empirically in this paper.

In a less controlled setting, the number of unannotated objects may prohibit the use of our
correspondence techniqgue—there are at least three ways one might proceed. First, we can try to
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develop efficient domain-specific techniques for filtering objects and finding correspondences. That
is, for a particular problem it may be possible to construct a simple filter that removes irrelevant
objects from consideration and then to find correspondences for any remaining objects. Second, we
can provide the learning algorithm with a set of hand-coded first-order formulas, defining a set of
domain-specific features (e.qg., in the spirit of Roth & Yih, 2001). These features can then be used
to propositionalize the training instances. Third, we can draw upon ideas from relational learning to
design a “truly first-order” version of the-AMA learning algorithm. For example, one could use
existing first-order generalization algorithms to generalize relational state descriptions. Effectively
this approach pushes the object correspondence problem inteXNA learning algorithm rather

than treating it as a preprocessing step. Since it is well known that computing first-order LGGs can
be intractable (Plotkin, 1971), practical generalization algorithms retain tractability by constraining
the LGGs in various ways (e.g., Muggleton & Feng, 1992; Morales, 1997).

Step Three. Our system uses the ideas of Section 5.2 to speedup-&MA LGG computation

for a set of training data. Nevertheless, the computational complexity is still exponeritiaithus,

in practice we are restricted to using relatively small valuek.divhile this restriction did not limit
performance in our visual event experiments, we expect that it will limit the direct applicability
of our system to more complex problems. In particular, many event types of interest may not
be adequately represented ¥%isAMA when £ is small. Such event types, however, often contain
significant hierarchical structure—i.e., they can be decomposed into a set of “short” sub-event types.
An interesting research direction is to consider using o#tMA learner as a component of a
hierarchical learning system—there it could be used to IéaAMA sub-event types. We note

that our learner alone cannot be applied hierarchically because it requires liquid primitive events,
but learns non-liquid composite event types. Further work is required (and intended) to construct a
hierarchical learner based perhaps on non-liquid AMA learning.

Finally, recall that to compute the LGG of examples, our system uses a sequence ef 1
pairwise LGG calculations. For a fixdd each pairwise calculation takes polynomial time. How-
ever, since the size of a pairwise LGG can grow by at least a constant factor with respect to the
inputs, the worst-case time complexity of computing the sequenee-ot pairwise LGGs is expo-
nential inm. We expect that this worst case will primarily occur when the target event type does not
have a compadt-AMA representation—in which case a hierarchical approach as described above
is more appropriate. When there is a compact representation, our empirical experience indicates
that such growth does not occur—in particular, each pairwise LGG tends to yield significant prun-
ing. For such problems, reasonable assumptions about the amount of pkumiply that the time
complexity of computing the sequencemaf— 1 pairwise LGGs is polynomial im.

6. Experiments
6.1 Data Set

Our data set contains examplesrdifferent event typespick up put down stack unstack move
assembleanddisassemble Each of these involve a hand and two to three blocks. For a detailed
description and sample video sequences of these event types, see Siskind (2001). Key frames from
sample video sequences of these event types are shown in Figure 11. The results of segmentation,

11. In particular, assume that the size of a painkis®MA LGG is “usually” bounded by the sizes of thkecovers of the
inputs.
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tracking, and model reconstruction are overlaid on the video frames. We reciirdedvies for
each of the7 event classes resulting in a total 2f0 movies comprisingl1946 framest? We
replaced onassemblenovie (assemble-left-qobi-04), with a duplicate copy of another (assemble-
left-qobi-11) because of segmentation and tracking errors.

Some of the event classes are hierarchical in that occurrences of events in one class con-
tain occurrences of events in one or more simpler classes. For example, a movie depicting a
MOoVE(a, b, ¢, d) event (i.e.a movesb from ¢ to d) contains subintervals wheradkUP(a, b, c)
and RUTDOWN(a, b, d) events occur. In our experiments, when learning the definition of an event
class only the movies for that event class are used in training. We do not train on movies for other
event classes that may also depict an occurrence of the event class being learned as a subevent.
However, in evaluating the learned definitions, we wish to detect both the events that correspond to
an entire movie as well as subevents that correspond to portions of that movie. For example, given a
movie depicting a MVE(a, b, ¢, d) event, we wish to detect not only thedMEe(a, b, ¢, d) event but
also the RckUP(a, b, ¢) and RITDOWN(a, b, d) subevents as well. For each movie type in our data
set, we have a set aftendedevents and subevents that should be detected. If a definition does not
detect an intended event, we deem the error a false negative. If a definition detects an unintended
event, we deem the error a false positive. For example, if a movie depictsv&(M, b, c, d) event,
the intended events are®E(a, b, ¢, d), PICKUP(a, b, ¢), and RITDOWN(a, b, ¢). If the definition
for pick updetects the occurrence ofdkUP(c, b, a) and RCKUP(b, a, ¢), but not RckUP(a, b, ¢),
it will be charged two false positives as well as one false negative. We evaluate our definitions in
terms of false positive and negative rates as describe below.

6.2 Experimental Procedure

For each event type, we evaluate thRAMA learning algorithm using a leave-one-movie-out cross-
validation technique with training-set sampling. The parameters to our learning algorithin are
and the degre® of negative information used. The valuelfis either P, fompositive propositions
only, BN, for boundary negatigror N, for full negation The parameters to our evaluation procedure
include the target event typg and the training-set siz&. Given this information, the evaluation
proceeds as follows: For each mowi¢é (the held-out movie) from th210 movies, apply the:-
AMA learning algorithm to a randomly drawn training sampleMdimovies from the30 movies of
event typeFE (or 29 movies if M is one of the30). Use LEONARD to detect all occurrences of the
learned event definition in/. Based onF and the event type a¥/, record the number of false
positives and false negatives M, as detected by EONARD. Let FP and FN be the total number
of false positives and false negatives observed ové&rialheld-out movies respectively. Repeat the
entire process of calculating FP and Eitimes and record the averagesF@andFN.13

Since some event types occur more frequently in our data than others because simpler events
occur as subevents of more complex events but not vice versa, we do noti@@ortEN directly.
Instead, we normaliz€P by dividing by the total number of timesEbNARD detected the target
event correctly or incorrectly within af10 movies and we normalizEN by dividing by the total

12. The source code and all of the data used for these experiments are available as Online Appendix 1, and also from
ftp://ftp.ecn.purdue.edu/gobi/ama.tar.Z .

13. While we did not record the times for our experiments, the system is fast enough to give live demads whef
andk = 3 with boundary negation, giving the best results we show here (though we don’t typically record 29 training
videos in a live demo for other reasons). Some of the less favorable parameter settings (parkicglarignd full
negation) can take a (real-time) hour or so.
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move

assemble
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Figure 11: Key frames from sample videos of the 7 event types.
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number of correct occurrences of the target event withidl@limovies (i.e., the human assessment

of the number of occurrences of the target event). The normalized vakié e$timates the prob-
ability that the target event did not occur given that it was predicted to occur, while the normalized
value of FN estimates the probability that the event was not predicted to occur given that it did
occur.

6.3 Results

To evaluate ouk-AMA learning approach, we ran leave-one-movie-out experiments, as described
above, for varying:, D, andN. The210 example movies were recorded with color-coded objects to
provide complete object-correspondence information. We compared our learned event definitions to
the performance of two sets of hand-coded definitions. The first setdfiband-coded definitions
appeared in Siskind (2001). In response to subsequent deeper understanding of the behavior of
LEONARD's model-reconstruction methods, we manually revised these definitions to yield another
set HD, of hand-coded definitions that gives a significantly bekbr performance at some cost

in FP performance. Appendix C gives the event definitions in ldBd HD, along with a set of
machine-generated definitions, produced byih®MA learning algorithm, given all training data

for k =30 andD = BN.

6.3.1 BIECTCORRESPONDENCE

To evaluate our algorithm for finding object correspondences, we ignored the correspondence in-
formation provided by color coding and applied the algorithm to all training models for each event
type. The algorithm selected the correct correspondence @t @lraining models. Thus, for this

data set, the learning results when no correspondence information is given will be identical to those
where the correspondences are manually provided, except that, in the first case, the rules will not
specify particular object roles, as discussed in section 5.3.2. Since our evaluation procedure uses
role information, the rest of our experiments use the manual correspondence information, provided
by color-coding, rather than computing it.

While our correspondence technique was perfect in these experiments, it may not be suited to
some event types. Furthermore, it is likely to produce more errors as noise levels increase. Since
correspondence errors represent a form of noise and our learner makes no special provisions for
handling noise, the results are likely to be poor when such errors are common. For example, in the
worst case, it is possible for a single extremely noisy example to cause the the LGG to be trivial (i.e.,
the formulatrue). In such cases, we will be forced to improve the noise tolerance of our learner.

6.3.2 ARYING k

The first three rows of Table 1 show tR® andFN values for all7 event types fok € {2, 3,4},
N = 29 (the maximum), and> = BN. Similar trends were found fab = P andD = N. The
general trend is that, dsincreaseskP decreases or remains the sameRNdncreases or remains
the same. Such a trend is a consequence okaaver approach. This is because kaacreases,
the k-AMA language contains strictly more formulas. Thus kgr> k-, the k;-cover of a formula
will never be more general than tihg-cover. This strongly suggests, but does not prove, Firat
will be non-increasing wittk andFN will be non-decreasing with.

Our results show tha2-AMA is overly general forput downandassemblgi.e. it gives high
FP. In contrast3-AMA achievesFP = 0 for each event type, but pays a penaltyFiN compared
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k| D pickup putdown stack unstack move assemble disassemble
BN FP |0 0.14 0 0 0 0.75 0
FN| O 0.19 0.12 0.03 0 0 0
3|BN FP|O 0 0 0 0 0 0
FN| O 0.2 0.45 0.10 0.03 0.07 0.10
4 BN FP|O 0 0 0 0 0 0
FN | O 0.2 0.47 0.12 0.03 0.07 0.17
3|P FP|042 0.5 0 0.02 0 0 0
FN| O 0.19 0.42 0.11 0.03 0.03 0.10
3|BN FP |0 0 0 0 0 0 0
FN | O 0.2 0.45 0.10 0.03 0.07 0.10
3/N FP|O 0 0 0 0 0 0
FN | 0.04 0.39 0.58 0.16 0.13 0.2 0.2
HD; FP | 0.01 0.01 0 0 0 0 0
FN | 0.02 0.22 0.82 0.62 0.03 1.0 0.5
HD, FP |0.13 0.11 0 0 0 0 0
FN | 0.0 0.19 0.42 0.02 0.0 0.77 0.0

Table 1:FP andFN for learned definitions, varying bothand D, and for hand-coded definitions.

to 2-AMA. Since 3-AMA achievesFP = 0, there is likely no advantage in moving teAMA for
k > 3. That is, the expected result is fBN to become larger. This effect is demonstrated for
4-AMA in the table.

6.3.3 VAWRYING D

Rows four through six of Table 1 shd#P andFN for all 7 event types foD € {P,BN,N}, N = 29,
andk = 3. Similar trends were observed for other valuesofThe general trend is that, as the
degree of negative information increases, the learned event definitions become more specific. In
other wordsFP decreases arieN increases. This makes sense since, as more negative information
is added to the training models, more specific structure can be found in the data and exploited by
the k-AMA formulas. We can see that, with = P, the definitions fopick upandput downare
overly general, as they produce higF. Alternatively, withD = N, the learned definitions are
overly specific, giving=P = 0, at the cost of highFN. In these experiments, as well as others, we
have found that> = BN yields the best of both world$sP = 0 for all event types and lowe¥N
than achieved witlD = N.

Experiments not shown here have demonstrated that, without negatginkampandput down
we can increasé arbitrarily, in an attempt to specialize the learned definitions, and never signif-
icantly reduceFP. This indicates that negative information plays a particularly important role in
constructing definitions for these event types.
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6.3.4 GOMPARISON TOHAND-CODED DEFINITIONS

The bottom two rows of table 1 show the results forHihd HD,. We have not yet attempted to
automatically select the parameters for learning fi.endD). Rather, here we focus on comparing
the hand-coded definitions to the parameter set that we judged to be best performing across all event
types. We believe, however, that these parameters could be selected reliably using cross-validation
techniques applied to a larger data set. In that case, the parameters would be selected on a per-
event-type basis and would likely result in an even more favorable comparison to the hand-coded
definitions.

The results show that the learned definitions significantly outperform &iDthe current data
set. The HD definitions were found to produce a large number of false negatives on the current
data set. Notice that, although HProduces significantly fewer false negatives for all event types,
it produces more false positives fpick up and put down This is because the hand definitions
utilize pick upandput downas macros for defining the other events.

The performance of the learned definitions is competitive with the performance of Hie
main differences in performance are: (a) pick upandput down the learned and Hpdefinitions
achieve nearly the sankéN but the learned definitions achiel® = 0 whereas HD has significant
FP, (b) forunstackand disassemblethe learned definitions perform moderately worse thary, HD
with respect td-N, and (c) the learned definitions perform significantly better thap éttassemble
events.

We conjecture that further manual revision could improve, i®perform as well as (and per-
haps better than) the learned definitions for every event class. Nonetheless, we view this experiment
as promising, as it demonstrates that our learning technique is able to compete with, and sometimes
outperform, significant hand-coding efforts by one of the authors.

6.3.5 WWRYING N

It is of practical interest to know how training-set size affects our algorithm’s performance. For this
application, it is important that our method work well with fairly small data sets, as it can be tedious
to collect event data. Table 2 shows il of our learning algorithm for each event type,dss
reduced from29 to 5. For these experiments, we used= 3 and D = BN. Note thatFP = 0

for all event types and alV and hence is not shown. We exp&® to increase ad’ is decreased,
since, with specific-to-general learning, more data yields more-general definitions. Gerévally,

is flat for N > 20, increases slowly fot0 < N < 20, and increases abruptly for< N < 10. We

also see that, for several event typEBl decreases slowly, @€ is increased fron20 to 29. This
indicates that a larger data set might yield improved results for those event types.

6.3.6 FERSPICUITY OFLEARNED DEFINITIONS

One motivation for using a logic-based event representation is to support perspicuity—in this respect
our results are mixed. We note that perspicuity is a fuzzy and subjective concept. Realizing this,
we will say that an event definition erspicuousf most humans with knowledge of the language
would find the definition to be “natural.” Here, we do not assume the human has a detailed knowl-
edge of the model-reconstruction process that our learner is trying to fit. Adding that assumption
would presumably make the definitions qualify as more perspicuous, as many of the complex fea-
tures of the learned definitions appear in fact to be due to idiosyncrasies of the model-reconstruction
process. In this sense, we are evaluating the perspicuity of the output of the entire system, not just
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of the learner itself, so that a key route to improving perspicuity in this sense would be to improve
the intuitive properties of the model-reconstruction output without any change to the learner.

While the learned and hand-coded definitions are similar with respect to accuracy, typically the
learned definitions are much less perspicuous. For our simplest event types, however, the learned
definitions are arguably perspicuous. Below we look at this issue in more detail. Appendix C gives
the hand-coded definitions in Hand HD, along with a set of machine-generated definitions. The
learned definitions correspond to the output of 6uAMA learner when run on all 30 training
movies from each event type with= 3 and D = BN (i.e., our best performing configuration with
respect to accuracy).

Perspicuous Definitions. The RCKUP(z,y, z) and RITDOWN(z, y, z) definitions are of partic-
ular interest here since short state sequences appear adequate for representing these event types—
thus, we can hope for perspicuous 3-AMA definitions. In fact, the hand-coded definitions in-
volve short sequences. Consider the hand-coded definitionscafU®(x, y, z)—the definitions
can roughly be viewed as 3-MA timelines of the fobegintransend!* Statebeginasserts facts
that indicatey is onz and is not being held by andendasserts facts that indicaggs being held by
x and is not ore. Statetransis intended to model the fact thaEDNARD's model-reconstruction
process does not always handle the transition betwegimandendsmoothly (so the definition
beginenddoes not work well). We can make similar observations fortBowN(z, y, ).

Figure 15 gives the learned 3-AMA definitions ofdRUP(z, y, z) and RITDOWN(z, y, z)—
the definitions contain six and two 3-MA timelines respectively. Since the definitions consists of
multiple parallel timelines, they may at first not seem perspicuous. However, a closer examination
reveals that, in each definition, there is a single timeline that is arguably perspicuous—we have
placed thes@erspicuous timelineat the beginning of each definition. The perspicuous timelines
have a naturdbegintransendinterpretation. In fact, they are practically equivalent to the definitions
of PickUP(z, y, z) and RUITDOWN(z, y, z) in HD,.%®

With this in mind, notice that the HPdefinitions are overly general as indicated by significant
false positive rates. The learned definitions, however, yield no false positives without a significant
increase in false negatives. The learned definitions improve upanhbi@ssentially specializing
the HD, definitions (i.e., the perspicuous timelines) by conjoining them withnibre-perspicuous
timelines While these non-perspicuous timelines are often not intuitive, they capture patterns in the
events that help rule out non-events. For example, in the learned definitioaidP(z, y, z) some
of the non-perspicuous timelines indicate thatrACHED(y, z) is true during the transition period
of the event. Such an attachment relationship does not make intuitive sense. Rather, it represents a
systematic error made by the model reconstruction procegsdioupevents.

In summary, we see that the learned definitionsickRJP(z, y, z) and RITDOWN(z, y, z) each
contain a perspicuous timeline and one or more non-perspicuous timelines. The perspicuous time-
lines give an intuitive definition of the events, whereas the non-perspicuous timelines capture non-
intuitive aspects of the events and model reconstruction process that are important in practice. We
note that, for experienced users, the primary difficulty of hand-coding definitionsefoNARD is

14. Note that the event-logic definition fordkUP(z, y, z) in HD2 is written in a more compact form than 3-MA, but
this definition can be converted to 3-MA (and hence 3-AMA). Rather; [d&nnot be translated exactly to 3-MA
since it uses disjunction—it is the disjunction of two 3-MA timelines.

15. The primary difference is that the H@efinitions contain more negated propositions. The learner only considers a
proposition and its negation if the propaosition is true at some point during the training movies. Many of the negated
propositions in HD never appear positively, thus they are not included in the learned definitions.
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to determining which non-perspicuous properties must be included. Typically this requires many
iterations of trial and error. Our automated technique can relieve the user of this task. Alternatively,
we could view the system as providing guidance for this task.

Large Definitions. The Srack(w,z,y, z) and INSTACK(w, z,y, z) events are nearly identical

to put downandpick uprespectively. The only difference is that now we are picking up from and
putting down onto a two block (rather than single block) tower (i.e., composed of bipaksd z).

Thus, here again we might expect there to be perspicuous 3-AMA definitions. However, we see that
the learned definitions fori@ck (w, z, y, z) and INSTACK(w, x, y, z) in Figures 16 and 17 involve

many more timelines than those fordRUP(w, z,y) and RITDOWN(w, z,y). Accordingly, the
definitions are quite overwhelming and much less perspicuous.

Despite the large number of timelines, these definitions have the same general structure as those
for pick upand put down In particular, they each contain a distinguished perspicuous timeline,
placed at the beginning of each definition, that is conjoined with many non-perspicuous timelines.
It is clear that, as above, the perspicuous timelines have a nategaitransend interpretation
and, again, they are very similar to the definitions in HDn this case, however, the definitions
in HD, are not overly general (committing no false positives). Thus, here the inclusion of the
non-perspicuous timelines has a detrimental effect since they unnecessarily specialize the definition
resulting in more false negatives.

We suspect that a primary reason for the large number of non-perspicuous timelines relative
to the definitions ofpick up and put downstems from the increased difficulty of constructing
force-dynamic models. The inclusion of the two block tower in these examples causes the model-
reconstruction process to produce more unintended results, particularly during the transition periods
of STACK and UINSTACK. The result is that often many unintuitive and physically incorrect patterns
involving the three blocks and the hand are produced during the transition period. The learner
captures these patterns roughly via the non-perspicuous timelines. It is likely that generalizing the
definitions by including more training examples would filter out some of these timelines, making the
overall definition more perspicuous. Alternatively, it is of interest to consider pruning the learned
definitions. A straightforward way to do this is to generate negative examples. Then with these,
we could remove timelines (generalizing the definition) that do not contribute toward rejecting the
negative examples. It is unclear how to prune definitions without negative examples.

Hierarchical Events. MOVE(w, z,y, z), ASSEMBLE(w, x,y, z), and DSASSEMBLE(w, , ¥, z)

are inherently hierarchical, being composed of the four simpler event types. The hand-coded defi-
nitions leverage this structure by utilizing the simpler definitions as macros. In this light, it should
be clear that, when viewed non-hierarchically, (as our learner does) these events involve relatively
long state sequences. Thus, 3-AMA is not adequate for writing down perspicuous definitions. In
spite of this representational shortcoming, our learned 3-AMA definitions perform quite well. This
performance supports one of our arguments for using AMA from section 3.2. Namely, given that it
is easier to find short rather than long sequences, a practical approach to finding definitions for long
events is to conjoin the short sequences within those events. Examining the timelines of the learned
3-AMA definitions reveals what we might expect. Each timeline captures an often understandable
property of the long event sequence, but the conjunction of those timelines cannot be considered
to be a perspicuous definition. A future direction is to utilize hierarchical learning techniques to
improve the perspicuity of our definitions while maintaining accuracy.
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N | pickup putdown stack unstack move assemble disassemble
29| 0.0 0.20 0.45 0.10 0.03 0.07 0.10
251 0.0 0.20 0.47 0.16 0.05 0.09 0.10
20| 0.01 0.21 0.50 0.17 0.08 0.12 0.12
15| 0.01 0.22 0.53 0.26 0.14 0.20 0.16
10| 0.07 0.27 0.60 0.36 0.23 0.32 0.26
51| 0.22 0.43 0.77 0.54 0.35 0.57 0.43

Table 2:FN for k = 3, D = BN, and various values d¥.

We note, however, that, at some level, the learned definition @¥&w, x, y, z) given in Fig-
ure 18 is perspicuous. In particular, the first 3-MA timeline is naturally interpreted as giving the
pre- and post-conditions for a move action. That is, initiallis supported by, and the handv is
empty and finallyz is supported by and the handv is empty. Thus, if all we care about is pre-
and post-conditions, we might consider this timeline to be perspicuous. The remaining timelines in
the definition capture pieces of the internal event structure such as facts indicatinggmobved
by the hand. A weaker case can be madeafsembleanddisassembleThe first timeline in each
of the learned definitions in Figures 19 and 20 can be interpreted as giving pre- and post-conditions.
However, in these cases, the pre(post)-conditionassembl@isassembleare quite incomplete.
The incompleteness is due to the inclusion of examples where the model-reconstruction process did
not properly handle the initial(final) moments.

7. Related Work

Here we discuss two bodies of related work. First, we present previous work in visual event recogni-
tion and how it relates to our experiments here. Second, we discuss previous approaches to learning
temporal patterns from positive data.

7.1 Visual Event Recognition

Our system is unique in that it combines positive-only learning with a temporal, relational, and
force-dynamic representation to recognize events from real video. Prior work has investigated vari-
ous subsets of the features of our system—nbut, to date, no system has combined all of these pieces
together. Incorporating any one of these pieces into a system is a significant endeavor. In this re-
spect, there are no competing approaches to directly compare our system against. Given this, the
following is a representative list of systems that have common features with ours. It is not meant to
be comprehensive and focuses on pointing out the primary differences between each of these sys-
tems and ours, as these primary differences actually render these systems only very loosely related
to ours.

Borchardt (1985) presents a representation for temporal, relational, force-dynamic event defi-
nitions but these definitions are neither learned nor applied to video. Regier (1992) presents tech-
niques for learning temporal event definitions but the learned definitions are neither relational, force
dynamic, nor applied to video. In addition the learning technique is not truly positive-only—rather,
it extracts implicit negative examples of an event type from positive examples of other event types.
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Yamoto, Ohya, and Ishii (1992), Brand and Essa (1995), Siskind and Morris (1996), Brand, Oliver,
and Pentland (1997), and Bobick and Ivanov (1998) present techniques for learning temporal event
definitions from video but the learned definitions are neither relational nor force dynamic. Pinhanez
and Bobick (1995) and Brand (1997a) present temporal, relational event definitions that recognize
events in video but these definitions are neither learned nor force dynamic. Brand (1997b) and Mann
and Jepson (1998) present techniques for analyzing force dynamics in video but neither formulate
event definitions nor apply these techniques to recognizing events or learning event definitions.

7.2 Learning Temporal Patterns

We divide this body of work into three main categories: temporal data mining, inductive logic
programming, and finite-state—machine induction.

Temporal Data Mining.  The sequence-mining literature contains many general-to-specific (“lev-
elwise”) algorithms for finding frequent sequences (Agrawal & Srikant, 1995; Mannila, Toivonen,

& Verkamo, 1995; Kam & Fu, 2000; Cohen, 2001; Hoppner, 2001). Here we explore a specific-to-
general approach. In this previous work, researchers have studied the problem of mining temporal
patterns using languages that are interpreted as placing constraints on partially or totally ordered
sets of time points, e.g., sequential patterns (Agrawal & Srikant, 1995) and episodes (Mannila et al.,
1995). These languages place constraints on time points rather than time intervals as in our work
here. More recently there has been work on mining temporal patterns using interval-based pattern
languages (Kam & Fu, 2000; Cohen, 2001; Hoppner, 2001).

Though the languages and learning frameworks vary among these approaches, they share two
central features which distinguish them from our approach. First, they all typically have the goal
of finding all frequent patterns (formulas) within a temporal data set—our approach is focused
on finding patterns with a frequency of one (covering all positive examples). Our first learning
application of visual-event recognition has not yet required us to find patterns with frequency less
than one. However, there are a number of ways in which we can extend our method in that direction
when it becomes necessary (e.g., to deal with noisy training data). Second, these approaches all
use standard general-to-specific level-wise search technigues, whereas we chose to take a specific-
to-general approach. One direction for future work is to develop a general-to-specific level-wise
algorithm for finding frequent MA formulas and to compare it with our specific-to-general approach.
Another direction is to design a level-wise version of our specific-to-general algorithm—where for
example, the results obtained for theAMA LGG can be used to more efficiently calculate the
(k+1)-AMA LGG. Whereas a level-wise approach is conceptually straightforward in a general-to-
specific framework it is not so clear in the specific-to-general case. We are not familiar with other
temporal data-mining systems that take a specific-to-general approach.

First-Order Learning In Section 3.3, we pointed out difficulties in using existing first-order
clausal generalization techniques for learning AMA formulas. In spite of these difficulties, it is still
possible to represent temporal events in first-order logic (either with or without capturing the AMA
semantics precisely) and to apply general-purpose relational learning techniques, e.g., inductive
logic programming (ILP) (Muggleton & De Raedt, 1994). Most ILP systems require both positive
and negative training examples and hence are not suitable for our current positive-only framework.
Exceptions include GLEM (Muggleton & Feng, 1992), RogoL (Muggleton, 1995), and Qw -

DIEN (De Raedt & Dehaspe, 1997), among others. While we have not performed a full evaluation

427



FERN, GIVAN, & SISKIND

Subsumption Semantic AMA LGG Syntactic AMA LGG
Inputs | Semantic Syntacti¢ Lower Upper Size Lower Upper Size
MA P P P cONP  EXP P coONP  EXP
AMA | coNP-complete P coNP NEXP 2-EXP3 P coNP EXP

Table 3: Complexity Results Summary. The LGG complexities are relatimpt plus outpusize.
The size column reports the worst-case smallest correct output size. The “?” indicates a
conjecture.

of these systems, our early experiments in the visual-event recognition domain confirmed our belief
that horn clauses, lacking special handling of time, give a poor inductive bias. In particular, many of
the learned clauses find patterns that simply do not make sense from a temporal perspective and, in
turn, generalize poorly. We believe a reasonable alternative to our approach may be to incorporate
syntactic biases into ILP systems as done, for example, in Cohen (1994), Dehaspe and De Raedt
(1996), Klingspor, Morik, and Rieger (1996). In this work, however, we chose to work directly in a
temporal logic representation.

Finite-State Machines Finally, we note there has been much theoretical and empirical research
into learning finite-state machines (FSMs) (Angluin, 1987; Lang, Pearlmutter, & Price, 1998). We
can view FSMs as describing properties of strings (symbol sequences). In our case, however, we are
interested in describing sequences of propositional models rather than just sequences of symbols.
This suggests learning a type of “factored” FSM where the arcs are labeled by sets of propositions
rather than by single symbols. Factored FSMs may be a natural direction in which to extend the
expressiveness of our current language, for example by allowing repetition. We are not aware of
work concerned with learning factored FSMs; however, it is likely that inspiration can be drawn
from symbol-based FSM-learning algorithms.

8. Conclusion

We have presented a simple logic for representing temporal events called AMA and have shown
theoretical and empirical results for learning AMA formulas. Empirically, we've given the first
system for learning temporal, relational, force-dynamic event definitions from positive-only input
and we have applied that system to learn such definitions from real video input. The resulting
performance matches that of event definitions that are hand-coded with substantial effort by human
domain experts. On the theoretical side, Table 3 summarizes the upper and lower bounds that
we have shown for the subsumption and generalization problems associated with this logic. In
each case, we have provided a provably correct algorithm matching the upper bound shown. The
table also shows the worst-case size that the smallest LGG could possibly take relative to the input
size, for both AMA and MA inputs. The key results in this table are the polynomial-time MA
subsumption and AMA syntactic subsumption, the coNP lower bound for AMA subsumption, the
exponential size of LGGs in the worst case, and the apparently lower complexity of syntactic AMA
LGG versus semantic LGG. We described how to build a learner based on these results and applied
it to the visual-event learning domain. To date, however, the definitions we learn are neither cross-
modal nor perspicuous. And while the performance of the learned definitions matches that of hand-
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coded ones, we wish to surpass hand coding. In the future, we intend to address cross-modality by
applying our learning technique to the planning domain. We also believe that addressing perspicuity
will lead to improved performance.
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Appendix A. Internal Positive Event Logic

Here we give the syntax and semantics for an event logic c#tittnal Positive Event Logic
(IPEL). This logic is used in the main text only to motivate our choice of a small subset of this
logic, AMA, by showing, in Proposition 4, that AMA can define any set of models that IPEL can
define.

An event type (i.e., set of models) is said to ibéernal if whenever it contains any model
M = (M, I), italso contains any model that agrees withon truth assignment®/ [:] where; € I.

Full event logic allows the definition of non-internal events, for example, the formiuta & P

is satisfied by(M, I') when there is some intervdl entirely preceding/ such thatP is satisfied

by (M, I'), thus ¥ is not internal. The applications we are considering do not appear to require
non-internal events, thus we currently only consider events that are internal.

Call an event typgositiveif it contains the modelM = (M, [1,1]) where M (1) is the truth
assignment assigning all propositions the value true. A positive event type cannot require any propo-
sition to be false at any point in time.

IPEL is a fragment of full propositional event logic that can only describe positive internal
events. We conjecture, but have not yet proven, that all positive internal events representable in the
full event logic of Siskind (2001) can be represented by some IPEL formula. Formally, the syntax
of IPEL formulas is given by

FE ::= true | prop| E|V FEy | OrEq | Ei AR Es,

where theF; are IPEL formulaspropis a primitive proposition (sometimes called a primitive event
type), R is a subset of the thirteen Allen interval relatiofsf,d,b,m,0,=,si,fi,di,bi,ai,oi} (Allen,
1983), andR’ is a subset of the restricted set of Allen relatidissf,d,=}, the semantics for each
Allen relation is given in Table 4. The difference between IPEL syntax and that of full propositional
event logic is that event logic allows for a negation operator, and that, in full event Bgitan
be any subset of all thirteen Allen relations. The operatoend; used to define AMA formulas
are merely abbreviations for the IPEL operatogs.; andA ) respectively, so AMA is a subset of
IPEL (though a distinguished subset as indicated by Proposition 4).

Each of the thirteen Allen interval relations are binary relations on the set of closed natural-
number intervals. Table 4 gives the definitions of these relations, definingns] r [n1,ne) for
each Allen relatiorr. Satisfiability for IPEL formulas can now be defined as follows,
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I Relation I English | Definition Inverse
[ml, mz] S [’I’Ll, ’I’LQ] starts mi1 =N andmz < nog Si
[ml, mg] f [Tbl, TLQ] finishes | m; < ny andmsg = ny fi
[ml,mg] d [’I’Ll,’l’LQ] during mi1 > ny andmz < nog di
[ml, mg] b [Tbl, TLQ] before | mqy < ny bi
[ml, mz] m [’I’Ll, ’I’LQ] meets | mo =n10r meo+1=mng mi
[ml,mg] (0] [nl,ng] overlaps m1; <n; <mg < ng oi
[ml, mz] = [’I’Ll, ’I’LQ] equals mi1 =N andmz = N9 =

Table 4: The Thirteen Allen Relations (adapted to our semantics).

e true is satisfied by every model.
e propis satisfied by model|M, I) iff M [z] assigngprop true for everyz € 1.
e F,V Es is satisfied by a modeM iff M satisfiesE'; or M satisfiesFs.

e ORFE is satisfied by mode|)M, I) iff for somer € R there is an interval’ such thatl’ r I
and(M, I') satisfiesE.

e F) AR E5 is satisfied by modelM, I) iff for somer € R there exist intervalg; andl, such
thatl; r I, SPAN(Iq, I5) = I and both(M, I) satisfiesE'; and (M, 1) satisfiesEs.

wherepropis a primitive propositionF andE; are IPEL formulasR is a set of Allen relations, and
SPAN(I, I5) is the minimal interval that contains boflh and I,. From this definition, it is easy to
show, by induction on the number of operators and connectives in a formula, that all IPEL formulas
define internal events. One can also verify that the definition of satisfiability given earlier for AMA
formulas corresponds to the one we give here.

Appendix B. Omitted Proofs

Lemma 1. For any MA timeline® and any modelM, if M satisfiesd then there is a witnessing
interdigitation for MARM) < ®.

Proof: Assume thatM = (M, ) satisfies the MA timelined = s;;...;s,, and let®’ =
MAP(M). ltis straightforward to argue, by induction on the lengti®othat there exists a mapping
V' from states ofb to sub-intervals of , such that

o foranyi € V'(s), M[i] satisfiess,
e V'(s1) includes the initial time point of,
e V'(s,) includes the final time point of, and

e forany: € [1,n — 1], we haveV'(s;) meetsV'(s;;+1) (see Table 4).
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Let V be the relation between statess ® and members € I that is true when € V'(s). Note
that the conditions oY’ ensure that every € ® and everyi € I appear in some tuple i (not
necessarily together). Below we ugeto construct a withessing interdigitatid .

Let R be the total, one-to-one, onto function from time-point$ to corresponding states 4,
noting that®’ has one state for each time-pointlinas®’ = MAP((M, I)). Note thatR preserves
ordering in that, when < j, R(4) is no later thanR(j) in ®’. Let W be the compositioi¥ o R of
the relationsl” and R.

We show thafi¥” is an interdigitation. We first show that each state fréror &' appears in a
tuple inW, soW is piecewise total. States fro@nmust appear, trivially, because each appears in a
tuple of VV, andR is total. States fron®’ appear because eack I appears in a tuple df, andR
is onto the states ab’.

It now suffices to show that for any statebeforet from @, W (s, s’) andW (¢,t') implies that
s is no later thart’ in ®', so thati¥ is simultaneously consistent. The conditions defifiifigabove
imply that every number in € V(s) is less than or equal to evejye V' (t). The order-preservation
property of R, noted above, then implies that every steltec V o R(s) is no later than any state
t' € Vo R(t) in @', as desired. S& is an interdigitation.

We now argue thall’ witnessesd’ < ®. Considers € ® andt € @' such thaiV (s, t). By the
construction of¥, there must bé € V'(s) for whicht is thei'th state of®’. Since®’ = MAP(M),
it follows thatt is the set of true propositions i/ [7]. Sincei € V'(s), we know thatM [i] satisfies
s. Itfollows thats C ¢, and sat < s. O

Lemma 3. ForanyFE € IPEL, if modelM embeds a model that satisfiesthen M satisfiesE.

Proof: Consider the models\t = (M,I) and M’ = (M',I') such thatM embedsM’, let
® = MAP(M) and®’ = MAP(M'). Assume tha¥ € IPEL is satisfied byM', we will show that
E is also satisfied byM.

We know from the definition of embedding that< ®' and thus there is a witnessing interdig-
itation W for ® < @’ by Proposition 2. We know there is a one-to-one correspondence between
numbers inf (I') and states ob (®') and denote the state i (') corresponding te € I (i’ € I')
ass; (ty). This correspondence allows us to naturally interp¥eas a mapping” from subsets of
I' to subsets of as follows: forl] C I’, V(I]) equals the set of alle I such that for somé € I,

s; co-occurs with; in . We will use the following properties daf,

1. If I is a sub-interval of’, thenV (I}) is a sub-interval of .

2. If I} is a sub-interval of’, then(M, V (I;)) embedg M, I}).

3. If I andI} are sub-intervals of’, andr is an Allen relation, thed{r I} iff V (I7)rV (15).
4. If I{ andr} are sub-intervals of’, thenV (SPAN(I], I})) = SPAN(V (I7), V (I})).

5. V(I')=1.

We sketch the proofs of these properties. 1) Use induction on the length, afith the
definition of interdigitation. 2) Sincé/(17) is an interval, MAR(M,V (I}))) is well defined.
MAP((M,V (I7))) < MAP({(M’', I)) follows from the assumption tha¥! embedsM’. 3) From
Appendix A, we see that all Allen relations are defined in terms of<heslation on the natural
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number endpoints of the intervals. We can show thaireserves< (but not<) on singleton sets
(i.e., every member oV ({i'}) is < every member oV ({;j'}) wheni' < j') and thatV’ com-
mutes with set union. It follows thdt” preserves the Allen interval relations. 4) Use the fact that
V preserves< in the sense just argued, along with the fact the&g 77, 1) depends only on the
minimum and maximum numbers f and}. 5) Follows from the definition of interdigitation and
the construction of/.

We now use induction on the number of operators and connectivEstinprove that, ifAM’
satisfies, then so mustM. The base case is whéh= prop, wherepropis a primitive proposition,
ortrue. SinceM' satisfiest/, we know thapropis true in allM'[z'] for 2’ € I'. SinceW witnesses
¢ < @', we know that, ifprop is true in M'[z], thenpropis true in all M[z], wherez € V (z').
Therefore, sincd (I') = I, propis true for allM'[z], wherez € I, henceM' satisfiesE.

For the inductive case, assume that the claim holds for IPEL formulas with feweMltgper-
ators and connectives—Iét;, £’y be two such formulas. Whel = E; V E,, the claim trivially
holds. WhenE = & rE;, R must be a subset of the set of relatidissf,d,=}. Notice thatE can
be written as a disjunction ¢, E; formulas, where- is a single Allen relation fronR. Thus, it
suffices to handle the case whefeis a single Allen relation. Suppodé = ©(s,E;. Since M’
satisfiesE, there must be a sub-interva] of I’ such that/{ s I’ and (M’, I}) satisfiesE;. Let
I, = V(I}), we know from the properties df thatV(I') = I, and, hence, thaf, s I. Fur-
thermore, we know thatM, I;) embedsM’, I}), and, thus, by the inductive hypothes{8/, I;)
satisfiest;,. Combining these facts, we get th&tis satisfied byM. Similar arguments hold for
the remaining three Allen relations. Finally, consider the case when E'; Ar F>, whereR can
be any set of Allen relations. Again, it suffices to handle the case hiera single Allen relation
r. SinceM’ satisfiesF = E; A, E», we know that there are sub-intervdisand ), of I’ such that
SPAN(I{,I5) = I', I r I, (M', I}) satisfiesE, and(M', 1) satisfiesE,. From these facts, and
the properties of/, it is easy to verify thatM satisfiest/. O

Lemma 5. Given an MA formula® that subsumes each member of aXeaif MA formulas,®
also subsumes some meménf IG(X). Dually, whend is subsumed by each membenhiwe
have that® is also subsumed by some meménf IS(X). In each case, the length & can be
bounded by the size &f.

Proof: We prove the result for I(&). The proof for 1§3) follows similar lines. LetX =
{®1,...,P,}, & = s1;5...;5m, and assume that for eath< i < n, &; < &. From Proposi-
tion 2, for eachi, there is a witnessing interdigitatioi; for ®; < ®. We will combine thel¥;
into an interdigitation of22, and show that the corresponding member of3{is subsumed by
®. To construct an interdigitation df, first notice that, for each;, eachWW; specifies a set of
states (possibly a single state but at least one) fbgriat all co-occur withs ;. Furthermore, since
W; is an interdigitation, it is easy to show that this set of states corresponds to a consecutive sub-
sequence of states frofi,—let @, ; be the MA timeline corresponding to this subsequence. Now
let¥; = {®;; | 1 <i < n}, ande; be any interdigitation oE;. We now takel to be the union of
all o, for 1 < 5 < m. We show thaf is an interdigitation of. Since each stateappearing ir:
must co-occur with at least one statein @ in at least onéV;, s will be in at least one tuple af;,
and, hence, be in some tupleBf-so is piecewise total.

Now, define the restrictiodi*’ of I to components andj, with i < j, to be the relation given
by taking the set of all pairs formed by shortening tupled &y omitting all components except
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thes’th and thej'th. Likewise definexfc’j for eachk. To showl is an interdigitation, it now suffices
to show that eacti’’ is simultaneously consistent. Consider stateands; from timelines®; and
®;, respectively, such thdt(s;, s;). Suppose that; occurs aftess; in ®;, and for some; € ;,
I3 (t;,t;) holds. It suffices to show that is no later thart; in ®;. Sincel®/(s;, s;) andI®I (t;, ),
we must havev,” (s;, s;) andal/ (t;,t;), respectively, for somé andk’. We knowk < k' because
s; is beforet; in ®; andW; is simultaneously consistent. #f= £, thens; is no later thart; in @,
becausey;, must be simultaneously consistent, being an interdigitation. Otheriwise;’. Thens;
is no later thart; in ©;, as desired, becau$g; is simultaneously consistent. $as simultaneously
consistent, and an interdigitation Bf

Let ' be the member of I(X) corresponding td. We now show tha®’ < ®. We know that
each state’ € @’ is the intersection of the states in a tuple of same-we say that’ derives from
«a;. Consider the interdigitatioff between® and®’, wherel’(s;, s'), for s; € ® ands’ € @', if and
only if s’ derives fromu;. I' is piecewise total, as every tuple Bfderives from somey;, and now;
is empty.I’ is simultaneously consistent because tupleg deriving from later;, must be later in
the lexicographic ordering df, given the simultaneous consistency of Wig interdigitations used
to construct each;. Finally, we know thak; subsumes (i.e., is a subset of) each state in each tuple
of oj, because ead}, is a witnessing interdigitation t®; < ®, and, hence, subsumes (is a subset
of) the intersection of those states. Therefore,;iE ® co-occurs withs' € @' in I' we have that
s' < 's;. Thus,I' is a witnessing interdigitation fob’ < ®, and by Proposition 2 we ha < &.

The size bound o®’ follows, since, as pointed out in the main text, the size of any member of
IG(X) is upper-bounded by the number of stateXin O

Lemma 8. Given MA timelinesb; = sy;...;8, and @y = ty;...;t,, there is a witnessing
interdigitation for ®; < &, iff there is a path in the subsumption grapté:(®;, ®2) fromwv; ; to

Um,n-

Proof: Subsumption grapSG(®1, ®2) is equal to(V, E) withV = {v; ; | 1 <i <m,1 < j <n}
and E = {(vij,vi ) | si <tj, sy <tjy, i< <i+1,j<j <j+1}. Note that there is a
correspondence between vertices and state tuples—with vgri@orresponding tds;, t;).

For the forward direction, assume that is a witnessing interdigitation fo®; < ®;. We
know that, if the states; and¢; co-occur inW, thens; < ¢; sinceW witnessesp; < ®,. The
vertices corresponding to the tuples I&f will be called co-occurrence vertices, and satisfy the
first condition for belonging to some edge M (thats; < t;). It follows from the definition of
interdigitation that both; ; andv,, , are both co-occurrence vertices. Consider a co-occurrence
vertexv; ; not equal tov,, ,, and the lexicographically least co-occurrence vergy after v; ;
(ordering vertices by ordering the pair of subscripts). We show #hgt i/, and ;' satisfy the
requirements fofv; ;, vy ;7) € E. If not, then either’ > i+ 1orj’ > j+ 1. If i/ > i+ 1, then
there can be no co-occurrence vertgx, ;, contradicting that? is piecewise total. If’ > j + 1,
then sincelV is piecewise total, there must be a co-occurrence vergex,;: but if i < i or
i > ', this contradicts the simultaneous consistencyiaf and if i” = i, this contradicts the
lexicographically least choice of; ;.. It follows that every co-occurrence vertex byt , has an
edge to another co-occurrence vertex closer in Manhattan distangg,toand thus that there is a
path fromv; 1 t0 vy, .

For the reverse direction assume there is a path of vertic8&i{®, ®2) from vy 1 to vy, ,,
given by, v;, ., Viy jo, - -5 iy s With iy = 51 = 1,4, = m,j, = n. Let W be the set of state
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tuples corresponding to the vertices along this p#ithmust be simultaneously consistent with the
®; orderings because our directed edges are all non-decreasing dn treerings. W must be
piecewise total because no edge can cross more than one state transition ifteihér,, by the
edge set definition. SB is an interdigitation. Finally, the definition of the edge #&ensures
that each tuplés;, ¢;) in W has the property; < ¢;, so thati¥ is a witnessing interdigitation for
d; < @y, showing thatd; < &, as desired. O

Lemma 10. Given some, let ¥ be the conjunction of the timelines

n

U {(PROR,; True;; Falsg; PROR,), (PROR,; Falsg; True;; PROR,) }.
i=1

We have the following facts about truth assignments to the Boolean varjables, p,,:

1. For any truth assignmemt, PROR,; s 4; PROR, is semantically equivalent to a member
of IS().

2. For each® € IS(V) there is a truth assignment such thatd < PROR,; s4; PROR,.

Proof: To prove the first part of the lemma, we construct an interdigitafiasf ¥ such that the
corresponding member of (8) is equivalent to PROP s 4; PROR,. Intuitively, we construct/
by ensuring that some tuple éfconsists only of states of the form Tyuer False that agree with
the truth assignment—the union of all the states in this tuple, taken () I®ill equal s4. Let
I ={Ty,,Th,T»,T5,T,} be an interdigitation off with exactly five state tuple®;. We assign the
states of each timeline @ to the tuples as follows:

1. For anyk, such thatl < k < n andA(py) is true,

e for the timelinesy; s9; 83584 = Q; Trueg; Falseg; Q, assign each statg to tupleT;,
and assign statg to Ty as well, and

o for the timelines!; s5; sh; sl = Q; Falsey; Truey; (), assign each statéto tupleT;_,
and states/; to tupleT as well.

2. For anyk, such thatl < k& < n andA(py) is false, assign states to tuples as in item 1 while
interchanging the roles &frue, and Falsey,.

It should be clear thal is piecewise total and simultaneously consistent with the state orderings
in ¥, and so is an interdigitation. The union of the states in each of, 15, andT} is equal to
PROR,, since PROR is included as a state in each of those tuples. Furthermore, we see that the
union of the states iff, is equal tos 4. Thus, the member of (§) corresponding td is equal to
PROR,; PROR;; s 4; PROR,; PROR,, which is semantically equivalent to PRQR 4; PROR,, as
desired.

To prove the second part of the lemma, debe any member of ISF). We first argue that
every state i must contain either Tryeor False for eachl < k < n. For anyk, since¥ con-
tains PROR; True,; Falsg; PROR,, every member of I8F) must be subsumed by PRQHTue;
Falsg; PROR,. So,® is subsumed by PRQFTrue,; Falsg; PROR,. But every state in PRQR
True,; False; PROR, contains either Tryeor Falsg, implying that so doe®, as desired.
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Next, we claim that for each < k£ < n, either® < True, or ® < Falsg—i.e., either all states
in ® include True, or all states irP include Falsg (and possibly both). To prove this claim, assume,
for the sake of contradiction, that, for sorhed £ True, and® £ Falsg. Combining this assump-
tion with our first claim, we see there must be statesds’ in ® such thats containsI'rue;, but
not Falsey, ands’ containsFalse;, but notTruey, respectively. Consider the interdigitatiérof ¥
that corresponds t@ as a member of IS). We know thats ands’ are each equal to the union of
states in tuple$’ andT”, respectively, of . T"andT’ must each include one state from each timeline
s1; s2; $3; 84 = PROR,; Truey; Falsg; PROR, ands); sh; s5; sy = PROR,; Falsg; True,; PROR,.
Clearly, sinces does not include FalgeT includes the states ands, and likewiseT” includes
the states;; ands). It follows that 7 is not simultaneously consistent with the state orderings in
s1; 82; 835 84 and s); sh; sh; s}, contradicting our choice of as an interdigitation. This shows that
either® < True, or ® < False.

Define the truth assignment such that for alll < k& < n, A(p) ifand only if & < True.
Since,for eachk, ® < True, or ® < Falsg, it follows that each state o is subsumed by
s4. Furthermore, sinc&@ begins and ends with PRQPIt is easy to give an interdigitation of
® and PROR; s4; PROR, that witnessesP < PROR,;s4;PROR,. Thus, we have thap <
PROR,; s4; PROR,. O

Lemma 16. Let ®; and ®, be as given on page 402, in the proof of Theorem 17, and let
ANIG({®,P2}). For any ¥’ whose timelines are a subset of thoselirthat omits some square
timeline, we haval < ¥’,

Proof: Since the timelines i’ are a subset of the timelinesin we know thatl < ¥'. It remains
to show thatl’ £ . We show this by constructing a timeline that is coveredithybut not by .

Let® = s1;s9;...;59, 1 be asquare timeline i that is not included int’. Recall that each
s; is a single proposition from the proposition get= {p; ; | 1 < < n, 1 < j < n}, and that,
for consecutive states ands;1, if s; = p; j, thens;; is eitherp;, ; or p; ;1. Define a new
timeline® = 55;33;. .. ;52,2 With5; = (P — s;). We now show tha® £ & (so that® £ ), and
that, for any®’ in ¥ — {®}, ® < &' (so thatd < ¥').

For the sake of contradiction, assume that< ®—then there must be a interdigitatidf’
witnessing® < ®. We show by induction on that, fori > 2, W (s;,s;) impliesj > i. For the
base case, when= 2, we know thatsy, £ s9, sincess Z S5, and soW (sq,32) is false, since
W witnesses subsumption. For the inductive case, assume the claim holdsifor all and that
W (si,55). We know thats; £ s;, and thusi # j. BecausdV is piecewise total, we must have
W (si—1,5;) for somej’, and, by the induction hypothesis, we must hgve- i — 1. SinceW is
simultaneously consistent with thg ands,. state orderings, and— 1 < 4, we havej’ < j. It
follows that; > 7 as desired. Given this claim, we see thaf » cannot co-occur i/ with any
state in®, contradicting the fact thal’ is piecewise total. Thus we have thiatZ .

Let &' = s!;...;s], be any timeline in — {®}, we now construct an interdigitation that
witnessesp < ®'. Note that whiled is assumed to be squa®, need not be. Lef be the smallest
index wheres; # s’— sinces; = s7 = p1,1, and® # @', we know that such g must exist, and is
in the range2 < 5 < m. We use the index to guide our construction of an interdigitation. L&t
be an interdigitation o and®’, with exactly the following co-occurring states (i.e., state tuples):

1. Forl <i < j— 1,34 co-occurs withs,.

435



FERN, GIVAN, & SISKIND

2. Forj <i <m,3; co-occurs withs;.
3. Forj +1 <i < 2n —2,53; co-occurs withs] .

It is easy to check thalV is both piecewise total and simultaneously consistent with the state
orderings in® and ®, and so is an interdigitation. We now show th#t witnessesd < &' by
showing that all states i are subsumed by the states they co-occur wit/inFor co-occurring
statess;;; ands) corresponding to the first item above we have #jat s;—this implies thats]

is contained irs; 1, giving thats;; < s;. Now consider co-occurring statg8s ands; from the
second item above. Sindeis square, chooske and/ so thats; _; = p;;, we have thas; is either
Pk+1, OF pg 1. In addition, sinces;_1 = s;_; we have that’; is eitherpy 1 1, px 141 OF Pr11,141
but thats; # s. In any of these cases, we find that no stat@'iafter s; can equak;—this follows
by noting that the proposition indices never decrease across the tindéliheWe therefore have
that, fori > j,5; < si. Finally, for co-occurring stateg ands!, from item three above, we have
5; < s, sinces,, = pp ,, Whichis in all states ob. Thus, we have shown that for all co-occurring
states inl¥, the state fromp is subsumed by the co-occurring statebin Therefore )V witnesses
@ < &', which implies that® < &'. O

Lemma 26. For any modelM,I) € M and any¥ € AMA —, ¥ covers(M, I) iff F[¥]covers
M, I)].

Proof: Recall thatM is the set of models over propositions in the Bet {p,...,p,} and that
we assume AMA uses only primitive propositions from? (possibly negated). We also have the
set of propositions® = {py,...,P,}, and assume that formulas in AMA use only propositions in
P U P and thatM is the set of models oveP U P, where for eachi, exactly one of; andp; is
true at any time. Note thaf[¥] is in AMA and thatT'[(M, I)] is in M. We prove the lemma via
straightforward induction on the structure @f—proving the result for literals, then for states, then
for timelines, and finally for AMA™ formulas.

To prove the result for literals, we consider two cases (the third caseasefis trivial). First, ¥
can be a single propositign, so thatl’ = F[p;] = p;. Consider any mod€lM, I) € M and let
(M',I) = T[(M,I)]. The following relationships yield the desired result.

U covers(M, I) iff foreachi € I, MJi] assign®; true (by definition of satisfiability)
iff foreachi € I, M'[i] assign®; true (by definition ofl")
iff W' =p; coversT[(M,I)] (by definition of satisfiability)

The second case is when is a negated proposition<p,—here, we get thal’ = p;. Let
(M,I) e Mand(M',I) = T[(M, I)]. The following relationships yield the desired result.

U covers(M, I) iff foreachi € I, M[i] assigny; false (by definition of satisfiability)
iff for eachi € I, M'[i] assigng; true  (by definition ofl")
iff U’ = p; coversT[(M,I)] (by definition of satisfiability)

This proves the lemma for literals.

16. Note that if® were not required to be square then it is possiblesfqr; to equals;—i.e., they could both equal
Pk+1,1+1-
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To prove the result for states, we use induction on the nurhlzdiiterals in a state. The base
case is wherk = 1 (the state is a single literal) and was proven above. Now assume that the lemma
holds for states witlt or fewer literals and le@ = [y A --- Ay, and(M,I) € M. From the
inductive assumption we know thé&t=I; A-- - Alj covers(M, I) iff F[®]coversT'[(M,I)]. From
our base case we also know tlat; covers(M, I) iff F[l,1] coversT[(M,I)]. From these facts
and the definition of satisfiability for states, we get tlatovers(M, I) iff F[®] A F[l;41] covers
T[(M,I)]. Clearly F has the property thdf[®] A F[ly+1] = F[¥], showing that the lemma holds
for states.

To prove the result for timelines, we use induction on the nurhludistates in the timeline. The
base case is whén= 1 (the timeline is a single state) and was proven above. Now assume that the
lemma holds for timelines witk or fewer states. Le¥ = s1;...; 5,1 and(M, [t,t']) € M with
(M',[t,t'])y = T[(M,[t,t'])]. We have the following relationships.

U covers(M, [t,t']) iff there exists somé&’ € [t,t'], such that; covers(M, [¢,¢"]) and
® = s9;...;8,,1 covers eithek M, [t ¢']) or (M, [t" + 1,t'])
iff there exists somé&’ € [t,t'], such thatF'[s,] covers(M’, [t,t"]) and
F[®] covers eithek M, [t",¢']) or (M',[t" 4+ 1,#'])
iff  F[s1]; F[®] covers(M', [t,t'])
iff  F[¥] covers(M’,[t,t'])

Where the first iff follows from the definition of satisfiability; the second follows from our inductive
hypothesis, our base case, and the fact thaf far [¢, '] we haveT'[(M, I)] = (M’ I); the third
follows from the definition of satisfiability; and the fourth follows from the fact thét, |; F'[®] =
Fv].

Finally, we prove the result for AMA formulas, by induction on the numbérof timelines
in the formula. The base case is when= 1 (the formula is a single timeline) and was proven
above. Now assume that the lemma holds for AMformulas with withk or fewer timelines
and let¥ = ¢; A--- A &pyq and(M,I) € M. From the inductive assumption, we know that
U = &y A--- A D covers(M,I) iff F[¥'] coversT[(M,I)]. From our base case, we also
know that®;. 1 covers(M, I) iff F[®.] coversT'[(M,I)]. From these facts and the definition of
satisfiability, we get thal' covers(M, I} iff F[U'] A F[®y ] coversT'[(M, I)]. Clearly F has the
property thatF'[¥'] A F[®,1] = F[¥], showing that the lemma holds for AMAformulas. This
completes the proof. O

Appendix C. Hand-coded and Learned Definitions Used in Our Experiments

Below we give the two sets of hand-coded definitions, HDd HD,, used in our experimental
evaluation. We also give a set of learned AMA event definitions for the same seven event types. The
learned definitions correspond to the output of btAMA learning algorithm, given all available
training examples (30 examples per event type), with 3 and D = BN. All the event definitions

are written in event logic, where-0p denotes the negation of propositipn
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PickUP(z,y, 2)

PUTDOWN(z,y, 2)

STACK (w, z,y, 2)

UNSTACK(w, x,y, 2)

MoVE(w, z,y, 2)
ASSEMBLE(w, x,y, z)

DISASSEMBLEw, z,y, 2)

Figure 12: The HD event-logic definitions for all seven event types.
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AOr =y A-Cz =00z =yA
SUPPORTELNy) A =OATTACHED(x, 2) A

([ =~OATTACHED(z,y) A ~OSUPPORTSZ, y)A
SUPPORTSz, y)A
—~OSUPPORTENz) A =OATTACHED(y, 2)A
—~OSUPPORT]y, ) A ~OSUPPORTSY, 2)A
-OSUPPORTS2, 2) A =OSUPPORTS 2, 1)
{ [ATTACHED(z, ) V ATTACHED(y, 2)] ;

[ ATTACHED(z,y) A SUPPORTSZ, y)A

—~OSUPPORTS 2, Y)A
~OSUPPORTEz) A 7"OATTACHED(y, 2)A
—~OSUPPORT]y, ) A ~OSUPPORTSY, 2)A
[ | "OSUPPORTSz,2) A ~OSUPPORTS %, 7)

AOr =y A-Cz=axA-Cz =yA
SUPPORTELNy) A =OATTACHED(x, 2) A
([ ATTACHED(z,y) A SUPPORTSx,y)A
—~OSUPPORTS 2, Y)A
—~OSUPPORTENz) A =OATTACHED(y, 2)A
—~OSUPPORTSYY, z) A “OSUPPORTSY, 2)A
-OSUPPORTS2, 2) A =OSUPPORTS 2, 1)
{ [ATTACHED(z,y) V ATTACHED(y, 2)] ;
[ =OATTACHED(z,y) A =~ SUPPORTST, y)A

SUPPORTSz, y)A

—~OSUPPORTENz) A =OATTACHED(y, 2)A

—~OSUPPORT]y, ) A =OSUPPORTSY, 2)A
[ | "OSUPPORTSz,2) A ~OSUPPORTS 2, 7)

[ 0z =wA-Cz=0A-0z =yA -|
PUTDOWN(w, z,y) A SUPPORTSz, y)A
| ~ATTACHED(z,¥) J

[ Oz=wA-Cz=0A-Cz =yA

-0y = z A [PICKUP(w, z, y); PUTDOWN(w, z, 2)]

PUTDOWN(w, y, 2) A<} STACK(w,z,¥, 2)

UNSTACK(w, 7, ¥, 2) Af<y PICKUP(z,y, 2)
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| PIcKUP(w, z,y) A SUPPORTSz2,y) A ~ATTACHED(z2,y)
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PIckUP(z, y, z)

PUTDOWN(z, y, 2)

LEARNING TEMPORAL EVENTS

Or=yA-Oz=x A"z =yA
SUPPORTENYy) A =OCATTACHED(z, 2) A

([ ~OATTACHED(z,y) A =OSUPPORTSZ, y)A
SUPPORTSz,y) A CONTACTS(z, y)A
—~OSUPPORTENz) A ~OATTACHED(y, 2)A
—~OSUPPORTSY, ) A ~OSUPPORTSyY, 2)A
—~OSUPPORTSZ, 2) A ~OSUPPORTS 2, 1)
ATTACHED(z,y) A SUPPORTSz, y)A
—~OSUPPORTS Z, y)A

—~OSUPPORTENz) A ~OATTACHED(y, 2)A
—~OSUPPORTSY, ) A ~OSUPPORTSyY, 2)A
. | ~OSUPPORTSYz, 2) A =OSUPPORTSY 2, x)

Qr=yA-Oz=x A"z =yA
SUPPORTENy) A =OCATTACHED(z, 2) A

([ ATTACHED(z,y) A SUPPORTSZ, y)A
—~OSUPPORTSZ, y)A

—~OSUPPORTENz) A ~OATTACHED(y, 2)A
—~OSUPPORTSY, ) A ~OSUPPORTSyY, 2)A
—~OSUPPORTSZ, 2) A ~OSUPPORTS 2, 1)
—~OATTACHED(z, y) A =OSUPPORTSZ, y)A
SUPPORTSz,y) A CONTACTS(z, y)A
—~OSUPPORTENz) A ~OATTACHED(y, 2)A
—~OSUPPORTSY, ) A =OSUPPORT]yY, 2)A
[ | ~OSUPPORTSYz, 2) A =OSUPPORTSY 2, x)

Figure 13: Part | of the HPevent-logic definitions.
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Qw =z A 0Oy =wA Oy =zA

STACK (w, x,y, 2) 2

\

A0z =w A0z =0 A Oz =yA
SUPPORTEL{z) A ~OATTACHED(w, y)A
gl

ATTACHED(w, £) A SUPPORTSw, 2)A
—~OSUPPORTSY, )A

SUPPORTSz,y) A CONTACTS(z,y)A
—~OATTACHED(z, y)A

~OSUPPORTEQw) A =OATTACHED(z, y)A
—~OSUPPORTSZ, w) A ~OSUPPORTSZ, y)A
—~OSUPPORTSw, y) A =OSUPPORTSY, w)

SUPPORTSRy, z) A CONTACTS(y, z)A
SUPPORTSz,y) A CONTACTS(z,y)A
—~OATTACHED(z, Y)A

—~OSUPPORTEQw) A =OATTACHED(zZ, y)A
—~OSUPPORTSZ, w) A ~OSUPPORTSZ, y)A
<O SUPPORTYw, i) A =<OSUPPORTSY, w)

Qw =2 A=y =wA-Oy =zA

Sup
4

UNSTACK(w, z,¥, 2) 2

\

Oz=wA-Cz=2 A0z =yA

PORTEQxz) A ~OATTACHED(w, y)A

[ =OATTACHED(w, z) A =< SUPPORTSw, 7)A
SUPPORTSRy, z) A CONTACTS(y, z)A
SUPPORTSz,y) A CONTACTS(z, y)A
—~OATTACHED(z, y)A
~OSUPPORTERw) A =OATTACHED(z, y)A
—~OSUPPORTS 2, w) A ~OSUPPORTSZ, y)A
—~OSUPPORTSw, y) A =<OSUPPORTSy, w)
ATTACHED(w, £) A SUPPORTSw, )A
—~OSUPPORTSRY, )A
SUPPORTSz,y) A CONTACTS(z, y)A
—~OATTACHED(z, y)A
~OSUPPORTERw) A =OATTACHED(z, y)A
-~OSUPPORTSZ, w) A ~OSUPPORTSZ, y)A

| ~OSUPPORTSw,y) A =OSUPPORTS]yY, w)

MOVE(w, z,y, z) 2 Oy = z A [PICKUP(w, z, y); PUTDOWN(w, 2, 2)]

1

ASSEMBLEw, ,y, 2)

>

DISASSEMBLEw, x,y, 2)

PUTDOWN(w, y, 2) Af<y STACK(w, z,¥, 2)

UNSTACK(w, z,y, 2) Af<y PICKUP(z,y, 2)

Figure 14: Part Il of the HPevent-logic definitions.
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[ SUPPORTENy) A SUPPORTSz,y)A 1 )
CONTACTS(y, ) A "OSUPPORTSZ, Y)A
| ~OATTACHED(z,y) A ~CATTACHED(y, 2) |
SUPPORTELNY); A
[ SUPPORTENy) A SUPPORTSZ, y)A
ATTACHED(z, y) A =OSUPPORTS2, y)A
| ~OCONTACTS(y, 2) A =OATTACHED(y, 2) | |
SUPPORTENY);
[ SUPPORTELy) A ATTACHED(z,y)A
ATTACHED(y, 2) ]
SUPPORTENy) A ATTACHED(z, y)]
SUPPORTELy) A CONTACTS(y, )]
SUPPORTELy) A ATTACHED(y, 2)]
SUPPORTELNy) A ATTACHED(z, y)]
( [ SUPPORTENy) A SUPPORTS2, y)A '|
CONTACTS(y, z) A =OSUPPORTSz, y)A ;
[ ~OATTACHED(z,y) A ~OATTACHED(y, 2) J
SUPPORTELy) A SUPPORTSz,Yy)];
SUPPORTELNy) A ATTACHED(z, y)]
SUPPORTELy) A SUPPORTSz,Yy)];
SUPPORTELy) A ATTACHED(z, y)];
SUPPORTELNy) A SUPPORTSx, y)A
ATTACHED(z, y) A =-OSUPPORTSz2, y)A
—~OCONTACTS(y, 2) A =OATTACHED(y, 2)

; A

Y
Z)15

[
PickUP(z,y, z) 2 % A
[

[
[
([
[

[ SUPPORTENy) A SUPPORTSz,y) A ATTACHED(z, y)A
—~OSUPPORTS 2, y) A ~OCONTACTS(y, 2)A
~OATTACHED(y, 2)

SUPPORTEy);

PUTDOWN(z,y, 2) 2 [ SUPPORTELy) A SUPPORTSz,y) A CONTACTS(z,y)A
-~OSUPPORTSZ, y) A “OATTACHED(2, )

" SUPPORTE(y) A ATTACHED(z, %) l;

SUPPORTEM(y) A ATTACHED(z,y) A ATTACHED(y, 2) | ;
SUPPORTELy)

Figure 15: The learned 3-AMA definitions fondkUP(z, y, z) and RITDOWN(z, y, z).
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SUPPORTEtéy) A ATTACHED(w, z) A SUPPORT$z,y) A CONTACTS(y, 2)A .
—\OSUPPORTié:E,y) A =~OSUPPORTSY, z) A ~OCONTACTSz, y) A ~OATTACHED(z, ¥) } ’
[SUPPORTERY)] ; A
SUPPORTEEQy) A SUPPORTE[z) A SUPPORTS$Y, ) A CONTACTS(z,y) A CONTACTS(y, 2)A
ﬁOSUPPORTSE:L‘ y) A = OATTACHED(w, ) A ~OATTACHED(z, y) A =OATTACHED(y, 2) ]
[SuPPORTERY) A ATTACHED(w, z)] ;
[SuPPORTERY) A ATTACHED(z, y)] ; A
[SuPPORTEMRY) A SUPPORTEz) A SUPPORTSy, ) A CONTACTS(z, y)]
[SUPPORTERY) A ATTACHED(w, x)] ;
[SUPPORTERY) A SUPPORTS$z,y) A ATTACHED(w, ) A ATTACHED(z,y) A ATTACHED(y, 2)]; » A
[SUPPORTENY) A SUPPORTEz)SUPPORTS$Y, )]
[SuPPORTERY) A ATTACHED(w, z)] ;
[SUPPORTENY) A SUPPORTEDz) A SUPPORT$%,y) A SUPPORTSy, ) A ATTACHED(w, z)]; » A
[SUPPORTERY) A SUPPORTEz) A SUPPORT$Y, )]
[SuPPORTERY) A ATTACHED(w, ) A SUPPORT$z,y) A CONTACTS(y, 2)] ;
[SuPPORTERY) A ATTACHED(y, 2)] ; A
[SUPPORTERY) A SUPPORTEz) A SUPPORTSy, ) A CONTACTS(y, 2)]
[SuPPORTERY) A ATTACHED(w, ) A SUPPORT$z,y) A CONTACTHy, 2)] ;
[SuPPORTERY) A ATTACHED(w, z) A ATTACHED(y, 2)] ; A
[SUPPORTERY) A SUPPORTEz) A SUPPORT$Y, )]
SUPPORTEDY) A ATTACHED(w, ) A SUPPORT$z,y) A CONTACTYy, 2)A )
{ —~OSUPPORT$z, y) A ~OSUPPORT$Y, ) A “OCONTACTS(z,y) A “OATTACHED(z,y) |’ A
[SUPPORTEIY) A ATTACHED(w, z)] ;
[SUPPORTERY) A SUPPORTERx) A SUPPORTS$Y, )]
[SUPPORTERY) A ATTACHED(w, x)] ;
[SUPPORTEMy) A ATTACHED(w, ) A SUPPORT$z,) A CONTACTS(y, 2)]; » A
[SUPPORTENY) A SUPPORTEx)]
[SuPPORTERY) A ATTACHED(w, z)] ;
[SuPPORTENY) A ATTACHED(w, ) A SUPPORT$z,y) A SUPPORTERZ)]; » A
[SUPPORTENY) A SUPPORTEZ)]
[SUPPORTEIY) A ATTACHED(w, z)] ;
SUPPORTEY) A CONTACTS(y, 2) A SUPPORT$z,y) A SUPPORTERZ)A |
[ —OSUPPORTSZ, y) A =OATTACHED(z, ) } ’
[SUPPORTEIY) A SUPPORTEx)]
SUPPORTENY);

SUPPORTERyY) A CONTACTS(y, z) A SUPPORT$z,y) A SUPPORTERz)A ]
[ —~OSUPPORTS$T, y) A “OATTACHED(z, y) A =OATTACHED(yY, 2) ] ’
[SUPPORTEIY) A SUPPORTERz) A SUPPORTS$y, )]

[SUPPORTERY
[SUPPORTERY
[SUPPORTERY

A ATTACHED(w, z)]
A CONTACTS(y, z) A SUPPORTERT)]; » A
A SUPPORTENz) A SUPPORTERY )]

=

[SUPPORTEIY) A ATTACHED(w, z)] ;
[SUPPORTERY) A SUPPORTEx) A SUPPORTS$Y, )] ;
SUPPORTENY) A SUPPORTERz) A SUPPORT$y, ) A CONTACTS(z,y) A CONTACTS(y, 2)A
[ —OSUPPORTSZ, y) A =OATTACHED(w, ) A =OATTACHED(z, y) A ~OATTACHED(y, 2) ]
SUPPORTEDY);
SUPPORTERY) A SUPPORTERz) A SUPPORTSy, z) A SUPPORTSz,y)A ]
[ CONTACTS(z,y) A CONTACTS(y, 2) ’
SUPPORTENY) A SUPPORTERz) A SUPPORT$y, ) A CONTACTS(z,y) A CONTACTS(y, 2)A
[ —~OSUPPORT$Z, y) A “OATTACHED(w, ) A =“OATTACHED(, y) A =OATTACHED(y, 2) ]

~

A

Figure 16: The learned 3-AMA definition forf8ck (w, z, y, z).
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CONTACTS(z, y) A CONTACTS(y, z) A =OSUPPORTSw, )A
| =OSUPPORTSz,y) A =OATTACHED(w, z) A =OATTACHED(z, y)
[SUPPORTENz) A SUPPORTELRY)];
[ SUPPORTEL{z) A SUPPORTELY) A ATTACHED(w, z) A SUPPORTSz, y)A
CONTACTS(y, z) A ATTACHED(w, x) A =OSUPPORTST, y)A
—~OSUPPORT]Y, ) A ~OCONTACTS(z, y)A
| ~OATTACHED(z,y) A ~OATTACHED(y, 2) )
SUPPORTEz) A SUPPORTEI{y) A SUPPORTRy, x)];
SUPPORTEz) A SUPPORTERy) A ATTACHED(w, ) A ATTACHED(y, z)] }
SUPPORTEL{z) A SUPPORTEL{y) A ATTACHED(w, z) A CONTACTS(y, 2)]
SUPPORTEz) A SUPPORTELy) A SUPPORTRy, ) A CONTACTS(y, 2)];
A ATTACHED(y, 2)] ; } A
A ATTACHED(w, ) A CONTACTY(y, 2)]

SUPPORTEz) A SUPPORTEMy
A SUPPORTSy, ) A CONTACTS(z, y)] ; }
A

([ SUPPORTENx) A SUPPORTERy) A SUPPORTSy, T)A ] )

)

SUPPORTEz) A SUPPORTERyY
SUPPORTEz) A SUPPORTERy

A SUPPORTRy,z) A ATTACHED(z, y)];
A ATTACHED(w, z)]
]

SUPPORTEz) A SUPPORTERy
A SUPPORTRy, z)]; }

SUPPORTEz
SUPPORTE{z

A SUPPORTEQy
A SUPPORTEQy

SUPPORTE{z) A SUPPORTERyY
A CONTACTY(y, z)

SUPPORTEL{z) A SUPPORTEL{y) A ATTACHED(w, z)]

SUPPORTEz) A SUPPORTELy) A SUPPORTSy, z)];

SUPPORTENz) A SUPPORTEL{y) A ATTACHED(w, )] ;

[ SUPPORTEL{z) A SUPPORTELY) A ATTACHED(w, z) A SUPPORTSz, y)A

CONTACTS(y, z) A ATTACHED(w, x) A =OSUPPORTST, y)A

—~OSUPPORT]y, ) A ~OCONTACTS(z, y)A

—~OATTACHED(z, y) A ~OATTACHED(y, 2)

SUPPORTELz) A SUPPORTELy) A SUPPORTSy, T)A

CONTACTS(z, y) A CONTACTS(y, z)A ]

—~OSUPPORTSw, z) A ~OSUPPORTSZ, y)A ’

% | ~OATTACHED(w, z) A =OATTACHED(z, y)

SUPPORTELz) A SUPPORTELY) A SUPPORTSy, z)];

SUPPORTELz) A SUPPORTENY) A ATTACHED(w, x)]

SUPPORTEz) A SUPPORTELy) A SUPPORTRy, ) A CONTACTS(y, 2)];

SUPPORTEL{z) A SUPPORTEL{y) A SUPPORTSRY, z) A ATTACHED(y, 2)]; } A

SUPPORTEL{z) A SUPPORTEL{y) A ATTACHED(w, z)]

SUPPORTELx) A SUPPORTELy) A SUPPORTSy, 7)];

{ SUPPORTEL{z) A SUPPORTERy) A SUPPORTSy, ) A ATTACHED(y, z)A } O
)

)

— O — D D N

N —N— —N— N N
L e e e e e S e S
~

N/
1

~— — —

SUPPORTSz,y) A ATTACHED(w, z) A ATTACHED(z, y)
[SUPPORTELz) A SUPPORTELY) A ATTACHED(w, z)]
[SUPPORTELz) A SUPPORTERY)];
[SUPPORTEL{z) A SUPPORTELY) A SUPPORTSy, ) A ATTACHED(w, z)] ; } A
[SUPPORTEL®
[SUPPORTELz

)
)
A SUPPORTERY) A SUPPORTSw, z) A ATTACHED(w, )]

A SUPPORTEQy) A SUPPORTSy, x)];

[SUPPORTEL{z) A SUPPORTELY) A SUPPORTSw, ) A ATTACHED(w, )] ; }
[SUPPORTEL{z) A SUPPORTELY) A ATTACHED(w, )]

[SUPPORTENz) A SUPPORTENY) A SUPPORTSy, )] ;

{ SUPPORTEMz) A SUPPORTEHy) A CONTACTS(y, 2)A ] _

A

~— — — — — —

—~OSUPPORTSEZ, y) A “OATTACHED(z, y) A “OATTACHED(y, 2)
[SUPPORTELz) A SUPPORTELY)]

N N N —N— —

Figure 17: The learned 3-AMA definition forNBTACK(w, z, y, 2).
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[ SUPPORTEL(z) A SUPPORTSy, z) A CONTACTS(y, ) A
—~OSUPPORTSw, ) A =OSUPPORTS 2, ) A =OCONTACTS(z, 2)A

SUPPORTENz);
SUPPORTEz) A SUPPORTSz, ) A CONTACTS(z, 2)A
—~OSUPPORTSw, ) A =OSUPPORTS]y, ) A =OCONTACTS(y, ) A

[SUPPORTEN(z) A SUPPORTSy, )] ;

[SUPPORTEN(z) A ATTACHED(w, z)]; ¢ A

SUPPORTELN )

SUPPORTEN);

[SUPPORTEL{z) A ATTACHED(w, ) A ATTACHED(z, z)]; » A
SUPPORTELz)

[SUPPORTENz)] ;

[SUPPORTEN(z) A ATTACHED(z, 2)]; ¢ A

[SUPPORTEDz) A CONTACTS(z, z)]

SUPPORTEO);

[SUPPORTEN(z) A ATTACHED(w, ) A SUPPORTSw, z)]; ¢ A
SUPPORTELN )

SUPPORTEN);

[SUPPORTELz) A ATTACHED(w, ) A ATTACHED(y, z)]; ¢ A
SUPPORTELz)

[SUPPORTENz) A CONTACTS(y, z)] ;

[SUPPORTEN(z) A ATTACHED(y, z)];

SUPPORTELN )

Figure 18: The learned 3-AMA definition for &WE(w, z, vy, z).
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—~OCONTACTS(z, y) A =OCONTACTS(z, y) A
—~OATTACHED(w, z) A =OATTACHED(z, )

f}ue;

[ SUPPORTEL(z) A SUPPORTELN(y) A SUPPORTSz, i) A

SUPPORTSy, z) A CONTACTS(z, y)A

—~OSUPPORTENz) A ~OSUPPORTSZ, y) A =OSUPPORTSY, z)A
—~OCONTACTS(z, y) A =OCONTACTS(z, y)A ;
~OATTACHED(w, z) A =OATTACHED(z, )

ATTACHED (w, );

SUPPORTEQY) J

true;

[SUPPORTE{y) A =OATTACHED(w, z) A ~OATTACHED(2,y)]; ¢ A
SUPPORTELY)

true;

[SUPPORTED(y) A ATTACHED(z,y)]; ¢ A

[SUPPORTEL{y) A CONTACTS(z,y)]

true;

[SUPPORTENy) A SUPPORTSz, yy) CONTACTS(z,y) A ATTACHED(w, z)] ;
SUPPORTEQY)

true;

[SUPPORTEN{y) A ATTACHED(w, y)ATTACHED(z,y)];
SUPPORTELY)

Figure 19: The learned 3-AMA definition for $§EMBLE(w, z, y, z).
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SUPPORTEN{z) A SUPPORTEY) A SUPPORTSy, ) A SUPPORTSZ, y)A

CONTACTS(z,y) A CONTACTS(z,y) A =~OSUPPORTSwW, )A )

O SUPPORTSw, y) A =OSUPPORTS, y) A =OATTACHED(z, w)A ’

—~OATTACHED(w, y) A =~ OATTACHED(z,y) A =~OATTACHED(z, )

SUPPORTEY);

[ SuPPORTENy) A ~OSUPPORTEz) A =OSUPPORTSwW, 7)A

—~OSUPPORTS 2, y) A =OSUPPORTSy, ) A “OCONTACTS(z, y)A | ;

—~OCONTACTS(2, y) A =“OATTACHED(z, w) A =“OATTACHED(2,Yy)

[SUPPORTENz) A SUPPORTENy)] ;

[ SUPPORTELz) A SUPPORTEDy) A SUPPORTSw, z)A

SUPPORTSz,y) A CONTACTS(z,y) A ATTACHED(z, w)

SUPPORTEL(y)

[ SUPPORTEL{x) A SUPPORTEN(Y) A SUPPORTSz,y)A | )

SUPPORTRy, ) A CONTACTS(z,y) A CONTACTS(z, ) ] ’

[SUPPORTENz) A SUPPORTELy) A SUPPORTSy, 2) A ATTACHED(z, )] ;

SUPPORTELy) J

[SUPPORTEz) A SUPPORTEY) A SUPPORTS]Y, ) A CONTACTS(z,y)];
SUPPORTEL{z) A SUPPORTEL{y) A SUPPORTSZ, y)A

{ SUPPORTSy, z) A ATTACHED(z, y) A ATTACHED(z,y)

SUPPORTELy)

[SUPPORTEz) A SUPPORTEY) A SUPPORTSyY, )] ;
SUPPORTELz) A SUPPORTEL{y) A SUPPORTSZ, y)A )

{ SUPPORTSY, z) A ATTACHED(z, y) A ATTACHED(2,y) A ATTACHED(z,w) |’

SUPPORTELy)

SUPPORTENY);

[SUPPORTELY) A ATTACHED(w, y) A ATTACHED(z,y)]; ¢ A

SUPPORTELy)

SUPPORTENY);

[SUPPORTELY) A SUPPORTSw, y) A ATTACHED(w, y)];

SUPPORTELy)

; A

; A

A

Figure 20: The learned 3-AMA definition foriIBASSEMBLE(w, x, ¥, 2).
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