
Journal of Artificial Intelligence Research 19 (2003) 73-138 Submitted 12/02; published 8/03

Optimal Schedules for Parallelizing Anytime Algorithms:

The Case of Shared Resources

Lev Finkelstein lev@cs.technion.ac.il

Shaul Markovitch shaulm@cs.technion.ac.il

Ehud Rivlin ehudr@cs.technion.ac.il

Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

Abstract

The performance of anytime algorithms can be improved by simultaneously solving
several instances of algorithm-problem pairs. These pairs may include different instances
of a problem (such as starting from a different initial state), different algorithms (if several
alternatives exist), or several runs of the same algorithm (for non-deterministic algorithms).
In this paper we present a methodology for designing an optimal scheduling policy based
on the statistical characteristics of the algorithms involved. We formally analyze the case
where the processes share resources (a single-processor model), and provide an algorithm
for optimal scheduling. We analyze, theoretically and empirically, the behavior of our
scheduling algorithm for various distribution types. Finally, we present empirical results of
applying our scheduling algorithm to the Latin Square problem.

1. Introduction

Assume that our task is to learn a concept with a predefined success rate, measured on a
given test set. Assume that we can use two alternative learning algorithms, one which learns
fast but requires some preprocessing, and another which works more slowly but requires no
preprocessing. Can we possibly benefit from using both learning algorithms in parallel to
solve one learning task on a single-processor machine?

Another area of application is that of constraint satisfaction problems. Assume that
a student tries to decide between two elective courses by trying to schedule each of them
with the set of her compulsory courses. Should the student try to solve the two sets of
constraints sequentially or should the two computations be somehow interleaved?

Assume now that a crawler searches for a specific page in a site. If we had more than one
starting point, the process could be speeded up by simultaneous application of the crawler
from a few (or all) of them. However, what would be the optimal strategy if the bandwidth
were restricted?

What do the above examples have in common?

• There are potential benefits to be gained from the uncertainty in the amount of
resources that will be required to solve more than one instance of the algorithm-
problem pair. We can use different algorithms (in the first example) and different
problems (in the last two examples). For non-deterministic algorithms, we can also
use different runs of the same algorithm.

c©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Finkelstein, Markovitch & Rivlin

• Each process is executed with the purpose of satisfying a given goal predicate. The
task is considered accomplished when one of the runs succeeds.

• If the goal predicate is satisfied at time t∗, then it is also satisfied at any time t > t∗.
This property is equivalent to utility monotonicity of anytime algorithms (Dean &
Boddy, 1988; Horvitz, 1987), where solution quality is restricted to Boolean values.

Our objective is to provide a schedule that minimizes the expected cost, possibly under
some constraints (for example, processes may share resources). Such problem definition is
typical for rational-bounded reasoning (Simon, 1982; Russell & Wefald, 1991). This problem
resembles those faced by contract algorithms (Russell & Zilberstein, 1991; Zilberstein, 1993).
There, given the allocated resources, the task is to construct an algorithm providing a
solution of the highest quality. In our case, given quality requirements, the task is to
construct an algorithm that solves the problem using minimal resources.

There are several research works that deal with similar problems. Simple parallelization,
with no information exchange between the processes, may speed up the process due to
high diversity in solution times. For example, Knight (1993) showed that using many
reactive agents employing RTA* search (Korf, 1990) is more beneficial than using a single
deliberative agent. Another example is the work of Yokoo and Kitamura (1996), who used
several search agents in parallel, with agent rearrangement after preallotted periods of time.
Janakiram, Agrawal, and Mehrotra (1988) showed that for many common distributions of
solution time, simple parallelization leads to at most linear speedup. One exception is the
family of heavy-tailed distributions (Gomes, Selman, & Kautz, 1998) for which it is possible
to obtain superlinear speedup by simple parallelization.

A superlinear speedup can also be obtained when we have access to the internal structure
of the processes involved. For example, Clearwater, Hogg, and Huberman (1992) reported
superlinear speedup for cryptarithmetic problems as a result of information exchange be-
tween the processes. Another example is the works of Kumar and Rao (Rao & Kumar,
1987; Kumar & Rao, 1987; Rao & Kumar, 1993), devoted to parallelizing standard search
algorithms, where superlinear speedup is obtained by dividing the search space.

An interesting domain-independent approach is based on “portfolio” construction (Hu-
berman, Lukose, & Hogg, 1997; Gomes & Selman, 1997). In this approach, a different
amount of resources is allotted to each process. This can reduce both expected resource
consumption and its variance.

In the case of non-deterministic algorithms, another way to benefit from solution time
diversity is to restart the same algorithm in attempt to switch to a better trajectory. Such
a framework was analyzed in detail by Luby, Sinclair, and Zuckerman (1993) for the case of
a single processor and by Luby and Ertel (1994) for the multiprocessor case. In particular,
it was proven that for a single processor, the optimal strategy is to periodically restart the
algorithm after a constant amount of time until the solution is found. This strategy was
successfully applied to combinatorial search problems by Gomes, Selman, and Kautz (1998).

There are several settings, however, where the restart strategy is not optimal. If the
goal is to schedule a number of runs of a single non-deterministic algorithm, such that
this number is limited due to the nature of the problem (for example, robotic search),
the restart strategy is applicable but not optimal. A special case of the above settings is
scheduling a number of runs of a deterministic algorithm with a finite set of available initial

74

Optimal Schedules for Parallelizing Anytime Algorithms

configurations (inputs). Finally, the case where the goal is to schedule a set of algorithms
different from each other is out of the scope of the restart strategy.

The goal of this research is to develop a methodology for designing an optimal scheduling
policy for any number of instances of algorithm-problem pairs, where the algorithms can
be either deterministic or non-deterministic. We present a formal framework for schedul-
ing parallel anytime algorithms for the case where the processes share resources (a single-
processor model), based on the statistical characteristics of the algorithms involved. The
framework assumes that we know the probability of the goal condition to be satisfied as a
function of time (a performance profile (Simon, 1955; Boddy & Dean, 1994) restricted to
Boolean quality values). We analyze the properties of optimal schedules for the suspend-
resume model, where allocation of resources is performed on mutual exclusion basis, and
show that in most cases an extension of the framework to intensity control, where resources
may be allocated simultaneously and proportionately to multiple demands, does not yield
better schedules. We also present an algorithm for building optimal schedules. Finally, we
demonstrate experimental results for the optimal schedules.

2. Motivation

Before starting the formal discussion, we would like to illustrate how different scheduling
strategies can affect the performance of a system of two search processes. The first example
has a very simple setup which allows us to perform a full analysis. In the second example,
we show quantitative results for a real CSP problem.

2.1 Scheduling DFS Search Processes

Assume DFS with random tie-breaking is applied to a simple search space shown in Figure 1,
but that only two runs of the algorithm are allowed1. There is a very large number of
paths to the goal, half of them of length 10, quarter of them of length 40, and quarter of
them of length 160. When one of the processes finds the solution, the task is considered
accomplished.

10

40

10

160

10

40

10

160

A B

Figure 1: A simple search task: two DFS-based agents search for a path from A to B. Scheduling
the processes may reduce costs.

1. Such a limit can follow, for example, from physical constraints, such as for the problem of robotic search.
For unlimited number of runs the optimal results would be provided by the restart strategy.

75

Finkelstein, Markovitch & Rivlin

We consider a single-processor system, where the two processes cannot run simultane-
ously. Let us denote the processes by A1 and A2, and by L1 and L2 the actual path lengths
for A1 and A2 respectively for the particular run.

The application of a single processes (without loss of generality, A1) gives us the expected
execution time of 1/2 × 10 + 1/4× 40 + 1/4 × 160 = 55, as is shown in Figure 2.

t

t t

t t

�
�

�
�

��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@

1/2 1/2

1/2 1/2

L1 = 10, cost = 10 L1 6= 10

L1 = 40, cost = 40 L1 = 160, cost = 160

Figure 2: Path lengths, probabilities and costs for running a single process

We can improve the performance by simulating a simultaneous execution of two pro-
cesses. For this purpose, we allow each of the processes to expand a single node, and to
switch to the other process (without loss of generality, A1 starts first). In this case, the
expected execution time is 1/2×19+1/4×20+1/8×79+1/16×80+1/16×319 = 49.3125,
as is shown in Figure 3.

Finally, if we know the distribution of path lengths, we can allow A1 to open 10 nodes;
if A1 fails, we can stop it and allow A2 to open 10 nodes; if A2 fails as well, we can allow
A1 to open the next 30 nodes, and so forth. In this scenario, A1 and A2 switch after 10
and 40 nodes (if both processes fail to find a solution after 40 nodes, it is guaranteed to be
found by A1 after 160 nodes). This scheme is shown in Figure 4, and the expected time is
1/2 × 10 + 1/4 × 20 + 1/8 × 50 + 1/16 × 80 + 1/16 × 200 = 33.75.

2.2 The Latin Square Example

The task in the Latin Square problem is to place N symbols on an N × N square such
that each symbol appears only once in each row and each column. An example is shown in
Figure 5.

A more interesting problem arises when the square is partially filled. The problem in
this case may be solvable (see the left side of Figure 6) or unsolvable (see the right side
of Figure 6). The problem of satisfiability of a partially filled Latin Square is a typical
constraint-satisfaction problem. We consider a slight variation of this task. Let us assume
that two partially filled squares are available, and we need to decide whether at least one of
them is solvable. We assume that we are allocated a single processor. We attempt to speed
up the time of finding a solution by starting to solve the two problems from two different
initial configurations in parallel.

Each of the processes employs a deterministic heuristic DFS with the First-Fail heuris-
tic (Gomes & Selman, 1997). We consider 10%-filled 20× 20 Latin Squares. The behavior
of a single process measured on a set of 50,000 randomly generated samples is shown in

76

Optimal Schedules for Parallelizing Anytime Algorithms

t
t0

t
t1 t

t1

t
t2 t

t2

t
t3 t

t3

t
t4 t

t4

t
t5

�
�

�
�

��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

1/2 1/2

1/2 1/2

1

1/2

1/2

1/2

1/2

L1 = 10,
L2 ≥ 10,
cost = 19

L1 ≥ 40,
L2 = 10,
cost = 20

L1 = 160,
L2 = 40,
cost = 80

L1 = 40,
L2 ≥ 40,
cost = 79

L1 ≥ 40,
L2 ≥ 40

L1 = 160,
L2 ≥ 40

L1 ≥ 40,
L2 ≥ 10

L1 = 160,
L2 = 160,
cost = 319

L1 = 160,
L2 = 160

0 1 2 3 4 5 6 7 8 9 10

A1

A2

...

t0 = 0

t1 = 19

t2 = 20

t3 = 79

t4 = 80

t5 = 319

Figure 3: Path lengths, probabilities and costs for simulating a simultaneous execution

77

Finkelstein, Markovitch & Rivlin

t
t0

t
t1 t

t1

t
t2 t

t2

t
t3 t

t3

t
t4 t

t4

t
t5

�
�

�
�

��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

@
@

@
@

@@
�

�
�

�
��

1/2 1/2

1/2 1/2

1

1/2

1/2

1/2

1/2

L1 = 10,
L2 ≥ 10,
cost = 10

L1 ≥ 40,
L2 = 10,
cost = 20

L1 = 160,
L2 = 40,
cost = 80

L1 = 40,
L2 ≥ 40,
cost = 50

L1 ≥ 40,
L2 ≥ 40

L1 = 160,
L2 ≥ 40

L1 ≥ 40,
L2 ≥ 10

L1 = 160,
L2 = 160,
cost = 200

L1 = 160,
L2 = 160

t0 t1 t2 t3 t4 t5

A1

A2

t0 = 0

t1 = 10

t2 = 20

t3 = 50

t4 = 80

t5 = 200

Figure 4: Path lengths, probabilities and costs for the interleaved execution

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

Figure 5: An example of a 5× 5 Latin Square.

78

Optimal Schedules for Parallelizing Anytime Algorithms

1

4 1

5 2

1

1 2

1 ? 4 5

2

3

4

Figure 6: An example of solvable (to the left) and unsolvable (to the right) prefilled 5 × 5 Latin
Squares.

Figure 7. Figure 7(a) shows the probability of finding a solution as a function of the number
of search steps, and Figure 7(b) shows the corresponding distribution density. Assume that

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800 900 1000

F(
t)

t

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

300 400 500 600 700 800 900 1000

f(t
)

t

(a) (b)

Figure 7: The behavior of DFS with the First-Fail heuristic on 10%-filled 20 × 20 Latin Squares.
(a) The probability of finding a solution as a function of the number of search steps;
(b) The corresponding distribution density.

each run is limited to 25,000 search steps (only 88.6% of the problems are solvable under this
condition). If we apply the algorithm only on one of the available two initial configurations,
the average number of search steps is 3777. If we run two processes in parallel (alternating
after each step), we obtain a result of 1358 steps. If we allow a single switch at the optimal
point (an analogue of the restart technique (Luby et al., 1993; Gomes et al., 1998) for two
processes), we get 1376 steps on average (the optimal point is after 1311 steps). Finally, if
we interleave the processes, switching at the points corresponding to 679, 3072, and 10208
of total steps, the average number of steps is 1177. The above results were averaged over a
test set of 25,000 pairs of initial configurations.

The last sequence of switch points is an optimal schedule for the process with behavior
described by the graphs in Figure 7. In the rest of the paper we present an algorithm for
deriving such optimal schedules.

79

Finkelstein, Markovitch & Rivlin

3. A Framework for Parallelization Scheduling

In this section we formalize the intuitive description of parallelization scheduling. The first
part of this framework is similar to our framework presented in (Finkelstein & Markovitch,
2001).

Let S be a set of states, t be a time variable with non-negative real values, and A be a
random process such that each realization (trajectory) A(t) of A represents a mapping from
R+ to S. Let X0 be a random variable defined over S. Since an algorithm Alg starting
from an initial state S0 corresponds to a single trajectory (for deterministic algorithms), or
to a set of trajectories with an associated distribution (for non-deterministic algorithms),
the pair 〈X0, Alg〉, where X0 stands for the initial state, can be viewed as a random process.
Drawing a trajectory for such a process corresponds, without loss of generality, to a two-
step procedure: first an initial state S0 is drawn for X0, and then a trajectory A(t) starting
from S0 is drawn for Alg. Thus, the source of randomness is either the randomness of the
initial state, or the randomness of the algorithm (which can come from the algorithm itself
or from the environment), or both.

Let S∗ ⊆ S be a designated set of states, and G : S → {0, 1} be the characteristic
function of S∗ called the goal predicate. The behavior of a trajectory A(t) of A with respect

to the goal predicate G can be written as G(A(t)), which we denote by ĜA(t). We say

that A is monotonic over G if and only if ĜA(t) is a non-decreasing function for each

trajectory A(t) of A. Under the above assumptions ĜA(t) is a step function with at most
one discontinuity point.

Let A be monotonic over G. From the definitions above we can see that the behavior
of G for each trajectory A(t) of A can be described by a single point t̂A,G, the first point

after which the goal predicate is true, i.e, t̂A,G = inft{t|ĜA(t) = 1}. If ĜA(t) is always 0,
we say that t̂A,G is not defined. Therefore, we can define a random variable, which for each
trajectory A(t) of A with t̂A,G defined, corresponds to t̂A,G. The behavior of this variable
can be described by its distribution function F (t). At the points where F (t) is differentiable,
we use the probability density f(t) = F ′(t).

It is important to note that in practice not every trajectory of A leads to the goal
predicate satisfaction even after infinitely large time. That means that the set of the tra-
jectories where t̂A,G is undefined is not necessarily of measure zero. That is why we define
the probability of success p as the probability of A(t) to have t̂A,G defined2. For the Latin
Square example described in Section 2.2, the probability of success is 0.886, and the graphs
in Figure 7 correspond to pF (t) and pf(t).

Assume now that we have a system of n random processes A1, . . .An with correspond-
ing distribution functions F1, . . . , Fn and goal predicates G1, . . . , Gn. If the distribution
functions Fi and Fj are identical, we refer to Ai and Aj as F -equivalent.

We define a schedule of the system as a set of binary functions {θi}, where at each
moment t, the i-th process is active if θi(t) = 1 and idle otherwise. We refer to this scheme
as suspend-resume scheduling. A possible generalization of this framework is to extend
the suspend/resume control to a more refined mechanism that allows us to determine the

2. Another way to express the possibility that a process will not reach a goal state is to use F (t) that
approach 1 − p when t → ∞. We prefer to use p explicitly because the distribution function must meet
the requirement limt→∞ F (t) = 1.

80

Optimal Schedules for Parallelizing Anytime Algorithms

intensity with which each process acts. For software processes, this means varying the
fraction of CPU utilization; for tasks like robot navigation this implies changing the speed
of the robots. Mathematically, using intensity control is equivalent to replacing the binary
functions θi(t) with continuous functions with a range between zero and one3.

Note that scheduling makes the term time ambiguous. On one hand, we have the
subjective time for each process, consumed only when the process is active. This kind of
time corresponds to some resource consumed by the process. On the other hand, we have
an objective time measured from the point of view of an external observer. The distribution
function Fi(t) of each process is defined over its subjective time, while the cost function (see
below) may use both kinds of times. Since we are using several processes, all the formulas
in this paper are based on the objective time.

Let us denote by σi(t) the total time that process i has been active before t. By
definition,

σi(t) =

∫ t

0
θi(x)dx. (1)

In practice σi(t) provides the mapping from the objective time t to the subjective time of
the i-th process, and we refer to these functions as subjective schedule functions. Since θi

can be obtained from σi by differentiation, we often describe schedules by {σi} instead of
{θi}.

The processes {Ai} with goal predicates {Gi} running under schedules {σi} result in
a new process A, with a goal predicate G. G is the disjunction of Gi (G(t) =

∨
i Gi(t)),

and therefore A is monotonic over G. We denote the distribution function of the corre-
sponding random variable by Fn(t, σ1, . . . , σn), and the corresponding distribution density
by fn(t, σ1, . . . , σn).

Assume that we are given a monotonic non-decreasing cost function u(t, t1, . . . , tn), which
depends on the objective time t and the subjective times per process ti. We also assume
that u(0, t1, . . . , tn) = 0. Since the subjective times can be calculated by σi(t), we actually
have u = u(t, σ1(t), . . . , σn(t)).

The expected cost of schedule {σi} can be expressed, therefore, as4

Eu(σ1, . . . , σn) =

∫ +∞

0
u(t, σ1, . . . , σn)fn(t, σ1, . . . , σn)dt (2)

(for the sake of readability, we omit t in σi(t)). Under the suspend-resume model assump-
tions, σi must be differentiable (except for a countable set of process switch points) and
have derivatives of 0 or 1 that would ensure correct values for θi. Under intensity control
assumptions, the derivatives of σi must lie between 0 and 1.

We consider two alternative setups for resource sharing between the processes:

1. The processes share resources on a mutual exclusion basis. That means that exactly
one process can be active at each moment, and the processes will be active one after
another until the goal is reached by one of them. In this case the sum of derivatives

3. A special case of such a setup using constant intensities was described by Huberman, Lukose, and
Hogg (1997).

4. The generalization to the case where the probability of success p is not 1 is considered at the end of the
next section.

81

Finkelstein, Markovitch & Rivlin

of σi is always one5. The case of shared resources corresponds to the case of several
processes running on a single processor.

2. The processes are fully independent: there are no additional constraints on σi. This
case corresponds to n independent processes running on n processors.

Our goal is to find a schedule which minimizes the expected cost (2) under the corresponding
constraints. The current paper is devoted to the case of shared processes. The case of
independent resources was studied in (Finkelstein, Markovitch, & Rivlin, 2002).

The scheduled algorithms considered in this framework can be viewed as anytime algo-
rithms. The behavior of anytime algorithms is usually characterized by their performance
profile – the expected quality of the algorithm output as a function of the alloted resources.
The goal predicate G can be viewed as a quality function with two possible values, and thus
the distribution function F (t) meets the definition of performance profile, where time plays
the role of resource.

4. Suspend-Resume Based Scheduling

In this section we consider the case of suspend-resume based control (σi are continuous
functions with derivatives 0 or 1).

Claim 1 The expressions for the goal-time distribution Fn(t, σ1, . . . , σn) and the expected
cost Eu(σ1, . . . , σn) are as follows6:

Fn(t, σ1, . . . , σn) = 1−
n∏

i=1

(1− Fi(σi)), (3)

Eu(σ1, . . . , σn) =

∫ +∞

0

(
u′

t +
n∑

i=1

σ′
iu

′
σi

)
n∏

i=1

(1− Fi(σi))dt. (4)

Proof: Let ti be the time it would take the i-th process to meet the goal if acted alone
(if the process fails to reach the goal, we consider ti = ∞). Let t∗ be the time it takes
the system of n processes to reach the goal. In this case, t∗ is distributed according to
Fn(t, σ1, . . . , σn), and ti are distributed according to Fi(t). Thus, because the processes,
given a schedule, are independent, we obtain

Fn(t, σ1, . . . , σn) = P (t∗ ≤ t) = 1− P (t∗ > t) = 1− P (t1 > σ1(t))× . . .× P (tn > σn(t)) =

1− (1− F1(σ1(t))) × . . . × (1− Fn(σn(t))) = 1−
n∏

i=1

(1− Fi(σi(t))),

which corresponds to (3). Since F (t) is a distribution over time, we assume F (t) = 0 for
t ≤ 0.

5. This fact is obvious for the case of suspend-resume control, and for intensity control it is reflected in
Lemma 3.

6. u′

t and u′

σi
stand for partial derivatives of u by t and by σi respectively.

82

Optimal Schedules for Parallelizing Anytime Algorithms

The average cost function will therefore be

Eu(σ1, . . . , σn) =

∫ +∞

0
u(t, σ1, . . . , σn)fn(t, σ1, . . . , σn)dt =

−
∫ +∞

0
u(t, σ1, . . . , σn)d(1− Fn(t, σ1, . . . , σn)) =

− u(t, σ1, . . . , σn)(1− Fn(t, σ1, . . . , σn))|∞0 +

∫ +∞

0

du(t, σ1, . . . , σn)

dt

n∏

i=1

(1− Fi(σi))dt.

Since u(0, σ1, . . . , σn) = 0 and Fn(∞, σ1, . . . , σn) = 1, the first term in the last expression
is 0. Besides, since the full derivative of u by t can be written as

du(t, σ1, . . . , σn)

dt
= u′

t +

n∑

i=1

σ′
iu

′
σi

,

we obtain

Eu(σ1, . . . , σn) =

∫ +∞

0

(
u′

t +

n∑

i=1

σ′
iu

′
σi

)
n∏

i=1

(1− Fi(σi))dt,

which completes the proof.
Q.E.D.
Note that in the case of σi(t) = t and Fi(t) = F (t) for all i (parallel application of n
F -equivalent processes), we obtain the formula presented in (Janakiram et al., 1988), i.e.,
Fn(t) = 1− (1− F (t))n.

In the rest of this section we show a formal solution (necessary conditions and an algo-
rithm) for the framework with shared resources. We start with two processes and present
the formulas and the algorithm, and then generalize the solution for an arbitrary number
of processes. For the case of two processes, we only assume that u is differentiable.

For the more elaborated setup of n processes, we assume that the total cost is a linear
combination of the objective time and all the subjective times, and the subjective times are
of the same weight:

u(t, σ1, . . . , σn) = at + b
n∑

i=1

σi(t). (5)

Since time is consumed if and only if there is an active process, and the trivial case where
all the processes are idle may be ignored, we obtain (without loss of generality)

Eu(σ1, . . . , σn) =

∫ ∞

0

n∏

j=1

(1− Fj(σj))dt→ min . (6)

This assumption is made to keep the expressions more readable. The solution process
remains the same for the general form of u.

4.1 Necessary Conditions for an Optimal Solution for Two Processes

Let A1 and A2 be two processes sharing a resource. While working, one process locks
the resource, and the other is necessarily idle. We can show that such dependency yields

83

Finkelstein, Markovitch & Rivlin

a strong constraint on the behavior of the process, allowing the building of an effective
algorithm for solving the minimization problem.

For the suspend-resume model, therefore, only two states of the system are possible:
A1 is active and A2 is idle (S1); and A1 is idle and A2 is active (S2). We ignore the
case where both processes are idle, since removing such a state from the schedule will not
increase the cost. Therefore, the system continuously alternates between the two states:
S1 → S2 → S1 → S2 → We call the time interval corresponding to each pair 〈S1, S2〉
a phase and denote phase k by Φk. If we denote the process switch points by ti, the phase
Φk corresponds to [t2k−2, t2k]. See Figure 8 for an illustration.

s s s s s s s
t2k−3 t2k−2 t2k−1 t2k t2k+1 t2k+2 t2k+3

S2 S1 S2 S1 S2 S1

Φk−1 Φk Φk+1 Φk+2

Figure 8: Notations for times, states and phases for two processes

By this scheme, A1 is active in the intervals [t0, t1], [t2, t3], . . . , [t2k, t2k+1], . . . , and
A2 is active in the intervals [t1, t2], [t3, t4], . . . , [t2k+1, t2k+2],

Let us denote by ζ2k−1 the total time that A1 has been active before t2k−1, and by
ζ2k the total time that A2 has been active before t2k. By phase definition, ζ2k−1 and ζ2k

correspond to the cumulative time spent in phases 1 to k in states S1 and S2 respectively.
There exists a one-to-one correspondence between the sequences ζi and ti:

ζi + ζi+1 = ti+1. (7)

Moreover, by definition of ζi we have

σ1(t2k−1) = σ1(t2k) = ζ2k−1,

σ2(t2k) = σ2(t2k+1) = ζ2k.
(8)

Under the process switch scheme as defined above, the subjective schedule functions σ1

and σ2 in time intervals [t2k, t2k+1] (state S1 of phase Φk+1) have the form

σ1(t) = t− t2k + σ1(t2k) = t− t2k + ζ2k−1 = t− ζ2k,

σ2(t) = σ2(t2k) = ζ2k.
(9)

Similarly, in the intervals [t2k+1, t2k+2] (state S2 of phase Φk+1), the subjective schedule
functions are defined as

σ1(t) = σ1(t2k+1) = ζ2k+1,

σ2(t) = t− t2k+1 + σ2(t2k+1) = t− t2k+1 + ζ2k = t− ζ2k+1.
(10)

Let us denote

v(t1, t2) = u′
t(t1 + t2, t1, t2) + u′

σ1
(t1 + t2, t1, t2) + u′

σ2
(t1 + t2, t1, t2)

84

Optimal Schedules for Parallelizing Anytime Algorithms

and

vi(t1, t2) = u′
t(t1 + t2, t1, t2) + u′

σi
(t1 + t2, t1, t2).

To provide an optimal solution for the suspend/resume model, we may split (4) to phases
Φk and write it as

Eu(σ1, . . . , σn) =

∞∑

k=1

∫ t2k

t2k−2

v(σ1, σ2)(1− F1(σ1))(1− F2(σ2))dt. (11)

The last expression may be rewritten as

Eu(σ1, . . . , σn) =
∞∑

k=0

∫ t2k+1

t2k

v(σ1, σ2)(1− F1(σ1))(1 − F2(σ2))dt+

∞∑

k=0

∫ t2k+2

t2k+1

v(σ1, σ2)(1− F1(σ1))(1 − F2(σ2))dt.

(12)

Using (9) on interval [t2k, t2k+1], performing substitution x = t − ζ2k, and using (7), we
obtain

∫ t2k+1

t2k

v(σ1, σ2)(1 − F1(σ1))(1 − F2(σ2))dt =

∫ t2k+1

t2k

v1(t− ζ2k, ζ2k)(1 − F1(t− ζ2k))(1 − F2(ζ2k))dt =

∫ t2k+1−ζ2k

t2k−ζ2k

v1(x, ζ2k)(1− F1(x))(1 − F2(ζ2k))dx =

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1− F1(x))(1 − F2(ζ2k))dx.

(13)

Similarly, for the interval [t2k+1, t2k+2] we have

∫ t2k+2

t2k+1

v(σ1, σ2)(1− F1(σ1))(1 − F2(σ2))dt =

∫ t2k+2

t2k+1

v2(ζ2k+1, t− ζ2k+1)(1 − F1(ζ2k+1))(1− F2(t− ζ2k+1))dt =

∫ t2k+2−ζ2k+1

t2k+1−ζ2k+1

v2(ζ2k+1, x)(1 − F1(ζ2k+1))(1 − F2(x))dx =

∫ ζ2k+2

ζ2k

v2(ζ2k+1, x)(1− F1(ζ2k+1))(1 − F2(x))dx.

(14)

85

Finkelstein, Markovitch & Rivlin

Substituting (13) and (14) into (12), we obtain a new form for the minimization problem:

Eu(ζ1, . . . , ζn) =
∞∑

k=0

[
(1− F2(ζ2k))

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1 − F1(x))dx +

(1− F1(ζ2k+1))

∫ ζ2k+2

ζ2k

v2(ζ2k+1, x)(1 − F2(x))dx

]
→ min

(15)

(for the sake of generality, we assume ζ−1 = 0).

The minimization problem (15) is equivalent to the original problem (4), and the depen-
dency between their solutions is described by (9) and (10). The only constraint for the new
problem follows from the fact that the processes are alternating for non-negative periods of
time:

{
ζ0 = 0 < ζ2 ≤ . . . ≤ ζ2n ≤ . . .
ζ1 < ζ3 ≤ . . . ≤ ζ2n+1 ≤ . . .

(16)

The expression (15) reaches its optimal values either when

dEu

dζk
= 0 for k = 1, . . . , n, . . . , (17)

or on the border described by (16). However, for two processes we can, without loss of
generality, ignore the border case. Indeed, assume that ζi = ζi+2 for some i > 1 (one of the
processes skips its turn). We can construct a new schedule by removing ζi+1 and ζi+2:

ζ1, . . . , ζi−1, ζi, ζi+3, ζi+4, ζi+5, . . .

It is easy to see that the process described by this schedule is exactly the same process as
described by the original one, but the singularity point has been removed.

Thus, at each step the time spent by the processes is determined by (17). We can see
that ζ2k appears in three subsequent terms of Eu(σ1, . . . , σn):

. . . + (1− F1(ζ2k−1))

∫ ζ2k

ζ2k−2

v2(ζ2k−1, x)(1 − F2(x))dx+

(1− F2(ζ2k))

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1− F1(x))dx+

(1− F1(ζ2k+1))

∫ ζ2k+2

ζ2k

v2(ζ2k+1, x)(1 − F2(x))dx +

86

Optimal Schedules for Parallelizing Anytime Algorithms

Differentiating (15) by ζ2k, therefore, yields

dEu

dζ2k
= v2(ζ2k−1, ζ2k)(1 − F1(ζ2k−1))(1− F2(ζ2k))−

f2(ζ2k)

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1 − F1(x))dx+

(1− F2(ζ2k))

∫ ζ2k+1

ζ2k−1

∂v1

∂t2
(x, ζ2k)(1− F1(x))dx−

v2(ζ2k+1, ζ2k)(1− F1(ζ2k+1))(1 − F2(ζ2k)) =

(1− F2(ζ2k))(v2(ζ2k−1, ζ2k)(1− F1(ζ2k−1))− v2(ζ2k+1, ζ2k)(1− F1(ζ2k+1))−

f2(ζ2k)

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1 − F1(x))dx+

(1− F2(ζ2k))

∫ ζ2k+1

ζ2k−1

∂v1

∂t2
(x, ζ2k)(1− F1(x))dx.

A similar expression can be derived by differentiating (15) by ζ2k+1. Combining these
expressions with (17) gives us the following theorem:

Theorem 1 (The chain theorem for two processes)
The value for ζi+1 for i ≥ 2 can be computed for given ζi−1 and ζi using the formulas

f2(ζ2k)

1− F2(ζ2k)
=

v2(ζ2k−1, ζ2k)(1− F1(ζ2k−1))− v2(ζ2k+1, ζ2k)(1− F1(ζ2k+1))∫ ζ2k+1

ζ2k−1
v1(x, ζ2k)(1− F1(x))dx

+

∫ ζ2k+1

ζ2k−1

∂v1
∂t2

(x, ζ2k)(1− F1(x))dx
∫ ζ2k+1

ζ2k−1
v1(x, ζ2k)(1 − F1(x))dx

, i = 2k + 1,

(18)

f1(ζ2k+1)

1− F1(ζ2k+1)
=

v1(ζ2k, ζ2k+1)(1− F2(ζ2k))− v1(ζ2k+2, ζ2k+1)(1− F2(ζ2k+2))∫ ζ2k+2

ζ2k
v2(ζ2k+1, x)(1− F2(x))dx

+

∫ ζ2k+2

ζ2k

∂v2
∂t1

(ζ2k+1, x)(1 − F2(x))dx
∫ ζ2k+2

ζ2k
v2(ζ2k+1, x)(1 − F2(x))dx

, i = 2k + 2.

(19)

Corollary 1 For the linear cost function (5), the value for ζi+1 for i ≥ 2 can be computed
for given ζi−1 and ζi using the formulas

f2(ζ2k)

1− F2(ζ2k)
=

F1(ζ2k+1)− F1(ζ2k−1)∫ ζ2k+1

ζ2k−1
(1− F1(x))dx

, i = 2k + 1, (20)

f1(ζ2k+1)

1− F1(ζ2k+1)
=

F2(ζ2k+2)− F2(ζ2k)∫ ζ2k+2

ζ2k
(1− F2(x))dx

, i = 2k + 2. (21)

The proof follows immediately from the fact that vi(t1, t2) = a + b.
Theorem 1 allows us to formulate an algorithm for building an optimal solution. This

algorithm is presented in the next subsection.

87

Finkelstein, Markovitch & Rivlin

4.2 Optimal Solution for Two Processes: an Algorithm

The goal of the scheduling algorithm is to minimize the expression (15)

Eu(ζ1, . . . , ζn) =
∞∑

k=0

[
(1− F2(ζ2k))

∫ ζ2k+1

ζ2k−1

v1(x, ζ2k)(1 − F1(x))dx +

(1− F1(ζ2k+1))

∫ ζ2k+2

ζ2k

v2(ζ2k+1, x)(1 − F2(x))dx

]
→ min

under the constraints {
ζ0 = 0 < ζ2 ≤ . . . ≤ ζ2n ≤ . . .
ζ1 < ζ3 ≤ . . . ≤ ζ2n+1 ≤

Assume that A1 acts first (ζ1 > 0). From Theorem 1 we can see that the values of
ζ0 = 0 and ζ1 determine the set of possible values for ζ2, the values of ζ1 and ζ2 determine
the possible values for ζ3, and so on.

Therefore, a non-zero value for ζ1 provides us with a tree of possible values of ζk. The
branching factor of this tree is determined by the number of roots of (18) and (19). Each
possible sequence ζ1, ζ2, . . . can be evaluated using (15).

For the cases where the total time is limited as discussed in Section 4.5, or where the
series in that expression converge, e.g., when each process has a finite cost of finding a
solution, the algorithm stops after a finite number of points. In some cases, however, such
as for extremely heavy-tailed distributions, it is possible that the above series diverge. To
ensure a finite number of iterations in such cases, we set an upper limit on the maximal
expected cost.

Another limit is added for the probability of failure. Since ti = ζi−1 + ζi, the probability
that both runs would not be able to find a solution after ti is

(1− F1(ζi−1))(1− F2(ζi)).

Therefore, if the difference

(1− F1(ζi−1))(1 − F2(ζi))− (1− p1)(1− p2)

becomes small enough, we can conclude that both runs failed to find a solution and stop
the execution.

For each value of ζ1 we can find the best sequence using one of the standard search
algorithms, such as Branch-and-Bound. Let us denote the value of the best sequence for
each ζ1 by Eu(ζ1). Performing global optimization of Eu(ζ1) by ζ1 provides us with an
optimal solution for the case where A1 acts first. Note that the value of ζ1 may also be 0
(A2 acts first), so we need to compare the value obtained by optimization of ζ1 with the
value obtained by optimization of ζ2 where ζ1 = 0.

The flow of the algorithm is illustrated in Figure 9, the formal scheme is presented in
Figure 10, and the description of the main routine (realized by the DFS Branch and Bound
method) in Figure 11.

88

Optimal Schedules for Parallelizing Anytime Algorithms

The algorithm considers two main branches, one for A1 and one for A2, and they are
processed by procedure minimize sequence by first point (Figure 10). At each step, we
initialize the array of ζ values, and pass it, through the procedure build optimal sequence,
to the recursive procedure dfsbnb, which represents the core of the algorithm (Figure 11).

The dfsbnb procedure, shown in Figure 11, acts as follows. It obtains as an input the
array of ζ values, the cost involved up to the current moment, and the best value reached till
now. If the cost exceeds this value, the procedure performs a classical Branch-and-Bound
cutoff (lines 1-2).

The inner loop (lines 4-19) corresponds to different roots of the expressions (18)
and (19). The new value of ζ corresponding to ζk is calculated by the procedure
calculate next zeta (line 5), and it cannot exceed the previously found root saved in
last zeta (for the first iteration, last zeta is initialized to ζk−2), lines 3 and 8. Lines 6-
7 correspond to the case where the lower bound passed to calculate next zeta exceeds the
maximal available time, and in this case the procedure is stopped.

After the new possible value of ζ is found, the procedure updates the current cost (line
9), and the stopping criteria mentioned above are validated for the new array of ζ values,
which is denoted as a concatenation of the old array and the new value of ζ (line 10). If
the task is accomplished, the cost is verified versus the best known value (which is updated
if necessary), and the procedure returns (lines 10-16). Otherwise, ζ is temporarily added
to the array of ζ, and the Branch-and-Bound procedure is called recursively for calculation
ζk+1.

When the whole tree is traversed (except the cutoffs), the best known cost is returned
(line 20). The corresponding array of ζ is the required solution.

Figure 13 shows a trace of a single Branch-and-Bound run for the example shown in
Section 2.2 starting with the optimal value of ζ1. The optimal schedule derived from the the
run is 679, 2393, 7815, 17184 with expected cost of 1216.49 steps. The scheduling points are
given in subjective times. Using objective (total) time the schedule can be written as 679,
3072, 10208, and 25000. In this particular run there were no Branch-and-Bound cutoffs due
to the small number of roots of (18) and (19).

4.3 Necessary Conditions for an Optimal Solution for n Processes

In this section we generalize our solution from the case of two processes to the case of n
processes.

Assume that we have n processes A1, . . . , An using shared resources. One of the possible
ways to present a schedule is to use a sequence

〈(Ai1 ,∆t1), (Ai2 ,∆t2), . . . , (Aij ,∆tj), . . .〉,

where Aij is the j-th active process, and ∆tj is the time allocated for this invocation of Aij .

To simplify the formalization of the problem, however, we use the following alternative
representation. First, we allow ∆tj to be 0, which makes possible it to represent every
schedule as

〈(A1,∆t1), (A2,∆t2), . . . , (An,∆tn), (A1,∆tn+1), (A2,∆tn+2), . . . , (An,∆t2n), . . .〉.

89

Finkelstein, Markovitch & Rivlin

x
�

�
�

�
�

�
�

�
�

��+

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQs

x

x x x

h

h

hhh

h h

h

x

?

����������)

�
�

�
�

�
��+

?

�
�

�
�

�/

S
S

S
S
Sw

Q
Q

Q
Q

Q
QQs

PPPPPPPPPPq

?

�
�

�
�

�
�

�
��=

�
�

�
�

�/ ?

J
J

J
J
Ĵ

� ? ?

� ?

J
J
J

J
JĴ

�

�

�

�

� ?

�
�

�
�

��	

.

�
�
�

�
��

B
B
B
B
BBN

@
@

@
@

@@R

�
�

�
�

�/ ?

J
J
J

J
JĴ

�

A1 acts first A2 acts first

Minimization by ζ1

ζ1 trials by minimization procedure

...

Root of Branch and Bound tree

ζ2 satisfying (19) for k = 0

Branch and Bound nodes

ζ3 satisfying (18) for k = 1

Branch and Bound nodes

ζ4 satisfying (19) for k = 1

.....

Branch and Bound non-leaf nodes

Leaf nodes (terminating condition satisfied) and cutoff nodes (expected result is
worse than the already known). The cost is calculated in accordance with (15).

Get optimal schedule costs for
ζ1 = 0 and for ζ1 6= 0, and
return the best value with
the corresponding schedule

Figure 9: The flow of the algorithm for constructing optimal schedules for 2 processes

90

Optimal Schedules for Parallelizing Anytime Algorithms

procedure optimize
Input: F1(t), F2(t) (performance profiles).
Output: An optimal sequence and its value.
[sequence1, val1]← minimize sequence by first point(A1)
[sequence2, val2]← minimize sequence by first point(A2)
if val1 < val2 then

return [sequence1, val1]
else

return [sequence2, val2]
end

end

procedure minimize sequence by first point(process)
zetas[−1]← 0
zetas[0]← 0
if process = A2 then

zetas[1]← 0
end
Using one of the standard minimization methods, find zetas,
minimizing the value of the function build optimal sequence(zetas),
and the corresponding cost.

end

Figure 10: Procedure optimize builds an optimal sequence for the case when A1 starts, an opti-
mal sequence for the case when A2 starts, compares the results, and returns the best
one. Procedure minimize sequence by first point returns an optimal sequence and its
value.

91

Finkelstein, Markovitch & Rivlin

procedure build optimal sequence(zetas)
curr cost← calculate cost(zetas)
return dfsbnb(zetas, curr cost,MAX V ALUE)

end

procedure dfsbnb(zetas, curr cost, thresh)
1: if (curr cost ≥ thresh) then
2: return MAX V ALUE // Cutoff
3: last value← zetas[length(zetas) − 2] // The previous time value
4: repeat
5: ζ ← calculate next zeta(zetas, last value)
6: if (ζ = last value) then // Skip
7: return thresh
8: last value← ζ
9: delta cost← calculate partial cost(zetas, ζ)
10: if (task accomplished([zetas || ζ])) then // Leaf
11: if (curr cost + delta cost < thresh) then
12: optimal zetas← [zetas || ζ]
13: thresh← curr cost + delta cost
14: end
15: return thresh
16: end
17: tmp result← dfsbnb([zetas || ζ], curr cost + delta cost, thresh)
18: thresh = min(thresh, tmp result)
19: end // repeat
20: return thresh
end

Figure 11: Procedure build optimal sequence, given the prefix of the time sequence, restores the
optimal sequence with this prefix using the DFS Branch and Bound search algorithm,
and returns the sequence itself and its value. [x || y] stands for concatenation x and y.
Auxiliary functions are shown in Figure 12.

92

Optimal Schedules for Parallelizing Anytime Algorithms

1. calculate cost(zetas) computes the cost of the sequence (or its part) in accordance
with (15),

2. calculate partial cost(zetas, ζ) computes the additional cost obtained by adding
ζ to the sequence,

3. calculate next zeta(zetas, last value) uses (18) or (19) to calculate the value of
the next ζ that is greater than last value. If no such a solution exists, the
maximal time value is returned,

4. task accomplished(zetas) returns true when the task may be considered to be
accomplished (e.g., either maximal possible time is over, or the probability of
error is negligible, or the upper limit on the cost is exceeded).

Figure 12: Auxiliary functions used in the optimal schedule algorithm

679.0

379.4 2393.0 24321.0

24620.6 7815.4 22607.0

17184.6

u=2664.54

u=1216.49

u=1265.67

u=1534.06

ζ1

ζ2

ζ3

ζ4

Figure 13: A trace of a single run of the Branch-and-Bound procedure starting with the optimal
value of ζ1.

93

Finkelstein, Markovitch & Rivlin

Therefore, the system alternates between n states S1 → S2 → . . .→ Sn → S1 → . . ., where
the state Si corresponds to the situation where Ai is active and the rest of the processes
are idle. The time spent in the k-th invocation of Si is ∆tkn+i.

As in the case of two processes, we call the time interval corresponding to the sequence
of states S1 → S2 → . . . → Sn a phase and denote phase k by Φk. We denote the process
switch points of Φk by t1k, t

2
k, . . . , t

n
k , where

tik =

k−1∑

j=0

∆tnj+i.

Process Ai is active in phase k in the interval [ti−1
k , tik], and the entire phase lasts from t0k

to tnk . The corresponding scheme is shown in Figure 14.

s s s s s s s...
tn−1
k−1 tnk−1 = t0k t1k t2k tn−1

k tnk = t0k+1 t1k+1

Sn S1 S2 Sn S1

Φk−1 Φk Φk+1

Figure 14: Notations for times, states and phases for n processes

To simplify the following discussion, we would like to allow indices i in ti
k to be less than

0 or greater than n. For this purpose, we denote

tik = ti mod n
k+bi/nc , (22)

and the index of the process active in the interval [ti−1
k , tik] we denote by #i. For i mod n 6=

0 we obtain #i = i mod n, while for i mod n = 0 we have #i = n. Notation (22) claims
that the shift by n in the upper index is equivalent to the shift by 1 in the phase number:

ti+n
k = tik+1.

As in the case of two processes, we denote by ζ i
k the total time that A#i has been active

up to tik. ζi
k corresponds to the cumulative time spent in phases 1 to k in state S#i, and

there is a one-to-one correspondence between the sequences of ζ i
k and tik:

ζi
k − ζi

k−1 = tik − ti−1
k , (23)

n−1∑

j=0

ζi−j
k = tik for i ≥ n. (24)

The first equation corresponds to the fact that the time between ti−1
k and tik is accumulated

into the ζ values of process A#i, while the second equation claims that at each switch the
objective time of the system is equal to the sum of the subjective times of each process. For
the sake of uniformity we also denote

ζ1
−1 = . . . = ζn

−1 = ζ0
0 = 0.

94

Optimal Schedules for Parallelizing Anytime Algorithms

By construction of ζ i
k we can see, that at time interval [ti−1

k , tik] the subjective time of process
Aj has the following form:

σj(t) =





ζj
k, j = 1, . . . , i− 1,

(t− ti−1
k) + ζ i

k−1, j = i,

ζj
k−1, j = i + 1, . . . , n.

(25)

The subjective time functions for a system with 3 processes are illustrated in Figure 15.

-�
�

�
�

��
#

#
#

#
#

#
#

#
##

�
��

�
�

�
�

�
�

��
�

�
�
�

�
�

�
�

�
�

�
�

��

6

tt11 t21 t31 t12 t22 t32

σ(t)

σ1(t)

σ2(t)

σ3(t)

t01

ζ3
1

ζ1
1

ζ2
1

ζ1
2

ζ2
2

ζ3
2

Figure 15: Subjective time functions for a system with 3 processes

To find an optimal schedule for a system with n processes, we need to minimize the
expression given by (6). The only constraints are the monotonicity of the sequence of ζ for
each process i:

ζi
k ≤ ζi

k+1 for each k, i. (26)

Given the expressions for σj , we can prove the following lemma:

Lemma 1 For a system of n processes, the expression for the expected cost (6) can be
rewritten as

Eu(ζ1, . . . , ζn, . . .) =

∞∑

k=0

n∑

i=1

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ζi
k

ζi
k−1

(1− Fi(x))dx. (27)

The proof is given in Appendix A.1.
This lemma makes it possible to prove the chain theorem for an arbitrary number of

processes:

95

Finkelstein, Markovitch & Rivlin

Theorem 2 (The chain theorem) The value for ζ l−1
m+1 may either be ζ l−1

m , or can be
computed given the previous 2n− 2 values of ζ using the formula

fl(ζ
l
m)

1− Fl(ζ l
m)

=

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))−

l+n−1∏

j=l+1

(1− F#j(ζ
j
m))

l−1∑

i=l−n+1

i+n−1∏

j=i+1
#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− F#i(x))dx

(28)

The proof of the theorem is given in Appendix A.2.

4.4 Optimal Solution for n Processes: an Algorithm

The goal of the presented algorithm is to minimize the expression (27)

Eu(ζ1, . . . , ζn, . . .) =
∞∑

k=0

n∑

i=1

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ζi
k

ζi
k−1

(1− Fi(x))dx

under the constraints

ζi
k ≤ ζi

k+1 for each k, i.

As in the case of two processes, assume that A1 acts first. By Theorem 2, given 2n− 2
values of ζ

ζ0
1 , ζ1

1 , . . . , ζn
1 , ζ1

2 , ζ2
2 , ζn−3

2 ,

we can determine all the possibilities for the value of ζn−2
2 (either ζn−2

1 if the process skips
its turn, or one of the roots of (28)). Given the values up to ζn−2

2 , we can determine the
values for ζn−1

2 , and so on.

The idea of the algorithm is similar to the algorithm for two processes. The first 2n− 2
variables (including ζ0

1 = 0) determine the tree of possible values for ζ. Optimization over
2n−3 first variables, therefore, provides us with an optimal schedule (as before, we compare
the results for the case where the first k < n variables are 0). The only difference from the
case of two processes is that a process may skip its turn. However, we can ignore the case
when all the processes skip their turn, since we can remove such a loop from the schedule.
The scheme of the algorithm is presented in Figure 16, and the description of the main
routine (realized by the DFS Branch and Bound method) is presented in Figure 17.

4.5 Optimal Solution in the Case of Additional Constraints

Assume now that the problem has additional constraints: the solution time is limited by T
and the probability of success of the i-th process pi is not necessarily 1.

It is possible to show that the expressions for the distribution function and the expected
cost have almost the same form as in the regular framework:

Claim 2 Let the system solution time be limited by T , and let pi be the probability of success
for the i-th process. Then the expressions for the goal-time distribution and expected cost

96

Optimal Schedules for Parallelizing Anytime Algorithms

Procedure optimize builds n optimal schedules (each process may start first), compares
the results, and returns the best one

procedure optimize
best val←MAX V ALUE
best sequence← ∅
loop for i from 1 to n do

[sequence, val]← minimize sequence by first points(i)
if (val < best val) then

best val← val
best sequence← sequence

end
return [best sequence, best val]

end

// Procedure minimize sequence by first points gets as a parameter
// the index of a process which starts, and returns an optimal
// sequence and its value
procedure minimize sequence by first points(process to start)

loop for i from 0 to n− 1
zetas[−i]← 0

end
loop for i from 1 to process to start− 1

zetas[i]← 0
end
Using one of the standard minimization methods, find zetas,
minimizing the value of the function build optimal sequence(zetas).

end

Figure 16: An algorithm for finding an optimal schedule for n processes. The result contains the
vector of ζi, such that ζi = ζi

0 = ζi mod n
bi/nc .

97

Finkelstein, Markovitch & Rivlin

procedure build optimal sequence(zetas)
curr cost← calculate cost(zetas)
return dfsbnb(zetas, curr cost,MAX V ALUE, 0)

end

procedure dfsbnb(zetas, curr cost, thresh, nskip)
if (curr cost ≥ thresh) then

return MAX V ALUE // Cutoff
last value← zetas[length(zetas) − n] // The previous time value for the current process
repeat

ζ ← calculate next zeta(zetas, last value)
if (ζ = last value) then // Skip

break loop
last value← ζ
delta cost← calculate partial cost(zetas, ζ)
if (task accomplished([zetas || ζ])) then // Leaf

if (curr cost + delta cost < thresh) then
optimal zetas← [zetas || ζ]
thresh← curr cost + delta cost

end
break loop

end
tmp result← dfsbnb([zetas || ζ], curr cost + delta cost, thresh, 0)
thresh = min(thresh, tmp result)

end // repeat
if (nskip < n− 1) then // Skip is possible

zeta← zetas[length(zetas) − n]
tmp result← dfsbnb([zetas || ζ], curr cost, thresh, nskip + 1)
thresh = min(thresh, tmp result)

end
return thresh

end

Figure 17: Procedure build optimal sequence, given the prefix of time sequence, restores the opti-
mal sequence with this prefix using the DFS Branch and Bound search algorithm, and
returns the sequence itself and its value. [x || y] stands for concatenation x and y. The
auxiliary functions used are similar to their counterparts in Figure 12, but deal with n
processes instead of 2.

98

Optimal Schedules for Parallelizing Anytime Algorithms

are as follows:

Fn(t, σ1, . . . , σn) = 1−
n∏

i=1

(1− piFi(σi)) (for t ≤ T), (29)

Eu(σ1, . . . , σn) =

∫ T

0

(
u′

t +

n∑

i=1

σ′
iu

′
σi

)
n∏

i=1

(1− piFi(σi))dt. (30)

The proof is similar to the proof of Claim 1.
This claim shows that all the formulas used in the previous sections are valid for the

current settings, with three differences:

1. We use pjFj instead of Fj and pjfj instead of fj.

2. All the integrals are from 0 to T instead of from 0 to ∞.

3. All time variables are limited by T .

The first two conditions may be easily incorporated into all the algorithms. The last con-
dition implies additional changes in the chain theorems and the algorithms. The chain
theorem for n processes now becomes:

Theorem 3 The value for ζ j
k can either be ζj

k−1, or it can be computed given the previous
2n− 2 values of ζ using formula (28), or it can be calculated by the formula

ζj
k = T −

n−1∑

l=1

ζj−l
k . (31)

The first two alternatives are similar to Theorem 2, while the third one corresponds to the
boundary condition given by Equation (24). This third alternative adds one more branch
to the DFS Branch and Bound algorithm; the rest of the algorithm remains unchanged.

Similar changes in the algorithms are performed in the case of the maximal allowed
time Ti per process. In practice, we always use this limitation, setting Ti such that the
probability for Ai to reach the goal after Ti, pi(1− Fi(Ti)), becomes negligible.

5. Process Scheduling by Intensity Control

In this section we analyze the problem of optimal scheduling for the case of intensity con-
trol, which is equivalent to replacing the binary scheduling functions θi(t) with continuous
functions with a range between 0 and 1. In this paper we assume a linear cost function of
the form (5). We believe, however, that similar analysis is applicable to the setup with any
differentiable u.

It is easy to see that all the formulas for the distribution function and the expected cost
from Claim 1 are still valid under intensity control settings.

For the linear cost function (5), the minimization problem has the form

Eu(σ1, . . . , σn) =

∫ ∞

0

(
a + b

n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj))dt→ min . (32)

99

Finkelstein, Markovitch & Rivlin

Without loss of generality, we can assume a+ b = 1. This leads to the equivalent minimiza-
tion problem

Eu(σ1, . . . , σn) =

∫ ∞

0

(
(1− c) + c

n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj))dt→ min, (33)

where c = b/(a + b) can be viewed as a normalized resource weight. The constraints,
however, are more complicated than for the suspend/resume model:

1. As before, σi must be continuous, and σi(0) = σ′
i(0) = 0 (at the beginning all the

processes are idle).

2. We assume σi to have a partially-continuous derivative σ ′
i, and this derivative should

lie between 0 and 1. This requirement follows from the definition of intensity and
the fact that σ′

i = θi: no process can work for a negative amount of time, and no
process can work with the intensity greater than the one allowed. Since we consider
a framework with shared resources, and the total intensity is limited, we have an
additional constraint: the sum of all the derivatives σ ′

i at any time point cannot
exceed 1.

Thus, this optimization problem has the following boundary conditions:

σi(0) = 0, σ′
i(0) = 0 for i = 1, . . . , n,

0 ≤ σ′
i ≤ 1 for i = 1, . . . , n,

0 ≤
n∑

i=1

σ′
i ≤ 1.

(34)

We are looking for a set of functions {σi} that provide a solution to minimization
problem (33) under constraints (34).

Let g(t, σ1, . . . , σn, σ′
1, . . . , σ

′
n) be a function under the integral sign of (33):

g(t, σ1, . . . , σn, σ′
1, . . . , σ

′
n) =

(
(1− c) + c

n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj)). (35)

A traditional method for solving problems of this type is to use the Euler-Lagrange necessary
conditions: a set of functions σ1, . . . , σn provides a weak (local) minimum to the functional

Eu(σ1, . . . , σn) =

∫ ∞

0
g(t, σ1, . . . , σn, σ′

1, . . . , σ
′
n)dt

only if σ1, . . . , σn satisfy a system of equations of the form

g′σk
− d

dt
g′σ′

k
= 0. (36)

We can prove the following lemma:

Lemma 2 The Euler-Lagrange conditions for minimization problem (33) yield two strong
invariants:

100

Optimal Schedules for Parallelizing Anytime Algorithms

1. For processes k1 and k2 for which σk1 and σk2 are not on the border described by (34),
the distribution and density functions satisfy

fk1(σk1)

1− Fk1(σk1)
=

fk2(σk2)

1− Fk2(σk2)
. (37)

2. If the schedules of all the processes are not on the border described by (34), then either
c = 1 or fk(σk) = 0 for each k.

The proof of the lemma is given in Appendix A.3. The above lemma provides necessary
conditions for a local minimum in the inner points described by constraints (34). These
conditions, however, are very restricting. Therefore, we look for more general conditions,
suitable for boundary points as well7.

We start with the following lemma:

Lemma 3 If an optimal solution for minimization problem (33) under constraints (34)
exists, then there exists an optimal solution σ1, . . . , σn, such that at each time t all the
resources are consumed, i.e.,

∀t
n∑

i=1

σ′
i(t) = 1. (38)

In the case where time cost is not zero (c 6= 1), the equality above is a necessary condition
for solution optimality.

The proof of the lemma is given in Appendix A.4.

Corollary 2 Under intensity control settings, as in the case of suspend-resume settings,
minimization problem (33) has the form (6), i.e.

Eu(σ1, . . . , σn) =

∫ ∞

0

n∏

j=1

(1− Fj(σj))dt→ min .

Lemma 3 corresponds to our intuition: if a resource is available, it should be used.
Without loss of generality, we restrict our discussion to schedules satisfying (38), even in
the case where time cost is zero. This leads to the following invariant:

∀t
n∑

i=1

σi(t) = t. (39)

Assume now that we have two F -equivalent processes A1 and A2 with density function
f(t) satisfying the normal distribution law with mean value m. Let t1 and t2 be the
cumulative time consumed by each of the processes at time t, i.e., σ1(t) = t1 and σ2(t) = t2.
The question is, which process should be active at t (or should they be active in parallel
with partial intensities)?

7. Note also that even if the conditions above hold, they do not necessarily provide the optimal solution.
Moreover, problems in variation calculus do not necessarily have a minimum, since there is no analogue
for the Weierstrass theorem for continuous functions on a closed set.

101

Finkelstein, Markovitch & Rivlin

Without loss of generality, t1 < t2, which means that the first process is required to
cover a larger area to succeed: 1−F (t1) > 1−F (t2). This supports a policy that at time t
activates the second process. This policy is further supported if A1 has a lower distribution
density, f1(t1) < f2(t2), as illustrated in Figure 18(a). If, however, the first process has a
higher density, as illustrated in Figure 18(b), it is not clear which of the two processes should
be activated at time t. What is the optimal policy in the general case8? The answer relies

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

f(t
)

t
t1 t2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10
f(t

)

t
t1 t2

(a) (b)

Figure 18: (a) Process A1 (currently at t1) has lower density and larger area to cover, and therefore
is inferior. (b) Process A1 has lower density, but smaller area to cover, and the decision
is unclear.

heavily on the functions that appear in (37). These functions, described by the equation

hk(t) =
fk(t)

1− Fk(t)
, (40)

are known as hazard functions, and they play a very important role in the following theorem
describing necessary conditions for optimal schedules.

Theorem 4 Let the set of functions {σi} be a solution of minimization problem (6) under
constraints (34). Let t0 be a point where the hazard functions of all the processes hi(σi(t))
are continuous, and let Ak be the process active at t0 (σ′

k(t0) > 0), such that for any other
process Ai

hi(σi(t0)) < hk(σk(t0)). (41)

Then at t0 process k consumes all the resources, i.e. σ ′
k(t0) = 1.

The proof of the theorem is given in Appendix A.5.
By Theorem 4 and Equation (37), intensity control may only be useful when hazard

functions of at least two processes are equal. However, even in this case the equilibrium
is not always stable. Assume that within some interval [t′, t′′] processes Ai and Aj are
working with partial intensity, which implies hi(σi(t)) = hj(σj(t)). Assume now that both

8. Analysis of normal distribution given in Section 6.3 shows that the optimal policy in the example above
is to give all the resources to process A2 in both cases.

102

Optimal Schedules for Parallelizing Anytime Algorithms

hi(t) and hj(t) are monotonically increasing. If at some moment t we give a priority to one
of the processes, it will obtain a higher value of the hazard function, and will get all the
subsequent resources. The only case of stable equilibrium is when hi(σi(t)) and hj(σj(t))
are monotonically decreasing functions or constants.

The intuitive discussion above is formulated in the following theorem:

Theorem 5 An active process will remain active and consume all resources as long as its
hazard function is monotonically increasing.

The proof is given in Appendix A.6.

This theorem imply the important corollary:

Corollary 3 If the hazard function of one of the processes is greater than or equal to that
of the others at t = 0 and is monotonically increasing by t, this process should be the only
one to be activated.

We can conclude that the extension of the suspend-resume model to intensity control in
many cases does not increase the power of the model and is beneficial only for monotonically
decreasing hazard functions. If no time cost is taken into account (c = 1), however, the
intensity control permits us to connect the two concepts: that of the model with shared
resources and that of the model with independent agents:

Theorem 6 If no time cost is taken into account (c = 1), the model with shared resources
under intensity control settings is equivalent to the model with independent processes under
suspend-resume control settings. Namely, given a suspend-resume solution for the model
with independent processes, we may reconstruct an intensity-based solution with the same
cost for the model with shared resources and vice versa.

The proof of the theorem is given in Appendix A.7.

Theorem 4 claims that if the process with the maximal value of hk(σk(t)) is active, it
will take all the resources. Why, then, would we not always choose the process with the
highest value of hk(σk(t)) to be active? It turns out that such a strategy is not optimal.
Let us consider two processes with the distribution densities shown in Figure 19(a). The
corresponding values of the hazard functions are shown in Figure 19(b). If we were using
the above strategy, A2 would be the only active process. Indeed, at time t = 0, h2(σ2(0)) >
h1(σ1(0)), which would lead to the activation of A2. After that moment, A1 would remain
idle and its hazard function remain 0. This strategy would result in an expected time of 2.
If, on the other hand, we would have activated A1 only, the result would be an expected
time of 1.5. Thus, although h1(σ1(0)) < h2(σ2(0)), it is better to give all the resources to
A1 from the beginning due to its superiority in the future.

A more elaborate example is shown in Figure 20. It corresponds to the case of two
processes that are not F -equivalent, one of which is a linear combination of two normal
distributions, f(t) = 0.5fN(0.6,0.2)(t) + 0.5fN(4.0,2.0)(t), where fN(µ,σ)(t) is the distribution
density of normal distribution with mean value µ and standard deviation σ, and the second
process is uniformly distributed in [1.5, 2.5]. Activating A1 only results in 0.5× 0.6 + 0.5×
4.0 = 2.3, activating A2 only results in an expected time of 2.0, while activating A1 for time
1.2 followed by activating A2 results in (approximately) 0.6× 0.5 + (1.2 + 2.0)× 0.5 = 1.9.

103

Finkelstein, Markovitch & Rivlin

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

f(t
)

t

f1(t)
f2(t)

0

1

2

3

4

5

0 1 2 3 4 5

h(
t)

(tr
un

ca
te

d)

t

h1(t)
h2(t)

(a) (b)

Figure 19: The density function and the hazard function for two processes. Although h1(σ1(0)) <
h2(σ2(0)), it is better to give all the resources to A1.

The best solution is, therefore, to start the execution by activating A1, and at some point t′

transfer the control to A2. In this case we interrupt an active process with a greater value
of hazard function, preferring an idle process with a zero value of hazard function (since
h1(σ1(t

′)) > h2(σ2(t
′)) = 0).

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

f(t
)

t

f1(t)
f2(t)

0

1

2

3

4

5

0 2 4 6 8 10

h(
t)

(tr
un

ca
te

d)

t

h1(t)
h2(t)

(a) (b)

Figure 20: The density function and the hazard function for two processes. The best solution is to
start with A1, and at some point interrupt it in favor of A2, although the latter has a
zero hazard function.

These examples show that a straightforward use of hazard functions for building optimal
schedules can be very problematic. However, since the suspend-resume model is a specific
case of the intensity control model, the hazard functions still may be useful for understanding
the behavior of optimal schedules, and this is used in the next section.

104

Optimal Schedules for Parallelizing Anytime Algorithms

6. Optimal Scheduling for Standard Distributions

In this section we present the results of the optimal scheduling strategy for a system of
processes whose performance profiles meet one of the well-known distributions: uniform,
exponential, normal and lognormal. Then we show the results for processes with bimodal
and multimodal distribution functions.

We have implemented three scheduling policies for two agents:

1. Sequential strategy, which schedules the processes one after another, initiating the
second process when the probability that the first one will find a solution becomes
negligible. For processes that are not F -equivalent, we choose the best order of process
invocation.

2. Simultaneous strategy, which simulates a simultaneous execution of both processes.

3. Optimal strategy, which is an implementation of the algorithm described in Sec-
tion 4.2.

In the rest of this section we compare these three strategies, when no deadline is given, and
the processes are stopped when the probability that they can still find a solution becomes
negligible.

Our goal is to compare different scheduling strategies and not to analyze the behavior of
the processes. Absolute quantitative measurements, such as average cost, are very process
dependent, and therefore are not appropriate for scheduling strategy evaluation. We there-
fore would like to normalize the results of the application of different scheduling methods to
minimize the effect of the process behavior. In the case of F -equivalent processes, a good
candidate for the normalization coefficient is the expected time of the individual process.
For processes that are not F -equivalent, however, the decision is not straightforward, and
therefore we use the results of the sequential strategy as the normalization factor.

We define the relative quality qref (S) of strategy S with respect to strategy Sref as

qref (S) = 1− ū(S)

ū(Sref)
, (42)

where ū(S) is the average cost of strategy S. This measurement corresponds to the gain
(maybe negative) of strategy S relative to the reference strategy. In this section we use the
sequential strategy as our reference strategy.

6.1 Uniform Distribution

Assume that the goal-time distribution of the processes meets the uniform law over the
interval [t0, T], i.e., has distribution functions

F (t) =





0 if t < t0,
(t− t0)/(T − t0) if t ∈ [t0, T],
1 if t > T

(43)

and density functions

f(t) =

{
0 if t 6∈ [t0, T],
1/(T − t0) if t ∈ [t0, T].

(44)

105

Finkelstein, Markovitch & Rivlin

The density function of a process uniformly distributed in [0, 1] is shown in Figure 21(a).

The hazard function of the uniform distribution has the form

h(t) =





0 if t < t0,
1/(T − t0)

1− (t− t0)/(T − t0)
=

1

T − t
if t ∈ [t0, T],

(45)

which is a monotonically increasing function. By Corollary 3, only one process will be
active, and the optimal strategy should be equivalent to the sequential strategy. If the
processes are not F -equivalent, the problem can be solved by choosing the process with the
minimal expected time.

A more interesting setup involves a uniformly distributed process that is not guaranteed
to find a solution. This case corresponds to a probability of success p that is less than 1. As
it was claimed in Section 4.5, the corresponding distribution and density function should
be multiplied by p. As a result, the hazard function becomes

h(t) =

{
0 if t < t0,

p

(T − t0)− p(t− t0)
if t ∈ [t0, T]. (46)

This function is still monotonically increasing by t, and the conclusions remain the same.
The graphs for hazard functions of processes uniformly distributed in [0, 1] with probability
of success of 0.5, 0.8 and 1 are shown in Figure 21(b).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f(t
)

t

f(t)

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2

h(
t)

(tr
un

ca
te

d)

t

h(t) for p = 1.0
h(t) for p = 0.8
h(t) for p = 0.5

(a) (b)

Figure 21: (a) The density function of a process, uniformly distributed in [0, 1], (b) hazard functions
for processes uniformly distributed in [0, 1] with probability of success of 0.5, 0.8 and 1.

6.2 Exponential Distribution

The exponential distribution is described by the density function

f(t) =

{
0 if t ≤ 0
λe−λt if t > 0,

(47)

106

Optimal Schedules for Parallelizing Anytime Algorithms

and the distribution function has the form

F (t) =

{
0 if t ≤ 0
1− e−λt if t > 0.

(48)

Substituting these expressions into (6) gives

Eu(σ1, . . . , σn) =

∫ ∞

0

n∏

j=1

(1− Fj(σj))dt =

∫ ∞

0
e−

Pn
j=1 λjσj(t)dt.

For a system with F -equivalent processes, by Lemma 3

n∑

j=1

λjσj(t) = λ

n∑

j=1

σj(t) = λt,

and therefore

Eu(σ1, . . . , σn) =

∫ ∞

0
e−λtdt =

1

λ
.

Thus, for a system with F -equivalent processes all the schedules are equivalent. This inter-
esting fact is reflected also in the behavior of the hazard function, which is constant:

h(t) ≡ λ.

However, if the probability of success is smaller than 1, the hazard function becomes a
monotonically decreasing function:

h(t) =
pλe−λt

1− p(1− e−λt)
=

pλ

p + (1− p)eλt
.

Such processes should work simultaneously (with identical intensities for F -equivalent pro-
cesses, and with intensities maintaining the equilibrium of hazard functions otherwise), since
each process which has been idle for a while has an advantage over its working teammate.

Figure 22(a) shows the density function of an exponentially distributed process with
λ = 1. The graphs for the hazard functions of processes exponentially distributed with
λ = 1 and probability of success of 0.5, 0.8 and 1 are shown in Figure 22(b).

Let us consider a somewhat more elaborate example, involving processes that are not
F -equivalent. Assume that we have two learning systems, both with an exponential-like
performance profile typical of such systems. We also assume that one of the systems requires
a delay for preprocessing but works faster. Thus, we assume that the first system has a
distribution density f1(t) = λ1e

−λ1t, and the second one has a density f2(t) = λ2e
−λ2(t−t2),

such that λ1 < λ2 (the second is faster), and t2 > 0 (it also has a delay). Assume that both
learning systems are deterministic over a given set of examples, and that they may fail to
learn the concept with the same probability of 1− p = 0.5. The graphs for the density and
hazard functions of the two systems are shown in Figure 23.

We applied the optimal scheduling algorithm of Section 4.2 for the values λ1 = 3,
λ2 = 10, and t2 = 5. The optimal schedule is to activate the first system for 1.15136 time
units, then (if it found no solution) to activate the second system for 5.77652 time units.

107

Finkelstein, Markovitch & Rivlin

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

f(t
)

t

f(t)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

h(
t)

(tr
un

ca
te

d)

t

h(t) for p = 1.0
h(t) for p = 0.8
h(t) for p = 0.5

(a) (b)

Figure 22: (a) The density function of a process, exponentially distributed with λ = 1, (b) hazard
functions for processes exponentially distributed with λ = 1 and probability of success
of 0.5, 0.8 and 1.

0

1

2

3

4

5

0 2 4 6 8 10

f(t
)

t

f1(t)
f2(t)

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

h(
t)

(tr
un

ca
te

d)

t

h1(t)
h2(t)

(a) (b)

Figure 23: (a) Density and (b) hazard functions for two exponentially distributed systems, with
different values of λ and time shift.

108

Optimal Schedules for Parallelizing Anytime Algorithms

Then the first system will run for additional 3.22276 time units, and finally the second
system will run for 0.53572 time units. If at this point no solution has been found, both
systems have failed with a probability of 1− 10−6 each.

Figure 24(a) shows the relative quality of the simultaneous and optimal scheduling
strategies as a function of t2 for p = 0.8 (for 10000 simulated examples). For large values
of t2 the benefit of switching from the first algorithm to the second decreases, and this is
reflected in the relative quality of the optimal strategy. The simultaneous strategy, as we
can see, is beneficial only for relatively small values of t2.

Figure 24(b) reflects the behavior of the strategies for a fixed value of t2 = 5.0 as a
function of probability of success p. The simultaneous strategy is inferior, and its quality
decreases while p increases. Indeed, when the probability of success is 1, running the second
algorithm and the first one simultaneously will be a waste of time. On the other hand, the
optimal strategy has a positive benefit, which means that the resulting schedules are not
trivial.

-15

-10

-5

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Delay of the second system

Optimal
Simultaneous

-100

-80

-60

-40

-20

0

20

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Probability of success

Optimal
Simultaneous

(a) (b)

Figure 24: Learning systems: Relative quality of optimal and simultaneous scheduling strategies
(a) as a function of t2 for fixed p = 0.8, and (b) as a function of p for fixed t2 = 5.

6.3 Normal Distribution

The normal distribution with mean value m and deviation σ is described by the density
function

f(t) =
1√
2πσ

e−
(t−m)2

2σ2 , (49)

and its distribution function is

F (t) =
1√
2πσ

∫ t

−∞
e−

(x−m)2

2σ2 dx. (50)

Since we use t0 = 0, we should have used a truncated normal distribution with a distribution
density

1

(1− µ)
· 1√

2πσ
e−

(t−m)2

2σ2 ,

109

Finkelstein, Markovitch & Rivlin

and a distribution function

1

1− µ
·
[

1√
2πσ

∫ t

−∞
e−

(x−m)2

2σ2 dx− µ

]
,

where

µ =
1√
2πσ

∫ 0

−∞
e−

(x−m)2

2σ2 dx,

but if m is large enough, µ may be considered to be 0. The density function of a normally
distributed process with m = 5 and σ = 1 is shown in Figure 25(a).

The hazard function of a normal distribution is monotonically increasing, which leads
to the same conclusions as for a uniform distribution. However, a probability of success of
less than 1 completely changes the behavior of the hazard function: after some point, it
starts to decrease. The graphs for hazard functions of processes normally distributed with
a mean value of 5, standard deviation of 1 and probabilities of success of 0.5, 0.8 and 1 are
shown in Figure 25(b).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

f(t
)

t

f(t)

0

1

2

3

4

5

6

0 2 4 6 8 10

h(
t)

(tr
un

ca
te

d)

t

h(t) for p = 1.0
h(t) for p = 0.8
h(t) for p = 0.5

(a) (b)

Figure 25: (a) The density function of a normally distributed process, with m = 5 and σ = 1, (b)
hazard functions for normally distributed processes with m = 5 and σ = 1, with the
probabilities of success of 0.5, 0.8 and 1.

As in the previous example, we now consider a case of two processes that are not F -
equivalent, running with the same deviation σ = 1 and the same probability of success
p. The first process is assumed to have m1 = 1, while the second process is started with
some delay ∆m. The relative quality for 10000 simulated examples is shown in Figure 26.
Figure 26(a) shows the relative quality as a function of ∆m for p = 0.8; Figure 26(b) shows
the relative quality as a function of p for ∆m = 2. Unlike exponential distribution, the gain
for this example for the optimal strategy is rather small.

6.4 Lognormal Distribution

The random variable X is lognormally distributed, if lnX is normally distributed. The
density function and the distribution function with the corresponding parameters m and σ

110

Optimal Schedules for Parallelizing Anytime Algorithms

-50

-40

-30

-20

-10

0

10

0 1 2 3 4 5 6

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Delay of the second process

Optimal schedule
Simultaneous

-100

-80

-60

-40

-20

0

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Probability of success

Optimal schedule
Simultaneous

(a) (b)

Figure 26: Normal distribution: relative quality (a) as a function of ∆m for fixed p = 0.8, and (b)
as a function of p for fixed ∆m = 2.

can be written as

f(t) =
1

t
√

2πσ
e−

(log(t)−m)2

2σ2 , (51)

F (t) =
1√
2πσ

∫ log(t)

−∞
e−

(x−m)2

2σ2 dx. (52)

Lognormal distribution plays a significant role in AI applications since in many cases search
time is distributed under the lognormal law. The density function of the lognormal distri-
bution with mean value of log(5.0) and standard deviation of 1.0 is shown in Figure 27(a),
and the hazard functions for different values of p are shown in Figure 27(b). Let us consider
a simulated experiment similar to its analogue for normal distribution. We consider two
processes that are not F -equivalent, with the parameters σ = 1 and the same probability of
success p. The first process is assumed to have m1 = 1, while the second process is started
with some delay, such that m2 −m1 = ∆m > 0. The relative quality for 10000 simulated
examples is shown in Figure 28. Figure 28(a) shows the relative quality as a function of
∆m for p = 0.8; Figure 28(b) shows the relative quality as a function of p for ∆m = 2. The
graphs show that for small values of ∆m both the optimal and the simultaneous strategy
have a significant benefit over the sequential one. However, for larger values, the perfor-
mance of the optimal strategy approaches the performance of the sequential strategy, while
the simultaneous strategy becomes inferior.

6.5 Bimodal and Multimodal Density Functions

Experiments show that in the case of F -equivalent processes with a unimodal distribution
function, the sequential strategy is often optimal. In this section we consider less trivial
distributions.

111

Finkelstein, Markovitch & Rivlin

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30 35 40 45 50

f(t
)

t

f(t)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35 40 45 50

h(
t)

(tr
un

ca
te

d)

t

h(t) for p = 1.0
h(t) for p = 0.8
h(t) for p = 0.5

(a) (b)

Figure 27: (a) Density function for lognormal distribution with mean value of log(5.0) and standard
deviation of 1.0 and (b) hazard functions for lognormally distributed processes with
mean value of log(5.0), standard deviation of 1, and the probabilities of success of 0.5,
0.8 and 1.

-20

-10

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Delay of the second process

Optimal schedule
Simultaneous

-80

-60

-40

-20

0

20

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Probability of success

Optimal schedule
Simultaneous

(a) (b)

Figure 28: Lognormal distribution: relative quality (a) as a function of ∆m for fixed p = 0.8, and
(b) as a function of p for fixed ∆m = 2.

112

Optimal Schedules for Parallelizing Anytime Algorithms

Assume first that we have a non-deterministic algorithm with a performance profile
expressed by a linear combination of two normal distributions with the same deviation:

f(t) = 0.5fN(µ1 ,σ) + 0.5fN(µ2 ,σ).

An example of the density and hazard functions of such distributions with µ1 = 2, µ2 = 5,
and σ = 0.5 is given in Figure 29.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

f(t
)

t

f(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8

h(
t)

(tr
un

ca
te

d)

t

h(t) for p = 1.0

(a) (b)

Figure 29: (a) Density function and (b) hazard function for a process distributed according to
the density function f(t) = 0.5fN(2,0.5) + 0.5fN(5,0.5) with the probability of success of
p = 0.8.

Assume that we invoke two runs of this algorithm with fixed values of µ1 = 2, σ = 0.5,
and p = 0.8, and the free variable µ2. Figure 30 shows how the relative quality of the
scheduling strategies is influenced by the distance between the peaks, µ2 − µ1. The results
correspond to the intuitive claim that the larger distance between the peaks, the more
attractive the optimal and the simultaneous strategies become.

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Distance between the peaks

Optimal
Simultaneous

Figure 30: Bimodal distribution: relative quality as a function of the distance between the peaks.

113

Finkelstein, Markovitch & Rivlin

Now let us see how the number of peaks of the density function affects the scheduling
quality. We consider a case of partial uniform distribution, where the density is distributed
over k identical peaks of length 1 placed symmetrically in the time interval from 0 to 100.
(Thus, the density function will be equal to 1/k when t belongs to one of such peaks, and
0 otherwise.) In this experiment we have chosen p = 1.

Figure 31 shows the relative quality of the system as a function of k, obtained for
10000 randomly generated examples. We can see from the results, that the simultaneous
strategy is inferior, due to the “valleys” in the distribution function. The optimal strategy
returns schedules where the processes switch after each peak, but the relative quality of the
schedules decreases as the number of peaks increases.

-30

-20

-10

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Number of peaks

Optimal
Simultaneous

Figure 31: Multimodal distribution: relative quality as a function of the number of peaks.

7. Experiments: Using Optimal Scheduling for the Latin Square Problem

To test the performance of our algorithm in a realistic domain, we applied it to the Latin
Square problem described in Section 2.2. We assume that we are given a Latin Square
problem with two initial configurations, and a fully deterministic algorithm with distribution
function and distribution density shown in Figure 7.

We compare the performance of the schedule produced by our algorithm to the perfor-
mance of the sequential and simultaneous strategies described in Section 6. In addition,
we test a schedule which runs the processes one after another, allowing a single switch at
the optimal point (an analogue of the restart technique for two processes). We refer to this
schedule as a single-point restart schedule.

Note that the case of two initial configurations corresponds to the case of two processes
in our framework. In general, we could think of a set of n initial configurations that would
correspond to n processes. For sufficiently large n, the restart strategy where each restart
starts with a different initial configuration, becomes close to optimal.

Our experiments were performed for different values of N , with 10% of the square pre-
colored. The performance profile was induced based on a run of 50, 000 instances, and the
remaining 50, 000 instances were used as 25, 000 testing pairs. All the schedules were applied

114

Optimal Schedules for Parallelizing Anytime Algorithms

with a fixed deadline T , which corresponds to the maximal allowed number of generated
nodes.

Since the results of the sequential strategy in this type of problems are much worse
than the results of other strategies for sufficiently large values of T , we instead used the
simultaneous strategy as the reference in the relative quality measure.

-15

-10

-5

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Maximal available time

Optimal
Single-point restart

Figure 32: Relative quality as a function of maximal allowed time T

Figure 32 shows how maximal available time T (the x axis) influences the quality of the
schedules (the y axis), where the simultaneous strategy has been used as a reference.

For small values of T , both single-point restart and the optimal strategy have about a
25% gain over the simultaneous strategy, since they produce schedules which are close to
the sequential one. However, when available time T increases, the benefit of parallelization
becomes more significant, and the simultaneous strategy overcomes the single-point restart
strategy. The relative quality of the optimal schedule also decreases when T increases, since
the resulting schedule contains more switches between the two problem instances being
solved.

Figure 33 illustrates how the optimal and single-point restart schedules relate to the
simultaneous schedule for different size Latin Squares (given T = 25, 000). The initial gain
of both strategies is about 50%. However, for the problems with N = 20 the single-point
restart strategy becomes worse than the simultaneous one. For larger sizes the probability
of solving the Latin Square problem with a time limit of 25, 000 steps becomes smaller and
smaller, and the benefit of the optimal strategy also approaches zero.

115

Finkelstein, Markovitch & Rivlin

-10

0

10

20

30

40

50

5 10 15 20 25 30 35

R
el

at
iv

e
qu

al
ity

 (i
n

pe
rc

en
t)

Lain Square size

Optimal
Single-point restart

Figure 33: Relative quality as a function of the size of the Latin Square

8. Combining Restart and Scheduling Policies

Luby, Sinclair, and Zuckerman (1993) showed that the restart strategy is optimal if an
infinite number of identical runs are available. When this number is limited, the restart
strategy is not optimal. Sometimes, however, we have a mixed situation. Assume that we
have two initial states, a non-deterministic algorithm, and a linear time cost. On one hand,
we can perform restarts of a run corresponding to one of the initial states. On the other
hand, we can switch between the runs corresponding to the two initial states. What would
be an optimal policy in this case?

The expected time of a run based on a single initial state is

E(t∗) =
1

F (t∗)

∫ t∗

0
(1− F (t))dt, (53)

where t∗ is the restart point and F (t) is the distribution function. This formula is obtained
by a simple summation of the geometric series with coefficient 1−F (t∗), and is a continuous
form of the formula given by Luby, Sinclair, and Zuckerman (1993). Minimization of (53)
by t∗ gives us the optimal restart point.

Assume first that the sequence of restarts on a single initial state is a process inter-
ruptible only at the restart points. Since the probability of failure of i successive restarts
is (1 − F (t∗))i, this process is exponentially distributed. Thus, the problem is reduced to
scheduling of two exponentially distributed processes. According to the analysis in Sec-
tion 6.2, all schedules are equivalent if the problems corresponding to the two initial states

116

Optimal Schedules for Parallelizing Anytime Algorithms

are solvable. Otherwise, the optimal policy is to alternate between the two processes at
each restart point.

A more interesting case is when we allow rescheduling at any time point. In general,
it is not beneficial to switch between the processes in non-restart points (otherwise these
rescheduling points would have been chosen for restart). Such rescheduling, however, can
be beneficial if the cost associated with restarts is higher than the rescheduling cost9.

Let us assume that each restart has a constant cost C. Similarly to (53), we can write
the expected cost of a policy performing restarts at point t∗∗ as

E(t∗∗) =
1

F (t∗∗)

∫ t∗∗

0
(1− F (t))dt +

1− F (t∗∗)

F (t∗∗)2
C, (54)

where the second term corresponds to the series

0 + C(1− F (t∗∗)) + 2C(1− F (t∗∗))2 + . . .

Let t∗∗ and t∗ be the optimal restart points for the setups with and without associated costs
respectively. t∗∗ should be greater than t∗ due to the restart cost.

Let us consider the following schedule: the first process runs for t∗, then the second
process runs for t∗, then the first process runs (with no restart) for additional t∗∗− t∗, then
the second process runs for additional t∗∗ − t∗. Then the first process restarts and runs for
t∗ and so forth.

Let us compare the expected time of such schedule with the time of the pure restart
policy, where the first process runs for t∗∗, then the second process runs for t∗∗, then the
first process restarts and runs for t∗∗ and so forth.

Similarly to (15), the expected time of the first schedule in the interval [0, 2t∗∗] can be
written as

Esched =

∫ t∗

0
(1− F (t))dt + (1− F (t∗))

∫ t∗

0
(1− F (t))dt+

(1− F (t∗))

∫ t∗∗

t∗
(1− F (t))dt + (1− F (t∗∗))

∫ t∗∗

t∗
(1− F (t))dt.

On the other hand, the expected time of the second schedule in the same interval is

Esimple =

∫ t∗∗

0
(1− F (t))dt + (1− F (t∗∗))

∫ t∗∗

0
(1− F (t))dt =

(2− F (t∗∗))

∫ t∗∗

0
(1− F (t))dt.

9. An example for such setup is robotic search, where returning the robot to the initial position is more
expensive than suspending and resuming the robot.

117

Finkelstein, Markovitch & Rivlin

Esched can be rewritten as

Esched =

∫ t∗

0
(1− F (t))dt + (1− F (t∗))

∫ t∗∗

0
(1− F (t))dt+

(1− F (t∗∗))

∫ t∗∗

0
(1− F (t))dt − (1− F (t∗∗))

∫ t∗

0
(1− F (t))dt =

F (t∗∗)

∫ t∗

0
(1− F (t))dt + (2− F (t∗)− F (t∗∗))

∫ t∗∗

0
(1− F (t))dt =

F (t∗∗)

∫ t∗

0
(1− F (t))dt − F (t∗)

∫ t∗∗

0
(1− F (t))dt + Esimple.

Thus, we obtain

Esimple −Esched = F (t∗)

∫ t∗∗

0
(1− F (t))dt− F (t∗∗)

∫ t∗

0
(1− F (t))dt =

F (t∗)F (t∗∗)

(
1

F (t∗∗)

∫ t∗∗

0
(1− F (t))dt− 1

F (t∗)

∫ t∗

0
(1− F (t))dt

)
,

and since t∗ provides minimum for (53), the last expression is positive, which means that
scheduling improves a simple restart policy.

Note, that we do not claim that the proposed scheduling policy is optimal – our example
just shows that the pure restart strategy is not optimal. There should be an optimal
combination interleaving restarts on the global level and scheduling on the local level, but
finding this combination is left for future research.

9. Conclusions

In this work we present an algorithm for optimal scheduling of anytime algorithms with
shared resources. We first introduce a formal framework for representing and analyzing
scheduling strategies. We begin by analyzing the case where the only allowed schedul-
ing operations are suspending and resuming processes. We prove necessary conditions for
schedule optimality and present an algorithm for building optimal schedules that is based on
those conditions. We then analyze the more general case where the scheduler can increase or
decrease the intensity of the scheduled processes. We prove necessary conditions and show
that intensity control is only rarely needed. We then analyze, theoretically and empirically,
the behavior of our scheduling algorithm for various distribution types. Finally, we present
empirical results of applying our scheduling algorithm to the Latin Square problem.

The results show that the optimal strategy indeed outperforms other scheduling strate-
gies. For lognormal distribution, we showed an improvement of more than 50% over the
naive sequential strategy. In general, our algorithm is particularly beneficial for heavy-tailed
distributions, but even for exponential distribution we show a benefit of more than 35%.

In some cases, however, simple scheduling strategies yield results similar to those ob-
tained by our algorithm. For example, the optimal schedule for uniform distribution is to
apply one of the processes with no switch. When the probability to succeed within the given
time limit approaches 1, this simple scheduling strategy also becomes close to optimal, at

118

Optimal Schedules for Parallelizing Anytime Algorithms

least for unimodal distributions with no strong skew towards zero. On the other hand,
when the probability of success approaches zero, another simple strategy that applies the
processes simultaneously becomes close to optimal.

Such a behavior meets the intuition. For heavy-tailed distributions, switching between
the runs is promising because the chance to be on a bad trajectory is high enough. The
same is correct for distributions with low probability of success. However, if the probability
to be on a bad trajectory is too high, the best strategy is to switch between the runs as
fast as possible, which is equivalent to the simultaneous strategy. On the other hand, if the
distribution is too skewed to the right, often there is no sense to switch between the runs,
since the new run should pay a high penalty before it reaches the “promising” distribution
area. In general, when the user is certain that the particular application falls under one of
the categories above, the cost of calculating the optimal schedule can be saved.

The high complexity of computation is one of the potential weaknesses of the presented
algorithm. This complexity can be represented as a multiplication of three factors: function
minimization, Branch-and-Bound search, and solving Equations (18) and (19) for the case
of two agents or Equation (28) for the general case. For two agents, the only exponen-
tial component is the Branch-and-Bound search. We found, however, that in practice the
branching factor, which is roughly the number of roots of the equations above, is rather
small, while the depth of the search tree can be controlled by iterative-deepening strategies.
For an arbitrary number of agents, function minimization may also be exponential. In prac-
tice, however, it depends on the behavior of the minimized function and the minimization
algorithm.

Since the optimal schedule is static and can be applied to a large number of problem
instances, its computation is beneficial even when associated with high cost. Moreover, in
some applications (such as robotic search) the computational cost can be outweighed by
the gain obtained from a single invocation.

The previous work most related to our research is the restart framework (Luby et al.,
1993). The most important difference between our algorithm and the restart policy is the
ability to handle the cases where the number of runs is limited, or where different algorithms
are involved. When only one algorithm is available and the number of runs is infinite, the
restart strategy is optimal. However, as we have shown in Section 8, some problems may
benefit from the combination of these two approaches.

Our algorithm assumes the availability of the performance profiles of the processes. Such
performance profiles can be derived analytically using theoretical models of the processes
or empirically from previous experience with solving similar problems. Online learning of
performance profiles, which could expand the applicability of the proposed framework, is a
subject of ongoing research.

The framework presented here can be used for a wide range of applications. In the intro-
duction we presented three examples. The first example describes two alternative learning
algorithms working in parallel. The behavior of such algorithms is usually exponential, and
the analysis for such setup is given in Section 6.2. The second example is a CSP problem
with two alternative initial configurations, which is analogous to the Latin Square example
of Sections 2.2 and 7. The last example includes crawling processes with a limited shared
bandwidth. Unlike the first two examples, this setup falls under the framework of intensity
control described in Section 5.

119

Finkelstein, Markovitch & Rivlin

Similar schemes may be applied for more elaborate setups:

• Scheduling a system of n anytime algorithms, where the overall cost of the system is
defined as the maximal cost of its components (unlike the analysis in Section 4, this
function is not differentiable);

• Scheduling with non-zero process switch costs;

• Providing dynamic scheduling algorithms able to handle changes in the environment;

• Building effective algorithms for the case of several resources of different types, e.g.,
multiprocessor systems.

Appendix A. Formal Proofs

A.1 Proof of Lemma 1

The claim of the lemma is as follows:
For a system of n processes, the expression for the expected cost (6) can be rewritten as

Eu(ζ1, . . . , ζn, . . .) =
∞∑

k=0

n∑

i=1

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ζi
k

ζi
k−1

(1− Fi(x))dx. (55)

Proof: Splitting the whole integration range [0,∞) to the intervals [ti−1
k , tik] yields

the following expression:

Eu(σ1, . . . , σn) =

∫ ∞

0

n∏

j=1

(1− Fj(σj))dt =
∞∑

k=0

n∑

i=1

∫ ti
k

ti−1
k

n∏

j=1

(1− Fj(σj))dt. (56)

By (25), we can rewrite the inner integral as
∫ ti

k

ti−1
k

n∏

j=1

(1− Fj(σj)) =

∫ ti
k

ti−1
k




i−1∏

j=1

(1− Fj(ζ
j
k)) · (1− Fi(t− ti−1

k + ζi
k−1)) ·

n∏

j=i+1

(1− Fj(ζ
j
k−1))


 dt =

i−1∏

j=i+1−n

(1− F#j(ζ
j
k))

∫ ti
k

ti−1
k

(1− Fi(t− ti−1
k + ζi

k−1))dt.

(57)

Substituting x for t− ti−1
k + ζi

k−1 and using (23), we obtain

i−1∏

j=i+1−n

(1− F#j(ζ
j
k))

∫ ti
k

ti−1
k

(1− Fi(t− ti−1
k + ζi

k−1))dt =

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ti
k
−ti−1

k
+ζi

k−1

ζi
k−1

(1− Fi(x))dx =

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ζi
k

ζi
k−1

(1− Fi(x))dx.

(58)

120

Optimal Schedules for Parallelizing Anytime Algorithms

Combining (56), (57) and (58) gives us (55).
Q.E.D.

A.2 Proof of the Chain Theorem for n Processes

The chain theorem claim is as follows:
The value for ζ l−1

m+1 may either be ζ l−1
m , or can be computed given the previous 2n − 2

values of ζ using the formula

fl(ζ
l
m)

1− Fl(ζ l
m)

=

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))−

l+n−1∏

j=l+1

(1− F#j(ζ
j
m))

l−1∑

i=l−n+1

i+n−1∏

j=i+1
#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− F#i(x))dx

(59)

Proof: By Lemma 1, the expression we want to minimize is described by the equation

Eu(ζ1, . . . , ζn, . . .) =
∞∑

k=0

n∑

i=1

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1))

∫ ζi
k

ζi
k−1

(1− Fi(x))dx. (60)

The expression above reaches its optimal values either when

dEu

dζj
= 0 for j = 1, . . . , n, . . . , (61)

or on the border described by (26).
Reaching the optimal values on the border corresponds to the first alternative described

in the theorem. Let us now consider a case when the derivative of Eu by ζj is 0.
Each variable ζj may be presented as ζmn+l = ζ l

m, where 0 ≤ l ≤ n−1. Let us see which
summation terms of (60) ζ l

m is participating in.

1. ζ l
m may be a lower bound of the integral from (60). This happens when k = m + 1

and i = l. The corresponding term is

S0 =
l+n−1∏

j=l+1

(1− F#j(ζ
j
m))

∫ ζl
m+1

ζl
m

(1− Fl(x))dx,

and

dS0

dζ l
m

= −(1− Fl(ζ
l
m)) ·

l+n−1∏

j=l+1

(1− F#j(ζ
j
m)).

2. ζ l
m may be an upper bound of the same integral, which happens when k = m and

i = l. The corresponding term is

Sl =

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))

∫ ζl
m

ζl
m−1

(1− Fl(x))dx,

121

Finkelstein, Markovitch & Rivlin

and

dSl

dζ l
m

= (1− Fl(ζ
l
m)) ·

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1)).

3. Finally, ζ l
m may participate in the product

i+n−1∏

j=i+1

(1− F#j(ζ
j
k−1)).

For i = 1 . . . l− 1, this may happen when k = m+1 and j = l, and the corresponding
term is

Si =

i+n−1∏

j=i+1

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− Fi(x))dx,

with the derivative

dSi

dζ l
m

= −fl(ζ
l
m)

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− Fi(x))dx.

For i = l + 1 . . . n, k = m and j = l + n. The corresponding term is

Si =
i+n−1∏

j=i+1

(1− F#j(ζ
j
m−1))

∫ ζi
m

ζi
m−1

(1− Fi(x))dx,

with the derivative

dSi

dζ l
m

= −fl(ζ
l
m)

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m−1))

∫ ζi
m

ζi
m−1

(1− Fi(x))dx.

Since for i = l, ζ l
m appears only in the integral, there is no other possibility for ζ l

m to appear
in the expression, and therefore

dEu

dζ l
m

=
n∑

i=0

dSi

dζ l
m

.

The right-hand side of the sum above can be written as follows:

n∑

i=0

dSi

dζ l
m

=

−(1− Fl(ζ
l
m))

l+n−1∏

j=l+1

(1− F#j(ζ
j
m)) + (1− Fl(ζ

l
m))

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))−

l−1∑

i=1

fl(ζ
l
m)

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− Fi(x))dx −

n∑

i=l+1

fl(ζ
l
m)

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m−1))

∫ ζi
m

ζi
m−1

(1− Fi(x))dx. (62)

122

Optimal Schedules for Parallelizing Anytime Algorithms

However,

n∑

i=l+1

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m−1))

∫ ζi
m

ζi
m−1

(1− Fi(x))dx =

0∑

i=l−n+1

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− Fi(x))dx. (63)

Substituting (63) into (62), we obtain

n∑

i=0

dSi

dζ l
m

=

(1− Fl(ζ
l
m))




l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))−

l+n−1∏

j=l+1

(1− F#j(ζ
j
m))


−

fl(ζ
l
m)

l−1∑

i=l−n+1

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− Fi(x))dx. (64)

If 1− Fl(ζ
l
m) were 0, that would mean that the goal has been reached with the probability

of 1, and further scheduling would be redundant. Otherwise, expression in (64) is 0 when

fl(ζ
l
m)

1− Fl(ζ l
m)

=

l+n−1∏

j=l+1

(1− F#j(ζ
j
m−1))−

l+n−1∏

j=l+1

(1− F#j(ζ
j
m))

l−1∑

i=l−n+1

i+n−1∏

j=i+1,#j 6=l

(1− F#j(ζ
j
m))

∫ ζi
m+1

ζi
m

(1− F#i(x))dx

,

which is equivalent to (59).

Equation (59) includes 2n − 1 variables (ζ l+1
m−1 = ζn(m−1)+l+1 to ζ l−1

m+1 = ζn(m+1)+l−1),

providing an implicit dependency of ζ l−1
m+1 on the remaining 2n− 2 variables.

Q.E.D.

A.3 Proof of Lemma 2

The claim of the lemma is as follows:

The Euler-Lagrange conditions for the minimization problem (33) yield two strong in-
variants:

1. For processes k1 and k2 for which σk1 and σk2 are not on the border described by (34),
the distribution and density functions satisfy

fk1(σk1)

1− Fk1(σk1)
=

fk2(σk2)

1− Fk2(σk2)
. (65)

123

Finkelstein, Markovitch & Rivlin

2. If the schedules of all the processes are not on the border described by (34), then either
c = 1 or fk(σk) = 0 for each k.

Proof: Let g(t, σ1, . . . , σn, σ′
1, . . . , σ

′
n) be the function under the integral sign of (33):

g(t, σ1, . . . , σn, σ′
1, . . . , σ

′
n) =

(
(1− c) + c

n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj)). (66)

A necessary condition of Euler-Lagrange claims that a set of functions σ1, . . . , σn provides
a weak (local) minimum to the functional

Eu(σ1, . . . , σn) =

∫ ∞

0
g(t, σ1, . . . , σn, σ′

1, . . . , σ
′
n)dt

only if these functions satisfy a system of equations of the form

g′σk
− d

dt
g′σ′

k
= 0. (67)

In our case,

g′σk
= −

(
(1− c) + c

n∑

i=1

σ′
i

)
fk(σk)

∏

j 6=k

(1− Fj(σj)), (68)

and

d

dt
g′σ′

k
= c

d

dt

n∏

j=1

(1− Fj(σj)) = −c
n∑

l=1

σ′
lfl(σl)

∏

j 6=l

(1− Fj(σj)). (69)

Substituting the last expression into (67), we obtain

g′σ1
= g′σ2

= . . . = g′σn
= −c

n∑

l=1

σ′
lfl(σl)

∏

j 6=l

(1− Fj(σj)),

and by (68) for every k1 and k2

fk1(σk1)
∏

j 6=k1

(1− Fj(σj)) = fk2(σk2)
∏

j 6=k2

(1− Fj(σj)).

We can ignore the case where one of the terms 1−Fj(σj) is 0. Indeed, this is possible only
if the goal is reached by process j with probability of 1, and in this case no optimization is
needed. Therefore, we obtain

fk1(σk1)(1− Fk2(σk2)) = fk2(σk2)(1− Fk1(σk1)), (70)

which is equivalent to (65).

124

Optimal Schedules for Parallelizing Anytime Algorithms

Let us show now the correctness of the second invariant. By (69) and (65), we obtain

d

dt
g′σ′

k
=− c

n∑

l=1

σ′
lfl(σl)

∏

j 6=l

(1− Fj(σj)) =

− c
n∑

l=1

σ′
l

fl(σl)

1− Fl(σl)

n∏

j=1

(1− Fj(σj)) =

− c

n∑

l=1

σ′
l

fk(σk)

1− Fk(σk)

n∏

j=1

(1− Fj(σj)) =

− c

(
n∑

i=1

σ′
i

)
fk(σk)

∏

j 6=k

(1− Fj(σj)).

By (36) we get

g′σk
− d

dt
g′σ′

k
=−

(
(1− c) + c

n∑

i=1

σ′
i

)
fk(σk)

∏

j 6=k

(1− Fj(σj))

+ c

(
n∑

i=1

σ′
i

)
fk(σk)

∏

j 6=k

(1− Fj(σj)) =

− (1− c)fk(σk)
∏

j 6=k

(1− Fj(σj)) = 0.

Since we ignore the case when (1− Fj(σj)) = 0, the second invariant is correct.
Q.E.D.

A.4 Proof of Lemma 3

The claim of the lemma is as follows:
If an optimal solution exists, then there exists an optimal solution σ1, . . . , σn, such that

at each time t all the resources are consumed, i.e.,

∀t
n∑

i=1

σ′
i(t) = 1.

In the case where time cost is not zero (c 6= 1), the equality above is a necessary condition
for solution optimality.

Proof: We know that {σi} provide a minimum for the expression (33)

∫ ∞

0

(
(1− c) + c

n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj))dt.

Let us assume that in some time interval [t0, t1], {σi} do not satisfy the lemma’s constraints.
However, it is possible to use the same amount of resources more effectively. Let us consider

125

Finkelstein, Markovitch & Rivlin

a linear time warp ν(t) = αt + β on the time interval [t0, t1], satisfying ν(t0) = t0. From
the last condition, it follows that β = t0(1 − α). Let t′1 be a point where ν(t) achieves t1,
i.e., t′1 = t0 + (t1 − t0)/α. Let us consider a set of new objective schedule functions σ̃i(t) of
the form

σ̃i(t) =





σi(t), t ≤ t0,
σi(αt + β), t0 ≤ t ≤ t′1,
σi(t + t1 − t′1), t > t′1.

Thus, σ̃i(t) behaves as σi(t) before t0, as σi(t) with a time shift after t′1, and as a linearly
speeded up version of σi(t) in the interval [t0, t

′
1]. Since ν(t0) = t0 and ν(t′1) = t1, σ̃i(t) is

continuous at the points t0 and t′1.
σ̃′

i(t) is equal to ασ′
i(t) within the interval [t0, t1], and to σ′

i(t) outside this interval. By
the contradiction assumption, σi do not meet the lemma constraints in [t0, t1], and thus we
can take

α =
1

maxt∈[t0,t1]

∑n
i=1 σ′

i(t)
> 1,

leading to valid functions σ̃′
i(t). Using σ̃i(t) in (33), we obtain

Eu(σ̃1, . . . , σ̃n) =

∫ ∞

0

(
(1− c) + c

n∑

i=1

σ̃′
i(t)

)
n∏

j=1

(1− Fj(σ̃j(t)))dt =

∫ t0

0

(
(1− c) + c

n∑

i=1

σ′
i(t)

)
n∏

j=1

(1− Fj(σj(t)))dt +

∫ t′1

t0

(
(1− c) + cα

n∑

i=1

σ′
i(αt + β)

)
n∏

j=1

(1− Fj(σj(αt + β)))dt +

∫ ∞

t′1

(
(1− c) + c

n∑

i=1

σ′
i(t + t1 − t′1)

)
n∏

j=1

(1− Fj(σj(t + t1 − t′1)))dt.

By substituting x = αt + β in the second term of the last sum, and x = t + t1 − t′1 in the
third term, we obtain

Eu(σ̃1, . . . , σ̃n) =

∫ t0

0

(
(1− c) + c

n∑

i=1

σ′
i(t)

)
n∏

j=1

(1− Fj(σj(t)))dt +

∫ t1

t0

(
1− c

α
+ c

n∑

i=1

σ′
i(x)

)
n∏

j=1

(1− Fj(σj(x)))dx +

∫ ∞

t1

(
(1− c) + c

n∑

i=1

σ′
i(x)

)
n∏

j=1

(1− Fj(σj(x)))dx =

Eu(σ1, . . . , σn)−
∫ t1

t0

(1− c)

(
1− 1

α

) n∏

j=1

(1− Fj(σj))dt.

Since α > 1, the last term is non-negative, and therefore

Eu(σ̃1, . . . , σ̃n) ≤ Eu(σ1, . . . , σn),

126

Optimal Schedules for Parallelizing Anytime Algorithms

meaning that the set {σ̃i} provides a solution of at least the same quality as {σi}. If c 6= 1,
this contradicts to the optimality of the original schedule, and if c = 1, the new schedule
will also be optimal.
Q.E.D.

A.5 Proof of Theorem 4

The claim of the theorem is as follows:
Let the set of functions {σi} be a solution of minimization problem (6) under con-

straints (34). Let t0 be a point where the hazard functions of all the processes hi(σi(t)) are
continuous, and let Ak be the process active at t0 (σ′

k(t0) > 0), such that for any other
process Ai

hi(σi(t0)) < hk(σk(t0)). (71)

Then at t0 process k consumes all the resources, i.e. σ ′
k(t0) = 1.

Proof: First we want to prove the theorem for the case of two processes, and then
to generalize the proof to the case of n processes. Assume that σ1(t) and σ2(t) provide the
optimal solution, and at some point t0 σ′

1(t0) > 0 and

f1(σ1(t0))

1− F1(σ1(t0))
>

f2(σ2(t0))

1− F2(σ2(t0))
. (72)

From the continuity of the functions hi(t) in the point t0, it follows that there exists some
neighborhood U(t0) of t0, such that for each two points t′, t′′ in this neighborhood h1(t

′) >
h2(t

′′), i.e.,

min
t′∈U(t0)

f1(σ1(t
′))

1− F1(σ1(t′))
> max

t′′∈U(t0)

f2(σ2(t
′′))

1− F2(σ2(t′′))
. (73)

Let us consider some interval [t0, t1] ⊂ U(t0). In order to make the proof more readable, we
introduce the following notation (for this proof only):

• We denote σ1(t) by σ(t). By Lemma 3, σ2(t) = t− σ(t).

• We denote σ(t0) by σ0 and σ(t1) by σ1.

In the interval [t0, t1] the first process obtains σ1 − σ0 resources, and the second process
obtains (t1−t0)−(σ1−σ0) resources. Let us consider a special resource distribution σ̃, which
first gives all the resources to the first process, and then to the second process, keeping the
same quantity of resources as σ:

σ̃(t) =





σ(t), t ≤ t0,
t− t0 + σ0, t0 ≤ t ≤ t0 + σ1 − σ0,
σ1, t0 + σ1 − σ0 ≤ t ≤ t1
σ(t), t ≥ t1.

It is easy to see that σ(t) is continuous at the points t0, t1, and t0 + σ1 − σ0. We want to
show that, unless the first process consumes all the resources at the beginning, the schedule
produced by σ̃ outperforms the schedule produced by σ.

127

Finkelstein, Markovitch & Rivlin

Let t∗ = t0 + σ1 − σ0, which corresponds to the time when the first process would have
consumed all its resources had it been working with the maximal intensity. First, we want
to show that in the interval [t0, t

∗]

(1− F1(σ(t)))(1 − F2(t− σ(t))) ≥ (1− F1(t− t0 + σ0))(1 − F2(t0 − σ0)). (74)

Let
ν(t) = (t− t0 + σ0)− σ(t). (75)

The inequality (74) becomes

(1−F1(t−t0+σ0−ν(t)))(1−F2(t0−σ0+ν(t))) ≥ (1−F1(t−t0+σ0))(1−F2(t0−σ0)). (76)

Let us find a value of x = ν(t) that provides the minimum to the left-hand side of (76) for
the fixed t. Let us denote

G(x) = (1− F1(t− t0 + σ0 − x))(1 − F2(t0 − σ0 + x)).

Then,

G′(x) = f1(t− t0 + σ0 − x))(1−F2(t0 − σ0 + x))− f2(t0 − σ0 + x)(1−F1(t− t0 + σ0 − x)).

Since a valid σ(t) in the interval [t0, t1] obtains values between σ0 and σ1, by (75) we have

t− t0 + σ0 − x ∈ [σ0, σ1],

t0 − σ0 + x ∈ [t0 − σ0, t1 − σ1].

Therefore, there exist t′, t′′ ∈ [t0, t1], such that σ1(t
′) = σ(t′) = t− t0 + σ0 − x and σ2(t

′′) =
t′′ − σ(t′′) = t0 − σ0 + x. By (73) we obtain G′(x) > 0, meaning that G(x) monotonically
increases. Besides, by (75) we have x = ν(t) ≥ 0 (since σ ′(t) ≤ 1), and therefore G(x)
obtains its minimal value when x = 0. Therefore, if we denote by Ran(t) the set of valid
values for ν(t),

(1− F1(σ))(1 − F2(t− σ)) = (1− F1(t− t0 + σ0 − ν(t)))(1 − F2(t0 − σ0 + ν(t))) ≥
min

x∈Ran(t)
(1− F1(t− t0 + σ0 − x))(1− F2(t0 − σ0 + x)) =

(1− F1(t− t0 + σ0))(1 − F2(t0 − σ0)),

and the strict equality occurs if and only if σ(t) = t− t0 + σ0. Thus,

(1− F1(σ))(1 − F2(t− σ)) ≥ (1− F1(σ̃))(1 − F2(t− σ̃))

for t ∈ [t0, t
∗].

Let us show now the correctness of the same statement in the interval [t∗, t1], which is
equivalent to the inequality

(1− F1(σ(t)))(1 − F2(t− σ(t))) ≥ (1− F1(σ
1))(1 − F2(t− σ1)). (77)

The proof is similar. Let
ν(t) = σ1 − σ(t). (78)

128

Optimal Schedules for Parallelizing Anytime Algorithms

The inequality (77) becomes

(1− F1(σ
1 − ν(t)))(1 − F2(t− σ1 + ν(t))) ≥ (1− F1(σ

1))(1 − F2(t− σ1)). (79)

As before, we find a value of x = ν(t) that provides the minimum to the left-hand side
of (79)

G(x) = (1 − F1(σ
1 − x))(1 − F2(t− σ1 + x)).

The derivative of G(x) is

G′(x) = f1(σ
1 − x))(1− F2(t− σ1 + x))− f2(t− σ1 + x)(1− F1(σ

1 − x)),

and since a valid σ(t) in the interval [t0, t1] obtains values between σ0 and σ1, by (78) we
have

σ1 − x ∈ [σ0, σ1],

t− σ1 + x ∈ [t0 − σ0, t1 − σ1].

Therefore, there exist t′, t′′ ∈ [t0, t1], such that σ1(t
′) = σ(t′) = σ1 − x and σ2(t

′′) =
t′′ − σ(t′′) = t − σ1 + x. By (73), G′(x) > 0, and therefore G(x) monotonically increases.
Since x = σ1 − σ(t) ≥ 0, G(x) ≥ G(0). Thus, for t ∈ [t∗, t1],

(1− F1(σ))(1 − F2(t− σ)) = (1− F1(σ
1 − ν(t)))(1 − F2(t− σ1 + ν(t))) ≥

min
x∈Ran(t)

(1− F1(σ
1 − x))(1− F2(t− σ1 + x)) = (1− F1(σ

1))(1 − F2(t− σ1)),

and the strict equality occurs if and only if σ(t) = σ1.
Combining this result with the previous one, we obtain that

(1− F1(σ))(1 − F2(t− σ)) ≥ (1− F1(σ̃))(1 − F2(t− σ̃))

holds for every t ∈ [t0, t1]. Since σ̃(t) behaves as σ(t) outside this interval, Eu(σ) ≥ Eu(σ̃).
Besides, since the equality is obtained if and only if σ ≡ σ̃, and since Eu(σ) is optimal, we
obtain that σ ≡ σ̃, and therefore the first process will take all the resources in some interval
[t0, t1].

The proof for n processes is exactly the same. Let {σi} provide the optimal solution,
and at the point t0 there is process k, such that for each j 6= k

hk(σk(t0)) > hj(σj(t0)).

From the continuity of the functions hi(σi(t)) in the point t0, it follows that there exists
some neighborhood U(t0) of t0, such that

min
t′∈U(t0)

hk(σk(t
′)) > max

i6=k
max

t′′∈U(t0)
hi(σi(t

′′)). (80)

Let us take any process l 6= k, and let

y(t) = σk(t) + σl(t).

129

Finkelstein, Markovitch & Rivlin

Now we can repeat the above proof while substituting y(t) instead of t under the function
sign:

σ̃k(t) =





σk(t), y(t) ≤ y(t0),
y(t)− y(t0) + σk(t0), y(t0) ≤ y(t) ≤ y(t0) + σk(t1)− σk(t0),
σk(t1), y(t0) + σk(t1)− σk(t0) ≤ y(t) ≤ y(t1),
σk(t), y(t) ≥ y(t1).

The substitution above produces a valid schedule due to the monotonicity of y(t). The rest
of the proof remains unchanged.
Q.E.D.

A.6 Proof of Theorem 5

The claim of the theorem is as follows:

An active process will remain active and consume all resources as long as its hazard
function is monotonically increasing.

Proof: The proof is by contradiction. Let {σj} form an optimal schedule. Assume
that at some point t1 process Ak is suspended, while its hazard function hk(σk(t1)) is
monotonically increasing at t1.

Let us assume first that at some point t2 process Ak becomes active again. Since we do
not consider the case of making process active at a single point, there exists some ∆ > 0,
such that Ak is active in the intervals [t1 − ∆, t1] and [t2, t2 + ∆]. Ak has been stopped
at a point of monotonicity of the hazard function, and therefore, by Theorem 4, in these
intervals Ak is the only active process. We consider two alternative scenarios. In the first
one, we allow Ak to be active for additional ∆ time starting at t1 (i.e., shifting its idle
period by ∆), while in the second we suspend Ak by ∆ earlier.

For the first scenario, the scheduling functions have the following form:

σa
k(t) =





σk(t), t ≤ t1,
σk(t1) + (t− t1), t1 ≤ t ≤ t1 + ∆,
σk(t−∆) + ∆ = σk(t1) + ∆, t1 + ∆ ≤ t ≤ t2 + ∆,
σk(t), t ≥ t2 + ∆;

(81)

σa
j (t) =





σj(t), t ≤ t1,
σj(t1), t1 ≤ t ≤ t1 + ∆,
σj(t−∆), t1 + ∆ ≤ t ≤ t2 + ∆,
σj(t), t ≥ t2 + ∆.

(82)

It is possible to see that these scheduling functions are continuous and satisfy invariant (39),
which makes this set a suitable candidate for optimality.

130

Optimal Schedules for Parallelizing Anytime Algorithms

Substituting these values of σ into (6), we obtain

Eu(σa
1 , . . . , σa

n) =

∫ t1

0

n∏

j=1

(1− Fj(σj(t)))dt+

∫ t1+∆

t1

(1− Fk(σk(t1) + (t− t1)))
∏

j 6=k

(1− Fj(σj(t1)))dt+

∫ t2+∆

t1+∆
(1− Fk(σk(t1) + ∆))

∏

j 6=k

(1− Fj(σj(t−∆)))dt +

∫ ∞

t2+∆

n∏

j=1

(1− Fj(σj(t)))dt =

∫ t1

0

n∏

j=1

(1− Fj(σj(t)))dt +
∏

j 6=k

(1− Fj(σj(t1)))

∫ ∆

0
(1− Fk(σk(t1) + x))dx+

∫ t2

t1

(1− Fk(σk(t1) + ∆))
∏

j 6=k

(1− Fj(σj(t)))dt +

∫ ∞

t2+∆

n∏

j=1

(1− Fj(σj(t)))dt.

Subtracting Eu(σ1, . . . , σn) given by (6) from Eu(σa
1 , . . . , σa

n), we get

Eu(σ1, . . . , σn)−Eu(σa
1 , . . . , σa

n) =
∫ t2

t1

[(1− Fk(σk(t))) − (1− Fk(σk(t1) + ∆))]
∏

j 6=k

(1− Fj(σj(t)))dt+

∫ t2+∆

t2

n∏

j=1

(1− Fj(σj(t)))dt−
∏

j 6=k

(1− Fj(σj(t1)))

∫ ∆

0
(1− Fk(σk(t1) + x))dx.

(83)

Let us consider the first term of the last equation. Since in the interval [t1, t2] σk(t) = σk(t1),
in this interval

(1− Fk(σk(t)))− (1− Fk(σk(t1) + ∆)) = (1− Fk(σk(t1)))− (1− Fk(σk(t1) + ∆)) =

−
∫ ∆

0
d(1− Fk(σk(t1) + x)) =

∫ ∆

0
fk(σk(t1) + x)dx =

∫ ∆

0
hk(σk(t1) + x)(1− Fk(σk(t1) + x))dx.

Due to monotonicity of hk(σk) in t1,

(1− Fk(σk(t))) − (1− Fk(σk(t1) + ∆)) =
∫ ∆

0
hk(σk(t1) + x)(1− Fk(σk(t1) + x))dx > hk(σk(t1))

∫ ∆

0
(1− Fk(σk(t1) + x))dx,

which leads to

∫ t2

t1

[(1− Fk(σk(t))) − (1− Fk(σk(t1) + ∆))]
∏

j 6=k

(1− Fj(σj(t)))dt >

hk(σk(t1))

∫ ∆

0
(1− Fk(σk(t1) + x))dx

∫ t2

t1

∏

j 6=k

(1− Fj(σj(t)))dt.

(84)

131

Finkelstein, Markovitch & Rivlin

Let us now consider the second term of (83). Since in the interval [t2, t2 + ∆] only Ak is
active, in this interval

σj(t) =

{
σj(t2), j 6= k,
σk(t1) + (t− t2), j = k.

Thus,

∫ t2+∆

t2

n∏

j=1

(1− Fj(σj(t)))dt =
∏

j 6=k

(1− Fj(σj(t2)))

∫ ∆

0
(1− Fk(σk(t1) + x))dx. (85)

Substituting (84) and (85) into (83), we obtain

Eu(σ1, . . . , σn)−Eu(σa
1 , . . . , σa

n) >

∫ ∆

0
(1− Fk(σk(t1) + x))dx ×


hk(σk(t1))

∫ t2

t1

∏

j 6=k

(1− Fj(σj(t)))dt +
∏

j 6=k

(1− Fj(σj(t2))) −
∏

j 6=k

(1− Fj(σj(t1)))


 .

(86)

The proof for the second scenario, where Ak is suspended for ∆, is similar. For this
scenario, the scheduling functions σk(t) and σj(t) for j 6= k can be represented as follows:

σi
k(t) =





σk(t), t ≤ t1 −∆,
σk(t1 −∆) = σk(t1)−∆, t1 −∆ ≤ t ≤ t2 −∆,
σk(t1 −∆) + (t− (t2 −∆)) = σk(t1) + (t− t2), t2 −∆ ≤ t ≤ t2,
σk(t), t ≥ t2;

(87)

σi
j(t) =





σj(t), t ≤ t1 −∆,
σj(t + ∆), t1 −∆ ≤ t ≤ t2 −∆,
σj(t2), t2 −∆ ≤ t ≤ t2,
σj(t), t ≥ t2.

(88)

As before, these scheduling functions are continuous and satisfy invariant (39).
Substituting σi into (6), we obtain

Eu(σi
1, . . . , σ

i
n) =

∫ t1−∆

0

n∏

j=1

(1− Fj(σj(t)))dt+

∫ t2−∆

t1−∆
(1− Fk(σk(t1)−∆))

∏

j 6=k

(1− Fj(σj(t + ∆)))dt+

∫ t2

t2−∆
(1− Fk(σk(t1) + (t− t2)))

∏

j 6=k

(1− Fj(σj(t2)))dt +

∫ ∞

t2

n∏

j=1

(1− Fj(σj(t)))dt =

∫ t1−∆

0

n∏

j=1

(1− Fj(σj(t)))dt +
∏

j 6=k

(1− Fj(σj(t2)))

∫ ∆

0
(1− Fk(σk(t1)− x))dx+

∫ t2

t1

(1− Fk(σk(t1)−∆))
∏

j 6=k

(1− Fj(σj(t)))dt +

∫ ∞

t2+∆

n∏

j=1

(1− Fj(σj(t)))dt.

132

Optimal Schedules for Parallelizing Anytime Algorithms

Subtracting Eu(σ1, . . . , σn) given by (6) from Eu(σi
1, . . . , σ

i
n), we get

Eu(σ1, . . . , σn)−Eu(σi
1, . . . , σ

i
n) =

∫ t2

t1

[(1− Fk(σk(t))) − (1− Fk(σk(t1)−∆))]
∏

j 6=k

(1− Fj(σj(t)))dt+

∫ t1

t1−∆

n∏

j=1

(1− Fj(σj(t)))dt−
∏

j 6=k

(1− Fj(σj(t2)))

∫ ∆

0
(1− Fk(σk(t1)− x))dx.

(89)

As in the first scenario, in the interval [t1, t2]

(1− Fk(σk(t)))− (1− Fk(σk(t1)−∆)) = (1− Fk(σk(t1)))− (1− Fk(σk(t1)−∆)) =
∫ 0

−∆
d(1 − Fk(σk(t1) + x)) = −

∫ 0

−∆
fk(σk(t1) + x)dx =

−
∫ ∆

0
fk(σk(t1)− x)dx = −

∫ ∆

0
hk(σk(t1)− x)(1− Fk(σk(t1)− x))dx.

Due to monotonicity of hk(σk) in t1,

(1− Fk(σk(t)))− (1− Fk(σk(t1)−∆)) =

−
∫ ∆

0
hk(σk(t1)− x)(1− Fk(σk(t1)− x))dx > −hk(σk(t1))

∫ ∆

0
(1− Fk(σk(t1)− x))dx,

which leads to
∫ t2

t1

[(1− Fk(σk(t))) − (1− Fk(σk(t1)−∆))]
∏

j 6=k

(1− Fj(σj(t)))dt >

− hk(σk(t1))

∫ ∆

0
(1− Fk(σk(t1)− x))dx

∫ t2

t1

∏

j 6=k

(1− Fj(σj(t)))dt.

(90)

The transformations for the second term of (89) are also similar to the previous scenario.
Since in the interval [t1 −∆, t1] only Ak is active, in this interval

σj(t) =

{
σj(t1), j 6= k,
σk(t1)− (t1 − t), j = k.

Thus,
∫ t1

t1−∆

n∏

j=1

(1− Fj(σj(t)))dt =
∏

j 6=k

(1− Fj(σj(t1)))

∫ ∆

0
(1− Fk(σk(t1)− x))dx. (91)

Substituting (90) and (91) into (89), we obtain

Eu(σ1, . . . , σn)−Eu(σi
1, . . . , σ

i
n) >

∫ ∆

0
(1− Fk(σk(t1)− x))dx ×

−


hk(σk(t1))

∫ t2

t1

∏

j 6=k

(1− Fj(σj(t)))dt +
∏

j 6=k

(1− Fj(σj(t2)))−
∏

j 6=k

(1− Fj(σj(t1)))


 .

(92)

133

Finkelstein, Markovitch & Rivlin

By (86) and (92),

sign(Eu(σ1, . . . , σn)−Eu(σa
1 , . . . , σa

n)) = −sign(Eu(σ1, . . . , σn)−Eu(σi
1, . . . , σ

i
n)), (93)

and therefore one of these scenarios leads to better schedule, which contradicts the opti-
mality of the original one.

The proof for the case where control does not return to Ak at all is exactly the same
and is omitted here. Informally, it can be viewed as replacing t2 by ∞ in all the formulas
above, and the results are the same. same results.
Q.E.D.

A.7 Proof of Theorem 6

The claim of the theorem is as follows:

If no time cost is taken into account (c = 1), the model with shared resources un-
der intensity control settings is equivalent to the model with independent processes under
suspend-resume control settings. Namely, given a suspend-resume solution for the model
with independent processes, we may reconstruct an intensity-based solution with the same
cost for the model with shared resources and vice versa.

Proof: Let E∗
shared be the optimal value for the framework with shared resources,

and E∗
independent be the optimal value for the framework with independent processes. Since

c = 1, the two problems minimize the same expression

Eu(σ1, . . . , σn) =

∫ ∞

0

(
n∑

i=1

σ′
i

)
n∏

j=1

(1− Fj(σj))dt→ min, (94)

and each set {σi} satisfying the resource sharing constraints automatically satisfies the
process independence constraints, we obtain

E∗
independent ≤ E∗

shared.

Let us prove that

E∗
shared ≤ E∗

independent.

Assume that a set of functions σ1, σ2, . . . , σn is an optimal solution for the problem with
independent processes, i.e.,

Eu(σ1, . . . , σn) = E∗
independent.

We want to construct a set of functions {σ̃i} satisfying the resource sharing constrains, such
that

Eu(σ̃1, . . . , σ̃n) = Eu(σ1, . . . , σn).

Let us consider a set of discontinuity points of σ ′
i

T = {t|∃i : σ′
i(t− ε) 6= σ′

i(t + ε)}.

134

Optimal Schedules for Parallelizing Anytime Algorithms

In our model this set is countable, and we can write it as a sorted sequence t0 = 0 < t1 <
. . . < tk < The expected schedule cost in this case will have a form

Eu(σ1, . . . , σn) =

∞∑

j=0

Euj
(σ1, . . . , σn),

where

Euj
(σ1, . . . , σn) =

∫ tj+1

tj

(
n∑

i=1

σ′
i

)
n∏

l=1

(1− Fl(σl))dt.

We want to construct the functions σ̃i incrementally. For each time interval [tj, tj+1] we
define a corresponding point t̃j and a set of functions σ̃i, such that

Ẽuj
(σ̃1, . . . , σ̃n) =

∫ gtj+1

etj

(
n∑

l=1

σ̃l
′

)
n∏

l=1

(1− Fl(σ̃l))dt = Euj
(σ1, . . . σn).

Let us denote σij = σi(tj) and σ̃ij = σ̃i(tj). At the beginning, σ̃i0 = 0 for each i, and
t̃0 = 0. Assume now that we have t̃j′ defined for j ′ < j, and σ̃i(t) defined on each interval

[t̃j′ , t̃j′+1]. Let us show how to define t̃j and σ̃j on [t̃j, t̃j+1].
By definition of tj, k =

∑n
l=1 σ′

l(t) is a constant for t ∈ [tj, tj+1]. Since {σi} satisfy
suspend-resume constraints, exactly k ≥ 1 processes are active in this interval, each with
full intensity. Without loss of generality, the active processes are A1, A2, . . . , Ak, and

Euj
(σ1, . . . , σn) = k

∫ tj+1

tj

n∏

l=1

(1− Fl(σl))dt =

k

n∏

l=k+1

(1 − Fl(σlj))

∫ tj+1

tj

k∏

l=1

(1− Fl(t− tj + σlj))dt =

k

n∏

l=k+1

(1 − Fl(σlj))

∫ tj+1−tj

0

n∏

l=1

(1− Fl(x + σlj))dx.

Let t̃j+1 = t̃j + k(tj+1 − tj), and let us define σ̃i(t) on the segment [t̃j , t̃j+1] as follows:

σ̃i(t) =

{
(t− t̃j)/k + σ̃ij, σ′

i > 0 for t ∈ [tj , tj+1]
σ̃ij, otherwise.

(95)

In this case, on this segment
n∑

l=1

σ̃i
′(t) = 1,

which means that the σ̃i satisfy the resource sharing constraints. By definition,

t̃j+1 − t̃j = k(tj+1 − tj), (96)

and therefore for processes active on [tj, tj+1] we obtain

σ̃i,j+1 − σ̃ij =
t̃j+1 − t̃j

k
= tj+1 − tj = σi,j+1 − σij.

135

Finkelstein, Markovitch & Rivlin

For processes idle on [tj , tj+1] the same equality holds as well:

σ̃i,j+1 − σ̃ij = 0 = σi,j+1 − σij,

and since σ̃i(t) = 0 we obtain the invariant

σ̃ij = σij. (97)

The average cost for the new schedules may be represented as

Ẽuj
(σ̃1, . . . , σ̃n) =

∫ gtj+1

etj

(
n∑

l=1

σ̃l
′

)
n∏

l=1

(1− Fl(σ̃l))dt =

n∏

l=k+1

(1− Fl(σ̃lj))

∫ gtj+1

etj

k∏

l=1

(1− Fl((t− t̃j)/k + σ̃lj))dt.

Substituting x = (t− t̃j)/k and using (95), (96) and (97), we obtain

Ẽuj
(σ̃1, . . . , σ̃n) = k

n∏

l=k+1

(1− Fl(σ̃lj))

∫ (gtj+1−etj)/k

0

k∏

l=1

(1− Fl(x + σ̃lj))dx =

k

n∏

l=k+1

(1− Fl(σlj))dt

∫ tj+1−tj

0

k∏

l=1

(1− Fl(x + σlj))dx =

Euj
(σ1, . . . , σn).

From the last equation, it immediately follows that

Eu(σ̃1, . . . , σ̃n) =

∞∑

j=0

Ẽuj
(σ̃1, . . . , σ̃n) =

∞∑

j=0

Euj
(σ1, . . . , σn) = Eu(σ1, . . . , σn),

which completes the proof.
Q.E.D.

References

Boddy, M., & Dean, T. (1994). Decision-theoretic deliberation scheduling for problem
solving in time-constrained environments. Artificial Intelligence, 67 (2), 245–286.

Clearwater, S. H., Hogg, T., & Huberman, B. A. (1992). Cooperative problem solving. In
Huberman, B. (Ed.), Computation: The Micro and Macro View, pp. 33–70. World
Scientific, Singapore.

Dean, T., & Boddy, M. (1988). An analysis of time-dependent planning. In Proceedings
of the Seventh National Conference on Artificial Intelligence (AAAI-88), pp. 49–54,
Saint Paul, Minnesota, USA. AAAI Press/MIT Press.

Finkelstein, L., & Markovitch, S. (2001). Optimal schedules for monitoring anytime algo-
rithms. Artificial Intelligence, 126, 63–108.

136

Optimal Schedules for Parallelizing Anytime Algorithms

Finkelstein, L., Markovitch, S., & Rivlin, E. (2002). Optimal schedules for parallelizing
anytime algorithms: The case of independent processes. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence, pp. 719–724, Edmonton, Al-
berta, Canada.

Gomes, C. P., & Selman, B. (1997). Algorithm portfolio design: Theory vs. practice. In
Proceedings of UAI-97, pp. 190–197, San Francisco. Morgan Kaufmann.

Gomes, C. P., Selman, B., & Kautz, H. (1998). Boosting combinatorial search through ran-
domization. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-98), pp. 431–437, Menlo Park. AAAI Press.

Horvitz, E. (1987). Reasoning about beliefs and actions under computational resource
constraints. In Proceedings of the Third Workshop on Uncertainty in Artificial Intel-
ligence, pp. 429–444, Seattle, Washington.

Huberman, B. A., Lukose, R. M., & Hogg, T. (1997). An economic approach to hard
computational problems. Science, 275, 51–54.

Janakiram, V. K., Agrawal, D. P., & Mehrotra, R. (1988). A randomized parallel back-
tracking algorithm. IEEE Transactions on Computers, 37 (12), 1665–1676.

Knight, K. (1993). Are many reactive agents better than a few deliberative ones. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pp. 432–437, Chambéry, France. Morgan Kaufmann.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42, 189–211.

Kumar, V., & Rao, V. N. (1987). Parallel depth-first search on multiprocessors. part II:
Analysis. International Journal of Parallel Programming, 16 (6), 501–519.

Luby, M., & Ertel, W. (1994). Optimal parallelization of Las Vegas algorithms. In Pro-
ceedings of the Annual Symposium on the Theoretical Aspects of Computer Science
(STACS ’94), pp. 463–474, Berlin, Germany. Springer.

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47, 173–180.

Rao, V. N., & Kumar, V. (1987). Parallel depth-first search on multiprocessors. part I:
Implementation. International Journal of Parallel Programming, 16 (6), 479–499.

Rao, V. N., & Kumar, V. (1993). On the efficiency of parallel backtracking. IEEE Trans-
actions on Parallel and Distributed Systems, 4 (4), 427–437.

Russell, S., & Wefald, E. (1991). Do the Right Thing: Studies in Limited Rationality. The
MIT Press, Cambridge, Massachusetts.

Russell, S. J., & Zilberstein, S. (1991). Composing real-time systems. In Proceedings of the
Twelfth National Joint Conference on Artificial Intelligence (IJCAI-91), pp. 212–217,
Sydney. Morgan Kaufmann.

Simon, H. A. (1982). Models of Bounded Rationality. MIT Press.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics,
69, 99–118.

137

Finkelstein, Markovitch & Rivlin

Yokoo, M., & Kitamura, Y. (1996). Multiagent real-time-A* with selection: Introducing
competition in cooperative search. In Proceedings of the Second International Con-
ference on Multiagent Systems (ICMAS-96), pp. 409–416.

Zilberstein, S. (1993). Operational Rationality Through Compilation of Anytime Algorithms.
Ph.D. thesis, Computer Science Division, University of California, Berkeley.

138

