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Abstract

In recent years, there has been much interest in phase transitions of combinatorial problems.
Phase transitions have been successfully used to analyze combinatorial optimization problems,
characterize their typical-case features and locate the hardest problem instances. In this paper, we
study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard com-
binatorial optimization problem that has many real-world applications. Using random instances
of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show
that many properties of the problem, including the optimal tour cost and backbone size, experience
sharp transitions as the precision of intercity distances increases across a critical value. Our exper-
imental results on the costs of the ATSP tours and assignment problem agree with the theoretical
result that the asymptotic cost of assignment problem is w2 /6 as the number of cities goes to infin-
ity. In addition, we show that the average computational cost of the well-known branch-and-bound
subtour elimination algorithm for the problem also exhibits a thrashing behavior, transitioning from
easy to difficult as the distance precision increases. These results answer positively an open ques-
tion regarding the existence of phase transitions in the ATSP, and provide guidance on how difficult
ATSP problem instances should be generated.

1. Introduction and Overview

Phase transitions of combinatorial problems and thrashing behavior similar to phase transitions
in combinatorial algorithms have drawn much attention in recent years (Gomes, Hogg, Walsh, &
Zhang, 2001; Hogg, Huberman, & Williams, 1996; Martin, Monasson, & Zecchina, 2001). Having
been extensively studied in the so-called spin glass theory (Mézard, Parsi, & Virasoro, 1987) in
physics, phase transition refers to a phenomenon when some system properties change rapidly and
dramatically when a control parameter undergoes a slight change around a critical value. Such
transitions appear only in large systems. A larger system usually exhibits sharper and more abrupt
phase transitions, leading to a phenomenon of crossover of the trajectories of phase transitions from
systems of the same type but with different sizes.

A daily-life example of phase transitions is water changing from ice (solid phase) to water
(liquid phase) to steam (gas phase) when temperature increases. It has been shown that many
combinatorial decision problems have phase transitions, including Boolean satisfiability (Cheese-
man, Kanefsky, & Taylor, 1991; Mitchell, Selman, & Levesque, 1992; Hogg, 1995; Selman &
Kirkpatrick, 1996; Monasson, Zecchina, Kirkpatrick, Selman, & Troyansky, 1999), graph color-
ing (Cheeseman et al., 1991), and the symmetric Traveling Salesman Problem (deciding the exis-
tence of a complete tour of vising a given set of cities with a cost less than a specified value) (Cheese-
man et al., 1991; Gent & Walsh, 1996a). Phase transitions can be used to characterize typical-case

©?2004 Al Access Foundation. All rights reserved.



ZHANG

properties of difficult combinatorial problems (Gomes et al., 2001; Martin et al., 2001). The hardest
problem instances of most decision problems appear very often at the points of phase transitions.
Therefore, phase transitions have been used to help generate the hardest problem instances for test-
ing and comparing algorithms for decision problems (Achlioptas, Gomes, Kautz, & Selman, 2000;
Cheeseman et al., 1991; Mitchell et al., 1992).

Another important and useful concept for characterizing combinatorial problems is that of the
backbone (Kirkpatrick & Toulouse, 1985; Monasson et al., 1999). A backbone variable refers to
a variable that has a fixed value among all optimal solutions of a problem; and all such backbone
variables are collectively referred to as the backbone of the problem. If a problem has a backbone
variable, an algorithm will not find a solution to the problem until the backbone variable is set to its
correct value. Therefore, the fraction of backbone variables, the percentage of variables being in the
backbone, reflects the constrainedness of the problem and directly affects an algorithm searching
for a solution. The larger a backbone, the more tightly constrained the problem becomes. As a
result it is more likely for an algorithm to set a backbone variable to a wrong value, which may
consequently require a large amount of computation to recover from such a mistake.

However, the research on the phase transitions and (particularly) backbones of optimization
problems is limited, which is in sharp contrast with the numerous studies of the phase transitions
and backbones of decision problems, represented by Boolean satisfiability (e.g., Cheeseman et al.,
1991; Mitchell et al., 1992; Hogg, 1995; Selman & Kirkpatrick, 1996; Monasson et al., 1999). An
early work on the symmetric TSP introduced the concept of backbones (Kirkpatrick & Toulouse,
1985). However, it has left the question whether there exists a phase transition of the TSP, the
optimization version of the problem to be specific, open since 1985. One of the best (rigorous)
phase-transition results was obtained on number partitioning (Borgs, Chayes, & Pittel, 2001), an
optimization problem. However, the phase transition analyzed by Borgs, Chayes, & Pittel (2001),
also experimentally by Gent & Walsh (1996b, 1998), is the existence of a perfect partition for a
given set of integers, which is in essence a decision problem. In addition, Gent & Walsh (1996b,
1998) also studied the phase transitions of the size of optimal 2-way partition. The relationship
between the phase transitions of satisfiability, a decision problem, and maximum satisfiability, an
optimization problem, was studied by Zhang (2001). It was experimentally shown that the backbone
of maximum Boolean satisfiability also exhibits phase transitions, emerging from nonexistence to
almost full size abruptly and dramatically. In addition, the relationship between backbones and
average-case algorithmic complexity has also been considered (Slaney & Walsh, 2001).

In this paper, we investigate the phase transitions of the asymmetric Traveling Salesman Prob-
lem. The Traveling Salesman Problem (TSP) (Gutin & Punnen, 2002; Lawler, Lenstra, Kan, &
Shmoys, 1985) is an archetypical combinatorial optimization problem and one of the first NP-hard
problems studied (Karp, 1972). Many concepts, such as backbone (Kirkpatrick & Toulouse, 1985),
and general algorithms, such as linear programming (Dantzig, Fulkerson, & Johnson, 1959), branch-
and-bound (Little, Murty, Sweeney, & Karel, 1963), local search (Lin & Kernighan, 1973) and
simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) were first introduced and studied using
the TSP. The problem is also very often a touchstone for combinatorial algorithms. Furthermore,
the fact that many real-world problems, such as scheduling and routing, can be cast as TSPs has
made the problem of practical importance. In this paper, we consider the asymmetric TSP (ATSP),
where a distance from one city to another may not be necessarily the same as the distance on the
reverse direction. The ATSP is more general and most ATSPs are more difficult to solve than their
symmetric counterparts (Johnson, Gutin, McGeoch, Yeo, Zhang, & Zverovitch, 2002).
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Using the general form of the problem, i.e., the ATSP, we provide a positive answer to the long-
standing open question posted by Kirkpatrick & Toulouse (1985) regarding the existence of phase
transitions in the problem, and disapprove the claim made by Kirkpatrick & Selman (1994) that the
Traveling Salesman Problem does not have a clear phase transition.

Specifically, using uniformly random problem instances of up to 1,500 cities, we empirically
reveal that the average optimal tour length, the accuracy of the most effective lower-bound func-
tion for the problem (the assignment problem, see Martello & Toth (1987)), and the backbone of
the ATSP undergo sharp phase transitions. The control parameter is the precision of intercity dis-
tances which is typically represented by the maximum number of digits for the distances. Note that
these results are algorithm independent and are properties of the problem. Furthermore, we show
that the average computational cost of the well-known branch-and-bound subtour elimination algo-
rithm (Balas & Toth, 1985; Bellmore & Malone, 1971; Smith, Srinivasan, & Thompson, 1977) for
the ATSP exhibits a phase-transition or thrashing behavior in which the computational cost grows
abruptly and dramatically from easy to difficult as the distance precision increases. Our results lead
to a practical guidance on how to generate large, difficult random problem instances for the purpose
of algorithm comparison.

It is worthwhile to mention that besides the results by Kirkpatrick & Toulouse (1985) there
are three additional pieces of early empirical work related to the phase transitions of the Traveling
Salesman Problem. The research by Zhang & Korf (1996) investigated the effects of two differ-
ent distance distributions on the average complexity of the subtour elimination algorithm for the
asymmetric TSP. The main result is that the average complexity of the algorithm is controlled by
the number of distinct distances of a random asymmetric TSP. We will extend this result further
in Section 6. However, we need to caution that these results are algorithm specific, which may
not necessarily reflect intrinsic features of the underlying problem. The research on phase tran-
sitions by Cheeseman, Kanefsky, & Taylor (1991) studied the decision version of the symmetric
TSP (Cheeseman, 1991). A more thorough investigation on this issue was also carried out (Gent
& Walsh, 1996a). Specifically, Gent & Walsh (1996a) analyzed the probability that a tour whose
length is less than a specific value exists for a given random symmetric euclidean TSP, showing that
the probability has a one-to-zero phase transition as the length of the desired tour increases. Note
that the phase-transition results by Cheeseman, Kanefsky, & Taylor (1991, 1996a) do not address
the open question by Kirkpatrick & Toulouse (1985) which is about the optimization version of the
problem. The experimental results by Gent & Walsh (1996a) also showed that the computational
cost of a branch-and-bound algorithm, which unfortunately was not specified in the paper, exhibits
an easy-hard-easy pattern.

The paper is organized as follows. In Section 2, we describe the ATSP and a related problem
called assignment problem (AP). We then investigate the parameter that controls phase transitions
in Section 3, and study various phase transitions of the ATSP in Section 4. In Section 5 we analyze
asymptotic ATSP tour cost, AP cost and the precision of AP as a heuristic function for solving the
ATSP as the number of cities grows to a large number. In Section 6, we describe the well-known
subtour elimination algorithm for the ATSP, and analyze the thrashing behavior of this algorithm.
We discuss related work in Section 7 and finally conclude in Section 8.
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2. The Asymmetric Traveling Salesman Problem and Assignment Problem

Given n cities and the distance or cost between each pair of cities, the Traveling Salesman Problem
(TSP) is to find a minimum-cost tour that visits each city once and returns to the starting city (Gutin
& Punnen, 2002; Lawler et al., 1985). When the distance from city ¢ to city j is the same as the
distance from j to 7, the problem is the symmetric TSP (STSP). If the distance from city 7 to city
7 is not necessarily equal to the reverse distance, the problem is the asymmetric TSP (ATSP). The
ATSP is more difficult than the STSP, with respect to both optimization and approximation (Johnson
etal., 2002). The TSPs are important NP-hard problems (Garey & Johnson, 1979; Karp, 1972) and
have many practical applications. Many difficult combinatorial optimization problems, such as
vehicle routing, workshop scheduling and computer wiring, can be formulated and solved as the
TSPs (Gutin & Punnen, 2002; Lawler et al., 1985).

The ATSP can be formulated as an integer linear programming problem. Let V' be the set of
n cities, A the set of all pairs of cities, and D = (d;;) the distance or cost matrix specifying the
distance of each pair of cities. The following integer linear programming formulation of the ATSP
is well known:

ATSP(D) = min »_ dijzs;, (1)
i,J
subject to

> owij=1, VjieV; (2)

eV
Z Tij = 1, Vi eV; 3)

jev

i€S jes

Tij >0, VZ,j ev (5)

where variables z;; take values zero or one, and z;; = 1 if and only if arc (4, j) is in the optimal
tour, for 7 and 5 in V. Constraints (2) and (3) restrict the in-degree and out-degree of each city to be
one, respectively. Constraints (4) impose the subtour elimination constraints so that only complete
tours are allowed.

The ATSP is closely related to the assignment problem (AP) (Martello & Toth, 1987), which is
to assign to each city i another city j, with the distance from s to 5 as the cost of the assignment,
such that the total cost of all assignments is minimized. The AP is a relaxation of the ATSP in which
the assignments need not form a complete tour. In other words, by removing the subtour elimination
constraints (4) from the above representation, we have an integer linear programming formulation
of the AP. Therefore, the AP cost is a lower bound on the ATSP tour cost. If the AP solution happens
to be a complete tour, it is also a solution to the ATSP. While the ATSP is NP-hard, the AP can be
solved in polynomial time, in O(n?) to be precise (Martello & Toth, 1987).

3. The Control Parameter

Consider two cases of the ATSP, one with all the intercity distances being the same and the other
with every intercity distance being distinct. In the first case, every complete tour going through all
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n, Cities is an optimal tour or a solution to the ATSP. There is no backbone variable since removing
one edge from an optimal solution will not prevent finding another optimal solution. The ATSP in
this case is easy; finding an optimal solution does not require any search at all. In addition, the cost
of the optimal solution is also a constant, which is n times of the intercity distance. In the second
case where all distances are distinct, every complete tour covering all » cities has a high probability
to have a distinct cost. Therefore, an arc in the optimal solution is almost surely a backbone variable
and removing it may destroy the optimal solution. In addition, it is expected to be difficult to find
and verify such an optimal solution among a large number of suboptimal solutions in this case.

Therefore, there are significant differences between the above two extreme cases. One of the
most important differences is the number of distinct distances in the distance matrix D. More
precisely, many important characteristics of the random ATSP, including the size of backbone and
complexity, are determined by the fraction of distinct distances among all distances. We denote the
fraction of distinct distances in distance matrix D as p. We are particularly interested in determin-
ing how p affects the characteristics of the ATSP when it gradually increases from zero, when all
distances are the same, to one, when all distances are distinct.

In practice, however, we do not directly control the number or the fraction of distinct distances
in matrix D. Besides the actual structures of the “layouts” of the cities, the precision of the distances
affects the number of distinct distances. The precision of a number is usually represented by the
maximal number of digits allowed for the number. This is even more so when we use a digital
computer to solve the ATSP, which typically has 32 bits (or 4 bytes) for integers or 64 bits (or 8
bytes) for double precision real numbers. As a result, the number of digits for distances is naturally
a good choice for the control parameter.

The effect of a given number of digits on the fraction of distinct distances in distance matrix
D is relative to the problem size n. Consider a matrix D with distances uniformly chosen from
integers {0,1,2,---, R—1}, where the range R is determined by the number of digits b. For a fixed
number of digits b, the fraction of distinct distances of a larger matrix D is obviously smaller than
that of a smaller D. Therefore, the control parameter for the fraction p of distinct distances of D
must be a function of the number of digits b and the number of cities n, which we denote as p(n, b).

To find the control parameter, consider the number of distinct distances in D for a given integer
range R. The problem of finding the number of distinct distances is equivalent to the following
bin-ball problem. We are given M balls and R bins, and asked to place the balls into the bins.
Each ball is independently put into one of the bins with an equal probability. We are interested in
the fraction of bins that are not empty after all the placements. Here, for asymmetric TSP M =
n? — n balls correspond to the total number of nondiagonal distances of matrix D, and R bins
represent the possible integers to choose from. Since each ball (distance) is thrown independently
and uniformly into one of the R bins (integers), the probability that one bin is not empty after
throwing M balls is 1 — (1 — 1/R)™. The expected number of occupied bins (distinct distances) is

simply R (1 —(1- 1/R)M). Thus, the expected fraction of distinct distances in matrix D is

R(1-(1-1/RM
Blp(n,b)] = ( (M /B) (6)

Note that if M or n is fixed, E[p(n,b)] — 1 as R — oo, since in this case the expectation of the
number of distinct distances approaches M. On the other hand, when R is fixed, E[p(n,b)] — 0
when M or n goes to infinity, since all of a finite number of R bins will be occupied by an infinite
number of balls in this case.
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Following convention in practice, we use decimal values for distances. Thus R = 1@, where
b is the number of digits for distances. It turns out that if we plot p(n,b) against b/ log(n), it
will have relatively the same scale for different problem sizes n. This is shown in Figure 1(a). This
means that the scaling function for the effective number of digits is f(n) = log, (n). Function
b/ log,,(n) is thus the effective number of digits that controls the fraction of distinct distances in
matrix D, which we denote as 5(n,b). This also means that to have the same effective number
of digits 8 on two different problem sizes, say m; and ne with n; < ne, the range R should be
different. On these two problems, R needs to be n’f and ng respectively, giving nf < n'g

We need to point out that the integer range R can also be represented by a number in other
bases, such as binary. Which base to use will not affect the results quantitatively, but introduces
a constant factor to the results. In fact, since b = log;o(R), where R is the range of integers to
be chosen, 8(n,b) = b/log;o(n) = log,(R), which is independent of the base of the values for
intercity distances.

It is interesting to note that, controlled by the effective number of digits b/ log (), the fraction
of distinct entities p has a property similar to a phase transition, also shown in Figure 1(a). The larger
the problem, the sharper the transition, and there exists a crossover point among the transitions of
problems with different sizes. We may examine this phase-transition phenomenon more closely
using finite-size scaling. Finite-size scaling (Barber, 1983; Wilson, 1979) is a method that has
been successfully applied to phase transitions in similar systems of different sizes. Based on finite-
size scaling, around a critical parameter (temperature) 7., problems of different sizes tend to be
indistinguishable except for a change of scale given by a power law in a characteristic length, which
is typically in the form of (' — T,)n'/?, where n is the problem size and v the exponent of the
rescaling factor. Therefore, finite-size scaling characterizes a phase transition precisely around the
critical point T, of the control parameter as the problem scales to infinity. However, our analysis
revealed that the scaling factor has a large exponent of 9 (Zhang, 2003), indicating that the phase
transitions in Figure 1(a) does not exactly follow the power law finite-size scaling.

To find the correct rescaled control parameter, we reconsider (6). As n — oo and distance range
R grows with problem size n, i.e., R — oo as n — oo, we can rewrite (6) as

n%olgfﬁ%oE[f’(”ab)] = Jim % (1 - ((1 - 1/R)R)M/R)
N % (1-e), @

where the second equation follows limg_,oo(1 — 1/R)® = e~!. Since our underlying control
parameter is the number of digits, b = log;q(R), we take z = log;,(R/M). Asymptotically as
n — oo, M ~ n?, which leads to z = log;o(R) — 2logy(n) = (B — 2)log;y(n). Using z, we
rewrite (7) as

lim  Blp(n,b)] =107 (1-7'077). ®)
n—o0,R—00
The rescaled control parameter as n — oo for the expected number of distinct distances in D is
(B —2)log,(n). Therefore, the critical point is 2 and the rescaling factor is log 4 (n). The rescaled
phase transition is shown in Figure 1(b), which plots p(n, (8 — 2) log ¢ (n)).
Note that the number of digits used for intercity distances is nothing but a measurement of the
precision of the distances. The larger the number of digits, the higher the precision becomes. This
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(a) fraction of distinct numbers
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Figure 1: (a) Average fraction of distinct distances in matrix D, p(n,b), controled by the effective

number of digits, 8 = blogyy (n), for n = 100, 500, 1000 and 1500. (b) Average p(n, b)
after finite-size scaling, with scaling factor (5 — 3.) log,o(n), where 5, = 2.

agrees with the common practice of using more effective digits to gain precision. Therefore, the
control parameter is in turn determined by the precision of intercity distances.

Finally, it is important to note that even though the discussion in this section focused on asym-
metric cost matrices and the ATSP, the arguments apply to symmetric distance matrices and the
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symmetric TSP as well. That is, with M revised to (n? — n)/2, asymptotically as R and n goes to
infinity, log; (M) ~ 2log,y(n), so that (8 — 2) log,,(n) is also a rescaled control parameter for
the number of distinct distances in symmetric cost matrices.

4. Phase Transitions

With the control parameter, the effective number of digits 5(n,b) for intercity distances, identi-
fied, we are now in a position to investigate possible phase transitions in the ATSP and the related
assignment problem.

To set forth to investigate these phase transitions, we generated and studied uniformly random
problem instances with 100-, 200-, 300- upto 1,000-cities and 1,500-cities. Although we have
results from 100-, 200-, 300-, up to 1,000-city as well as 1,500-city problems, to make the result
figures readable, we only use the data from 100-, 500-, 1,000- and 1,500-city problems to report the
results. For the problem instances considered, intercity distances are independently and uniformly
chosen from {0,1,2,---, R — 1} for a given range R, which is controlled by the number of digits
b. We varied b from 1.0 to 6.0 for instances with up to 1,000-cities and from 1.0 to 6.5 for instances
with 1,500-cities. The digits are incremented by 0.1, i.e., we used b = 1.0,1.1,1.2, - - -.

4.1 Phase Transitionsin the ATSP

We are particularly interested in possible phase transitions in the ATSP cost, phase transitions of
backbones and phase transitions of the numbers of ATSP tours. The results on backbone can shed
some light on the intrinsic tightness of the constraints among the cities as the precision of distance
measurement changes.

4.1.1 THE ATSP Tour CosT

There is a phase transition in the ATSP tour cost, AT'SP(D), under the control parameter £, the
effective number of digits for intercity distances. Figure 2(a) shows the results on 100-, 500-, 1,000-
and 1,500-city ATSP instances, averaged over 10,000 instances for each data point. The reported
tour costs are obtained by dividing the integer ATSP tour costs by n x (R — 1), where n is the
number of cities and R the range of intercity costs. Equivalently, an intercity distance was virtually
converted to a real value in [0, 1].

As shown, the ATSP tour cost increases abruptly and dramatically as the effective number of dig-
its increases, exhibiting phase transitions. The transitions become sharper as the problem becomes
larger, and there exist crossover points among curves from different problem sizes. By finite-size
scaling, we further determine the critical value of the control parameter at which the phase transi-
tions occur. Following the discussion in Section 3, the scaling factor has a form of (8— 3.) logo(n).
Our numerical result indicated that 5. = 1.02 4+ 0.007. We thus use 8. = 1 to show the result in
Figure 2(b). It is worthwhile to mention that the AP cost follows almost the same phase-transition
pattern of the ATSP tour cost in Figure 2.

4.1.2 BACKBONE AND NUMBER OF OPTIMAL SOLUTIONS

We now turn to the backbone of the ATSP, which is the percentage of directed arcs that appear in
all optimal solutions. The backbone also exhibits phase transitions as the effective number of digits
for distances increases. The result is included in Figure 3(a), where each data point is averaged
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(a) ATSP tour cost
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Figure 2: (a) Average optimal ATSP tour cost. (b) Scaled and normalized average optimal tour cost,
with rescaling factor (8 — 3.) log,o(n) and g, = 1.

over 10,000 problem instances. The rescaled result is shown in Figure 3(b), where the critical point
B = 1. Interestingly, the phase-transition pattern of the backbone follows a similar trend as that
of the fraction of distinct entities in the distance matrix, shown in Figure 1. In addition, the phase-
transition patterns of tour costs and backbones are similar, which will be discussed in Section 4.3.
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(a) fraction of backbone
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Figure 3: (a) Average fraction of backbone variables. (b) Rescaled average backbone fraction, with
rescaling factor (8 — f.) log,(n) and 8. = 1.

The fraction of backbone variables is related to the number of optimal solutions of a problem.
We thus examined the total number of optimal solutions of the ATSP. This was done on small ATSPs,
from 10 cities to 150 cities, as finding all optimal solutions on larger problems is computationally
too expensive. The results are averaged over 100 trials for each data point. As shown in Figure 4,
where the vertical axes are in logarithmic scale, the number of optimal tours also undergoes a phase
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Figure 4: (a) Average number of optimal ATSP tours. (b) Rescaled average number of optimal
ATSP tours, with rescaling factor (8 — 3.) logq(n) and 5. = 1.39 £ 0.008.

transition, from exponential to a constant, as the number of digits increases. Note that when the
number of digits is small, it is very costly to find all optimal solutions, even on these relatively small
problems.

The fraction of backbone variables captures in essence the tightness of the constraints among
the cities. As more intercity distances become distinct, the number of tours of distinct lengths
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increases. Consequently, the number of optimal solutions decreases and the fraction of backbone
variables grows inversely. When more arcs are part of the backbone, optimal solutions become
more restricted. As a result, the number of optimal solutions decreases. As the fraction of backbone
variables increases and approaches one, the number of optimal solutions decreases and becomes
one as well, which typically makes the problem of finding an optimal solution more difficult.

4.1.3 EXISTENCE OF HAMILTONIAN CIRCUIT WITH ZERO-COST EDGES

When the precision of intercity distances is low, it is likely that the ATSP tour, a complete tour of
minimal cost among all complete tours, has a cost of zero, meaning that there exists an Hamiltonian
circuit consisting of zero-cost arcs. It is a decision problem to determine if an Hamiltonian circuit
exists in a given ATSP. We examined this decision problem using the same set of 10,000 problem
instances used in Figures 2 and 3. The result is shown in Figure 5. Notice that although it follows
the same rescaling formula of (8 — /) log;,(n), the critical point of the transition, % = 0.865,
is different from the critical point of 5. = 1 for the phase transitions of backbones and ATSP tour
cost, as shown in Figures 2 and 3.

4.2 Quality of the AP Lower-bound Function

The existence of Hamiltonian circuits of zero-cost arcs also indicates that when the number of digits
for intercity distances is very small, for example, less than 1.9 (or R ~ 80) for n = 1, 500, both the
AP and ATSP costs are zero, meaning that these two costs are the same as well. It is useful to know
how likely the AP cost is equal to the ATSP tour cost; the answers to this issue constitutes the first
step to the elucidation of the accuracy of the AP lower-bound cost function.

Given a random distance matrix D, how likely is it that an AP cost will be the same as the ATSP
tour cost as the effective number of digits 8 increases? We answer this question by examining
the probability that an AP cost AP(D) is equal to the corresponding ATSP cost AT'SP(D) as
B increases. Figure 6(a) shows the results on 100-, 500-, 1,000- and 1,500-city ATSP instances,
averaged over the same set of 10,000 instances for Figure 2 for each data point. As shown in
the figure, the probability that AP(D) = AT SP(D) also experiences abrupt and dramatic phase
transitions. Figure 6(b) shows the phase transitions after finite-size scaling, with critical point 2 =
1.17 £ 0.005.

The results in Figure 6 also imply that the quality of the AP lower-bound function degrades
as the distance precision increases. The degradation should also follow a phase-transition process.
This is verified by Figure 7, using the data from the same set of problem instances. Note that the
critical point of the phase transition for the accuracy of AP is 4 = 0.97, which is different from the
critical point 8. = 1.17 for the phase transition of the probability that AP(D) = ATSP(D).

4.3 How Many Phase Transitions?

So far, we have seen many phase transitions on different features of the ATSP and its related assign-
ment problem. Qualitatively, all these phase transitions follow the same transition pattern, meaning
that they can all be captured by the same finite-size rescaling formula of (5 — 2) log,o(n), where
B, is a critical point depending on the particular feature of interest.

It is interesting to note that the critical points for the phase transitions of the ATSP tour costs and
fractions of backbone variables are all at 4. = 1. A close examination also indicates that these two
phase transitions follow almost the same phase transition, as shown in Figure 8, where the rescaled
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Figure 5: (a) Probability of the existence of Hamiltonian circuits with zero cost arcs. (b) Rescaled

probability of zero-cost Hamiltonian circuits, with rescaling factor (8 — /2) log;,(n) and
. = 0.865.

curves for the ATSP tour cost and the fraction of backbone variables are drawn from 1,500-city
ATSP, averaged over 10,000 problem instances.
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(a) probability AP(D) = ATSP(D)
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Figure 6: (a) Average probability that AP(D) = AT'SP(D). (b) Average probability after finite-
size scaling, with rescaling factor (8 — ) log,o(n) and 8, = 1.17 £ 0.005.

Except the close similarity of the phase transitions of the ATSP tour cost and the fraction of
backbone variables, the other phase transitions all have different critical points, indicating that they
undergo the same type of phase transitions at different ranges.
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(a) precision of AP function
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Figure 7: (a) Average accuracy of AP lower-bound function, measured by the error of AP cost
relative to ATSP cost. (b) normalized and rescaled average accuracy, with rescaling factor
(B — Be) logyo(n) and S, = 0.97.

5. Asymptotic ATSP Tour Length and AP Precision

As a by-product of the phase-transition results, we now provide numerical values of the ATSP
cost, the AP cost and its accuracy, asymptotically when the number of cities grows. We attempt to
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Figure 8: Simultanous examination of the phase transitions of backbone and ATSP tour cost on
1,500-city problems, all rescaled with (5 — 1) log;o(n).

extend the previous theoretical results on the AP cost, which was shown to asymptotically approach
72 /6 (Aldous, 2001; Mézard & Parsi, 1987), and the observations that the relative error of the AP
lower bounds decreases as the problem size increases (Balas & Toth, 1985; Smith et al., 1977).

Not every real number can be represented in a digital computer. Thus, it is infeasible to directly
examine atheoretical result on reals using a digital computer. For our purpose, on the other hand, the
phase-transition results indicate that when the precision of the intercity distances is high enough,
all the guantities of the ATSP we have examined, including the ATSP cost, the AP cost and its
precision as a lower-bound cost function, as well as the backbone, are relatively stable, in the sense
that they do not change significantly even when the precision of intercity distances increases further.
Therefore, it is sufficient to use a high distance precision to experimentally analyze the asymptotic
properties of the ATSP cost and other related quantities.

We need to be cautious in selecting the number of digits for intercity distances. As we discussed
in Section 3, the same number of digits for intercity distances gives rise to different effective num-
bers of digits on problems of different sizes. Furthermore, the phase transition results in Section 4
indicate that the effective numbers of digits must be scaled properly in order to have the same effect
on problems of different sizes when we investigate an asymptotic feature.

Therefore, in our experiments, we fixed the scaled effective number of digits for intercity dis-
tances, (8 — ;) log;o(n), to a constant. Based on our phase-transition results, especially that on the
control parameter in Figure 1, we chose to take (8 — 2) log;,(n) a constant of 2.1, for two reasons.
First, (8 — 2) logo(n) = 2.1 is sufficiently large so that almost all distances are distinct, regardless
of problem size, and the quantities we will examine will not change substantially after the finite-size
scaling. Secondly, (8 —2) log;,(n) = 2.1 is relatively small so that we can experiment on problems
of large sizes. To save memory as much as possible, the intercity distances are integers of 4 bytes
in our implementation of the subtour elimination algorithm. Thus the number of digits must be less
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| n [ digits || AP cost \ ATSP cost | relative AP error (%) |

200 | 6.7021 || 1.63533 4+ 0.00254 | 1.64302 + 0.00254 0.46817 + 0.00970

400 | 7.3041 || 1.63942 + 0.00180 | 1.64311 + 0.00180 0.22485 + 0.00468

600 | 7.6563 || 1.64072 4+ 0.00146 | 1.64314 + 0.00145 0.14765 + 0.00317

800 | 7.9062 || 1.64227 + 0.00125 | 1.64407 + 0.00125 0.10904 + 0.00237
1,000 | 8.1000 || 1.64297 + 0.00114 | 1.64441 + 0.00114 0.08754 + 0.00191
1,200 | 8.2584 || 1.64284 + 0.00104 | 1.64402 + 0.00105 0.07187 + 0.00158
1,400 | 8.3923 | 1.64313 + 0.00096 | 1.64413 + 0.00096 0.06148 + 0.00139
1,600 | 8.5082 || 1.64319 + 0.00090 | 1.64405 + 0.00090 0.05276 + 0.00117
2,000 | 8.7021 || 1.64382 + 0.00082 | 1.64451 + 0.00082 0.04231 + 0.00095
2,200 | 8.7848 || 1.64372 + 0.00077 | 1.64434 4 0.00077 0.03813 + 0.00085
2,400 | 8.8604 || 1.64360 + 0.00074 | 1.64417 4+ 0.00073 0.03477 + 0.00079
2,600 | 8.9299 || 1.64429 + 0.00071 | 1.64481 4 0.00071 0.03234 + 0.00074
2,800 | 8.9943 || 1.64382 + 0.00068 | 1.64430 + 0.00068 0.02966 + 0.00068
3,000 | 9.0542 || 1.64421 + 0.00065 | 1.64463 4 0.00065 0.02548 + 0.00061

Table 1: Numerical results on AP cost, the ATSP cost and AP error relative to the ATSP cost, in
percent. The cost matrices are uniformly random. Each data point is averaged over 10,000
problem instances. In the table, n is the number of cities, digits is the number of digits
for intercity distances, and all numerical error bounds represent 95 percent confidence
intervals.

than 9.4 without causing an overflow in the worst case. Using (5 — 2) log;o(n) = 2.1, we can go
up to roughly 3,000-city ATSPs.

Table 1 shows the experimental results, with up to 3,000 cities, on the average AP cost, the
ATSP tour cost, and accuracy of the AP cost function in the error of AP cost relative to the ATSP
cost. The results are averaged over 10,000 instances for each problem size. Based on the results,
the AP cost approaches to 1.6442 and the ATSP cost to 1.6446. Note that the experimental AP cost
of 1.6442 is very close to the theoretical asymptotic AP cost of 72/6 ~ 1.6449 (Aldous, 2001;
Mézard & Parsi, 1987). In addition, the accuracy of AP function indeed improves as the problem
size increases, reduced to about 0.02548% for 3,000-city problem instances. This result supports
the previous observations (Balas & Toth, 1985; Smith et al., 1977).

6. Thrashing Behavior of Subtour Elimination

All the phase-transition results discussed in the previous section indicate that the ATSP becomes
more constrained and difficult as the distance precision becomes higher. In this section, we study
how a well-known algorithm for the ATSP, branch-and-bound subtour elimination (Balas & Toth,
1985; Bellmore & Malone, 1971; Smith et al., 1977), behaves. We separate this issue from the
phase transition phenomena studied before because what we will consider in this section is the be-
havior of a particular algorithm, which may not be necessarily a feature of the underlying problem.
Nevertheless, this is still an issue of its own interest because this algorithm is the oldest and is still
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among the best known methods for the ATSP, and we hope that a better understanding of an efficient
algorithm for the ATSP can shed light on the typical case computational complexity of the problem.

6.1 Branch-and-bound Subtour Elimination

The branch-and-bound (BnB) subtour algorithm elimination (Balas & Toth, 1985; Bellmore & Mal-
one, 1971; Smith et al., 1977) solves an ATSP in a state-space search (Pearl, 1984; Zhang, 1999)
and uses the assignment problem (AP) as a lower-bound cost function. The BnB search takes the
original ATSP as the root of the state space and repeats the following two steps. First, it solves the
AP of the current problem. If the AP solution is not a complete tour, it decomposes it into subprob-
lems by subtour elimination that breaks a subtour by excluding some arcs from a selected subtour.
As a subproblem is more constrained than its parent problem, the AP cost to the subproblem must
be as much as that of the parent. This means that the AP cost function is monotonically nondecreas-
ing. While solving the AP requires O(n?) computation in general, the AP to a child node can be
incrementally solved in O(n?) time based on the solution to the AP of its parent.

There are many heuristics for selecting a subtour to eliminate (Balas & Toth, 1985), and we use
the Carpaneto-Toth scheme (Carpaneto & Toth, 1980), or the CT scheme for short, in our algorithm.
One important feature of the CT scheme is that it generates no duplicate subproblem so that the
overall search space is a tree. One example of this scheme is shown in Figure 9. The AP solution
to the original ATSP contains two subtours that are in the root of the tree of the figure. The subtour
2 — 3 — 2 is chosen to be eliminated, since it is shorter than the other subtour. We have two ways to
break the selected subtour, i.e., excluding directed arc (2, 3) or (3,2). Assume that we first exclude
(2,3) and then (3,2), generating two subproblems, nodes A and B in Figure 9. When generating
the second subproblem B, we deliberately include (2, 3) in its solution. By including the arc that
was excluded in the previous subproblem A, we force to exclude in the current subproblem B all the
solutions to the original problem that will appear in A, and therefore form a partition of the solution
space using A and B. In general, let £ be the excluded arc set, and Z be the included arc set of the
problem to be decomposed. Assume that there are ¢ arcs of the selected subtour, {a,e2,---, e},
that are not in Z. The CT scheme decomposes the problem into ¢ child subproblems, with the k-th
one having excluded arc set &, and included arc set 7, such that

&k =8U{ek},
k=12 --- 1. 9
T, =ZIU{e1, --,ex_1}, B ©

Since e, is an excluded arc of the k-th subproblem, e, € &, and it is an included arc of the k + 1-st
subproblem, e, € Zy1, a complete tour obtained from the k-th subproblem does not contain arc
ex, While a tour obtained from the & + 1-st subproblem must have arc ¢,. Thus a tour from the k-th
subproblem cannot be generated from the k& + 1-st subproblem, and vice versa. In summary, the
state space of the ATSP under BnB using the CT subtour elimination scheme can be represented by
a tree without duplicate nodes.

In the next step, the algorithm selects as the current problem a new subproblem from the set of
active subproblems, which are the ones that have been generated but not yet expanded. This process
continues until there is no unexpanded problem, or all unexpanded problems have costs greater than
or equal to the cost of the best complete tour found so far.

Thanks to its linear-space requirement, we use depth-first branch-and-bound (DFBNB) in our
algorithm. DFBNB explores active subproblems in a depth-first order. It uses an upper bound « on
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E={(2,3)}

E={(3,2),(3,6)}

E={(3,2),(6,2)} 1={(2,3),(6,2)}

1={(2,3)}

Figure 9: DFBNB subtour elimination on the ATSP.

the optimal cost, whose initial value can be infinity or the cost of an approximate solution, such as
one obtained by Karp’s patching algorithm (Karp, 1979; Karp & Steele, 1985), which repeatedly
patches two smallest subtours into a big one until a complete tour forms. Starting at the root node,
DFBnNB selects a recently generated node z to examine next. If the AP solution of z is a complete
tour, then z is a leaf node of the search tree. If the cost of a leaf node is less than the current upper
bound «, « is revised to the cost of x. If z’s AP solution is not a complete tour and its cost is greater
than or equal to «, z is pruned, because node costs are monotonic so that no descendant of x will
have a cost smaller than z’s cost. Otherwise, z is expanded, generating all its child nodes. To find
an optimal goal node quickly, the children of = should be searched in an increasing order of their
costs. In other words we use node ordering to reduce the number of nodes explored. To speed up
the process of reaching a better, possibly optimal, solution, we also apply Karp’s patching algorithm
to the best child node of the current node.

Our algorithm is in principle the same as the algorithm by Carpaneto, Dell’ Amico & Toth (1995),
which is probably the best known complete algorithm for the ATSP. The main difference between the
two is that, due to a consideration on space requirement, we use depth-first search while Carpaneto,
Dell’Amico & Toth (1995) used best-first search.

6.2 Thrashing Behavior

The average computational complexity of the BnB subtour elimination algorithm is determined by
two factors, the problem size, or the number of cities, and the number of digits used for intercity
distances. Figure 10 illustrates this average complexity, measured by the number of calls to the AP
function, in a logarithmic scale. The result is averaged over the same 10,000 problem instances for
each data point as used for the phase transitions studied in Section 4. Note that the number of AP
calls increases exponentially from small problems to large ones when they are generated using the
same number of digits for distances.
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Figure 10: Average computational complexity of the BnB subtour elimination algorithm.

To characterize the thrashing behavior of the algorithm, we normalize the result in Figure 10
in such a way that for a given problem size, the minimal and maximal AP calls among all problem
instances of the same size are mapped to zero and one, respectively, and the other AP calls are
proportionally adjusted to a ratio between 0 and 1. This allows us to compare the results from
different problem sizes in one figure. We also normalize the number of digits for distances by
problem size. The curves in Figure 11(a) follow a pattern similar to that of the phase transitions in
Section 4. The complexity of the subtour elimination algorithm increases with the effective number
of digits, and exhibits a thrashing behavior similar to phase transitions. Indeed, we can use finite-
size scaling to capture the behavior as the problem size grows, as illustrated in Figure 11(b).

The results in Figure 11 and the phase-transition results of Section 4 indicate that the complexity
of the subtour elimination algorithm goes hand-in-hand with the accuracy of the AP function and the
constrainedness of the problem, which is determined by the portion of distinct entities of distance
matrix, which is in turn controlled by the precision of distances.

Similar results have been reported by Zhang & Korf (1996), where the effects of two different
distance distributions on the average complexity of the subtour elimination algorithm were ana-
lyzed to conclude that the determinant of the average complexity is the number of distinct distances
of a problem. The results of this section extend that by Zhang & Korf (1996) to different sizes
of problems and by applying finite-size scaling to capture the thrashing behavior as problem size
increases.

We need to contrast the experimental result in this section with the theoretical result on the
NP-completeness of the TSP of intercity distances 0 and 1. It has been known that the degenerated
TSP with distances 0 and 1 is still NP-complete (Papadimitriou & Yannakakis, 1993). On the
other hand, our experimental results showed that when intercity distances are small, relative to the
problem size, the ATSP is easy on average. Based on our experimental result, a large portion of the
problem instances with small intercity distances can be solved by the assignment problem or Karp’s
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Figure 11: (a) Normalized average number of AP calls of DFBnB subtour elimination. (b) Scaled
average number of AP calls, with (8 — ;) log,o(n), where 5y = 1.49 £ 0.025.

patching algorithm with no branch-and-bound search required. This discrepancy indicates that the
worst case of the problem is rare and most likely pathological.
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7. Related Work and Discussions

Two lines of previous work have directly influenced and inspired this research. The first line of
related work was on the expected complexity of tree search, which shed light to the BnB subtour
elimination algorithm described in Section 6.1 as it solves the ATSP in a tree search. The analysis
was carried out on an abstract random tree model called incremental tree T' (Karp & Pearl, 1983;
McDiarmid, 1990; McDiarmid & Provan, 1991; Zhang & Korf, 1995; Zhang, 1999). The internal
nodes of T' has variable number of children and edges in T' are assigned finite and nonnegative
random values. The cost of a node in T is the sum of the edge costs along the path from the root to
that node. An optimal goal node is a node of minimum cost at a fixed depth d. The overall goal is
to find an optimal goal node.

There exist phase transitions in the cost of the optimal goal node and the complexity to the
problem of finding an optimal goal in 7. The control parameter is the expected number of child
nodes of a common parent node which have the same cost as the parent. The cost of an optimal goal
node almost surely undergoes a phase transition from a linear function of depth d to a constant when
the expected same-cost children of a node increases beyond one. Meanwhile, best-first search and
depth-first branch-and-bound also exhibit a phase-transition behavior, i.e., their expected complexity
changes dramatically from exponential to polynomial in d as the expected same-cost children of a
node is reduced to below one. Note that following the result by Dechter & Pearl (1985), best-first
search is optimal for searching this random tree among all algorithms using the same cost function,
in terms of number of node expansions, up to tie breaking. Thus, the above results also give the
expected complexity of the problem of searching an incremental tree.

The second line of related research was on characterizing the the assignment problem (AP)
lower-bound cost function and its relationship with the ATSP, which has been a research interest for
a long time (Aldous, 2001; Coppersmith & Sorkin, 1999; Frieze, Karp, & Reed, 1992; Frieze &
Sorkin, 2001; Karp, 1987; Karp & Steele, 1985; Mézard & Parsi, 1987; Walkup, 1979). The first
surprising result (Walkup, 1979) is that the expected AP cost approaches a constant as the number
of cities n goes to infinity if the entries of distance matrix D are independent and uniform over reals
[0, 1]. This constant has been the subject of a long history of pursuit. It has been shown rigorously,
based on rigorous replica method from statistical physics (Mézard et al., 1987), that the optimal cost
of random assignment approaches asymptotically to 72 /6 (Aldous, 2001), which is approximately
1.64493. Our results in Section 5 show that the AP and the ATSP costs approach 1.64421 and
1.64463, respectively, which agree with the theoretical results on the AP cost.

More importantly, the relationship between the AP cost and the ATSP cost has remarkably
different characteristics under different distance distributions. On one extreme, the AP cost is the
same as the ATSP cost with a high probability, while on the other extreme, it can differ from the
ATSP cost, with a high probability, by a function of problem size n. Let AP(D) be the AP cost
and AT SP(D) the ATSP cost under a distance matrix D. If the expected number of zeros in
a row of D approaches infinity when n — oo, then AP(D) = ATSP(D) with a probability
tending to one (Frieze et al., 1992). However, if the entities of D are uniform over the integers
[0,1,---, |enn]], then AP(D) = ATSP(D) with a probability going to zero, where g, grows
to infinity with n (Frieze et al., 1992). Indeed, when the entities of D are uniform over [0, 1],
E(ATSP(D) — AP(D)) > co/n, wWhere ¢y is a positive constant (Frieze & Sorkin, 2001).

These previous results indicate that the quality of the AP function varies significantly, depending
on the underlying distance distribution. Precisely, the difference between the AP cost and the ATSP

492



PHASE TRANSITIONS AND BACKBONES OF THE ATSP

cost has two phases, controlled by the number of zero distances in the distance matrix D. In one
phase, the difference is zero with high probability, while in the other phase, the expectation of the
difference is a function of the problem size n. Our experimental results in Section 4 adds to this
analysis the existence of a phase transition between these two phases.

The two-phase result on the accuracy of the AP cost function is also in principle consistent with
the phase-transition result of incremental random trees. The root of the search tree has a cost equal
to the AP cost AP(D) to the problem and an optimal goal node has the ATSP tour cost AT'SP(D).
If we subtract the AP cost to the root from every node in the ATSP search tree, the root node has
cost zero and an optimal goal node has cost equal to AT'SP(D) — AP(D). When there are a large
number of zero distances in D, there will be a large number of same-cost children, and the AP cost
of a child node in a search tree is more likely to be the same as the AP cost of its parent, since AP
will tend to use the zero distances. Therefore, it is expected that more nodes in the search tree will
have more than one child node having the same cost as their parents.

In addition to the phase transitions of combinatorial problems mentioned in Section 1, there are
other related previous results. Results on scaling of search cost against constrainedness in sym-
metric TSP were considered by Gent, Maclntyre, Prosser, & T. Walsh (1997). Phase transitions
in Hamiltonian circuit was studied by Frank, Gent, & Walsh (1998). It was also shown that it is
hard to generate difficult Hamiltonian cycle problem instances (Vandegriend & Culberson, 1998).
In addition, the concept of backbones has been studied in many problems under different names.
For examples, unary prime implicate refers to such a variable that must be set to a fixed value for
an instance of Boolean satisfiability (Parkes, 1997); a frozen development describes a pair of nodes
that must share the same colors in a graph coloring problem (Culberson & Gent, 2001).

8. Conclusions

Our main contributions of this research are twofold. First, we answered positively the long-standing
question if the Traveling Salesman Problem (TSP) has phase transitions (Kirkpatrick & Toulouse,
1985) and disapproved the belief that the problem does not have a phase transition (Kirkpatrick
& Selman, 1994). We studied this issue on a more general, optimization version of the problem,
the asymmetric TSP (ATSP). We empirically showed, using random problem instances with dis-
tances from a uniform distribution, that many important properties, including the ATSP tour cost
and the fraction of backbone variables, have two characteristically different values, and the transi-
tions between them are rather abrupt and dramatic, displaying a phase-transition phenomenon. The
control parameter of the phase transitions is the effective number of digits representing the intercity
distances or the precision of distance measure.

Second, our results provide a practical guidance on how to generate difficult random ATSP
problem instances and which random instances should be used for comparing the asymptotic per-
formance of ATSP algorithms. A current common practice in comparing algorithms when using a
random ensemble is to generate problem instances of different sizes with a fixed distance precision.
Our phase transition results indicate that the correct way is to use instances of different sizes that
have the same or similar features such as the same fraction of backbone variables. It is also impor-
tant to point out that the locations of hardest, albeit random, problem instances typically depend on
distance distribution used. In the case of uniform distribution, this requires increasing the precision
of intercity distances as the problem size grows.
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It is important to note that the exact locations of various phase transitions presented here remain
to be mathematically determined, using methods probably from statistical physics (Martin et al.,
2001; Mézard et al., 1987).

We like to conclude by pointing out that the phase transition results in this paper is general.
The argument on the control parameter in Section 3 is general and applicable to the symmetric
TSP (STSP). Our unpublished data also showed phase transitions in the STSP. The results on the
ATSP with uniformly distributed distances should hold for other types of intercity distances. This
is in part supported by our previous investigation where intercity distances were chosen from a log-
normal distribution (Zhang & Korf, 1996). Finally, we believe that phase transitions will persist on
structured TSPs as long as intercity distances are independently drawn from a common distribution.
Such TSPs include those proposed and studied by Cirasella et al., (2001) and Johnson et al., (2002),
for examples, problem instances with constraints of triangle inequalities, instances converted from
particular applications such as disk drive optimization, jobshop scheduling, coin collecting opti-
mization, etc.
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