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Abstract 
  

  An accepted belief is a proposition considered likely enough by an agent, to be 
inferred from as if it were true. This paper bridges the gap between probabilistic and logical 
representations of accepted beliefs. To this end, natural properties of relations on propositions, 
describing relative strength of belief are augmented with some conditions ensuring that accepted 
beliefs form a deductively closed set. This requirement turns out to be very restrictive. In 
particular, it is shown that the sets of accepted belief of an agent can always be derived from a 
family of possibility rankings of states. An agent accepts a proposition in a given context if this 
proposition is considered more possible than its negation in this context, for all possibility 
rankings in the family. These results are closely connected to the non-monotonic 'preferential' 
inference system of Kraus, Lehmann and Magidor and the so-called plausibility functions of 
Friedman and Halpern. The extent to which probability theory is compatible with acceptance 
relations is laid bare. A solution to the lottery paradox, which is considered as a major 
impediment to the use of non-monotonic inference is proposed using a special kind of 
probabilities (called lexicographic, or big-stepped). The setting of acceptance relations also 
proposes another way of approaching the theory of belief change after the works of Gärdenfors 
and colleagues. Our view considers the acceptance relation as a primitive object from which 
belief sets are derived in various contexts.  

1. Introduction 
There is an old controversy in the framework of Artificial Intelligence (AI) between probabilistic 
and other numerical representations of uncertainty on the one hand, and the symbolic setting of 
logical reasoning methods on the other hand. Namely, the AI tradition maintains that knowledge 
representation and reasoning should rely on logic (Minker, 2000), while the probabilistic tradition 
sticks to numerical representations of belief. The emergence and relative success of some 
numerical reasoning formalisms based on probability (especially Bayesian networks) or fuzzy 
sets has nevertheless led AI to accept numerical representations as complementary to symbolic 
ones. However the basic issue underlying the controversy, that is to say, whether or not the two 
forms of reasoning (logical and numerical) are at all compatible at the formal level, has not been 
widely addressed. Namely suppose the beliefs of an agent are represented simultaneously by a 
measure of confidence (such as a probability function for instance) on a set of states, and by a 
logical belief base. To what extent can the two representations be consistent with each other?  
 In order for this question to make sense, we need a formal connection between the two 
representations and especially, we must extract so-called accepted beliefs from the confidence 
measure so as to feed a belief base. The question of accepted beliefs has been discussed in 
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epistemology for a long time. It is not widely agreed how to define an accepted belief and several 
schools of thought exist. Swain (1970) provides basic material on this topic. Usually, accepted 
beliefs are understood as propositions whose degrees of belief are high enough to be considered 
as true, and they form a deductively closed set. However this view is challenged by probabilists. 
One proposal of this paper is a definition of accepted belief according to a confidence relation, a 
relation comparing propositions in terms of their relative credibility for an agent : a minimal 
requirement for a proposition p to be a belief is that the agent believes p more than its negation. 
This is the weakest definition one may think of. The specific requirement for p to be an accepted 
belief is that the agent is ready to infer from p in a classical sense, as if p were true. Then, two 
questions are worth investigating : 
1) Under what conditions can the set of beliefs according to a confidence measure coincide with 

the deductive closure of a logical belief base? 
2) Upon arrival of new information, can the set of beliefs obtained from the measure of 

confidence after conditioning, and the revised belief base remain in agreement as well?  
 Citing Cohen (1977), the paper explores the common ground between "the probable and the 
provable". Philosophers like Kyburg (1961) considered this question in the past.  He proposed the 
lottery paradox as evidence that probability theory is inconsistent with deductive closure and the 
notion of accepted belief. More recently, it has been pointed out that the lottery paradox also 
questions the credibility of the non-monotonic reasoning school (Kyburg, 1988; Poole, 1991). 

This paper casts the problem of the reasonableness of deductive closure for accepted beliefs in a 
more general ordinal setting, using relations for comparing events in terms of relative likelihood, 

certainty, plausibility and the like, in connection with the AGM theory of belief revision, after 
Alchourron et al. (1985) and Gärdenfors (1988). Such relations can be induced by numerical 

representations of belief such as probability (Fishburn, 1986), possibility (Lewis, 1973; Dubois, 
1986), Shafer's belief and plausibility functions (Wong et al., 1991). 
 This paper shows that the assumption that beliefs extracted from a confidence relation form a 
deductively closed set severely restricts the type of comparative belief structure that can be 
envisaged for reasoning under uncertainty. Actually, the range of compatibility between 
deductive closure and uncertain reasoning basically reduces to possibility theory. It also precisely 
covers the kind of non-monotonic inference systems called "System P" (Kraus, Lehmann & 
Magidor, 1990), rational closure (Lehmann & Magidor, 1992). Our work is thus closely related to 
the works of Friedman and Halpern (1996) who describe the semantics of non-monotonic 
inference in terms of plausibility functions valued on a partially ordered set. This approach has 
close connections with various works carried out more or less independently by philosophers like 
Ernest Adams (1975), David Lewis (1973), in the seventies, and Peter Gärdenfors (1988) and 
colleagues in the eighties, as well as several AI researchers, such as Yoav Shoham (1988), Daniel 
Lehmann and colleagues (1990, 1992), Judea Pearl (1990), Joe Halpern (1997), Maryanne 
Williams (1994), Hans Rott (2001) and others. 
 In this paper, we also provide a direct proof that confidence relations compatible with 
deductive closure can be substituted by a family of possibility relations characterizing the same 
set of accepted beliefs. Moreover, we also demonstrate some compatibility between the notion of 
logical closure and probability theory and suggest a solution to the lottery paradox. The paper is a 

continuation of previous work: Dubois and Prade  (1995a) proposed a definition of accepted belief. 
Later, Dubois Fargier and Prade (1998) presented some results on acceptance relations and their 
numerical counterparts. 
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 The paper is organized as follows : Section 2 recalls the lottery paradox as a motivation for this 
research. It introduces comparative belief structures and suggests postulates governing the notion 
of accepted beliefs, and their revision in the face of new information by means of conditioning. 
Some examples of acceptance relations are discussed, especially the so-called possibility 
relations, each being characterized by a complete preordering of states. Comparative probabilities 
that are acceptance relations are laid bare and shown to be a very restricted class, which can be 
represented by big-stepped (lexicographic) probabilities. Section 3 presents the main 
representation results for acceptance relations. We show that the useful part of any acceptance 
relation, that is, the part from which accepted beliefs are derived, can be represented by a family 
of possibility relations. Section 4 relates these results to existing works in non-monotonic 
inference and probabilistic reasoning. It also revisits belief revision theory in the light of 
acceptance relations. Lastly, we show that big-stepped probabilities are immune to the lottery 
paradox, and suggest a range of situations where reasoning deductively with accepted beliefs 
makes sense.  

2. Accepted Beliefs 

Consider an agent who has to reason about the current state of the world. The body of information 
possessed by the agent is supposed to contain (at least) three distinct types of items: observations 
pertaining to the current situation, generic knowledge about similar situations, and beliefs 
regarding the non-directly observable features of the current situation. In logical approaches 
(Minker, 2000), observations and generic knowledge are encoded in some logic-based language. 
In probabilistic approaches, generic knowledge is modeled by a probability distribution on the set 
of possible situations, and often encoded as a Bayes net, for instance. Observations result in the 
partial instantiation of some variables. Plausible reasoning consists in inferring beliefs from 
(contingent) observations, and generic (background) knowledge, valid across situations. In logical 
approaches this is achieved via logical (generally, non-monotonic) deduction. In probability 
theory, it consists in computing conditional probabilities of relevant propositions, where the 
conditioning event gathers the available observations (De Finetti, 1974). Observations are 
supposed to be reliable and non-conflicting, while computed beliefs are on the contrary taken for 
granted, hence brittle. There is a strong similarity between the logical and the probabilistic 
approaches to plausible reasoning. Actually, it seems that the ultimate aim of symbolic AI in 
plausible reasoning is to perform a counterpart to probabilistic inference without probabilities 
(Dubois & Prade, 1994). 

2.1 The Lottery Paradox 
The main difference between logic-based and probabilistic approaches to plausible reasoning is 
that in logic-based approaches, accepted beliefs form a deductively closed set of propositions, 
while the aim of probabilistic reasoning is to assign degrees of belief to propositions of interest.  
 In particular, the classical logic approach to belief representation considers a set B of logical 
formulas φ, ψ,... forming a set of explicit beliefs of an agent, from which it is possible to infer 
implicit beliefs. The set cons(B) of consequences of B is the set of "rationally" accepted beliefs 
also called a belief set K (Gärdenfors, 1988).  
 In numerical representations of belief, propositions are modeled by subsets of a (here, finite) 
set S. Elements of S are called "states". They encode descriptions of possible situations, states of 
affairs, etc. Subsets A, B, C, of states are called events. The finiteness assumption is here made 
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for the sake of simplicity, and is natural when the description of situations is achieved by means 
of a formal language such as propositional logic. Then, S is the set of interpretations of the 
language. It comes down to understanding propositions as ultimately true or false. Here we 
consider a syntax-free environment, from a logical point of view. In particular, a proposition is 
understood as the subset of states where it is true, so events coincide with propositions. In order 
to relate belief sets and numerical plausible reasoning, we identify events to sets A = [φ] of 
models of logical formulas φ and use the event notation, A, B, C. A∩B, A∪B and ¬A denote the 
intersection of A and B, the union of A and B and the complementation of A, respectively. 
 The question is now how to model an accepted belief in the sense of a probability measure P. 
The most natural view is to set a threshold α and assume that an agent accepts a proposition A 
whenever P(A) > α ; the book by Swain (1970) contains a precise account of variants of this 
proposal. Obviously one must choose α = 1/2, because a minimal condition for A to be believed 
is that P(A) > P(¬A). Consider the set AP = {A, P(A) > α} of accepted beliefs. First it is easy to 
see that in general, this set is not deductively closed, since whatever the choice of α in [0.5, 1), 
one may have A ∈ AP, B ∈ AP, but their conjunction A∩B ∉ AP, because more often than not, 
P(A∩B) < α. So the set AP is generally not a closed belief set K. Even worse, AP is sometimes 
logically inconsistent. This critique of conjunctive closure for accepted beliefs was made a long 
time ago by Kyburg (1961, 1970). Scholars in probability theory, far from considering these facts 
as invalidating the probabilistic approach to plausible reasoning, have on the contrary questioned 
the relevance of logic-based approaches on this basis. The main objection is captured by the 
lottery paradox, that was proposed as a counterexample to the use of classical deduction on 
accepted beliefs and to non-monotonic reasoning at large (Kyburg, 1988; Poole, 1991).  
 Suppose n > 1,000,000 lottery tickets are sold and there is one winner ticket. So the probability 
P(player i loses) > 0.99 999. That is, one should believe that player i loses and AP contains the 
propositions "player i loses" for all i. If beliefs are deductively closed, the agent should conclude 
that all players lose. However, since there is one winning ticket, Prob(all players lose) = 0, for 
any value of n. That is, the proposition "one player wins" lies in AP. Hence, AP is inconsistent, and 
accepted beliefs cannot match with high probability events, whatever "high" means. Deductive 
reasoning with accepted beliefs looks counterintuitive. This example seems to kill any attempt to 
exploit logical approaches in the computation of accepted beliefs. Yet, our claim in this paper is 
that, contrary to what the lottery paradox would suggest, there does exist some consistency 
between uncertainty theories and symbolic approaches to plausible reasoning. However,  
1) Requesting that the set of accepted beliefs in the sense of some uncertainty theory be always 

deductively closed severely restricts the choice of such an uncertainty theory.  
2) There exists some subset of probability measures for which the set AP = {A, P(A) > 0.5} of 

accepted beliefs is deductively closed. But they are probability measures for which some 
states of the world appear to be much more probable than others, in any context. Examples 
like the lottery paradox fall out of this range as they presuppose a uniformly distributed 
probability. 

 Rather than addressing the problem for probability theory setting only, we first try to cast it in a 
general ordinal setting, where the background knowledge of the agent is represented by a general 
relation between events - that we call a "confidence relation", having minimal rationality 
properties. This framework is useful to isolate uncertainty theories that are consistent with 
deductive closure. 
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2.2 Confidence Relations 
The knowledge of an agent about the normal state of the world is supposed to be modeled by a 
relation ≥L among events that are subsets of a finite set S. Stating A ≥L B means "the agent has at 
least as much confidence in event A as in event B", and L stands for "likelihood". The pair (2S, ≥L) 
is called a comparative belief structure and relation ≥L is called a confidence relation, under 
conditions to be prescribed below. From this confidence relation, other associated relations are 
defined in the usual way (Roubens & Vincke, 1985) : 
 
 • A >L B if and only if (A ≥L B) and not (B ≥L A) (strict preference); 
  • A #L B if and only if neither (A ≥L B) nor (B ≥L A) (incomparability); 
  • A ≡L B if and only if (A ≥L B) and (B ≥L A) (indifference). 
 
 Let us set the minimal properties required for a confidence relation. First, it is hard to imagine a 
situation where the agent's confidence in A is strictly higher than his confidence in B, and this 
agent's confidence in B is also strictly higher than his confidence in C, while A is not more likely 
than C. The strict part >L of a confidence relation ≥L is thus naturally assumed to be transitive, i.e. 
the relation ≥L is supposed to be quasi-transitive :  
 
Quasi-transitivity (QT) : A >L B and B >L C imply A >L C  
 
 But the transitivity of the indifference relation it induces is not required. For instance, 
indifference between two events may be due to imperfect discernment about confidence levels 
and cannot always be chained. The incomparability relation is of course not transitive.  
 Moreover, if A ⊆ B, then A implies B. So it should be that A and B are comparable, and that the 
agent's confidence in A cannot be strictly greater than in B. It reads: 
 
Monotonicity with respect to inclusion (MI): if A ⊆ B then B ≥L A. 
 
 This property of monotonicity forbids situations where a proposition would be more believed 
than another it semantically entails. But it is not sufficient to ensure that the strict part of ≥L is 
coherent with classical deduction. That is why the orderly axiom of Halpern (1997) must be 
added.  
 
Orderly axiom (O) : if A ⊆ A', B' ⊆ B, and A >L B, then A' >L B'  
 
 It means that if A is more likely than B, then if A' is a consequence of A while B' implies B, it 
should be that A' is more likely than B'1. It should be emphasized that axiom O does not imply 
MI, because due to incompleteness of ≥L it may occur that A ⊂ B and A #L B. Symmetrically, MI 
does not imply O because A >L C does not follow from A >L B and B ≥L C. For instance, if the 
confidence relation ≥L is quasi-transitive but not transitive, we may have that A >L B, B ≥L C and 
A #L C. The reader will find in Appendix 1 a detailed study on the relationships between axioms 
O and MI, with respect to the assumption of quasi-transitivity, full transitivity and completeness. 
Hence the following definition, which uses minimal requirements for a confidence relation : 

                                                 
1 Axiom O applied to ≥L also ensures the same sound behaviour of the strict confidence relation. Indeed, if ≥L satisfies 
O, it is easy to show that relation >L also satisfies O. 
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Definition 1. A confidence relation is a relation on 2S, satisfying O, QT, and MI. 
  

 The following properties of a confidence relation are obvious consequences of this definition :  
 

Reflexivity of ≥L and thus of ≡L (R) :  A ≥L A (and thus A ≡L A) hold. 
 
Irreflexivity of >L (IR): A >L A does not hold (A >L A makes no sense). 
 

 Partial belief is often represented by numerical functions such as probability measures, which 
map events to a numerical scale. 
 

Definition 2. A confidence function f is a [0,1]-valued set-function such that f(S) = 1, f(∅) 
= 0 and, if A ⊆ B, then f(B) ≤  f(A). 
 

 A probability measure is a confidence function2. A confidence function f obviously defines a 
confidence relation ≥f  as follows : 
 

A ≥f  B if and only if f(A) ≥ f(B). 
 

It is easy to check that ≥f satisfies MI, O, QT, and the two following ones: 
 

 Transitivity (T): If A ≥f B, B ≥f  C then A ≥f  C, for all A, B, C; 
 
 Completeness (CL): either A ≥f  B or B ≥f  A for all A, B; 
 

 The converse also holds : it is easy to build a confidence function by mapping a complete and 
transitive confidence preorder to the unit interval. A transitive confidence relation will be called a 
confidence preorder - it is reflexive and transitive, but may be partial. It should be noticed that 
axiom O can be recovered from MI if full transitivity of ≥L is assumed (see Appendix 1). Axioms 
O and MI are actually equivalent when the confidence preorder is also complete. A complete 
confidence preorder is thus a complete preorder on events satisfying MI. In our more general 
setting, these properties are not required a priori. For instance, the completeness of ≥L, which is 
equivalent to the emptiness of the incomparability relation, is not compulsory : indeed, when an 
agent describes uncertain knowledge, only part of the relation may be available. In this paper, we 
leave room for such incomplete relations and we interpret the incomparability A #L  B as a lack of 
knowledge regarding the relative likelihood of events A and B.  

2.3 Noticeable Confidence Relations  
Some well-known confidence relations satisfy a stability property with respect to adding or 
deleting elements common to any two sets (Fishburn, 1986): 
 

                                                 
2 In the literature, confidence functions are called capacities (this name was created in the context of electrical 
engineering by the mathematician Choquet (1953) or fuzzy measures (coined by Sugeno (1974) in connection with 
fuzzy set theory). 
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Definition 3 (preadditivity). Let A, B and C be any three events such that A ∩ (B ∪ C) = 
∅. A confidence relation ≥L is preadditive whenever A ∪ B ≥L A ∪ C if and only if B ≥L C. 
 

 The idea is that set A should not affect the relative likelihood of A∪ B and A∪ C since it is 
common to both events. Denoting ≥LT the dual of ≥L, such that A ≥L T B if and only if ¬B ≥L ¬A, it 
can be checked that preadditive relations are self-dual, i.e., A ≥L B if and only if ¬B ≥L ¬A. For 
instance, comparative probabilities (Fishburn, 1986) are preadditive confidence preorders. 
Probability functions induce such type of relations, but not all such relations can be represented 
by probability functions (Kraft et al, 1959).  
 Lewis (1973) introduced another confidence relation in the setting of a modal logic of 
counterfactuals (it was independently rediscovered by Dubois, 1986) : the possibility relation.  
 

Definition 4. A set-relation ≥Π is a possibility relation if and only if it is complete, 
transitive, non trivial (S >Π ∅) and satisfies the following axioms  
 
 •∀ A ⊆ S, A ≥Π ∅;  
 
 •∀A, B, C, B ≥Π C implies A ∪ B ≥Π A ∪ C (unrestricted union stability). 
 

 B ≥Π C reads, "B is at least as possible (that is, plausible for the agent) as C", for reasons that 
will become clear below. Such relations are neither preadditive nor self-dual. The dual set-
relation defined by A ≥N B if and only if ¬B ≥Π ¬A is called a necessity relation. It can be 
independently defined as follows:  
 

Definition 5. A set-relation ≥Ν is a necessity relation if and only if it is complete, transitive, 
non trivial (S >N ∅) and satisfies the following axioms: 
 
•∀ A ⊆ S, A ≥N ∅;   
 
•∀A, B, C, B ≥N C implies A ∩ B ≥N  A ∩ C (unrestricted intersection stability). 
 

 B ≥N C reads, "B is at least as necessary (that is, certain for the agent) as C". Besides, the less 
plausible is ¬A, the more certain is A, so that A >N B means that A is more certain than B. The 
duality between possibility and necessity relations is a translation of the duality between 
possibility and necessity modalities in modal logic (Fariñas del Cerro & Herzig, 1991).  
Possibility and necessity relations are fully characterized by a complete preorder ≥π of states in S, 
defined by: 
 

s ≥π s'  if and only if  {s} ≥Π {s'}  if and only if  S \{s’} ≥Ν  S \ {s} 
 

 The relation s ≥π s' means that s' is at least as plausible as s. Event A is plausible to the extent to 
which its most normal realization is plausible : the original possibility (and thus necessity) 
relations for non empty sets can be recovered from (S, ≥π) as follows: 
 

∀ A ≠ ∅ , ∀ B ≠ ∅ , A ≥Π B if and only if ∃ s ∈ A, ∀ s ∈ B, s ≥π s' 
∀ A ≠ ∅ , ∀ B ≠ ∅ , A ≥Ν B if and only if ∃ s ∉  B, ∀ s ∉ A, s ≥π s' 
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 The exact and only set-functions that represent possibility relations are possibility measures 
(Dubois, 1986). A possibility measure Π is a confidence function satisfying Π(A∪ B) = 
max(Π(A), Π(B)) (Zadeh, 1978; Dubois & Prade, 1998a). Necessity measures are defined dually 
from possibility measures as N(A) = 1 − Π(¬A). They are the exact and only confidence 
functions that represent necessity orderings. 

2.4 Accepted Beliefs and Their Revision in the Confidence Relation Setting 
A confidence relation ≥L is supposed to exist, that represents the body of generic knowledge of an 
agent: it describes what this agent believes more or less strongly to be usually true for the 
problem under consideration. The weakest and most natural definition of what it means for a 
proposition A to be a belief for an agent in the sense of a confidence relation ≥L is that the agent is 
more confident in A than in its negation (modeled by the complement ¬A of the set A): 
 

Definition 6. Let ≥L be a confidence relation. A is a belief for ≥L if and only A >L ¬A  
 

 An accepted belief should first be a belief. In Subsection 2.1, a proposition is tentatively 
accepted if its probability is high enough. As pointed out earlier, the smallest acceptance 
threshold is 0.5, and P(A) > 0.5  is equivalent to P(A) > P(¬A). The latter condition makes sense 
in the ordinal setting and reads A >L ¬A. Another definition of beliefs would use some prescribed 
proposition T >L ¬T as a threshold and consider as a belief any other proposition A ≥L T. However 
A >L ¬A should also hold for such propositions, because there would be no reason to believe A 
rather than its negation otherwise. Ours is the weakest notion of belief one may think of. And the 
results found in this paper also apply to alternative proposals. 
 

Definition 7 : Let ≥L be a confidence relation on S. The set of beliefs according to ≥L, 
denoted AL, is defined by: AL = {A: A >L ¬A }. 
 

  It must be clear that the confidence relation ≥L and its belief set AL are not equivalent notions. 
The belief set is always deduced from the confidence relation, but neither the original confidence 
relation nor even its strict part can be re-built from this belief set alone. By assumption, the 
relation ≥L represents a body of generic knowledge. In contrast, AL represents the agent's beliefs 
about the current situation.  
An accepted belief is a proposition an agent is ready to consider as being true, that is, the agent is 
ready to infer classically from it. This view of acceptance is shared by philosophers like Cohen 
(1989):  

"...to accept that p is to have or adopt a policy of deeming, positing or postulating that p − 
that is, of going along with this proposition… as a premiss in some or all contexts for one's 
own or others’ proofs, argumentations, deliberations etc." 
 

 while "belief that p … is a disposition to feel it true that p".  
 Confidence relations that model acceptance thus model a very strong kind of belief, one such 
that an agent is ready to take for granted in the course of deliberations. In order to remain 
compatible with logic-based representations, a set of accepted beliefs AL must thus be deductively 
closed. It requires that any consequence of an accepted belief be an accepted belief and that the 
conjunction of two accepted beliefs be an accepted belief as well (Dubois & Prade, 1995b). 
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 Insofar as accepted propositions are built from a special kind of confidence relation, it leads to 
the following conditions that such confidence relations should satisfy : 
 

Entailment stability (ES) : if A ⊆ B and A >L ¬A then B >L ¬B  
 
Conjunction stability (CS): if A >L ¬A and B >L ¬B then A ∩ B >L ¬A ∪ ¬B. 
 

 Axiom CS is clearly the most controversial one (Kyburg, 1970), but is nevertheless adopted by 
many scholars, like Hempel, Hintikka, Lehrer, Levi, etc. (see Swain , 1970, for a full 
bibliography and discussions). Axioms ES and CS ensure that a belief set AL never contains ∅, 
hence is always logically consistent, by construction (indeed, if the conjunction of all accepted 
belief is ∅, then we would have, under CS, ∅ >L S, which contradicts MI).  
 Property ES holds for any confidence relation due to the orderly property O. But the deductive 
closure of the set of accepted beliefs is not guaranteed for any confidence relation. In the 
probabilistic case, CS is generally not satisfied and AP may be a logically inconsistent knowledge 
base: probabilistic beliefs are generally not strong enough to be used in deductive inference 
processes but, as we shall see later, some probability functions may model beliefs strong enough 
to be accepted. 
 While the set of accepted beliefs according to a probability relation is not closed under 
conjunction as already pointed out, the set of beliefs induced by a possibility or a necessity 
relation is a deductively closed set. Namely assume that A >Π ¬A, and B >Π ¬B. Using the 
definitions of section 2.3, it is clear that there exists an element sA ∈ A, such that sA ≥π s, ∀ s ∈ A. 
Moreover, sA >π s, ∀ s ∉ A. Hence sA ≥π s, ∀ s ∈ S. So, since B >Π ¬B, sA ∈ B, and sA >π s, ∀ s ∉ 
B. Hence, sA ∈ A∩B, and sA >π s, ∀ s ∉ A, s ∉ B. Hence A∩B >Π¬(A∪B). 
 This result is also easily guessed by referring to Gärdenfors theory of revision. Indeed, the 
AGM belief revision theory assumes that a belief set is deductively closed. A number of axioms 
are proposed which a belief revision operator should satisfy. These axioms lead to the underlying 
existence of a confidence relation called an epistemic entrenchment relation. It was pointed out 
(Dubois & Prade, 1991)3 that this underlying epistemic entrenchment relation is a necessity 
relation ≥N  such that S >N  A, ∀ A  ≠ ∅, i.e. no contingent proposition is as sure as the sure event. 
The belief set is thus K = {A, A >N ¬A}. Note that A >L ¬A is equivalent to the dual A >LT ¬A. 
Also note that in the case of necessity relations, A >N ¬A is equivalent to A >N ∅, since it cannot 
be that A >N ∅ and ¬A >N

 ∅ for any event A at the same time. So, K = {A, A >Π ¬A}. This not 
only shows that the set of beliefs induced by a possibility relation is deductively closed, but also 
that our definition of accepted belief also generalizes the definition of belief that is implicit in 
Gärdenfors theory of revision.  
 Now, due to incomplete knowledge, an accepted belief in AL is only tentatively accepted and 
may be questioned by the arrival of new information: the arrival of observations made by the 
agent leads to a revision of the set of accepted beliefs. Consider that the information received by 
the agent about the current situation summarized under the form of a proposition C.  
 In belief revision theory, rationality axioms specify how a revision operator should behave, 
especially when the initial belief set K is contradictory with the input information C (Gärdenfors, 
1988 ; see also Section 4.2). In this paper, rather than following this axiomatic path, we shall use 
the notion of conditioning for the integration of new evidence pertaining to the current situation. 
                                                 
3 Grove (1988) has also described belief revision operations in terms of a relation dual to an epistemic entrenchment 
relation, hence a possibility relation. 
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And we shall require that the set of accepted beliefs after conditioning should remain a belief set. 
A new belief set, AL(C) can then be defined from C and ≥L. According to our requirements, AL(C) 
must be deductively closed.  
 We take it for granted that conditioning a confidence relation on a set C representing a piece of 
evidence about the current situation comes down to restricting the confidence relation to subsets 
of C. This is the idea of focusing on a reference class, which was suggested earlier as one 
interpretation of conditioning (Dubois, Moral & Prade, 1998). This is the natural counterpart to 
Bayesian conditioning for confidence relations. Indeed, in numerical uncertainty theories, the 
axioms of conditioning have been studied using the following equation (Cox, 1961): f(A|C) is a 
solution to the equality f(A∩C) = f(A|C) ∗ f(C) where ∗  is continuous and strictly monotonic in 
both places. Cox and followers (e.g. Paris, 1994) prove that the only possible solution is ∗ = 
product - see (Halpern, 1999) for a discussion. Hence f(A|C) ≥ f(¬A|C) if and only if f(A∩C) 
≥ f(A∩C). 4  
   

Definition 8: Let ≥L be a confidence relation. The confidence in A is said to be at least as 
high as the confidence in B in the context C ⊆ S if and only if A∩ C ≥L B ∩ C. The induced 
set of beliefs in context C is : AL(C) = {A : A ∩ C >L ¬A ∩ C}. 
 

 Clearly, AL = AL(S). Going from AL to AL(C) is a natural way of revising a set of currently held 
beliefs AL, on the basis of a confidence relation and a new information item C about the current 
situation. Note that revising the confidence relation itself is another problem not dealt with here. 
In this paper we only consider the change of current beliefs about a particular situation when prior 
generic knowledge is encoded by the confidence relation, which only results from focusing the 
generic knowledge on the proper subclass of states pertaining to available observations.  
 Now, the requirement that sets of accepted beliefs AL(C) be deductively closed means that, if A 
is believed in context C and B is entailed by A, then B should be believed in context C 
(Conditional entailment stability) and that, moreover, if A and B are both believed in context C, 
then, so should be the conjunction A ∩ B (Conditional Conjunctive Stability). These properties 
enforce conditional versions of the ES and CS conditions for the confidence relations (Dubois & 
Prade, 1995a): 
 

Conditional Entailment Stability (CES):  
  If A ⊆ B and C ∩ A >L C ∩¬A then C ∩ B >L C ∩ ¬B; 
 
Conditional Conjunction Stability (CCS) :  
  If C ∩ A >L C ∩ ¬A and C ∩ B >L C ∩ ¬B then C ∩ A ∩B >L C ∩ (¬A ∪ ¬B). 
 

 These are necessary and sufficient conditions for getting a deductively closed set of accepted 
beliefs from a confidence relation. Notice that CES and CCS reduce to the ES and CS rules when 
C = S. These two properties will be the basis of our axiomatization of acceptance. Properties 

                                                 
4 Our approach is in accordance with Bayes conditioning when f is a probability, and using Dempster rule of 
conditioning (Shafer, 1976) when f is a plausibility function or a possibility measure. It is preserved in qualitative 
possibility theory, which remains in the spirit of Cox's conditioning equation (Dubois and Prade, 1998), although 
conditional possibility derives from equality f(A∩C) = f(A|C) ∗ f(C) with ∗ = minimum. However, this equation does 
not hold for the dual conditional functions of the form fT(A|B) = 1 − f(¬A|B), when f is a plausibility function or a 
possibility measure. 
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described in the previous section, namely MI, O and QT are also assumed but they concern the 
underlying confidence relation only, independently of the notion of accepted beliefs and their 
dynamics. However, notice that is not necessary to explicitly require CES for the confidence 
relation, since axiom O clearly implies CES. The latter is indeed axiom O restricted to pairs of 
disjoint subsets (A, B) and (A', B') such that A ⊆ A', B' ⊆ B and A∪B = A'∪B'. Alternatively, from 
axiom O, A > B ∪ C implies A∪C > B, which trivially implies CES.  
 The last axiom we need is obviously related to the Success Postulate of belief revision theory : 
when an input information arrives in the form of a proposition C, the revised belief set K*C 
contains C. In the framework of confidence relations, it makes sense to adopt this assumption, 
except when the context is contradictory (i.e. C ≠ ∅). This is because the properties of confidence 
relations enforce AL(∅) = ∅. Contrary to classical logic, for which contradiction entails anything, 
we consider that, in the presence of contradictory information on the current situation, an agent 
cannot entertain beliefs. This is in the tradition of probability theory where conditioning on the 
empty set is not allowed. However, insofar as the agent considers that the information C on the 
current situation is consistent and reliable, it is natural that C becomes an accepted belief : in the 
context of confidence relations, the success postulate writes : 
 

Success postulate (SUC)  : ∀ C ≠ ∅, C ∈ AL(C).  
   

 This postulate implies that Definition 8 makes sense for confidence relations for which C >L ∅ 
holds whenever C ≠ ∅. At the formal level, it is possible to show that C ∈ AL(C) only if C >L ∅. 
Indeed SUC implies that AL(C) is not empty when C≠ ∅. Hence, A ∩ C >L ¬A ∩ C for some A. 
Of course A ≠ ∅, and by O, it follows that C >L ∅. Hence, AL(C) ≠ ∅ if and only if C >L ∅ holds. 
A confidence relation such that C >L ∅ holds whenever C ≠ ∅ is called non-dogmatic.  
 

Non-dogmatism : ∀ C ≠ ∅, C >L ∅. 
 

  So, to obey the success postulate, it is necessary, and sufficient, to assume non-dogmatism for 
the confidence relation. For possibility relations, this condition means that no contingent 
proposition is impossible. Non-dogmatism is never verified for necessity relations since C >N ∅ 
implies ∅ ≥N ¬C. However if a confidence relation is non-dogmatic, its dual is such that S >LT C 
holds whenever C ≠ S. This is the condition requested by Gärdenfors for epistemic entrenchment. 
Non-dogmatism is natural in the framework of Gärdenfors' belief revision theory : it ensures that 
any non-tautological sentence may disappear upon a revision process. This restriction is not really 
a big issue since it is only a matter of choice between a confidence relation and its dual relation, 
which both represent the same information. 
We can now define a formal ordinal framework that captures the concept of acceptance, that is, 
confidence relations that induce accepted beliefs: 
 

Definition 9. An acceptance relation ≥L on 2S is a non-dogmatic confidence relation that 
satisfies the CCS property. 
 

 The set of accepted beliefs according to an acceptance relation is then a consistent non-empty 
deductively closed set of propositions in any context. An acceptance relation is a priori not 
requested to be transitive nor complete. Transitive acceptance relations are called acceptance 
preorders.  
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2.5 Strict  Acceptance Relations 
It is obvious that the properties that make the set of accepted beliefs (according to a confidence 
relation) a consistent non-empty deductively closed set only involve the strict part of the 
confidence relation, moreover restricted to disjoint subsets. The remaining part of the confidence 
relation has no influence on the set of accepted beliefs. The strict part of an acceptance relation is 
called a strict acceptance relation. It is irreflexive, transitive, non-dogmatic, and satisfies O and 
CCS. When ≥L is complete and transitive, >L is necessarily irreflexive and transitive. More 
generally : 
 

Definition 10: A strict acceptance relation (SAR) is an irreflexive, transitive and non-
dogmatic relation >L on 2S that satisfies properties O and CCS. 

 
 When only the strict part of the relation is available, there is a simple way of constructing a 
transitive acceptance relation from a relation between events verifying the properties of a SAR, 
by augmenting it using set-inclusion:  

 
Proposition 1. If >L is irreflexive, transitive, non-dogmatic and satisfies O and CCS then it is 
the strict part of an acceptance relation ≥L defined by A ≥L B if and only if A >L B or B ⊆ A. 
Relation ≥L is a transitive acceptance relation such that (A ≡L B if and only if A = B). 
 

Proof : Suppose that >L is irreflexive and transitive and satisfies O and N. The relation ≥L satisfies 
MI by definition and its strict part is >L. It obviously satisfies CCS. It is transitive since :  
if A >L B and B >L C, then A >L C and thus A ≥L C;   
 if A >L B and C ⊆ B, then, by O, A >L C and thus A ≥L C;  
if B ⊆ A and B >L C, by O, A >L C and thus A ≥L C;  
 if B ⊆ A and C ⊆ B, C ⊆ A and thus A ≥L C. 
Moreover, A = B implies A ≡L B. Conversely, A ≡L B means (A >L B or B ⊆ A) and (B >L A or A ⊆ 
B). Since A ⊆ B implies that not(A > B), we have : B ⊆ A and A ⊆ B. 
Strict acceptance relations basically express negligibility. Indeed, as pointed out by Dubois and 
Prade (1995b), and  Friedman and Halpern (1996), the following basic result yields yet another 
form of the CCS axiom :  
 

Theorem 1: For any relation >L that satisfies O, CCS is equivalent to the following 
negligibility property: ∀ A, B, C three disjoint events, 
 

if A ∪ B >L C and A ∪ C >L B, then A >L B ∪ C  (NEG) 
 

Proof : First, notice that CCS is equivalent to postulating that for disjoint subsets A, B, C, D:  
if A ∪ B >L C ∪ D and A ∪ C >L B ∪ D then A >L B ∪ C ∪ D     (2) 
Indeed, in CCS, let B’ = A ∩ C ∩¬B, C’ = ¬A ∩C ∩ B, A’ = A∩B ∩ C, D’ = C ∩ ¬A ∩ ¬B. But 
C ∩ A = A’ ∪ B’, C∩ ¬A = C’ ∪ D’, and C ∩B = A’ ∪ C’ and C ∩ ¬B = B’ ∪ D’: Then CCS is 
another way of writing (2). Now, CCS implies NEG, letting D = ∅ in (2). 
Conversely, let us show that O and negligibility imply CCS: indeed, from A ∪ C >L B ∪ D and O, 
we get A ∪ C ∪ D >L B. Moreover, both A ∪ C ∪ D >L B and A ∪ B >L C ∪ D are of the form A 
∪ X >L B and A ∪ B >L X with A, B, X disjoint. So, by negligibility, A >L B ∪ C ∪D, which is (2).  
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 The negligibility property can be explained as follows : for three disjoint events A, B, C, A >L C 
and A >L B means that each of B and C is less plausible than A. However, whatever their 
respective plausibility levels, their disjunction is always less plausible than A since, from O, it 
follows A∪ B >L C as well as A∪ C >L B, and, by NEG, A >L B∪ C. So A >L C means that the 
confidence in C is negligible in front of the confidence in A. If >L derives from a probability 
function, the negligibility property certainly does not hold in general. However this property is 
valid when >L derives from a possibility relation. This idea of negligibility between the likelihood 
levels of events was put forward by Lehmann (1996). From a probabilistic perspective property 
NEG is debatable if not very strange. However, it is absolutely needed if accepted beliefs are to 
form a deductively closed set. It also suggests that for A to be accepted and reasoned with, there 
must be a big likelihood gap between A and its negation. From this point of view, property NEG 
is on the contrary acknowledging the intuitive idea that, for a proposition to be accepted, it must 
be firmly entrenched. 
 So-called qualitative relations in the sense of Halpern (1997) satisfy NEG. Recall that a relation 
> on 2S is called "qualitative" when  
 

∀A,B,C: If A ∪ B > C and A∪ C > B, then A > B∪ C   (Qual) 
 

 Qual is much stronger than NEG since it applies to any sets A,B,C (not necessarily disjoint). 
Any irreflexive qualitative orderly relation is necessarily transitive (Halpern, 1997) and is thus a 
SAR. We will show in the next section that such SAR's play a particular role. In the context of 
complete preorderings, requiring Qual precisely yields possibility relations, since  
 

Proposition 2. For complete and transitive confidence relations, property Qual is 
equivalent to unrestricted union stability (the characteristic axiom of possibility relations).  

 
Proof : Possibility relations are complete and transitive confidence relations. Using their 
representation by possibility measures, possibility relations satisfy Qual because the property 
max(a, b) > c and max(a, c) > b implies a > max(b, c) trivially holds. Conversely if Qual holds, 
assume A∪B > A∪C. Then by O, A ∪ B > C and A ∪ B > A. Applying Qual to the latter implies B 
> A. By O, it implies B ∪ C > A. Applying Qual again to the latter and A ∪ B > C yields B > C as 
a consequence of A∪B > A∪C, and by contraposition, it gives the characteristic axiom of 
possibility relations. 
 
 Several useful examples of acceptance relations can be given. They are used in the sequel. 
 A strict acceptance relation can be obtained considering a family F of possibility relations, and 
letting A >F B if and only if A >Π B for all ≥Π in F. Like all the SAR's, >F is transitive but, 
contrary to the strict part of a possibility relation, this relation is not negatively transitive. The 
negative transitivity of a relation (If A >L B, then C >L B or A >L C) is equivalent, by 
contraposition to the transitivity of the negation of this relation.  
 Different acceptance relations can share the same SAR. For instance, the previous relation >F 
can be the strict part of different acceptance relations, e.g. the acceptance relation defined by 
letting A ≥F B if and only if not(A >F B), which is complete but not transitive; and also the 
acceptance relation defined by letting A ≥F B if and only if A >Π B for all ≥Π in F or A ≡Π B for all 
≥Π in F, which is not complete but is transitive.  
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 Some acceptance relations are preadditive. For instance, let Π be a possibility function and 
consider the strict ordering >ΠL and the relation ≥ΠL called possibilistic likelihood, and introduced 
by Dubois et al. (1997) : 
 

A >ΠL B if and only if A ∩ ¬B >Π ¬A ∩ B if and only if A ∪ ¬B >N B ∪ ¬A;  
 

A ≥ΠL B if and only if  not(B >ΠL A). 
 

 >ΠL is a self-dual SAR and ≥ΠL is an acceptance relation. >ΠL refines >Π (A >Π B implies A >ΠL 
B) comparing only the non-common part of events : if A and B are disjoint, A >ΠL B is identical to 
A >Π B, and then AΠ(C) = AΠL(C). But ≥ΠL is generally not transitive : Π(A ∩ ¬B) = Π(¬A ∩B) 
and Π(B ∩ ¬C) = Π(¬B ∩ C) do not imply Π(A ∩ ¬C) = Π(¬A ∩ C). The same construction 
works with a family of possibility relations. Notice that the SAR >ΠL does not obey axiom Qual. 
Consider for instance S = {s1, s2} and a possibility measure such that {s1} >Π {s2} >Π ∅. It holds 
that {s1, s2} >ΠL {s1} >ΠL {s2} >ΠL ∅. So : {s1} ∪ {s1} >ΠL {s2} and {s1} ∪ {s2} >Π L {s1} but {s1} >ΠL 
{s1} ∪ {s2} does not hold. However, the relative position of {s1, s2} w.r.t. {s1} (higher or at the 
same rank) is immaterial for characterizing accepted beliefs. 

2.6 Acceptance Relations and Comparative Probabilit ies 
Comparative probabilities are preadditive and complete confidence preorders. They are more 
general than confidence relations induced by probabilities. Probability measures generally do not 
induce acceptance relations. It is thus interesting to characterize comparative probabilities 
modeling acceptance. For a preaddidive and complete confidence preorder ≥L, it holds, for any A, 
B, C such that A∩(B∪C) = ∅, that A ∪  B ≡L A ∪ C iff B ≡L C, and A ∪  B >L A ∪  C iff B >L C. 
In the context of transitive acceptance relations, it turns out that there is a strong incompatibility 
between the existence of equally plausible disjoint events and preadditivity. Indeed, such 
acceptance relations have the following property : 
 

Lemma 1. Let A, B and C be three disjoint events. If ≥L is a complete and transitive 
acceptance relation, then A ≡L C >L B implies A ≡L  A ∪ B ≡L C ≡L C ∪ B >L B. 
 

Proof : C >L B implies, by O, C ∪ A >L B. Moreover, C ≥L A also implies A ∪ B ≥L C. And A ∪ B 
>L C is impossible (otherwise, by NEG, A >L C ∪ B and thus A >L C by O). So, A ∪ B ≡L C, i.e. 
by transitivity A ∪ B ≡L A. 
 
 Lemma 1 makes it clear that when A >L B, the plausibility of B is negligible when compared to 
the one of A since A ≡L  A ∪ B. However, under transitivity, preadditivity will severely constrain 
the possibility of expressing negligibility between events. Indeed, B >L ∅ holds for acceptance 
relations if B ≠ ∅. So A∪B >L A is enforced by preadditivity for any two disjoints nonempty sets 
A, and B. It contradicts the property A ≡L  A ∪ B enforced by the presence of another disjoint set 
C ≡L A. More formally : 
 

Lemma 2. If ≥L is a preadditive, complete and transitive acceptance relation, then for any 
three disjoint events A, B and C : C ≡L A >L B implies B = ∅. 
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Proof : Clearly, A ≠ ∅. C ≡L  A > B implies Α Β ≡ L  Α ∪ B by Lemma 1. By preadditivity, Β ≡L 
 ∅ . But non-dogmatism enforces B = ∅.  
 
 Hence as soon as equivalence is allowed between disjoint events, acceptance relations that are 
preadditive complete preorderings have to be very particular : no state can be less plausible than 
two equivalent states, except if it is impossible. In summary, assuming transitivity, preadditivity is 
little compatible with negligibility. The conflict between these two properties makes deductive 
closure hard to reconcile with the notion of partial belief graded on a numerical scale. Clearly the 
following result follows for comparative probabilities : 
 

Theorem 2. If an acceptance relation ≥L is a comparative probability on S and S has more 
than two elements, then, there is a permutation of the elements in S, such that s1 >L s2 >L … 
>L sn−1 ≥L sn. 
 

Proof: From the above results, if si >L sk  and sj >L sk we have that either si >L sj or sj >L si. Hence 
the equally plausible states are the least plausible ones. Suppose now that there are more that one 
least plausible states. Assume {si, sj} ≡ L {si}; then ∅ ≡L {si}, which is impossible since the relation 
is not dogmatic. Hence {si, sj} >L {si}. Hence, in the set of least plausible states, events are strictly 
ordered in agreement with set-inclusion. Suppose there are more than two equally plausible states 
si, sj, sk. Then preadditivity implies {si, sj }>L {sk} and {si, sk} >L {sj}, which due to (NEG) implies 
{si} >L {sk, sj}, and this is impossible since by assumption states si, sj, sk. are equally plausible. 
Hence there cannot be more than two equally plausible states, and these are the least plausible 
ones, if any. 
 
 Note that the possibilistic likelihood relation ≥ΠL of Section 2.5 is a preadditive acceptance 
relation, but it is not transitive, so it allows for equally plausible states and escapes Theorem 2. 
  The problem of finding probability measures that are acceptance functions can be easily solved 
on this basis. Necessarily the states are totally ordered (but for the two least probable ones). 
Moreover such comparative probabilities coincide with possibility relations on disjoint events A 
and B: P(A) > P(B) if and only if Π(A) > Π(B), that is maxi∈A pi > maxi∈B pi. A necessary and 
sufficient condition for this probability-possibility compatibility is that ∀ A ∃s ∈ A such that 
P({s}) > P(A \ {s}). This leads to very special probability measures such that the probability of a 
state is much bigger than the probability of the next probable state (Snow, 1999; Benferhat et al., 
1999a) - they are called "big-stepped" probabilities. They are lexicographic probabilities. It is 
clear that any comparative probability that is an acceptance function can be represented by any 
big-stepped probability P such that : 
 

pi = P({si}): p1 >... > pn−1 ≥ pn > 0.5 
 

∀i < n − 1, pi > Σ j = i+1, … n  pi. 
 

Example : S has four elements and consider s1/ 0.6, s2/0.3, s3/0.06/, s4/0.03, s5/0.01. 

                                                 
5 The weak inequality pn−1 ≥ pn reflects the corresponding result in Theorem 2. In fact, on a 2-element set, equal 
probabilities are compatible with acceptance and the corresponding belief set only contain a tautology (S). 
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3. Representing Strict Acceptance Relations by Possibil ity Relations 

In the examples of Section 2.5, it was shown that a family of possibility relations generates an 
acceptance relation. In this section, we prove the converse, namely that, for any acceptance 
relation, there exists a family of possibility relations, such that the set of accepted beliefs derived 
from the acceptance relation is the intersection of the sets of accepted beliefs derived from the 
possibility relations in the family. This result clearly establishes that the notion of acceptance is 
basically compatible with possibility theory and virtually nothing else, if we except very special 
probability measures met in the previous section, whose behavior makes them very similar to 
possibility measures.  

3.1 The Cautious Substitute to a Strict  Acceptance Relation 
First, let ≥L be an acceptance relation on the subsets of S, and let AL(C) be the sets of accepted 
beliefs in context C. Clearly, AL(C) does not depend on the entire acceptance relation, nor on its 
entire strict part, but only on the restriction of its strict part to disjoint events. This restriction is 
called the disjoint graph.  
 

Definition 11: The disjoint graph of an irreflexive relation > on events, denoted G(>) is 
defined by G(>) = {(A, B), A > B and A∩B = ∅}. 
 

 It directly follows from this definition that two SAR's >L and >M that share the same disjoint 
graph also share the same set of accepted beliefs : G(>L) = G(>M) implies ∀ C ⊆ S, AL(C) = 
AM(C). Two SARs having the same disjoint graph will be called acceptance-equivalent. Of 
course, this property defines an equivalence relation among SARs. Our purpose is to show that, 
for any SAR >L,, there exists another SAR > such that G(>) = G(>L) (hence yielding the same sets 
of accepted beliefs in all contexts) that can be represented by a family of possibility relations and 
this is precisely, in the acceptance-equivalent class of >L, the SAR that satisfies Halpern's Axiom 
of Qualitativeness (A > B and A > C imply A > B∪C, without any restriction). 
 The idea is to build a SAR >, acceptance-equivalent to >L, that satisfies the following property 
of called semi-cancellativeness:  
 

A > B if and only if A∩¬B > B    (SC) 
 

 We will see at the end of this section that, provided that O holds, this property is equivalent to 
Qual, with the advantage of being more tractable. Indeed, it allows an easy and constructive 
definition of > from >L. 
 

 Definition 12. Let >L be a SAR. The relation > defined by : ∀ A, B ⊆ S, A > B if and only 
if  A∩¬B >L B is called the (cautious) substitute of >L. 
 

 > and >L are different relations in general, since many SAR do not satisfy SC, while the 
relations built from Definition 12 do (by construction).  
Example : The SAR {s1, s2} >L {s1} >L {s2} >L ∅ does not satisfy SC (since {s1, s2} >L {s1} holds 
while {s2} >L {s1} does not hold) and its substitute is : {s1, s2} > {s2}; {s1} > {s2}; {s1} > ∅; {s2} > 



REPRESENTATIONS OF ACCEPTANCE 

39 

∅. >L is actually a refinement of >6, (indeed, by construction A > B implies A∩¬B >L B, which 
due to O, also implies A >L B). 
The new relation > is denoted cs(>L). It has very remarkable properties. First, it is a SAR, 
obviously acceptance-equivalent to >L (indeed, G(cs(>L)) = G(>L) since cs(>L) = >L on disjoint 
subsets) : 
 

Proposition 3. Let >L be a SAR. The relation > = cs(>L) defined by A > B if and only if 
A∩¬B >L B is a SAR i.e. non-dogmatic, irreflexive, orderly, transitive and it satisfies NEG. 
 

Proof : since G(>) = G(>L), > is non dogmatic, and satisfies NEG. 
Irreflexivity : suppose A > A. Due to (SC), A > A is equivalent to ∅ >L A, which implies ∅ >L ∅ 
via O. This is impossible since >L is irreflexive. 
Orderly : Suppose A > B∪C, for B and C disjoint. Due to (SC), A∩¬B∩¬C >L B∪C. Since >L is 
orderly, it immediately follows that A∩¬B >L B, which is A > B. Similarly, suppose A > B, that 
is A∩¬B >L B. Since >L is orderly, it immediately follows that (A∩¬B) ∪(C∩¬B) >L B, which is 
A∪C > B. 
Transitivity : Suppose A > B and B > C. It reads A∩¬B >L B and B∩¬C >L C. It implies 
(A∪C)∩¬B >L B and (A∪B) ∩¬C >L C, via O. Note that (A∪ C) ∩¬B = (A∩¬B∩¬C)∪(¬B∩C) 
and (A∪ B) ∩¬C = (A∩¬B∩¬C) ∪(B∩¬C), B = (¬B∩C) ∪(B∩C) and C = (B∩¬C) ∪(B∩C). 
Applying NEG yields A∩¬B∩¬C >L B∪C. Then applying O again : A∩¬C >L C, which is A > C. 
 
 Notice that different SARs can share the same substitute; actually any pair of acceptance-
equivalent SAR share the same substitute, since Definition 12 builds the substitute from the 
disjoint graph, by the simple application of axiom O : 
 

Proposition 4. Let >L and >M be two SAR: cs(>M) = cs(>L) if and only if G(>M) = G(>L). 

 Obviously, cs(cs(>L)) = cs(>L) because if a SAR >L satisfies SC, then cs(>L) = >L. It follows 
that cs(>L) is the intersection of all SAR's >M such that cs(>M) = cs(>L). So the substitute cs(>L) is 
the most cautious, the least informative relation that determines the same accepted beliefs as >L in 
all contexts. That is why cs(>L) can be named the cautious substitute of >L.  
 Semi-cancellative SARs are very close to possibilistic relations, more precisely they generalize 
them to the case of partial orders. Indeed, most of the important properties of possibility relations 
are easily established for a semi-cancellative SAR, and above all their characteristic axiom (in its 
contraposed form, since we deal here with strict orders): 
 

Proposition 5: Let > be a semi-cancellative SAR.. Then A∪ B > A∪ C implies B > C,∀ A, 
B, C ⊆ S. 
 

Proof : by SC, A∪B > A∪C is equivalent to (A∪B)¬A∩¬C > A∪C. Since (A∪B) ∩¬A∩¬C = 
B∩¬A∩¬C, B > C follows by O. 
 

Proposition 6. Let > be a semi-cancellative SAR. Then A > B and A > C imply A > B∪C, 
without any restriction.  

                                                 
6 By definition, a relation >' is a refinement of a relation > iff ∀ A, B, A > B ⇒ A >' B 
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Proof : A > B and A > C is equivalent to A∩¬B > B and A∩¬C > C. By O, it implies (A∪C)¬B > 
B and (A∪B)¬C > C. This is just like in the proof of the transitivity of >. So, A∩¬B∩¬C > B∪C. 
Then applying O again : A > B∪C. 
 
 An important consequence of this property is that A∪B > B and A∪B > A cannot 
simultaneously hold (otherwise, by Proposition 6, A∪B > A∪B). A useful corollary follows :  
 

Proposition 7. Let ≥L an acceptance relation the strict part of which is semi-cancellative. 
Then, ∀ A ≠∅, ∃ s ∈ A, such that (A >L {s}) does not hold. 
 

 Lastly, let us check that qualitative SARs prove to be the same as semi-cancellative SARs : 
 

Theorem 3. For any orderly relation > on events, the two properties Qual and SC are 
equivalent. 
 

Proof : SC implies Qual: Obvious using proposition 6 and axiom O. Qual implies SC : A > B 
implies A ∪ B > A ∩ B by O. It writes (A∩¬B)∪ B > A ∩ B. A > B also writes (A∩¬B) ∪ (A∩ B) 
> B. Applying Qual leads to A∩¬B > B.  
 
 In summary, the semi-cancellative SAR obtained by Definition 12 is an acceptance-equivalent 
and qualitative substitute to the original SAR and has a very possibilistic flavor. We show in the 
next section that it can be represented by a family of possibility relations. 

3.2 Beliefs Induced by Strict  Acceptance Relations can be Represented by 
Possibil ity Relations 
Given a family F of possibility relations, the strict confidence relation >F defined by A >F B if and 
only if A >Π B for all ≥Π in F is clearly a semi-cancellative SAR. The rest of this section will 
show that any semi-cancellative SAR > can be represented by a family of possibility relations. 
More precisely we show that for any semi-cancellative SAR >, there is a non-empty family F of 
possibility relations such that A > B if and only if A >Π B for all ≥Π in F.  
So, let > be a semi-cancellative SAR, the cautious substitute of some SAR >L. Since it is 
irreflexive and transitive, the strict order > is a directed acyclic graph with node set 2S. This graph 
is not necessarily connected, but there are no isolated nodes in the graph since A > ∅ for A ≠ ∅. 
Hence it is possible to assign a rank R*(A) to each subset A by letting  
 

R*(A) = 1 if {B, B > A} =∅ (e.g. R*(S)=1) and 
 

R*(B) = max A: A > B R*(A) + 1. 
 

Notice that this ranking is unique. This is a well-known algorithm for acyclic directed graphs 
(Bellman et al., 1970). This construction is also used by Pearl (1990). It yields a well-ordered 
partition (wop) of 2S, say {Ψ1, Ψ2, …Ψ k, Ψk+1} such that : 
 

Ψ k+1 = {∅} 
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A ∈ Ψ i if and only if R*(A) = i, i=1,…k 
 

 By construction, A > B if and only if A ∈ Ψi, B ∈ Ψj, i < j. And R*(A) ≤ R*({s}), ∀ s ∈ A. 
However, by Proposition 7, we know that A > {s} cannot hold for all s ∈ A, since > is a semi-
cancellative SAR. Hence : 
 

Lemma 3. R*(A) = R*({s}) for some s ∈A 
 
Proof : let us first show that R*(A) ≤  R*({s}) ∀s ∈A; indeed, by O, it holds that B > A and C ⊆ A 
implies B > C, so the number of predecessors of any subset of A is at least equal to the number of 
predecessors of A. Hence, its rank is at least equal to the rank of A. Let us prove now by recursion 
that for any rank k: ∀ A⊆ S, such that R*(A)=k, ∃s ∈ A, R*({s})= R*(A). 
For k = 1: R*(A) = 1 implies R*({s}) = 1 for some s∈ A. For suppose not. Then R*({s}) > R*(A) =1 
for all s∈ A. Since R*(A) = 1, there is no B > A. But there is some Bs > {s} for all s∈ A. Hence 
∪s∈ A Bs > A using Qual. So R*(A) > 1. Contradiction. 
Suppose that the property holds up to rank k−1 : ∀i = 1, …, k − 1, R*(A) = i implies R*({s}) = i 
for some s∈ A. Then, R*(A) = k implies R*({s}) = k for some s∈ A. For suppose not. Then, for 
some set A, R*({s}) > R*(A) = k for all s∈ A. So, there is some Bs > {s}, with R*(Bs) = k, for all 
s∈ A. Hence B = ∪s∈ A Bs > A using Qual. So R*(B) < k. Using the recursivity assumption, 
R*({s'}) = R*(B) < k for some s'∈ B. Such a state s' belongs to some set Bs. And R*(Bs) ≤ R*({s'}) 
< k. Contradiction, since R*(Bs) = k, for all s∈ A. 
 
 From this Lemma, it follows that∀ A ⊆  S, R*(A) = mins ∈ R*({s}). It is then easy to see that : 
∀ A, B, C, R*(A∪ B) > R*(A∪ C) implies R*(B) > R*(C). Hence, we have proved that : 
 

 Proposition 8. The relation ≥Π∗ on subsets induced by R*(A) : A ≥Π∗ B if and only if R*(A) 
≤  R*(B) is a possibility relation. 
 

 The corresponding plausibility preorder (S, ≥π∗) on states is trivially given by : s ≥π∗ s' iff 
R*({s}) ≤ R*({s’}). Now let us define from the ranking R* (or equivalently from ≥π∗) a well ordered 
partition of S, say {E1, E2, …Em}, such that Ei = {s, R*({s}) = i}, i=1,… maxs R

*({s}). E1 contains 
the most plausible states by default, E2 the second most plausible states, etc.  
It is obvious that the strict possibility relation >Π∗ corresponding to the ranking R refines > since, 
by construction, A > B implies  R*(A) < R *(B), which in turn implies A >Π∗ B. In fact, generally, 
relation >Π∗ contains more pairs than >. Suppose for instance that S = {s1, s2, s3}, and consider the 
semi-cancellative SAR induced by the only constraint {s1, s2} > {s3}. Then Ψ3 = {∅}, Ψ2 = {s3}, 
Ψ1 contains all other events. Then E1 = {s1, s2} and E2 = {s3}. Hence, R*({s2}) < R

*({s3}), thus 
{s2}>Π∗ {s3} while {s2} > {s3} does not hold. 
 At this point we can construct a family of possibility relations from a semi-cancellative SAR: 
let F(>) be the set of all possibility relations ≥Π  whose strict part refines the semi-cancellative 
SAR >. More formally : F(>) = {≥Π such that ≥Π is a possibility relation and A > B implies A >Π 
B}. What has been proved above is that F(>) ≠ ∅ since F(>) contains ≥Π∗. Note that A >Π B holds 
provided that ∃s ∈A∩¬B, ∀s'∈B, s >π s'. So F(>) can be identified with the set of all the 
complete preorderings ≥π on states such that, for any pair of disjoint subsets (A, B), if A > B 
then ∃ s ∈ A,∀s'∈ B, s >π s'. 
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 Let us compare the possibility relations in F(>), in terms of their relative informativeness. A 
preorder (S, ≥π) is said to be more specific than (S, ≥µ) in the wide sense if and only if, in terms of 
their associated wops {E1, E2… Em} and {F1, F2… Fk} respectively, it holds that (Benferhat et al., 
1999b):  
 

∀i = 1, min(m, k), E1 ∪ E2∪…∪ Ei ⊆ F1 ∪ F2∪…∪ Fi 
 

 The idea is that the specificity of a plausibility preorder on S is decreased by moving states up 
towards more plausible elements of a wop. Maximally specific wops are the same as maximally 
refined wops and correspond to linear orderings of states. The least specific wop is also the least 
refined one, made of S itself. However the specificity ordering differs from the refinements of 
wops. In terms of ranking functions, ≥π is less specific than ≥µ in the wide sense if and only if ∀s, 
Rπ(s) ≤ Rµ(s), where Rπ(s) (resp. Rµ(s)) is the rank of state s given the complete preordering ≥π (resp. ≥µ). Decreasing specificity makes a ranking more compact (Pearl, 1990).  
The following proposition shows that ≥Π∗, obtained by the ranking R* of subsets induced by the 
SAR >, is also the least specific possibility relation in F(>). We do it by showing that R* is the 
most compact ranking of states induced by the semi-cancellative SAR. 
 

 Proposition 9. ≥Π ∈ F(>) implies that ≥Π is more specific than ≥Π∗ in the wide sense. 
 

Proof : Let R be the ranking function of a possibility relation ≥Π. This possibility relation extends 
the SAR > if and only if A > B implies R(A) < R(B) ∀A, ∀B. Hence R(B)≥ maxA: A > B R(A) + 1. 
In particular, for >Π∗, note that R*(B) = maxA: A > B R*(A) + 1. By construction, sets without 
predecessors with respect to ordering >Π. should be chosen among the ones without predecessors 
with respect to >. Hence R(A) = 1 implies R*(A) = 1. Now assume R(A) ≥ R*(A) whenever R*(A) 
< k. Suppose B such that R*(B) = k. So, if A > B, R*(A) < k.  
 Then R(B)≥ maxA: A > B R(A) + 1 ≥ maxA: A > B R*(A) + 1 = k.  
 
 However the converse of Proposition 9 does not hold. Namely if ≥Π is more specific than ≥Π∗ in 
the wide sense then ≥Π ∈ F(>) is not warranted. 
 Example : Consider S = {s1, s2, s3}, and the semi-cancellative SAR > induced by the only 
constraints {s1, s2} > {s3} and {s2} > {s3}. ≥π∗ corresponds to the two levels partition where E1 = 
{s1, s2} and E2 = {s3}. The possibility relation induced by the plausibility order s1 >π  s3 >π s2 is 
more specific than ≥π∗  but is not a refinement of > (and thus >Π  does not belong to F(>)). 
Now, among possibility relations in F(>), some induce a linear order on S.  
 

Definition 13. A linear possibility relation is a possibility relation >Π such that for any 
disjoint A, B either A >Π B or B >Π  A holds.  
 

 It is obvious that the well-ordered partition of states associated to a linear possibility relation 
contains singletons only and its associated plausibility ordering of states is a total ranking of S. 
Consider a total ranking of S obtained by concatenating arbitrary total rankings of elements in the 
sets Ei's taken the wop induced by a semi-cancellative SAR >. It respects the preorder induced by 
the wop and is a refinement of the wop {E1, E2, … Em}. And it yields a linear possibility relation 
that refines >Π∗, hence it refines > and lies in F(>).  
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 Let Fl (>)= {≥Π linear and A > B implies A >Π B} be the set of linear possibility relations in 
F(>) for a semi-cancellative SAR. We have seen that this set is not empty, since it contains at 
least linear refinements of >π∗. Notice that it generally contains more than the linear refinements 
of the wop {E1, E2, … Em} of ≥π∗. 
 Example : Consider again S = {s1, s2, s3}, and the semi-cancellative SAR > induced by the 
only constraint {s1, s2} > {s3}. Then E1 = {s1, s2} and E2 = {s3}. The linear refinements of the wop 
are s1 >π s2 >π s3 and s2 >π s1 >π  s3. The possibility relations induced by the plausibility orders s1 
>π s3 >π  s2 and s2 >π  s3 >π  s1 also extend > (and thus belong to Fl(>)) but are not refinements of 
>Π∗, even if they are more specific than it. 
Finally, the next result proves that any semi-cancellative > can be reconstructed from the linear 
possibility relations refining it. 
 

Theorem 4. Let > be the cautious substitute of some SAR >L. Then A > B if and only if A >Π 
B for all linear possibility relations ≥Λ in Fl (>). 
 

Proof : It only remains to be proved that if A >Λ B for all linear possibility relations ≥Λ in Fl (>), it 
implies A > B. For suppose  A > B  is not true.  Then it cannot hold that B > A.  Otherwise, B >Λ A  
for  all  linear  possibility relations ≥Λ in  
Fl (>). Then neither A > B nor B > A holds. Then there exists a refinement ≥Π in F(>) such that B 
>Π A. To see it create a semi-cancellative SAR >1 by enforcing B > A in >. It does not create 
inconsistency, since A > B is not supposed to hold. Choose ≥Π to be the least specific possibility 
relation induced by >1. Then any linear possibilistic refinement ≥ Λ of >1 is in Fl (>). It satisfies B 
>Λ A, which contradicts the assumption A >Λ B for all linear possibility relations ≥Λ in Fl  (>). 
 
 So any cautious substitute of a SAR can be represented by a family of linear possibility 
relations. If AL(C) denotes the set of accepted beliefs induced in the context C by the acceptance 
relation ≥L, and AΛ(C) the set of accepted beliefs induced by a linear possibility relation ≥Λ of Fl 
(>) where > = cs(>L), then the above Theorem implies that :  
 

AL(C) = ∩ ≥Λ ∈ Fl(>) AΛ (C) 
 

 Note that AΛ(C) is a complete (maximal consistent) belief set, in the sense that ∀A ⊆ C, A ∈ 
AΛ(C) or C\A ∈ AΛ(C). Generally, more than one possibility relation is needed to represent >. 
However, sometimes, a semi-cancellative SAR > is itself the strict part of a possibility relation. 
This is when > is negatively transitive, so that its complement ≥ is transitive. Consider the 
complete relation A ≥ B if and only if B > A does not hold. Clearly, A∪B ≥ B and A∪B ≥ A 
(otherwise, for instance, A > A∪B, which implies ∅ > ∅, and that is impossible). Due to 
proposition 6, one of A ≥ A∪B and B ≥ A∪B is true. If ≥ is transitive, then it is clearly a 
possibility relation, and ≥ = ≥π∗ . 

4. Applications to Related Areas 

The above results are not totally new at the mathematical level because they are closely related to 
former results in non-monotonic reasoning after (Kraus et al., 1990), and the AGM theory of 
belief revision. What is proposed here is rather a new understanding of the formal machinery 
already at work in these two already related areas. In the belief revision approach, the primitive 
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concepts are a belief set often expressed in propositional logic, and the revision operation. 
However, the knowledge of the agent that produces this belief set and makes it evolve does not 
explicitly appear in the approach. In particular there is no clear distinction, inside the belief set, 
between observations received from outside by the agent, and beliefs produced by plausible 
inference. In the non-monotonic reasoning approach, the underlying knowledge is explicitly 
pointed out at the syntactic level under the form of a set of rules (or conditional assertions), 
closed under some inference process relying on basic postulates of plausible reasoning. Then in a 
given context, the belief set is formed by the set of conclusion parts of rules whose common 
condition part describes this context. In our approach we adopt a semantic view, considering the 
confidence relation as the primitive notion encoding the generic knowledge of an agent. Rules 
and belief sets are derived from the confidence relation, while the latter appear as a by-product of 
the theory in the other mentioned approaches. Our view also makes the analogy between 
plausible reasoning and probabilistic inference much clearer, although this connection has already 
been made in various ways.  

4.1 Confidence Relations and Non-Monotonic Reasoning 
The preferential approach of Kraus et al. (1990) to non-monotonic reasoning (also known as 
"system P") was described at the semantic level by Lehmann and Magidor (1992) in terms of 
rankings of states, by Fariñas del Cerro et al. (1994) and Dubois and Prade  (1995a), in terms of 
families of possibility relations, and by Friedman and Halpern (1996) in a more general setting of 
partial orders of events, by means of so-called "plausibility measures" that are set-functions 
valued in a partially ordered set, basically what we call confidence relations. Following these 
works, it can be shown that the relation on disjoint events induced by a conditional knowledge 
base via system P is the disjoint graph of a SAR. Since this result is very close to the previous 
one, we present it only briefly here. 
 Let A → B be a conditional assertion relating two propositions. Again we neglect the syntactic 
side here and just write propositions as events. The rule A → B states that if A holds then B 

generally holds too. It should be understood as : in the context A, the agent accepts B. Kraus et al. 
(1990) discussed basic properties of non-monotonic inference :  
 
Reflexivity : A → A  
Right weakening : A → B and B ⊆ C imply A → C  
AND : A → B and A →C imply A → B ∩ C  
OR : A → C and B → C imply A ∪ B → C  
Cautious monotony (CM) : A → B and A → C imply A ∩ B → C  
Cut : A → B and A ∩ B → C imply A → C 
 
 The above rules of inference embody the notion of plausible reasoning in the presence of 
incomplete information. Namely, they describe the properties of deduction under the assumption 
that the state of the world is as normal as can be. The crucial rules are Cautious Monotony and the 
Cut. Cautious Monotony claims that if A holds, and if the normal course of things is that B and C 
hold in this situation, then knowing that B and A hold should not lead us to situations that are 
exceptional for A : C should still normally hold. The Cut is the converse rule : if C usually holds 
in the presence of A and B then, if situations where A and B hold are normal ones among those 
where A holds (so that A normally entails B), one should take it for granted that A normally 
entails C as well. The other properties are not specific to plausible inference : OR enables 



REPRESENTATIONS OF ACCEPTANCE 

45 

disjunctive information to be handled without resorting to cases. The Right Weakening rule, 
when combined with AND, just ensures that the set of non-monotonic consequences is 
deductively closed in every context. Reflexivity sounds natural but can be challenged for the 
contradiction (A = ∅). These basic properties can be used to form the syntactic inference rules of 
a logic of plausible inference. 
 A strict order > on disjoint events is induced by a set of conditional assertions ∆ by interpreting a 
rule A → B as the statement that the joint event A∩B is more plausible than A∩¬B:  

  
A∩B > A∩¬B iff A → B ∈ ∆      (5) 

  
 Equation (5) builds the disjoint graph of a confidence relation from a set of assertions. 
Conversely, starting from confidence relation >L, a set of rules ∆ is obtained as  
 

A∪ B → ¬B ∈ ∆ iff A >L B for disjoint A, B      (6) 
 

 Equation (6) builds the set of conditional assertions corresponding to a disjoint graph. Using 
equation (5), the properties of non-monotonic preferential inference can be written as properties 
of the confidence order >. Especially :  
 
RW : If B ⊆ C and A∩ B > A∩¬B then A∩ C > A∩¬C 
 
AND: If A∩ B > A ∩¬B and A ∩ C > A ∩ ¬C then  A ∩ B ∩ C > A ∩ (¬B ∪ ¬C) 
 
 Conditional assertions induce strict acceptance relations and that it reciprocally turns out that 
the entailment relation induced by a strict acceptance relation is not more general than 
preferential inference, but for the reflexivity A → A when A = ∅. Namely the following result 
holds : 
 

Proposition 10. If ∆ is a conditional knowledge base closed under RR, AND, OR, RW, CM, 
and CP, then the confidence relation it defines as A∩B > A∩¬B iff A → B ∈ ∆ is the 
disjoint graph of a SAR. Conversely, any SAR satisfies CCS, RW, CM, CUT, OR, CP, and 
RR. The corresponding family of conditional assertions satisfies system P but for ∅ → ∅.  
 

 Dubois et al. (2003) provide direct proofs. The AND and the RW axioms are exactly the CES 
and the CCS axioms of acceptance relations and the other properties of → can be proved from 
CCS, CES, QT, O and MI. Conversely, the main point is to prove that the KLM axioms enforce 
the negligibility and the transitivity properties of >.  
 Given a conditional knowledge base ∆ = {Ai → Bi, i = 1, n}, its preferential closure ∆P is 
obtained by applying to it the KLM properties as inference rules. The above results clearly show 
that the relation on events induced by ∆P is a SAR >L, and that the set {A, C → A ∈ ∆P} coincides 
with the belief set AL(C). So, our characterization of acceptance relations (Definition 10) provides 
an axiomatics almost equivalent to system P. Something similar was done by Friedman and 
Halpern (1996) with their "plausibility" measures. The main difference between Friedman and 
Halpern's axiomatic and ours comes from a different understanding of system P on our side. 
Friedman and Halpern (1996) admit the reflexivity ∅ → ∅ of → and interpret A → B as (A∩B > 
A∩¬B  or A = ∅). Our simpler interpretation as A∩B > A∩¬B allows us to drop one axiom they 
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need (namely, A > B > ∅ implies A∪B > ∅), since it is vacuous here (SARs are non dogmatic). 
Actually, we never assume that the inference A → A holds when A is empty. The non-dogmatic 
assumption (A > ∅) provides for the reflexivity axiom when A ≠ ∅.  
 The link between acceptance relations and System P also results from past works. Indeed, the 
relation defined by a consistent base of defaults can be represented by a non-empty family of 
possibility measures F∆  such that (Dubois & Prade, 1995a; Benferhat et al., 1999a) : A → B ∈ ∆ 
if and only if ∀ >Π ∈ F∆, A ∩ B >Π A ∩ ¬B. We have seen in section 2.5 that the relation > 
defined in this way by means of a family of possibility relations is a SAR. 
  However, the reflexivity axiom of system P (i.e. A → A) is hard to accept in the present 
framework since it means A > ∅ for all A, so we would get ∅ > ∅ : it violates our irreflexivity 
requirement for >. But A→ A makes sense for A ≠ ∅, and we can consider a restricted reflexivity 
condition (Benferhat et al., 1997b) : 
 

 RR : A → A, ∀ A ≠ ∅,   
 

which writes : A > ∅, ∀ A ≠ ∅. Besides, ∅ > A never holds for a SAR. Hence the consistency 
preservation condition for ∅:   
 

CP: ∀ A, A → ∅ never holds. 
 

Axioms CP and RR should replace the reflexivity axiom A → A, in the scope of acceptance 
relation semantics.  
System P can be extended by adding the following axiom, originally due to Makinson: 
 
 Rational monotonicity : A → C and not( A → ¬B) imply A ∩ B → C 
 
 This is for instance the basis of the so-called "rational" inference of Lehmann (Lehmann & 
Magidor, 1992). In the above, "not( A → ¬B)" means that it is not the case that B generally does 
not hold, in situations where A holds. Indeed if ¬B is expected then it might well be an 
exceptional A-situation, where C is no longer normal. In terms of confidence relations, this axiom 
reads:  
 
RM : If A ∩ C >L A ∩ ¬C, and A ∩ ¬B >L A ∩ B does not hold, then A ∩ B ∩ C >L A ∩ B ∩¬C 
 
 It is well known that, if a property of rational monotony is added to the basic KLM properties, 
then the non-monotonic inference A → B can always be modeled as A ∩ B >Π A ∩ ¬B for a 
possibility relation ≥Π (Benferhat et al., 1997b). So, when added to the axioms of system P, RM 
forces the confidence relation ≥ underlying a set of rules to be a complete preordering, hence a 
possibility relation. This result proves that any semi-cancellative SAR that satisfies RM is 
negatively transitive and reciprocally, that any negatively transitive semi-cancellative SAR 
satisfies RM.  
 A conditional knowledge base ∆ is thus equivalent to a set of constraints of the form A > B 
restricting a family of possibility relations. Benferhat et al. (1997b) showed that selecting the least 
specific possibility relation corresponds to the computation of the rational closure of ∆ after 
Lehmann and Magidor (1992), or the most compact ranking according to Pearl (1990). The actual 
computation of this rational closure of ∆ can be carried out by finding the wop induced by this set 



REPRESENTATIONS OF ACCEPTANCE 

47 

of constraints by means of a ranking algorithm, several versions of which have appeared in the 
literature (see e.g. the algorithm of system Z of Pearl(1990), or a similar algorithm of Benferhat et 
al. (1992) for possibilistic logic). The computation of a possibility relation from a semi-
cancellative SAR (Section 3.2) by means of a ranking algorithm actually performs a similar 
closure computation. 

4.2 Revising accepted beliefs vs.  revising an acceptance relation 
At this point, it can be asked whether, given a SAR >L, the change operation, that turns the belief 
set AL into the belief set AL(C) when the information stating that proposition C is true, will satisfy 
the main postulates of belief revision (after Gärdenfors, 1988). A set of accepted beliefs is 
characterized by a subset of states BL

C such that AL(C) = {A, BL
C ⊆  A}. BL

C is called the kernel of 
the belief set, and it is the set of states not excluded by the belief set. It is then possible to 
describe a belief change operation as a mapping from 2S × 2S to 2S, changing a pair (B, C) of 
subsets of states into another subset of states BC. Suppose B is the kernel of the belief set K and C 
is the input information. BC is the kernel of the revised belief set K*C. This presentation is in 
some sense easier to understand than using the general logical setting used by Gärdenfors, which 
is a syntactic construction with a syntax-independence axiom. The translation of the postulates 
characterizing revision operations * then proceeds as follows :  
 
Postulate 1: For any input C, and any belief set K, K*C is a belief set. It means that for any pair 
of subsets (B, C) of S, BC is a subset of S 
 
Postulate 2: K*C contains C. This is the success postulate, which reads BC  ⊆ C. 
 
Postulate 3: K*C ⊆ Cons(K∪ {C}) where the latter is the belief set obtained by simply adding C 
to K and taking the logical closure (also called the expansion operation). In set-theoretic terms, it 
reads B∩C ⊆ BC. 
 
Postulate 4: if ¬C ∉ K then Cons(K∪ {C}) ⊆ K*C. In other words, if the new information is 
coherent with the old belief set then it should be absorbed by it. In set-theoretic terms it reads : if 
B ⊄ ¬C, then BC ⊆ B∩C. 
 
Postulate 5: If C is a logical contradiction (= ∅) then K*C contains all possible propositions. It 
means that B∅ = ∅. 
 
Postulate 6 is the claim for syntax invariance. It is obviously satisfied in the set-theoretic setting, 
and this is why the set-theoretic description of the revision theory makes sense. 
 
Postulate 7: K*( B∩D) ⊆ Cons(K*C ∪ {D}). It means that BC ∩ D ⊆  BC ∩ D .  

Postulate 8: If ¬φ ∉ K*ψ then Cons(K*C ∪ {D}) ⊆ K*(B∩D). It reads : if BC ⊄ ¬D then BC ∩ D ⊆ 
BC ∩ D. 
 
 Postulates 1 and 2 are not valid for sets of accepted beliefs induced by an acceptance relation, 
because of the case C = ∅. Since AL (∅) is empty, B∅ 

simply does not exist. However these two 
postulates hold when restricting to non-contradictory input information C ≠ ∅. Accordingly, 
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Postulate 5 is not assumed in our framework. These restrictions make sense because the new 
information is supposed to be a piece of observed evidence on which the confidence relation will 
focus. It is impossible to focus on the empty set. Under the restriction of non-contradictory inputs 
(which makes postulate 5 vacuous), all postulates but two unsurprisingly hold in the acceptance 
relation setting. The fourth and the eighth ones are not valid (see Dubois et al. 2003). Requesting 
the validity of these two ones comes down to requesting that the acceptance relation be a 
possibility relation, as they are closely related to Rational Monotonicity. 
 The direct link between acceptance relations and revision postulates provided here is clearly 
reminiscent of the comparison between revision and non-monotonic inference, first studied by 
Makinson and Gärdenfors (1991). However, the postulates of acceptance are less numerous and 
easier to interpret than the postulates of belief revision. Moreover, our paper makes it clear that 
the AGM theory of revision is only concerned with the revision of the current beliefs of an agent 
pertaining to the present situation. It is not concerned with the revision of the generic knowledge 
of the agent regarding what is normal and what is not. The acceptance function setting is more 
general than the belief revision setting not only because less postulates are assumed, but because 
it lays bare the existence of two kinds of revision problems : the revision of accepted beliefs on 
the basis of new observations, and the revision of the acceptance relation itself, due to the arrival 
of new pieces of knowledge (such as a new default rule). For instance medical doctors generally 
do not modify their medical knowledge when getting new test results for a patient. They just 
revise their beliefs about the patient state. However, medical doctors may revise their medical 
knowledge when reading a specialized book or attending a medicine conference. The AGM 
theory deals with the first problem only and it corresponds to the notion of focusing the epistemic 
entrenchment relation on the proper reference class pointed at by the available factual evidence 
(see Dubois, Moral & Prade, 1998).  
 The AGM revision theory only assumes that a belief set is replaced by another belief set, and it 
gives minimal rationality constraints relating the prior and the posterior belief sets. Thus doing, it 
may wrongly suggest that the posterior belief set depends on the prior one. The confidence 
relation framework shows that this is not the case. The calculation of the posterior belief set 
AL(C) does not use the prior belief set. Both belief sets are built by means of plausible inference 
from generic knowledge encoded in the confidence relation. For the posterior belief set, the 
confidence relation is conditioned on the new context C formed by all the available observations, 
including the new one. This point is not crystal-clear when adopting the notations of the AGM 
theory, where the epistemic entrenchment appears like a technical by-product of the formal 
construction. 
 Some people have wondered what becomes of the epistemic entrenchment relation after an 
AGM belief revision step. The acceptance relation framework makes it clear that it remains 
unchanged. Hence the claim that belief revision cannot be iterated, because the epistemic 
entrenchment relation that underlies the revision operation is lost when performing the next step, 
is questionable : if, after revising AL into AL(C), the agent receives a new reliable piece of 
information D about the same static phenomenon, the belief set becomes AL(C∩D). Note that, by 
assumption, C∩D cannot be contradictory (otherwise one of C or D is wrong or they do not 
pertain to the same case). In the belief revision setting, it means that the following property holds: 
if C∩D ≠ ∅, ( K*C)*D = K*(C∩D).  The same epistemic entrenchment should remain the same 
across successive revisions of contingent beliefs caused by new contingent non-conflicting 
observations. Similarly, in probabilistic reasoning (Pearl, 1988), the same Bayesian network is 
used when new observations come in. If the epistemic entrenchment must be revised, it means 
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that the input information is a piece of generic knowledge, and such a kind of revision is not the 
purpose of the AGM theory ; in the AGM terminology, this is like revising the revision operator 
(Lehmann, 1995).  
 The problem of revising the acceptance function is beyond the scope of this paper. Relevant 
research can be found in papers of Spohn (1988), Williams (1994), Boutilier and Goldszmidt 
(1995), Darwishe and Pearl (1997), and Benferhat et al. (1999b), although the distinction between 
the two types of revision is not always so clear from reading these works. Indeed, there is no 
consensus on a general and systematic approach to that kind of epistemic change in the literature, 
and the same can be observed for problems of revision of Bayesian networks (which pertain to 
probability kinematics, see Domotor, 1985). 

4.4 Plausible Inference versus Probabilistic Reasoning 
The originality of the confidence relation approach to plausible inference is that, instead of 
starting from intuitive postulates on syntactic objects (like Lehmann and colleagues), our basic 
concepts are on the one hand the confidence relation that is thought of as a natural tool for 
describing an agent's uncertain knowledge, and the notion of accepted belief on the other hand. 
This point of view enables plausible (non-monotonic) reasoning to be cast in the general 
framework of uncertain reasoning, which includes probabilistic reasoning. The analogy between 
non-monotonic inference and probabilistic reasoning has already been pointed out (Dubois & 
Prade, 1994). It was stressed by Pearl (1988) and Lehmann and Magidor (1992) that the System P 
has semantics in terms of infinitesimal probabilities, and comes close to Adams (1975) 
conditional logic. Paris (1994) has viewed maximum entropy inference as a kind of default 
probabilistic inference. The selection of a most cautious comparative possibility relation in 
agreement with an acceptance relation is similar to the selection of a unique probability measure 
using maximal entropy (Maung, 1995). The relationship between maxent probabilistic reasoning 
and non-monotonic inference is further explored by Kern-Isberner (2001). Biazzo et al., (2002) 
reinterpret System P in the light of probabilistic logic under coherence in the De Finetti style. 
They show that, under this view, a conditional assertion A → B can be simply expressed by 
P(B| A) = 1.  
 In probabilistic reasoning, the confidence relation stems from a probability measure or a family 
thereof. A set of generic rules is then encoded as a set of conditional probabilities c characterizing 
a family of probability measures (Paris, 1994). The most popular approach in AI currently uses a 
single probability measure, and the set of conditional probabilities defines a Bayesian network 
(Pearl, 1988). A Bayesian network really represents generic knowledge, like any confidence 
relation. This network is built either from expert domain knowledge, or from statistical data via 
learning techniques. Probabilistic inference with a Bayesian network consists in calculating the 
(statistical) conditional probability of a conclusion, where the conditioning event encodes the 
available observations (Pearl, 1988). The obtained conditional probability value is interpreted as 
the degree of belief of the conclusion in the current situation, assuming that this situation is a 
regular one in the context described by the observations. This procedure is very similar to the 
derivation of a plausible conclusion by conditioning an acceptance relation, or by deducing a rule 
from a rule base. The derived rule is valid "generally". Its conclusion is considered as an accepted 
belief in the current situation assuming that this situation is not an exceptional one in the context 
described by the observations modeled by the condition part of the derived rule. There is in fact a 
strong similarity between conditional probability and conditional possibility, and an ordinal form 
of Bayes rule exists for possibility theory (Dubois & Prade, 1998). Boolean conditional 
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acceptance functions Ac of the form Ac(A∩C) = 1 iff A∩C >L ¬A∩C, and 0 otherwise have been 
used by Ben Amor et al (2002) in the investigation of qualitative counterparts of probabilistic 
independence. 
 Of course, there are also noticeable differences between probabilistic reasoning and ordinal 
plausible inference :  
 i) Plausible inference does not quantify belief, probabilistic inference does;  
 ii) Plausible reasoning considers the most plausible situations and neglects others, while 
probability theory performs reasoning in the average.  
 iii) Lastly, probabilistic reasoning is often not compatible with the notion of accepted belief. 
Indeed, the conjunction of two highly probable events may fail to be highly probable and may 
even turn out to be very improbable. However, the arbitrary conjunction of accepted beliefs is 
still an accepted belief (this is because we assume that the agent considers accepted beliefs as 
tentatively true). This is the source of the lottery paradox described in Section 2.1.  
The solution to the lottery paradox lies in the existence of probability functions that agree with 
classical deduction from accepted beliefs. Such probabilities exist and have been laid bare in the 
previous section : big-stepped (or lexicographic) probabilities on finite sets. These very special 
probability functions actually provide a standard probabilistic semantics to system P (Benferhat et 
al., 1999a). Note that in the lottery paradox, it is implicitly assumed that all players have equal 
chance of winning. The underlying probability measure is uniform. Hence there is no regularity at 
all in this game : no particular occurrence is typical and randomness prevails. It is thus unlikely 
that an agent can come up with a consistent set of default rules about the lottery game. So, in the 
situation described in the counterexample, deriving accepted beliefs and reasoning from them is 
not advisable indeed. 
 However, big-stepped probabilities are the total opposite of uniformly distributed ones, since 
the probability of any state is larger than the sum of the probabilities of less probable states. So, 
the paradox disappears if the underlying phenomenon on which the agent entertains accepted 
beliefs is ruled by a big-stepped probability since {A, P(A | C) > 0.5} remains logically consistent 
and deductively closed. It suggests that big-stepped probabilities and plausible reasoning based on 
acceptance relations or system P model an agent reasoning in front of phenomena that have 
typical features, where some non-trivial events are undoubtedly more frequent than other ones. 
We suggest that such domains, where a body of default knowledge exists, can be statistically 
modeled by big-stepped probabilities on a suitable partition of the sample space. Default 
reasoning should then be restricted to such situations in order to escape the lottery paradox. It is 
always possible to build a big-stepped probability from a large state space S.  One technique is to 
find the smallest set E1 such that P(E1) > P(¬E1). Then, the same procedure is applied changing S 
into ¬E1, etc. Clearly, in the case of a uniform distribution on S, the set E1 is not unique and its 
choice is very arbitrary. So would be the so-obtained big-stepped probability. On the contrary, if 
the distribution on S is far from being uniform, the whole big-stepped probability is likely to be 
unique and set E1 will cluster the most frequent states. 
 While we cannot expect to find sample spaces displaying such kinds of statistical big-stepped 
probability functions right away, one may think that for phenomena that have regularities, there 
may exist partitions of the sample space that form conceptually meaningful clusters of states for 
the agent and that can be ordered via a big -stepped probability. If this conjecture is valid, it 
points out a potential link between non-monotonic reasoning and statistical data, in a knowledge 
discovery perspective. An interesting problem along this line is as follows : Given statistical data 
on a sample space and a language, find the "best" linguistically meaningful partition(s) of the 
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sample space, on which big-stepped probabilities are induced and default rules can be extracted 
(see Benferhat et al., 2002, for preliminary results). The difference between other rule extraction 
techniques and the one suggested here, is that, in our view, the presence of exceptions is 
acknowledged in the very definition of symbolic rules, without having to keep track of the 
proportion of such exceptions. 

5. Summary and Conclusions 

This paper can be seen as an exploration of the common ground between classical deductive 
reasoning, non-monotonic reasoning and probabilistic reasoning. By considering general 
orderings between events that model the concept of relative strength of belief, and moreover 
enforcing the notion of deductive closure, it is proved that the corresponding confidence 
orderings can always be modeled by families of possibility relations. It confirms the idea that 
possibility theory is the uncertainty theory that is the most compatible with classical logic. This is 
already suggested by the fact that possibilistic logic (Dubois et al., 1994) is a much simpler 
extension of propositional logic than probabilistic logic.  Possibilistic logic can encode non-
monotonic reasoning in the style of Lehmann and colleagues.  
 Our results provide a wide perspective encompassing probabilistic reasoning, possibility 
theory, belief revision, and non-monotonic reasoning, from a rather simple and general starting 
point : accepted beliefs induced by confidence relations. It casts some light on the AGM belief 
revision theory, by showing the difference between revising a set of accepted beliefs upon the 
arrival of some observed fact, and revising a confidence relation due to the acquisition of some 
generic knowledge. The first kind of revision is captured by conditioning the confidence relation 
on the proper reference class, in full harmony with probabilistic reasoning. The other type of 
revision, which alters the normality ordering of states, is a different problem, not addressed here.  
 Our results are quite negative regarding the general compatibility between logical 
representation of what logic-based AI calls beliefs, viewed here as accepted propositions, for 
which deductive closure is allowed, and partial belief in the sense of probability theory. These 
results are a severe impediment to a generalized view of theory revision based on orders on 
formulae derived from uncertainty theories other than epistemic entrenchments, simply because 
the assumption of closed belief sets is devastating in this respect. 
 The paper seems to confirm that the notion of deductive closure is not fully adapted to the 
modeling of belief, not only because this notion disregards syntactic aspects and presupposes 
logical omniscience, but because the closure under conjunction may be counter-intuitive when 
reasoning with partial belief, as already revealed in the lottery paradox. Our solution to this 
paradox is to consider that non-monotonic reasoning with accepted beliefs makes sense in 
situations where trends of normality can be clearly discerned : some states of nature are so much 
frequent that they are considered normal, expected. This is obviously the case in everyday life 
(planes usually do not crash, houses usually do not collapse, etc.) The lottery paradox makes 
more sense for situations where random phenomena prevail (like in games of chance). 
 In order to model symbolic reasoning methods that come closer to uncertain reasoning with 
partial beliefs, weaker types of "deductive closures" might be considered for this purpose, as for 
instance unions of standard deductively closed sets of propositions (that may be globally 
inconsistent). This type of closure is encountered in argument-based reasoning under 
inconsistency (Benferhat et al., 1997). Tolerating inconsistency is indeed incompatible with 
standard deductive closure. It turns out that most confidence functions (and noticeably 
probabilities) synthesize partially conflicting pieces of information while possibility measures do 



DUBOIS, FARGIER, & PRADE 

52 

not (as witnessed by their nested structure). It may explain why possibility theory seems to be the 
only simple uncertainty calculus that accounts for the concept of accepted beliefs in the sense of 
propositions one can reason about as if they were true. 
 Finally, further work is needed to lay bare numerical uncertainty functions other than 
probabilities and possibilities that induce acceptance relations. In Dempster-Shafer theory 
(Shafer, 1976), preliminary results (Dubois & Prade, 1995a; Dubois, Fargier and Prade, 1998) 
suggest that many plausibility functions that combine possibility measures and lexicographic 
probabilities are compatible with acceptance postulates. 

Appendix A. Relationships Between Axioms O and MI 

 
Proposition A.1 If ≥L satisfies MI and T, then A >L B and B ≥L C imply A >L C. 

 
Proof: It is obvious that A >L B and B ≥L C imply A ≥L C, due to T. If C >L A, then due to B ≥L C, 
T again implies B ≥L A, which contradicts A >L B. So, A >L C. 

 
 Corollary : If ≥L satisfies MI and T, then it satisfies O. 

 
Proof: By MI, A ⊆ A' implies A' ≥L A and B' ⊆ B implies B ≥L B'. The previous property allows to 
deduce A' >L B from A >L B and A' ≥L A and A' >L B' from A' >L B and B ≥L B'. 
 

Proposition A.2 If ≥L is complete and satisfies O, then it satisfies MI. 
 
Proof: Let A, B be such that A ⊆ B. By completeness, A ≥L A. By O:we get A ∪ (Β \ Α) ≥L A, i.e., 
B ≥L A. 
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