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Abstract
Multiagent learning is a necessary yet challenging problem as multiagent systems become more

prevalent and environments become more dynamic. Much of the groundbreaking work in this area
draws on notable results from game theory, in particular, the concept of Nash equilibria. Learners
that directly learn an equilibrium obviously rely on their existence. Learners that instead seek to
play optimally with respect to the other players also depend upon equilibria since equilibria are
fixed points for learning. From another perspective, agents with limitations are real and common.
These may be undesired physical limitations as well as self-imposed rational limitations, such as
abstraction and approximation techniques, used to make learning tractable. This article explores the
interactions of these two important concepts: equilibria and limitations in learning. We introduce
the question of whether equilibria continue to exist when agents have limitations. We look at the
general effects limitations can have on agent behavior, and define a natural extension of equilibria
that accounts for these limitations. Using this formalization, we make three major contributions: (i)
a counterexample for the general existence of equilibria with limitations, (ii) sufficient conditions
on limitations that preserve their existence, (iii) three general classes of games and limitations that
satisfy these conditions. We then present empirical results from a specific multiagent learning
algorithm applied to a specific instance of limited agents. These results demonstrate that learning
with limitations is feasible, when the conditions outlined by our theoretical analysis hold.

1. Introduction

Multiagent domains are becoming more prevalent as more applications and situations require multi-
ple agents. Learning in these systems is as useful and important as in single-agent domains, possibly
more so. Optimal behavior in a multiagent system may depend on the behavior of the other agents.
For example, in robot soccer, passing the ball may only be optimal if the defending goalie is going
to move to block the player’s shot and no defender will move to intercept the pass. This challenge
is complicated by the fact that the behavior of the other agents is often not predictable by the agent
designer, making learning and adaptation a necessary component of the agent itself. In addition, the
behavior of the other agents, and therefore the optimal response, can be changing as they also adapt
to achieve their own goals.

Game theory provides a framework for reasoning about these strategic interactions. The game
theoretic concepts of stochastic games and Nash equilibria are the foundation for much of the recent
research in multiagent learning, (e.g., Littman, 1994; Hu & Wellman, 1998; Greenwald & Hall,
2002; Bowling & Veloso, 2002). A Nash equilibrium defines a course of action for each agent, such
that no agent could benefit by changing their behavior. So, all agents are playing optimally, given
that the other agents continue to play according to the equilibrium.
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From the agent design perspective, optimal agents in realistic environments are not practical.
Agents are faced with all sorts of limitations. Some limitations may physically prevent certain
behavior, e.g., a soccer robot that has traction limits on its acceleration. Other limitations are self-
imposed to help guide an agent’s learning, e.g., using a subproblem solution for advancing the
ball down the field. In short, limitations prevent agents from playing optimally and possibly from
following a Nash equilibrium.

This clash between the concept of equilibrium and the reality of limited agents is a topic of
critical importance. Do equilibria exist when agents have limitations? Are there classes of domains
or classes of limitations where equilibria are guaranteed to exist? This article introduces these ques-
tions and provides concrete answers. In particular, we introduce two models of limitations:implicit
gamesandrestricted policy spaces. We use these models to demonstrate in two key counterexam-
ples the threat that limitations pose to the existence of equilibria. We refine a sufficient condition for
the existence of equilibria, and use to prove existence in three classes of games and limitations. This
analysis is peppered with examples of applications of these results. We conclude with an empirical
example of learning with limitations, and a brief survey of related work.

The article is organized as follows. Section 2 introduces the stochastic game framework as a
model for multiagent learning. We define the game theoretic concept of equilibrium, and examine
the dependence of current multiagent learning algorithms on this concept. Section 3 enumerates and
classifies some common agent limitations and presents two formal models incorporating the effects
of limitations into the stochastic game framework. Section 4 is the major contribution of the article,
presenting both proofs of existence for certain domains and limitations as well as counterexamples
for others. Section 5 gives an example of how these results affect and relate to one particular multi-
agent learning algorithm. We present interesting results of applying a multiagent learning algorithm
in a setting with limited agents. Section 6 compares our approach with other investigations of agent
limitations in the fields of game theory and artificial intelligence. Finally, Section 7 concludes with
implications of this work and future directions.

2. Stochastic Games

A stochastic gameis a tuple(n,S,A1...n, T, R1...n), where,

• n is the number of agents,

• S is a set of states,

• Ai is the set of actions available to agenti withA being the joint action space,A1× . . .×An,

• T is a transition function,S ×A× S → [0, 1], such that,

∀s ∈ S ∀a ∈ A
∑
s′∈S

T (s, a, s′) = 1,

• andRi is a reward function for theith agent,S ×A → R.

This framework is very similar to the framework of a Markov Decision Process (MDP). Instead of a
single agent, though, there are multiple agents whosejoint actiondetermines the next state and re-
wards to the agents. The goal of an agent, as in MDPs, is to maximize its long-term reward. Notice,

354



EXISTENCE OFMULTIAGENT EQUILIBRIA

though, that each agent has its own independent reward function that it is seeking to maximize. The
goal of maximizing “long-term reward” will be made formal in Section 2.2.

Stochastic games can also be thought of as an extension of the concept of matrix games to mul-
tiple states. Two common matrix games are in Figure 1. In these games there are two players; one
selects a row and the other selects a column of the matrix. The entry of the matrix they jointly select
determines the payoffs. Rock-Paper-Scissors in Figure 1(a) is a zero-sum game, where the column
player receives the negative of the row player’s payoff. In the general case (general-sum games;
e.g., Bach or Stravinsky in Figure 1(b)) each player has an independent matrix that determines its
payoff. Stochastic games, then, can be viewed as having a matrix game associated with each state.
The immediate payoffs at a particular state are determined by the matrix entriesRi(s, a). After
selecting actions and receiving their rewards from the matrix game, the players are transitioned to
another state and associated matrix game, which is determined by their joint action. So stochas-
tic games contain both MDPs (whenn = 1) and matrix games (when|S| = 1) as subsets of the
framework.

Rr(s0, ·) =

 0 −1 1
1 0 −1

−1 1 0

 Rr(s0, ·) =
(

2 0
0 1

)

Rc(s0, ·) =

 0 1 −1
−1 0 1

1 −1 0

 Rc(s0, ·) =
(

1 0
0 2

)
(a) Rock-Paper-Scissors (b) Bach or Stravinsky

Table 1: Two example matrix games.

2.1 Policies

Unlike in single-agent settings, deterministic policies, which associate a single action with every
state, can often be exploited in multiagent settings. Consider Rock-Paper-Scissors as shown in
Figure 1(a). If the column player were to play any action deterministically, the row player could
win a payoff of one every time. This fact requires us to consider stochastic strategies and policies. A
stochastic policy for playeri, πi : S → PD(Ai), is a function that maps states to mixed strategies,
which are probability distributions over the player’s actions. We use the notationΠi to be the set of
all possible stochastic policies available to playeri, andΠ = Π1 × . . . × Πn to be the set of joint
policies of all the players. We also use the notationπ−i to refer to a particular joint policy of all
the players except playeri, andΠ−i to refer to the set of such joint policies. Finally, the notation
〈πi, π−i〉 refers to the joint policy where playeri follows πi while the other players follow their
policy fromπ−i.

In this work, we make the distinction between the concept of stochastic policies and mixtures of
policies. A mixture of policies,σi : PD(S → Ai), is a probability distribution over the set of deter-
ministic policies. An agent following a mixture of policies selects a deterministic policy according
to its mixture distribution at the start of the game and always follows this policy. This difference
is similar to the distinction between mixed strategies and behavioral strategies in extensive-form
games (Kuhn, 1953). Our work focuses on stochastic policies as they (i) are a more compact repre-
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sentation requiring|Ai||S| parameters instead of|Ai||S| parameters to represent thecompletespace
of policies, (ii) are the common notion of stochastic policies in single-agent behavior learning, (e.g.,
Jaakkola, Singh, & Jordan, 1994; Sutton, McAllester, Singh, & Mansour, 2000; Ng, Parr, & Koller,
1999), and (iii) do not require the artificial commitment to a single deterministic policy at the start
of the game, which can be difficult to understand within a learning context.

2.2 Reward Formulations

There are a number of possible reward formulations in single-agent learning that define the agent’s
notion of optimality. These formulations also apply to stochastic games. We will explore two of
these reward formulations in this article:discounted rewardandaverage reward. Although this
work focuses on discounted reward, many of our theoretical results also apply to average reward.

Discounted Reward. In the discounted reward formulation, the value of future rewards is dimin-
ished by a discount factorγ. Formally, given a joint policyπ for all the agents, the value to agenti
of starting at states ∈ S is,

V π
i (s) =

∞∑
t=0

γtE
{
rt
i |s0 = s, π

}
, (1)

wherert
i is the immediate reward to playeri at timet with the expectation conditioned ons as the

initial state and the players following the joint policyπ.
In our formulation, we will assume an initial state,s0 ∈ S, is given and define the goal of each

agenti as maximizingV π
i (s0). This formulation differs from the usual goal in MDPs and stochastic

games, which is tosimultaneouslymaximize the value of all states. We require this weaker goal
since our exploration into agent limitations makes simultaneous maximization unattainable.1 This
same distinction was required by Sutton and colleagues (2000) in their work on parameterized
policies, one example of an agent limitation.

Average Reward. In the average reward formulation all rewards in the sequence are equally
weighted. Formally, this corresponds to,

V π
i (s) = lim

T→∞

T∑
t=0

1
T

E
{
rt
i |s0 = s, π

}
, (2)

with the expectation defined as in Equation 1. As is common with this formulation, we assume that
the stochastic game isergodic. A stochastic game is ergodic if for all joint policies any state can
be reached in finite time from any other state with non-zero probability. This assumption makes the
value of a policy independent of the initial state. Therefore,

∀s, s′ ∈ S V π
i (s) = V π

i (s′).

So any policy that maximizes the average value from one state maximizes the average value from
all states. These results along with more details on the average reward formulation for MDPs are
summarized by Mahadevan (1996).

1. This fact is demonstrated later by the example in Fact 5 in Section 4. In this game with the described limitation, if
the column player randomizes among its actions, then the row player cannot simultaneously maximize the value of
the left and right states.
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For either formulation we will use the notationV π
i to refer to the value of the joint policyπ to agent

i, which in either formulation is simplyV π
i (s0), wheres0 can be any arbitrary state for the average

reward formulation.

2.3 Best-Response and Equilibria

Even with the concept of stochastic policies and well-defined reward formulations, there are, in
general, still no optimal policies that are independent of the other players’ policies. We can, though,
define a notion ofbest-response.

Definition 1 For a game, thebest-response functionfor playeri, BRi(π−i), is the set of all policies
that are optimal given the other player(s) play the joint policyπ−i. A policyπi is optimal givenπ−i

if and only if,

∀π′i ∈ Πi V
〈πi,π−i〉
i ≥ V

〈π′i,π−i〉
i .

The major advancement that has driven much of the development of game theory, matrix games,
and stochastic games is the notion of a best-response equilibrium, orNash equilibrium(Nash, Jr.,
1950).

Definition 2 A Nash equilibriumis a joint policy,πi=1...n, with

∀i = 1, . . . , n πi ∈ BRi(π−i).

Basically, an equilibrium is a policy for each player where each is playing a best-response to the
other players’ policies. Hence, no player can do better by changing policies given that all the other
players continue to follow the equilibrium policy. What makes the notion of an equilibrium inter-
esting is that at least one, possibly many, exist in all matrix games and most stochastic games. This
was proven by Nash (1950) for matrix games, Shapley (1953) for zero-sum discounted stochastic
games, Fink (1964) for general-sum discounted stochastic games, and Mertens and Neyman (1981)
for zero-sum average reward stochastic games. The existence of equilibria for general-sum average
reward stochastic games is still an open problem (Filar & Vrieze, 1997).

In the Rock-Paper-Scissors example in Figure 1(a), the only equilibrium consists of each player
playing the mixed strategy where all the actions have equal probability. In the Bach-or-Stravinsky
example in Figure 1(b), there are three equilibria. Two consist of both players selecting their first
action or both selecting their second. The third involves both players selecting their preferred coop-
erative action with probability2/3, and the other action with probability1/3.

2.4 Learning in Stochastic Games

Learning in stochastic games has received much attention in recent years as the natural extension
of MDPs to multiple agents. The Minimax-Q algorithm (Littman, 1994) was the first reinforcement
learning algorithm to explicitly consider the stochastic game framework. Developed for discounted
reward, zero-sum stochastic games, the essence of the algorithm was to use Q-learning to learn the
values of joint actions. The value of the next state was then computed by solving for the value of
the unique Nash equilibrium of that state’s Q-values. Littman and Szepesvari (1996) proved that
under usual exploration requirements for both players, Minimax-Q would converge to the Nash
equilibrium of the game, independent of the opponent’s play beyond the exploration requirement.
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Other algorithms have since been presented for learning in stochastic games. We will summarize
these algorithms by broadly grouping them into two categories:equilibrium learnersand best-
response learners. The main focus of this summarization is to demonstrate how the existence of
equilibria under limitations is a critical question to existing algorithms.

Equilibrium Learners. Minimax-Q has been extended in many different ways. Nash-Q (Hu &
Wellman, 1998), Friend-or-Foe-Q (Littman, 2001), and Correlated-Q (Greenwald & Hall, 2002) are
all variations on this same theme with different restrictions on the applicable class of games or the
exact notion of equilibrium learned. All of the algorithms, though, seek to learn an equilibrium
of the game directly, by iteratively computing intermediate equilibria. Some of the algorithms have
theoretical guarantees of convergence to equilibrium play, others have empirical results to this effect.
Like Minimax-Q, though, the policies learned are independent of the play of the other agents beyond
exploration requirements. We refer collectively to these algorithms asequilibrium learners. What
is important to observe is that these algorithms depend explicitly on the existence of equilibria. If
an agent or agents were limited in such a way so that no equilibria existed then these algorithms
would be, for the most part, ill-defined.2

Best-Response Learners.Another class of algorithms is the class ofbest-response learners. These
algorithms do not explicitly seek to learn an equilibrium, instead seeking to learn best-responses to
the other agents. The simplest example of one of these algorithms is Q-learning (Watkins, 1989).
Although not an explicitly multiagent algorithm, it was one of the first algorithms applied to mul-
tiagent environments (Tan, 1993; Sen, Sekaran, & Hale, 1994). Another less naive best-response
learning algorithm is WoLF-PHC (Bowling & Veloso, 2002), which varies the learning rate to ac-
count for the other agents learning simultaneously. Other best-response learners include Fictitious
Play (Robinson, 1951; Vrieze, 1987), Opponent-Modeling Q-Learning (Uther & Veloso, 1997),
Joint Action Learners (Claus & Boutilier, 1998), and any single-agent learning algorithm that learns
optimal policies. Although these algorithms have no explicit dependence on equilibria, there is an
important implicit dependence. If algorithms that learn best-responses converge when playing each
other, then it must be to a Nash equilibrium (Bowling & Veloso, 2002). Therefore, all learning fixed
points are Nash equilibria. In the context of agent limitations, this means that if limitations cause
equilibria to not exist, then best-response learners could not converge.

This nonexistence of equilibria is exactly one of the problems faced by Q-learning in stochastic
games. Q-learning is limited to deterministic policies. The deterministic policy limitation can, in
fact, cause no equilibria to exist (see Fact 1 in Section 4.) So there are many games for which Q-
learning cannot converge when playing with other best-response learners, such as other Q-learners.

In summary, both equilibrium and best-response learners depend, in some way, on the existence of
equilibria. The next section explores agent limitations that are likely to be faced in realistic learning
situations. In Section 4, we then present our main results examining the effect these limitations have
on the existence of equilibria, and consequently on both equilibrium and best-response learners.

2. It should be noted that in the case of Minimax-Q, the algorithm and solution concept are still well-defined. A policy
that maximizes its worst-case value may still exist even if limitations make it such that no equilibria exist. But, this
minimax optimal policy might not necessarily be part of an equilibrium. Later, in Section 4, Fact 5, we present an
example of a zero-sum stochastic game and agent limitations where the minimax optimal policies exist but do not
comprise an equilibrium.
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3. Limitations

The solution concept of Nash equilibrium depends on all the agents playing optimally. From the
agent development perspective, agents have limitations that prevent this from being a reality. The
working definition of limitation in this article isanything that can restrict the agent from learning
or playing optimal policies. Broadly speaking, limitations can be classified into two categories:
physical limitations and rational limitations. Physical limitations are those caused by the interaction
of the agent with its environment and are often unavoidable. Rational limitations are limitations
specifically chosen by the agent designer to make the learning problem tractable, either in memory
or time. We briefly explore some of these limitations informally before presenting a formal model
of limitations that attempts to capture their effect within the stochastic game framework.

3.1 Physical Limitations

One obvious physical limitation is that the agent simply is broken. A mobile agent may cease to
move or less drastically may lose the use of one of its actuators preventing certain movements.
Similarly, another agent may appear to be “broken” when in fact the motion is simply outside its
capabilities. For example, in a mobile robot environment where the “rules” allow robots to move
up to two meters per second, there may be a robot that is not capable of reaching that speed. An
agent that is not broken, may suffer from poor control where its actions are not always carried out
as desired, e.g., due to poorly tuned servos, inadequate wheel traction, or high system latency.

Another common physical limitation is hardwired behavior. Most agents in dynamic domains
need some amount of hard-wiring for fast response and safety. For example, many mobile robot
platforms are programmed to immediately stop if an obstacle is too close. These hardwired actions
prevent certain behavior by the agent, which is often unsafe but is potentially optimal.

Sensing is a common area of agent limitations containing everything from noise to partial ob-
servability. Here we’ll mention just one broad category of sensing problems: state aliasing. This
occurs when an agent cannot distinguish between two different states of the world. An agent may
need to remember past states and actions in order to properly distinguish the states, or may simply
execute the same action in both states.

3.2 Rational Limitations

Rational limitations are a requirement for agents to learn in even moderately sized problems. Tech-
niques for making learning scale, which often focus on near-optimal solutions, continue to be pro-
posed and investigated in single-agent learning. They are likely to be even more necessary in multi-
agent environments which tend to have larger state spaces. We will examine a few specific methods.

In domains with sparse rewards one common technique is reward shaping, (e.g., Mataric, 1994).
A designer artificially rewards the agent for actions the designer believes to be progressing toward
the sparse rewards. These additional rewards can often speed learning by focusing exploration, but
also can cause the agent to learn suboptimal policies. For example, in robotic soccer moving the
ball down the field is a good heuristic for goal progression, but at times the optimal goal-scoring
policy is to pass the ball backward to an open teammate.

Subproblem reuse also has a similar effect, where a subgoal is used in a portion of the state
space to speed learning, (e.g., Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Bowling
& Veloso, 1999). These subgoals, though, may not be optimal for the global problem and so prevent
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the agent from playing optimally. Temporally abstract options, either provided (Sutton, Precup, &
Singh, 1998) or learned (McGovern & Barto, 2001; Uther, 2002), also enforce a particular sub-
policy on a portion of the state space. Although in theory, the primitive actions are still available
to the agents to play optimal policies, in practice abstraction away from primitive actions is often
necessary in large or continuous state spaces.

Parameterized policies are receiving a great deal of attention as a way for reinforcement learning
to scale to large problems, (e.g., Williams & Baird, 1993; Sutton et al., 2000; Baxter & Bartlett,
2000). The idea is to give the learner a policy that depends on far less parameters than the entire
policy space actually would require. Learning is then performed in the smaller space of parameters
using gradient techniques. Parameterized policies simplify and speed learning at the expense of
possibly not being able to represent the optimal policy in the parameter space.

3.3 Models of Limitations

This enumeration of limitations shows that there are a number and variety of limitations with which
agents may be faced, and they cannot be realistically avoided. In order to understand their impact
on equilibria, we model limitations formally within the game theoretic framework. We introduce
two models that capture broad classes of limitations:implicit gamesandrestricted policy spaces.

Implicit Games. Limitations may cause an agent to play suboptimally, but it may be that the
agentis actually playing optimally in a different game. If this new game can be defined within the
stochastic game framework we call this theimplicit game, in contrast to the original game called the
explicit game. For example, reward shaping adds artificial rewards to help guide the agent’s search.
Although the agent is no longer learning an optimal policy in the explicit game, it is learning an
optimal policy of some game, specifically the game with these additional rewards added to that
agent’sRi function. Another example is due to broken actuators preventing an agent from taking
some action. The agent may be suboptimal in the explicit game, while still being optimal in the
implicit game defined by removing these actions from the agent’s action set,Ai. We can formalize
this concept in the following definition.

Definition 3 Given a stochastic game(n,S,A1...n, T, R1...n) the tuple(n,S, Â1...n, T̂ , R̂1...n) is
an implicit game if and only if it is itself a stochastic game and there exist mappings,

τi : S × Âi ×Ai → [0, 1],

such that,

∀s, s′ ∈ S ∀âi ∈ Âi T̂ (s, 〈âi〉i=1...n , s′) =
∑
a∈A

Πn
i=1τi(s, âi, ai) T (s, 〈ai〉i=1...n , s′).

Theτi’s are mappings from the implicit action space into stochastic actions in the explicit action
space.

Theτi mappings insure that, for each player, the choices available in the implicit game are a restric-
tion of the choices in the explicit game. In other words, for any policy in the implicit game, there
exists an equivalent, possibly stochastic policy, in the explicit game.

Reward shaping, broken actuators, and exploration can all be captured within this model. For
reward shaping the implicit game is(n,S,A1...n, T, R̂1...n), whereR̂i adds the shaped reward into
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the original reward,Ri. In this case theτ mappings are just the identity,

τi(s, a, a′) =
{

1 if a = a′

0 otherwise
.

For the broken actuator example, leta0
i ∈ Ai be some null action for agenti and letab

i ∈ Ai be
some broken action for agenti that under the limitation has the same effect as the null action. The
implicit game, then, is(n,S,A1...n, T̂ , R̂1...n), where,

T̂ (s, a, s′) =
{

T (s,
〈
a0

i , a−i

〉
, s′) if ai = ab

i

T (s, a, s′) otherwise

R̂(s, a) =
{

R(s,
〈
a0

i , a−i

〉
) if ai = ab

i

R(s, a) otherwise
,

and,

τi(s, a) =
{

a0
i if a = ab

i

a otherwise
.

For ε-exploration, as with broken actuators, onlŷT andR̂ need to be defined. They are just the
ε combination ofT or R with the transition probabilities or reward values of selecting a random
action.

Limitations captured by this model can be easily analyzed with respect to their effect on the
existence of equilibria. We now restrict ourselves to discounted reward stochastic games, where
equilibria existence is known. Using the intuitive definition of an equilibrium as a joint policy such
that “no player can do better by changing policies,” an equilibrium in the implicit game achieves
this definition for the explicit game. Since all discounted reward stochastic games have at least one
equilibrium, so must the implicit game, which is also in this class. This equilibrium for the implicit
game is then an equilibrium in the explicit game given that the agents are limited.

On the other hand, many of the limitations described above cannot be modeled in this way.
None of the limitations of abstraction, subproblem reuse, parameterized policies, or state aliasing
lend themselves to being described by this model. This leads us to our second, and in many ways
more general, model of limitations.

Restricted Policy Spaces.The second model is that ofrestricted policy spaces, which models limi-
tations as restricting the agent from playing certain policies. For example, anε-exploration strategy
restricts the player to policies that select all actions with some minimum probability. Parameter-
ized policy spaces have a restricted policy space corresponding to the space of policies that can be
represented by their parameters. We can define this formally.

Definition 4 A restricted policy spacefor playeri is a non-empty and compact subset,Πi ⊆ Πi, of
the complete space of stochastic policies.

The assumption of compactness3 may at first appear strange, but it is not particularly limiting, and
is critical for any equilibrium analysis.

3. SinceΠi is a subset of a bounded set, the requirement thatΠi is compact merely adds that the limit point of any
sequence of elements from the set is also in the set.
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Physical Limitations Implicit Games Restricted Policies
Broken Actuators X X
Hardwired Behavior X X
Poor Control X X
State Aliasing X
Rational Limitations Implicit Games Restricted Policies
Reward Shaping or Incentives X
Exploration X X
State Abstraction/Options X
Subproblems X
Parameterized Policy X

Table 2: Common agent limitations. The column check-marks correspond to whether the limitation
can be modeled straightforwardly using implicit games and/or restricted policy spaces.

It should be straightforward to see that parameterized policies, state aliasing (with no memory),
and subproblem reuse, as well as exploration and broken actuators all can be captured as a restric-
tion on policies the agent can play. Therefore they can be naturally described as restricted policy
spaces. On the other hand, the analysis of the existence of equilibria under this model is not at all
straightforward. Since restricted policy spaces capture most of the really interesting limitations we
have discussed, this is precisely the focus of the rest of this article.

Before moving on to this analysis, we summarize our enumeration of limitations in Table 2. The
limitations that we have been discussing are listed as well as denoting the model that most naturally
captures their effect on agent behavior.

4. Existence of Equilibria

In this section we define formally the concept of arestricted equilibrium, which account for agents’
restricted policy spaces. We then carefully analyze what can be proven about the existence of re-
stricted equilibria. The results presented range from somewhat trivial examples (Facts 1, 2, 3, and 4)
and applications of known results from game theory and basic analysis (Theorems 1 and 5) to results
that we believe are completely new (Theorems 2, 3, and 4), as well as a critical counterexample to
the wider existence of restricted equilibria (Fact 5). But all of the results are in a sense novel since
this specific question has received no direct attention in the game theory nor the multiagent learning
literature.

4.1 Restricted Equilibria

We begin by defining the concept of an equilibrium under the model of restricted policy spaces.
First we need a notion of best-response that accounts for the players’ limitations.

Definition 5 A restricted best-responsefor playeri, BRi(π−i), is the set of all policies fromΠi that
are optimal given the other player(s) play the joint policyπ−i.

We can now use this to define an equilibrium.
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Definition 6 A restricted equilibriumis a joint policy,πi=1...n, where,

πi ∈ BRi(π−i).

Hence, no player can do better by changing policies given that all the other players continue to
follow the equilibrium policy, and the player can only switch to policies within their restricted
policy space.

4.2 Existence of Restricted Equilibria

We can now state some results about when equilibria are preserved by restricted policy spaces, and
when they are not. Unless otherwise stated (as in Theorems 2 and 4, which only apply to discounted
reward), the results presented here apply equally to both the discounted reward and the average
reward formulations. We will separate the proofs for the two reward formulations when needed.
The first four facts show that the question of the existence of restricted equilibria does not have a
trivial answer.

Fact 1 Restricted equilibria do not necessarily exist.

Proof. Consider the Rock-Paper-Scissors matrix game with players restricted to the space of deter-
ministic policies. There are nine joint deterministic policies, and none of these joint policies are an
equilibrium. �

Fact 2 There exist restricted policy spaces such that restricted equilibria exist.

Proof. One trivial restricted equilibrium is in the case where all agents have a singleton policy
subspace. The singleton joint policy therefore must be a restricted equilibrium. �

Fact 3 If π∗ is a Nash equilibrium andπ∗ ∈ Π, thenπ∗ is a restricted equilibrium.

Proof. If π∗ is a Nash equilibrium, then we have

∀i ∈ {1 . . . n} ∀πi ∈ Πi V π∗
i ≥ V

〈πi,π
∗
−i〉

i .

SinceΠi ⊆ Πi, then we also have

∀i ∈ {1 . . . n} ∀πi ∈ Πi V π∗
i ≥ V

〈πi,π
∗
−i〉

i ,

and thusπ∗ is a restricted equilibrium. �
On the other hand, the converse is not true; not all restricted equilibria are of this trivial variety.

Fact 4 There exist non-trivial restricted equilibria that are neither Nash equilibria nor come from
singleton policy spaces.

Proof. Consider the Rock-Paper-Scissors matrix game from Figure 1. Suppose the column player is
forced, due to some limitation, to play “Paper” exactly half the time, but is free to choose between
“Rock” and “Scissors” otherwise. This is a restricted policy space that excludes the only Nash
equilibrium of the game. We can solve this game using the implicit game model, by giving the
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Restricted Policy Space

Restricted Equilibrium

Nash Equilibrium

R

P S

s1

s2

Explicit Game Implicit Game

Payoffs

 0 −1 1
1 0 −1

−1 1 0


 −1

2 0
1
2 −1

2

0 1
2


Nash Equilibrium

〈
1
3 , 1

3 , 1
3

〉
,
〈

1
3 , 1

3 , 1
3

〉 〈
0, 1

3 , 2
3

〉
,
〈

2
3 , 1

3

〉
Restricted Equilibrium

〈
0, 1

3 , 2
3

〉
,
〈

1
3 , 1

2 , 1
6

〉
Figure 1: Example of a restricted equilibrium that is not a Nash equilibrium. Here, the column

player in Rock-Paper-Scissors is restricted to playing only linear combinations of the
strategiess1 =

〈
1
2 , 1

2 , 0
〉

ands2 =
〈
0, 1

2 , 1
2

〉
.

limited player only two actions,s1 = (0.5, 0.5, 0) ands2 = (0, 0.5, 0.5), which the player can mix
between. This is depicted graphically in Figure 1. We can solve the implicit game and convert
the two actions back to actions of the explicit game to find a restricted equilibrium. Notice this
restricted equilibrium is not a Nash equilibrium. �

Notice that the Fact 4 example has a convex policy space, i.e., all linear combinations of policies
in the set are also in the set. Also, notice that the Fact 1 counterexample has a non-convex policy
space. These examples suggest that restricted equilibria may exist as long as the restricted policy
space is convex. The convexity restriction is, in fact, sufficient for matrix games.

Theorem 1 When|S| = 1, i.e. in matrix games, ifΠi is convex, then there exists a restricted
equilibrium.

The proof is based on an application of Rosen’s theorem for concave games (Rosen, 1965) and
is included in Appendix A. Surprisingly, the convexity restriction is not sufficient for stochastic
games.

Fact 5 For a stochastic game, even ifΠi is convex, restricted equilibria do not necessarily exist.

Proof. Consider the stochastic game in Figure 2. This is a zero-sum game where only the payoffs
to the row player are shown. The discount factorγ ∈ (0, 1). The actions available to the row player
areU andD, and for the column playerL or R. From the initial state,s0, the column player may
select eitherL or R which results in no rewards but with high probability,1 − ε, transitions to the
specified state (regardless of the row player’s action), and with low probability,ε, transitions to the
opposite state. Notice that this stochasticity is not explicitly shown in Figure 2. In each of the
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resulting states the players play the matrix game shown and then deterministically transition back
to the initial state. Notice that this game is unichain, where all the states are in a single ergodic
set, thus satisfying the average reward formulation requirement. Also, notice that the game without
limitations is guaranteed to have an equilibrium in both the discounted reward and the average
reward, since it is zero-sum, formulations.

1 0
0 0



RL

0 0
0 0



0 0
0 1



ε 1− εε1− ε

s0

sRsL

Figure 2: An example stochastic game where convex restricted policy spaces do not preserve the
existence of equilibria.

Now consider the restricted policy space where players have to play their actions with the same
probability in all states. So,

Πi =
{
πi ∈ Πi|∀s, s′ ∈ S ∀a ∈ A πi(s, a) = πi(s′, a)

}
. (3)

Notice that this is a convex set of policies. That is, if policiesx1 andx2 are inΠi (according to
Equation 3), then for anyα ∈ [0, 1], x3 must also be inΠi, where,

x3(s, a) = αx1(s, a) + (1− α)x2(s, a). (4)

The convexity ofΠi can be seen by examiningx3(s′, a) for anys′ ∈ S. From Equation 4, we have,

x3(s′, a) = αx1(s′, a) + (1− α)x2(s′, a) (5)

= αx1(s, a) + (1− α)x2(s, a) (6)

= x3(s, a). (7)

Therefore,x3 is in Πi and henceΠi is convex.
This game, though, does not have a restricted equilibrium. The four possible joint deterministic

policies,(U,L), (U,R), (D,L), and(D,R), are not equilibria. So if there exists an equilibrium
it must be mixed. Consider any mixed strategy for the row player. If this strategy playsU with
probability less than12 then the only best-response for the column player is to playL; if greater than
1
2 then the only best-response is to playR; if equal then the only best-responses are to playL or R
deterministically. In all cases, all best-responses are deterministic, so this rules out mixed strategy
equilibria, and so no equilibrium exists. �

Fact 5 demonstrates that convexity is not a strong enough property to guarantee the existence
of restricted equilibria. The discussion in Section 2.4 concluded that the majority of existing mul-
tiagent learning algorithms hold some dependence on the existence of equilibria. Therefore, this

365



BOWLING & V ELOSO

result may have serious implications for the scaling of multiagent learning to large problems. We
will explore these implications by first examining this example more closely, in order to identify a
new sufficient condition. We will then seek to rescue the equilibrium notion by exploring specific
situations where its existence can be preserved.

4.2.1 A SUFFICIENT CONDITION FOR EQUILIBRIA

Standard equilibrium proof techniques fail in the Fact 5 counterexample because the player’s best-
response sets are not convex, even though their restricted policy spaces are convex. Notice that
the best-response to the row player mixing equally between actions is to play either of its actions
deterministically. But, linear combinations of these actions (e.g., mixing equally) are not best-
responses. This intuition is proven in the following lemma.

Lemma 1 For any stochastic game, ifΠi is convex and for allπ−i ∈ Π−i, BRi(π−i) is convex,
then there exists a restricted equilibrium.

The proof of this lemma relies on Kakutani’s fixed point theorem using the convexity of the best-
response as the critical condition for applying the theorem. Complete details of the proof can be
found in Appendix B.

The consequence of this lemma is that, if we can prove that the sets of restricted best-responses
are convex then restricted equilibria exist. Notice that the convexity of the restricted policy space is
necessary for this condition (e.g., consider a uniform reward function resulting inBR(π−i) = Π).
The Fact 5 counterexample demonstrates that it is not sufficient, since a restricted policy space can
be convex without the restricted best-response sets being convex.

We now look at placing further restrictions either on the restricted policy spaces or the stochas-
tic game, to insure provably convex best-response sets. After each existence proof for restricted
equilibria, we give one or more practical examples of domains where the theoretical results apply.
These results begin to enumerate a few general classes where restricted equilibria are guaranteed to
exist.

4.2.2 A SUBCLASS OFRESTRICTEDPOLICIES

The first result for general stochastic games uses a stronger notion of convexity for restricted policy
spaces.

Definition 7 A restricted policy spaceΠi is statewise convex, if it is the Cartesian product over all
states of convex strategy sets. Equivalently, if for allx1, x2 ∈ Πi and all functionsα : S → [0, 1],
the policyx3(s, a) = α(s)x1(s, a) + (1− α(s))x2(s, a) is also inΠi.

In words, statewise convex policy spaces allow the policy’s action probabilities at each state to be
modified (within the restricted set)independently. We can show that this is a sufficient condition.

Theorem 2 In the discounted reward formulation, ifΠi is statewise convex, then there exists a
restricted equilibrium.

Proof. With statewise convex policy spaces, there exist optimal policies in the strong sense as
mentioned in Section 2. Specifically, there exists a policy that can simultaneously maximize the
value of all states. Formally, for anyπ−i there exists aπi ∈ Πi such that,

∀s ∈ S ∀π′i ∈ Πi V
〈πi,π−i〉
i (s) ≥ V

〈π′i,π−i〉
i (s).
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Suppose this were not true, i.e., there were two policies each of which maximized the value of
different states. We can construct a new policy that in each state follows the policy whose value is
larger for that state. This policy will maximize the value of both states that those policies maximized,
and due to statewise convexity is also inΠi. We will use that fact to redefine optimality to this strong
sense for this proof.

We will now make use of Lemma 1. First, notice the lemma’s proof still holds even with this new
definition of optimality. We just showed that under this redefinition,BRi(π−i) is non-empty, and
the same argument for compactness ofBRi(π−i) holds. So we can make use of Lemma 1 and what
remains is to prove thatBRi(π−i) is convex. Sinceπ−i is a fixed policy for all the other players this
defines an MDP for playeri (Filar & Vrieze, 1997, Corollary 4.2.11). So we need to show that the set
of polices from the player’s restricted set that are optimal for this MDP is a convex set. Concretely,
if x1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a) + (1 − α)x2(s, a) is
also optimal for anyα ∈ [0, 1]. Sincex1 andx2 are optimal in the strong sense, i.e., maximizing
the value of all states simultaneously, then they must have the same per-state value.

Here, we will use the notationV x(s) to refer to the value of policyx from states in this fixed
MDP. The value function for any policy is theuniquesolution to the Bellman equations, specifically,

∀s ∈ S V x(s) =
∑

a

x(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x(s′)

)
. (8)

Forx3 then we get the following,

V x3(s) =
∑

a

x3(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
(9)

=
∑

a

(αx1(s, a) + (1− α)x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
(10)

= α
∑

a

x1(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
+

(1− α)
∑

a

x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
. (11)

Notice thatV x3(s) = V x1(s) = V x2(s) is a solution to these equations, and therefore is the unique
solution for the value ofx3. Therefore,x3 has the same values asx1 andx2, and hence is also opti-
mal. ThereforeBRi(π−i) is convex, and from Lemma 1 we get the existence of restricted equilibria
under this stricter notion of optimality, which also makes the policies a restricted equilibrium under
our original notion of optimality, that is only maximizing the value of the initial state. �

Example: Multirobot Indoor Navigation.Consider an indoor navigation domain with multiple
robots traversing constrained hallways. The agents are the robots, all with their own navigational
goals. A robot’s state consists of a highly discretized representation of position and orientation
resulting in an intractable number of states per robot. The global state is the joint states of all of
the robots and is known by all the agents. The robots’ actions are low-level navigation commands.
We will construct an example of a useful restricted policy space for this domain that is statewise
convex, and therefore satisfies the conditions of Theorem 2. Define a set of key decision points,K,
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made up of the hallway intersections. These decision points define a subset of the complete state
space,Kn ⊆ S. While between key decision points, each agent will use a fixed policy assigning
probabilities to actions to reach the next decision point. The agents’ policies are restricted so that
decisions are only made when all agents have arrived at a key decision point, where they all simulta-
neously choose an action contingent on the global state. The agents can independently assign action
probabilities for all states inKn, while all the action probabilities inS−Kn are fixed. Hence, this is
a statewise convex restricted policy space. Theorem 2 therefore applies and we conclude that there
exists restricted equilibria in this domain.

Despite the above example, most rational limitations that allow reinforcement learning to scale
are unlikely to be statewise convex restrictions. They often have a strong dependence between
states. For example, parameterized policies involve far less parameters than the number of states,
which is often intractably large. Either the majority of states have fixed action probabilities, as in the
above example, or there will be fart too many parameters to optimize. Similarly, subproblems force
whole portions of the state space to follow the same subproblem solution. Therefore, these portions
of the state space do not select their actions independently. Abstraction and state aliasing use the
same action probabilities across multiple states, and so also are not statewise convex. We now look
at retaining a simple convexity condition on the restricted policy spaces, but examine constrained
spaces of stochastic games.

4.2.3 SUBCLASSES OFSTOCHASTIC GAMES

One way to relax from statewise convexity to general convexity is to consider only a subset of
stochastic games. Theorem 1 is one example, where restricted equilibria exist for the subclass
of matrix games with convex restricted policy spaces. Matrix games have a highly constrained
“transition” function allowing only self transitions, which are independent of the players’ actions.
We can generalize this idea beyond single-state games.

Theorem 3 Consider no-control stochastic games, where all transitions are independent of the
players’ actions, i.e.,

∀s, s′ ∈ S ∀a, b ∈ A T (s, a, s′) = T (s, b, s′).

If Πi is convex, then there exists a restricted equilibrium.

Proof (Discounted Reward).This proof also makes use of Lemma 1, leaving us only to show that
BRi(π−i) is convex. Just as in the proof of Theorem 2 we will consider the MDP defined for player
i when the other players follow the fixed policyπ−i. As before it suffices to show that for this MDP,
if x1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a) + (1 − α)x2(s, a) is
also optimal for anyα ∈ [0, 1].

Again we use the notationV x(s) to refer to the traditional value of a policyx at states in this
fixed MDP. SinceT (s, a, s′) is independent ofa, we can simplify the Bellman equations (Equa-
tion 8) to

V x(s) =
∑

a

x(s, a)R(s, a) + γ
∑
s′

∑
a

x(s, a)T (s, a, s′)V x(s′) (12)

=
∑

a

x(s, a)R(s, a) + γ
∑
s′

T (s, ·, s′)V x(s′). (13)
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For the policyx3, the value of states is then,

V x3(s) = α
∑

a

x1(s, a)R(s, a) + (1− α)
∑

a

x2(s, a)R(s, a) +

γ
∑
s′

T (s, ·, s′)V x3(s′). (14)

Using equation 13 for bothx1 andx2 we get,

V x3(s) = α(V x1(s)− γ
∑
s′

T (s, ·, s′)V x1(s′)) +

(1− α)(V x2(s)− γ
∑
s′

T (s, ·, s′)V x2(s′)) +

γ
∑
s′

T (s, ·, s′)V x3(s′) (15)

= αV x1(s) + (1− α)V x2(s) +

γ
∑
s′

T (s, ·, s′)
(
V x3(s′)− αV x1(s′)− (1− α)V x2(s′)

)
(16)

Notice that a solution to these equations isV x3(s) = αV x1(s) + (1 − α)V x2(s), and the Bellman
equations must have a unique solution. Hence,V x3(s0) is equal toV x1(s0) andV x2(s0), which are
equal since both are optimal. Sox3 is optimal, andBRi(π) is convex. Applying Lemma 1 we get
that restricted equilibria exist. �

Proof (Average Reward).An equivalent definition to Equation 2 of a policy’s average reward is,

V π
i =

∑
s∈S

dπ(s)
∑

a

π(s, a)R(s, a), (17)

wheredπ(s) defines the distribution over states visited while followingπ after infinite time. For a
stochastic game or MDP that is unichain we know that this distribution is independent of the initial
state. In the case of no-control stochastic games or MDPs, this distribution becomes independent
of the actions and policies of the players, and depends solely on the transition probabilities. So
Equation 17 can be written,

V π
i =

∑
s∈S

d(s)
∑

a

π(s, a)R(s, a). (18)

As before, we must show thatBRi(π−i) is convex to apply Lemma 1. Consider the MDP defined
for playeri when the other players follow the policyπ−i. It suffices to show that for this MDP, if
x1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a)+ (1−α)x2(s, a) is also
optimal for anyα ∈ [0, 1]. Using Equation 18, we can write the value ofx3 as,

V x3
i =

∑
s∈S

d(s)

(∑
a

x3(s, a)R(s, a)

)
(19)

=
∑
s∈S

d(s)

(∑
a

(αx1(s, a) + (1− α)x2(s, a))R(s, a)

)
(20)
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= d(s)

(∑
a

αx1(s, a)R(s, a) +
∑

a

(1− α)x2(s, a)R(s, a)

)
(21)

= α

(∑
s∈S

d(s)
∑

a

x1(s, a)R(s, a)

)
+ (1− α)

(∑
s∈S

d(s)
∑

a

x2(s, a)R(s, a)

)
(22)

= αV x1
i (s) + (1− α)V x2

i (s) (23)

= αV x1
i (s) + (1− α)V x1

i (s) = V x1
i (s). (24)

Thereforex3 has the same average reward asx1 and so is also optimal. SoBRi(π−i) is convex and
by Lemma 1 there exists an equilibrium. �

Example: Space Probe.Consider a space probe traveling on a predefined planetary trajectory.
Consider using a multiagent approach to coordinating the gathering of data from scientific instru-
ments. Each instrument is an agent making independent decisions and maximizing an assigned
reward function. The state of the system is the position and orientation of the probe, which fol-
lows a fixed transition function. The state determines the effectiveness of the various data-gathering
tasks (i.e., the agents’ rewards), which also may be determined by the decisions of the other in-
struments. For example, camera images may be occluded when collecting atmospheric samples, or
two instruments may draw too much power if activated simultaneously, causing both to fail. This
is a no-control stochastic game, as the instruments’ actions do not control the state, which is the
predefined trajectory of the probe. By Theorem 3, restricted equilibria exist for all convex restricted
policy spaces in this domain.

We can now merge Theorem 2 and Theorem 3 allowing us to prove existence of equilibria
for a general class of games where only one of the player’s actions affects the next state. Since
this theorem’s sufficient conditions are the most general of those presented, multiple examples of
applications follow.

Theorem 4 Consider single-controller stochastic games (Filar & Vrieze, 1997), where all transi-
tions depend solely on player 1’s actions, i.e.,

∀s, s′ ∈ S ∀a, b ∈ A a1 = b1 ⇒ T (s, a, s′) = T (s, b, s′).

In the discounted reward formulation, ifΠ1 is statewise convex andΠi6=1 is convex, then there exists
a restricted equilibrium.

Proof. This proof again makes use of Lemma 1, leaving us to show thatBRi(π−i) is convex. For
i = 1 we use the argument from the proof of Theorem 2. Fori 6= 1 we use the argument from
Theorem 3. �

Example: Haunted House Ride.An example that helps to illustrate the concept of a single-controller
stochastic game is an amusement park haunted house ride. Consider the system as consisting of
multiple agents including the ride operator and the ride’s passengers. Suppose the ride operator
has choices over different ride routes therefore determining the state of the world for the passenger
agents. The passengers, on the other hand, can only choose at each state where to look and when
to try and scare their fellow passengers. Therefore, one agent (the operator) controls the transitions,
while all the agents’ (operator and passengers) affect the resulting rewards. Consider that the ride
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operator may be restricted to only making decisions at a few key decision points determined by
the ride designer. Therefore, the operator’s policy space is statewise convex. Hence, according
to Theorem 4 if the passengers have convex restricted policy spaces resulting from their imposed
limitations, then restricted equilibria exist.

Example: Mobile Data Gathering.The general pattern of the haunted house ride can also be seen
in practical situations. Consider mobile data gathering, such as an extended version of the space
probe example presented earlier. There is one navigational agent whose actions determine the state
(e.g., position and orientation). The other agents are instruments choosing how to gather data at any
given moment, as in the no-control version described above. The rewards are determined by all of
the agents actions, but the state transition is defined only by the navigational agent. This fits the
definition of a single-controller stochastic game and the Theorem holds for appropriate restricted
policy spaces.

Example: Asymmetric CompetitionThe above examples, although not strictly team games, do have
a cooperative nature to them. Single-controller stochastic games can also be competitive. Con-
sider an economic competition between two firms, where one firm’s supply technology is primarily
infrastructure-based, while the other’s is very fluid. For example, a transportation company using
rail lines versus a company using trucks. Since one agent’s actions are implemented on a timescale
far smaller than the other agent, we can effectively ignore that firm’s state. The global state is just
the built infrastructure of the first agent, and is only influenced by that agent’s actions. The rewards,
though, are determined by both actions of the agents, and may well be zero-sum. If the first firm
uses a statewise convex restricted policy space (e.g., using key decision points) and the other firm
uses a convex restricted policy space, then restricted equilibria exist.

The previous results have looked at stochastic games whose transition functions have particu-
lar properties. Our final theorem examines stochastic games where the rewards have a particular
structure. Specifically we address team games, where the agents all receive equal payoffs.

Theorem 5 For team games, i.e.,

∀i, j ∈ {1, . . . , n} ∀s ∈ S ∀a ∈ A Ri(s, a) = Rj(s, a),

there exists a restricted equilibrium.

Proof. The only constraints on the players’ restricted policy spaces are those stated at the beginning
of this section: non-empty and compact. SinceΠ is compact, being a Cartesian product of compact
sets, and player one’s value in either formulation is a continuous function of the joint policy, then
the value function attains its maximum (Gaughan, 1993, Corollary 3.11). Specifically, there exists
π∗ ∈ Π such that,

∀π ∈ Π V π∗
1 ≥ V π

1 .

Since∀iVi = V1 we then get that the policyπ∗ maximizes all the players’ rewards, and so each
must be playing a restricted best-response to the others’ policies. �

Example: Distributed Network Routing.Consider a distributed network routing domain where
message passing at nodes is controlled by an intelligent agent. The agent can only observe its
own queue of incoming messages and congestion on outgoing links. Hence each agent has an
aliased view of the global state. Therefore, policies mapping the observed state to actions areconvex
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restricted policy spaces in the fully-observable stochastic game. All the agents seek to maximize
global throughput. Hence, they have an identical reward function based on global packet arrival. As
long as further agent limitations preserve the convexity of their policy spaces, by Theorem 5 there
exists a restricted equilibrium.

4.3 Summary

Facts 1 and 5 provide counterexamples that show the threat limitations pose to equilibria. Theo-
rems 1, 2, 3, 4, and 5 give us five general classes of stochastic games and restricted policy spaces
where equilibria are guaranteed to exist. The fact that equilibria do not exist in general raises
concerns about equilibria as a general basis for multiagent learning in domains where agents have
limitations. On the other hand, combined with the model of implicit games, the presented theoreti-
cal results lays the initial groundwork for understanding when equilibria can be relied on and when
their existence may be in question. These contributions also provide some formal foundation for
applying multiagent learning in limited agent problems.

5. Learning with Limitations

In Section 2, we highlighted the importance of the existence of equilibria to multiagent learning
algorithms. This section presents results of applying a particular learning algorithm to a setting
of limited agents. We use the best-response learner, WoLF-PHC (Bowling & Veloso, 2002). This
algorithm is rational, that is, it is guaranteed to converge to a best-response if the other players’ poli-
cies converge and appropriate decayed exploration is used (Singh, Jaakkola, Littman, & Szepesvári,
2000). In addition, it has been empirically shown to converge in self-play, where both players use
WoLF-PHC for learning. In this article we apply this algorithm in self-play to matrix games, both
with and without player limitations. Since the algorithm is rational, if the players converge then
their converged policies must be an equilibrium (Bowling & Veloso, 2002).

The specific limitations we examine fall into both the restricted policy space model as well as
the implicit game model. One player is restricted to playing strategies that are the convex hull
of a subset of the available strategies. From Theorem 1, there exists a restricted equilibrium with
these limitations. For best-response learners, this amounts to a possible convergence point for the
players. For the limited player, the WoLF-PHC algorithms were modified slightly so that the player
maintains Q-values of its restricted set of available strategies and performs its usual hill-climbing in
the mixed space of these strategies. The unlimited player is unchanged andcompletely uninformed
of the limitation of its opponent. For all the experiments, we use very small learning rates and a
large number of trials to better display how the algorithm learns and converges.

5.1 Rock-Paper-Scissors

The first game we examine is Rock-Paper-Scissors. Figure 3 shows the results of learning when
neither player is limited. Each graph shows the mixed policy the player is playing over time. The
labels to the right of the graph signify the probabilities of each action in the game’s unique Nash
equilibrium. Observe that the players’ strategies converge to this learning fixed point.

Figure 4 shows the results of restricting player 1 to a convex restricted policy space, defined
by requiring the player to play “Paper” exactly half the time. This is the same restriction as shown
graphically in Figure 1. The graphs again show the players’ strategies over time, and the labels
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Figure 3: WoLF-PHC in Rock-Paper-Scissors. Neither player is limited.

to the right now label the game’s restricted equilibrium, which accounts for the limitation (see
Figure 1). The player’s strategies now converge to this new learning fixed point. If we examine the
expected rewards to the players, we see that the unrestricted player gets a higher expected reward in
the restricted equilibrium than in the game’s Nash equilibrium (1/6 compared to0.) In summary,
both players learn optimal best-response policies with the unrestricted learner appropriately taking
advantage of the other player’s limitation.
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Figure 4: WoLF-PHC in Rock-Paper-Scissors. Player 1 must play “Paper” with probability1
2 .

5.2 Colonel Blotto

The second game we examined is “Colonel Blotto” (Gintis, 2000), which is also a zero-sum matrix
game. In this game, players simultaneously allot regiments to one of two battlefields. If one player
allots more armies to a battlefield than the other, they receive a reward of one plus the number of
armies defeated, and the other player loses this amount. If the players tie, then the reward is zero
for both. In the unlimited game, the row player has four regiments to allot, and the column player
has only three. The matrix of payoffs for this game is shown in Figure 5.
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Figure 5: Colonel Blotto Game.

Figure 6 shows experimental results with unlimited players. The labels on the right signify
the probabilities associated with the Nash equilibrium to which the players’ strategies converge.
Player 1 is then given the limitation that it could only allot two of its armies, the other two would
be allotted randomly. This is also a convex restricted policy space and therefore by Theorem 1
has a restricted equilibrium. Figure 7 shows the learning results. The labels to the right corre-
spond to the action probabilities for the restricted equilibrium, which was computed by hand. As in
Rock-Paper-Scissors, the players’ strategies converge to the new learning fixed point. Similarly, the
expected reward for the unrestricted player resulting from the restricted equilibrium is considerably
higher than that of the Nash equilibrium (0 to−14/9), as the player takes advantage of the other’s
limitation.
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Figure 6: WoLF-PHC in Colonel Blotto. Neither player is limited.

There is one final observations about these results. In Section 3 we discussed the use of rational
limitations to speed learning. Even in these very small single-state problems, our results demon-
strate that limitations can be used to speed learning. Notice that convergence occurs more quickly
in the limited situations where one of the players has less parameters and less freedom in its policy
space. In the case of the Colonel Blotto game this is a dramatic difference. (Notice the x-axes differ
by a factor of four!) In games with very large state spaces this will be even more dramatic. Agents
will need to make use of rational limitations to do any learning at all, and similarly the less restricted
agents will likely be able to benefit from taking advantage of the more limited learners.4

4. Strictly speaking, restricted agents are not always at a disadvantage. In zero-sum games, such as those for which
results are presented here, and team-games where all players rewards are identical, restrictions can never benefit the
agent. In general-sum games, such as Bach or Stravinsky from Table 1(b), this is not true. In this case, an imposed
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Figure 7: WoLF-PHC in Colonel Blotto. Player one is forced to randomly allot two regiments.

6. Related Work

It is commonly recognized that humans are not capable of being fully rational. There is a whole
body of work in the social sciences, particularly economics and game theory, relating to understand-
ing humans’bounded rationality(Simon, 1982). Bounded rationality is also a reality for artificial
agents. As we discussed in Section 3, agent limitations are unavoidable in realistic problems. As a
result, there has been much interesting work in both the fields of game theory and artificial intelli-
gence on how limitations effect agent behavior.

A useful distinction presented by Simon (1976) is the difference betweensubstantive rationality
andprocedural rationality. Substantive rationality is primarily concerned with whether a resulting
behavior is appropriate for the achievement of specific goals given specific constraints. Procedural
rationality is concerned with the behavior that is the result of appropriate deliberation. The dif-
ference is in whether it is the outcome that is appropriate to the goals or the deliberation that is
appropriate to the goals.

The approach taken in this work is primarily procedural. We take the variety of well motivated
learning procedures, both equilibrium learners and best-response learners, as given decision mech-
anisms. We also take the variety of mechanisms for making learning tractable (e.g., abstraction and
approximation) as given mechanisms. The focus of our investigation is to see what is the resulting
behavior of these combined mechanisms. In particular, do equilibria exist for equilibrium learners
to learn and to which best-response learners can converge? This differs from other investigations
which we’ll briefly review here.

6.1 Game Theory

Much of the research in game theory on modeling bounded rationality, has focused on the inves-
tigation of procedural rationality (Rubinstein, 1998). This approach is crucial given the goal of
modeling, explaining, and predictinghuman behavior. An example of this approach is that taken by
Osborne and Rubinstein (1997). They define a decision procedure for mapping actions to discrete
outcomes, rather than distributions over outcomes. This mapping is generated stochastically ac-

restriction, such as the row player being forced to select its first action, can actually improve the agent’s equilibrium
value (see also Littman & Stone, 2001; Gilboa & Samet, 1989).

375



BOWLING & V ELOSO

cording to the actual distribution of outcomes for given actions. Given a mapping, the agent selects
the action whose associated outcome is preferred. Given the decision procedure, they investigate
whether an equilibrium fixed point exists and also how well such a procedure corresponds to human
behavior in particular games.

Our work follows a similar approach of considering the outcome of using particular learning
procedures. On the other hand, we are not dealing with the problem of human behavior but rather
the behavior of artificial learning agents and how imposed limitations effect interactions between
agents. By generalizing these effects into the models of implicit games and restricted policy spaces,
we then ask similar questions. Do equilibrium fixed points exist and what is the expected outcome
of employing such learning rules? This simplifies our problem since we’re only analyzing the
outcomes of known machine learning techniques rather than explaining human behavior.

In addition to the work along the lines of procedural rationality, there is a large body of tradi-
tional work following along the lines of substantive rationality. The particular goals of this approach
are to model the agents’ limitations in the game itself and find optimal behavior given the constraints
of these limitations. These results include Bayesian games where other agents’ utilities are uncertain
a priori. Extensive form games with imperfect information is also an interesting model accounting
for situations of state aliasing. Finally, strategies as finite state machines in repeated games try
to account for limitations on computation and memory. A summary of this work can be found in
standard game theory texts (e.g., Osborne & Rubinstein, 1994)).

6.2 Artificial Agents

While risking over generalizing, much of the work in the field of artificial agents that examines the
effect of limitations on agent behavior has focused more on substantive rationality. In particular,
a common thread of this work is the development of models of interaction and beliefs along with
efficient algorithms for computing optimal or near-optimal behavior given these models. This ap-
proach focuses on what is appropriate behavior rather than what is the result of appropriate decision
procedures. We will briefly consider some of the recent work that consider limitations and agent
behavior, and give some comparison to the approach and results we have taken in this work.

6.2.1 COMPUTATIONAL L IMITATIONS

Larson and Sandholm (2001) consider the problem of reasoning in the presence of agents with
limited computational resources. Specifically, they examine a two agent setting where agents have
intractable individual problems, but may gain an improvement on their solutions by solving the also
intractable joint problem. An agent’s strategy determines how to invest its limited computational
resources to improve its solution for its own problem, its opponent’s problem, or the joint problem.
When the deadline is reached, the agents must decide whether to simply use its own computed
solution or bargain over a joint solution. Among other results, they demonstrate that the concept of
Nash equilibrium can be extended to this setting, where the decision of computation is part of the
agent’s strategy. They call this conceptdeliberation equilibriaand present algorithms for finding
these equilibria solutions in certain situations.

The concept of deliberation equilibria has many similarities to therestricted equilibriaconcept
we presented in Section 4. The core idea is to incorporate the agents’ limitations into their choices
of strategies. Restricted equilibria, though, incorporate limitations as restrictions on the agents’
choices, rather than incorporating limitations by adding computational decisions into their choices.
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This difference, though, is a fundamental one as the two approaches solve different problems. The
complexity of decision-making in the Larson and Sandholm setting is directly due to the compu-
tational limitations placed on the agents. In Chapter 3, the complexity of decision-making is part
of the task, and agent limitations are required in order to simplify the problem and make learning
tractable. This core difference also explains the difference in results, since restricted equilibria are
not guaranteed to exist in general.

6.2.2 GAME-TREE SEARCH WITH OPPONENTKNOWLEDGE

Jansen’s Ph.D. thesis (1992) examined the issue of whether “optimal” play in the game-theoretic
sense is in fact always “optimal”. In the case of a fallible opponent that may make an incor-
rect evaluation of future states, the answer is naturally no. He proposed the idea ofspeculative
play, which uses a prediction function for the opponent in determining its opponent’s moves when
searching a game-tree. The thesis focuses on deterministic, alternating-move, perfect information
games, specifically a subgame of chess. He demonstrated that using speculative play with end-game
databases as knowledge of the opponent has the potential for improving play against humans. In
this work, limitations on human rationality are recognized, and so game-theoretic optimal play is
discarded for optimization against particulars of human play.

6.2.3 PLANNING WITH OPPONENTMODELS.

Riley and Veloso (2000, 2002) present similar ideas forusing opponent models to make decisionsin
a less abstract domain. They examine the problem of adapting to a specific opponent in simulated
robotic soccer (Noda, Matsubara, Hiraki, & Frank, 1998). This work recognizes that modeling
opponents is not a new idea and there has been a great deal of related research in the field of
plan recognition. The work, though, contributes an actual technique forusingopponent models to
improve the team behavior, hence learning.

The team designer provides a set of opponent models of possible behavior of the other team.
These models define a distribution of players’ positions as a function of the ball’s trajectory and
their initial positions. During play, the actual opponent is matched to one of these models through
Bayesian updating from actual observations. The model is then used to plan during set-play situa-
tions, such as throw-ins or goal-kicks. The planning uses hill-climbing on the ball-trajectory to find
a trajectory with low probability of being intercepted by the other teamgiven the matched opponent
model of their movement.The planner then determines the positions of players and their actions
so as to carry out the planned ball trajectory. This is compiled into a simple temporal network
which can be executed in a distributed manner by the players. They demonstrate through controlled
empirical experiments that the plans generated depend on the opponent model that is used during
planning. The effectiveness of this technique in actual play against a real opponents, that may or
may not match well with the models, is still unknown.

This technique allows a team of agents to adapt their behavior in a principled manner to better
address a specific team. This does not strictly address the problem of concurrent learning in a
multiagent setting, which is the primary focus of this work. The critical assumption is that the
opponents’ play is not changing over time. The authors mention this briefly and provide a small
change to their Bayesian update through the addition of weight sharing. A small weight is added
to each model to keep its probability bounded from zero. This effectively introduces a non-zero
probability that the other team may change its behavior after each observation. There are no results,
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though, of the outcome of this approach if the other agents are also adapting. For example, it is
not clear how robust the algorithm is to the other team employing a similar or identical approach to
defending against a set-play. Will adaptation oscillate or is there an equilibrium point? How would
such oscillation effect performance?

6.2.4 LIMITATIONS AS FINITE AUTOMATA .

Carmel and Markovitch (1996, 1997) examined a model-based approach to multiagent learning.
They introduced algorithms for efficiently learning a model of the opponent as a deterministic fi-
nite automaton (DFA). Using this learned model, they then compute the optimal best response au-
tomaton. They examined this technique in the situation of repeated games and showed that their
technique can learn effectively against a variety of DFA opponents. They also showed that their
algorithm learned much more quickly (i.e., was more data efficient) than Q-learning, a model-free
reinforcement learner. It is unknown how this compares with a model-based reinforcement learner
such as prioritized sweeping (Moore & Atkeson, 1993).

This technique also does not address the problem of concurrent learning in a multiagent envi-
ronment. Although a learning rule can be be modeled by a DFA, the number of states that a rule
requires may be huge. For example, Q-learning with a decaying learning rate would be a completely
intractable DFA. Also, the model-based learning agent is required to be strictly more powerful than
its opponent, since its learning rule both learns the opponent’s DFA and also generates its own. It is
unclear whether any sort of equilibrium fixed point would be reached or even exists if two model-
based DFA learners played each other. It is also not certain how DFA modeling scales to multiple
state stochastic games.

6.2.5 SUMMARY

As we stated earlier, this body of work focuses primarily on substantive rationality: what is appro-
priate behavior given these assumptions? In addition, most of the approaches include the assumption
of an asymmetric superiority over the other decision making agents. In the case of constructing DFA
models of opponent behavior, there is an implicit assumption that the opponent behavior is simple
enough to be constructed by the adapting agent. In the case of planning with opponent models, it
is assumed that the opponent’s behavior is not changing and so the learned model is accurate in
predicting their future behavior. Although the work recognizes that other agents have limitations,
they do so in a way that expects other agents to be strictly inferior. There are no results, empirical or
theoretical, of applying these model-based techniques to situations of self-play, where all agents use
the same adaptation procedure. Larson and Sandholm’s work on computational limitations allows
for limitations on the part of both agents. They do so by adding the complexity of computational
decisions into the strategy space. Hence, their approach does not make this assumption.

7. Conclusion

Nash equilibrium is a crucial concept in multiagent learning both for algorithms that directly learn
an equilibrium and algorithms that learn best-responses. Agent limitations, though, are unavoidable
in realistic settings and can prevent agents from playing optimally or playing the equilibrium. In
this article, we introduce and answer two critical questions: Do equilibria exist when agents have
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limitations? Not necessarily. Are there classes of domains or classes of limitations where equilibria
are guaranteed to exist? Yes.

We have proven that for some classes of stochastic games and agent limitations equilibria are
guaranteed to exist. We have also given counterexamples that help understand why equilibria do not
exist in the general case. In addition to these theoretical results, we demonstrate the implications of
these results in a real learning algorithm. We present empirical results that show that learning with
limitations is possible, and equilibria under limitations is relevant.

There are two main future directions for this work. The first is continuing to explore the the-
oretical existence of equilibria. We have proven the existence of equilibria for some interesting
classes of stochastic games and restricted policy spaces. We have also established in Lemma 1 a
key criterion, the convexity of best-response sets, as the basis for further theoretical results. It is
still unknown whether there are other general classes of games and limitations for which equilibria
exist.

The second direction is the practical application of multiagent learning algorithms to real prob-
lems when agents have real limitations. The theoretical results we have presented and the empirical
results on simple matrix games, give a foundation as well as encouraging evidence. There are still
challenging questions to answer. How do specific limitations map on to the models that we explored
in this article? Do equilibria exist for stochastic games and limitations typically faced in practice?
What is the goal of learning when equilibria do not exist? This article lays the groundwork for ex-
ploring these and other important learning issues that are relevant to realistic multiagent scenarios.
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Appendix A. Proof of Theorem 1

Proof. One might think of proving this theorem by appealing to implicit games as was used in
Fact 4. In fact, ifΠi was a convex hull of afinite number of strategies, this would be the case. In
order to prove it for any convexΠi we apply Rosen’s theorem about the existence of equilibria in
concave games (Rosen, 1965). In order to use this theorem we need to show the following:

1. Πi is non-empty, compact, and convex.

2. V π
i as a function overπ ∈ Π is continuous.

3. For anyπ ∈ Π, the function overπ′i ∈ Πi defined asV
〈π′i,π−i〉
i is concave.
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Condition 1 is by assumption. In matrix games, whereS = {s0}, we can simplify the definition of
a policy’s value from Equations 1 and 2. For discounted reward we get,

V π
i =

1
1− γ

∑
a∈A

Ri(s, a)Πn
i=1πi(s0, ai), (25)

For average reward, the value is just the value of the one-shot matrix game given the players’
policies. This is equivalent to settingγ = 0 in the Equation 25. Equation 25 shows that for
both reward formulations the value is a multilinear function with respect to the joint policy and,
therefore, is continuous. So Condition 2 is satisfied. Observe that by fixing the policies for all but
one player, Equation 25 becomes a linear function over the remaining player’s policy and so is also
concave, satisfying Condition 3. Therefore Rosen’s theorem applies and this game has a restricted
equilibrium. �

Appendix B. Proof of Lemma 1

Proof. The proof relies on Kakutani’s fixed point theorem. We first need to show some facts about
the restricted best-response function. First, remember thatΠi is non-empty and compact. Also, note
that the value (with both discounted and average reward) to a player at any state of a joint policy
is a continuous function of that joint policy (Filar & Vrieze, 1997, Theorem 4.3.7 and Lemma
5.1.4). Therefore, from basic analysis (Gaughan, 1993, Theorem 3.5 and Corollary 3.11), the set of
maximizing (or optimal) points must be a non-empty and compact set. SoBRi(π−i) is non-empty
and compact.

Define the set-valued function,F : Π → Π,

F (π) = ×n
i=1 BRi(π−i).

We want to showF has a fixed point. To apply Kakutani’s fixed point theorem we must show the
following conditions to be true,

1. Π is a non-empty, compact, and convex subset of a Euclidean space,

2. F (π) is non-empty,

3. F (π) is compact and convex, and

4. F is upper hemi-continuous.

Since the Cartesian product of non-empty, compact, and convex sets is non-empty, compact, and
convex we have condition (1) by the assumptions onΠi. By the facts ofBRi from above and the
lemma’s assumptions we similarly get conditions (2) and (3).

What remains is to show condition (4). Consider two sequencesxj → x ∈ Π andyj → y ∈ Π
such that∀j yj ∈ F (xj). It must be shown thaty ∈ F (x), or justyi ∈ BRi(x). Let v beyi’s value
againstx. For the purposes of contradiction assume that there exists ay′i with higher value,v′, than
yi. Let δ = v′ − v. Since the value function is continuous, we can choose a point in the sequence
where the policies are close enough to their limit points that they make an arbitrarily small change
to the value. Specifically, letN be large enough that the value ofy′i againstxN differs fromv′ by at
mostδ/4, and the value ofyi againstxN differs fromv by at mostδ/4, and the value ofyN

i against
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xN differs fromyi againstxN by at mostδ/4. Adding all of these together, we have a point in the
sequenceyN

i whose value againstxN is less than the value ofy′i againstxN . SoyN
i /∈ BRi(xN ),

and thereforeyN /∈ F (xN ) creating our contradiction. The comparison of values of these various
four joint policies is shown in Figure 8 and helps illustrate the resulting contradiction.

Increasing Value

(y′i, x)(y′i, x
N)(yN

i , xN)(yi, x
N)(yi, x)

δ/4δ/4 −δ/4

v′v

Figure 8: An illustration of the demonstration by contradiction that the best-response functions are
upper hemi-continuous.

We can now apply Kakutani’s fixed point theorem. So there existsπ ∈ Π such thatπ ∈ F (π).
This meansπi ∈ BRi(π−i), and therefore this is a restricted equilibrium. �
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