
Journal of Artificial Intelligence Research 22 (2004) 385-421 Submitted 05/04; published 12/04

On Prediction Using Variable Order Markov Models

Ron Begleiter ronbeg@cs.technion.ac.il

Ran El-Yaniv rani@cs.technion.ac.il
Department of Computer Science
Technion - Israel Institute of Technology
Haifa 32000, Israel

Golan Yona golan@cs.cornell.edu

Department of Computer Science
Cornell University
Ithaca, NY 14853, USA

Abstract

This paper is concerned with algorithms for prediction of discrete sequences over a finite
alphabet, using variable order Markov models. The class of such algorithms is large and in
principle includes any lossless compression algorithm. We focus on six prominent prediction
algorithms, including Context Tree Weighting (CTW), Prediction by Partial Match (PPM)
and Probabilistic Suffix Trees (PSTs). We discuss the properties of these algorithms and
compare their performance using real life sequences from three domains: proteins, English
text and music pieces. The comparison is made with respect to prediction quality as
measured by the average log-loss. We also compare classification algorithms based on these
predictors with respect to a number of large protein classification tasks. Our results indicate
that a “decomposed” CTW (a variant of the CTW algorithm) and PPM outperform all
other algorithms in sequence prediction tasks. Somewhat surprisingly, a different algorithm,
which is a modification of the Lempel-Ziv compression algorithm, significantly outperforms
all algorithms on the protein classification problems.

1. Introduction

Learning of sequential data continues to be a fundamental task and a challenge in pattern
recognition and machine learning. Applications involving sequential data may require pre-
diction of new events, generation of new sequences, or decision making such as classification
of sequences or sub-sequences. The classic application of discrete sequence prediction algo-
rithms is lossless compression (Bell et al., 1990), but there are numerous other applications
involving sequential data, which can be directly solved based on effective prediction of dis-
crete sequences. Examples of such applications are biological sequence analysis (Bejerano
& Yona, 2001), speech and language modeling (Schütze & Singer, 1994; Rabiner & Juang,
1993), text analysis and extraction (McCallum et al., 2000) music generation and classifica-
tion (Pachet, 2002; Dubnov et al., 2003), hand-writing recognition (Singer & Tishby, 1994)
and behaviormetric identification (Clarkson & Pentland, 2001; Nisenson et al., 2003).1

1. Besides such applications, which directly concern sequences, there are other, less apparent applications,
such as image and texture analysis and synthesis that can be solved based on discrete sequence prediction
algorithms; see, e.g., (Bar-Joseph et al., 2001).

c©2004 AI Access Foundation. All rights reserved.

Begleiter, El-Yaniv & Yona

The literature on prediction algorithms for discrete sequences is rather extensive and
offers various approaches to analyze and predict sequences over finite alphabets. Perhaps
the most commonly used techniques are based on Hidden Markov Models (HMMs) (Rabiner,
1989). HMMs provide flexible structures that can model complex sources of sequential data.
However, dealing with HMMs typically requires considerable understanding of and insight
into the problem domain in order to restrict possible model architectures. Also, due to
their flexibility, successful training of HMMs usually requires very large training samples
(see hardness results of Abe & Warmuth, 1992, for learning HMMs).

In this paper we focus on general-purpose prediction algorithms, based on learning Vari-
able order Markov Models (VMMs) over a finite alphabet Σ. Such algorithms attempt to
learn probabilistic finite state automata, which can model sequential data of considerable
complexity. In contrast to N -gram Markov models, which attempt to estimate conditional
distributions of the form P (σ|s), with s ∈ ΣN and σ ∈ Σ, VMM algorithms learn such con-
ditional distributions where context lengths |s| vary in response to the available statistics in
the training data. Thus, VMMs provide the means for capturing both large and small order
Markov dependencies based on the observed data. Although in general less expressive than
HMMs, VMM algorithms have been used to solve many applications with notable success.
The simpler nature of VMM methods also makes them amenable for analysis, and some
VMM algorithms that we discuss below enjoy tight theoretical performance guarantees,
which in general are not possible in learning using HMMs.

There is an intimate relation between prediction of discrete sequences and lossless com-
pression algorithms, where, in principle, any lossless compression algorithm can be used
for prediction and vice versa (see, e.g., Feder & Merhav, 1994). Therefore, there exist an
abundance of options when choosing a prediction algorithm. This multitude of possibilities
poses a problem for practitioners seeking a prediction algorithm for the problem at hand.

Our goal in this paper is to consider a number of VMM methods and compare their
performance with respect to a variety of practical prediction tasks. We aim to provide
useful insights into the choice of a good general-purpose prediction algorithm. To this
end we selected six prominent VMM algorithms and considered sequential data from three
different domains: molecular biology, text and music. We focus on a setting in which a
learner has the start of some sequence (e.g., a musical piece) and the goal is to generate
a model capable of predicting the rest of the sequence. We also consider a scenario where
the learner has a set of training samples from some domain and the goal is to predict, as
accurately as possible, new sequences from the same domain. We measure performance
using log-loss (see below). This loss function, which is tightly related to compression,
measures the quality of probabilistic predictions, which are required in many applications.

In addition to these prediction experiments we examine the six VMM algorithms with
respect to a number of large protein classification problems. Protein classification is one
of the most important problems in computational molecular biology. Such classification is
useful for functional and structural categorization of proteins, and may direct experiments
to further explore and study the functionality of proteins in the cell and their interactions
with other molecules.

In the prediction experiments, two of the VMM algorithms we consider consistently
achieve the best performance. These are the ‘decomposed context tree weighting (CTW)’
and ‘prediction by partial match (PPM)’ algorithms. CTW and PPM are well known in the

386

On Prediction Using Variable Order Markov Models

lossless compression arena as outstanding players. Our results thus provide further evidence
of the superiority of these algorithms, with respect to new domains and two different pre-
diction settings. The results of our protein classification experiments are rather surprising
as both of these two excellent predictors are inferior to an algorithm, which is obtained by
simple modifications of the prediction component of the well-known Lempel-Ziv-78 compres-
sion algorithm (Ziv & Lempel, 1978; Langdon, 1983). This rather new algorithm, recently
proposed by Nisenson et al. (2003), is a consistent winner in the all the protein classification
experiments and achieves surprisingly good results that may be of independent interest in
protein analysis.

This paper is organized as follows. We begin in Section 2 with some preliminary defi-
nitions. In Section 3, we present six VMM prediction algorithms. In Section 4, we present
the experimental setup. In Sections 5-6, we discuss the experimental results. Part of the
experimental related details are discussed in Appendices A-C. In Section 7, we discuss the
related work. In Section 8, we conclude by introducing a number of open problems raised
by this research. Note that the source code of all the algorithms we consider is available at
http://www.cs.technion.ac.il/~ronbeg/vmm.

2. Preliminaries

Let Σ be a finite alphabet. A learner is given a training sequence qn
1 = q1q2 · · · qn, where

qi ∈ Σ and qiqi+1 is the concatenation of qi and qi+1. Based on qn
1 , the goal is to learn a

model P̂ that provides a probability assignment for any future outcome given some past.
Specifically, for any “context” s ∈ Σ∗ and symbol σ ∈ Σ the learner should generate a
conditional probability distribution P̂ (σ|s).

Prediction performance is measured via the average log-loss `(P̂ , xT
1) of P̂ (·|·), with

respect to a test sequence xT
1 = x1 · · ·xT ,

`(P̂ , xT
1) = − 1

T

T∑

i=1

log P̂ (xi|x1 · · ·xi−1), (1)

where the logarithm is taken to base 2. Clearly, the average log-loss is directly related to the
likelihood P̂ (xT

1) =
∏T

i=1 P̂ (xi|x1 · · ·xi−1) and minimizing the average log-loss is completely
equivalent to maximizing a probability assignment for the entire test sequence.

Note that the converse is also true. A consistent probability assignment P̂ (xT
1), for

the entire sequence, which satisfies P̂ (xt−1
1) =

∑
xt∈Σ P̂ (x1 · · ·xt−1xt), for all t = 1, . . . , T ,

induces conditional probability assignments,

P̂ (xt|xt−1
1) = P̂ (xt

1)/P̂ (xt−1
1), t = 1, . . . , T.

Therefore, in the rest of the paper we interchangeably consider P̂ as a conditional distribu-
tion or as a complete (consistent) distribution of the test sequence xT

1 .
The log-loss has various meanings. Perhaps the most important one is found in its

equivalence to lossless compression. The quantity− log P̂ (xi|x1 · · ·xi−1), which is also called
the ‘self-information’, is the ideal compression or “code length” of xi, in bits per symbol,
with respect to the conditional distribution P̂ (X|x1 · · ·xi−1), and can be implemented online
(with arbitrarily small redundancy) using arithmetic encoding (Rissanen & Langdon, 1979).

387

Begleiter, El-Yaniv & Yona

Thus, the average log-loss also measures the average compression rate of the test sequence,
when using the predictions generated by P̂ . In other words, a small average log-loss over
the xT

1 sequence implies a good compression of this sequence.2

Within a probabilistic setting, the log-loss has the following meaning. Assume that the
training and test sequences were emitted from some unknown probabilistic source P . Let
the test sequence be given by the value of the sequence of random variables XT

1 = X1 · · ·XT .
A well known fact is that the distribution P uniquely minimizes the mean log-loss; that is,3

P = arg min
P̂

{
−EP {log P̂ (XT

1)}
}

.

Due to the equivalence of the log-loss and compression, as discussed above, the mean of
the log-loss of P (under the true distribution P) achieves the best possible compression, or
the entropy HT (P) = −E log P (XT

1). However, the true distribution P is unknown and the
learner generates the proxy P̂ using the training sequence. The extra loss (due to the use
of P̂ , instead of P) beyond the entropy, is called the redundancy and is given by

DT (P ||P̂) = EP

{
− log P̂ (XT

1)− (− log P (XT
1))

}
. (2)

It is easy to see that DT (P ||P̂) is the (T th order) Kullback-Leibler (KL) divergence (see
Cover & Thomas, 1991, Sec. 2.3). The normalized redundancy DT (P ||P̂)/T (of a sequence
of length T) gives the extra bits per symbol (over the entropy rate) when compressing a
sequence using P̂ .

This probabilistic setting motivates a desirable goal, when devising a general-purpose
prediction algorithm: minimize the redundancy uniformly, with respect to all possible dis-
tributions. A prediction algorithm for which we can bound the redundancy uniformly, with
respect to all distributions in some given class, is often called universal with respect to
that class. A lower bound on the redundancy of any universal prediction (and compression)
algorithm is Ω(K(log T

2T)), where K is (roughly) the number of parameters of the model
encoding the distribution P̂ (Rissanen, 1984).4 Some of the algorithms we discuss below
are universal with respect to some classes of sources. For example, when an upper bound
on the Markov order is known, the ctw algorithm (see below) is universal (with respect to
ergodic and stationary sources), and in fact, has bounded redundancy, which is close to the
Rissannen lower bound.

3. VMM Prediction Algorithms

In order to assess the significance of our results it is important to understand the sometimes
subtle differences between the different algorithms tested in this study and their variations.
In this section we describe in detail each one of these six algorithms. We have adhered to
a unified notation schema in an effort to make the commonalities and differences between
these algorithms clear.

2. The converse is also true: any compression algorithm can be translated into probability assignment P̂ ;
see, e.g., (Rissanen, 1984).

3. Note that very specific loss functions satisfy this property. (See Miller et al., 1993).
4. A related lower bound in terms of channel capacity is given by Merhav and Feder (1995).

388

On Prediction Using Variable Order Markov Models

Most algorithms for learning VMMs include three components: counting, smoothing
(probabilities of unobserved events) and variable-length modeling. Specifically, all such al-
gorithms base their probability estimates on counts of the number of occurrences of symbols
σ appearing after contexts s in the training sequence. These counts provide the basis for
generating the predictor P̂ . The smoothing component defines how to handle unobserved
events (with zero value counts). The existence of such events is also called the “zero fre-
quency problem”. Not handling the zero frequency problem is harmful because the log-loss
of an unobserved but possible event, which is assigned a zero probability by P̂ , is infinite.
The algorithms we consider handle such events with various techniques.

Finally, variable length modeling can be done in many ways. Some of the algorithms
discussed here construct a single model and some construct several models and average them.
The models themselves can be bounded by a pre-determined constant bound, which means
that the algorithm does not consider contexts that are longer than the bound. Alternatively,
models may not be bounded a-priori, in which case the maximal context size is data-driven.

There are a great many VMM prediction algorithms. In fact, any lossless compression
algorithm can be used for prediction. For the present study we selected six VMM prediction
algorithms, described below. We attempted to include algorithms that are considered to be
top performers in lossless compression. We, therefore, included the ‘context tree weighting
(CTW)’ and ‘prediction by partial match (PPM)’ algorithms. The ‘probabilistic suffix tree
(PST)’ algorithm is well known in the machine learning community. It was successfully
used in a variety of applications and is hence included in our set. To gain some perspective
we also included the well known lz78 (prediction) algorithm that forms the basis of many
commercial applications for compression. We also included a recent prediction algorithm
from Nisenson et al. (2003) that is a modification of the lz78 prediction algorithm. The
algorithms we selected are quite different in terms of their implementations of the three
components described above. In this sense, they represent different approaches for VMM
prediction.5

3.1 Lempel-Ziv 78 (LZ78)

The lz78 algorithm is among the most popular lossless compression algorithms (Ziv & Lem-
pel, 1978). It is used as the basis of the Unix compress utility and other popular archiving
utilities for PCs. It also has performance guarantees within several analysis models. This
algorithm (together with the lz77 compresion method) attracted enormous attention and
inspired the area of lossless compression and sequence prediction.

The prediction component of this algorithm was first discussed by Langdon (1983) and
Rissanen (1983). The presentation of this algorithm is simplified after the well-known lz78
compression algorithm, which works as follows, is understood. Given a sequence qn

1 ∈ Σn,
lz78 incrementally parses qn

1 into non-overlapping adjacent ‘phrases’, which are collected
into a phrase ‘dictionary’. The algorithm starts with a dictionary containing the empty
phrase ε. At each step the algorithm parses a new phrase, which is the shortest phrase
that is not yet in the dictionary. Clearly, the newly parsed phrase s′ extends an existing

5. We did not include in the present work the prediction algorithm that can be derived from the more recent
bzip compression algorithm (see http://www.digistar.com/bzip2), which is based on the successful
Burrows-Wheeler Transform (Burrows & Wheeler, 1994; Manzini, 2001).

389

Begleiter, El-Yaniv & Yona

dictionary phrase by one symbol; that is, s′ = sσ, where s is already in the dictionary
(s can be the empty phrase). For compression, the algorithm encodes the index of s′

(among all parsed phrases) followed by a fixed code for σ. Note that coding issues will not
concern us in this paper. Also observe that lz78 compresses sequences without explicit
probabilistic estimates. Here is an example of this lz78 parsing: if q11

1 = abracadabra,
then the parsed phrases are a|b|r|ac|ad|ab|ra. Observe that the empty sequence ε is
always in the dictionary and is omitted in our discussions.

An lz78-based prediction algorithm was proposed by Langdon (1983) and Rissanen
(1983). We describe separately the learning and prediction phases.6 For simplicity we first
discuss the binary case where Σ = {0, 1}, but the algorithm can be naturally extended to
alphabets of any size (and in the experiments discussed below we do use the multi-alphabet
algorithm). In the learning phase the algorithm constructs from the training sequence qn

1

a binary tree (trie) that records the parsed phrases (as discussed above). In the tree we
also maintain counters that hold statistics of qn

1 . The initial tree contains a root and two
(left and right) leaves. The left child of a node corresponds to a parsing of ‘0’ and the right
child corresponds to a parsing of ‘1’. Each node maintains a counter. The counter in a leaf
is always set to 1. The counter in an internal node is always maintained so that it equals
the sum of its left and right child counters. Given a newly parsed phrase s′, we start at the
root and traverse the tree according to s′ (clearly the tree contains a corresponding path,
which ends at a leaf). When reaching a leaf, the tree is expanded by making this leaf an
internal node and adding two leaf-sons to this new internal node. The counters along the
path to the root are updated accordingly.

To compute the estimate P̂ (σ|s) we start from the root and traverse the tree according
to s. If we reach a leaf before “consuming” s we continue this traversal from the root,
etc. Upon completion of this traversal (at some internal node, or a leaf) the prediction for
σ = ‘0’ is the ‘0’ (left) counter divided by the sum of ‘0’ and ‘1’ counters at that node, etc.

For larger alphabets, the algorithm is naturally extended such that the phrases are
stored in a multi-way tree and each internal node has exactly k = |Σ| children. In addition,
each node has k counters, one for each possible symbol. In Figure 1 we depict the resulting
tree for the training sequence q11

1 = abracadabra and calculate the probability P̂ (b|ab),
assuming Σ = {a, b, c, d, r}.

Several performance guarantees were proven for the lz78 compression (and prediction)
algorithm. Within a probabilistic setting (see Section 2), when the unknown source is
stationary and ergodic Markov of finite order, the redundancy is bounded above by (1/ ln n)
where n is the length of the training sequence (Savari, 1997). Thus, the lz78 algorithm is
a universal prediction algorithm with respect to the large class of stationary and ergodic
Markov sources of finite order.

3.2 Prediction by Partial Match (PPM)

The Prediction by Partial Match (ppm) algorithm (Cleary & Witten, 1984) is considered to
be one of the best lossless compression algorithms.7 The algorithm requires an upper bound

6. These “phases” can be combined and operated together online.
7. Specifically, the ppm-ii variant of ppm currently achieves the best compression rates over the standard

Calgary Corpus benchmark (Shkarin, 2002).

390

On Prediction Using Variable Order Markov Models

ε

(a, 17)

(a, 1)

(b, 5)

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

(c, 5)

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

(d, 5)

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

(r, 1)

(b, 5)

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

(c, 1)

(d, 1)

(r, 9)

(a, 5)

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

(b, 1)

(c, 1)

(d, 1)

(r, 1)

Figure 1: The tree constructed by lz78 using the training sequence q11
1 = abracadabra.

The algorithm extracts the set {a,b,r,ac,ad,ab,ra} of “phrases” (this set is
traditionally called a ‘dictionary’) and constructs the phrase tree accordingly.
Namely, there is an internal node for every string in the dictionary, and every
internal node has all |Σ| children. For calculating P̂ (b|ar) we traverse the tree
as follows: ε→a→r→ε→b and conclude with P̂ (b|ar) = 5/33 = 0.152. To
calculate P̂ (d|ra) we traverse the tree as follow: ε→r→a→d and conclude with
P̂ (d|ra) = 1/5 = 0.2.

D on the maximal Markov order of the VMM it constructs. ppm handles the zero frequency
problem using two mechanisms called escape and exclusion. There are several ppm variants
distinguished by the implementation of the escape mechanism. In all variants the escape
mechanism works as follows. For each context s of length k ≤ D, we allocate a probability
mass P̂k(escape|s) for all symbols that did not appear after the context s (in the training
sequence). The remaining mass 1 − P̂k(escape|s) is distributed among all other symbols
that have non-zero counts for this context. The particular mass allocation for ‘escape’ and
the particular mass distribution P̂k(σ|s), over these other symbols σ, determine the ppm

391

Begleiter, El-Yaniv & Yona

variant. The mechanism of all ppm variants satisfies the following (recursive) relation,

P̂ (σ|sn
n−D+1) =

P̂D(σ|sn
n−D+1),

if sn
n−D+1σ apeared in

the training sequence;
P̂D(escape|sn

n−D+1) · P̂ (σ|sn
n−D+2), otherwise.

(3)

For the empty context ε, ppm takes P̂ (σ|ε) = 1/|Σ|.8
The exclusion mechanism is used to enhance the escape estimation. It is based on the

observation that if a symbol σ appears after the context s of length k ≤ D, there is no
need to consider σ as part of the alphabet when calculating P̂k(·|s′) for all s′ suffix of s (see
Equation (3)). Therefore, the estimates P̂k(·|s) are potentially more accurate since they are
based on a smaller (observed) alphabet.

The particular ppm variant we consider here is called ‘Method C’ (ppm-c) and is defined
as follows. For each sequence s and symbol σ let N(sσ) denote the number of occurrences
of sσ in the training sequence. Let Σs be the set of symbols appearing after the context s
(in the training sequence); that is, Σs = {σ : N(sσ) > 0}. For ppm-c we thus have

P̂k(σ|s) =
N(sσ)

|Σs|+
∑

σ′∈Σs

N(sσ′)
, if σ ∈ Σs; (4)

P̂k(escape|s) =
|Σs|

|Σs|+
∑

σ′∈Σs

N(sσ′)
, (5)

where we assume that |s| = k. This implementation of the escape mechanism by Moffat
(1990) is considered to be among the better ppm variants, based on empirical examination
(Bunton, 1997). As noted by Witten and Bell (1991) there is no principled justification for
any of the various ppm escape mechanisms.

One implementation of ppm-c is based on a trie data structure. In the learning phase the
algorithm constructs a trie T from the training sequence qn

1 . Similar to the lz78 trie, each
node in T is associated with a symbol and has a counter. In contrast to the unbounded lz78
trie, the maximal depth of T is D+1. The algorithm starts with a root node corresponding
to the empty sequence ε and incrementally parses the training sequence, one symbol at
a time. Each parsed symbol qi and its D-sized context, xi−1

i−D, define a potential path
in T , which is constructed, if it does not yet exist. Note that after parsing the first D
symbols, each newly constructed path is of length D + 1. The counters along this path are
incremented. Therefore, the counter of any node, with a corresponding path sσ (where σ
is the symbol associated with the node) is N(sσ).

Upon completion, the resulting trie induces the probability P̂ (σ|s) for each symbol σ
and context s with |s| ≤ D. To compute P̂ (σ|s) we start from the root and traverse the
tree according to the longest suffix of s, denoted s′, such that s′σ corresponds to a complete
path from the root to a leaf. We then use the counters N(s′σ′) to compute Σs′ and the
estimates as given in Equations (3), (4) and (5).

The above implementation (via a trie) is natural for the learning phase and it is easy
to see that the time complexity for learning qn

1 is O(n) and the space required for the

8. It also makes sense to use the frequency count of symbols over the training sequence.

392

On Prediction Using Variable Order Markov Models

worst case trie is O(D · n). However, a straightforward computation of P̂ (σ|s) using the
trie incurs O(|s|2) time.9 In Figure 2 we depict the resulting tree for the training sequence
q11
1 = abracadabra and calculate the probabilities P̂ (b|ar) and P̂ (d|ra), assuming Σ =
{a,b,c,d,r}.

ε

(σ = a, N(sσ) = 5)

(b, 2)

(r, 2)

(c, 1)

(a, 1)

(d, 1)

(a, 1)

(b, 2)(r, 2)

(a, 2)

(c, 1)(a, 1)

(d, 1)

(d, 1)

(a, 1)

(b, 1)

(r, 1)

(a, 1)

(c, 1)

Figure 2: The tree constructed by ppm-c using the training sequence q11
1 = abracadabra.

P̂ (d|ra) = P̂ (escape|ra) · P̂ (d|a) = 1
2 · 1

4+3 = 0.07 without using the exclusion
mechanism. When using the exclusion, observe that N(rac) > 0; therefore, we
can exclude c when evaluating P̂ (d|ra) = P̂ (escape|ra) · P̂ (d|a) = 1

2 · 1
6 = 0.08.

3.3 The Context Tree Weighting Method (CTW)

The Context Tree Weighting Method (ctw) algorithm (Willems et al., 1995) is a strong
lossless compression algorithm that is based on a clever idea for combining exponentially
many VMMs of bounded order.10 In this section we consider the original ctw algorithm
for binary alphabets. In the next section we discuss extensions for larger alphabets.

If the unknown source of the given sample sequences is a “tree source” of bounded
order, then the compression redundancy of ctw approaches the Rissanen lower bound at
rate 1/n.11 A D-bounded tree source is a pair (M, ΘM) where M is set of sequences of

9. After the construction of the trie it is possible to generate a corresponding suffix tree that allows a rapid
computation of P̂ (σ|s) in O(|s|) time. It is possible to generate this suffix tree in time proportional to
the sum of all paths in the trie.

10. The paper presenting this idea (Willems et al., 1995) received the 1996 Paper Award of the IEEE
Information Theory Society.

11. Specifically, for Σ = {0, 1}, Rissanen’s lower bound on the redundancy when compressing xn
1 is

Ω(|M |(log n
2n

)). The guaranteed ctw redundancy is O(|M |(log n
2n

) + 1
n
|M | log |M |), where M is the suffix

set of the unknown source.

393

Begleiter, El-Yaniv & Yona

length ≤ D. This set must be a complete and proper suffix set, where ‘complete’ means
that for any sequence x of length ≥ D, there exists s ∈ M , which is a suffix of x. ‘Proper’
means that no sequence in M has a strict suffix in M . The set ΘM contains one probability
distribution over Σ for each sequence in M . A proper and complete suffix set is called a
model. Given some initial sequence (“state”) s ∈ M , the tree source can generate a random
sequence x by continually drawing the next symbol from the distribution associated with
the unique suffix of x.

Any full binary tree of height ≤ D corresponds to one possible D-bounded model M .
Any choice of appropriate probability distributions ΘM defines, together with M , a unique
tree source. Clearly, all prunings of the perfect binary tree12 of height D that are full binary
trees correspond to the collection of all D-bounded models.

For each model M , ctw estimates a set of probability distributions, ΘM = {P̂M (·|s)}s∈M ,
such that (M, ΘM) is a tree source. Each distribution P̂M (·|s) is a smoothed version of a
maximum likelihood estimate based on the training sequence. The core idea of the ctw
algorithm is to generate a predictor that is a mixture of all these tree sources (corresponding
to all these D-bounded models). Let MD be the collection of all D-bounded models. For
any sequence xT

1 the ctw estimated probability for xT
1 is given by

P̂ctw(xT
1) =

∑

M∈MD

w(M) · P̂M (xT
1); (6)

P̂M (xT
1) =

T∏

i=1

P̂M (xi|suffixM (xi−1
i−D)), (7)

where suffixM (x) is the (unique) suffix of x in M and w(M) is an appropriate probability
weight function. Clearly, the probability P̂M (xT

1), given in (7), is a product of independent
events, by the definition of a tree source. Also note that we assume that the sequence xT

1

has an “historical” context defining the conditional probabilities P̂ (xi|suffixM (xi−1
i−D)) of the

first symbols. For example, we can assume that the sequence xT
1 is a continuation of the

training sequence. Alternatively, we can ignore (up to) the first D symbols of xT
1 . A more

sophisticated solution is proposed by Willems (1998); see also Section 7.
Note that there is a huge (exponential in D) number of elements in the mixture (6),

corresponding to all bounded models. To describe the ctw prediction algorithm we need
to describe (i) how to (efficiently) estimate all the distributions P̂M (σ|s); (ii) how to select
the weights w(M); and (iii) how to efficiently compute the ctw mixture (6).

For each model M , ctw computes the estimate P̂M (·|s) using the Krichevsky-Trofimov
(KT) estimator for memoryless binary sources (Krichevsky & Trofimov, 1981). The KT-
estimator enjoys an optimal proven redundancy bound of 2+log n

2n . This estimator, which is
very similar to Laplace’s law of succession, is also very easy to calculate. Given a training
sequence q 6= ε, the KT-estimator, based on q, is equivalent to

P̂kt(0|q) =
N0(q) + 1

2

N0(q) + N1(q) + 1
;

P̂kt(1|q) = 1− P̂kt(0|q),
12. In a perfect binary tree all internal nodes have two sons and all leaves are at the same level.

394

On Prediction Using Variable Order Markov Models

where N0(q) = N(0) and N1(q) = N(1). That is, P̂kt(0|q) is the KT-estimated probability
for ‘0’, based on a frequency count in q.13

For any sequence s define subs(q) to be the unique (non-contiguous) sub-sequence of q
consisting of the symbols following the occurrences of s in q. Namely, it is the concatenation
of all symbols σ (in the order of their occurrence in q) such that sσ is a substring of q. For
example, if s = 101 and q = 101011010, then sub101(q) = 010. Using this definition we
can calculate the KT-estimated probability of a test sequence xT

1 according to a context s,
based on the training sequence q. Letting qs = subs(q) we have,

P̂ s
kt(x

T
1 |q) =

T∏

i=1

P̂kt(xi|qs).

For the empty sequence ε we have P̂ s
kt(ε|q) = 1.

One of the main technical ideas in the ctw algorithm is an efficient recursive computa-
tion of Equation (6). This is achieved through the following recursive definition. For any s
such that |s| ≤ D, define

P̂ s
ctw(xT

1) =
{

1
2 P̂ s

kt(x
T
1 |q) + 1

2 P̂ 0s
ctw(xT

1)P̂ 1s
ctw(xT

1), if |s| < D;
P̂ s

kt(x
T
1 |q), otherwise (|s| = D),

(8)

where q is, as usual, the training sequence. As shown by Willems et al. (1995, Lemma 2),
for any training sequence q and test sequence x, P̂ ε

ctw(x) is precisely the ctw mixture as
given in Equation (6), where the probability weights w(M) are14

w(M) = 2−CD(M);
CD(M) = | {s ∈ M} | − 1 + |{s ∈ M : |s| < D}|.

In the learning phase, the ctw algorithm processes a training sequence qn
1 and con-

structs a binary context tree T . An outgoing edge to a left son in T is labelled by ‘0’ and
an outgoing edge to a right son, by ‘1’. Each node s ∈ T is associated with the sequence
corresponding to the path from this node to the root. This sequence (also called a ‘context’)
is also denoted by s. Each node maintains two counters N0 and N1 that count the number
of ‘0’s (resp. ‘1’s) appearing after the contexts s in the training sequence. We start with a
perfect binary tree of height D and set the counters in each node to zero. We process the
training sequence qn

1 by considering all n − D contexts of size D and for each context we
update the counters of the nodes along the path defined by this context. Upon completion
we can estimate the probability of a test sequence xT

1 using the relation (8) by computing
P̂ ε

ctw(xT
1). This probability estimate for the sequence xT

1 induces the conditional distribu-
tions P̂ctw(xi|xi−1

i−D+1), as noted in Section 2. For example, in Figure 3 we depict the ctw
tree with D = 2 constructed according to the training sequence q9

1 = 101011010.

13. As shown by Tjalkens et al. (1997), the above simple form of the KT estimator is equivalent to the original
form, given in terms of a Dirichlet distribution by Krichevsky and Trofimov (1981). The (original) KT-

estimated probability of a sequence containing N0 zeros and N1 ones is
∫ 1

0

(1−θ)N0θN1

π
√

θ(1−θ)
dθ.

14. There is a natural coding for D-bounded models such that the length of the code in bits for a model M
is exactly CD(M).

395

Begleiter, El-Yaniv & Yona

This straightforward implementation requires O(|Σ|D) space (and time) for learning and
O(T · |Σ|D) for predicting xT

1 . Clearly, such time and space complexities are hopeless even
for moderate D values. We presented the algorithm this way for simplicity. However, as
already mentioned by Willems et al. (1995), it is possible to obtain linear time complexities
for both training and prediction. The idea is to only construct tree paths that occur in
the training sequence. The counter values corresponding to all nodes along unexplored
paths remain zero and, therefore, the estimated ctw probabilities for entire unvisited sub-
trees can be easily computed (using closed-form formulas). The resulting time (and space)
complexity for training is O(Dn) and for prediction, O(TD). More details on this efficient
implementation are nicely explained by Sadakane et al. (2000) (see also Tjalkens & Willems,
1997).

s N0 N1 P̂ s

kt(q) P̂ s

ctw(q)

ε 3 4 63/7680 21/1024
0 0 3 21/64 21/64
1 3 1 7/160 3/80
00 0 0 1 1
10 0 3 21/64 21/64
01 2 1 1/16 1/16
11 1 0 1/2 1/2

0

0

1

1

0

1

Figure 3: A ctw tree (D = 2) corresponding to the training sequence q9
1 = 101011010,

where the first two symbols in q (q2
1) are neglected. We present, for each

tree node, the values of the counters N0, N1 and the estimations P̂kt(0|·) and
P̂ctw(0|·). For example, for the leaf 10: N0 = 0 since 0 does not appear af-
ter 10 in q9

1 = 101011010; 1 appears (in q9
1) three times after 10, therefore,

N1 = 3; P̂kt(0|10) = 0+ 1
2

0+3+1 = 1
8 ; because 10 is a leaf, according to Equation (8)

P̂kt(0|10) = P̂ctw(0|10).

3.4 CTW for Multi-Alphabets

The above ctw algorithm for a binary alphabet can be extended in a natural manner to
handle sequences over larger alphabets. One must (i) extend the KT-estimator for larger
alphabets; and (ii) extend the recurrence relation (8). While these extensions can be easily
obtained, it is reported that the resulting algorithm preforms poorly (see Volf, 2002, chap. 4).
As noted by Volf, the reason is that the extended KT-estimator does not provide efficient
smoothing for large alphabets. Therefore, the problem of extending the ctw algorithm for
large alphabets is challenging.

Several ctw extensions for larger alphabets have been proposed. Here we consider
two. The first is a naive application of the standard binary ctw algorithm over a binary
representation of the sequence. The binary representation is naturally obtained when the
size of the alphabet is a power of 2. Suppose that k = log2 |σ| is an integer. In this
case we generate a binary sequence by concatenating binary words of size k, one for each
alphabet symbol. If log2 |σ| is not an integer we take k = dlog2 |σ|e. We denote the resulting

396

On Prediction Using Variable Order Markov Models

algorithm by bi-ctw. A more sophisticated binary decomposition of ctw was considered
by Tjalkens et al. (1997). There eight binary machines were simultaneously constructed,
one for each of the eight binary digits of the ascii representation of text. This decomposition
does not achieve the best possible compression rates over the Calgary Corpus.

The second method we consider is Volf’s ‘decomposed ctw’, denoted here by de-ctw
(Volf, 2002). The de-ctw uses a tree-based hierarchical decomposition of the multi-valued
prediction problem into binary problems. Each of the binary problems is solved via a slight
variation of the binary ctw algorithm.

Let Σ be an alphabet with size k = |Σ|. Consider a full binary tree TΣ with k leaves.
Each leaf is uniquely associated with a symbol in Σ. Each internal node v of TΣ defines the
binary problem of predicting whether the next symbol is a leaf on v’s left subtree or a leaf
on v’s right subtree. For example, for Σ = {a,b,c,d,r}, Figure 4 depicts a tree TΣ such
that the root corresponds to the problem of predicting whether the next symbol is a or one
of b,c,d and r. The idea is to learn a binary predictor, based on the ctw algorithm, for
each internal node.

In a simplistic implementation of this idea, we construct a binary ctw for each internal
node v ∈ TΣ. We project the training sequence over the “relevant” symbols (i.e., corre-
sponding to the subtree rooted by v) and translate the symbols on v’s left (resp., right)
sub-tree to 0s (resp., 1s). After training we predict the next symbol σ by assigning each
symbol a probability that is the product of binary predictions along the path from the root
of TΣ to the leaf labeled by σ.

Unfortunately, this simple approach may result in poor performance and a slight mod-
ification is required.15 For each internal node v ∈ TΣ, let ctwv be the associated binary
predictor designed to handle the alphabet Σv ⊆ Σ. Instead of translating the projected
sequence (projected over Σv) to a binary sequence, as in the simple approach, we construct
ctwv based on a |Σv|-ary context tree. Thus, ctwv still generates predictions over a bi-
nary alphabet but expands a suffix tree using the (not necessarily binary) Σv alphabet. To
generate binary predictions ctwv utilizes, in each node of the context tree, two counters
for computing binary KT-estimations (as in the standard ctw algorithm). For example, in
Figure 4(b) we depict ctw3 whose binary problem is defined by TΣ of Figure 4(a). Another
modification suggested by Volf, is to use a variant on the KT-estimator. Volf shows that

the estimator Pe(0|q) = N0(q)+ 1
2

N0(q)+N1(q)+1/8 achieves better results in practice. We used this
estimator for the de-ctw implementation.16

A major open issue when applying the de-ctw algorithm is the construction of an
effective decomposition tree TΣ. Following (Volf, 2002, Chapter 5), we employ the heuristic
now detailed. Given a training sequence qn

1 , the algorithm takes TΣ to be Hoffman’s code-
tree of qn

1 (see Cover & Thomas, 1991, chapter 5.6) based on the frequency counts of the
symbols in qn

1 .

15. Consider the following example. Let Σ = {a,b,z} and consider a decomposition TΣ with two internal
nodes where the binary problem of the root discriminates between {a,b} and {z} (and the other internal
node corresponds to distinguishing between a and b). Using the simplistic approach, if we observe the
training sequence azaz · · · azazb, we will assign very high probability to z given the context zb, which is
not necessarily supported by the training data.

16. We also used this estimator in the protein classification experiment.

397

Begleiter, El-Yaniv & Yona

The time and space complexity of the de-ctw algorithm, based on the efficient imple-
mentation of the binary ctw, are O(|Σ|Dn) for training and and O(|Σ|DT) for prediction.

predictor training

sequence

DCTW abracadabra

ctw1 abracadabra

ctw2 brcdbr

ctw3 rcdr

ctw4 cd

ctw1

right

ctw2

ctw3

ctw4

c

d

r

b

a
left

(a)

CTW3 (using q = rcdr)

s N{c,d} N{r} P̂ s

kt(q) P̂ s

ctw(q)

ε 1 1 1/2 1/2
c 1 0 1/2 1/2
d 0 1 1/2 1/2
r 0 0 1 1
rc 1 0 1/2 1/2
cd 0 1 1/2 1/2
cc 0 0 1 1
...

...
...

...
...

rr 0 0 1 1

c

c

d

r

d

c

d

r

r
c

d

r

(b)

Figure 4: A de-ctw tree corresponding to the training sequence q11
1 = abracadabra. (a)

depicts the decomposition tree T . Each internal node in T uses a ctw predictor
to “solve” a binary problem. In (b) we depict ctw3 whose binary problem is:
“determine if σ ∈ {c,d} (or σ = r)”. Tree paths of contexts that do not appear
in the training sequence are marked with dashed lines.

3.5 Probabilistic Suffix Trees (PST)

The Probabilistic Suffix Tree (pst) prediction algorithm (Ron et al., 1996) attempts to
construct the single “best” D-bounded VMM according to the training sequence. It is
assumed that an upper bound D on the Markov order of the “true source” is known to the
learner.

A pst over Σ is a non empty rooted tree, where the degree of each node varies between
zero (for leaves) and |Σ|. Each edge in the tree is associated with a unique symbol in Σ.
These edge labels define a unique sequence s for each path from a node v to the root. The
sequence s labels the node v. Any such pst tree induces a “suffix set” S consisting of the

398

On Prediction Using Variable Order Markov Models

labels of all the nodes. The goal of the pst learning algorithm is to identify a good suffix
set S for a pst tree and to assign a probability distribution P̂ (σ|s) over Σ, for each s ∈ S.
Note that a pst tree may not be a tree source, as defined in Section 3.3. The reason is that
the set S is not necessarily proper. We describe the learning phase of the pst algorithm,
which can be viewed as a three stage process.

1. First, the algorithm extracts from the training sequence qn
1 a set of candidate contexts

and forms a candidate “suffix set” Ŝ. Each contiguous sub-sequence s of qn
1 of length

≤ D, such that the frequency of s in qn
1 is larger than a user threshold will be in

Ŝ. Note that this construction guarantees that Ŝ can be accommodated in a (pst)
tree (if a context s appears in Ŝ, then all suffixes of s must also be in Ŝ). For each
candidate s we associate the conditional (estimated) probability P̂ (σ|s), based on a
direct maximum likelihood estimate (i.e., a frequency count).

2. In the second stage, each s in the candidate set Ŝ is examined using a two-condition
test. If the context s passes the test, s and all its suffixes are included in the final pst
tree. The test has two conditions that must hold simultaneously:

(i) The context s is “meaningful” for some symbol σ; that is, P̂ (σ|s) is larger than
a user threshold.

(ii) The context s contributes additional information in predicting σ relative to
its “parent”; if s = σkσk−1 · · ·σ1, then its “parent” is its longest suffix s′ =
σk−1 · · ·σ1. We require that the ratio P̂ (σ|s)

P̂ (σ|s′) be larger than a user threshold r or

smaller than 1/r.

Note that if a context s passes the test there is no need to examine any of its suffixes
(which are all added to the tree as well).

3. In the final stage, the probability distributions associated with the tree nodes (con-
texts) are smoothed. If P̂ (σ|s) = 0, then it is assigned a minimum probability (a
user-defined constant) and the resulting conditional distribution is re-normalized.

Altogether the pst learning algorithm has five user parameters, which should be selected
based on the learning problem at hand. The pst learning algorithm has a PAC style
performance guarantee ensuring that with high probability the redundancy approaches zero
at rate 1/n1/c for some positive integer c.17 An example of the pst tree constructed for the
abracadabra training sequence is given in Figure 5.

The pst learning phase has a time complexity of O(Dn2) and a space complexity of
O(Dn). The time complexity for calculating P̂ (σ|s) is O(D).

3.6 LZ-MS: An Improved Lempel-Ziv Algorithm

There are plenty of variations on the classic lz78 compression algorithm (see Bell et al.,
1990, for numerous examples). Here we consider a recent variant of the lz78 prediction

17. Specifically, the result is that, with high probability (≥ 1− δ), the Kullback-Leibler divergence between
the pst estimated probability distribution and the true underlying (unknown) VMM distribution is not
larger than ε after observing a training sequence whose length is polynomial in 1

ε
, 1

δ
, D, |Σ| and the

number of states in the unknown VMM model.

399

Begleiter, El-Yaniv & Yona

ε

(.45, .183, .092, .092, .183)

a

(.001, .498, .25, .25, .001)

ca

(.001, .001, .001, .996, .001)

da

(.001, .996, .001, .001, .001)

ra

(.001, .001, .996, .001, .001)

b

(.001, .001, .001, .001, .996)

c

(.996, .001, .001, .001, .001)

d

(.996, .001, .001, .001, .001)

r

(.996, .001, .001, .001, .001)

Figure 5: A pst tree corresponding to the training sequence x11
1 = abracadabra and the pa-

rameters (Pmin = 0.001, γmin = 0.001, α = 0.01, r = 1.05, D = 12). Each node is
labelled with a sequence s and the distribution (P̂s(a), P̂s(b), P̂s(c), P̂s(d), P̂s(r)).

algorithm due to Nisenson et al. (2003). The algorithm has two parameters M and S and,
therefore, its acronym here is lz-ms.

A major advantage of the lz78 algorithm is its speed. This speed is made possible by
compromising on the systematic counts of all sub-sequences. For example, in Figure 1, the
sub-sequence br is not parsed and, therefore, is not part of the tree. However, this sub-
sequence is significant for calculating P̂ (a|br). While for a very long training sequence this
compromise will not affect the prediction quality significantly, for short training sequences
the lz78 algorithm yields sparse and noisy statistics. Another disadvantage of the lz78
algorithm is its loss of context when calculating P̂ (σ|s). For example, in Figure 1, when
taking σ = b and s = raa, the lz78 prediction algorithm will compute P̂ (b|raa) by travers-
ing the tree along the raa path (starting from the root) and will end on a leaf. Therefore,
P̂ (b|raa) = P̂ (b|ε) = 5/33. Nevertheless, we could use the suffix a of raa to get the more
accurate value P̂ (b|a) = 5/17. These are two major deficiencies of lz78. The lz-ms al-
gorithm attempts to overcome both these disadvantages by introducing two corresponding
heuristics. This algorithm improves the lz78 predictions by extracting more phrases during
learning and by ensuring a minimal context for the next phrase, whenever possible.

The first modification is termed input shifting. It is controlled by the S parameter
and used to extract more phrases from the training sequence. The training sequence qn

1 =
q1q2 · · · qn is parsed S + 1 times, where in the ith parsing the algorithm learns the sequence
qiqi+1 · · · qn using the standard lz78 learning procedure. The newly extracted phrases and
counts are combined with the previous ones (using the same tree). Note that by taking

400

On Prediction Using Variable Order Markov Models

S = 0 we leave the lz78 learning algorithm intact. For example, the second row of Table 1
illustrates the effect of input shifting with S = 1, which clearly enriches the set of parsed
phrases.

The second modification is termed back-shift parsing and is controlled by the M pa-
rameter. Back-shift parsing attempts to guarantee a minimal context of M symbols when
calculating probabilities. In the learning phase the algorithm back-shifts M symbols after
each phrase extraction. To prevent the case where more symbols are back-shifted than
parsed (which can happen when M > 1), the algorithm requires that back shifting remain
within the last parsed phrase. For example, on the third row of Table 1 we see the resulting
phrase set extracted from the training sequence using M = 1. Observe that after extract-
ing the first phrase (a) lz-ms back-shifts one symbol, therefore, the next parsed symbol is
(again) ‘a’. This implies that the next extracted phrase is ab. Since lz-ms back-shifts after
each phrase extraction we conclude with the resulting extracted phrase set.

The back-shift parsing mechanism may improve the calculation of conditional proba-
bilities, which is also modified as follows. Instead of returning to the root after travers-
ing to a leaf, the last M -traversed symbols are first traced down from the root to some
node v, and then the new traversal begins from v (if v exists). Take, for example, the
calculation of P̂ (b|raa) using the tree in Figure 1. If we take M = 0, then we end
with P̂ (b|raa) = P̂ (b|ε) = 5/33; on the other hand, if we take M = 1, we end with
P̂ (b|raa) = P̂ (b|a) = 5/17.

lz78(M, S) Phrases parsed from abracadabra

lz78(0, 0) = lz78 {a,b,r,ac,ad,ab,ra}
lz78(0, 1) {a,b,r,ac,ad,ab,ra,br,aca,d,abr}
lz78(1, 0) {a,ab,b,br,r,ra,ac,c,ca,ad,d,da,abr}
lz78(1, 1) {a,ab,b,br,r,ra,ac,c,ca,ad,d,da,abr,bra,aca,ada,abra}
lz78(2, 0) {a,ab,abr,b,br,bra,r,ra,rac,ac,aca,c,ca,cad,ad,ada,d,da,

dab,abra}
lz78(2, 1) {a,ab,abr,b,br,bra,r,ra,rac,ac,aca,c,ca,cad,ad,ada,d,da,

dab,abra,brac,acad,adab}
lz78(2, 2) {a,ab,abr,b,br,bra,r,ra,rac,ac,aca,c,ca,cad,ad,ada,d,da,

dab,abra,brac,acad,adab,raca,cada,dabr}

Table 1: Phrases parsed from q11
1 = abracadabra by lz-ms for different values of M and

S. Note that the phrases appear in the order of their parsing.

Both ‘input shifting’ and ‘back-shift parsing’ tend to enhance the statistics we extract
from the training sequence. In addition, back-shift parsing tends to enhance the utilization
of the extracted statistics. Table 1 shows the phrases parsed from q11

1 = abracadabra
by lz-ms for several values of M and S. The phrases appear in the order of their parsing.
Observe that each of these heuristics can introduce a slight bias into the extracted statistics.

It is interesting to compare the relative advantage of input shifting and back-shift pars-
ing. In Appendix C we provide such a comparison using a prediction simulation over the
Calgary Corpus. The results indicate that back-shift on its own can provide more power to
lz78 than input shifting parsing alone. Nevertheless, the utilization of both mechanisms is
always better than using either alone.

401

Begleiter, El-Yaniv & Yona

The time complexity of the lz-ms learning algorithm is at most MS times the complexity
of lz78. Prediction using lz-ms can take at most M times the prediction using lz78.

4. Experimental Setup

We implemented and tested the six VMM algorithms described in Section 3 using discrete
sequences from three domains: text, music and proteins (see more details below). The
source code of Java implementations for the six algorithms is available at http://www.
cs.technion.ac.il/~ronbeg/vmm. We considered the following prediction setting. The
learner is given the first half of a sequence (e.g., a song) and is required to predict the rest.
We denote the first half by qn

1 = q1 · · · qn and the second, by xn
1 = x1 · · ·xn. qn

1 is called the
training sequence and xn

1 is called the test sequence. During this learning stage the learner
constructs a predictor, which is given in terms of a conditional distribution P̂ (σ|s). The
predictor is then fixed and tested over xn

1 . The quality of the predictor is measured via
the average log-loss of P̂ (·|·) with respect to xn

1 as given in Equation (1).18 For the protein
dataset we also considered a different, more natural setting in which the learner is provided
with a number of training sequences emanating from some unknown source, representing
some domain. The learner is then required to provide predictions for sequences from the
same domain.

During training, the learner should utilize the training sequence for learning a proba-
bilistic model, as well as for selecting the best possible hyper-parameters. Each algorithm
selects its hyper-parameters from a cross product combination of “feasible” values, using
a cross-validation (CV) scheme over the training sequence. In our experiments we used
a five-fold CV. The training sequence qn

1 was segmented into five (roughly) equal sized
contiguous non-overlapping segments and each fold used one such segment for testing and
a concatenation of rest of the segments for training. Before starting the experiments we
selected, for each algorithm, a set of “feasible” values for its vector of hyper-parameters.
Each possible vector (from this set) was tested using five-fold CV scheme (applied over the
training sequence!) yielding five loss estimates for this vector. The parameter vector with
the best median19 (over the five estimates) was selected for training the algorithm over the
entire training sequence. See Appendix A for more details on the exact choices of hyper-
parameters for each of the algorithms. Note that our setting is different from the standard
setup used when testing online lossless compression schemes, where the compressor starts
processing the test sequence without any prior knowledge. Also, it is usually the case that
compression algorithms do not optimize their hyper-parameters (e.g., for text compression
ppm-c is usually applied with a fixed D = 5).

The sequences we consider belong to three different domains: English text, music pieces
and proteins.

18. Cover and King (1978) considered a very similar prediction game in their well-known work on the
estimation of the entropy of English text.

19. We used the median rather than average since the median of a small set of numbers is considerably more
robust against outliers; see, e.g., http://standards.nctm.org/document/eexamples/chap6/6.6/

402

On Prediction Using Variable Order Markov Models

Domain # Sequences |Σ| Sequence Lengths
Min Avg Max

Text 18 256 11954 181560 785396
Music 285 256 24 12726 193662
Protein 19676 20 21 187 8599

Table 2: Some essential properties of the datasets. For the protein prediction setup we
considered only sequences of size larger than 100.

• For the English text we chose the well-known ‘Calgary Corpus’ (Bell et al., 1990),
which is traditionally used for benchmarking lossless compression algorithms.20

• The music set was assembled from MIDI files of music pieces.21 The musical bench-
mark was compiled using a variety of well-known pieces of different styles. The styles
we included are: classical, jazz and rock/pop. All the pieces we consider are poly-
phonic (played with several instruments simultaneously). Each MIDI file for a poly-
phonic piece consists of several channels (usually one channel per instrument). We
considered each channel as an individual sequence; see Appendix B for more details.

• The protein set includes proteins (amino-acid sequences) from the well-known Struc-
tural Classification of Proteins (SCOP) database (Murzin et al., 1995). Here we used
all sequences in release 1.63 of SCOP, after eliminating redundancy (i.e., only one
copy was retained of sequences that are 100% identical). This set is hierarchically
classified into classes according to biological considerations. We relied on this classifi-
cation for testing classifiers constructed from the VMM algorithms over a number of
large classification tasks (see Section 6).

Table 2 summarizes some statistics of the three benchmark tests. The three datasets can
be obtained at http://www.cs.technion.ac.il/~ronbeg/vmm.

5. Prediction Results

Here we present the prediction results of the six VMM algorithms for the three domains. The
performance is measured via the log-loss as discussed above. Recall that the average log-loss
of a predictor (over some sequence) is a slightly optimistic estimate of the compression rate
(bits/symbol) that could be achieved by the algorithm over that sequence.

Table 3 summarizes the results for the textual domain (Calgary Corpus). We see that
de-ctw is the overall winner with an average loss of 3.02. The runner-up is ppm-c with
an average loss of 3.03. However, there is no statistically significant difference between the

20. The Calgary Corpus is available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.
Note that this corpus contains, in addition to text, also a few binary files and some source code of
computer programs, written in a number of programming languages.

21. MIDI (= Musical Instrument Digital Interface) is a standard protocol and language for electronic musical
instruments. A standard MIDI file includes instructions on which notes to play and how long and loud
to play them.

403

Begleiter, El-Yaniv & Yona

two, as indicated by standard error of the mean (SEM) values. The worst algorithm is the
lz78 with an average loss of 3.76. We see that in most cases de-ctw and ppm-c share the
first and second best results, lz-ms is a runner-up in five cases, and lz78 wins one case and
is a runner-up in one case. pst is the winner in a single case.

It is interesting to compare the loss results of Table 3 to known compression results
of (some of) the algorithms for the same corpus, which are 2.14 bps for de-ctw and 2.48
bps for ppm-c (see Volf, 2002; Cleary & Teahan, 1997, respectively). While these results
are dramatically better than the average log-loss we obtain for these algorithms, note that
the setting is considerably different and in the compression applications the algorithms
are continually learning the sequence. A closer inspection of this disparity between the
compression results and our training/test results reveals that the difference is in fact not
that large. Specifically, the large average log-loss is mainly due to one of the Calgary Corpus
files, namely the obj1 file for which the log-loss of ppm-c is 6.75, while the compression
results of Cleary and Teahan (1997) are 3.76 bps. Without obj1 file the average log-loss
obtained by ppm-c on the Calgary Corpus is 2.81. Moreover, the 2.48 result is obtained on a
smaller corpus that does not include the four files paper3 -6. Without these files the average
log-loss of ppm-c is 2.65. This small difference may indicate that the involved sequences are
not governed by a stationary distribution. Notice also that the compression results indicate
that de-ctw is significantly better than ppm-c. However, in our setting these algorithms
perform very similarly.

Next we present the results for the music MIDI files, which are summarized in Table 4.
The table has four sections corresponding to classical pieces, jazz, 14 improvisations of the
same jazz piece and rock/pop. Individual average losses for these sections are specified
as well. de-ctw is the overall winner and ppm-c is the overall runner-up. Both these
algorithms are significantly better than the rest. The worst algorithm is, again, lz78.

Some observations can be drawn about the “complexity” of the various pieces by con-
sidering the results of the best predictors with respect to the individual sequences. Taking
the de-ctw average losses, in the classical music domain we see that the Mozart pieces are
the easiest to predict (with an average loss of at most 0.93). The least predictable pieces
are Debussy’s Children Corner 6 (1.86) and Beethoven’s Symphony 6(1.78 loss). The most
predictable piece overall is the rock piece “You really got me” by the Kinks. The least
predictable rock piece is “Sunshine of your love” by Cream. The least predictable piece
overall is the jazz piece “Satin doll 2” by Duke Ellington. The most predictable jazz piece
is “The girl from Ipanema” by Jobim. Among the improvisations of “All of me”, there
is considerable variability starting with 0.5 loss (All of me 12) and ending with 1.65 loss
(All of me 8). We emphasize that such observations may have a qualitative value due to
the great variability among different arrangements of the same musical piece (particularly
jazz tunes involving improvisation). The readers are encouraged to listen to these pieces
and judge the “complexity” of these pieces for themselves. MIDI files of all the pieces are
available at http://www.cs.technion.ac.il/~ronbeg/vmm.

The prediction results for the protein corpus appear in Table 5. Here ppm-c is the
overall winner and de-ctw is the runner-up. The difference between them and the other

404

On Prediction Using Variable Order Markov Models

Sequence bi-ctw de-ctw lz78 lz-ms ppm-c pst
(length·103)
bib(111) 2.15 1.8* 3.25 2.26 1.91 2.57

book1(785) 2.29 2.2* 3.3 2.57 2.27 2.5

book2(611) 2.5 2.36* 3.4 2.63 2.38 2.77

geo(102) 4.93 4.47* 4.48 4.48 4.62 4.86

news(377) 3.04 2.81* 3.72 3.07 2.82 3.4

obj1(22) 7 6.82 5.94* 6 6.75 6.37

obj2(247) 3.92 3.56 3.99 3.48 3.45* 3.72

paper1(53) 3.48 2.95* 4.08 3.38 3.08 3.93

paper2(82) 2.75 2.49* 3.63 2.81 2.53 3.19

paper3(47) 2.96 2.59* 3.82 3.09 2.75 3.4

paper4(13) 3.87 3.63 4.13 3.61 3.36* 3.99

paper5(12) 4.57 4.5 4.51 4.16 3.92* 4.6

paper6(38) 3.9 3.21* 4.22 3.6 3.31 4

pic(513) 0.75 0.71 0.78 0.79 0.73 0.7*

progc(40) 3.28 2.85* 3.95 3.22 2.94 3.71

progl(72) 3.2 2.85* 3.7 3.26 2.99 3.66

progp(49) 2.88 2.53 3.24 2.65 2.52* 2.95

trans(94) 2.65 2.08* 3.56 2.61 2.29 3.01

Average±SEM 3.34± 0.07 3.02± 0.07∗ 3.76± 0.05 3.2± 0.06 3.03± 0.07 3.52± 0.06

Table 3: Average log-loss (equivalent to bits/symbol) of the VMM algorithms over the
Calgary Corpus. For each sequence (row) the winner is starred and appears in
boldface. The runner-up appears in boldface.

algorithms is not very large, with the exception of the pst algorithm, which suffered a
significantly larger average loss.22

The striking observation, however, is that none of the algorithms could beat a trivial
prediction based on a (zero-order) “background” distribution of amino acid frequencies as
measured over a large database of proteins. The entropy of this background distribution
is 4.19. Moreover, the entropy of a yet more trivial predictor based on the uniform distri-
bution over an alphabet of size 20 is 4.32 ≈ log2(20). Thus, not only could the algorithms
not outperform these two trivial predictors, they generated predictions that are sometimes
considerably worse.

These results indicate that the first half of a protein sequence does not contain predictive
information about its second half. This is consistent with the general perception that protein
chains are not repetitive 23. Rather, usually they are composed of several different elements
called domains, each one with own specific function and unique source distribution (Rose,

22. The failure of pst in this setting could be a result of an inadequate set of possible values for its hyper-
parameters; see Appendix A for details on the choices made.

23. This is not always true. It is not unusual to observe similar patterns (though not identical) within the
same protein. However, this phenomenon is observed for a relatively small number of proteins.

405

Begleiter, El-Yaniv & Yona

Sequence bi-ctw de-ctw lz78 lz-ms ppm-c pst
Goldberg Variations 1.09 1* 1.59 1.28 1.04 1.15

Toccata and Fuga 1.17 1.08* 1.67 1.34 1.14 1.37

for Elise 1.76 1.57 2.32 1.83 1.57 2.08

Beethoven - Symphony 6 1.91 1.78* 2.2 1.99 1.79 2.26

Chopin - Etude 1 op. 10 1.14 1.07* 1.75 1.36 1.09 1.24

Chopin - Etude 12 op. 10 1.67 1.54* 2.11 1.93 1.73 1.72

Children’s Corner - 1 1.28 1.23* 1.53 1.52 1.3 1.39

Children’s Corner - 6 2.03 1.86* 2.28 2.13 1.97 2.28

Mozart K.551 1.04 0.85* 1.64 1.18 0.96 1.45

Mozart K.183 1.04 0.93* 1.71 1.2 0.99 1.7

Rachmaninov Piano Concerto 2 1.16 1.06* 1.8 1.35 1.13 1.34

Rachmaninov Piano Concerto 3 1.91 1.75 2.09 1.98 1.82 2.1

Average Classical 1.43± 0.02 1.31± 0.02 1.89± 0.02 1.59± 0.02 1.38± 0.02 1.67± 0.03

Giant Steps 1.51 1.33 2.01 1.29 1.24* 1.82

Satin Doll 1 1.7 1.41* 2.28 1.73 1.47 1.89

Satin Doll 2 2.56 2.27* 2.53 2.54 2.38 3.32

The Girl from Ipanema 1.4 1.11* 1.95 1.5 1.2 1.36

7 Steps to Heaven 1.7 1.42* 2.1 1.87 1.53 1.86

Stolen Moments 1.81 1.24* 2.28 1.59 1.37 1.8

Average Jazz 1.78± 0.06 1.46± 0.06∗ 2.19± 0.04 1.76± 0.04 1.53± 0.06 2.01± 0.09

All of Me 1 1.97 1.43* 2.33 1.97 1.73 1.88

All of Me 2 2.51 1.05* 2.52 1.9 1.65 1.28

All of Me 3 1.29 1.08* 1.97 1.42 1.17 1.45

All of Me 4 1.83 1.4* 2.12 1.88 1.46 2.32

All of Me 5 0.92 0.78* 1.72 1.15 0.9 0.96

All of Me 6 1.62 1.21* 2.21 1.55 1.28 1.52

All of Me 7 1.97 1.65* 2.35 1.94 1.75 2.44

All of Me 8 1.88 1.61* 2.29 1.97 1.67 2.21

All of Me 9 1.79 1.58* 2.2 1.97 1.7 2.13

All of Me 10 1.32 1.07* 1.96 1.42 1.16 1.4

All of Me 11 1.61 1.54* 2.26 1.93 1.72 1.68

All of Me 12 0.79 0.5* 1.8 0.92 0.54 0.57

All of Me 13 0.97 0.68* 1.78 1.12 0.7 0.83

All of Me 14 1.85 1.63* 2.2 1.89 1.68 2.17

Average Jazz Impro. 1.59± 0.17 1.23± 0.09∗ 2.12± 0.09 1.65± 0.11 1.37± 0.12 1.63± 0.15

Don’t Stop till You Get Enough 1.03 0.64* 1.82 1.07 0.69 0.72

Sir Duke 1.14 0.47 2 0.99 0.59 0.35*

Let’s Dance 1.22 0.94* 1.95 1.33 1.06 1.28

Like a Rolling Stone 1.63 1.45* 2.07 1.7 1.48 1.83

Sunshine of Your Love 1.68 1.47* 2.16 1.81 1.58 2.01

You Really Got Me 0.31 0.16* 1 0.49 0.23 0.17

Average Rock/Pop 1.17± 0.05 0.85± 0.04∗ 1.83± 0.04 1.23± 0.04 0.94± 0.04 1.06± 0.06

Average±SEM 1.49± 0.08 1.21± 0.05∗ 2.00± 0.05 1.56± 0.05 1.30± 0.06 1.59± 0.08

Table 4: Music MIDI sequences. Average log-loss (equivalent to bits/symbol) of the VMM
algorithms over the music corpus. The table is partitioned into four sections:
classical pieces, jazz pieces, 14 improvisations of the same jazz piece “All of me”
and rock pieces. Each number is an average loss corresponding to several MIDI
channels (see Appendix B). For each sequence (row) the winner is starred and
appears in boldface. The runner-up appears in boldface.

406

On Prediction Using Variable Order Markov Models

1979; Lesk & Rose, 1981; Holm & Sander, 1994). These unique distributions are usually
more statistically different from each other (in terms of the KL-divergence) than from the
background or uniform distribution. Therefore, a model that is trained on the first half
of a protein is expected to perform worse than the trivial predictor - which explains the
slight increase in the average code length. A similar finding was observed by Bejerano and
Yona (2001) where models that were trained over specific protein families coded unrelated
non-member proteins using an average code length that was higher than the entropy of the
background distribution. This is also supported by other papers that suggest that protein
sequences are incompressible (e.g. Nevill-Manning & Witten, 1999).

Sequences Class bi-ctw de-ctw lz78 lz-ms ppm-c pst

A (1310) 4.85± 0.003 4.52± 0.007 4.80± 0.005 4.79± 0.007 4.45± 0.005∗ 8.07± 0.01

B (1604) 4.87± 0.003 4.55± 0.006 4.83± 0.005 4.85± 0.007 4.47± 0.005∗ 8.06± 0.009

C (3991) 4.85± 0.002 4.49± 0.003 4.89± 0.003 4.92± 0.004 4.43± 0.002∗ 8.05± 0.005

D (2325) 4.85± 0.003 4.65± 0.006 4.91± 0.004 4.98± 0.005 4.54± 0.004∗ 8.13± 0.008

E (402) 4.88± 0.005 4.36± 0.006 4.78± 0.009 4.83± 0.008 4.33± 0.004∗ 7.92± 0.01

F (157) 4.94± 0.015 4.37± 0.017 4.71± 0.014 4.78± 0.017 4.34± 0.013∗ 8.00± 0.023

G (16) 4.79± 0.018∗ 5.00± 0.052 5.08± 0.075 5.03± 0.105 4.82± 0.047 8.45± 0.13

Average±SEM 4.86± 0.007 4.56± 0.014 4.85± 0.16 4.88± 0.022 4.48± 0.011∗ 8.09± 0.028

Table 5: Protein sequences average prediction loss. A trivial distribution assignment based
on a “background” amino-acid frequency (measured over a large protein database)
has an entropy of 4.19. Note also that maximal entropy of any distribution is
bounded above by the entropy of the uniform distribution 4.32 ≈ log2(20). For
each sequence (row) the winner is starred and appears in boldface. The runner-up
appears in boldface. The last row represents the averages and standard error of
the means.

6. Protein Classification

For protein sequences, a more natural setup than the sequence prediction setting is the
classification setting. Biologists classify proteins into relational sets such as ‘families’, ‘su-
perfamilies’, ‘fold families’ and ‘classes’; these terms were coined by Dayhoff (1976) and
Levitt and Chothia (1976). Being able to classify a new protein in its proper group can
help to elucidate relationships between novel genes and existing proteins and characterize
unknown genes.

Prediction algorithms can be used for classification using a winner-takes-all (WTA)
approach. Consider a training set of sequences belonging to k classes C1, . . . , Ck. For each
class Ci we train a sequence predictor P̂i. Given a test sequence x we classify it as class
c = arg maxi P̂i(x).

We tested the WTA classifiers derived from the above VMM algorithms over several
large protein classification problems. These problems consider the same protein sequences
mentioned in the above prediction experiment. For classification we used the partition into
subsets given in the SCOP database. Specifically, the SCOP database (Murzin et al., 1995)

407

Begleiter, El-Yaniv & Yona

classifies proteins into a hierarchy of ‘families’, ‘superfamilies’, ‘folds’ and ‘classes’ where
each ‘class’ is composed of several ‘folds’, each ‘fold’ is composed of several ‘superfamilies’
and each ‘superfamily’ is composed of several ‘families’. This classification was done man-
ually based on both sequence and structural similarities, resulting in seven major ‘classes’
(at the top level), 765 ‘folds’,24 1231 ‘superfamilies’ and 2163 ‘families’ (release 1.63).

The seven major SCOP classes are quite distinct and can be easily distinguished (Ku-
marevel et al., 2000; Jin et al., 2003). Here we focused on the next level in this hierarchy,
the ‘fold’ level. Our task was to classify proteins, that belong to the same ‘class’, into
their unique ‘fold’. Since there are seven ‘classes’ in the SCOP database, we have seven
independent classification problems. The number of ‘folds’ (i.e., machine learning classes)
in each ‘class’ appear in Table 6. For example, the protein ‘class’ D contains 111 ‘folds’.
The classification problem corresponding to D is, therefore, a multi-class problem with 111
(machine learning) classes. Consider one (of the seven) classification problems. For each
‘fold’, a statistical model was trained from a training subset of sequences that belong to
that ‘fold’. Thus, the number of models we learn is the number of ‘folds’ (111 in the D
’Class’). The resulting classifier is a WTA combination of all these models. The test set for
this classifier contains all the proteins from the same SCOP ‘class’ that do not appear in
any training set.

Of the 765 ‘folds’, we considered only ‘folds’ with at least 10 members. VMM models
were trained (one for each ‘fold’) and tested. The test results are grouped and averaged per
SCOP ‘class’. The number of ‘folds’ in these classes varies between 12-111 (with an average
of 58 ’folds’).

As before, the experiment was repeated five times using five-fold CV. We measured
the performance using the average over the zero-one loss (zero loss for a correct classifica-
tion). Within each fold we fine-tuned the hyper-parameters of the algorithm using the same
“internal” five-fold cross validation methodology as described in Section 4.

In this setup we used a slightly different pst variant (denoted as pst∗) based on (Bejer-
ano & Yona, 2001).25 The pst∗ variant is basically a standard pst with the following two
modifications: (i) A context is chosen to be a candidate according to the number of times
it appears in different ‘fold’ sequences; (ii) A context s is added to the tree if some symbol
appears after s at least some predefined number of times.

We present the classification-experiment results in Table 6. The consistent winner here
is the lz-ms algorithm, which came first in all of the classification problems, differing
substantially from the runner-ups, de-ctw and ppm-c.

In general, all the VMM algorithms’ classifications had a good average success rate (1−
error) that ranges between 76% (for pst∗) to 86% (for lz-ms). The latter result is quite
surprising, considering that the class definition is based on structural properties that are
not easily recognizable from the sequence. In fact, existing methods of sequence comparison
usually fail to identify relationships between sequences that belong to different superfamilies

24. Note the difference between the SCOP ’classes’ and the term class we use in classification problems;
similarly, note the difference between the SCOP ‘folds’ (that are subsets of the SCOP ‘classes’) from the
folds we use in cross-validation. Throughout our discussion, the biological ‘classes’ and ‘folds’ are cited.

25. The results of the original pst algorithm were poor (probably due to an inadequate set of values for the
hyper-parameters). Recall that the pst∗ (and all other algorithms) hyper-parameter values were chosen
before starting the experiments, following the description given in Section 4.

408

On Prediction Using Variable Order Markov Models

within the same fold. The success rate of the lz-ms algorithm in this task suggests that
the algorithm might be very effective in other protein classification tasks.

Protein # ‘folds’ bi-ctw de-ctw lz78 lz-ms ppm-c pst∗
‘Class’

A 86 0.26± 0.035 0.19± 0.031 0.28± 0.035 0.16± 0.031 0.21± 0.031 0.22± 0.009

B 75 0.23± 0.031 0.17± 0.031 0.24± 0.040 0.14± 0.031 0.18± 0.035 -
C 78 0.27± 0.031 0.22± 0.031 0.27± 0.040 0.17± 0.035 0.21± 0.031 -
D 111 0.24± 0.040 0.19± 0.031 0.26± 0.040 0.16± 0.031 0.18± 0.035 0.20± 0.03

E 17 0.12± 0.031 0.09± 0.031 0.1± 0.044 0.05± 0.017 0.08± 0.017 0.16± 0.076

F 12 0.26± 0.031 0.21± 0.044 0.19± 0.031 0.17± 0.03 0.24± 0.067 0.24± 0.062

G 29 0.33± 0.044 0.25± 0.035 0.31± 0.05 0.16± 0.017 0.23± 0.035 0.36± 0.044

Average 0.24 0.18 0.23 0.14 0.19 0.24

W. Average 0.25 0.19 0.25 0.15 0.19 0.28

Table 6: Protein corpus results – classification error rate±SEM. five-fold cross validation
results. Best results appear in boldface. W. Average stands for “weighted average”
where the weights are the relative sizes of the protein classes.

The success of the algorithms in the classification setup contrasts with their poor pro-
tein prediction rates (given in Table 5). To investigate this phenomenon, we conducted
another protein prediction experiment based on the classification setup. In each fold in this
experiment (among the five-CV), a predictor P̂i was trained using the concatenation of all
training sequences in class Ci and was tested against each individual sequence in the test
of class Ci. The results of this prediction experiment are given in Table 7. Here we can see
that all of the algorithms yield significantly smaller losses than the loss of the trivial pro-
tein “background” distribution. Here again, ppm and de-ctw are favorites with significant
statistical difference between them.

7. Related work

In this section we briefly discuss some results that are related to the present work. We
restrict ourselves to comparative studies that include algorithms we consider here and to
discussions of some recent extensions of these algorithms. We also discuss some results
concerning compression and prediction of proteins.

The ppm idea and its overwhelming success in benchmark tests has attracted con-
siderable attention and numerous ppm variants have been proposed and studied. ppm-d
(Howard, 1993) is very similar to to ppm-c, with a slight modification of the escape mech-
anism; see Section 3.2. The ppm∗ variant eliminates the need to specify a maximal order
(Cleary & Teahan, 1997). For predicting the next symbol’s probability, ppm∗ uses “deter-
ministic” contexts, contexts that give probability one to some symbols. If no such context
exists, then ppm∗ use the longest possible context (i.e., the original ppm strategy). One of
the most successful ppm variants over the Calgary Corpus is the ppm-z variant of Bloom

409

Begleiter, El-Yaniv & Yona

Sequences bi-ctw de-ctw lz78 lz-ms ppm-c pst∗
Class

A 2.74± 0.043 1.95± 0.033∗ 3.94± 0.015 2.29± 0.034 1.96± 0.036 2.97± 0.049

B 2.57± 0.033 2.14± 0.024 3.76± 0.013 2.18± 0.026 1.92± 0.028∗ -
C 2.63± 0.036 2.07± 0.028 4.10± 0.009 2.30± 0.031 1.93± 0.030∗ -
D 2.59± 0.038 1.59± 0.032∗ 3.65± 0.021 2.15± 0.031 1.83± 0.031 2.64± 0.037

E 1.52± 0.105 1.24± 0.081 3.47± 0.052 1.49± 0.075 1.16± 0.081∗ 2.20± 0.105

F 2.99± 0.155 2.34± 0.121 3.92± 0.054 2.49± 0.13 2.15± 0.135∗ 3.04± 0.141

G 3.49± 0.057 2.30± 0.057∗ 4.04± 0.025 2.88± 0.058 2.53± 0.057 3.56± 0.051

Average±SEM 2.64± 0.066 1.94± 0.053 3.84± 0.027 2.25± 0.055 1.92± 0.056∗ 2.88± 0.076

Table 7: Protein prediction based on the classification setup. The classes B and C results of
pst are missing. We terminated these runs after a week of computation. Observe
the difference between these and the results of Table 5. Here all of the algo-
rithms beat the two trivial predictors (“background” frequency and the uniform
distribution) mentioned in caption of Table 5.

(1998). The ppm-z variant introduces two improvements to the ppm algorithm: (i) estimat-
ing the best model order, for each encoded symbol; (ii) adding a dynamic escape estimation
for different contexts. To date, the most successful ppm variant is the ‘complicated PPM
with information-inheritance’ (ppm-ii) of Shkarin (2002), which achieves a compression rate
of 2.041. Currently, this is the lowest published rate over the Calgary Corpus. The ppm-ii
algorithm relies on an improved escape mechanism similar to the one used by ppm-z to-
gether with a different counting heuristic that aims to reduce the statistical sparseness that
occurs in large Markovian contexts.

Traditionally, the comparison between ppm variants (and other lossless compression al-
gorithms) is over the Calgary Corpus. Other corpora for lossless compression were proposed
and are available. Two examples are the Canterbury Corpus and the ‘Large Canterbury
Corpus’ (Arnold & Bell, 1997) and the Silesia Compression Corpus (Deorowicz, 2003), which
contains significantly larger files than both the Calgary and Canterbury corpora.26

Bunton (1997) provides a (Calgary Corpus) comparison between ppm-c, ppm-d and
ppm∗ (with its ‘C’ and ‘D’ versions). The average compression rates achieved by these
algorithm are: 2.417, 2.448, 2.339 and 2.374, respectively, with a fixed order bound D = 9
for ppm-c and ppm-d. According to Bloom27, his latest version of ppm-z achieves an average
rate of 2.086. Bunton also proposes various improvements for the ppm schemes. Her best
improved ppm achieves a 2.177 rate.28

The general-purpose ppm scheme turns out to be rather flexible and allows adaptations
to particular domains. For example, Nevill-Manning and Witten (1999) achieve a slightly
better rate than the trivial (log2(20)) one for proteins, using a specialized variant of ppm-d

26. These corpora are available at http://corpus.canterbury.ac.nz/ and http://sun.iinf.polsl.

gliwice.pl/~sdeor/corpus.htm, respectively.
27. See http://www.cbloom.com/src/ppmz.html

28. At the time (1996) this variant was probably the most successful ppm version.

410

On Prediction Using Variable Order Markov Models

that uses prior amino-acids frequencies to enhance the estimation. By combining domain
knowledge into ppm using preprocessing and ppm that predicts over dual-alphabets, Drinic
and Kirovski (2002) develop a specialized algorithm for compressing computer executable
files (.exe). A ppm variant for compressing XML files was proposed by Cheney (2001). A
text-mining utilization of the ppm algorithm was tested by Witten et al. (1999) and a few
text classification setups were studied by Thaper (2001), Teahan and Harper (2001).

Context Tree Weighting (ctw), with its proven redundancy bound, has also attracted
much attention. However, unlike the ppm approach, there are not as many empirical studies
of this algorithm. A possible reason is that the original binary ctw (and straightforward ex-
tensions to larger alphabets) did not achieve the best lossless compression results (Tjalkens
et al., 1997). The work of Volf, which extends the binary ctw to general alphabets, re-
sulting in the de-ctw algorithm (see Section 3.4), showed that ctw can achieve excellent
compression rates. Since then, the ctw scheme has been extended in several directions.
Perhaps the most important extension is a modified ctw scheme that does not require
the maximal order hyper-parameter (D). The redundancy of this modified algorithm is
bounded in a similar manner as the original version. This more recent ctw variant is thus
universal with respect to the class of stationary and ergodic Markov sources of finite order.

Specialized ctw variants were proposed for various domains. For text, Aberg and
Shtarkov (1997) proposed to replace the ppm estimator with the KT-estimator in the ctw
model. They show that this combination of ppm-d and ctw outperforms ppm-d. This
idea was examined by Sadakane et al. (2000) for both text and biological sequences. Their
results also support the observation that the combination of a ppm predictor with the ctw
model outperforms ppm-d compression both for textual data as well as for compressing
DNA.

We are familiar with a number of extensions of the pst scheme. Singer (1997) extends the
prediction scheme for sequence transduction and also utilizes the ctw model averaging idea.
Bejerano and Yona (2001) incorporated biological prior knowledge into pst prediction and
showed that the resulting pst-based similarity measure can outperform standard methods
such as Gapped-BLAST, and is almost as sensitive as a hidden Markov model that is
trained from a multiple alignment of the input sequences, while being much faster. Finally,
Kermorvant and Dupont (2002) propose to improve the smoothing mechanism used in the
original pst algorithm. Experiments with a protein problem indicate that the proposed
smoothing method can help.

As mentioned earlier, there are many extensions of the lz78 algorithm. See (Nelson &
Gailly, 1996) for more details. It is interesting to note that Volf considered an “ensemble”
consisting of both de-ctw and ppm. He shows that the resulting algorithm performs nearly
as well as the ppm-z on the Calgary Corpus while beating the ppm-z on the Canterbury
Corpus.

Previous studies on protein classification used a variety of methods, including generative
models such as HMMs (Sonnhammer et al., 1997), PSTs (Bejerano & Yona, 2001), and
discriminative models such as Support Vector Machines (Ding & Dubchak, 2001; Leslie
et al., 2004). Jaakkola et al. (1999) describe a model that combines the SVM discriminative
model with a generative model (the HMM-based Fischer kernel). These methods can be
quite effective for protein classification at the family level but they are often expensive to
train and require some manual intervention to obtain optimal results (e.g., special input

411

Begleiter, El-Yaniv & Yona

pre-processing). Other studies used unsupervised learning techniques, such as clustering
(Yona et al., 1999; Tatusov et al., 1997) and self-organizing maps (Agrafiotis, 1997). While
these methods can be applied successfully to broader data sets, they are not as accurate as
the supervised-learning algorithms mentioned above.

Of all models, the HMM model is perhaps the most popular and successful model for
protein classification to-date (Park et al., 1998). The specific class of HMMs that are used
to model protein families (bio-HMM) has a special architecture that resembles the one used
in speech-recognition. These models are first-order Markov models. The methods tested in
this paper belong to the general class of HMMs. However, unlike the first-order bio-HMMs,
the family of models tested here is capable of modeling higher order sources. Moreover,
in many cases these models obtain comparable performance to bio-HMMs (see the work
of Bejerano & Yona, 2001) and are easier to train than bio-HMMs, which makes them an
appealing alternative.

It should be noted that the classification task that we attempted here has a different
setting than the typical setting in other studies on protein classification. In most studies,
the classification focuses on the family level and a model is trained for each family. Here
we focused on the structural fold-family level. This is a more difficult task and it has
been the subject of strong interest in fold prediction tasks (CASP, 2002). Predicting the
structural fold of a protein sequence is the first substantial step toward predicting the three-
dimensional structure of a protein, which is considered one of the most difficult problems
in computational biology.

The success rate of the VMM algorithms, and specifically the lz-ms algorithm, is espe-
cially interesting since the sequences that make up a fold-family belong to different protein
families with different properties. These families manifest different variations over the
same structural fold; however, detecting these similarities has been proved to be a difficult
problem (Yona & Levitt, 2002), and existing methods that are based on pure sequence
information achieve only moderate success in this task.

Although we have not tested bio-HMMs, we suspect that such a model would be only
moderately successful, since a single model architecture is incapable of describing the di-
verge set of protein families that make up a fold-family. In contrast, the VMM models
tested here are capable of transcending the boundaries between different protein families
since they do not limit themselves to a specific architecture. These models have very
few hyper-parameters and they can be quite easily trained from the data without further
pre-processing. Other studies that addressed a somewhat similar problem to ours used se-
quence comparison algorithms (McGuffin et al., 2001) or SVMs and Neural Networks (Ding
& Dubchak, 2001) reporting a maximal accuracy of 56%. It is hard to compare our results
to the results reported in these studies since they used different data sets and a different
assessment methodology. However, the remarkably high success rate of the lz-ms model in
this task suggests that this model can be very effective for structural-fold prediction.

8. Concluding Remarks and Open Questions

In this paper we studied the empirical performance of a number of prominent prediction
algorithms. We focused on prediction settings that are more closely related to those required

412

On Prediction Using Variable Order Markov Models

by machine learning practitioners dealing with discrete sequences. Previous results related
to these algorithms usually focused on a standard compression setting.

While it should not be expected that one algorithm will consistently outperform oth-
ers on all tasks, our rather extensive empirical evaluations over the three domains indicate
that there are prominent algorithms, which consistently tend to generate more accurate
predictions than the other algorithms we examine. These algorithms are the ‘prediction by
partial match’ (ppm-c) and ‘decomposed context tree weighting’ (de-ctw). For classifi-
cation of proteins we observe that there is also a consistent winner. However, somewhat
surprisingly, the best predictor under the log-loss is not the best classifier. On the contrary,
the consistently best protein classifier is based on the mediocre lz-ms predictor! This algo-
rithm is a simple modification of the well-known Lempel-Ziv-78 (lz78) prediction algorithm,
which can capture VMMs with large contexts. The surprisingly good classification accuracy
achieved by this algorithm may be of independent interest to protein analysis research and
clearly deserves further investigation.

This relative success of lz-ms is related to the winner-takes-all classification scheme we
use. A classifier based on this approach can suffer from a degraded performance if only one
or a few of the models generated (for some of the classes) are wrongly fitted to other classes
(in which case the erroneous model is the winner). Clearly, the superior performance of
lz-ms is related to its robustness in this regard and a closer inspection of the behavior of
the algorithms may be revealing. A possible explanation of this robustness could be related
to the unbounded memory length of the lz-ms model. In most of the other VMM models
the memory length is a hyper-parameter. However, as discussed in Section 7, some of the
other algorithms such as ppm can be extended to work without a known bound on the
context length.

An important observation, seen in these results, is that one cannot rely on log-loss
(compression) performance when selecting a VMM algorithm for classification (using a
WTA approach). Since the classification of sequences has not been studied as extensively
as compression and prediction, we believe that much can be gained by focusing on specialized
VMM algorithms for classification.

We hope that our contribution will assist practitioners in selecting suitable prediction
algorithms for prediction and classification tasks and we also provide the code of all the
algorithms we considered. Finally, we conclude by a number of open questions and directions
for future research.

One of the most successful general-purpose predictors we examined is the de-ctw al-
gorithm, with its alphabet decomposition mechanism, as suggested by Volf (2002). As it
turns out, this mechanism is crucial for the success of the the ctw scheme. However, cur-
rently there are no redundancy bounds (or other type of performance guarantees) for this
decomposition. It would be interesting to prove such a bound, which will also motivate an
optimality criterion for the decomposition-tree (see Section 3.4). Note that the heuristic
proposed by Volf for generating the decomposition-tree relies on Huffman’s coding, but we
are not familiar with a compelling reason for the success of this approach.

Similarly, the ppm scheme (and the ppm-c variant we examined) do not have any known
bounds on its log-loss redundancy. Clearly, such bounds could significantly contribute to
understanding this algorithm (and its variants) and may help in designing stronger versions
of this scheme.

413

Begleiter, El-Yaniv & Yona

One of the main factors that influence the success of the ppm algorithm is the details of its
escape mechanism, including the allocation of probability mass for the ‘escape’ event. This
probability allocation is, in essence, a solution to the zero frequency problem (also called
“missing mass” problem). So far, there are no formal justifications for the performance
of the more successful escape implementations. It would be interesting to see if some of
the recent results on the missing mass problem, such as those presented by Orlitsky et al.
(2003) and McAllester and Ortiz (2003), can help in devising a formal optimality measure
for the ppm escape implementations.

We can view the ctw algorithm as an ensemble of numerous VMMs. However, the
weights of the various VMM models are fixed. Various ensemble methods in machine learn-
ing such as boosting and online expert advice algorithms attempt to optimize the weights
of the various ensemble members. Could we achieve better performance guarantees and
better empirical performance using adaptive weight learning approaches? Volf (2002) has
some results (on combining lz78 and de-ctw) indicating that this is a promising direction.
Other possibilities would be to employ portfolio selection algorithms to dynamically change
the weights of several models, along the lines suggested by Kalai et al. (1999).

9. Acknowledgments

We are very grateful to Gil Bejerano, Charles Bloom and Paul Volf who provided valuable
advice and assistance. We would also like to thank Bob Carpenter for his PPMC compres-
sion java implementation, Moti Nisenson for his LZms java implementation and Adiel Ben
Shalom for his MIDI assistance. Finally, we thank the anonymous referees for their good
comments. The work of Ran El-Yaniv was partially supported by the Technion V.P.R. fund
for the promotion of sponsored research and the partial support of the PASCAL network
of excellence.

Appendix A. Algorithm Hyper-Parameters Selection

In our experimental protocol each algorithm optimizes its hyper-parameters during the
training phase. The best found set of parameters is then used for training (see Section 4 for
details). This appendix specifies the possible hyper-parameter values that were considered
for each algorithm for both the prediction and classification experiments. These values were
selected (based on commonsense) before the start of any experiment. We also provide here,
for each algorithm, the average values that were actually selected.

We present these hyper-parameter values in two tables: Table 8 for the prediction setup,
and Table 9, for the protein classification setup. We used two different hyper-parameter
sets for these two setups due to memory complexity issues. Specifically, in the classification
setup, as described in Section 6, the length of training sequences is significantly larger than
the length of training sequences in the prediction experiment of Section 4. For example,
in the protein classification, class ‘C’ consists of 4303 sequences from 78 different ‘folds’
and the average size of a sequence in class ‘C’ is 265. Therefore, the size of the training
sequence for this class is 912, 236. In comparison, the maximal training sequence length in
the text prediction experiment is 785396

2 = 392, 698. Also, recall that in each classification

414

On Prediction Using Variable Order Markov Models

experiment, the number of constructed models is the number of ‘folds’ (e.g., 78 in class ‘C’),
which also increases the memory overhead.

The requirement to accommodate long training sequences (in the classification experi-
ment) directly influences the space used by most of the algorithms. The lengths of training
sequences described above made it impossible for us to complete the protein classification
experiment using the set of feasible parameters as described in Table 8. Therefore, for
classification we reduced the set of possible hyper-parmeter and, as can be seen, each pa-
rameter set in Table 9 is a subset of the corresponding set in Table 8. Finally, note that
this table refers to a slight variant of the standard pst, denoted by pst∗, which was used
in the protein classification experiment (see Section 6).

In Tables 8 and 9 we also present the average (overall runs) of the hyper-parameter
values selected by the cross-validated optimization. For example, in Table 8 it is interesting
to see that different values were selected for the lz-ms algorithm, for different datasets. For
protein sequence predictions lz-ms is optimized with values that make it almost identical to
the lz78 algorithm (i.e. M = 0 and S = 0), while on the music predictions these parameters
are optimized with significantly larger values (M = 6.12 and S = 16.11). Observe that
the average order selected for ppm-c on ‘text’ data is 9.25. When originally introduced,
ppm algorithms were applied with a hyper-parameter D = 4 (constrained by the memory
available on computers at the time). Since then, it has often been used with a somewhat
larger value, typically 5 or 6 and it was observed that performance begins to deteriorate
when D is increased beyond this. For example, see Cleary and Teahan (1997, Figure 2) for a
drawing of compression vs. D for book1. We observe very similar behavior when considering
the English text files alone (not shown in our table). For example, the value selected the
hyper-parameter D in most text files (including book1) is 5.

The pst hyper-parameters presented in Tables 8 and 9 corresponds to the pst algorithm
description in Section 3.5. Specifically, the Pmin (alternatively, hits) hyper-parameter is
the threshold used for filtering “suffix set” candidates, α and γ define the first condition of
the pst second stage, r (alternatively, Nmin) defines the second condition of pst’s second
stage and D defines the maximal order of the pst “suffix set”.

Algorithm Hyper-parameter Possible Values Selected Values (Average)
Text Music Protein

ppm-c D {1, 3, . . . , 19} 9.25 16.12 1.85
bi-ctw D {8, 16, 32, 64} 42 57.76 34.3
de-ctw D {2, 4, 8, 16, 32} 7.06 27.97 17.9

pst Pmin {0.0001, 0.001, 0.01, 0.1} 0.006 0.0003 0.001
α {0} 0 0 0
γ {0.0001, 0.001, 0.01, 0.1} 0.0006 0.0005 0.0001
r {1.05} 1.05 1.05 1.05
D {5, 10, 15, 20} 7.33 15.6 20

lz-ms M {0, 2, . . . , 6, 8} 2 6.12 1.06
S {0, 2, . . . , 16, 18} 8.4 16.11 0.29

Table 8: Prediction setup hyper-parameter values.

415

Begleiter, El-Yaniv & Yona

Algorithm Hyper-parameter Possible Values Selected Values (Average)

ppm-c D {1, 3, 5, 7, 9} 8.5
bi-ctw D {8, 16, 32} 31
de-ctw D {4, 8} 7.5
pst∗ hits {2, 3, 4} 5

α {0} 0
Nmin {2, 3, 4, 5} 4

γ {0.001} 0.001
r {1.05} 1.05
D {10, 15, 20} 20

lz-ms M {0, 2, 4, 6, 8} 5.9
S {0, 2, 4, 6, 8} 7.9

Table 9: Protein classification setup hyper-parameter values. Recall that in this setup we
used a slight variation of the pst algorithm. The pst∗ variation uses the Nmin

parameter that defines the threshold for a context candidate context; and the hits
parameter defines the threshold for a context to be added to the pst tree.

Appendix B. Music Representation

Our music data consists of polyphonic music pieces given as MIDI files. A polyphonic
music piece is usually represented in a MIDI file as a collection of channels. Each channel
is typically associated with a single musical instrument and includes instructions (called
“events”) regarding which notes to play and how long and loud to play them. We treat
each channel as an individual sequence. For example, if a piece is played by five instruments,
encoded in five MIDI channels, we generated five individual sequences, one for each channel.
Note that each entry in Table 4 is an average of all channels of the corresponding piece.

We now describe how we represent each MIDI channel. Each note in a channel is
represented as a triple: pitch:volume:duration. Both pitch and volume have, according to
the MIDI protocol, 128 possible values. Duration is measured in milliseconds. We also
include a special note, which we call a ‘silence note’ and allow for negative durations of this
silence note. Such negative assignments are in fact negative time intervals, which make it
possible to represent chords or other simultaneous melodic lines within the same channel.

The sequences corresponding to a channel are the ascii representation of the sequence of
pitch:volume:duration. For example, the note 102:83:4022 is represented as “102:83:4022:”.29

Clearly, this representation is over an alphabet Σ = {0, 1, . . . , 9, :,−}, of size is 12.
It is important to note that our representation preserves much of the information en-

coded in the original MIDI representation and, in reality, allows one to almost exactly
reconstruct the original tunes.

Appendix C. On the LZ-MS Hyper-Parameters

This appendix provides an indication on the effectiveness of the M and S hyper-parameters
of the lz-ms algorithm. The experimental setup is identical to the prediction setup described
in Section 4. Table 10 shows the log-loss results over the Calgary Corpus of applications of

29. The first ten notes of Chopin’s Etude 12 Op. 10 are: “83:120:240: 128:0:-240: 79:120:240:

128:0:-240: 77:120:240: 128:0:-240: 74:120:240: 128:0:-240: 71:120:240:

128:0:-180:”.

416

On Prediction Using Variable Order Markov Models

the lz-ms algorithm: in the second column only the M parameter is enabled (and S = 0);
and the third column provides the results when only the S parameter is enabled (and
M = 0). The losses in the last column correspond to applications where both M and S are
enabled (this column is identical to the lz-ms results in Table 3). It is evident that the best
choice of M alone is consistently better than the best choice of S alone. However, the best
combination of both M and S is consistently better than any of these parameters alone.

Sequence M S lz-ms
(length ·103) (param. value) (param. value)

bib(111) 2.67 (2) 2.63 (18) 2.26* (2,12)

book1(785) 2.76 (2) 3.03 (18) 2.57* (2,12)

book2(611) 2.80 (2) 3.06 (18) 2.63*(2,12)

geo(102) 4.48 (0) 4.48 (0) 4.48 (0,0)

news(377) 3.19 (2) 3.39 (12) 3.07* (2,4)

obj1(22) 5.75* (2) 6.24 (10) 6 (2,2)

obj2(247) 3.54 (2) 3.74 (18) 3.48* (2,4)

paper1(53) 3.54 (2) 3.72 (14) 3.38* (2,12)

paper2(82) 3.10 (2) 3.23 (18) 2.81* (2,12)

paper3(47) 3.32 (2) 3.44 (18) 3.09* (2,12)

paper4(13) 3.68 (2) 3.79 (10) 3.61* (2,14)

paper5(12) 4.26 (2) 4.42 (18) 4.16* (2,8)

paper6(38) 3.70 (2) 3.91 (10) 3.6* (2,12)

pic(513) 0.79 (2) 0.79 (4) 0.79 (2,0)

progc(40) 3.34 (2) 3.57 (10) 3.22* (2,4)

progl(72) 3.26 (2) 3.50 (18) 3.26 (2,16)

progp(49) 2.75 (2) 2.93 (18) 2.65* (2,18)

trans(94) 2.85 (2) 2.89 (16) 2.61* (4,18)
Average 3.32± 0.06 3.48± 0.06 3.2± 0.06∗

Table 10: Comparing effectiveness of the lz-ms hyper-parameters. Second column: M is
assigned the best value from the “feasible” set {0, 2, 4, 6, 8} and S = 0. Third
column: S is assigned the best value from {0, 2, . . . , 16, 18} and M = 0. Last
column: the best combination of both M and S is selected from the two feasible
sets, respectively. Best values are determined using a five-fold CV. Each entry
in this table provides the average log-loss and the corresponding value of the
hyper-parameter that was used for obtaining this log-loss. For example, the 2.63
loss for the bib file when optimizing S alone is obtained with S = 18.

References

Abe, N., & Warmuth, M. (1992). On the computational complexity of approximating probability
distributions by probabilistic automata. Machine Learning, 9, 205–260.

Aberg, J., & Shtarkov, Y. (1997). Text compression by context tree weighting. In Proceedings Data
Compression Conference (DCC), pp. 377–386. IEEE Computer Society Press.

Agrafiotis, D. (1997). A new method for analyzing protein sequence relationships based on sammon
maps. Protein Science, 6, 287–293.

Arnold, R., & Bell, T. (1997). A corpus for the evaluation of lossless compression algorithms. In
Designs, Codes and Cryptography, pp. 201–210.

417

Begleiter, El-Yaniv & Yona

Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., & Werman, M. (2001). Texture mixing and texture
movie synthesis using statistical learning. IEEE Transactions on Visualization and Computer
Graphics, 7 (2), 120–135.

Bejerano, G., & Yona, G. (2001). Variations on probabilistic suffix trees: Statistical modeling and
the prediction of protein families.. Bioinformatics, 17 (1), 23–43.

Bell, T., Cleary, J., & Witten, I. (1990). Text Compression. Prentice-Hall, Inc.
Bloom, C. (1998). Solving problems of context modeling.

http://www.cbloom.com/papers/index.html.
Bunton, S. (1997). Semantically motivated improvements for PPM variants. The Computer Journal,

40 (2/3), 76–92.
Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.. Tech.

rep. 124, Digital Equipement Corporation.
CASP (2002). Protein structure prediction center. http://predictioncenter.llnl.gov/.
Cheney, J. (2001). Compressing XML with multiplexed hierarchical PPM models. In Data Com-

pression Conference, pp. 163–172.
Clarkson, B., & Pentland, A. (2001). Predicting daily behavior via wearable sensors. Tech. rep.

Vismod TR#540, MIT.
Cleary, J., & Teahan, W. (1997). Unbounded length contexts for PPM. Computer Journal, 40,

67–75.
Cleary, J., & Witten, I. (1984). Data compression using adaptive coding and partial string matching.

IEEE Transactions on Communications, COM-32 (4), 396–402.
Cover, T., & King, R. (1978). A convergent gambling estimate of the entropy of English. IEEE

Transactions on Information Theory, 24 (4), 413–421.
Cover, T., & Thomas, J. (1991). Elements of Information Theory. John Wiley and Sons, Inc.
Dayhoff, M. (1976). The origin and evolution of protein superfamilies. In Federation Proceedings,

pp. 2132–2138.
Deorowicz, S. (2003). Universal lossless data compression algorithms. Ph.D. thesis, Silesian Univer-

sity of Technology.
Ding, C., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines

and neural networks. Bioinformatics, 17, 349–358.
Drinic, M., & Kirovski, D. (2002). PPMexe: PPM for compressing software. In Data Compression

Conference, pp. 192–201.
Dubnov, S., Assayag, G., Lartillot, O., & Bejerano, G. (2003). Using machine-learning methods for

musical style modeling. IEEE Computer, 36 (10), 73–80.
Feder, M., & Merhav, N. (1994). Relations between entropy and error probability. IEEE Transactions

on Information Theory, 40 (1), 259–266.
Holm, L., & Sander, C. (1994). Parser for protein folding units. Proteins, 19, 256–268.
Howard, P. (1993). The design and analysis of efficient lossless data compression systems. Ph.D.

thesis, Brown University.
Jaakkola, T., Diekhans, M., & Haussler., D. (1999). Using the Fisher kernel method to detect remote

protein homologies. In Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology, pp. 149–158.

Jin, L., Fang, W., & Tang, H. (2003). Prediction of protein structural classes by a new measure of
information discrepancy. Computational Biology and Chemistry, 27, 373–380.

418

On Prediction Using Variable Order Markov Models

Kalai, A., Chen, S., Blum, A., & Rosenfeld, R. (1999). On-line algorithms for combining language
models. In Proceedings of the International Conference on Accoustics, Speech, and Signal
Processing.

Kermorvant, C., & Dupont, P. (2002). Improved smoothing for probabilistic suffix trees seen as
variable order Markov chains. In European Conference on Machine Learning (ECML), pp.
185–194.

Krichevsky, R., & Trofimov, V. (1981). The performance of universal encoding. IEEE Transactions
on Information Theory, 27, 199–207.

Kumarevel, T., Gromiha, M., & Ponnuswamy, M. (2000). Structural class prediction: An application
of residue distribution along the sequence. Biophys Chem., 88, 81–101.

Langdon, G. (1983). A note on the Ziv-Lempel model for compressing individual sequences. IEEE
Transactions on Information Theory, 29, 284– 287.

Lesk, A., & Rose, G. (1981). Folding units in globular proteins. In Proceedings of the National
Academy of Sciences, No. 78, pp. 4304–4308.

Leslie, C., Eskin, E., Cohen, A., Weston, J., & Noble, W. (2004). Mismatch string kernels for
discriminative protein classification. Bioinformatics, 20, 467–476.

Levitt, M., & Chothia, C. (1976). Structural patterns in globular proteins. Nature, 261, 552–558.
Manzini, G. (2001). An analysis of the burrows-wheeler transform. Journal of the ACM, 48 (3),

407–430.
McAllester, D., & Ortiz, L. (2003). Concentration inequalities for the missing mass and for histogram

rule error. Journal of Machine Learning Research, 4, 895–911.
McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information

extraction and segmentation. In Proc. 17th International Conf. on Machine Learning, pp.
591–598. Morgan Kaufmann, San Francisco, CA.

McGuffin, L., Bryson, K., & Jones, D. (2001). What are the baselines for protein fold recognition?.
Bioinformatics, 17, 63–72.

Merhav, N., & Feder, M. (1995). A strong version of the redundancy-capacity theorem of universal
coding. IEEE Transactions on Information Theory, 41 (3), 714–722.

Miller, J., Goodman, R., & Smyth, P. (1993). On loss functions which minimize to conditional
expected values and posterior probabilities. IEEE Transactions on Information Theory, 39 (4),
1404–1408.

Moffat, A. (1990). Implementing the PPM data compression scheme. IEEE Transactions on Com-
munications, 38 (11), 1917–1921.

Murzin, A., Brenner, S., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification
of proteins database for the investigation of sequences and structures. Journal of Molecular
Biology, 247, 536–540.

Nelson, M., & Gailly, J. (1996). The Data Compression Book (2nd ed.). MIS:Press.
Nevill-Manning, C., & Witten, I. (1999). Protein is incompressible. In Data Compression Conference,

pp. 257–266.
Nisenson, M., Yariv, I., El-Yaniv, R., & Meir, R. (2003). Towards behaviometric security systems:

Learning to identify a typist. In The 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases.

Orlitsky, A., Santhanam, N., & Zhang, J. (2003). Always Good Turing: Asymptotically optimal
probability estimation. Science, 302 (5644), 427–431.

Pachet, F. (2002). Playing with virtual musicians: The continuator in practice. IEEE MultiMedia,
9 (3), 77–82.

419

Begleiter, El-Yaniv & Yona

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T., & Chothia, C. (1998).
Sequence comparisons using multiple sequences detect three times as many remote homologues
as pairwise methods. Journal of Molecular Biology, 284, 1201–1210.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77 (3), 257–286.

Rabiner, L., & Juang, B. (1993). Fundamentals of Speech Recognition. Prentice-Hall, Inc.
Rissanen, J. (1983). A universal data compression system. IEEE Transactions on Information

Theory, 29 (5), 656–664.
Rissanen, J. (1984). Universal coding, information, prediction, and estimation. IEEE Transactions

on Information Theory, 30 (4), 629–636.
Rissanen, J., & Langdon, G. (1979). Arithmetic coding. IBM Journal of Research and Development,

23 (2), 149–162.
Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata

with variable memory length. Machine Learning, 25 (2–3), 117–149.
Rose, G. (1979). Hierarchic organization of domains in globular proteins. Journal of Molecular

Biology, 134, 447–470.
Sadakane, K., Okazaki, T., & Imai, H. (2000). Implementing the context tree weighting method for

text compression. In Data Compression Conference, pp. 123–132.
Savari, S. (1997). Redundancy of the Lempel-Ziv incremental parsing rule. IEEE Transactions on

Information Theory, 43, 9–21.
Schütze, H., & Singer, Y. (1994). Part-of-speech tagging using a variable memory Markov model. In

Proceedings of the 32nd Conference on Association for Computational Linguistics, pp. 181–
187. Association for Computational Linguistics.

Shkarin, D. (2002). PPM: One step to practicality. In Data Compression Conference, pp. 202–212.
Singer, Y. (1997). Adaptive mixtures of probabilistic transducers. Neural Computation, 9 (8), 1711–

1733.
Singer, Y., & Tishby, N. (1994). Dynamical encoding of cursive handwriting. Biological Cybernetics,

71 (3), 227–237.
Sonnhammer, E., Eddy, S., & Durbin, R. (1997). Pfam: A comprehensive database of protein domain

families based on seed alignments. Proteins, 28, 405–420.
Tatusov, R., Eugene, V., & David, J. (1997). A genomic perspective on protein families. Science,

278, 631–637.
Teahan, W., & Harper, D. (2001). Using compression based language models for text categoriza-

tion. In Workshop on Language Modeling and Information Retrieval, ARDA, Carnegie Mellon
University, pp. 83–88.

Thaper, N. (2001). Using compression for source based classification of text. Master’s thesis,
Massachusetts Institute of Technology.

Tjalkens, T., Volf, P., & Willems, F. (1997). A context-tree weighting method for text generating
sources. In Data Compression Conference, p. 472.

Tjalkens, T., & Willems, F. (1997). Implementing the context-tree weighting method: Arithmetic
coding. In International Conference on Combinatorics, Information Theory and Statistics,
p. 83.

Volf, P. (2002). Weighting Techniques in Data Compression Theory and Algorithms. Ph.D. thesis,
Technische Universiteit Eindhoven.

Willems, F. (1998). The context-tree weighting method: Extensions. IEEE Transactions on Infor-
mation Theory, 44 (2), 792–798.

420

On Prediction Using Variable Order Markov Models

Willems, F., Shtarkov, Y., & Tjalkens, T. (1995). The context-tree weighting method: Basic prop-
erties. IEEE Transactions on Information Theory, 653–664.

Witten, I., & Bell, T. (1991). The zero-frequency problem: Estimating the probabilities of novel
events in adaptive text compression. IEEE Transactions on Information Theory, 37 (4), 1085–
1094.

Witten, I., Bray, Z., Mahoui, M., & Teahan, B. (1999). Text mining: A new frontier for lossless
compression. In Proceedings of the Conference on Data Compression, pp. 198–207. IEEE
Computer Society.

Yona, G., & Levitt, M. (2002). Within the twilight zone: A sensitive profile-profile comparison tool
based on information theory. Journal of Molecular Biology, 315, 1257–1275.

Yona, G., Linial, N., & Linial, M. (1999). Protomap: Automatic classification of protein sequences,
a hierarchy of protein families, and local maps of the protein space. Proteins, 37, 360–378.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24, 530–536.

421

