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Abstract

This is the second of three planned papers describing zap, a satisfiability engine that
substantially generalizes existing tools while retaining the performance characteristics of
modern high performance solvers. The fundamental idea underlying zap is that many
problems passed to such engines contain rich internal structure that is obscured by the
Boolean representation used; our goal is to define a representation in which this structure
is apparent and can easily be exploited to improve computational performance. This paper
presents the theoretical basis for the ideas underlying zap, arguing that existing ideas in
this area exploit a single, recurring structure in that multiple database axioms can be
obtained by operating on a single axiom using a subgroup of the group of permutations on
the literals in the problem. We argue that the group structure precisely captures the general
structure at which earlier approaches hinted, and give numerous examples of its use. We go
on to extend the Davis-Putnam-Logemann-Loveland inference procedure to this broader
setting, and show that earlier computational improvements are either subsumed or left
intact by the new method. The third paper in this series discusses zap’s implementation
and presents experimental performance results.

1. Introduction

This is the second of a planned series of three papers describing zap, a satisfiability engine
that substantially generalizes existing tools while retaining the performance characteristics
of existing high-performance solvers such as zChaff (Moskewicz, Madigan, Zhao, Zhang,
& Malik, 2001).1 In the first paper (Dixon, Ginsberg, & Parkes, 2004b), to which we
will refer as zap1, we discussed a variety of existing computational improvements to the

1. The first paper has appeared in jair; the third is currently available as a technical report (Dixon,
Ginsberg, Hofer, Luks, & Parkes, 2004a) but has not yet been peer reviewed.
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Davis-Putnam-Logemann-Loveland (dpll) inference procedure, eventually producing the
following table. The rows and columns are described on this page and the next.

efficiency proof propagation learning
of rep’n length resolution technique method

SAT — EEE — watched literals relevance
cardinality exponential P?E not unique watched literals relevance

pseudo-
Boolean

exponential P?E unique watched literals + strengthening

symmetry — EEE∗ not believed in P same as sat same as sat
QPROP exponential ??? in P using reasons exp improvement + first-order

The rows of the table correspond to observations regarding existing representations used
in satisfiability research, as reflected in the labels in the first column:2

1. SAT refers to conventional Boolean satisfiability work, representing information as
conjunctions of disjunctions of literals (cnf).

2. cardinality refers to the use of “counting” clauses; if we think of a conventional
disjunction of literals ∨ili as ∑

i

li ≥ 1

then a cardinality clause is one of the form∑
i

li ≥ k

for a positive integer k.

3. pseudo-Boolean clauses extend cardinality clauses by allowing the literals in ques-
tion to be weighted: ∑

i

wili ≥ k

Each wi is a positive integer giving the weight to be assigned to the associated literal.

4. symmetry involves the introduction of techniques that are designed to explicitly
exploit local or global symmetries in the problem being solved.

5. QPROP deals with universally quantified formulae where all of the quantifications
are over finite domains of known size.

The columns in the table measure the performance of the various systems against a
variety of metrics:

2. Please see the preceding paper zap1 (Dixon et al., 2004b) for a fuller explanation and for a relatively
comprehensive list of references where the earlier work is discussed.
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ZAP 2: Theory

1. Efficiency of representation measures the extent to which a single axiom in a
proposed framework can replace many in cnf. For cardinality, pseudo-Boolean and
quantified languages, it is possible that exponential savings are achieved. We argued
that such savings were possible but relatively unlikely for cardinality and pseudo-
Boolean encodings but were relatively likely for qprop.

2. Proof length gives the minimum proof length for the representation on three classes
of problems: the pigeonhole problem, parity problems due to Tseitin (1970) and
clique coloring problems (Pudlak, 1997). An E indicates exponential proof length;
P indicates polynomial length. While symmetry-exploitation techniques can provide
polynomial-length proofs in certain instances, the method is so brittle against changes
in the axiomatization that we do not regard this as a polynomial approach in general.

3. Resolution indicates the extent to which resolution can be lifted to a broader set-
ting. This is straightforward in the pseudo-Boolean case; cardinality clauses have the
problem that the most natural resolvent of two cardinality clauses may not be a car-
dinality clause, and there may be many cardinality clauses that could be derived as
a result. Systems that exploit local symmetries must search for such symmetries at
each inference step, a problem that is not believed to be in P. Provided that reasons
are maintained, inference remains well defined for quantified axioms, requiring only
the introduction of a linear complexity unification step.

4. Propagation technique describes the techniques used to draw conclusions from
an existing partial assignment of values to variables. For all of the systems except
qprop, Zhang and Stickel’s watched literals idea (Moskewicz et al., 2001; Zhang &
Stickel, 2000) is the most efficient mechanism known. This approach cannot be lifted
to qprop, but a somewhat simpler method can be lifted and average-case exponential
savings obtained as a result (Ginsberg & Parkes, 2000).

5. Learning method gives the technique typically used to save conclusions as the in-
ference proceeds. In general, relevance-bounded learning (Bayardo & Miranker, 1996;
Bayardo & Schrag, 1997; Ginsberg, 1993) is the most effective technique known here.
It can be augmented with strengthening (Guignard & Spielberg, 1981; Savelsbergh,
1994) in the pseudo-Boolean case and with first-order reasoning if quantified formulae
are present.

Our goal in the current paper is to add a single line to the above table:
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efficiency proof propagation learning
of rep’n length resolution technique method

SAT — EEE — watched literals relevance
cardinality exponential P?E not unique watched literals relevance

pseudo-
Boolean

exponential P?E unique watched literals + strengthening

symmetry — EEE∗ not believed in P same as sat same as sat
QPROP exponential ??? in P using reasons exp improvement + first-order

ZAP exponential PPP in P using reasons watched literals,
exp improvement

+ first-order
+ parity
+ others

Zap is the approach to inference that is the focus of this series of papers. The basic
idea in zap is that in realistic problems, many Boolean clauses are “versions” of a single
clause. We will make this notion precise shortly; at this point, one might think of all of the
instances of a quantified clause as being versions of any particular ground instance. The
versions, it will turn out, correspond to permutations on the set of literals in the problem.

As an example, suppose that we are tying to prove that it is impossible to put n + 1
pigeons into n holes if each pigeon is to get its own hole. A Boolean axiomatization of this
problem will include the axioms

¬p11 ∨ ¬p21 ¬p12 ∨ ¬p22 · · · ¬p1n ∨ ¬p2n

¬p11 ∨ ¬p31 ¬p12 ∨ ¬p32 · · · ¬p1n ∨ ¬p3n
...

...
...

¬p11 ∨ ¬pn+1,1 ¬p12 ∨ ¬pn+1,2 · · · ¬p1n ∨ ¬pn+1,n

¬p21 ∨ ¬p31 ¬p22 ∨ ¬p32 · · · ¬p2n ∨ ¬p3n
...

...
...

¬p21 ∨ ¬pn+1,1 ¬p22 ∨ ¬pn+1,2 · · · ¬p2n ∨ ¬pn+1,n
...

...
...

¬pn1 ∨ ¬pn+1,1 ¬pn2 ∨ ¬pn+1,2 · · · ¬pnn ∨ ¬pn+1,n

where pij says that pigeon i is in hole j. Thus the first clause above says that pigeon one
and pigeon two cannot both be in hole one. The second clause in the first column says that
pigeon one and pigeon three cannot both be in hole one. The second column refers to hole
two, and so on. It is fairly clear that all of these axioms can be reconstructed from the first
by interchanging the pigeons and the holes, and it is this intuition that zap attempts to
capture.

What makes this approach interesting is the fact that instead of reasoning with a large
set of clauses, it becomes possible to reason with a single clause instance and a set of
permutations. As we will see, the sets of permutations that occur naturally are highly
structured sets called groups, and exploiting this structure can lead to significant efficiency
gains in both representation and reasoning.

Some further comments on the above table:
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• Unlike cardinality and pseudo-Boolean methods, which seem unlikely to achieve ex-
ponential reductions in problem size in practice, and qprop, which seems likely to
achieve such reductions, zap is guaranteed , when the requisite structure is present, to
replace a set of n axioms with a single axiom of size at most v log(n), where v is the
number of variables in the problem (Proposition 4.8).

• The fundamental inference step in zap is in NP with respect to the zap representation,
and therefore has complexity no worse than exponential in the representation size
(i.e., polynomial in the number of Boolean axioms being resolved). In practice, the
average case complexity appears to be low-order polynomial in the size of the zap
representation (i.e., polynomial in the logarithm of the number of Boolean axioms
being resolved) (Dixon et al., 2004a).

• Zap obtains the savings attributable to subsearch in the qprop case while casting
them in a general setting that is equivalent to watched literals in the Boolean case.
This particular observation is dependent on a variety of results from computational
group theory and is discussed in the third paper in this series (Dixon et al., 2004a).

• In addition to learning the Boolean consequences of resolution, zap continues to sup-
port relevance-bounded learning schemes while also allowing the derivation of first-
order consequences, conclusions based on parity arguments, and combinations thereof.

In order to deliver on these claims, we begin in Section 2 by summarizing both the dpll
algorithm and the modifications that embody recent progress, casting dpll into the precise
form that is needed in zap and that seems to best capture the architecture of modern
systems such as zChaff. Section 3 is also a summary of ideas that are not new with us,
providing an introduction to some ideas from group theory.

In Section 4, we describe the key insight underlying zap. As mentioned above, the
structure exploited in earlier examples corresponds to the existence of particular groups of
permutations of the literals in the problem. We call the combination of a clause and such
a permutation group an augmented clause, and the efficiency of representation column
of our table corresponds to the observation that augmented clauses can use group structure
to improve the efficiency of their encoding.

Section 5 (resolution) describes resolution in this broader setting, and Section 6 (proof
length) presents a variety of examples of these ideas at work, showing that the pigeonhole
problem, clique-coloring problems, and Tseitin’s parity examples all admit short proofs
in the new framework. Section 7 (learning method) recasts the dpll algorithm in the
new terms and discusses the continued applicability of relevance in our setting. Conclud-
ing remarks are contained in Section 8. Implementation details, including a discussion
of propagation techniques, are deferred until the third of this series of papers (Dixon
et al., 2004a). This third paper will also include a presentation of performance details; at
this point, we note merely that zap does indeed exhibit polynomial performance on the
natural encodings of pigeonhole, parity and clique-coloring problems. This is in sharp con-
trast with other methods, where theoretical best-case performance (let alone experimental
average-case performance) is known to be exponential on these problems classes.
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2. Boolean Satisfiability Engines

In zap1, we presented descriptions of the standard Davis-Putnam-Logemann-Loveland
(dpll) Boolean satisfiability algorithm and described informally the extensions to dpll
that deal with learning. Our goal in this paper and the next is to describe an implementa-
tion of our theoretical ideas. We therefore begin here by being more precise about dpll and
its extension to relevance-bounded learning, or rbl. We present some general definitions
that we will need throughout this paper, and then give a description of the dpll algorithm
in a learning/reason-maintenance setting. We prove that an implementation of these ideas
can retain the soundness and completeness of dpll while using an amount of memory that
grows polynomially with problem size. Although this result has been generally accepted
since 1-relevance learning (“dynamic backtracking,” Ginsberg, 1993) was generalized by
Bayardo, Miranker and Schrag (Bayardo & Miranker, 1996; Bayardo & Schrag, 1997), we
know of no previous proof that rbl has the stated properties.

Definition 2.1 A partial assignment is an ordered sequence

〈l1, . . . , ln〉

of distinct and consistent literals.

Definition 2.2 Let ∨ili be a clause, which we will denote by c, and suppose that P is a
partial assignment. We will say that the possible value of c under P is given by

poss(c, P ) = |{l ∈ c|¬l 6∈ P}| − 1

If no ambiguity is possible, we will write simply poss(c) instead of poss(c, P ). In other
words, poss(c) is the number of literals that are either already satisfied or not valued by P ,
reduced by one (since true clauses require at least one true literal).

If S is a set of clauses, we will write possn(S, P ) for the subset of c ∈ S for which
poss(c, P ) ≤ n.

In a similar way, we will define curr(c, P ) to be

curr(c, P ) = |{l ∈ c ∩ P}| − 1

We will write currn(S, P ) for the subset of c ∈ S for which curr(c, P ) ≤ n.

Informally, if poss(c, P ) = 0, that means that any partial assignment extending P can make
at most one literal in c true; there is no room for any “extra” literals to be true. This might
be because all of the literals in c are assigned values by P and only one such literal is true;
it might be because there is a single unvalued literal and all of the other literals are false.
If poss(c, P ) < 0, it means that the given partial assignment cannot be extended in a way
that will cause c to be satisfied. Thus we see that poss−1(S, P ) is the set of clauses in S that
are falsified by P . Since curr gives the “current” excess in the number of satisfied literals
(as opposed to poss, which gives the possible excess), the set poss0(S, P ) ∩ curr−1(S, P )
is the set of clauses that are not currently satisfied and have at most one unvalued literal.
These are generally referred to as unit clauses.

We note in passing that Definition 2.2 can easily be extended to deal with pseudo-
Boolean instead of Boolean clauses, although that extension will not be our focus here.
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Definition 2.3 An annotated partial assignment is an ordered sequence

〈(l1, c1), . . . , (ln, cn)〉

of distinct and consistent literals and clauses, where ci is the reason for literal li and either
ci = true (indicating that li was a branch point) or ci is a clause such that:

1. li is a literal in ci, and

2. poss(ci, 〈l1, . . . , li−1〉) = 0

An annotated partial assignment will be called sound with respect to a set of clauses C if
C |= ci for each reason ci.

The reasons have the property that after the literals l1, . . . , li−1 are all included in the
partial assignment, it is possible to conclude li directly from ci, since there is no other way
for ci to be satisfied.

Definition 2.4 Let c1 and c2 be clauses, each a set of literals to be disjoined. We will say
that c1 and c2 resolve if there is a unique literal l such that l ∈ c1 and ¬l ∈ c2. If c1 and
c2 resolve, their resolvent, to be denoted resolve(c1, c2), is the disjunction of the literals in
the set c1 ∪ c2 − {l,¬l}.

If r1 and r2 are reasons, the result of resolving r1 and r2 is defined to be:

resolve(r1, r2) =


r2, if r1 = true;
r1, if r2 = true;
the conventional resolvent of r1 and r2, otherwise.

Definition 2.5 Let C be a set of clauses and P a partial assignment. A nogood for P
is any clause c that is entailed by C but falsified by P . A nogood is any clause c that is
entailed by C.

We are now in a position to present one of the basic building blocks of dpll or rbl,
the unit propagation procedure. This computes the “obvious” consequences of a partial
assignment:

Procedure 2.6 (Unit propagation) To compute Unit-Propagate(C,P ) for a set C of
clauses and an annotated partial assignment P :

1 while poss0(C,P ) ∩ curr−1(C,P ) 6= Ø
2 do if poss−1(C,P ) 6= Ø
3 then c← an element of poss−1(C,P )
4 li ← the literal in c with the highest index in P
5 return 〈true, resolve(c, ci)〉
6 else c← an element of poss0(C,P ) ∩ curr−1(C,P )
7 l← the literal in c unassigned by P
8 P ← 〈P, (l, c)〉
9 return 〈false, P 〉
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The above procedure returns a pair of values. The first indicates whether a contradiction has
been found. If so, the second value is the reason for the failure, a consequence of the clausal
database C that is falsified by the partial assignment P (i.e., a nogood). If no contradiction
is found, the second value is a suitably extended partial assignment. Procedure 2.6 has also
been modified to work with annotated partial assignments, and to annotate the new choices
that are made when P is extended.

Proposition 2.7 Suppose that C is a Boolean satisfiability problem, and P is a sound
annotated partial assignment. Then:

1. If unit-propagate(P ) = 〈false, P ′〉, then P ′ is a sound extension of P , and

2. If unit-propagate(P ) = 〈true, c〉, then c is a nogood for P .

Proof. In the interests of maintaining the continuity of the exposition, most proofs (in-
cluding this one!) have been deferred to the appendix. Proofs or proof sketches will appear
in the main text only when they further the exposition in some way.

We can now describe relevance-bounded learning:

Procedure 2.8 (Relevance-bounded reasoning, rbl) Let C be a sat problem, and D
a set of learned nogoods, so that C |= D. Let P be an annotated partial assignment, and k
a fixed relevance bound. To compute rbl(C,D,P ):

1 〈x, y〉 ← Unit-Propagate(C ∪D,P )
2 if x = true
3 then c← y
4 if c is empty
5 then return failure
6 else remove successive elements from P so that c is satisfiable and

poss(c, P ) ≤ k
7 D ← {c} ∪ possk(D,P )
8 return rbl(C,D,P )
9 else P ← y

10 if P is a solution to C
11 then return P
12 else l← a literal not assigned a value by P
13 return rbl(C,D, 〈P, (l, true)〉)

This procedure is fairly different from the original description of dpll, so let us go
through it.

In general, variables are assigned values either via branching on line 13, or unit propa-
gation on lines 1 and 9. If unit propagation terminates without reaching a contradiction or
finding a solution (so that x is false on line 2 and the test on line 10 fails as well), then a
branch variable is selected and assigned a value, and the procedure recurs.

If the unit propagation procedure “fails” and returns 〈true, c〉 for a new nogood c,
the new clause is learned by adding it to D, and the search backtracks at least to the
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point where c is satisfiable.3 Any learned clauses that have become irrelevant (in that
their poss value exceeds the irrelevance cutoff k) are removed. Note that we only remove
learned irrelevant nogoods; we obviously cannot remove clauses that were part of the original
problem specification. It is for this reason that the sets C and D (of original and learned
clauses respectively) are maintained separately.

Procedure 2.8 can fail only if a contradiction (an empty clause c) is derived. In all other
cases, progress is made by augmenting the set of clauses to include at least one new nogood
that eliminates the current partial assignment. Instead of resetting the branch literal l to
take the opposite value as in Davis et.al.’s original description of their algorithm, a new
clause is learned and added to the problem. This new clause causes either l or some previous
variable to take a new value.

The above description is ambiguous about a variety of points. We do not specify how
far to backtrack on line 6, or the branch literal to be chosen on line 12. We will not be
concerned with these choices; zap takes the same approach that zChaff does and the
implementation is straightforward.

Theorem 2.9 Rbl is sound and complete in that rbl(C,Ø, 〈〉) will always return a satis-
fying assignment if C is satisfiable and will always report failure if C is unsatisfiable. Rbl
also uses an amount of memory polynomial in the size of C (although exponential in the
relevance bound k).

As discussed at some length in zap1, other authors have focused on extending the lan-
guage of Boolean satisfiability in ways that preserve the efficiency of rbl. These extensions
include the ability to deal with quantification (Ginsberg & Parkes, 2000), pseudo-Boolean or
cardinality clauses (Barth, 1995, 1996; Chandru & Hooker, 1999; Dixon & Ginsberg, 2000;
Hooker, 1988; Nemhauser & Wolsey, 1988), or parity clauses (Baumgartner & Massacci,
2000; Li, 2000).

3. Some Concepts from Group Theory

Relevance-bounded learning is only a part of the background that we will need to describe
zap; we also need some basic ideas from group theory. There are many excellent references
available on this topic (Rotman, 1994, and others), and we can only give a brief account
here. Our goal is not to present a terse sequence of definitions and to then hollowly claim
that this paper is self-contained; we would rather provide insight regarding the goals and
underlying philosophy of group theory generally. We will face a similar problem in the final
paper in this series, where we will draw heavily on results from computational group theory
and will, once again, present a compact and hopefully helpful overview of a broad area of
mathematics.

Definition 3.1 A group is a set S equipped with an associative binary operator ◦. The
operator ◦ has an identity 1, with 1 ◦ x = x ◦ 1 = x for all x ∈ S, and an inverse, so that
for every x ∈ S there is an x−1 such that x ◦ x−1 = x−1 ◦ x = 1.

3. As we remarked in zap1, some systems such as zChaff (Moskewicz et al., 2001) backtrack further to
the point where c is unit.
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In other words, ◦ is a function ◦ : S × S → S; since ◦ is associative, we always have

(x ◦ y) ◦ z = x ◦ (y ◦ z)

The group operator ◦ is not required to be commutative; if it is commutative, the group is
called Abelian.

Typical examples of groups include Z, the group of integers with the operation being
addition. Similarly, Q and R are the groups of rationals or reals under addition. For
multiplication, zero needs to be excluded, since it has no inverse, and we get the groups Q∗

and R∗. Note that Z∗ is not a group, since 1/n is not an integer for most integers n.
Other common groups include Zn for any positive integer n; this is the group of integers

mod n, where the group operation is addition mod n. For a prime p, the set Z∗
p of nonzero

integers mod p does have a multiplicative inverse, so that Z∗
p is a group under multiplication.

The group Z1 contains the single element 0 and is the trivial group. This group is often
denoted by 1.

All of the groups we have described thus far are Abelian, but non-Abelian groups are
not hard to come by. As an example, the set of all n × n matrices with real entries and
nonzero determinants is a group under multiplication, since every matrix with a nonzero
determinant has an inverse. This group is called the general linear group and is denoted
GL(n).

Of particular interest to us will be the so-called permutation groups:

Definition 3.2 Let T be a set. A permutation of T is a bijection ω : T → T from T to
itself.

Proposition 3.3 Let T be a set. Then the set of permutations of T is a group under the
composition operator.

Proof. This is simply a matter of validating the definition. Functional composition is well
known to be associative (although not necessarily commutative), and the identity function
from T to itself is the identity for the composition operator. Since each permutation is a
bijection, permutations can be inverted to give the inverse operator for the group.

The group of permutations on T is called the symmetry group of T , and is typically
denoted Sym(T ). We will take the view that the composition f ◦ g acts with f first and g
second, so that (f ◦ g)(x) = g(f(x)) for any x ∈ T . (Note the variable order.)

Because permutation groups will be of such interest to us, it is worthwhile to introduce
some additional notation for dealing with them in the case where T ⊆ Z is a subset of
the integers. In the special case where T = {1, . . . , n}, we will often abbreviate Sym(T ) to
either Sym(n) or simply Sn.

Of course, we can get groups of permutations without including every permutation on a
particular set; the 2-element set consisting of the identity permutation and the permutation
that swaps two specific elements of T is closed under inversion and composition and is
therefore a group as well. In general, we have:

Definition 3.4 Let (G, ◦) be a group. Then a subset H ⊆ G is called a subgroup if (H, ◦)
is a group. This is denoted H ≤ G. If the inclusion is proper, we write H < G.
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A subgroup of a group G is any subset of G that includes the identity and that is closed
under composition and inversion.

If G is a finite group, closure under composition suffices. To understand why, suppose
that we have some subset H ⊆ G that is closed under composition, and that x ∈ H. Now
x2 ∈ H, and x3 ∈ H, and so on. Since G is finite, we must eventually have xm = xn for some
integers m and n, where we assume m > n. It follows that xm−n = 1 so xm−n−1 = x−1, so
H is closed under inversion and therefore a subgroup.

Proposition 3.5 Let G be a group, and suppose that H1 ≤ G and H2 ≤ G are subgroups.
Then H1 ∩H2 ≤ G is a subgroup of G as well.

This should be clear, since H1 ∩H2 must be closed under inversion and composition if
each of the component groups is.

Definition 3.6 Let G be a group, and S ⊆ G a subset. Then there is a unique smallest
subgroup of G containing S, which is denoted 〈S〉 and called the subgroup of G generated
by S. The order of an element g ∈ G is defined to be |〈g〉|.

The generated subgroup is unique because it can be formed by taking the intersection of
all subgroups containing S. This intersection is itself a subgroup by virtue of Proposition 3.5.
If S = Ø or S = {1}, the trivial subgroup is generated, consisting of only the identity element
of G. Thus the order of the identity element is one. For any element g, the order of g is
the least nonzero exponent m for which gm = 1.

We have already remarked that the two-element set {1, (ab)} is a group, where 1 repre-
sents the trivial permutation and (ab) is the permutation that swaps a and b. It is easy to
see that {1, (ab)} is the group generated by (ab). The order of (ab) is two.

In a similar way, if (abcd) is the permutation that maps a to b, b to c, c to d and d back
to a, then the subgroup generated by (abcd) is

{1, (abcd), (ac) ◦ (bd), (adcb)}

The third element simultaneously swaps a and c, and swaps b and d. The order of the
permutation (abcd) is four, and (abcd) is called a 4-cycle. Both this subgroup and the
previous subgroup generated by (ab) are Abelian, although the full permutation group
Sym(L) is not Abelian if |L| > 2. It is not hard to see that 〈ρ〉 is Abelian for any specific
permutation ρ.

Slightly more interesting is the group generated by (abcd) together with (ac). This group
has eight elements:

{1, (abcd), (ac) ◦ (bd), (adcb), (ac), (ad) ◦ (bc), (bd), (ab) ◦ (cd)} (1)

The first four permutations don’t “use” (ac) and the second four do. Since (abcd) ◦ (ac) 6=
(ac) ◦ (abcd), this group is not Abelian.

It is not hard to see that the group (1) is in fact the group of rigid motions of a square
whose vertices are labeled a, b, c and d. The first permutation (abcd) corresponds to a
rotation of the square by 90◦ and the second (ac), to a flip around the b-d diagonal. The
first four permutations in (1) simply rotate the square, while the second four use the flip as
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well; the group is not Abelian because a flip followed by a 90◦ clockwise rotation is different
than the rotation followed by the flip. In a similar way, the six basic twists of Rubik’s
cube generate a permutation group of size approximately 4.3 × 1019, giving all accessible
permutations of the faces.

In general, suppose that f is a permutation on a set S and x ∈ S. We can obviously
consider the image of x under f . Rather than denote this image by f(x) as usual, it is
customary to denote it by xf . The reason for this “inline” notation is that we now have

xfg = (xf )g

which seems natural, as opposed to the unnatural

(fg)(x) = g(f(x))

as mentioned previously. We have dropped the explicit composition operator ◦ here.
Continuing, we can form the set of images xf where f varies over all elements of some

permutation group G. This is called the orbit of x under G:

Definition 3.7 Let G ≤ Sym(T ) be a permutation group. Then for any x ∈ T , the orbit
of x in G, to be denoted by xG, is given by xG = {xg|g ∈ G}.

Returning to the case of permutations on integers, suppose that n is an integer and ω
a permutation. We can consider 〈ω〉, the group of permutations generated by ω, which is
the set of powers of ω until we eventually have ωm = 1 for m the order of ω. The orbit of
n under 〈ω〉 is the set n〈ω〉 = {n, nω, nω2

, . . . , nωm−1}.
Now suppose that n′ is some other integer that appears in this sequence, say n′ = nωk

.
Now n′ω = (nωk

)w = nωk+1
, so that the images of n′ can be “read off” from the sequence

of images of n. It therefore makes sense to write this “piece” of the permutation as (for
example)

(1, 3, 4) (2)

indicating that 1 is mapped to 3, that 3 is mapped to 4, and that 4 is mapped back to 1.
Of course, the 3-cycle (2) doesn’t tell us what happens to integers that are not in n〈ω〉;

for them, we need another cycle as in (2). So if the permutation ω swaps 2 and 5 in addition
to mapping 1 to 3 and so on, we might write

ω = (1, 3, 4)(2, 5) (3)

If 6 is not moved by ω (so that 6ω = 6), we could write

ω = (1, 3, 4)(2, 5)(6) (4)

In general, we will not mention variables that are fixed by the permutation, preferring (3) to
the longer (4). We can often omit the commas within the cycles, so that we will continue to
abbreviate (a, b, c) as simply (abc). If we need to indicate explicitly that two cycles are part
of a single permutation, we will introduce an extra set of parentheses, perhaps rewriting (3)
as

ω = ((1, 3, 4)(2, 5))
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Every permutation can be written as a product of disjoint cycles in this way.
Finally, in composing permutations written in this fashion, we will either drop the ◦ or

replace it with ·, so that we have, for example,

(abc) · (abd) = (ad)(bc)

The point a is moved to b by the first cycle and then to d by the second. The point b is
moved to c by the first cycle and then not changed by the second; c is moved to a and then
on to b. Finally, d is not moved by the first cycle but is moved to a by the second.

Two other notions that we will need are that of closure and stabilizer:

Definition 3.8 Let G ≤ Sym(T ), and S ⊆ T . By the G-closure of S, to be denoted SG,
we will mean the set

SG = {sg|s ∈ S and g ∈ G}

Definition 3.9 Given a group G ≤ Sym(T ) and L ⊆ T , the pointwise stabilizer of L,
denoted GL, is the subgroup of all g ∈ G such that lg = l for every l ∈ L. The set stabilizer
of L, denoted G{L}, is that subgroup of all g ∈ G such that Lg = L.

As an example, consider the group G generated by the permutation ω = (1, 3, 4)(2, 5)
that we considered above. Since ω2 = (1, 4, 3) and ω3 = (2, 5), it is not too hard to see that
G = 〈(1, 4, 3), (2, 5)〉 is the group generated by the 3-cycle (1, 4, 3) and the 2-cycle (2, 5).
The subgroup of G that point stabilizes the set {2} is thus G2 = 〈(1, 4, 3)〉, and G2,5 is
identical. The subgroup of G that set stabilizes {2, 5} is G{2,5} = G, however, since every
permutation in G leaves the set {2, 5} intact.

4. Axiom Structure as a Group

While we will need the details of Procedures 2.8 and 2.6 in order to implement our ideas,
the procedures themselves inherit certain weaknesses of dpll as originally described. Two
weaknesses that we hope to address are:

1. The appearance of poss0(C,P ) ∩ curr−1(C,P ) in the inner unit propagation loop
requires an examination of a significant subset of the clausal database at each inference
step, and

2. Both dpll and rbl are fundamentally resolution-based methods; there are known
problem classes that are exponentially difficult for resolution-based methods but which
are easy if the language in use is extended to include either cardinality or parity
clauses.

4.1 Examples of Structure

Let us begin by examining examples where specialized techniques can help to address these
difficulties.
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4.1.1 Subsearch

As we have discussed elsewhere (Dixon et al., 2004b; Ginsberg & Parkes, 2000), the set of
axioms that need to be investigated in the dpll inner loop often has structure that can be
exploited to speed the examination process. If a ground axiomatization is replaced with a
lifted one, the search for axioms with specific syntactic properties is NP-complete in the
number of variables in the lifted axiom, and is called subsearch for that reason.

In many cases, search techniques can be applied to the subsearch problem. As an
example, suppose that we are looking for instances of the lifted axiom

a(x, y) ∨ b(y, z) ∨ c(x, z) (5)

that are unit, so that poss(i, P ) = 0 and curr(i, P ) = −1 for some such instance i and a
unit propagation is possible as a result.

Our notation here is that of qprop. There is an implicit universal quantification over
x, y and z, and each quantification is over a domain of finite size. We assume that all of
the domains are of size d, so (5) corresponds to d3 ground axioms. If a(x, y) is true for all x
and y (which we can surely conclude in time O(d2)), then we can conclude without further
work that (5) has no unit instances, since every instance of (5) is already satisfied. If a(x, y)
is true except for a single (x, y) pair, then we need only examine the d possible values of z
for unit instances, reducing our total work from d3 to d2 + d.

It will be useful in what follows to make this example still more specific, so let us assume
that x, y and z are all chosen from a two element domain {A,B}. The single lifted axiom (5)
now corresponds to the set of ground instances:

a(A,A) ∨ b(A,A) ∨ c(A,A)
a(A,A) ∨ b(A,B) ∨ c(A,B)
a(A,B) ∨ b(B,A) ∨ c(A,A)
a(A,B) ∨ b(B,B) ∨ c(A,B)
a(B,A) ∨ b(A,A) ∨ c(B,A)
a(B,A) ∨ b(A,B) ∨ c(B,B)
a(B,B) ∨ b(B,A) ∨ c(B,A)
a(B,B) ∨ b(B,B) ∨ c(B,B)

If we introduce ground literals l1, l2, l3, l4 for the instances of a(x, y) and so on, we get:

l1 ∨ l5 ∨ l9

l1 ∨ l6 ∨ l10

l2 ∨ l7 ∨ l9

l2 ∨ l8 ∨ l10 (6)
l3 ∨ l5 ∨ l11

l3 ∨ l6 ∨ l12

l4 ∨ l7 ∨ l11

l4 ∨ l8 ∨ l12
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at which point the structure implicit in (5) has been obscured. We will return to the details
of this example shortly.

4.1.2 Cardinality

Structure is also present in the sets of axioms used to encode the pigeonhole problem, which
is known to be exponentially difficult for any resolution-based method (Haken, 1985). As
shown by a variety of authors (Cook, Coullard, & Turan, 1987; Dixon & Ginsberg, 2000),
the pigeonhole problem can be solved in polynomial time if we extend our representation
to include cardinality axioms such as

x1 + · · ·+ xm ≥ k (7)

As shown in zap1, the single axiom (7) is equivalent to
(

m
k−1

)
conventional disjunctions.

As in Section 4.1.1, we will consider this example in detail. Suppose that we have the
clause

x1 + x2 + x3 + x4 + x5 ≥ 3 (8)

saying that at least 3 of the xi’s are true. This is equivalent to

x1 ∨ x2 ∨ x3 x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x4 x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x5 x2 ∨ x3 ∨ x5 (9)
x1 ∨ x3 ∨ x4 x2 ∨ x4 ∨ x5

x1 ∨ x3 ∨ x5 x3 ∨ x4 ∨ x5

4.1.3 Parity Clauses

Finally, we consider clauses that are most naturally expressed using modular arithmetic or
exclusive or’s, such as

x1 + · · ·+ xk ≡ 0 (mod 2) (10)

or
x1 + · · ·+ xk ≡ 1 (mod 2) (11)

The parity of the sum of the xi’s is specified as even in (10) or as odd in (11).
It is well known that axiom sets consisting of parity clauses in isolation can be solved

in polynomial time using Gaussian elimination, but there are examples that are exponen-
tially difficult for resolution-based methods (Tseitin, 1970). As in the other examples we
have discussed, single axioms such as (11) reveal structure that a straightforward Boolean
axiomatization obscures. In this case, the single axiom (11) with k = 3 is equivalent to:

x1 ∨ x2 ∨ x3

x1 ∨ ¬x2 ∨ ¬x3 (12)
¬x1 ∨ x2 ∨ ¬x3

¬x1 ∨ ¬x2 ∨ x3

As the cardinality axiom (7) is equivalent to
(

m
k−1

)
disjunctions, a parity axiom of the form

of (10) or (11) is in general equivalent to 2k−1 Boolean disjunctions.
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4.2 Formalizing Structure

Of course, the ground axiomatizations (6), (9) and (12) are equivalent to the original descrip-
tions given by (5), (7) and (11), so that any structure present in these original descriptions
is still there. That structure has, however, been obscured by the ground encodings. Our
goal in this section is to begin the process of understanding the structure in a way that lets
us describe it in general terms.

As a start, note that each of the axiom sets consists of axioms of equal length; it follows
that the axioms can all be obtained from a single one simply by permuting the literals in
the theory. In (6) and (9), literals are permuted with other literals of the same sign; in (12),
literals are permuted with their negated versions. But in every instance, a permutation
suffices.

Thus, for example, the set of permutations needed to generate (9) from the first ground
axiom alone is clearly just the set

Ω = Sym({x1, x2, x3, x4, x5}) (13)

since these literals can be permuted arbitrarily to move from one element of (9) to another.
The set Ω in (13) is a subgroup of the full permutation group S2n on 2n literals in n
variables, since Ω is easily seen to be closed under inversion and composition.

What about the example (12) involving a parity clause? Here the set of permutations
needed to generate the four axioms from the first is given by:

(x1,¬x1)(x2,¬x2) (14)
(x1,¬x1)(x3,¬x3) (15)
(x2,¬x2)(x3,¬x3) (16)

Literals are now being exchanged with their negations, but this set, too, is closed under the
group inverse and composition operations. Since each element is a composition of disjoint
transpositions, each element is its own inverse. The composition of the first two elements
is the third.

The remaining example (6) is a bit more subtle; perhaps this is to be expected, since the
axiomatization (6) obscures the underlying structure far more effectively than does either
(9) or (12).

To understand this example, note that the set of axioms (6) is “generated” by a set
of transformations on the underlying variables. In one transformation, we swap the values
of A and B for x while leaving the values for y and z unchanged, corresponding to the
permutation

(a(A,A), a(B,A))(a(A,B), a(B,B))(c(A,A), c(B,A))(c(A,B), c(B,B))

We have included in a single permutation the induced changes to all of the relevant ground
literals. (The relation b doesn’t appear because b does not have x as an argument in (5).)
In terms of the literals in (6), this becomes

ωx = (l1l3)(l2l4)(l9l11)(l10l12)
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In a similar way, swapping the two values for y corresponds to the permutation

ωy = (l1l2)(l3l4)(l5l7)(l6l8)

and z produces
ωz = (l5l6)(l7l8)(l9l10)(l11l12)

Now consider Ω = 〈ωx, ωy, ωz〉, the subgroup of Sym({l1, . . . , l12}) that is generated by
ωx, ωy and ωz. Since the clauses in (6) can be obtained from any single clause by permuting
the values of x, y and z, it is clear that the image of any single clause in the set (6) under
Ω is exactly the complete set of clauses (6).

As an example, operating on the first axiom in (6) with ωx produces

l3 ∨ l5 ∨ l11

This is the fifth axiom, as it should be, since we have swapped a(A,A) with a(B,A) and
c(A,A) with c(B,A).

Alternatively, a straightforward calculation shows that

ωxωy = (l1l4)(l2l3)(l5l7)(l6l8)(l9l11)(l10l12)

and maps the first axiom in (9) to the next-to-last, the second axiom to last, and so on.
It should be clear at this point what all of these examples have in common. In every

case, the set of ground instances corresponding to a single non-Boolean axiom can be
generated from any single ground instance by the elements of a subgroup of the group
S2n of permutations of the literals in the problem.

Provided that all of the clauses are the same length, there is obviously some subset (as
opposed to subgroup) of S2n that can produce all of the clauses from a single one. But
subgroups are highly structured objects; there are many fewer subgroups of S2n than there
are subsets.4 One would not expect, a priori, that the particular sets of permutations arising
in our examples would all have the structure of subgroups. The fact that they do, that all
of these particular subsets are subgroups even though so few subsets are in general, is what
leads to our general belief that the structure of the subgroups captures and generalizes the
general idea of structure underlying our motivating examples.

In problems without structure, the subgroup property is absent. An instance of random
3-sat, for example, can always be encoded using a single 3-literal clause c and then that set
of permutations needed to recover the entire problem from c in isolation. There is no struc-
ture to the set of permutations because the original set of clauses was itself unstructured.
In the examples we have been considering, on the other hand, the structure is implicit in
the requirement that the set Ω used to produce the clauses be a group. As we will see, this
group structure also has just the computational properties needed if we are to lift rbl and
other Boolean satisfiability techniques to our broader setting.

Let us also point out the surprising fact that the subgroup idea captures all of the
structures discussed in zap1. It is not surprising that the various structures used to reduce
proof size all have a similar flavor, or that the structure used to speed unit propagation be

4. In general, S2n has 2(2n)! subsets, of which only approximately 2n2/4 are subgroups (Pyber, 1993).
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uniform. But it strikes us as remarkable that these two types of structure, used for such
different purposes, are in fact instances of a single framework.

This, then, is the technical insight on which zap rests: Instead of generalizing the
language of Boolean satisfiability as seems required by the range of examples we have
considered, it suffices to annotate ground clauses with the Ω needed to reproduce a larger
axiom set. Before we formalize this, however, note that any “reasonable” permutation that
maps a literal l1 to another literal l2 should respect the semantics of the axiomatization and
map ¬l1 to ¬l2 as well.

Definition 4.1 Given a set of n variables, we will denote by Wn that subgroup of S2n

consisting of permutations that map the literal ¬l1 to ¬l2 whenever they map l1 to l2.

Informally, an element of Wn corresponds to a permutation of the n variables, together with
a choice to flip some subset of them; Wn is therefore of size |Wn| = 2nn!.5

We are now in a position to state:

Definition 4.2 An augmented clause in an n-variable Boolean satisfiability problem is a
pair (c,G) where c is a Boolean clause and G ≤ Wn. A ground clause c′ is an instance of
an augmented clause (c,G) if there is some g ∈ G such that c′ = cg. The clause c will be
called the base instance of (c,G).

Our aim in the remainder of this paper is to show that augmented clauses have the
properties needed to justify the claims we made in the introduction:

1. They can be represented compactly,

2. They can be combined efficiently using a generalization of resolution,

3. They generalize existing concepts such as quantification over finite do-
mains, cardinality, and parity clauses, together with providing natural
generalizations for proof techniques involving such clauses,

4. Rbl can be extended with little or no computational overhead to manipu-
late augmented clauses instead of ground ones, and

5. Propagation can be computed efficiently in this generalized setting.

The first four points will be discussed in this and the next three sections of the paper. The
final point is presented in the next paper in this series.

4.3 Efficiency of Representation

For the first point, the fact that the augmentations G can be represented compactly is a
consequence of G’s group structure. In the example surrounding the reconstruction of (9)
from (13), for example, the group in question is the full symmetry group on m elements,
where m is the number of variables in the cardinality clause. In the lifting example (12),

5. We note in passing that Wn is the so-called wreath product of S2 and Sn, typically denoted S2 oSn. The
specific group Wn is also called the group of “permutations and complementations” by Harrison (1989).
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we can describe the group in terms of the generators ωx, ωy and ωz instead of listing all
eight elements that the group contains. In general, we have (recall that proofs appear in
the appendix):

Proposition 4.3 Let S be a set of ground clauses, and (c,G) an equivalent augmented
clause, where G is represented by generators. It is possible in polynomial time to find a set
of generators {ω1, . . . , ωk} where k ≤ log2 |G| and G = 〈ω1, . . . , ωk〉.

Since the size of the full permutation group Sn is only n! < nn and a single generator
takes at most O(n) space, we have:

Corollary 4.4 Any augmented clause in a theory containing n literals can be expressed in
O(n2 log2 n) space.

This result can be strengthened using:

Proposition 4.5 (Jerrum, 1986; Knuth, 1991) Let G ≤ Sn. It is possible to find in
polynomial time a set of generators for G of size at most O(n).

This reduces the O(n2 log2 n) in the corollary to simply O(n2).6

Before proceeding, let us make a remark regarding computational complexity. All of
the group-theoretic constructs of interest to us can be computed in time polynomial in
the group size; basically one simply enumerates the group and evaluates the construction
(generate and test, as it were). What is interesting is the collection of group constructions
that can be computed in time polynomial in the number of generators of the group and the
number of variables in the problem. Given Proposition 4.5, the time is thus polynomial in
the number of variables in the problem.

Note that the size of the group G can be vastly greater than the number of instances of
any particular augmented clause (c,G). As an example, for the cardinality clause

x1 + · · ·+ xm ≥ k (17)

the associated symmetry group Sym{x1, . . . , xm} acts on an instance such as

x1 ∨ · · · ∨ xm−k+1 (18)

to reproduce the full Boolean axiomatization. But each such instance corresponds to
(m− k + 1)! distinct group elements as the variables within the clause (18) are permuted.

In this particular case, the symmetry group Sym{x1, . . . , xm} can in fact be generated
by the two permutations (x1, x2) and (x2, x3, . . . , xm).

Definition 4.6 Two augmented clauses (c1, G1) and (c2, G2) will be called equivalent if
they have identical sets of instances. This will be denoted (c1, G1) ≡ (c2, G2).

6. Although the methods used are nonconstructive, Babai (1986) showed that the length of an increasing
sequence of subgroups of Sn is at most b 3n

2
c − 2; this imposes the same bound on the number of

generators needed (compare the proof of Proposition 4.3). Using other methods, McGiver and Neumann
stated (1987) that for n 6= 3, there is always a generating set of size at most bn

2
c.
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Proposition 4.7 Let (c,G) be an augmented clause. Then if c′ is any instance of (c,G),
(c,G) ≡ (c′, G).

We also have:

Proposition 4.8 Let (c,G) be an augmented clause with d distinct instances. Then there
is a subgroup H ≤ G that can be described using O(log2(d)) generators such that (c,H) ≡
(c,G). Furthermore, given d and generators for G, there is a Monte Carlo polynomial-time
algorithm for constructing the generators of such an H.7

Proposition 4.5 is the first of the results promised in the introduction: If d Boolean
axioms involving n variables can be captured as instances of an augmented clause, that
augmented clause can be represented using O(n) generators; Proposition 4.8 guarantees
that O(log2 d) generators suffice as well.

In the specific instances that we have discussed, the representational efficiencies are
greater still:

clause Boolean total
type axioms generators size

cardinality
(

m
k−1

)
2 m + 1

parity 2k−1 3 k + 5
qprop dv 2v v(d + 1)

Each row gives the number of Boolean axioms or generators needed to represent a clause
of the given type, along with the total size of those generators. For the cardinality clause
(17), the complete symmetry group over m variables can be expressed using exactly two
generators, one of size 2 and the other of size m − 1.8 The number of Boolean axioms is(

m
k−1

)
as explained in Section 4.1.2.

For the parity clause
x1 + · · ·+ xk ≡ m (mod 2)

the number of Boolean axioms is the same as the number of ways to select an even number
of the xi’s, which is half of all of the subsets of {x1, . . . , xk}. (Remove x1 from the set;
now any subset of the remaining xi can be made of even parity by including x1 or not
as appropriate.) The parity groups Fk can be captured by k − 1 generators of the form
(x1,¬x1), (xi,¬xi) as i = 2, . . . , k (total size 4(k − 1)); alternatively, one can combine the
single generator (x1,¬x1)(x2,¬x2) with the full symmetry group on x1, . . . , xk to describe
a parity clause using exactly three generators (total size 4 + 2 + k − 1).

Finally, a qprop clause involving v variables, each with a domain of size d, corresponds
to a set of dv individual domain axioms. As we saw in Section 4.2 and will formalize in
Section 6.1, the associated group can be described using symmetry groups over the domains
of each quantified variable; there are v such groups and two generators (of size 2 and d− 1)
are required for each.9

7. A Monte Carlo algorithm is one that is not deterministic but that can be made to work with arbitrarily
high specified probability without changing its overall complexity (Seress, 2003).

8. As noted earlier, Sn is generated by the transposition (1, 2) and the n− 1-cycle (2, 3, . . . , n).
9. Depending on the sizes, the number of generators needed for a product of symmetry groups can be

reduced in many cases, although the total size is unchanged.
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Note that the total sizes are virtually optimal in all of these cases. For cardinality and
parity clauses, it is surely essential to enumerate the variables in question (size m and k
respectively). For qprop clauses, simply enumerating the domains of quantification takes
space vd.

5. Resolution

We now turn to the question of basing derivations on augmented clauses instead of ground
ones. We begin with a few preliminaries:

Proposition 5.1 For ground clauses c1 and c2 and a permutation ω ∈Wn,

resolve(ω(c1), ω(c2)) = ω(resolve(c1, c2))

Definition 5.2 If C is a set of augmented clauses, we will say that C entails an augmented
clause (c,G), writing C |= (c,G), if every instance of (c,G) is entailed by the set of instances
of the augmented clauses in C.

We are now in a position to consider lifting the idea of resolution to our setting, but let
us first discuss the overall intent of this lifting. What we would like to do is to think of an
augmented clause as having force similar to all of its instances; as a result, when we resolve
two augmented clauses (c1, G1) and (c2, G2), we would like to obtain as the (augmented)
resolvent the set of all resolutions that are sanctioned by resolving an instance of (c1, G1)
with one of (c2, G2). Unfortunately, we have:

Proposition 5.3 There are augmented clauses c1 and c2 such that the set S of resolvents
of instances of the two clauses does not correspond to any single augmented clause (c,G).

Given that we cannot capture exactly the set of possible resolvents of two augmented
clauses, what can we do? If (c,G) is an “augmented resolvent” of (c1, G1) and (c2, G2), we
might expect (c,G) to have the following properties:

1. It should be sound, in that (c1, G1) ∧ (c2, G2) |= (c,G). This says that every instance
of (c,G) is indeed sanctioned by resolving an instance of (c1, G1) with an instance of
(c2, G2).

2. It should be complete, in that resolve(c1, c2) is an instance of (c,G). We may not be
able to capture every possible resolvent in the augmented clause (c,G), but we should
surely capture the base case that is obtained by resolving the base instance c1 directly
against the base instance c2.

3. It should be monotonic, in that if G1 ≤ H1 and G2 ≤ H2, then (c,G) is also a resolvent
of (c1,H1) and (c2,H2). As the clauses being resolved become stronger, the resolvent
should become stronger as well.

4. It should be polynomial, in that it is possible to confirm that (c,G) is a resolvent of
(c1, G1) and (c2, G2) in polynomial time.

501



Dixon, Ginsberg, Luks & Parkes

5. It should be stable, in that if cG
1 = cG

2 , then (resolve(c1, c2), G) is a resolvent of
(c1, G) and (c2, G). Roughly speaking, this says that if the groups in the two input
clauses are the same, then the augmented resolvent can be obtained by resolving the
base instances c1 and c2 and then operating with the same group.

6. It should be strong, in that if no element of cG1
1 is moved by G2 and similarly no element

of cG2
2 is moved by G1, then (resolve(c1, c2), 〈G1, G2〉) is a resolvent of (c1, G1) and

(c2, G2). This says that if the group actions are distinct in that G1 acts on c1 and leaves
c2 completely alone and vice versa, then we should be able to get the complete group of
resolvents in our answer. This group corresponds to be base resolvent resolve(c1, c2)
acted on by the group generated by G1 and G2.

Definition 5.4 A definition of augmented resolution will be called satisfactory if it satisfies
the above conditions.

Note that we do not require that the definition of augmented resolution be unique. Our
goal is to define conditions under which (c,G) is an augmented resolvent of (c1, G1) and
(c2, G2), as opposed to “the” augmented resolvent of (c1, G1) and (c2, G2). To the best of
our knowledge (and as suggested by Proposition 5.3), there is no satisfactory definition of
augmented resolution that defines the resolvent of two augmented clauses uniquely.

As we work toward a satisfactory definition of augmented resolution, let us consider some
examples to help understand what the basic issues are. Consider, for example, resolving
the two clauses

(a ∨ b, 〈(bc)〉)

which has instances a ∨ b and a ∨ c and

(¬a ∨ d, 〈〉)

which has the single instance ¬a ∨ d. We will write these somewhat more compactly as

(a ∨ b, (bc)) (19)

and
(¬a ∨ d,1) (20)

respectively.
Resolving the clauses individually, we see that we should be able to derive the pair of

clauses b ∨ d and c ∨ d; in other words, the augmented clause

(b ∨ d, (bc)) (21)

It certainly seems as if it should be possible to capture this in our setting, since the base
instance of (21) is just the resolvent of the base instances of (19) and (20).10 Where does
the group generated by (bc) come from?

To answer this, we begin by introducing some additional notation.

10. Indeed, condition (6) requires that b ∨ d be an instance of some augmented resolvent, since the groups
act independently in this case.
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Definition 5.5 Let ω be a permutation and S a set. Then by ω|S we will denote the result
of restricting the permutation to the given set.

Note that ω|S will be a permutation on S if and only if Sω = S, so that S is fixed by ω.

Definition 5.6 For K1, . . . ,Kn ⊆ L and G1, . . . , Gn ≤ Sym(L), we will say that a permu-
tation ω ∈ Sym(L) is an extension of {G1, . . . , Gn} for {K1, . . . ,Kn} if there are gi ∈ Gi

such that for all i, ω|Ki = gi|Ki. We will denote the set of such extensions by extn(Ki, Gi).

The definition says that any particular extension x ∈ extn(Ki, Gi) must simultaneously
extend elements of all of the individual groups Gi, when those groups act on the various
subsets Ki.

As an example, suppose that K1 = {a, b} and K2 = {¬a, e}, with G1 = Sym{b, c, d} and
G2 = 〈(ed)〉. A permutation is an extension of the Gi for Ki if and only if, when restricted
to {a, b} it is a member of Sym(b, c, d) and, when restricted to {a, e} it is a member of
〈(ed)〉. In other words, b can be mapped to b, c or d, and e can be mapped to d if desired.
The set of extensions is thus

{(), (bc), (bd), (bcd), (bdc), (cd), (ed), (edc), (bc)(de)} (22)

Note that this set is not a group because it is not closed under the group operations; (edc)
is permitted (e is mapped to d and we don’t care where d and c go), but (edc)2 = (ecd) is
not.

Considered in the context of resolution, suppose that we are trying to resolve aug-
mented clauses (c1, G1) and (c2, G2). At some level, any result (resolve(c1, c2), G) for
which G ⊆ extn(ci, Gi) should be a legal resolvent of the original clauses, since each in-
stance is sanctioned by resolving instances of the originals.11 We can’t define the resolvent
to be (resolve(c1, c2), extn(ci, Gi)) because, as we have seen from our example, neither
extn(ci, Gi) nor extn(ci, Gi) ∩ Wn need be a group. (We also know this from Proposi-
tion 5.3; there may be no single group that captures all of the possible resolvents.) But we
can’t simply require that the augmented resolvent (c,G) have G ⊆ extn(ci, Gi), because
there is no obvious polynomial test for inclusion of a group in a set.12

To overcome these difficulties, we need a version of Definition 5.6 that produces a group
of extensions, as opposed to just a set:

Definition 5.7 For K1, . . . ,Kn ⊆ L and G1, . . . , Gn ≤ Sym(L), we will say that a per-
mutation ω ∈ Sym(L) is a stable extension of {G1, . . . , Gn} for {K1, . . . ,Kn} if there are
gi ∈ Gi such that for all i, ω|

K
Gi
i

= gi|KGi
i

. We will denote the set of stable extensions of

{G1, . . . , Gn} for {K1, . . . ,Kn} by stab(Ki, Gi).

11. We can’t write G ≤ extn(ci, Gi) because extn(ci, Gi) may not be a group.
12. It is possible to test in polynomial time if G ≤ H, since we can simply test each generator of G for

membership in H. But if H is not closed under the group operation, the fact that the generators are all
in H is not sufficient to conclude that G ⊆ H.
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This definition is modified from Definition 5.6 only in that the restriction of ω is not just
to the original sets Ki for each i, but to KGi

i , the Gi-closure of Ki (recall Definition 3.8).
In our example where K1 = {a, b} and K2 = {¬a, e}, with G1 = Sym{b, c, d} and G2 =

〈(ed)〉, a stable extension must be a member of Sym(b, c, d) when restricted to {a, b, c, d}
(the G1-closure of K1), and must be a member of 〈(ed)〉 when restricted to {d, e}. This
means that we do care where a candidate permutation maps c and d, so that the set of
stable extensions, instead of (22), is instead simply {(), (bc)} = 〈(bc)〉. The fact that d has
to be mapped to b, c, or d by virtue of G1 and has to be mapped to either d or e by virtue
of G2 means that d has to be fixed by any permutation in stab(Ki, Gi), which is why the
resulting set of stable extensions is so small.

In general, we have:

Proposition 5.8 stab(Ki, Gi) ≤ Sym(L).

In other words, stab(Ki, Gi) is a subgroup of Sym(L).
At this point, we still need to deal with the monotonicity condition (3) of Definition 5.4.

After all, if we have
(c,G) |= (c′, G′)

we should also have

resolve((c,G), (d,H)) |= resolve((c′, G′), (d,H))

To see why this is an issue, suppose that we are resolving

(a ∨ b, Sym{b, c, d}) (23)

with
(¬a ∨ e, (ed)) (24)

Because the groups both act on d, we have already seen that if we take the group of stable
extensions as the group in the resolvent, we will conclude (b ∨ e, (bc)). But if we replace
(24) with (¬a ∨ e,1) before resolving, the result is the stronger (b ∨ e,Sym{b, c, d}). If we
replace (23) with (a∨ b, (bc)), the result is the different but also stronger (b∨ e, 〈(bc), (de)〉)

The monotonicity considerations suggest:

Definition 5.9 Suppose that (c1, G1) and (c2, G2) are augmented clauses where c1 and c2

resolve in the conventional sense. Then a resolvent of (c1, G1) and (c2, G2) is any aug-
mented clause of the form (resolve(c1, c2), G) where G ≤ stab(ci,Hi) ∩ Wn for some
Hi ≤ Gi for i = 1, 2. The canonical resolvent of (c1, G1) and (c2, G2), to be denoted by
resolve((c1, G1), (c2, G2)), is the augmented clause (resolve(c1, c2), stab(ci, Gi) ∩Wn).

Proposition 5.10 Definition 5.9 of (noncanonical) resolution is satisfactory. The def-
inition of canonical resolution satisfies all of the conditions of Definition 5.4 except for
monotonicity.
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Before proceeding, let us consider the example that preceded Definition 5.9 in a bit more
detail. There, we were looking for augmented resolvents of (a ∨ b, Sym{b, c, d}) from (23)
and (¬a ∨ e, (ed)) from (24).

To find such a resolvent, we begin by selecting H1 ≤ G1 = Sym{b, c, d} and H2 ≤ G2 =
〈(ed)〉. We then need to use Definition 5.7 to compute the group of stable extensions of
(c1,H1) and (c2,H2).

If we take H1 and H2 to be the trivial group 1, then the group of stable extensions is
also trivial, so we see that

(resolve(a ∨ b,¬a ∨ e),1) = (b ∨ e,1)

is a resolvent of (23) and (24). Other choices for H1 and H2 are more interesting.
If we take H1 = 1 and H2 = G2, the stable extensions leave the first clause fixed but can

move the image of the second consistent with G2. This produces the augmented resolvent
(b ∨ e, (de)).

If, on the other hand, we take H1 = G1 and H2 = 1, we have to leave e fixed but can
exchange b, c and d freely, and we get (b ∨ e,Sym{b, c, d}) as the resolvent.

If H1 = G1 and H2 = G2, we have already computed the group of stable extensions in
earlier discussions of this example; the augmented resolvent is (b ∨ e, (bc)), which is weaker
than the resolvent of the previous paragraph. And finally, if we take H1 = 〈(bc)〉 and
H2 = G2, we can exchange b and c or independently exchange d and e so that we get the
augmented resolvent (b ∨ e, 〈(bc), (de)〉). These choices have already been mentioned in the
discussion of monotonicity that preceded Definition 5.9.

There is a variety of additional remarks to be made about Definition 5.9. First, canonical
resolution lacks the monotonicity property, as shown by our earlier example. In addition, the
resolvent of two augmented clauses can obviously depend on the choice of the representative
elements in addition to the choice of subgroup of stab(ci, Gi). Thus, if we resolve

(l1, (l1l2)) (25)

with
(¬l1,1) (26)

we get a contradiction. But if we rewrite (25) so that we are attempting to resolve (26)
with

(l2, (l1l2))

no resolution is possible at all.
To address this in a version of rbl that has been lifted to our more general setting,

we need to ensure that if we are trying to resolve (c1, G1) and (c2, G2), the base instances
c1 and c2 themselves resolve. As we will see, this can be achieved by maintaining ground
reasons for each literal in the annotated partial assignment. These ground clauses will
always resolve when a contradiction is found and the search needs to backtrack.

We should also point out that there are computational issues involved in the evaluation
of stab(ci, Gi). If the component groups G1 and G2 are described by listing their elements,
an incremental construction is possible where generators are gradually added until it is
impossible to extend the group further without violating Definition 5.9. But if G1 and G2
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are described only in terms of their generators, as suggested by the results in Section 4.3,
computing stab(ci, Gi) involves the following computational subtasks (Dixon et al., 2004a)
(recall Definition 3.9):13

1. Given a group G and set C, find G{C}.

2. Given a group G and set C, find GC .

3. Given two groups G1 and G2 described in terms of generators, find a set of generators
for G1 ∩G2.

4. Given G and C, let ω ∈ G{C}. Now ω|C , the restriction of ω to C, makes sense
because Cω = C. Given a ρ that is such a restriction, find an element ρ′ ∈ G such
that ρ′|C = ρ.

We will have a great deal more to say about these issues in the paper describing the
zap implementation. At this point, we remark merely that time complexity is known to
be polynomial only for the second and fourth of the above problems; the other two are not
known to be in polynomial time. However, computational group theory systems incorporate
procedures that rarely exhibit super-polynomial behavior even though one can construct
examples that force them to take exponential time (as usual, in terms of the number of
generators of the groups, not their absolute size).

In the introduction, we claimed that the result of resolution was unique using reasons
and that zap’s fundamental inference step was both in NP with respect to the zap repre-
sentation and of low-order polynomial complexity in practice. The use of reasons breaks
the ambiguity surrounding (25) and (26), and the remarks regarding complexity correspond
to the computational observations just made.

6. Examples and Proof Complexity

Let us now turn to the examples that we have discussed previously: first-order axioms that
are quantified over finite domains, along with the standard examples from proof complexity,
including pigeonhole problems, clique coloring problems and parity clauses. For the first,
we will see that our ideas generalize conventional notions of quantification while providing
additional representational flexibility in some cases. For the other examples, we will present
a ground axiomatization, recast it using augmented clauses, and then give a polynomially
sized derivation of unsatisfiability using augmented resolution.

6.1 Lifted Clauses and QPROP

To deal with lifted clauses, suppose that we have a quantified clause such as

∀xyz.a(x, y) ∨ b(y, z) ∨ c(z) (27)

13. There is an additional requirement that we be able to compute stab(ci, Gi) ∩ Wn from stab(ci, Gi).
This is not an issue in practice because we work with an overall representation in which all groups are
represented by their intersections with Wn. Thus if g is included as a generator for a group G, we
automatically include in the generators for G the “dual” permutation to g where every literal has had
its sign flipped.
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Suppose that the domain of x is X, that of y is Y , and that of z is Z. Thus a grounding of
the clause (27) involves working with a map that takes three elements x ∈ X, y ∈ Y and
z ∈ Z and produces the ground atoms corresponding to a(x, y), b(y, z) and c(z). In other
words, if V is the set of variables in our problem, there are injections

a : X × Y → V

b : Y × Z → V

c : Z → V

where the images of a, b and c are disjoint and each is an injection because distinct relation
instances must be mapped to distinct ground atoms.

Now given a permutation ω of the elements of X, we can define a permutation ρX(ω)
on V given by:

ρX(ω)(v) =
{

a(ω(x), y), if v = a(x, y);
v; otherwise.

In other words, there is a mapping ρX from the set of permutations on X to the set of
permutations on V :

ρX : Sym(X)→ Sym(V )

Definition 6.1 Let G and H be groups and f : G→ H a function between them. f will be
called a homomorphism if it respects the group operation in that f(g1g2) = f(g1)f(g2).

It should be clear that:

Proposition 6.2 ρX : Sym(X)→ Sym(V ) is an injection and a homomorphism.

In other words, ρX makes a “copy” of Sym(X) inside of Sym(V ) corresponding to permuting
the elements of x’s domain X.

In a similar way, we can define homomorphisms ρY and ρZ given by

ρY (ω)(v) =

 a(x, ω(y)), if v = a(x, y);
b(ω(y), z), if v = b(y, z);
v; otherwise.

and

ρZ(ω)(v) =

 b(y, ω(z)), if v = b(y, z);
c(ω(z)), if v = c(z);
v; otherwise.

Now consider the subgroup of Sym(V ) generated by the three images ρX(Sym(X)),
ρY (Sym(Y )) and ρZ(Sym(Z)). It is clear that the three images commute with one another,
and that their intersection is only the trivial permutation. This means that ρX , ρY and ρZ

collectively inject the product Sym(X) × Sym(Y ) × Sym(Z) into Sym(V ); we will denote
this by

ρXY Z : Sym(X)× Sym(Y )× Sym(Z)→ Sym(V )

and it should be clear that the original quantified axiom (27) is equivalent to the augmented
axiom

(a(A,B) ∨ b(B,C) ∨ c(C), ρXY Z(Sym(X)× Sym(Y )× Sym(Z)))
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where A, B and C are any (not necessarily distinct) elements of X, Y and Z, respectively.
The quantification is exactly captured by the augmentation.

The interesting thing is what happens to resolution in this setting:

Proposition 6.3 Let p and q be quantified clauses such that there is a term tp in p and
¬tq in q where tp and tq have common instances. Suppose also that (pg, P ) is an augmented
clause equivalent to p and (qg, Q) is an augmented clause equivalent to q, where pg and qg

resolve. Then if no terms in p and q except for tp and tq have common instances, the result
of resolving p and q in the conventional lifted sense is equivalent to resolve((pg, P ), (qg, Q)).

Here is an example. Suppose that p is

a(A, x) ∨ b(C, y, z) ∨ c(x, y, z) (28)

and q is
a(B, x) ∨ ¬b(x,D, z) (29)

so that the most general unifier of the two appearances of b binds x to C in (29) and y to
D in (28) to produce

a(A, x) ∨ c(x,D, z) ∨ a(B,C) (30)

In the version using augmented clauses, it is clear that if we select ground instances pg of
(29) and qg of (28) that resolve, the resolvent will be a ground instance of (30); the interesting
part is the group. For this, note simply that the image of pg is the entire embedding of
Sym(X)× Sym(Y )× Sym(Z) into Sym(L) corresponding to the lifted axiom (28), and the
image of qg is similarly the embedded image of Sym(X)× Sym(Z) corresponding to (29).

The group of stable extensions of the two embeddings corresponds to any bindings for
the variables in (28) and (29) that can be extended to a permutation of all of the variables in
question; in other words, to bindings that (a) are consistent in that common ground literals
in the two expressions are mapped to the same ground literal by both sets of bindings, and
(b) are disjoint in that we do not attempt to map two quantified literals to the same ground
instance. This latter condition is guaranteed by the conditions of the proposition, which
require that the non-resolving literals have no common ground instances. In this particular
example, if we choose the instances

a(A,α) ∨ b(C,D, β) ∨ c(α, D, β)

for (28) and
a(B,C) ∨ ¬b(C,D, β)

for (29), the resulting augmented clause is

(a(A,α) ∨ c(α, D, β) ∨ a(B,C), G) (31)

where G is the group mapping Sym(X)× Sym(Z) into Sym(L) so that (31) corresponds to
the quantified clause (30).

The condition requiring lack of commonality of ground instances is necessary; consider
resolving

a(x) ∨ b
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with
a(y) ∨ ¬b

In the quantified case, we get
∀xy.a(x) ∨ a(y) (32)

In the augmented case, it is not hard to see that if we resolve (a(A)∨b, G) with (a(A)∨¬b, G)
we get

(a(A), G)

corresponding to
∀x.a(x) (33)

while if we choose to resolve (a(A) ∨ b, G) with (a(B) ∨ ¬b, G), we get instead

∀x 6= y.a(x) ∨ a(y)

It is not clear which of these representations is superior. The conventional (32) is more
compact, but obscures the fact that the stronger (33) is entailed as well. This particular
example is simple, but other examples involving longer clauses and some residual unbound
variables can be more complex.

6.2 Proof Complexity

We conclude this section with a demonstration that zap can produce polynomial proofs of
the problem instances appearing in the original table of the introduction.

6.2.1 Pigeonhole Problems

Of the examples known to be exponentially difficult for conventional resolution-based sys-
tems, pigeonhole problems are in many ways the simplest. As usual, we will denote by pij

the fact that pigeon i (of n + 1) is in hole j of n, so that there are n2 + n variables in
the problem. We denote by G the subgroup of Wn2+n that allows arbitrary exchanges of
the n + 1 pigeons or the n holes, so that G is isomorphic to Sn+1 × Sn. This particular
example is straightforward because there is a single global group that we will be able to use
throughout the analysis.

Our axiomatization is now:
(¬p11 ∨ ¬p21, G) (34)

saying that no two pigeons can be in the same hole, and

(p11 ∨ · · · ∨ p1n, G) (35)

saying that the first (and thus every) pigeon has to be in some hole.

Proposition 6.4 There is an augmented resolution proof of polynomial size of the mutual
unsatisfiability of (34) and (35).

Proof. This is a consequence of the stronger Proposition 6.5 below, but we also present an
independent proof in the appendix. The ideas in the proof are needed in the analysis of the
clique-coloring problem.
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Proposition 6.5 Any implementation of Procedure 2.8 that branches on positive literals
in unsatisfied clauses on line 12 will produce a proof of polynomial size of the mutual un-
satisfiability of (34) and (35), independent of specific branching choices made.

This strikes us as a remarkable result: Not only is it possible to find a proof of polynomial
length in the augmented framework, but in the presence of unit propagation, it is difficult
not to!

A careful proof of this result is in the appendix, but it will be useful to examine in detail
how a prover might proceed in a small (four pigeon, three hole) example.

We begin by branching on (say) p11, saying that pigeon one is in hole one. Now unit
propagation allows us to conclude immediately that no other pigeon is in hole one, so our
annotated partial assignment is:

literal reason
p11 true
¬p21 ¬p11 ∨ ¬p21

¬p31 ¬p11 ∨ ¬p31

¬p41 ¬p11 ∨ ¬p41

Now we try putting pigeon two in hole two,14 and extend the above partial assignment
with:

literal reason
p22 true
¬p12 ¬p22 ∨ ¬p12

¬p32 ¬p22 ∨ ¬p32

¬p42 ¬p22 ∨ ¬p42

At this point, however, we are forced to put pigeons three and four in hole three, which
leads to a contradiction ⊥:

literal reason
p33 p31 ∨ p32 ∨ p33

p43 p41 ∨ p42 ∨ p43

⊥ ¬p33 ∨ ¬p43

Resolving the last two reasons produces ¬p33 ∨ p41 ∨ p42, which we can resolve with the
reason for p33 to get p41∨p42∨p31∨p32. Continuing to backtrack produces p41∨¬p22∨p31.

Operating on the clause p41 ∨¬p22 ∨ p31 with the usual symmetry group (swapping hole
2 and hole 3) produces p41 ∨¬p23 ∨ p31, and now there is nowhere for pigeon two to go. We
resolve these two clauses with p21 ∨ p22 ∨ p23 to get p41 ∨ p31 ∨ p21, and thus ¬p11. This
implies ¬pij for all i and j under the usual symmetry, and we conclude that the original
axiomatization was unsatisfiable.

14. We cannot conclude that pigeon two is in hole two “by symmetry” from the existing choice that pigeon
one is in hole one, of course. The symmetry group can only be applied to the original clauses and to
derived nogoods, not to branch choices. Alternatively, the branch choice corresponds to the augmented
clause (p11,1) and not (p11, G).
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6.2.2 Clique Coloring Problems

The pigeonhole problem is difficult for resolution but easy for many other proof systems;
clique coloring problems are difficult for both resolution and other approaches such as
pseudo-Boolean axiomatizations (Pudlak, 1997).

Clique coloring problems are derivatives of pigeonhole problems where the exact nature
of the pigeonhole problem is obscured. Somewhat more specifically, they say that a graph
includes a clique of n+1 nodes (where every node in the clique is connected to every other),
and that the graph must be colored in n colors. If the graph itself is known to be a clique,
the problem is equivalent to the pigeonhole problem. But if we know only that the clique
can be embedded into the graph, the problem is more difficult.

To formalize this, we will use eij to describe the graph, cij to describe the coloring of
the graph, and qij to describe the embedding of the clique into the graph. The graph has
m nodes, the clique is of size n + 1, and there are n colors available. The axiomatization is:

¬eij ∨ ¬cil ∨ ¬cjl for 1 ≤ i < j ≤ m, l = 1, . . . , n (36)
ci1 ∨ · · · ∨ cin for i = 1, . . . ,m (37)
qi1 ∨ · · · ∨ qim for i = 1, . . . , n + 1 (38)
¬qij ∨ ¬qkj for 1 ≤ i < k ≤ n + 1, j = 1, . . . ,m (39)

eij ∨ ¬qki ∨ ¬qlj for 1 ≤ i < j ≤ m, 1 ≤ k 6= l ≤ n + 1 (40)

Here eij means that there is an edge between graph nodes i and j, cij means that graph
node i is colored with the jth color, and qij means that the ith element of the clique is
mapped to graph node j. Thus the first axiom (36) says that two of the m nodes in the
graph cannot be the same color (of the n colors available) if they are connected by an edge.
(37) says that every graph node has a color. (38) says that every element of the clique
appears in the graph, and (39) says that no two elements of the clique map to the same
node in the graph. Finally, (40) says that the clique is indeed a clique – no two clique
elements can map to disconnected nodes in the graph. As in the pigeonhole problems, there
is a global symmetry in this problem in that any two nodes, clique elements or colors can
be swapped.

Proposition 6.6 There is an augmented resolution proof of polynomial size of the unsat-
isfiability of (36)–(40).

The proof in the appendix presents a zap proof of size O(m2n2) for clique-coloring
problems, where m is the size of the graph and n is the size of the clique. The zap
implementation produces shorter proofs, of size O((m + n)2) (Dixon et al., 2004a). While
short, these proofs involve the derivation and manipulation of subtle clauses and are too
complex for us to understand.15

Before we move on to parity clauses, note that the approach we are proposing is properly
stronger than one based on ”symmetry-breaking” axioms (Crawford, Ginsberg, Luks, &
Roy, 1996) or the approaches taken by Krishnamurthy (1985) or Szeider (2003). In the

15. It is not clear whether one should conclude from this something good about zap, or something bad about
the authors. Perhaps both.
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symmetry-breaking approach, the original axiom set is modified so that as soon as a single
symmetric instance is falsified, so are all of that instance’s symmetric variants. Both we and
the other authors (Krishnamurthy, 1985; Szeider, 2003) achieve a similar effect by attaching
a symmetry to the conclusion; either way, all symmetric instances are removed as soon as
it is possible to disprove any. Unlike all of these other authors, however, an approach based
on augmented clauses is capable of exploiting local symmetries present in a subset of the
entire axiom set. The other authors require the presence of a global symmetry across the
entire structure of the problem.

6.2.3 Parity Clauses

Rather than discuss a specific example here, we show that determining the satisfiability of
any set of parity clauses is in P for augmented resolution. The proof of this is modeled on
a proof that satisfiability of parity clauses is in P :

Lemma 6.7 Let C be a theory consisting entirely of parity clauses. Then determining
whether or not C is satisfiable is in P .

As discussed in the introduction, the proof is basically a Gaussian reduction argument.

Definition 6.8 Let S be a subset of a set of n variables. We will say that a permutation
ω flips a variable v if ω(v) = ¬v, and will denote by FS that subset of Wn consisting of all
permutations that leave the variable order unchanged and flip an even number of variables
in S.

Lemma 6.9 FS ≤Wn.

We now have the following:

Lemma 6.10 Let S = {x1, . . . , xk} be a subset of a set of n variables. Then the parity
clause ∑

xi ≡ 1

is equivalent to the augmented clause

(x1 ∨ · · · ∨ xk, FS)

The parity clause ∑
xi ≡ 0

is equivalent to the augmented clause

(¬x1 ∨ x2 ∨ · · · ∨ xk, FS)

We can finally show:

Proposition 6.11 Let C be a theory consisting entirely of parity clauses. Then determining
whether or not C is satisfiable is in P for augmented resolution.
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We note in passing that the construction in this section fails in the case of modularity
clauses with a base other than 2. One of the (many) problems is that the set of permutations
that flip a set of variables of size congruent to m (mod n) is not a group unless m = 0 and
n < 3. We need m = 0 for the identity to be included, and since both

(x1,¬x1) · · · (xn,¬xn)

and
(x2,¬x2) · · · (xn+1,¬xn+1)

are included, it follows that
(x1,¬x1)(xn+1,¬xn+1)

must be included, so that n = 1 or n = 2.
It is not clear whether this is coincidence, or whether there is a deep connection between

the fact that mod 2 clauses can be expressed compactly using augmented clauses and are
also solvable in polynomial time.

7. Theoretical and Procedural Description

In addition to resolution, an examination of Procedures 2.8 and 2.6 shows that we need to be
able to eliminate nogoods when they are irrelevant and to identify instances of augmented
clauses that are unit. Let us now discuss each of these issues.

The problems around irrelevance are easier to deal with. In the ground case, we remove
clauses when they are no longer relevant; in the augmented version, we remove clauses
that no longer possess relevant instances. We will defer until the final paper in this series
discussion of a procedure for determining whether (c,G) has a relevant instance.

We will also defer discussion of a specific procedure for computing unit-propagate(P ),
but do include a few theoretical comments at this point. In unit propagation, we have a
partial assignment P and need to determine which instances of axioms in C are unit. To
do this, suppose that we denote by S(P ) the set of Satisfied literals in the theory, and by
U(P ) the set of Unvalued literals. Now for a particular augmented clause (c,G), we are
looking for those g ∈ G such that cg ∩ S(P ) = Ø and |cg ∩ U(P )| ≤ 1. The first condition
says that cg has no satisfied literals; the second, that it has at most one unvalued literal.

Procedure 7.1 (Unit propagation) To compute Unit-Propagate(C,P ) for a set C of
augmented clauses and an annotated partial assignment P = 〈(l1, c1), . . . , (ln, cn)〉:

1 while there is a (c,G) ∈ C and g ∈ G with cg ∩ S(P ) = Ø and |cg ∩ U(P )| ≤ 1
2 do if cg ∩ U(P ) = Ø
3 then li ← the literal in cg with the highest index in P
4 return 〈true, resolve((c,G), ci)〉
5 else l← the literal in cg unassigned by P
6 add (l, (cg, G)) to P
7 return 〈false, P 〉
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Note that the addition made to P when adding a new literal includes both cg, the instance
of the clause that led to the propagation, and the augmenting group as usual. We can use
(cg, G) as the augmented clause by virtue of Proposition 4.7.

Finally, the augmented version of Procedure 2.8 is:

Procedure 7.2 (Relevance-bounded reasoning, rbl) Let C be a sat problem, and D
a set of learned nogoods. Let P be an annotated partial assignment, and k a fixed relevance
bound. To compute rbl(C,D,P ):

1 〈x, y〉 ← Unit-Propagate(C ∪D,P )
2 if x = true
3 then (c,G)← y
4 if c is empty
5 then return failure
6 else remove successive elements from P so that c is unit
7 D ← D ∪ {c}
8 remove from D all augmented clauses without k-relevant instances
9 return rbl(C,D,P )

10 else P ← y
11 if P is a solution to C
12 then return P
13 else l← a literal not assigned a value by P
14 return rbl(C, 〈P, (l, true)〉)

Examining these two procedures, we see that we need to provide implementations of the
following:

1. A routine that computes the group of stable extensions appearing in the definition of
augmented resolution, needed by line 4 in the unit propagation procedure 7.1.

2. A routine that finds instances of (c,G) for which cg ∩ S = Ø and |cg ∩ U | ≤ 1 for
disjoint S and U , needed by line 1 in the unit propagation procedure 7.1.

3. A routine that determines whether (c,G) has an instance for which poss(cg, P ) ≤ k
for some fixed k, as needed by line 8 of Procedure 7.2.

All of these problems are known to be NP-complete, although we remind the reader that
we continue to measure complexity in terms of the size of the domain and the number of
generators of any particular group; the number of generators is logarithmic in the number
of instances of any particular augmented clause. It is also the case that the practical
complexity of solving these problems appears to be low-order polynomial.

Our focus in the final paper in this series will be on the development of efficient proce-
dures that achieve the above goals, their incorporation into a zChaff-like prover, and an
evaluation of the performance of the resulting system.
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8. Conclusion

Our aim in this paper has been to give a theoretical description of a generalized represen-
tation scheme for satisfiability problems. The basic building block of the approach is an
“augmented clause,” a pair (c,G) consisting of a ground clause c and a group G of permu-
tations on the literals in the theory; the intention is that the augmented clause is equivalent
to the conjunction of the results of operating on c with elements of G. We argued that the
structure present in the requirement that G be a group provides a generalization of a wide
range of existing notions, from quantification over finite domains to parity clauses.

We went on to show that resolution could be extended to deal with augmented clauses,
and gave a generalization of relevance-bounded learning in this setting (Procedures 7.1 and
7.2). We also showed that the resulting proof system generalized first-order techniques when
applied to finite domains of quantification, and could produce polynomially sized proofs of
the pigeonhole problem, clique coloring problems, Tseitin’s graph coloring problems, and
parity clauses in general.

Finally, we described the specific group-theoretic problems that need to be addressed in
implementing our ideas. As discussed in the previous section, they are:

1. Implementing the group operation associated with the generalization of resolution,

2. Finding unit instances of an augmented clause, and

3. Determining whether an augmented clause has relevant instances.

We will return to these issues in the final paper in this series (Dixon et al., 2004a), which
describes an implementation of our ideas and its computational performance.
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Appendix A. Proofs

Proposition 2.7 Suppose that C is a Boolean satisfiability problem, and P is a sound
annotated partial assignment. Then:
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1. If unit-propagate(P ) = 〈false, P ′〉, then P ′ is a sound extension of P , and

2. If unit-propagate(P ) = 〈true, c〉, then c is a nogood for P .

Proof. In the first case, we need to show that any extension of P in the procedure leaves
P a sound partial assignment. In other words, when we add (l, c) to P , we must show that:

1. C |= c,

2. l appears in c, and

3. Every other literal in c is false by virtue of an assignment in P .

For (1), note that c ∈ C. For (2), l is explicitly set to a literal in c. And for (3), since
c ∈ poss0(C,P ), every other literal in c must be set false by P .

In the second case in the proposition, C |= c because c is the result of resolving a clause
in C with some reason ci, which is entailed by C by virtue of the soundness of P . To see
that c is falsified by P , note that the clause in poss−1(C,P ) is surely falsified by P , and
that every literal in the reason ci for li is also falsified except for li itself. It follows that the
result of resolving these two clauses will also be falsified by the assignments in P .
Theorem 2.9 Rbl is sound and complete in that it will always return a solution to a
satisfiable theory C and always report failure if C is unsatisfiable. Rbl also uses an amount
of memory polynomial in the size of C (although exponential in the relevance bound k).
Proof. Soundness is immediate. For completeness, note that every nogood learned elimi-
nates an additional portion of the search space, and the backtrack is constrained to not go
so far that the newly learned nogood is itself removed as irrelevant.

For the last claim, we extend Definition 2.3 somewhat, defining a reason for a literal l to
be any learned clause involving l where l was the most recently valued literal at the point
that the clause was learned. We will now show that for any literal l, there are never more
than (2n)k reasons for l, where n is the number of variables in the problem.

To see this, let R be the set of reasons for l at some point. Let r be any reason in this
set; between the time that r ∈ R was learned and the current point, at most k literals in
r could have been unassigned by the then-current partial assignment. It follows that there
is some fixed partial assignment P ′ that holds throughout the “life” of each r ∈ R and
such that each r has at most k literals unassigned values by P ′. Let S be the set of literals
assigned values by P ′.

Given a reason ri ∈ R, we will view ri simply as the set of literals that it contains, so
that ri − S is the set of literals appearing in ri but outside of the stable partial assignment
P ′. Now if rj was learned before ri, some literal li ∈ ri−S must not be in rj−S; otherwise,
rj together with the stable partial assignment P ′ would have precluded the set of variable
assignments that led to the conclusion ri. In other words, ri − S is unique for each reason
in the set R.

But we also know that |ri−S| ≤ k, so that each reason corresponds to choosing at most
k literals from the complement of S. If there are n variables in the problem, there are most
2n literals in this set, so that the number of reasons is bounded by (2n)k. It follows that the
total number of reasons learned is bounded by (2n)k+1, and the conclusion follows.

Theorem A.1 (Lagrange) If G is a finite group and S ≤ G, then |S| divides |G|.
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Proposition 4.3 Let S be a set of ground clauses, and (c,G) an equivalent augmented
clause, where G is represented by generators. It is possible in polynomial time to find a set
of generators {ω1, . . . , ωk} where k ≤ log2 |G| and G = 〈ω1, . . . , ωk〉.
Proof. Even the simplest approach suffices. If G = 〈gi〉, checking to see if gi ∈ 〈ω1, . . . , ωj〉
for each generator gi can be performed in polynomial time using a well-known method of
Sims (Dixon et al., 2004a; Luks, 1993; Seress, 2003); if gi is already in the generated set we
do nothing and otherwise we add it as a new generator. By virtue of Lagrange’s theorem,
a subgroup can never be larger than half the size of a group that properly contains it, so
adding a new generator to the set of ωi’s always at least doubles the size of the generated
set. It follows that the number of generators needed can never exceed log2 |G|.
Proposition 4.7 Let (c,G) be an augmented clause. Then if c′ is any instance of (c,G),
(c,G) ≡ (c′, G).
Proof. Since c′ is an instance of (c,G), we must have c′ = cg for some g ∈ G. Thus the
instances of (c′, G) are clauses of the form c′g

′
= cgg′ . But cgg′ = cg′′ for g′′ = gg′ ∈ G.

Similarly, an instance of (c,G) is a clause of the form cg′ = c′g
−1g′ = c′g

′′
.

Definition A.2 Let G ≤ Sym(S). We will say that G acts transitively on S if, for any
x, y ∈ S, there is a g ∈ G with xg = y.

Proposition 4.8 Let (c,G) be an augmented clause with d distinct instances. Then there
is a subgroup H ≤ G that can be described using O(log2(d)) generators such that (c,H) ≡
(c,G). Furthermore, given d and generators for G, there is a Monte Carlo polynomial-time
algorithm for constructing the generators of such an H.
Proof. The basic ideas in the proof follow methods introduced by Babai, Luks and Ser-
ess (1997). The proof of this particular result is a bit more involved than the others in this
paper, and following it is likely to require an existing familiarity with group theory.

Let D be the set of instances of (c,G), so that G acts transitively on D. Now consider
a sequence g1, g2, . . . of uniformly distributed random elements of G and, for each r ≥ 0,
let Hr = 〈g1, g2, . . . , gr〉 (in particular, H0 = 〈Ø〉 = 1). Suppose that Hr−1 does not act
transitively on D and let K be any orbit of Hr−1 in D. Since G{K} is a proper subgroup
of G, Lagrange’s theorem implies that the probability that gr ∈ G{K} is ≤ 1

2 . Hence, the
probability that Hr enlarges this K is ≥ 1

2 . On average then, at least 1
2 of the orbits will be

enlarged in passing from Hr−1 to Hr. Since the orbits partition the entire set D, an orbit
can only be enlarged if it is merged with one or more other orbits. Thus the fact that at
least half of the orbits are enlarged implies that the total number of such orbits is reduced
by at least 1

4 . Thus for each r, the expected number of orbits of Hr in D is ≤ d(3/4)r. As a
consequence, with high probability, there exists r = O(log2 d) such that Hr acts transitively
on D. (The probability of failure can be kept below ε for any fixed ε > 0.)

An implementation of the algorithm implicit in this proof requires the ability to select
uniformly distributed random elements of G. These are available at a cost O(v2) per
element, given the standard data structures for permutation group computation (Seress,
2003).16

16. The reason that we only have a Monte Carlo method is that there is no known deterministic polynomial
time test for testing whether H ≤ G acts transitively on D; note that D may be exponential in the
number of variables in the problem.
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Proposition 5.1 For ground clauses c1 and c2 and a permutation ω ∈Wn,

resolve(ω(c1), ω(c2)) = ω(resolve(c1, c2))

Proof. Suppose that the literal being resolved on is l, so that if we think of c1 and c2 as
being represented simply by the literals they contain, the resolvent corresponds to

c1 ∪ c2 − {l,¬l}

Permuting with ω gives us

ω(c1) ∪ ω(c2)− {ω(l), ω(¬l)} = ω(c1) ∪ ω(c2)− {ω(l),¬ω(l)} (41)

where the equality is a consequence of the fact that the permutation in question is a member
of Wn instead of simply S2n. The right hand side of (41) is simply resolve(ω(c1), ω(c2)).
Proposition 5.3 There are augmented clauses c1 and c2 such that the set S of resolvents
of instances of the two clauses does not correspond to any single augmented clause (c,G).
Proof. Consider resolving the augmented clause

c1 = (a ∨ b, (bc))

with the two instances a ∨ b and a ∨ c, with the augmented clause

c2 = (¬a ∨ d, (dc))

corresponding to ¬a ∨ d and ¬a ∨ c. The ground clauses that can be obtained by resolving
instances of c1 and of c2 are b∨ d, b∨ c, c∨ b, and c. Since these clauses are not of uniform
length, they are not instances of a single augmented clause.
Proposition 5.8 stab(Ki, Gi) ≤ Sym(L).
Proof. Suppose we have ω1, ω2 ∈ stab(Ki, Gi). Now for some fixed i and g1 ∈ Gi, ω1|KGi

i

=

g1|KGi
i

and similarly for ω2 and some g2. But now for any x ∈ KGi
i ,

xω1ω2 = xg1ω2

= xg1g2

so that ω1ω2 ∈ stab(Ki, Gi). The first equality holds by virtue of the definition of a stable
extension, and the second holds because xg1 is necessarily in the Gi-closure of Ki. Inversion
is similar.
Definition 5.4 A definition of augmented resolution will be called satisfactory if any resol-
vent (c,G) of (c1, G1) and (c2, G2) satisfies the following conditions:

1. It is sound, in that (c1, G1) ∧ (c2, G2) |= (c,G).

Note also that the algorithm explicitly requires that we know d in advance. This is necessary
since the quantity is not known to be computable in polynomial time. However, there are methods for
computing d that seem to be efficient in practice.
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2. It is complete, in that resolve(c1, c2) is an instance of (c,G).

3. It is monotonic, in that if G1 ≤ H1 and G2 ≤ H2, then (c,G) is also a resolvent of
(c1,H1) and (c2,H2).

4. It is polynomial, in that it is possible to confirm that (c,G) is a resolvent of (c1, G1)
and (c2, G2) in polynomial time.

5. It is stable, in that if cG
1 = cG

2 , then (resolve(c1, c2), G) is a resolvent of (c1, G) and
(c2, G)

6. It is strong, in that if no element of cG1
1 is moved by G2 and similarly no element

of cG2
2 is moved by G1, then (resolve(c1, c2), 〈G1, G2〉) is a resolvent of (c1, G1) and

(c2, G2).

Proposition 5.10 Definition 5.9 of (noncanonical) resolution is satisfactory. The def-
inition of canonical resolution satisfies all of the conditions of Definition 5.4 except for
monotonicity.
Proof. We deal with the conditions of the definition one at a time.

1. Soundness Any instance of (c,G) must be of the form

ω(resolve(c1, c2)))

for some ω that simultaneously extends G1 acting on c1 and G2 acting on c2. But by
Proposition 5.1, this is just

resolve(ω(c1), ω(c2))

The first of these clauses is an instance of (c1, G1), and the second is an instance of (c2, G2),
so the proposition follows from the soundness of resolution.

2. Completeness resolve(c1, c2) is an instance of (c,G) because c = resolve(c1, c2)
and 1 ∈ G.

3. Monotonicity If (c,G) is a resolvent of (c1,H1) and (c2,H2), then G = stab(ci,Ki)
where Ki ≤ Hi. But since Hi ≤ Gi, it follows that Ki ≤ Gi and (c,G) is a resolvent of
(c1, G1) and (c2, G2) as well.

4. Polytime checking We assume that we are provided with the intermediate groups H1

and H2, so that we must simply check that G ≤ stab(ci,Hi). Since stab(ci,Hi) is a group
by virtue of Proposition 5.8, it suffices to check that each generator of G is in stab(ci,Hi).
But this is straightforward. Given a generator g, we need simply check that restricting g to
cGi
i , the image of ci under Gi, produces a permutation that is the restriction of an element

of Gi. As we remarked in proving Proposition 4.3, this test is known to be in P.

5. Stability It is clear that (resolve(c1, c2), G) is a resolvent of (c1, G) and (c2, G), since
every element of G is clearly a stable extension of (c1, G) and (c2, G).

We need the additional condition that cG
1 = cG

2 to show that (resolve(c1, c2), G) is the
canonical resolvent; there is no explicit requirement that the group of stable extensions
of (c1, G) and (c2, G) be a subgroup of G. But if cG

1 = cG
2 , the stable extensions must
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agree with elements of G on cG
1 = cG

2 , and hence must agree with elements of G on c1 and
c2 themselves, and therefore on resolve(c1, c2) as well. Thus the canonical resolvent is
equivalent to (resolve(c1, c2), G).

6. Strength It is clear that the group of stable extensions can never be bigger than
〈G1, G2〉, since every permutation that either agrees with c1 on G1 and with c2 on G2 is
contained in this group. But if g =

∏
gi is an element of 〈G1, G2〉, with gi ∈ G1 for i odd

and gi ∈ G2 for i even, then cg
1 = c

(
Q

i odd gi)
1 = cg′

1 for g′ =
∏

i odd gi ∈ G1. The (c2, G2) case
is similar, so (resolve(c1, c2), 〈G1, G2〉) is the canonical resolvent of (c1, G) and (c2, G).

Proposition 6.3 Let p and q be quantified clauses such that there is a term tp in p and ¬tq in
q where tp and tq have common instances. Suppose also that (pg, P ) is an augmented clause
equivalent to p and (qg, Q) is an augmented clause equivalent to q, where pg and qg resolve.
Then if no terms in p and q except for tp and tq have common instances , the result of
resolving p and q in the conventional lifted sense is equivalent to resolve((pg, P ), (qg, Q)).
Proof. The proof is already contained in the discussion surrounding the example in the
main text. The base instance of the augmented resolvent is clearly an instance of the
quantified resolution; for the group, we have already remarked that the group of stable
extensions of the two embeddings corresponds simply to any bindings for the variables in
the resolvents that can be extended to a permutation of all of the variables in question. This
means that the bindings must be consistent with regard to the values selected for shared
terms, and no two distinct quantified literals are mapped to identical ground atoms. The
latter condition follows from the assumption that the non-resolving literals have no common
ground instances.
Proposition 6.4 There is an augmented resolution proof of polynomial size of the mutual
unsatisfiability of (34) and (35).
Proof. We begin by explaining how the proof goes generally, and only subsequently provide
the details. From the fact that the first pigeon has to be in one of the n holes, we can
conclude that one of the first two pigeons must be in one of the last n− 1 holes (since these
first two pigeons can’t both be in the first hole). Now one of the first three pigeons must
be in one of the last n− 2 holes, and so on until we conclude that one of the first n pigeons
must be in the last hole. Similarly, one of the first n pigeons must be in each hole, leaving
no hole for the final pigeon.

To formalize this, we will write Ak for the fact that one of the first k pigeons must be
in one of the last n + 1− k holes:

Ak ≡
∨

1≤i≤k
k≤j≤n

pij

Our basic strategy for the proof will be to show that if we denote the original axioms (34)
and (35) by PHP :17

1. PHP ` A1,

2. PHP ∧Ak ` Ak+1,

17. Our notation here is vaguely similar to that used by Krishnamurthy (1985), although the both problem
being solved and the techniques used are different.
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3. PHP ∧An ` ⊥, where ⊥ denotes a contradiction.

In addition, since the same group G appears throughout the original axiomatization, we
will drop it from the derivation, but will feel free to resolve against cg for any g ∈ G and
derived conclusion c.

For the first claim, note that A1 is given by∨
1≤j≤n

p1j

which is an instance of (35).
For the second, we have Ak, which is ∨

1≤i≤k
k≤j≤n

pij

and we need to remove all of the variables pjk that refer to the kth hole. To do this, we
resolve the above clause with each of

¬p1k ∨ ¬pk+1,k

¬p2k ∨ ¬pk+1,k
...

¬pkk ∨ ¬pk+1,k

to get
¬pk+1,k ∨

∨
1≤i≤k

k+1≤j≤n

pij

Now note that the only holes mentioned in the disjunction on the right of the above
expression are the k + 1st and higher, so that we can apply the group G to conclude

¬pk+1,m ∨
∨

1≤i≤k
k+1≤j≤n

pij

for any 1 ≤ m ≤ k. Now if we resolve each of these with the instance of (35) given by

pk+1,1 ∨ · · · ∨ pk+1,n

we get ∨
k+1≤j≤n

pk+1,j ∨
∨

1≤i≤k
k+1≤j≤n

pij

which is to say ∨
1≤i≤k+1
k+1≤j≤n

pij

or Ak+1.
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Finally, we need to derive a contradiction from An, which is to say∨
1≤i≤n

pin

Resolving with each of
¬p1n ∨ ¬pn+1,n

¬p2n ∨ ¬pn+1,n
...

¬pnn ∨ ¬pn+1,n

now gives ¬pn+1,n, and we can thus conclude ¬pij for any i and j by acting with the group
G. Resolving into any instance of (35) now gives the desired contradiction.

Lemma A.3 Assuming that we only branch on positive literals in unsatisfied clauses, let
pjk be any of the first n− 2 branch decisions in solving the pigeonhole problem. The set of
unit propagations that result from this branch decision is exactly the set Sk = {¬pik|i 6= j}.

Proof. We prove this by induction on the number of branch decisions. For the base case,
we take n ≥ 3 and consider the first branch decision pjk. For each ¬pik ∈ Sk there is
an instance of (35) of the form ¬pjk ∨ ¬pik that causes the unit propagation ¬pik. No
other instances of (35) contain literals that refer to hole k, so (35) produces no further unit
propagations. Each instance of (34) has a total of n literals with at most one literal that
refers hole k. Because n ≥ 3, each instance must have at least two unvalued literals and
therefore does not generate a unit propagation.

For the inductive case, we assume that Lemma A.3 holds for the first m branches with
m < n − 2. Under this assumption, each branch decision pjk and its subsequent unit
propagations value exactly the variables involving hole k. We can therefore make the same
argument as we did in the base case. Let pjk be the m + 1st branch decision. Clause (35)
produces exactly the set Sk = {¬pik|i 6= j} via unit propagation, and because m+1 ≤ n−2,
each instance of (34) has at least two unvalued literals and therefore does not generate any
unit propagations.

The key observation is that each branch decision and its subsequent unit propagations
value all the variables (and only the variables) that refer to a particular hole.

Lemma A.4 Let P = {l1, l2, . . . , lm} be a partial assignment obtained in solving the pigeon-
hole problem, where every branch decision is on a positive literal in an unsatisfied clause.
For every branch decision li in P , the subproblem below the open branch {l1, l2, . . . , li−1,¬li}
can be solved by unit propagation.

Proof. Assume we are about to begin exploring the subproblem below

P = {l1, l2, . . . , li,¬pjk}

for some branch variable pjk. The subproblem below P = {l1, l2, . . . , li, pjk} has already
been explored, found to be unsatisfiable, and we’ve generated a nogood defining the reason
for the failure. This nogood will be an augmented clause of the form

(a1 ∨ · · · ∨ am ∨ ¬pjk, G) (42)
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The ai are unsatisfied under P = {l1, l2, . . . , li}, and G is the global symmetry group for
the problem.

But now recall that by virtue of Lemma A.3, each of our original branch decisions
together with its subsequent unit propagations valued all of the variables that referred to
one particular hole and no more. Consider the set of all holes referred to by the partial
assignment {l1, l2, . . . , li}. We will call this set H.

When we branched on pjk, pigeon j had not yet been assigned to a hole. This follows
from our assumption that we branch only on positive literals in unsatisfied clauses. Thus
for all h ∈ H, ¬pjh ∈ P ; in other words, pigeon j was excluded from all of the holes in H
prior to our decision to place it in hole k. The derived nogood (42) asserts that pigeon j
cannot go in hole k either.

But as in the small example worked in the main text, the nogood (42) represents more
than a single clause. It represents the set of clauses that can be generated by applying
permutations in G to a1 ∨ · · · ∨ am ∨ ¬pjk. If we apply a permutation that swaps hole k
with any hole g 6∈ H, the literals a1, . . . , am will be unchanged and will remain unsatisfied
under P = {l1, l2, . . . , li}. So the clause

a1 ∨ · · · ∨ am ∨ ¬pjg (43)

is also an instance of (42) for any g 6∈ H, and (43) is also unit under the partial assignment
P . The nogood (42) thus generates a series of unit propagations indicating that pigeon j
cannot be in any hole not in H. Since the holes in H are already known to be excluded,
there is no hole available for pigeon j. A contradiction occurs and the subproblem below
P = {l1, l2, . . . , li,¬pjk} is closed.
Proposition 6.5 Any implementation of Procedure 2.8 that branches on positive literals in
unsatisfied clauses on line 12 will produce a proof of polynomial size of the mutual unsatis-
fiability of (34) and (35), independent of specific branching choices made.
Proof. Note first that any rbl search tree has size polynomial in the number of branch
decisions, since the number of variable assignments that can result from unit propagation
is bounded by the number of variables. To show that the search tree has size polynomial
in the number of pigeons n, it thus suffices to show that the number of branch decisions is
polynomial in n. We will show that under the given branch heuristic, the number of branch
decisions is n− 1 specifically.

To do this, we first descend into the tree through branching and propagation until a
contradiction is reached, and describe the partial assignment that is created and show how
a contradiction is drawn. We then show the backtracking process, proving that the empty
clause can be derived in a single backtrack. More specifically, we show that every open
branch of the search tree can be closed through propagation alone. No further branch
decisions are needed.

Lemma A.3 deals with the first n−2 branch decisions. What about the n−1st decision? If
this branch decision is pjk, we again generate the set of unit propagations Sk = {¬pik|i 6= j}.
This time we will generate some additional unit propagations. Since we have assigned n−1
of the pigeons each to a unique hole, there is only one empty hole remaining. If this is hole
h, the two remaining pigeons (say pigeons a and b) are both forced into hole h, while only
one can occupy it. This leads to the expected contradiction. But now Lemma A.4 shows
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that no further branches are necessary, so that the total number of branches is n− 1, and
the rbl search tree is polynomially sized.
Proposition 6.6 There is an augmented resolution proof of polynomial size of the unsatis-
fiability of (36)–(40).
Proof. The proof proceeds similarly to the proof of Proposition 6.4, although the details
are far more intricate. As before, we will work with ground axioms only and will suppress
the augmentation by the global symmetry group.

The analog to pij is that the ith node of the clique gets the jth color, or

(qi1 ∧ c1j) ∨ · · · ∨ (qim ∧ cmj)

which we will manipulate in this form although it’s clearly not cnf.
Now A1, the statement that the first pigeon is in some hole, or that the first node of

the clique gets some color, is

[q11 ∧ (c11 ∨ · · · ∨ c1n)] ∨ · · · ∨ [q1m ∧ (cm1 ∨ · · · ∨ cmn)]

The expression for Ak, which was ∨
1≤i≤k
k≤j≤n

pij (44)

similarly becomes

[(q11 ∨ · · · ∨ qk1) ∧ (c1k ∨ · · · ∨ c1n)] ∨ · · · ∨ [(q1m ∨ · · · ∨ qkm) ∧ (cmk ∨ · · · ∨ cmn)] (45)

saying that for some i and j as in (44), there is an index h such that qih∧ chj ; h is the index
of the graph node to which a clique element of a suitable color gets mapped.

In order to work with the expressions (45), we do need to convert them into cnf.
Distributing the ∧ and ∨ in (45) will produce a list of conjuncts, each of the form

B1 ∨ · · · ∨Bm (46)

where each Bi is of the form either q1i ∨ · · · ∨ qki or cik ∨ · · · ∨ cin. There are 2m possible
expressions of the form (46).

Each of these 2m expressions, however, is an instance of the result of acting with the
global group G on one of the following:

(c1k ∨ · · · ∨ c1n) ∨ (c2k ∨ · · · ∨ c2n) ∨ · · · ∨ (cmk ∨ · · · ∨ cmn)
(q11 ∨ · · · ∨ qk1) ∨ (c2k ∨ · · · ∨ c2n) ∨ · · · ∨ (cmk ∨ · · · ∨ cmn)

...
(q11 ∨ · · · ∨ qk1) ∨ (q12 ∨ · · · ∨ qk2) ∨ · · · ∨ (q1m ∨ · · · ∨ qkm)

(47)

We will view these as all instances of a general construct indexed by h, with h giving the
number of initial clauses based on the q’s instead of the c’s. So the first row corresponds to
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h = 0, the second to h = 1 and so on, with the last row corresponding to h = m. It follows
from this that Ak is effectively

∧
0≤h≤m

 ∨
1≤i≤k
1≤j≤h

qij ∨
∨

h+1≤i≤m
k≤j≤n

cij

 (48)

It is important to realize that we haven’t actually started to prove anything yet; we’re
just setting up the machinery needed to duplicate the proof of Proposition 6.4. The only
remaining piece is the analog in this framework of the axiom ¬pij ∨ ¬pkj , saying that each
hole can only contain one pigeon. That is

¬qih ∨ ¬chj ∨ ¬qkg ∨ ¬cgj (49)

saying that if node i of the clique is mapped to node h of the graph, and k is mapped to g,
then g and h cannot both get the same color.

If g 6= h, we can derive (49) by resolving (36) and (40). If g = h, then (49) becomes
¬qih ∨¬chj ∨¬qkh and is clearly a weakening of (39). Thus ¬pij ∨¬pkj becomes the pair of
clauses

¬qih ∨ ¬chj ∨ ¬qkg ∨ ¬cgj

¬qih ∨ ¬qkh

both of which can be derived in polynomial time and are, as usual, acted on by the group
G. We are finally ready to proceed with the main proof.

For the base step, we must derive A1, or the conjunction of∨
1≤i≤1
1≤j≤h

qij ∨
∨

h+1≤i≤m
1≤j≤n

cij

which is to say

(c11 ∨ · · · ∨ c1n) ∨ (c21 ∨ · · · ∨ c2n) ∨ · · · ∨ (cm1 ∨ · · · ∨ cmn)
q11 ∨ (c21 ∨ · · · ∨ c2n) ∨ · · · ∨ (cm1 ∨ · · · ∨ cmn)

...
q11 ∨ q12 ∨ · · · ∨ q1m

Except for the last row, each of these is obviously a weakening of (37) saying that every
node in the graph gets a color. The final row is equivalent to (38) saying that each element
of the clique gets a node in the graph.

For the inductive step, we must show that Ak ` Ak+1. Some simplifying notation will
help, so we introduce

Cij..k ≡ (cij ∨ · · · ∨ cik)

and
Qi..jk ≡ (qik ∨ · · · ∨ qjk)
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Now Ak as in (47) is actually

C1k..n ∨ C2k..n ∨ · · · ∨ Cmk..n

Q1..k1 ∨ C2k..n ∨ · · · ∨ Cmk..n
...

Q1..k1 ∨ Q1..k2 ∨ · · · ∨ Q1..km

(50)

Following the pigeonhole proof, we need to reduce the number of holes (i.e., colors) by one
and increase the number of pigeons (i.e., clique elements) by one. For the first step, we need
to resolve away the appearances of cik from (50). We claim that from (50) it is possible to
derive

C1,k+1..n ∨ C2,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk

Q1..k1 ∨ C2,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk
...

Q1..k1 ∨ Q1..k2 ∨ · · · ∨ Q1..km ∨ ¬qk+1,m ∨ ¬cmk

(51)

We show this by working from the bottom of the arrays (h = m in the description (48)) to
the top (h = 0). For the last row, the expression in (51) is clearly a weakening of the final
row in (50).

Suppose that we have done h = i and are now considering h = i − 1 corresponding to
the derivation of the disjunction

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk

from
Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Cik..n ∨ · · · ∨ Cmk..n (52)

Now recall that Cjk..n is
cjk ∨ · · · ∨ cjn

and we want to remove the cjk term by resolving with (49), adding literals of the form
¬qk+1,m ∨ ¬cmk. The instance of (49) that we use is

¬qk+1,m ∨ ¬cmk ∨ ¬qlj ∨ ¬cjk

and the resolvent is
Cj,k+1..n ∨ ¬qk+1,m ∨ ¬cmk ∨ ¬qlj

The result of resolving into (52) is therefore

Q1..k1∨· · ·∨Q1..k,i−1∨Cik..n∨· · ·∨Cj−1,k..n∨Cj,k+1..n∨Cj+1,k..n∨· · ·∨Cmk..n∨¬qk+1,m∨¬cmk∨¬qlj

(53)
for any l and i ≤ j ≤ m.

Now we have already done h = i, which means that we have derived

Q1..k1 ∨ · · · ∨Q1..ki ∨ Ci+1,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk

Operating on this with the usual group allows us to exchange the q and c variables arbitrarily,
so it matters not that the first i terms involve the q variables and the last m− i involve the
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c variables, but only that the number of terms involving q and c variables are i and m− i
respectively. Thus we have also derived

Q1..k1∨· · ·∨Q1..k,i−1∨Ci,k+1..n∨· · ·∨Cj−1,k+1..n∨Q1..kj∨Cj+1,k+1..n∨· · ·∨Cm,k+1..n∨¬qk+1,m∨¬cmk

(54)
(where we have essentially swapped node i and node j in (53)). By taking l = 1, . . . , k in

(53), we can resolve (54) with (53) to eliminate both the trailing ¬qlj in (53) and the Q1..kj

term above. Since the literals in Ch,k+1..n are a subset of those in Chk..n, we get

Q1..k1∨· · ·∨Q1..k,i−1∨Cik..n∨· · ·∨Cj−1,k..n∨Cj,k+1..n∨Cj+1,k..n∨· · ·∨Cmk..n∨¬qk+1,m∨¬cmk

We can continue in this fashion, gradually raising the second index of each C term from k
to k + 1, to finally obtain

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk (55)

as in (51).
The hard part is now done; we have exploited the symmetry over the nodes and it

remains to use the symmetry over the colors. In the derivation of (55), the color k in the
final ¬cmk is obviously irrelevant provided that it is chosen from the set 1, . . . , k; higher
numbered colors (but only higher numbered colors) already appear in the Cj,k+1..n. So we
have actually derived

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cmk
...

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cm2

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ ¬cm1

and when we resolve all of these with the domain axiom (37)

cm1 ∨ cm2 ∨ · · · ∨ cmn

we get

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ cm,k+1 ∨ · · · ∨ cmn

which is to say

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m ∨ Cm,k+1..n

or
Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m

Now the m subscript in the final q variable is also of no import, provided that it remains
at least i. We can therefore resolve

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,i
...

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m−1

Q1..k1 ∨ · · · ∨ Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ ¬qk+1,m
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with the domain axiom (38)
qk+1,1 ∨ · · · ∨ qk+1,m

to get

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n ∨ qk+1,1 ∨ · · · ∨ qk+1,i−1

which is to say

Q1..k+1,1 ∨ · · · ∨Q1..k+1,i−1 ∨ Ci,k+1..n ∨ · · · ∨ Cm,k+1..n

This is Ak+1 as desired.
It remains to show that we can derive a contradiction from An. If we continue with the

above procedure in an attempt to “derive” An+1, when we derive an instance of (55), the
C terms will simply vanish because k + 1 > n. We end up concluding

Q1..k1 ∨ · · · ∨Q1..k,i−1 ∨ ¬qk+1,m ∨ ¬cmk

and the i = 0 instance is simply
¬qk+1,m ∨ ¬cmk

All of the indices here are subject to the usual symmetry, so we know

¬qji ∨ ¬ci1

¬qji ∨ ¬ci2
...

¬qji ∨ ¬cin

which we resolve with ci1 ∨ · · · ∨ cin to get ¬qji. We can resolve instances of this with
qm1 ∨ · · · ∨ qmn to finally get the desired contradiction.
Lemma 6.7 Let C be a theory consisting entirely of parity clauses. Then determining
whether or not C is satisfiable is in P .
Proof. The proof is essentially a Gaussian reduction argument, and proceeds by induction
on n, the number of variables in C. If n = 0, the result is immediate. So suppose that C
contains n + 1 variables, and let one clause containing x1 be

x1 +
∑
x∈S

x ≡ k

where k = 0 or k = 1. This is obviously equivalent to

x1 ≡
∑
x∈S

x + k

which we can now use to eliminate x1 from every other axiom in C in which it appears.
Since the resulting theory can be tested for satisfiability in polynomial time, the result
follows.
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Lemma A.5 Suppose that we have two axioms given by

x1 +
∑
x∈S

x +
∑
x∈T1

x ≡ k1 (56)

and
x1 +

∑
x∈S

x +
∑
x∈T2

x ≡ k2 (57)

where the sets S, T1 and T2 are all disjoint. Then it follows that∑
x∈T1

x +
∑
x∈T2

x ≡ k1 + k2 (58)

and furthermore, any proof system that can derive this in polynomial time can also determine
the satisfiability of sets of parity clauses in polynomial time.

Proof. Adding (56) and (57) produces (58). That this is sufficient to solve sets of parity
clauses in polynomial time is shown in the proof of Lemma 6.7.
Lemma 6.9 FS ≤Wn.
Proof. FS is closed under inversion, since every element in FS is its own inverse. To see
that it is closed under composition as well, suppose that f1 flips the variables in a set S1 and
f2 flips the variables in a set S2. Then f1f2 flips the variables in S12 = S1 ∪ S2 − (S1 ∩ S2).
But now

|S12| = |S1 ∪ S2 − (S1 ∩ S2)|
= |S1 ∪ S2| − |S1 ∩ S2|
= |S1|+ |S2| − |S1 ∩ S2| − |S1 ∩ S2|
= |S1|+ |S2| − 2 · |S1 ∩ S2|

and is therefore even, so f1f2 ∈ FS .
Lemma 6.10 Let S = {x1, . . . , xk} be a subset of a set of n variables. Then the parity
clause

k∑
i=1

xi ≡ 1 (59)

is equivalent to the augmented clause

(x1 ∨ · · · ∨ xk, FS) (60)

The parity clause
k∑

i=1

xi ≡ 0

is equivalent to the augmented clause

(¬x1 ∨ x2 ∨ · · · ∨ xk, FS)
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Proof. To see that (59) implies (60), note that (59) certainly implies x1 ∨ · · · ∨ xk. But
the result of operating on the disjunction with any element of FS flips an even number of
elements in it, so (60) follows.

For the converse, suppose that (59) fails, so that an even number of the xi’s are true.
The disjunction that flips exactly those xi’s that are true will obviously have no satisfied
literals, but will have flipped an even number of elements of S so that some instance of the
augmented clause (60) is unsatisfied.

The second equivalence clearly follows from the first; replace x1 with ¬x1.
Proposition 6.11 Let C be a theory consisting entirely of parity clauses. Then determining
whether or not C is satisfiable is in P for augmented resolution.
Proof. We need to show that the conditions of Lemma A.5 are met. We can assume
without loss of generality that k1 = 1 and k2 = 0 in the conditions of the lemma; other
cases involve simply flipping the sign of one of the variables involved.

In light of Lemma 6.10, we have the two augmented axioms

(x1 ∨
∨
x∈S

x ∨
∨

x∈T1

x, Fx1∪S∪T1)

and
(¬x1 ∨

∨
x∈S

x ∨
∨

x∈T2

x, Fx1∪S∪T2)

where S, T1, and T2 are all disjoint. The clause obtained in the resolution is clearly∨
x∈S∪T1∪T2

x

but what is the group involved?
The elements of the group are the stable extensions of group elements from Fx1∪S∪T1

and Fx1∪S∪T2 ; in other words, any permutation that leaves the variables unchanged and
simultaneously flips an even number of elements of x1 ∪ S ∪ T1 and of x1 ∪ S ∪ T2. We
claim that these are exactly those elements that flip any subset of S and an even number
of elements of T1 ∪ T2.

We first show that any stable extension g flips an even number of elements of T1 ∪ T2

(along with some arbitrary subset of S). If g flips an odd number of elements of T1 ∪ T2,
then it must flip an odd number of elements of one (say T1) and an even number of elements
of the other. Now if the parity of the number of flipped elements of x1∪S is even, the total
number flipped in x1 ∪S ∪T1 will be odd, so that g does not match an element of Fx1∪S∪T1

and is therefore not an extension. If the parity of the number of flipped elements of x1 ∪ S
is odd, the number flipped in x1 ∪ S ∪ T2 will be odd.

To see that any g flipping an even number of elements of T1∪T2 corresponds to a stable
extension, we note simply that by flipping x1 or not, we can ensure that g flips an even
number of elements in each relevant subset. Since g flips an even number of elements in
T1 ∪ T2, it flips subsets of T1 and of T2 that have the same parity. So if it flips an even
number of elements of S ∪ T1, it also flips an even number of elements of S ∪ T2 and we
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leave x1 unflipped. If g flips an odd number of elements of S ∪ T1 and of S ∪ T2, we flip x1.
Either way, there are corresponding elements of Fx1∪S∪T1 and Fx1∪S∪T2 .

Now suppose that we denote by KS the group that flips an arbitrary subset of S. We
have shown that the result of the resolution is ∨

x∈S∪T1∪T2

x,KS × FT1∪T2

 (61)

Note that the resolution step itself is polytime, since we have given the result explicitly
in (61).18

Next, we claim that (61) implies ∨
x∈T1∪T2

x,KS × FT1∪T2

 (62)

where we have removed the elements of S from the disjunction.
We prove this by induction on the size of S. If S = Ø, the result is immediate. Otherwise,

if a ∈ S for some specific a, two instances of (61) area ∨
∨

x∈S−{a}∪T1∪T2

x,KS × FT1∪T2


and ¬a ∨

∨
x∈S−{a}∪T1∪T2

x,KS × FT1∪T2


which we can resolve using the stability property (5) of Definition 5.4 to conclude ∨

x∈S−{a}∪T1∪T2

x, KS × FT1∪T2


so that (62) now follows by the inductive hypothesis.

At this point, however, note that the variables in S do not appear in the clause in (62),
so that we can drop KS from the group in the conclusion without affecting it in any way.
Thus we have concluded  ∨

x∈T1∪T2

x, FT1∪T2

 (63)

Applying Lemma 6.10 once again, we see that (63) is equivalent to∑
x∈T1

x +
∑
x∈T2

x ≡ 1

as needed by Lemma A.5. The proof is complete.

18. In general, augmented resolution is not known to be polynomial in the number of generators of the
groups in question. But it is polynomial for groups of restricted form being considered here.
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