
Journal of Artificial Intelligence Research 23 (2005) 367-420 Submitted 07/04; published 04/05

Hybrid BDI-POMDP Framework for Multiagent Teaming

Ranjit Nair ranjit.nair@honeywell.com

Automation and Control Solutions

Honeywell Laboratories, Minneapolis, MN 55416

Milind Tambe tambe@usc.edu

Department of Computer Science

University of Southern California, Los Angeles, CA 90089

Abstract

Many current large-scale multiagent team implementations can be characterized as
following the “belief-desire-intention” (BDI) paradigm, with explicit representation of team
plans. Despite their promise, current BDI team approaches lack tools for quantitative
performance analysis under uncertainty. Distributed partially observable Markov decision
problems (POMDPs) are well suited for such analysis, but the complexity of finding optimal
policies in such models is highly intractable. The key contribution of this article is a
hybrid BDI-POMDP approach, where BDI team plans are exploited to improve POMDP
tractability and POMDP analysis improves BDI team plan performance.

Concretely, we focus on role allocation, a fundamental problem in BDI teams: which
agents to allocate to the different roles in the team. The article provides three key con-
tributions. First, we describe a role allocation technique that takes into account future
uncertainties in the domain; prior work in multiagent role allocation has failed to address
such uncertainties. To that end, we introduce RMTDP (Role-based Markov Team De-
cision Problem), a new distributed POMDP model for analysis of role allocations. Our
technique gains in tractability by significantly curtailing RMTDP policy search; in partic-
ular, BDI team plans provide incomplete RMTDP policies, and the RMTDP policy search
fills the gaps in such incomplete policies by searching for the best role allocation. Our
second key contribution is a novel decomposition technique to further improve RMTDP
policy search efficiency. Even though limited to searching role allocations, there are still
combinatorially many role allocations, and evaluating each in RMTDP to identify the best
is extremely difficult. Our decomposition technique exploits the structure in the BDI team
plans to significantly prune the search space of role allocations. Our third key contribution
is a significantly faster policy evaluation algorithm suited for our BDI-POMDP hybrid ap-
proach. Finally, we also present experimental results from two domains: mission rehearsal
simulation and RoboCupRescue disaster rescue simulation.

1. Introduction

Teamwork, whether among software agents, or robots (and people) is a critical capability
in a large number of multiagent domains ranging from mission rehearsal simulations, to
RoboCup soccer and disaster rescue, to personal assistant teams. Already a large num-
ber of multiagent teams have been developed for a range of domains (Pynadath & Tambe,
2003; Yen, Yin, Ioerger, Miller, Xu, & Volz, 2001; Stone & Veloso, 1999; Jennings, 1995;
Grosz, Hunsberger, & Kraus, 1999; Decker & Lesser, 1993; Tambe, Pynadath, & Chauvat,
2000; da Silva & Demazeau, 2002). These existing practical approaches can be character-
ized as situated within the general “belief-desire-intention” (BDI) approach, a paradigm

c©2005 AI Access Foundation. All rights reserved.

Nair & Tambe

for designing multiagent systems, made increasingly popular due to programming frame-
works (Tambe et al., 2000; Decker & Lesser, 1993; Tidhar, 1993b) that facilitate the design
of large-scale teams. Within this approach, inspired explicitly or implicitly by BDI logics,
agents explicitly represent and reason with their team goals and plans (Wooldridge, 2002).

This article focuses on analysis of such BDI teams, to provide feedback to aid human
developers and possibly to agents participating in a team, on how the team performance
in complex dynamic domains can be improved. In particular, it focuses on the critical
challenge of role allocation in building teams (Tidhar, Rao, & Sonenberg, 1996; Hunsberger
& Grosz, 2000), i.e. which agents to allocate to the various roles in the team. For instance,
in mission rehearsal simulations (Tambe et al., 2000), we need to select the numbers and
types of helicopter agents to allocate to different roles in the team. Similarly, in disaster
rescue (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjoh, & Shimada, 1999), role
allocation refers to allocating fire engines and ambulances to fires and it can greatly impact
team performance. In both these and other such domains, the performance of the team is
linked to important metrics such as loss of human life and property and thus it is critical
to analyze team performance and suggest improvements.

While BDI frameworks facilitate human design of large scale teams, the key difficulty
in analyzing role allocation in these teams is due to the uncertainty that arises in complex
domains. For example, actions may fail and the world state may be only partially observable
to the agents owing to physical properties of the environment or imperfect sensing. Role
allocation demands such future uncertainties be taken into account, e.g. the fact that an
agent may fail during execution and may or may not be replaced by another must be taken
into account when determining the role allocation. Yet most current role allocation algo-
rithms do not address such uncertainty (see Section 7.4). Indeed, such uncertainty requires
quantitative comparison of different role allocations. However, tools for such quantitative
evaluations of BDI teams are currently absent. Thus, given these uncertainties, we may be
required to experimentally recreate a large number of possible scenarios (in a real domain
or in simulations) to evaluate and compare different role allocations.

Fortunately, the emergence of distributed Partially Observable Markov Decision Prob-
lems (POMDPs) provides models (Bernstein, Zilberstein, & Immerman, 2000; Boutilier,
1996; Pynadath & Tambe, 2002; Xuan, Lesser, & Zilberstein, 2001) that can be used for
quantitative analysis of agent teams in uncertain domains. Distributed POMDPs repre-
sent a class of formal models that are powerful enough to express the uncertainty in these
dynamic domains arising as a result of non-determinism and partial observability and in
principle, can be used to generate and evaluate complete policies for the multiagent team.
However, there are two shortcomings in these models that prevents their application in
the analysis of role allocation. First, previous work on analysis has focused on communi-
cation (Pynadath & Tambe, 2002; Xuan et al., 2001), rather than role allocation or any
other coordination decisions. Second, as shown by Bernstein et al. (2000), the problem
of deriving the optimal policy is generally computationally intractable (the corresponding
decision problem is NEXP-complete). Thus, applying optimal policies for analysis is highly
intractable.

To address the first difficulty, we derive RMTDP (Role-based Multiagent Team Decision
Problem), a distributed POMDP framework for quantitatively analyzing role allocations.
Using this framework, we show that, in general, the problem of finding the optimal role

368

Hybrid BDI-POMDP Framework for Multiagent Teaming

RMTDP
Search Policy Space

BDI team plan

BDI Interpreter

Domain

Incomplete policy

RMTDP model

completed policy =
additions to BDI team plan

Figure 1: Integration of BDI and POMDP.

allocation policy is computationally intractable (the corresponding decision problem is still
NEXP-complete). This shows that improving the tractability of analysis techniques for role
allocation is a critically important issue.

Therefore, in order to make the quantitative analysis of multiagent teams using RMTDP
more tractable, our second contribution provides a hybrid BDI-POMDP approach that
combines the native strengths of the BDI and POMDP approaches, i.e., the ability in BDI
frameworks to encode large-scale team plans and the POMDP ability to quantitatively
evaluate such plans. This hybrid approach is based on three key interactions that improve
the tractability of RMTDP and the optimality of BDI agent teams. The first interaction is
shown in Figure 1. In particular, suppose we wish to analyze a BDI agent team (each agent
consisting of a BDI team plan and a domain independent interpreter that helps coordinate
such plans) acting in a domain. Then as shown in Figure 1, we model the domain via an
RMTDP, and rely on the BDI team plan and interpreter for providing an incomplete policy
for this RMTDP. The RMTDP model evaluates different completions of this incomplete
policy and provides an optimally completed policy as feedback to the BDI system. Thus,
the RMTDP fills in the gaps in an incompletely specified BDI team plan optimally. Here
the gaps we concentrate on are the role allocations, but the method can be applied to other
key coordination decisions. By restricting the optimization to only role allocation decisions
and fixing the policy at all other points, we are able to come up with a restricted policy
space. We then use RMTDPs to effectively search this restricted space in order to find the
optimal role allocation.

While the restricted policy search is one key positive interaction in our hybrid approach,
the second interaction consists of a more efficient policy representation used for converting
a BDI team plan and interpreter into a corresponding policy (see Figure 1) and a new
algorithm for policy evaluation. In general, each agent’s policy in a distributed POMDP
is indexed by its observation history (Bernstein et al., 2000; Pynadath & Tambe, 2002).

369

Nair & Tambe

However, in a BDI system, each agent performs its action selection based on its set of
privately held beliefs which is obtained from the agent’s observations after applying a belief
revision function. In order to evaluate the team’s performance, it is sufficient in RMTDP to
index the agents’ policies by their belief state (represented here by their privately held beliefs)
instead of their observation histories. This shift in representation results in considerable
savings in the amount of time needed to evaluate a policy and in the space required to
represent a policy.

The third key interaction in our hybrid approach further exploits BDI team plan struc-
ture for increasing the efficiency of our RMTDP-based analysis. Even though RMTDP
policy space is restricted to filling in gaps in incomplete policies, many policies may result
given the large number of possible role allocations. Thus enumerating and evaluating each
possible policy for a given domain is difficult. Instead, we provide a branch-and-bound al-
gorithm that exploits task decomposition among sub-teams of a team to significantly prune
the search space and provide a correctness proof and worst-case analysis of this algorithm.

In order to empirically validate our approach, we have applied RMTDP for allocation
in BDI teams in two concrete domains: mission rehearsal simulations (Tambe et al., 2000)
and RoboCupRescue (Kitano et al., 1999). We first present the (significant) speed-up
gained by our three interactions mentioned above. Next, in both domains, we compared
the role allocations found by our approach with state-of-the-art techniques that allocate
roles without uncertainty reasoning. This comparison shows the importance of reasoning
about uncertainty when determining the role allocation for complex multiagent domains. In
the RoboCupRescue domain, we also compared the allocations found with allocations chosen
by humans in the actual RoboCupRescue simulation environment. The results showed that
the role allocation technique presented in this article is capable of performing at human
expert levels in the RoboCupRescue domain.

The article is organized as follows: Section 2 presents background and motivation. In
Section 3, we introduce the RMTDP model and present key complexity results. Section
4 explains how a BDI team plan can be evaluated using RMTDP. Section 5 describes the
analysis methodology for finding the optimal role allocation, while Section 6 presents an
empirical evaluation of this methodology. In Section 7, we present related work and in
Section 8, we list our conclusions.

2. Background

This section first describes the two domains that we consider in this article: an abstract
mission rehearsal domain (Tambe et al., 2000) and the RoboCupRescue domain (Kitano
et al., 1999). Each domain requires us to allocate roles to agents in a team. Next, team-
oriented programming (TOP), a framework for describing team plans is described in the
context of these two domains. While we focus on TOP, as discussed further in Section 7.1,
our techniques would be applicable in other frameworks for tasking teams (Stone & Veloso,
1999; Decker & Lesser, 1993).

2.1 Domains

The first domain that we consider is based on mission rehearsal simulations (Tambe et al.,
2000). For expository purposes, this has been intentionally simplified. The scenario is as

370

Hybrid BDI-POMDP Framework for Multiagent Teaming

follows: A helicopter team is executing a mission of transporting valuable cargo from point
X to point Y through enemy terrain (see Figure 2). There are three paths from X to Y of
different lengths and different risk due to enemy fire. One or more scouting sub-teams must
be sent out (one for each path from X to Y), and the larger the size of a scouting sub-team
the safer it is. When scouts clear up any one path from X to Y, the transports can then
move more safely along that path. However, the scouts may fail along a path, and may
need to be replaced by a transport at the cost of not transporting cargo. Owing to partial
observability, the transports may not receive an observation that a scout has failed or that
a route has been cleared. We wish to transport the most amount of cargo in the quickest
possible manner within the mission deadline.

The key role allocation decision here is given a fixed number of helicopters, how should
they be allocated to scouting and transport roles? Allocating more scouts means that the
scouting task is more likely to succeed, but there will be fewer helicopters left that can
be used to transport the cargo and consequently less reward. However, allocating too few
scouts could result in the mission failing altogether. Also, in allocating the scouts, which
routes should the scouts be sent on? The shortest route would be preferable but it is more
risky. Sending all the scouts on the same route decreases the likelihood of failure of an
individual scout; however, it might be more beneficial to send them on different routes, e.g.
some scouts on a risky but short route and others on a safe but longer route.

Thus there are many role allocations to consider. Evaluating each is difficult because
role allocation must look-ahead to consider future implications of uncertainty, e.g. scout
helicopters can fail during scouting and may need to be replaced by a transport. Further-
more, failure or success of a scout may not be visible to the transport helicopters and hence
a transport may not replace a scout or transports may never fly to the destination.

route 3

X Yroute 2

route 1

scout

transports

enemy gun

Figure 2: Mission rehearsal domain.

The second example scenario (see Figure 3), set up in the RoboCupRescue disaster
simulation environment (Kitano et al., 1999), consists of five fire engines at three different
fire stations (two each at stations 1 & 3 and the last at station 2) and five ambulances
stationed at the ambulance center. Two fires (in top left and bottom right corners of the
map) start that need to be extinguished by the fire engines. After a fire is extinguished,
ambulance agents need to save the surviving civilians. The number of civilians at each

371

Nair & Tambe

location is not known ahead of time, although the total number of civilians in known. As
time passes, there is a high likelihood that the health of civilians will deteriorate and fires
will increase in intensity. Yet the agents need to rescue as many civilians as possible with
minimal damage to the buildings. The first part of the goal in this scenario is therefore to
first determine which fire engines to assign to each fire. Once the fire engines have gathered
information about the number of civilians at each fire, this is transmitted to the ambulances.
The next part of the goal is then to allocate the ambulances to a particular fire to rescue
the civilians trapped there. However, ambulances cannot rescue civilians until fires are fully
extinguished. Here, partial observability (each agent can only view objects within its visual
range), and uncertainty related to fire intensity, as well as location of civilians and their
health add significantly to the difficulty.

C1

F1

F2

F3

A

C2

Figure 3: RoboCupRescue Scenario: C1 and C2 denote the two fire locations, F1, F2 and
F3 denote fire stations 1, 2 and 3 respectively and A denotes the ambulance
center.

2.2 Team-Oriented Programming

The aim of the team-oriented programming (TOP) (Pynadath & Tambe, 2003; Tambe et al.,
2000; Tidhar, 1993b) framework is to provide human developers (or automated symbolic
planners) with a useful abstraction for tasking teams. For domains such as those described
in Section 2.1, it consists of three key aspects of a team: (i) a team organization hierarchy
consisting of roles; (ii) a team (reactive) plan hierarchy; and (iii) an assignment of roles
to sub-plans in the plan hierarchy. The developer need not specify low-level coordination
details. Instead, the TOP interpreter (the underlying coordination infrastructure) automat-
ically enables agents to decide when and with whom to communicate and how to reallocate

372

Hybrid BDI-POMDP Framework for Multiagent Teaming

roles upon failure. The TOP abstraction enables humans to rapidly provide team plans for
large-scale teams, but unfortunately, only a qualitative assessment of team performance is
feasible. Thus, a key TOP weakness is the inability to quantitatively evaluate and optimize
team performance, e.g., in allocating roles to agents only a qualitative matching of capa-
bilities may be feasible. As discussed later, our hybrid BDI-POMDP model addresses this
weakness by providing techniques for quantitative evaluation.

As a concrete example, consider the TOP for the mission rehearsal domain. We first
specify the team organization hierarchy (see Figure 4(a)). Task Force is the highest level
team in this organization and consists of two roles Scouting and Transport, where the
Scouting sub-team has roles for each of the three scouting sub-sub-teams. Next we specify
a hierarchy of reactive team plans (Figure 4(b)). Reactive team plans explicitly express
joint activities of the relevant team and consist of: (i) pre-conditions under which the plan
is to be proposed; (ii) termination conditions under which the plan is to be ended; and (iii)
team-level actions to be executed as part of the plan (an example plan will be discussed
shortly). In Figure 4(b), the highest level plan Execute Mission has three sub-plans:
DoScouting to make one path from X to Y safe for the transports, DoTransport to
move the transports along a scouted path, and RemainingScouts for the scouts which
have not reached the destination yet to get there.

Task Force

Scouting Team Transport Team

SctTeamA SctTeamB SctTeamC

(a)

Execute Mission [Task Force]

DoScouting
[Task Force]

DoTransport
[Transport Team]

ScoutRoute1
[SctTeamA]

ScoutRoute2
[SctTeamB]

ScoutRoute3
[SctTeamC]

RemainingScouts
[Scouting Team]

WaitAtBase
[Transport Team]

ScoutRoutes
[Scouting Team]

(b)

Figure 4: TOP for mission rehearsal domain a: Organization hierarchy; b: Plan hierarchy.

Figure 4(b) also shows coordination relationships: An AND relationship is indicated
with a solid arc, while an OR relationship is indicated with a dashed arc. Thus, Wai-

tAtBase and ScoutRoutes must both be done while at least one of ScoutRoute1,
ScoutRoute2 or ScoutRoute3 need be performed. There is also a temporal depen-
dence relationship among the sub-plans, which implies that sub-teams assigned to perform
DoTransport or RemainingScouts cannot do so until the DoScouting plan has com-
pleted. However, DoTransport and RemainingScouts execute in parallel. Finally, we
assign roles to plans – Figure 4(b) shows the assignment in brackets adjacent to the plans.
For instance, Task Force team is assigned to jointly perform Execute Mission while Sct-
TeamA is assigned to ScoutRoute1.

The team plan corresponding to Execute Mission is shown in Figure 5. As can be
seen, each team plan consists of a context, pre-conditions, post-conditions, body and con-
straints. The context describes the conditions that must be fulfilled in the parent plan while
the pre-conditions are the particular conditions that will cause this sub-plan to begin exe-

373

Nair & Tambe

cution. Thus, for Execute Mission, the pre-condition is that the team mutually believes
(MB)1 that they are the “start” location. The post-conditions are divided into Achieved,
Unachievable and Irrelevant conditions under which this sub-plan will be terminated. The
body consists of sub-plans that exist within this team plan. Lastly, constraints describe any
temporal constraints that exist between sub-plans in the body. The description of all the
plans in the plan hierarchy of Figure 4(b) is given in Appendix A.

ExecuteMission:

Context:∅

Pre-conditions: (MB <TaskForce> location(TaskForce) = START)

Achieved: (MB <TaskForce> (Achieved(DoScouting) ∧ Achieved(DoTransport))) ∧ (time

> T ∨ (MB <TaskForce>

Achieved(RemainingScouts) ∨ (∄ helo ∈ ScoutingTeam, alive(helo) ∧

location(helo) 6= END)))

Unachievable: (MB <TaskForce> Unachievable(DoScouting)) ∨ (MB <TaskForce>

Unachievable(DoTransport) ∧

(Achieved(RemainingScouts) ∨(∄ helo ∈ ScoutingTeam, alive(helo) ∧

location(helo) 6= END)))

Irrelevant: ∅

Body:

DoScouting

DoTransport

RemainingScouts

Constraints: DoScouting → DoTransport, DoScouting → RemainingScouts

Figure 5: Example team plan. MB refers to mutual belief.

Just as in HTN (Dix, Muoz-Avila, Nau, & Zhang, 2003; Erol, Hendler, & Nau, 1994), the
plan hierarchy of a TOP gives a decomposition of the task into smaller tasks. However, the
language of TOPs is richer than the language of early HTN planning (Erol et al., 1994) which
contained just simple ordering constraints. As seen in the above example, the plan hierarchy
in TOPs can also contain relationships like AND and OR. In addition, just like more recent
work in HTN planning (Dix et al., 2003), sub-plans in TOPs can contain pre-conditions and
post-conditions, thus allowing for conditional plan execution. The main differences between
TOPs and HTN planning are: (i) TOPs contain an organization hierarchy in addition to a
plan hierarchy, (ii) the TOP interpreter ensures that the team executes its plans coherently.
As seen later, TOPs will be analyzed with all of this expressiveness including conditional
execution; however, since our analysis will focus on a fixed time horizon, any loops in the
task description will be unrolled up to the time horizon.

1. Mutual Belief (Wooldridge, 2002), shown as (MB 〈team〉 x) in Figure 5, refers to a private belief held
by each agent in the team that they each believe that a fact x is true, and that each of the other agents
in the team believe that x is true, and that every agent believes that every other agent believes that x
is true and so on. Such infinite levels of nesting are difficult to realize in practice. Thus, as in practical
BDI implementations, for the purposes of this article, a mutual belief is approximated to be a private
belief held by an agent that all the agents in the team believe that x is true.

374

Hybrid BDI-POMDP Framework for Multiagent Teaming

Belief Update
function

Private beliefs of
agent i

new observation for
agent i

Figure 6: Mapping of observations to beliefs.

During execution, each agent has a copy of the TOP. The agent also maintains a set
of private beliefs, which are a set of propositions that the agent believes to be true (see
Figure 6). When an agent receives new beliefs, i.e. observations (including communication),
the belief update function is used to update its set of privately held beliefs. For instance,
upon seeing the last scout crashed, a transport may update its privately held beliefs to
include the belief “CriticalFailure(DoScouting)”. In practical BDI systems, such belief
update computation is of low complexity (e.g. constant or linear time). Once beliefs
are updated, an agent selects which plan to execute by matching its beliefs with the pre-
conditions in the plans. The basic execution cycle is similar to standard reactive planning
systems such as PRS (Georgeff & Lansky, 1986).

During team plan execution, observations in the form of communications often arise
because of the coordination actions executed by the TOP interpreter. For instance, TOP
interpreters have exploited BDI theories of teamwork, such as Levesque et al.’s theory
of joint intentions (Levesque, Cohen, & Nunes, 1990) which require that when an agent
comes to privately believe a fact that terminates the current team plan (i.e. matches the
achievement or unachievability conditions of a team plan), then it communicates this fact
to the rest of the team. By performing such coordination actions automatically, the TOP
interpreter enables coherence at the initiation and termination of team plans within a TOP.
Some further details and examples of TOPs can be seen in the work of Pynadath and
Tambe (2003), Tambe et al. (2000) and Tidhar (1993b).

We can now more concretely illustrate the key challenges in role allocation mentioned
earlier. First, a human developer must allocate available agents to the organization hierar-
chy (Figure 4(a)), to find the best role allocation. However, there are combinatorially many
allocations to choose from (Hunsberger & Grosz, 2000; Tambe et al., 2000). For instance,
starting with just 6 homogeneous helicopters results in 84 different ways of deciding how
many agents to assign to each scouting and transport sub-team. This problem is exacer-
bated by the fact that the best allocation varies significantly based on domain variations.
For example, Figure 7 shows three different assignments of agents to the team organiza-
tion hierarchy, each found in our analysis to be the best for a given setting of failure and
observation probabilities (details in Section 6). For example, increasing the probability of
failures on all routes resulted in the number of transports in the best allocation changing
from four (see Figure 7(b)) to three (see Figure 7(a)), where an additional scout was added
to SctTeamB. If failures were not possible at all, the number of transports increased to
five (see Figure 7(c)). Our analysis takes a step towards selecting the best among such
allocations.

375

Nair & Tambe

Task Force

Scouting Team Transport Team=3

SctTeamA=2 SctTeamB=1 SctTeamC=0

(a) Medium probability

Task Force

Scouting Team Transport Team=4

SctTeamA=2 SctTeamB=0 SctTeamC=0

(b) Low probability

Task Force

Scouting Team Transport Team=5

SctTeamA=0 SctTeamB=0 SctTeamC=1

(c) Zero probability

Figure 7: Best role allocations for different probabilities of scout failure.

Figure 8 shows the TOP for the RoboCupRescue scenario. As can be seen, the plan hi-
erarchy for this scenario consists of a pair of ExtinguishFire and RescueCivilians plans
done in parallel, each of which further decompose into individual plans. (These individ-
ual plans get the fire engines and ambulances to move through the streets using specific
search algorithms, however, these individual plans are not relevant for our discussions in
this article; interested readers should refer to the description of our RoboCupRescue team
entered into the RoboCup competitions of 2001 (Nair, Ito, Tambe, & Marsella, 2002).) The
organizational hierarchy consists of Task Force comprising of two Engine sub-teams, one
for each fire and an Ambulance Team, where the engine teams are assigned to extinguishing
the fires while the ambulance team is assigned to rescuing civilians. In this particular TOP,
the assignment of ambulances to AmbulanceTeamA and AmbulanceTeamB is conditioned
on the communication “c”, indicated by “AmbulanceTeamA|c” and “AmbulanceTeamB|c”.
“c” is not described in detail in this figure, but it refers to the communication that is re-
ceived from the fire engines that describes the number of civilians present at each fire. The
problem is which engines to assign to each Engine Team and for each possible value of “c”,
which ambulances to assign to each Ambulance Team. Note that engines have differing
capabilities owing to differing distances from fires while all the ambulances have identical
capabilities.

Task Force

EngineTeamA AmbulanceTeam

AmbulanceTeamA |c AmbulanceTeamB |c

EngineTeamB

(a)

ExecuteMission
[Task Force]

ExtinguishFire1
[EngineTeamA]

RescueCivilians1
[AmbulanceTeamA]

ExtinguishFire2
[EngineTeamB]

RescueCivilians2
[AmbulanceTeamB]

(b)

Figure 8: TOP for RoboCupRescue scenario a: Organization hierarchy; b: Plan hierarchy.

376

Hybrid BDI-POMDP Framework for Multiagent Teaming

3. Role-based Multiagent Team Decision Problem

Multiagent Team Decision Problem (MTDP) (Pynadath & Tambe, 2002) is inspired by
the economic theory of teams (Marschak & Radner, 1972; Ho, 1980; Yoshikawa, 1978).
In order to do quantitative analysis of key coordination decisions in multiagent teams, we
extend MTDP for the analysis of the coordination actions of interest. For example, the
COM-MTDP (Pynadath & Tambe, 2002) is an extension of MTDP for the analysis of com-
munication. In this article, we illustrate a general methodology for analysis of other aspects
of coordination and present the RMTDP model for quantitative analysis of role allocation
and reallocation as a concrete example. In contrast to BDI systems introduced in the previ-
ous section, RMTDP enables explicit quantitative optimization of team performance. Note
that, while we use MTDP, other possible distributed POMDP models could potentially also
serve as a basis (Bernstein et al., 2000; Xuan et al., 2001).

3.1 Multiagent Team Decision Problem

Given a team of n agents, an MTDP (Pynadath & Tambe, 2002) is defined as a tuple:
〈S,A, P,Ω, O,R〉. It consists of a finite set of states S = Ξ1 × · · · × Ξm where each Ξj,
1 ≤ j ≤ m, is a feature of the world state. Each agent i can perform an action from its
set of actions Ai, where ×1≤i≤nAi = A. P (s,< a1, . . . , an >, s′) gives the probability of
transitioning from state s to state s′ given that the agents perform the actions < a1, . . . , an >

jointly. Each agent i receives an observation ωi ∈ Ωi (×1≤i≤nΩi = Ω) based on the function
O(s,< a1, . . . , an >,ω1, . . . , ωn), which gives the probability that the agents receive the
observations, ω1, . . . , ωn given that the world state is s and they perform < a1, . . . , an >

jointly. The agents receive a single joint reward R(s,< a1, . . . , an >) based on the state s
and their joint action < a1, . . . , an >. This joint reward is shared equally by all members
and there is no other private reward that individual agents receive for their actions. Thus,
the agents are motivated to behave as a team, taking the actions that jointly yield the
maximum expected reward.

Each agent i in an MTDP chooses its actions based on its local policy, πi, which is a
mapping of its observation history to actions. Thus, at time t, agent i will perform action
πi(ω

0
i , . . . , ω

t
i). This contrasts with a single-agent POMDP, where we can index an agent’s

policy by its belief state – a probability distribution over the world state (Kaelbling, Littman,
& Cassandra, 1998), which is shown to be a sufficient statistic in order to compute the
optimal policy (Sondik, 1971). Unfortunately, we cannot directly use single-agent POMDP
techniques (Kaelbling et al., 1998) for maintaining or updating belief states (Kaelbling et al.,
1998) in a MTDP – unlike in a single agent POMDP, in MTDP, an agent’s observation
depends not only on its own actions, but also on unknown actions of other agents. Thus,
as with other distributed POMDP models (Bernstein et al., 2000; Xuan et al., 2001), in
MTDP, local policies πi are indexed by observation histories. π =< π1, . . . , πn > refers to
the joint policy of the team of agents.

3.2 Extension for Explicit Coordination

Beginning with MTDP, the next step in our methodology is to make an explicit separation
between domain-level actions and the coordination actions of interest. Earlier work intro-

377

Nair & Tambe

duced the COM-MTDP model (Pynadath & Tambe, 2002), where the coordination action
was fixed to be the communication action, and got separated out. However, other coordina-
tion actions could also be separated from domain-level actions in order to investigate their
impact. Thus, to investigate role allocation and reallocations, actions for allocating agents
to roles and to reallocate such roles are separated out. To that end, we define RMTDP
(Role-based Multiagent Team Decision Problem) as a tuple 〈S,A, P,Ω, O,R,RL〉 with a
new component, RL. In particular, RL = {r1, . . . , rs} is a set of all roles that the agents
can undertake. Each instance of role rj may be assigned some agent i to fulfill it. The
actions of each agent are now distinguishable into two types:

Role-Taking actions: Υi = {υirj
} contains the role-taking actions for agent i. υirj

∈ Υi

means that agent i takes on the role rj ∈ RL.

Role-Execution Actions: Φi =
⋃

rj∈RL Φirj
contains the execution actions for agent i

where Φirj
is the set of agent i’s actions for executing role rj ∈ RL

In addition we define the set of states as S = Ξ1 × · · · × Ξm × Ξroles, where the fea-
ture Ξroles (a vector) gives the current role that each agent has taken on. The reason for
introducing this new feature is to assist us in the mapping from a BDI team plan to an
RMTDP. Thus each time an agent performs a new role-taking action successfully, the value
of the feature Ξroles will be updated to reflect this change. The key here is that we not only
model an agent’s initial role-taking action but also subsequent role reallocation. Modeling
both allocation and reallocation is important for an accurate analysis of BDI teams. Note
that an agent can observe the part of this feature pertaining to its own current role but it
may not observe the parts pertaining to other agents’ roles.

The introduction of roles allows us to represent the specialized behaviors associated
with each role, e.g. a transport vs. a scout role. While filling a particular role, rj , agent
i can perform only role-execution actions, φ ∈ Φirj

, which may be different from the role-
execution actions Φirl

for role rl. Thus, the feature Ξroles is used to filter actions such that
only those role-execution actions that correspond to the agent’s current role are permitted.
In the worst case, this filtering does not affect the computational complexity (see Theorem 1
below) but in practice, it can significantly improve performance when trying to find the
optimal policy for the team, since the number of domain actions that each agent can choose
from is restricted by the role that the agent has taken on. Also, these different roles can
produce varied effects on the world state (modeled via transition probabilities, P) and the
team’s reward. Thus, the policies must ensure that agents for each role have the capabilities
that benefit the team the most.

Just as in MTDP, each agent chooses which action to perform by indexing its local policy
πi by its observation history. In the same epoch some agents could be doing role-taking
actions while others are doing role-execution actions. Thus, each agent’s local policy πi can
be divided into local role-taking and role-execution policies such that for all observation
histories, ω0

i , . . . , ω
t
i , either πiΥ(ω0

i , . . . , ω
t
i) = null or πiΦ(ω0

i , . . . , ω
t
i) = null. πΥ =<

π1Υ, . . . , πnΥ > refers to the joint role-taking policy of the team of agents while πΦ =<
π1Φ, . . . , πnΦ > refers to the joint role-execution policy.

378

Hybrid BDI-POMDP Framework for Multiagent Teaming

In this article we do not explicitly model communicative actions as a special action.
Thus communication is treated like any other role-execution action and the communication
received from other agents are treated as observations.2

3.3 Complexity Results with RMTDP

While Section 2.2 qualitatively emphasized the difficulty of role allocation, RMTDP helps
us in understanding the complexity more precisely. The goal in RMTDP is to come up with
joint policies πΥ and πΦ that will maximize the total expected reward over a finite horizon
T . Note that agents can change their roles according to their local role-taking policies. The
agent’s role-execution policy subsequent to this change would contain actions pertaining to
this new role. The following theorem illustrates the complexity of finding such optimal joint
policies.

Theorem 1 The decision problem of determining if there exist policies, πΥ and πΦ, for an
RMTDP, that yield an expected reward of at least K over some finite horizon T is NEXP-
complete.

Proof sketch: Proof follows from the reduction of MTDP (Pynadath & Tambe, 2002)
to/from RMTDP. To reduce MTDP to RMTDP, we set RMTDP’s role taking actions, Υ′,
to null and set the RMTDP’s role-execution actions, Φ′, to the MTDP’s set of actions, A.
To reduce RMTDP to MTDP, we generate a new MTDP such that its set of actions, A′

is equal to Υ
⋃

Φ. Finding the required policy in MTDP is NEXP-complete (Pynadath &
Tambe, 2002).�

As this theorem shows us, solving the RMTDP for the optimal joint role-taking and role-
execution policies over even a finite horizon is highly intractable. Hence, we focus on the
complexity of just determining the optimal role-taking policy, given a fixed role-execution
policy. By fixed role-execution policy, we mean that the action selection of an agent is
predetermined by the role it is executing.

Theorem 2 The decision problem of determining if there exists a role-taking policy, πΥ, for
an RMTDP, that yields an expected reward of at least K together with a fixed role-execution
policy πΦ, over some finite horizon T is NEXP-complete.

Proof sketch: We reduce an MTDP to an RMTDP with a different role-taking and a
role-execution action corresponding to each action in the MTDP. Hence, in the RMTDP we
have a role-taking action υirj

for agent i to take on role rj created for each action aj ∈ Ai in
the MTDP and each such role rj contains a single role-execution action, i.e. |Φirj

| = 1. For
the RMTDP, construct the transition function to be such that a role-taking action always
succeeds and the only affected state feature is Ξroles. For the role-execution action φ ∈ Φirj

,
the transition probability is the same as that of the MTDP action, aj ∈ Ai corresponding
to the last role-taking action υirj

. The fixed role-execution policy is to simply perform
the action, φ ∈ Φirj

, corresponding to the last successful role-taking action, υirj
. Thus,

the decision problem for an RMTDP with a fixed role-execution policy is at least as hard

2. For a more explicit analysis of communication please refer to work done by Pynadath and Tambe (2002)
and Goldman et al. (2003).

379

Nair & Tambe

as the decision problem for an MTDP. Furthermore, given Theorem 1, we can conclude
NEXP-Completeness.�

This result suggests that even by fixing the role-execution policy, solving the RMTDP for
the optimal role-taking policy is still intractable. Note that Theorem 2 refers to a completely
general globally optimal role-taking policy, where any number of agents can change roles at
any point in time. Given the above result, in general the globally optimal role-taking policy
will likely be of doubly exponential complexity, and so we may be left no choice but to run
a brute-force policy search, i.e. to enumerate all the role-taking policies and then evaluate
them, which together determine the run-time of finding the globally optimal policy. The

number of policies is

(

|Υ|
|Ω|T −1

|Ω|−1

)n

, i.e. doubly exponential in the number of observation

histories and the number of agents. Thus, while RMTDP enables quantitative evaluation of
team’s policies, computing optimal policies is intractable; furthermore, given its low level of
abstraction, in contrast to TOP, it is difficult for a human to understand the optimal policy.
This contrast between RMTDP and TOP is at the root of our hybrid model described in
the following section.

4. Hybrid BDI-POMDP Approach

Having explained TOP and RMTDP, we can now present a more detailed view of our
hybrid methodology to quantitatively evaluate a TOP. We first provide a more detailed
interpretation of Figure 1. BDI team plans are essentially TOP plans, while the BDI
interpreter is the TOP coordination layer. As shown in Figure 1, an RMTDP model is
constructed corresponding to the domain and the TOP and its interpreter are converted
into a corresponding (incomplete) RMTDP policy. We can then analyze the TOP using
analysis techniques that rely on evaluating the RMTDP policy using the RMTDP model
of the domain.

Thus, our hybrid approach combines the strengths of the TOPs (enabling humans to
specify TOPs to coordinate large-scale teams) with the strengths of RMTDP (enabling
quantitative evaluation of different role allocations). On the one hand, this synergistic
interaction enables RMTDPs to improve the performance of TOP-based BDI teams. On
the other hand, we have identified at least six specific ways in which TOPs make it easier
to build RMTDPs and to efficiently search RMTDP policies: two of which are discussed in
this section, and four in the next section. In particular, the six ways are:

1. TOPs are exploited in constructing RMTDP models of the domain (Section 4.1);

2. TOPs are exploited to present incomplete policies to RMTDPs, restricting the RMTDP
policy search (Section 5.1);

3. TOP belief representation is exploited in enabling faster RMTDP policy evaluation
(Section 4.2);

4. TOP organization hierarchy is exploited in hierarchically grouping RMTDP policies
(Section 5.1);

5. TOP plan hierarchy is exploited in decomposing RMTDPs (Section 5.3);

380

Hybrid BDI-POMDP Framework for Multiagent Teaming

6. TOP plan hierarchies are also exploited in cutting down the observation or belief
histories in RMTDPs (Section 5.3).

The end result of this efficient policy search is a completed RMTDP policy that improves
TOP performance. While we exploit the TOP framework, other frameworks for tasking
teams, e.g. Decker and Lesser (1993) and Stone and Veloso (1999) could benefit from a
similar synergistic interaction.

4.1 Guidelines for Constructing an RMTDP

As shown in Figure 1, our analysis approach uses as input an RMTDP model of the domain,
as well as an incomplete RMTDP policy. Fortunately, not only does the TOP serve as a
direct mapping to the RMTDP policy, but it can also be utilized in actually constructing
the RMTDP model of the domain. In particular, the TOP can be used to determine which
domain features are important to model. In addition, the structure in the TOP can be
exploited in decomposing the construction of the RMTDP.

The elements of the RMTDP tuple, 〈S,A, P,Ω, O,R,RL〉, can be defined using a pro-
cedure that relies on both the TOP as well as the underlying domain. While this procedure
is not automated, our key contribution is recognizing the exploitation of TOP structures
in constructing the RMTDP model. First, in order to determine the set of states, S, it
is critical to model the variables tested in the pre-conditions, termination conditions and
context of all the components (i.e. sub-plans) in the TOP. Note that a state only needs
to model the features tested in the TOP; if a TOP pre-condition expresses a complex test
on the feature, that test is not modeled in the state, but instead gets used in defining the
incomplete policy input to RMTDP. Next we define the set of roles, RL, as the leaf-level
roles in the organization hierarchy of the TOP. Furthermore, as specified in Section 3.2, we
define a state feature Ξroles as a vector containing the current role for each agent. Having
defined RL and Ξroles, we now define the actions, A as follows. For each role rj ∈ RL, we
define a corresponding role-taking action, υirj

which will succeed or fail depending on the
agent i that performs the action and the state s that the action was performed in. The
role-execution actions, Φirj

for agent i in role rj , are those allowed for that role according
to the TOP.

Thus, we have defined S, A andRL based on the TOP. To illustrate these steps, consider
the plans in Figure 4(b). The pre-conditions of the leaf-level plan ScoutRoute1 (See
Appendix A), for instance, tests start location of the helicopters to be at start location X,
while the termination conditions test that scouts are at end location Y. Thus, the locations
of the helicopters are modeled as features in the set of states in the RMTDP. Using the
organization hierarchy, we define the set of roles RL with a role corresponding to each of the
four different kinds of leaf-level roles, i.e. RL = {memberSctTeamA,memberSctTeamB,
memberSctTeamC,memberTransportTeam}. The role-taking and role-execution actions
can be defined as follows:

• A role-taking action is defined corresponding to each of the four roles in RL, i.e.
becoming a member of one of the three scouting teams or of the transport team. The
domain specifies that only a transport can change to a scout and thus the role-taking
action, jointTransportTeam, will fail for agent i, if the current role of agent i is a scout.

381

Nair & Tambe

• Role-execution actions are obtained from the TOP plans corresponding to the agent’s
role. In the mission rehearsal scenario, an agent, fulfilling a scout role (members
of SctTeamA, SctTeamB or SctTeamC), always goes forward, making the current
position safe, until it reaches the destination and so the only execution action we will
consider is “move-making-safe”. An agent in a transport role (members of Transport
Team) waits at X until it obtains observation of a signal that one scouting sub-team
has reached Y and hence the role-execution actions are “wait” and “move-forward”.

We must now define Ω, P,O,R. We obtain the set of observations Ωi for each agent i
directly from the domain. For instance, the transport helos may observe the status of scout
helos (normal or destroyed), as well as a signal that a path is safe. Finally, determining
the functions, P,O,R requires some combination of human domain expertise and empirical
data on the domain behavior. However, as shown later in Section 6, even an approximate
model of transitional and observational uncertainty is sufficient to deliver significant ben-
efits. Defining the reward and transition function may sometimes require additional state
variables to be modeled, if they were only implicitly modeled in the TOP. In the mission
rehearsal domain, the time at which the scouting and transport mission were completed
determined the amount of reward. Thus, time was only implicitly modeled in the TOP and
needed to be explicitly modeled in the RMTDP.

Since we are interested in analyzing a particular TOP with respect to uncertainty, the
procedure for constructing an RMTDP model can be simplified by exploiting the hierar-
chical decomposition of the TOP in order to decompose the construction of the RMTDP
model. The high-level components of a TOP often represent plans executed by different
sub-teams, which may only loosely interact with each other. Within a component, the
sub-team members may exhibit a tight interaction, but our focus is on the “loose coupling”
across components, where only the end results of one component feed into another, or the
components independently contribute to the team goal. Thus, our procedure for construct-
ing an RMTDP exploits this loose coupling between components of the plan hierarchy in
order to build an RMTDP model represented as a combination of smaller RMTDPs (fac-
tors). Note that if such decomposition is infeasible, our approach still applies except that
the benefits of the hierarchical decomposition will be unavailable.

We classify sibling components as being either parallel or sequentially executed (con-
tains a temporal constraint). Components executed in parallel could be either independent
or dependent. For independent components, we can define RMTDPs for each of these
components such that the sub-team executing one component cannot affect the transi-
tions, observations and reward obtained by the sub-teams executing the other compo-
nents. The procedure for determining the elements of the RMTDP tuple for component k,
〈Sk, Ak, Pk,Ωk, Ok, Rk,RLk〉, is identical to the procedure described earlier for constructing
the overall RMTDP. However, each such component has a smaller set of relevant variables
and roles and hence specifying the elements of its corresponding RMTDP is easier.

We can now combine the RMTDPs of the independent components to obtain the
RMTDP corresponding to the higher-level component. For a higher level component l,
whose child components are independent, the set of states, Sl = ×∀Ξx∈FSl

Ξx such that
FSl

=
⋃

∀k s.t. Child(k,l)=true
FSk

where FSl
and FSk

are the sets of features for the set
of states Sl and set of states Sk. A state sl ∈ Sl is said to correspond to the state
sk ∈ Sk if ∀Ξx ∈ FSk

, sl[Ξx] = sk[Ξx], i.e. the state sl has the same value as state sk

382

Hybrid BDI-POMDP Framework for Multiagent Teaming

for all features of state sk. The transition function is defined as follows, Pl(s
′
l, al, sl) =

∏

∀k s.t. Child(k,l)=true
Pk(s

′
k, ak, sk), where sl and s′l of component l corresponds to states

sk and s′k of component k and ak is the joint action performed by the sub-team as-
signed to component k corresponding to the joint action al performed by the sub-team
assigned to component l. The observation function is defined similarly as Ol(sl, al, ωl) =
∏

∀k s.t. Child(k,l)=true
Ok(sk, ak, ωk). The reward function for component l is defined as

Rl(sl, al) =
∑

∀k s.t. Child(k,l)=true
Rk(sk, ak).

In the case of sequentially executed components (those connected by a temporal con-
straint), the components are loosely coupled since the end states of the preceding component
specify the start states of the succeeding component. Thus, since only one component is
active at a time, the transition function is defined as follows, Pl(s

′
l, al, sl) = Pk(s

′
k, ak, sk),

where component k is the only active child component, sk and s′k represent the states of
component k corresponding to states sl and s′l of component l and ak is the joint action
performed by the sub-team assigned to component k corresponding to the joint action
al performed by the sub-team corresponding to component l. Similarly, we can define
Ol(sl, al, ωl) = Ok(sk, ak, ωk) and Rl(sl, al) = Rk(sk, ak), where k is the only active child
component.

Consider the following example from the mission rehearsal domain where components
exhibit both sequential dependence and parallel independence. Concretely, the component
DoScouting is executed first followed by DoTransport and RemainingScouts, which
are parallel and independent and hence, either DoScouting is active or DoTransport and
RemainingScouts are active at any point in the execution. Hence, the transition, observa-
tion and reward functions of their parent Execute Mission is given by the corresponding
functions of either DoScouting or by the combination of the corresponding functions of
DoTransport and RemainingScouts.

We use a top-down approach in order to determine how to construct a factored RMTDP
from the plan hierarchy. As shown in Algorithm 1, we replace a particular sub-plan by its
constituent sub-plans if they are either independent or sequentially executed. If not, then
the RMTDP is defined using that particular sub-plan. This process is applied recursively
starting at the root component of the plan hierarchy. As a concrete example, consider
again our mission rehearsal simulation domain and the hierarchy illustrated in Figure 4(b).
Given the temporal constraints between DoScouting and DoTransport, and DoScout-

ing and RemainingScouts, we exploited sequential decomposition, while DoTransport

and RemainingScouts were parallel and independent components. Hence, we can replace
ExecuteMission by DoScouting, DoTransport and RemainingScouts. We then ap-
ply the same process to DoScouting. The constituent components of DoScouting are
neither independent nor sequentially executed and thus DoScouting cannot be replaced by
its constituent components. Thus, RMTDP for the mission rehearsal domain is comprised
of smaller RMTDPs for DoScouting, DoTransport and RemainingScouts.

Thus, using the TOP to identify relevant variables and building a factored RMTDP
utilizing the structure of TOP to decompose the construction procedure, reduce the load
on the domain expert for model construction. Furthermore, as shown in Section 5.3, this
factored model greatly improves the performance of the search for the best role allocation.

383

Nair & Tambe

Algorithm 1 Build-RMTDP(TOP top, Sub-plan subplan)

1: children ← subplan→children() {subplan→children() returns the sub-plans within sub-
plan}

2: if children = null or children are not (loosely coupled or independent) then

3: rmtdp ← Define-RMTDP(subplan) {not automated}
4: return rmtdp
5: else

6: for all child in children do

7: factors[child] ← Build-RMTDP(top,child)
8: rmtdp ← ConstructFromFactors(factors)
9: return rmtdp

4.2 Exploiting TOP Beliefs in Evaluation of RMTDP Policies

We now present a technique for exploiting TOPs in speeding up evaluation of RMTDP
policies. Before we explain our improvement, we first describe the original algorithm for
determining the expected reward of a joint policy, where the local policies of each agent
are indexed by its entire observation histories (Pynadath & Tambe, 2002; Nair, Pynadath,
Yokoo, Tambe, & Marsella, 2003a). Here, we obtain an RMTDP policy from a TOP as
follows. We obtain πi(~ω

t
i), i.e. the action performed by agent i for each observation history

~ωt
i , as the action a performed by the agent i following the TOP when it has a set of privately

held beliefs corresponding to the observation history, ~ωt
i . We compute the expected reward

for the RMTDP policy by projecting the team’s execution over all possible branches on
different world states and different observations. At each time step, we can compute the
expected value of a joint policy, π =< π1, . . . , πn >, for a team starting in a given state, st,
with a given set of past observations, ~ωt

1, . . . , ~ω
t
n, as follows:

V t
π(st,

〈

~ωt
1, . . . , ~ω

t
n

〉

) = R(st,
〈

π1(~ω
t
1), . . . , πn(~ωt

n)
〉

) +
∑

st+1∈S

P
(

st,
〈

π1

(

~ωt
1

)

, . . . , πn

(

~ωt
n

)〉

, st+1
)

·
∑

ωt+1∈Ω

O
(

st+1,
〈

π1

(

~ωt
1

)

, . . . , πn

(

~ωt
n

)〉

,
〈

ωt+1
1 , . . . , ωt+1

n

〉)

· V t+1
π

(

st+1,
〈

~ωt+1
1 , . . . , ~ωt+1

n

〉)

(1)

The expected reward of a joint policy π is given by V 0
π (s0, < null, . . . ,null >) where s0

is the start state. At each time step t, the computation of V t
π performs a summation over all

possible world states and agent observations and so has a time complexity of O (|S| · |Ω|).
This computation is repeated for all states and all observation histories of length t, i.e.
O

(

|S| · |Ω|t
)

times. Therefore, given a time horizon T , the overall complexity of this algo-
rithm is O

(

|S|2 · |Ω|T+1
)

.

As discussed in Section 2.2, in a team-oriented program, each agent’s action selection
is based on just its currently held private beliefs (note that mutual beliefs are modeled
as privately held beliefs about all agents as per footnote 2). A similar technique can be
exploited when mapping TOP to an RMTDP policy. Indeed, the evaluation of a RMTDP
policy that corresponds to a TOP can be speeded up if each agent’s local policy is indexed
by its private beliefs, ψ t

i . We refer to ψ t
i , as the TOP-congruent belief state of agent i

384

Hybrid BDI-POMDP Framework for Multiagent Teaming

in the RMTDP. Note that this belief state is not a probability distribution over the world
states as in a single agent POMDP, but rather the privately held beliefs (from the BDI
program) of agent i at time t. This is similar to the idea of representing a policy by a
finite-state controller (Hansen & Zhou, 2003; Poupart & Boutilier, 2003). In this case, the
private beliefs would map to the states of the finite-state controller.

Belief-based RMTDP policy evaluation leads to speedup because multiple observation
histories map to the same belief state, ψ t

i . This speedup is a key illustration of exploitation
of synergistic interactions of TOP and RMTDP. In this instance, belief representation tech-
niques used in TOP are reflected in RMTDP, and the resulting faster policy evaluation can
help us optimize TOP performance. A detailed example of belief state is presented later
after a brief explanation of how such belief-based RMTDP policies can be evaluated.

Just as with evaluation using observation histories, we compute the expected reward
of a belief-based policy by projecting the team’s execution over all possible branches on
different world states and different observations. At each time step, we can compute the
expected value of a joint policy, π =< π1, . . . , πn >, for a team starting in a given state, st,
with a given team belief state, < ψ t

1 , . . . , ψ
t

n > as follows:

V t
π(st,

〈

ψ t
1 . . . ψ

t
n

〉

) = R(st,
〈

π1(ψ
t

1), . . . , πn(ψ t
n)

〉

) +
∑

st+1∈S

P
(

st,
〈

π1

(

ψ t
1

)

, . . . , πn

(

ψ t
n

)〉

, st+1
)

·
∑

ωt+1∈Ω

O
(

st+1,
〈

π1

(

ψ t
1

)

, . . . , πn

(

ψ t
n

)〉

,
〈

ωt+1
1 , . . . , ωt+1

n

〉)

· V t+1
π

(

st+1,
〈

ψ t+1
1 , . . . , ψ t+1

n

〉)

(2)

where ψ t+1
i = BeliefUpdateFunction

(

ψ t
i , ω

t+1
i

)

The complexity of computing this function (expression 2) is O (|S| · |Ω|) ·BF , where BF
represents the complexity of the belief update function, BeliefUpdateFunction. At each
time step the computation of the value function is done for every state and for all possible
reachable belief states. Let |Ψi| = max1≤t≤T (|ψt

i |) represent the maximum number of
possible belief states that agent i can be in at any point in time, where |ψt

i | is the number
of belief states that agent i can be in at t. Therefore the complexity of this algorithm is
given by O(|S|2 · |Ω| · (|Ψ1| · . . . · |Ψn|) · T) · BF . Note that, in this algorithm T is not in
the exponent unlike in the algorithm in expression 1. Thus, this evaluation method will
give large time savings if: (i) the quantity (|Ψ1| · . . . · |Ψn|) · T is much less than |Ω|T and
(ii) the belief update cost is low. In practical BDI systems, multiple observation histories
map often onto the same belief state, and thus usually, (|Ψ1| · . . . · |Ψn|) · T is much less
than |Ω|T . Furthermore, since the belief update function mirrors practical BDI systems,
its complexity is also a low polynomial or a constant. Indeed, our experimental results
show that significant speedups result from switching to our TOP-congruent belief states
ψ t

i . However, in the absolute worst case, the belief update function may simply append
the new observation to the history of past observations (i.e., TOP-congruent beliefs will
be equivalent to keeping entire observation histories) and thus belief-based evaluation will
have the same complexity as the observation history-based evaluation.

We now turn to an example of belief-based policy evaluation from the mission rehearsal
domain. At each time step, the transport helicopters may receive an observation about

385

Nair & Tambe

whether a scout has failed based on some observation function. If we use the observation-
history representation of the policy, then each transport agent would maintain a complete
history of the observations that it could receive at each time step. For example, in a setting
with two scout helicopters, one on route 1 and the other on route 2, a particular transport
helicopter may have several different observation histories of length two. At every time step,
the transports may receive an observation about each scout being alive or having failed.
Thus, at time t = 2, a transport helicopter might have one of the following observation his-
tories of length two, < {sct1OnRoute1Alive, sct2OnRoute2Alive}1 , {sct1OnRoute1Failed,
sct2OnRoute2Failed}2 >, < {sct1OnRoute1Alive, sct2OnRoute2Failed}1 , {sct1OnRoute1
Failed}2 >, < {sct1OnRoute1Failed, sct2OnRoute2Alive}1 , {sct2OnRoute2Failed}2 >,
etc. However, the action selection of the transport helicopters depends on only whether
a critical failure (i.e. the last remaining scout has crashed) has taken place to change its
role. Whether a failure is critical can be determined by passing each observation through
a belief-update function. The exact order in which the observations are received or the
precise times at which the failure or non-failure observations are received are not relevant
to determining if a critical failure has taken place and consequently whether a transport
should change its role to a scout. Thus, many observation histories map onto the same
belief states. For example, the above three observation histories all map to the same belief
CriticalFailure(DoScouting) i.e. a critical failure has taken place. This results in signif-
icant speedups using belief-based evaluation, as Equation 2 needs to be executed over a
smaller number of belief states, linear in T in our domains, as opposed to the observation
history-based evaluation, where Equation 1 is executed over an exponential number of ob-
servation histories (|Ω|T). The actual speedup obtained in the mission rehearsal domain is
demonstrated empirically in Section 6.

5. Optimizing Role Allocation

While Section 4 focused on mapping a domain of interest onto RMTDP and algorithms for
policy evaluation, this section focuses on efficient techniques for RMTDP policy search, in
service of improving BDI/TOP team plans. The TOP in essence provides an incomplete,
fixed policy, and the policy search optimizes decisions left open in the incomplete policy; the
policy thus completed optimizes the original TOP (see Figure 1). By enabling the RMTDP
to focus its search on incomplete policies, and by providing ready-made decompositions,
TOPs assist RMTDPs in quickly searching through the policy space, as illustrated in this
section. We focus, in particular, on the problem of role allocation (Hunsberger & Grosz,
2000; Modi, Shen, Tambe, & Yokoo, 2003; Tidhar et al., 1996; Fatima & Wooldridge, 2001),
a critical problem in teams. While the TOP provides an incomplete policy, keeping open
the role allocation decision for each agent, the RMTDP policy search provides the optimal
role-taking action at each of the role allocation decision points. In contrast to previous
role allocation approaches, our approach determines the best role allocation, taking into
consideration the uncertainty in the domain and future costs. Although demonstrated for
solving the role allocation problem, the methodology is general enough to apply to other
coordination decisions.

386

Hybrid BDI-POMDP Framework for Multiagent Teaming

5.1 Hierarchical Grouping of RMTDP Policies

As mentioned earlier, to address role allocation, the TOP provides a policy that is complete,
except for the role allocation decisions. RMTDP policy search then optimally fills in the
role allocation decisions. To understand the RMTDP policy search, it is useful to gain an
understanding of the role allocation search space. First, note that role allocation focuses on
deciding how many and what types of agents to allocate to different roles in the organization
hierarchy. This role allocation decision may be made at time t = 0 or it may be made at a
later time conditioned on available observations. Figure 9 shows a partially expanded role
allocation space defined by the TOP organization hierarchy in Figure 4(a) for six helicopters.
Each node of the role allocation space completely specifies the allocation of agents to roles
at the corresponding level of the organization hierarchy (ignore for now, the number to the
right of each node). For instance, the root node of the role allocation space specifies that
six helicopters are assigned to the Task Force (level one) of the organization hierarchy while
the leftmost leaf node (at level three) in Figure 9 specifies that one helicopter is assigned
to SctTeamA, zero to SctTeamB, zero to SctTeamC and five helicopters to Transport Team.
Thus, as we can see, each leaf node in the role allocation space is a complete, valid role
allocation of agents to roles in the organization hierarchy.

In order to determine if one leaf node (role allocation) is superior to another we evaluate
each using the RMTDP by constructing an RMTDP policy for each. In this particular
example, the role allocation specified by the leaf node corresponds to the role-taking actions
that each agent will execute at time t = 0. For example, in the case of the leftmost leaf in
Figure 9, at time t = 0, one agent (recall from Section 2.2 that this is a homogeneous team
and hence which specific agent does not matter) will become a member of SctTeamA while
all other agents will become members of Transport Team. Thus, for one agent i, the role-
taking policy will include πiΥ(null) = joinSctTeamA and for all other agents, j, j 6= i, it
will include πjΥ(null) = joinTransportTeam. In this case, we assume that the rest of the
role-taking policy, i.e. how roles will be reallocated if a scout fails, is obtained from the role
reallocation algorithm in the BDI/TOP interpreter, such as the STEAM algorithm (Tambe
et al., 2000). Thus for example, if the role reallocation is indeed performed by the STEAM
algorithm, then STEAM’s reallocation policy is included into the incomplete policy that
the RMTDP is initially provided. Thus, the best role allocation is computed keeping in
mind STEAM’s reallocation policy. In STEAM, given a failure of an agent playing RoleF ,
an agent playing RoleR will replace it if:

Criticality (RoleF)− Criticality (RoleR) > 0

Criticality (x) = 1 if x is critical; = 0 otherwise

Thus, if based on the agents’ observations, a critical failure has taken place, then the
replacing agent’s decision to replace or not will be computed using the above expression
and then included in the incomplete policy input to the RMTDP. Since such an incomplete
policy is completed by the role allocation at each leaf node using the technique above, we
have been able to construct a policy for the RMTDP that corresponds to the role allocation.

In some domains like RoboCupRescue, not all allocation decisions are made at time
t = 0. In such domains, it is possible for the role allocation to be conditioned on observations
(or communication) that are obtained during the course of the execution. For instance, as
shown in Figure 8(a), in the RoboCupRescue scenario, the ambulances are allocated to the
sub-team AmbulanceTeamA or AmbulanceTeamB only after information about the location

387

Nair & Tambe

6

6
24

[1926]
6

51

[4167][0]
6

60

6

011
42

1359.576

001
51

613.81 1500.126

100
51

6

200
42

2926.08

6
33

[2773]
6

42

[3420]
6

15

[1179]
6

06

[432]

Figure 9: Partially expanded role allocation space for mission rehearsal domain(six helos).

of civilians is conveyed to them by the fire engines. The allocation of the ambulances is
then conditioned on this communication, i.e. on the number of civilians at each location.
Figure 10 shows the partially expanded role allocation for a scaled-down rescue scenario
with three civilians, two ambulances and two fire engines (one at station 1 and the other at
station 2). In the Figure, 1;1;2 depicts the fact that there are two ambulances, while there
is one fire engine at each station. As shown, there is a level for the allocation of fire engines
to EngineTeamA and EngineTeamB which gives the number of engines assigned to each
EngineTeam from each station. The next level (leaf level) has different leaf nodes for each
possible assignment of ambulances to AmbulanceTeamA and AmbulanceTeamB depending
upon the value of communication “c”. Since there are three civilians and we exclude the
case where no civilians are present at a particular fire, there are two possible messages i.e.
one civilian at fire 1 or two civilians at fire 1 (c = 1 or 2).

TaskForce=1;1;2

1;1;2

EngineTeamA=0;1 EngineTeamB=1;0 AmbTeam=2

1;1;2

EngineTeamA=1;0 EngineTeamB=0;1 AmbTeam=2

1;1;2

0;1 1;0 2

AmbTeamA=2 AmbTeamB=0

c=1

AmbTeamA=1 AmbTeamB=1

c=2

1;1;2

0;1 1;0 2

AmbTeamA=1 AmbTeamB=1

c=1

AmbTeamA=1 AmbTeamB=1

c=2

Figure 10: Partially expanded role allocation space for Rescue domain (one fire engine at
station 1, one fire engine at station 2, two ambulances, three civilians).

We are thus able to exploit the TOP organization hierarchy to create a hierarchical
grouping of RMTDP policies. In particular, while the leaf node represents a complete
RMTDP policy (with the role allocation as specified by the leaf node), a parent node
represents a group of policies. Evaluating a policy specified by a leaf node is equivalent to
evaluating a specific role allocation while taking future uncertainties into account. We could

388

Hybrid BDI-POMDP Framework for Multiagent Teaming

do a brute force search through all role allocations, evaluating each in order to determine
the best role allocation. However, the number of possible role allocations is exponential in
the leaf roles in the organization hierarchy. Thus, we must prune the search space.

5.2 Pruning the Role Allocation Space

We prune the space of valid role allocations using upper bounds (MaxEstimates) for the
parents of the leaves of the role allocation space as admissible heuristics (Section 5.3). Each
leaf in the role allocation space represents a completely specified policy and the MaxEsti-
mate is an upper bound of maximum value of all the policies under the same parent node
evaluated using the RMTDP. Once we obtain MaxEstimates for all the parent nodes (shown
in brackets to the right of each parent node in Figure 9), we use branch-and-bound style
pruning (see Algorithm 2). While we discuss Algorithm 2 below, we note that in essence
it performs branch-and-bound style pruning; the key novelty is step 2 which we discuss in
Section 5.3.

The branch-and-bound algorithm works as follows: First, we sort the parent nodes by
their estimates and then start evaluating children of the parent with the highest MaxEsti-
mate (Algorithm 2: steps 3-13). Evaluate(RMTDP, child) refers to the evaluation of the
leaf-level policy, child, using the RMTDP model. This evaluation of leaf-level policies (step
13) can be done using either of the methods described in Section 4. In the case of the
role allocation space in Figure 9, we would start with evaluating the leaves of the parent
node that has one helicopter in Scouting Team and five in Transport Team. The value of
evaluating each leaf node is shown to the right of the leaf node. Once we have obtained
the value of the best leaf node (Algorithm 2: steps 14,15), in this case 1500.12, we compare
this with the MaxEstimates of the other parents of the role allocation space (Algorithm 2:
steps 16-18). As we can see from Figure 9 this would result in pruning of three parent nodes
(leftmost parent and right two parents) and avoid the evaluation of 65 of the 84 leaf-level
policies. Next, we would then proceed to evaluate all the leaf nodes under the parent with
two helos in Scouting Team and four in Transport Team. This would result in pruning of all
the remaining unexpanded parent nodes and we will return the leaf with the highest value,
which in this case is the node corresponding to two helos allocated to SctTeamA and four
to Transport Team. Although demonstrated for a 3-level hierarchy, the methodology for
applying to deeper hierarchies is straightforward.

5.3 Exploiting TOP to Calculate Upper Bounds for Parents

We will now discuss how the upper bounds of parents, called MaxEstimates, can be calcu-
lated for each parent. The MaxEstimate of a parent is defined as a strict upper bound of
the maximum of the expected reward of all the leaf nodes under it. It is necessary that the
MaxEstimate be an upper bound or else we might end up pruning potentially useful role
allocations. In order to calculate the MaxEstimate of each parent we could evaluate each of
the leaf nodes below it using the RMTDP, but this would nullify the benefit of any subse-
quent pruning. We, therefore, turn to the TOP plan hierarchy (see Figure 4(b)) to break up
this evaluation of the parent node into components, which can be evaluated separately thus
decomposing the problem. In other words, our approach exploits the structure of the BDI
program to construct small-scale RMTDPs unlike other decomposition techniques which

389

Nair & Tambe

Algorithm 2 Branch-and-bound algorithm for policy search.

1: Parents ← list of parent nodes
2: Compute MAXEXP(Parents) {Algorithm 3}
3: Sort Parents in decreasing order of MAXEXP
4: bestVal ← −∞
5: for all parent ∈ Parents do

6: done[parent] ← false; pruned[parent] ← false
7: for all parent ∈ Parents do

8: if done[parent] = false and pruned[parent] = false then

9: child ← parent→nextChild() {child is a leaf-level policy under parent}
10: if child = null then

11: done[parent] ← true
12: else

13: childVal ← Evaluate(RMTDP,child)
14: if childVal > bestVal then

15: bestVal ← childVal;best ← child
16: for all parent1 in Parents do

17: if MAXEXP[parent1] < bestVal then

18: pruned[parent1] ← true
19: return best

just assume decomposition or ultimately rely on domain experts to identify interactions in
the agents’ reward and transition functions (Dean & Lin, 1995; Guestrin, Venkataraman,
& Koller, 2002).

For each parent in the role allocation space, we use these small-scale RMTDPs to eval-
uate the values for each TOP component. Fortunately, as discussed in Section 4.1, we
exploited small-scale RMTDPs corresponding to TOP components in constructing larger
scale RMTDPs. We put these small-scale RMTDPs to use again, evaluating policies within
each component to obtain upper bounds. Note that just like in evaluation of leaf-level
policies, the evaluation of components for the parent node can be done using either the
observation histories (see Equation 1) or belief states (see Equation 2). We will describe
this section using the observation history-based evaluation method for computing the values
of the components of each parent, which can be summed up to obtain its MaxEstimate (an
upper bound on its children’s values). Thus, whereas a parent in the role allocation space
represents a group of policies, the TOP components (sub-plans) allow a component-wise
evaluation of such a group to obtain an upper bound on the expected reward of any policy
within this group.

Algorithm 3 exploits the smaller-scale RMTDP components, discussed in Section 4.1,
to obtain upper bounds of parents. First, in order to evaluate the MaxEstimate for each
parent node in the role allocation space, we identify the start states for each component from
which to evaluate the RMTDPs. We explain this step using a parent node from Figure 9 –
Scouting Team = two helos, Transport Team = four helos (see Figure 11). For the very first
component which does not have any preceding components, the start states corresponds
to the start states of the policy that the TOP was mapped onto. For each of the next

390

Hybrid BDI-POMDP Framework for Multiagent Teaming

components – where the next component is one linked by a sequential dependence – the
start states are the end states of the preceding component. However, as explained later in
this section, we can significantly reduce this list of start states from which each component
can be evaluated.

Algorithm 3 MAXEXP method for calculating upper bounds for parents in the role allo-
cation space.

1: for all parent in search space do

2: MAXEXP[parent] ← 0
3: for all component i corresponding to factors in the RMTDP from Section 4.1 do

4: if component i has a preceding component j then

5: Obtain start states, states[i]← endStates[j]
6: states[i]← removeIrrelevantFeatures(states[i]) {discard features not present

in Si}
7: Obtain corresponding observation histories at start OHistories[i] ←

endOHistories[j]
8: OHistories[i]← removeIrrelevantObservations(OHistories[i])
9: else

10: Obtain start states, states[i]
11: Observation histories at start OHistories[i]← null

12: maxEval[i]← 0
13: for all leaf-level policies π under parent do

14: maxEval[i]←max(maxEval[i],maxsi∈states[i],ohi∈OHistories[i](Evaluate(RMTDPi,

si, ohi, π)))

15: MAXEXP[parent]
+
← maxEval[i]

Similarly, the starting observation histories for a component are the observation his-
tories on completing the preceding component (no observation history for the very first
component). BDI plans do not normally refer to entire observation histories but rely only
on key beliefs which are typically referred to in the pre-conditions of the component. Each
starting observation history can be shortened to include only these relevant observations,
thus obtaining a reduced list of starting observation sequences. Divergence of private ob-
servations is not problematic, e.g. will not cause agents to trigger different team plans.
This is because as indicated earlier in Section 2.2, TOP interpreters guarantee coherence
in key aspects of observation histories. For instance, as discussed earlier, TOP interpreter
ensures coherence in key beliefs when initiating and terminating team plans in a TOP; thus
avoiding such divergence of observation histories.

In order to compute the maximum value for a particular component, we evaluate all
possible leaf-level policies within that component over all possible start states and observa-
tion histories and obtain the maximum (Algorithm 3:steps 13-14). During this evaluation,
we store all the end states and ending observation histories so that they can be used in
the evaluation of subsequent components. As shown in Figure 11, for the evaluation of
DoScouting component for the parent node where there are two helicopters assigned to
Scouting Team and four helos to Transport Team, the leaf-level policies correspond to all
possible ways these helicopters could be assigned to the teams SctTeamA, SctTeamB, Sct-

391

Nair & Tambe

TeamC and Transport Team, e.g. one helo to SctTeamB, one helo to SctTeamC and four
helos to Transport Team, or two helos to SctTeamA and four helos to Transport Team, etc.
The role allocation tells the agents what role to take in the first step. The remainder of the
role-taking policy is specified by the role replacement policy in the TOP infrastructure and
role-execution policy is specified by the DoScouting component of the TOP.

To obtain the MaxEstimate for a parent node of the role allocation space, we simply
sum up the maximum values obtained for each component (Algorithm 3:steps 15), e.g.
the maximum values of each component (see right of each component in Figure 11) were
summed to obtain the MaxEstimate (84 + 3330 + 36 = 3420). As seen in Figure 9, third
node from the left indeed has an upper bound of 3420.

The calculation of the MaxEstimate for a parent nodes should be much faster than
evaluating the leaf nodes below it in most cases for two reasons. Firstly, parent nodes are
evaluated component-wise. Thus, if multiple leaf-level policies within one component result
in the same end state, we can remove duplicates to get the start states of the next compo-
nent. Since each component only contains the state features relevant to it, the number of
duplicates is greatly increased. Such duplication of the evaluation effort cannot be avoided
for leaf nodes, where each policy is evaluated independently from start to finish. For in-
stance, in the DoScouting component, the role allocations, SctTeamA=1, SctTeamB=1,
SctTeamC=0, TransportTeam=4 and SctTeamA=1, SctTeamB=0, SctTeamC=1, Trans-
portTeam=4, will have end states in common after eliminating irrelevant features when the
scout in SctTeamB for the former allocation and the scout in SctTeamC for the latter al-
location fail. This is because through feature elimination (Algorithm 3:steps 6), the only
state features retained for DoTransport are the scouted route and number of transports
(some transports may have replaced failed scouts) as shown in Figure 11.

The second reason computation of MaxEstimates for parents is much faster is that the
number of starting observation sequences will be much less than the number of ending ob-
servation histories of the preceding components. This is because not all the observations in
the observation histories of a component are relevant to its succeeding components (Algo-
rithm 3:steps 8). Thus, the function removeIrrelevantObservations reduces the number
of starting observation histories from the observation histories of the preceding component.

We refer to this methodology of obtaining the MaxEstimates of each parent as MAX-
EXP. A variation of this, the maximum expected reward with no failures (NOFAIL), is
obtained in a similar fashion except that we assume that the probability of any agent fail-
ing is 0. We are able to make such an assumption in evaluating the parent node, since we
focus on obtaining upper bounds of parents, and not on obtaining their exact value. This
will result in less branching and hence evaluation of each component will proceed much
quicker. The NOFAIL heuristic only works if the evaluation of any policy without failures
occurring is higher than the evaluation of the same policy with failures possible. This should
normally be the case in most domains. The evaluation of the NOFAIL heuristics for the
role allocation space for six helicopters is shown in square brackets in Figure 9.

The following theorem shows that the MAXEXP method for finding the upper bounds
indeed finds an upper bound and thus yields an admissible search heuristic for the branch-
and-bound search of the role allocation space.

Theorem 3 The MAXEXP method will always yield an upper bound.

392

Hybrid BDI-POMDP Framework for Multiagent Teaming

DoScouting
[ScoutingTeam=2,TransportTeam=4]

DoTransport
[TransportTeam=4]

RemainingScouts
[ScoutTeam=2]

Alloc:
SctTeamA=2
SctTeamB=0
SctTeamC=0

TransportTeam=4

Alloc:
SctTeamA=0
SctTeamB=1
SctTeamC=1

TransportTeam=4

StartState:
RouteScouted=1

Transports=4

StartState:
RouteScouted=1

Transports=3

StartState:
RouteScouted=1

Transports=0

[84] [3300] [36]

Figure 11: Component-wise decomposition of a parent by exploiting TOP.

Proof: See Appendix C.
From Theorem 3, we can conclude that our branch-and-bound policy search algorithm

will always find the best role allocation, since the MaxEstimates of the parents are true
upper bounds. Also, with the help of Theorem 4, we show that in the worst case, our
branch-and-bound policy search has the same complexity as doing a brute force search.

Theorem 4 Worst-case complexity for evaluating a single parent node using MAXEXP is
the same as that of evaluating every leaf node below it within a constant factor.

Proof sketch:

• The worst case complexity for MAXEXP arises when:

1. Let ESjπ be the end states of component j executing policy π after removing
features that are irrelevant to the succeeding component k. Similarly, let ESjπ′

be the end states of component j executing policy π′ after removing features that
are irrelevant to the succeeding component k. If ESjπ

⋂

ESjπ′ = null then no
duplication in the end states will occur.

2. Let OHjπ be the ending observation histories of component j executing policy
π after removing observations that are irrelevant to the succeeding component
k. Similarly, let OHjπ′ be the ending observation histories of component j ex-
ecuting policy π′ after removing observation histories that are irrelevant to the
succeeding component k. If OHjπ

⋂

OHjπ′ = null then no duplication in the
observation histories will occur. Note that if the belief-based evaluation was used
then we would replace observation histories by the TOP congruent belief states
(see Sect 4).

• In such a case, there is no computational advantage to evaluating each component’s
MaxEstimate separately. Thus, it is equivalent to evaluating each child node of the
parent. Thus, in the worst case, MAXEXP computation for the parent is the same as
the evaluating all its children within a constant factor. �

In addition, in the worst case, no pruning will result using MAXEXP and each and every
leaf node will need to be evaluated. This is equivalent to evaluating each leaf node twice.

393

Nair & Tambe

Thus, the worst case complexity of doing the branch-and-bound search using MAXEXP is
the same as that of finding the best role allocation by evaluating every leaf node. We refer
to this brute-force approach as NOPRUNE. Thus, the worst case complexity of MAXEXP
is the same as NOPRUNE. However, owing to pruning and the savings through decom-
position in the computation of MaxEstimates, significant savings are likely in the average
case. Section 6 highlights these savings for the mission rehearsal and the RoboCupRescue
domains.

6. Experimental Results

This section presents four sets of results in the context of the two domains introduced
in Section 2.1, viz. mission rehearsal and RoboCupRescue (Kitano et al., 1999). First,
we investigated empirically the speedups that result from using the TOP-congruent belief
states ψi (belief-based evaluation) over observation history-based evaluation and from using
the algorithm from Section 5 over a brute-force search. Here we focus on determining
the best assignment of agents to roles; but assume a fixed TOP and TOP infrastructure.
Second, we conducted experiments to investigate the benefits of considering uncertainty in
determining role allocations. For this, we compared the allocations found by the RMTDP
role allocation algorithm with (i) allocations which do not consider any kind of uncertainty,
and (ii) allocations which do not consider observational uncertainty but consider action
uncertainty. Third, we conducted experiments in both domains to determine the sensitivity
of the results to changes in the model. Fourth, we compare the performance of allocations
found by the RMTDP role allocation algorithm with allocations of human subjects in the
more complex of our domains – RoboCupRescue simulations.

6.1 Results in Mission Rehearsal Domain

For the mission rehearsal domain, the TOP is the one discussed in Section 2.2. As can be
seen in Figure 4(a), the organization hierarchy requires determining the number of agents
to be allocated to the three scouting sub-teams and the remaining helos must be allocated
to the transport sub-team. Different numbers of initial helicopters were attempted, varying
from three to ten. The details on how the RMTDP is constructed for this domain are given
Appendix B. The probability of failure of a scout at each time step on routes 1, 2 and 3
are 0.1, 0.15 and 0.2, respectively. The probability of a transport observing an alive scout
on routes 1, 2 and 3 are 0.95, 0.94 and 0.93, respectively. False positives are not possible,
i.e. a transport will not observe a scout as being alive if it has failed. The probability of a
transport observing a scout failure on routes 1, 2 and 3 are 0.98, 0.97 and 0.96, respectively.
Here too, false positives are not possible and hence a transport will not observe a failure
unless it has actually taken place.

Figure 12 shows the results of comparing the different methods for searching the role
allocation space. We show four methods. Each method adds new speedup techniques to
the previous:

1. NOPRUNE-OBS: A brute force evaluation of every role allocation to determine the
best. Here, each agent maintains its complete observation history and the evaluation
algorithm in Equation 1 is used. For ten agents, the RMTDP is projected to have in

394

Hybrid BDI-POMDP Framework for Multiagent Teaming

the order of 10,000 reachable states and in the order of 100,000 observation histories
per role allocation evaluated (thus the largest experiment in this category was limited
to seven agents).

2. NOPRUNE-BEL: A brute force evaluation of every role allocation. The only difference
between this method and NOPRUNE-OBS is the use of the belief-based evaluation
algorithm (see Equation 2).

3. MAXEXP: The branch-and-bound search algorithm described in Section 5.2 that
uses upper bounds of the evaluation of the parent nodes to find the best allocation.
Evaluation of the parent and leaf nodes uses the belief-based evaluation.

4. NOFAIL: The modification to branch-and-bound heuristic mentioned in Section 5.3.
In essence it is same as MAXEXP, except that the upper bounds are computed making
the assumption that agents do not fail. This heuristic is correct in those domains where
the total expected reward with failures is always less than if no failures were present
and will give significant speedups if agent failures is one of the primary sources of
stochasticity. In this method, too, the evaluation of the parent and leaf nodes uses
the belief-based evaluation. (Note that only upper bounds are computed using the
no-failure assumption – no changes are assumed in the actual domains.)

In Figure 12(a), the Y-axis is the number of nodes in the role allocation space evaluated
(includes leaf nodes as well as parent nodes), while in Figure 12(b) the Y-axis represents
the runtime in seconds on a logarithmic scale. In both figures, we vary the number of agents
on the X-axis. Experimental results in previous work using distributed POMDPs are often
restricted to just two agents; by exploiting hybrid models, we are able to vary the number of
agents from three to ten as shown in Figure 12(a). As clearly seen in Figure 12(a), because
of pruning, significant reductions are obtained by MAXEXP and NOFAIL over NOPRUNE-
BEL in terms of the numbers of nodes evaluated. This reduction grows quadratically to
about 10-fold at ten agents.3 NOPRUNE-OBS is identical to NOPRUNE-BEL in terms of
number of nodes evaluated, since in both methods all the leaf-level policies are evaluated,
only the method of evaluation differs. It is important to note that although NOFAIL and
MAXEXP result in the same number of nodes being evaluated for this domains, this is
not necessarily true always. In general, NOFAIL will evaluate at least as many nodes as
MAXEXP since its estimate is at least as high as the MAXEXP estimate. However, the
upper bounds are computed quicker for NOFAIL.

Figure 12(b) shows that the NOPRUNE-BEL method provides a significant speedup
over NOPRUNE-OBS in actual run-time. For instance, there was a 12-fold speedup using
NOPRUNE-BEL instead of NOPRUNE-OBS for the seven agent case (NOPRUNE-OBS
could not be executed within a day for problem settings with greater than seven agents).
This empirically demonstrates the computational savings possible using belief-based eval-
uation instead of observation history-based evaluation (see Section 4). For this reason, we
use only belief-based evaluation for the MAXEXP and NOFAIL approaches and also for all

3. The number of nodes for NOPRUNE up to eight agents were obtained from experiments, the rest can
be calculated using the formula [m]n/n! = (m + n − 1) · . . . · m/n!, where m represents the number of
heterogeneous role types and n is the number of homogeneous agents. [m]n = (m + n − 1) · . . . · m is
referred to as a rising factorial.

395

Nair & Tambe

the remaining experiments in this paper. MAXEXP heuristic results in a 16-fold speedup
over NOPRUNE-BEL in the eight agent case.

The NOFAIL heuristic which is very quick to compute the upper bounds far outperforms
the MAXEXP heuristic (47-fold speedup over MAXEXP for ten agents). Speedups of
MAXEXP and NOFAIL continually increase with increasing number of agents. The speedup
of the NOFAIL method over MAXEXP is so marked because, in this domain, ignoring
failures results in much less branching.

0

50

100

150

200

250

300

350

3 4 5 6 7 8 9 10

Number of agents

N
u

m
b

e
r

o
f

n
o

d
e

s

NOFAIL, MAXEXP

NOPRUNE-OBS,
NOPRUNE-BEL

0.01

0.1

1

10

100

1000

10000

100000

3 4 5 6 7 8 9 10

Number of agents

T
im

e
 i

n
 s

e
c

s
 (

lo
g

 s
c

a
le

)

MAXEXP

NOFAIL

NOPRUNE-BEL

NOPRUNE-OBS

Figure 12: Performance of role allocation space search in mission rehearsal domain, a) (left)
Number of nodes evaluated, b) (right)Run-time in seconds on a log scale.

Next, we conducted experiments illustrating the importance of RMTDP’s reasoning
about action and observation uncertainties on role allocations. For this, we compared the
allocations found by the RMTDP role allocation algorithm with allocations found using two
different methods (see Figure 13):

1. Role allocation via constraint optimization (COP) (Modi et al., 2003; Mailler & Lesser,
2004) allocation approach: In the COP approach4, leaf-level sub-teams from the or-

4. Modi et al.’s work (2003) focused on decentralized COP, but in this investigation our emphasis is on the
resulting role allocation generated by the COP, and not on the decentralization per se.

396

Hybrid BDI-POMDP Framework for Multiagent Teaming

ganization hierarchy are treated as variables and the number of helicopters as the
domain of each such variable (thus, the domain may be 1, 2, 3,..helicopters). The
reward for allocating agents to sub-teams is expressed in terms of constraints:

• Allocating a helicopter to scout a route was assigned a reward corresponding to
the route’s distance but ignoring the possibility of failure (i.e. ignoring transition
probability). Allocating more helicopters to this subteam obtained proportion-
ally higher reward.

• Allocating a helicopter a transport role was assigned a large reward for trans-
porting cargo to the destination. Allocating more helicopters to this subteam
obtained proportionally higher reward.

• Not allocating at least one scout role was assigned a reward of negative infinity

• Exceeding the total number of agents was assigned a reward of negative infinity

2. RMTDP with complete observability: In this approach, we consider the transition
probability, but ignore partial observability; achieved by assuming complete observ-
ability in the RMTDP. An MTDP with complete observability is equivalent to a
Markov Decision Problem (MDP) (Pynadath & Tambe, 2002) where the actions are
joint actions. We, thus, refer to this allocation method as the MDP method.

Figure 13(a) shows a comparison of the RMTDP-based allocation with the MDP allo-
cation and the COP allocation for increasing number of helicopters (X-axis). We compare
using the expected number of transports that get to the destination (Y-axis) as the metric
for comparison since this was the primary objective of this domain. As can be seen, consid-
ering both forms of uncertainty (RMTDP) performs better than just considering transition
uncertainty (MDP) which in turn performs better than not considering uncertainty (COP).
Figure 13(b) shows the actual allocations found by the three methods with four helicopters
and with six helicopters. In the case of four helicopters (first three bars), RMTDP and MDP
are identical, two helicopters scouting route 2 and two helicopters taking on transport role.
The COP allocation however consists of one scout on route 3 and three transports. This
allocation proves to be too myopic and results in fewer transports getting to the destination
safely. In the case of six helicopters, COP chooses just one scout helicopter on route 3,
the shortest route. The MDP approach results in two scouts both on route 1, which was
longest route albeit the safest. The RMTDP approach, which also considers observational
uncertainty chooses an additional scout on route 2, in order to take care of the cases where
failures of scouts go undetected by the transports.

It should be noted that the performance of the RMTDP-based allocation will depend
on the values of the elements of the RMTDP model. However, as our next experiment
revealed, getting the values exactly correct is not necessary. In order to test the sensitivity
of the performance of the allocations to the actual model values, we introduced error in the
various parameters of the model to see how the allocations found using the incorrect model
would perform in the original model (without any errors). This emulates the situation where
the model does not correctly represent the domain. Figure 14 shows the expected number
of transports that reach the destination (Y-axis) in the mission rehearsal scenario with six
helicopters as error (X-axis) is introduced to various parameters in the model. For instance,

397

Nair & Tambe

0

1

2

3

4

5

6

7

4 5 6 7 8

Number of agents

N
u

m
b

e
r

o
f

tr
a
n

s
p

o
rt

s

RMTDP

COP

MDP

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

0

1

2

3

4

5

6

7

R
M

TD
P

C
O
P

M
D
P

R
M

TD
P

C
O
P

M
D
P

N
u

m
b

e
r

o
f

h
e

lo
s

Rt3

xxxx
xxxx
xxxx
xxxx
xxxx

Rt2

xxx
xxx
xxxRt1

xxxx
xxxx
xxxx
xxxx
xxxx

Transports

4 helos 6 helos

Figure 13: a) Comparison of performance of different allocation methods, b)Allocations
found using different allocation methods.

398

Hybrid BDI-POMDP Framework for Multiagent Teaming

when the percentage error in failure rate on route 1 (route1-failure-rate) was between -15%
(i.e. erroneous failure rate is 85% of actual failure rate) and 10%, there was no difference
in the number of transports that reached their destination (3.498). However when the
percentage error was greater than 10%, the allocation found was too conservative resulting
in fewer transports getting to the destination. Similarly, when the percentage error was less
than -15%, the allocation found was too risky, with too few scouts assigned, resulting in
more failures. In general, Figure 14 shows that the model is insensitive to errors of 5 to 10%
in the model parameters for the mission rehearsal domain, but if the model parameters were
outside this range, non-optimal allocations would result. In comparing these non-optimal
allocations with COP, we find that they always perform better than COP for the range of
errors tested (+/-25%) for both failure rate as well as observability of routes. For instance,
at an error of 25% in failure rate on route 1, RMTDP managed to have 2.554 transports
safely reach the destination, and COP only managed to get 1.997 transports reach safely. In
comparing the non-optimal allocations with MDP, we also find that they performed better
than MDP within the range of +/- 25% for error in the observability of the routes. Thus,
although the allocations found using an incorrect model were non-optimal they performed
better than COP and MDP for large ranges of errors in the model. This shows that getting
the model exactly correct is not necessary to find good allocations. We are thus able to
obtain benefits from RMTDP even without insisting on an accurate model.

0

0.5

1

1.5

2

2.5

3

3.5

4

-25 -20 -15 -10 -5 0 5 10 15 20 25

Percentage error

N
u

m
b

e
r

o
f

T
ra

n
s
p

o
rt

s

route1-failure-rate

route-2-failure-rate

route3-failure-rate

route1-observability

Figure 14: Model sensitivity in mission rehearsal domain.

6.2 Results in RoboCupRescue Domain

6.2.1 Speedups in RoboCupRescue Domain

In our next set of experiments, we highlight the computational savings obtained in the
RoboCupRescue domain. The scenario for this experiment consisted of two fires at different
locations in the city. Each of these fires has a different initially unknown number of civilians
in it, however the total number of civilians and the distribution from which the locations
of the civilians is chosen is known ahead of time. For this experiment, we fix the number of
civilians at five and set the distribution used to choose the civilians’ locations to be uniform.
The number of fire engines is set at five, located in three different fire stations as described

399

Nair & Tambe

in Section 2.1 and vary the number of ambulances, all co-located at an ambulance center,
from two to seven. The reason we chose to change only the number of ambulances is because
small number of fire engines are unable to extinguish fires, changing the problem completely.
The goal is to determine which fire engines to allocate to which fire and once information
about civilians is transmitted, how many ambulances to send to each fire location.

Figure 15 highlights the savings in terms of the number of nodes evaluated and the actual
runtime as we increase the number of agents. We show results only from NOPRUNE-BEL
and MAXEXP. NOPRUNE-OBS could not be run because of slowness. Here the NOFAIL
heuristic is identical to MAXEXP since agents cannot fail in this scenario. The RMTDP
in this case had about 30,000 reachable states.

In both Figures 15(a) and 15(b), we increase the number of ambulances along the X-
axis. In Figure 15(a), we show the number of nodes evaluated (parent nodes + leaf nodes)5

on a logarithmic scale. As can be seen, the MAXEXP method results in about a 89-fold
decrease in the number of nodes evaluated when compared to NOPRUNE-BEL for seven
ambulances, and this decrease becomes more pronounced as the number of ambulances is
increased. Figure 15(b) shows the time in seconds on a logarithmic scale on the Y-axis and
compares the run-times of the MAXEXP and NOPRUNE-BEL methods for finding the best
role allocation. The NOPRUNE-BEL method could not find the best allocation within a
day when the number of ambulances was increased beyond four. For four ambulances (and
five fire engines), MAXEXP resulted in about a 29-fold speedup over NOPRUNE-BEL.

6.2.2 Allocation in RoboCupRescue

Our next set of experiments shows the practical utility of our role allocation analysis in
complex domains. We are able to show significant performance improvements in the actual
RoboCupRescue domain using the role allocations generated by our analysis. First, we
construct an RMTDP for the rescue scenario, described in Section 2.1, by taking guidance
from the TOP and the underlying domain (as described in Section 4.1). We then use
the MAXEXP heuristic to determine the best role allocation. We compared the RMTDP
allocation with the allocations chosen by human subjects. Our goal in comparing RMTDP
allocations with human subjects was mainly to show that RMTDP is capable at performing
at or near human expert levels for this domain. In addition, in order to determine that
reasoning about uncertainty actually impacts the allocations, we compared the RMTDP
allocations with allocations determined by two additional allocation methods:

1. RescueISI: Allocations used by the our RoboCupRescue agents that were entered in
the RoboCupRescue competitions of 2001(RescueISI) (Nair et al., 2002), where they
finished in third place. These agents used local reasoning for their decision making,
ignoring transitional as well and observational uncertainty.

2. RMTDP with complete observability: As discussed earlier, complete observability in
RMTDP leads to an MDP, and we refer to this method as the MDP method.

5. The number of nodes evaluated using NOPRUNE-BEL can be computed as (f1 + 1) · (f2 + 1) · (f3 + 1) ·
(a + 1)c+1, where f1, f2 and f3 are the number of fire engines are station 1, 2 and 3, respectively, a is
the number of ambulances and c is the number of civilians. Each node provides a complete conditional
role allocation, assuming different numbers of civilians at each fire station.

400

Hybrid BDI-POMDP Framework for Multiagent Teaming

1

10

100

1000

10000

100000

1000000

10000000

2 3 4 5 6 7

Number of ambulances

N
u

m
b

e
r

o
f

n
o

d
e

s
 (

lo
g

 s
c

a
le

)

MAXEXP

NOPRUNE

1

10

100

1000

10000

100000

2 3 4 5 6 7
Number of ambulances

R
u

n
 t

im
e

 i
n

 s
e

c
s

 (
lo

g
 s

c
a

le
)

MAXEXP

NOPRUNE

Figure 15: Performance of role allocation space search in RoboCupRescue, a: (left) Number
of nodes evaluated on a log scale, and b: (right) Run-time in seconds on a log
scale.

401

Nair & Tambe

Note that these comparisons were performed using the RoboCupRescue simulator with
multiple runs to deal with stochasticity6 . The scenario is as described in Section 6.2.1. We
fix the number of fire engines, ambulances and civilians at five each. For this experiment,
we consider two settings, where the location of civilians is drawn from:

• Uniform distribution – 25% of the cases have four civilians at fire 1 and one civilian
at fire 2, 25% with three civilians at fire 1 and two at fire 2, 25% with two civilians
at fire 1 and three at fire 2 and the remaining 25% with one civilian at fire 1 and
four civilians at fire 2. The speedup results of Section 6.2.1 were obtained using this
distribution.

• Skewed distribution – 80% of the cases have four civilians at fire 1 and one civilian at
fire 2 and the remaining 20% with one civilian at fire 1 and four civilians at fire 2.

Note that we do not consider the case where all civilians are located at the same fire as
the optimal ambulance allocation is simply to assign all ambulances to the fire where the
civilians are located. A skewed distribution was chosen to highlight the cases where it
becomes difficult for humans to reason about what allocation to choose.

The three human subjects used in this experiment were researchers at USC. All three
were familiar with RoboCupRescue. They were given time to study the setup and were not
given any time limit to provide their allocations. Each subject was told that the allocations
were going to be judged first on the basis of the number of civilian lives lost and next on the
damage sustained due to fire. These are exactly the criteria used in RoboCupRescue (Kitano
et al., 1999).

We then compared “RMTDP” allocation with those of the human subjects in the
RoboCupRescue simulator and with RescueISI and MDP. In Figure 16, we compared the
performance of the allocations on the basis of the number of civilians who died and the
average damage to the two buildings (lower values are better for both criteria). These two
criteria are the main two criteria used in RoboCupRescue (Kitano et al., 1999). The val-
ues shown in Figure 16 were obtained by averaging forty simulator runs for the uniform
distribution and twenty runs for the skewed distribution for each allocation. The average
values were plotted to account for the stochasticity in the domain. Error bars are provided
to show the standard error for each allocation method.

As can be seen in Figure 16(a), the RMTDP allocation did better than the other five
allocations in terms of a lower number of civilians dead (although human3 was quite close).
For example, averaging forty runs, the RMTDP allocation resulted in 1.95 civilian deaths
while human2’s allocation resulted in 2.55 civilian deaths. In terms of the average building
damage, the six allocations were almost indifferentiable, with the humans actually perform-
ing marginally better. Using the skewed distribution, the difference between the allocations
was much more perceptible (see Figure 16(b)). In particular, we notice how the RMTDP
allocation does much better than the humans in terms of the number of civilians dead. Here,
human3 did particularly badly because of a bad allocation for fire engines. This resulted in
more damage to the buildings and consequently to the number of civilians dead.

6. For the mission rehearsal domain, we could run on the actual mission rehearsal simulator since that
simulator is not public domain and no longer accessible, and hence the difference in how we tested role
allocations in the mission rehearsal and the RoboCupRescue domains.

402

Hybrid BDI-POMDP Framework for Multiagent Teaming

Comparing RMTDP with RescueISI and the MDP approach showed that reasoning
about transitional uncertainty (MDP) does better than a static reactive allocation method
(RescueISI) but not as well as reasoning about both transitional and observational uncer-
tainty. In the uniform distribution case, we found that RMTDP does better than both MDP
and RescueISI, with the MDP method performing better than RescueISI. In the skewed dis-
tribution case, the improvement in allocations using RMTDP is greater. Averaging twenty
simulation runs, RMTDP allocations resulted in 1.54 civilians deaths while MDP resulted
in 1.98 and RescueISI in 3.52. The allocation method used by RescueISI often resulted
in one of the fires being allocated too few fire engines. The allocations determined by the
MDP approach turned out to be the same as human1.

A two-tailed t-test was performed in order to test the statistical significance of the means
for the allocations in Figure 16. The means of number of civilians dead for the RMTDP
allocation and the human allocations were found to be statistically different (confidence
> 96%) for both the uniform as well as the skewed distributions. The difference in the fire
damage was not statistically significant in the uniform case, however, the difference between
the RMTDP allocation and human3 for fire damage was statistically significant (> 96%) in
the skewed case.

0

1

2

3

4

5

6

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

0

1

2

3

4

5

6

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

Figure 16: Comparison of performance in RoboCupRescue, a: (left) uniform, and b: (right)
skewed.

403

Nair & Tambe

Considering just the average performance of these different allocations does not highlight
the individual cases where marked differences were seen in the performance. In Figure 17, we
present the comparison of particular settings where the other allocation methods showed a
bigger difference from RMTDP in terms of their allocations. The standard error is shown in
error bars for each allocation. Figures 17(a) and 17(b) compare the allocations for uniform
civilian distributions in the setting where there was one civilian at fire 1 and four civilians at
fire 2 (1-4 civilian setting) and four civilians at fire 1 and one at fire 2 (4-1 civilian setting)
respectively. As can be seen in these figure, the RMTDP allocation results in fewer civilian
casualties but in slightly more damage to the buildings due to fire (difference in fire damage
was not statistically significant because the damage values were very close). Figures 17(c)
and 17(d) compare the allocations for the skewed civilian distribution. The key difference
arises for human3. As can be seen, human3 results in more damage due to fire. This is
because human3 allocated too few fire engines to one of the buildings, which in turn resulted
in that building being burnt down completely. Consequently, civilians located at this fire
location could not be rescued by the ambulances. Thus, we see specific instances where
the allocation done using the RMTDP-based allocation algorithm is superior to allocations
that a human comes up with.

0

0.5

1

1.5

2

2.5

3

3.5

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

0

0.5

1

1.5

2

2.5

3

3.5

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M
TD

P

hu
m
an

1

hu
m
an

2

hu
m
an

3

R
es

cu
eI
S
I

M
D
P

Civilians casualties

Building damage

Figure 17: Comparison of performance in RoboCupRescue for particular settings, a: (top-
left) uniform 1-4 civilian setting b:(top-right) uniform 4-1 civilian setting, c:
(bottom-left) skewed 1-4 civilian setting d:(bottom-right) skewed 4-1 civilian
setting.

404

Hybrid BDI-POMDP Framework for Multiagent Teaming

Table 1 shows the allocations to fire 1 (agents not assigned to fire 1 are allocated to fire
2) found by the RMTDP role allocation algorithm and those used by the human subjects for
the skewed 4-1 civilian setting (we consider this case since it shows the most difference). In
particular, this table highlights the differences between the various allocators for the skewed
4-1 civilian setting and helps account for the differences seen in their performance in the
actual simulator. As can be seen from Figure 17(d), the main difference in performance
was in terms of the number of civilians saved. Recall that in this scenario, there are four
civilians at fire 1, and one at fire 2. Here all the human subjects and MDP chose to
send only one ambulance to fire 2 (number of ambulances allocated to fire 2 = 5 −
number of ambulances allocated to fire 1). This lone ambulance was unable to rescue the
civilian at fire 1, resulting in the humans and MDP saving fewer civilians. RescueISI chose to
send all the ambulances to fire 2 using a greedy selection method based on proximity to the
civilians resulting in all the civilians at fire 1 dying7. In terms of the fire engine allocation,
human3 sent in four fire engines to fire 1 where more civilians were likely to be located
(number of engines allocated to fire 2 = 5 − number of engines allocated to fire 1).
Unfortunately, this backfired since the lone fire engine at fire 2 was not able to extinguish
the fire there, causing the fire to spread to other parts of the city.

Distribution RMTDP human1 human2 human3 RescueISI MDP

Skewed 4-1

Engines from station 1 0 2 2 1 2 2
Engines from station 2 1 1 1 1 1 1
Engines from station 3 1 0 0 2 0 0

Ambulances 3 4 4 4 0 4

Table 1: Allocations of ambulances and fire engines to fire 1.

These experiments show that the allocations found by the RMTDP role allocation algo-
rithm performs significantly better than allocations chosen by human subjects and RescueISI
and MDP in most cases (and does not do significantly worse in any case). In particular
when the distribution of civilians is not uniform, it is more difficult for humans to come up
with an allocation and the difference between human allocations and the RMTDP allocation
becomes more significant. From this we can conclude that the RMTDP allocation performs
at near-human expertise.

In our last experiment done using the RoboCupRescue simulator, we introduced error
in the RMTDP model in order to determine how sensitive the model was to errors in the
parameters of the model. Figure 18 compares the allocations found, when there were five
ambulances, 5 fire engines and 5 civilians, in terms of the number of civilian casualties (Y-
axis) when error (X-axis) was introduced to the probability of fire spread and the probability
of civilian health deterioration. As can be seen increasing the error in the probability of fire
spread to 20% and higher results in allocations that save fewer civilians as the fire brigades
choose to concentrate their effort on only one of the fires. The resulting allocation was
found to have the same value in terms of the number of civilians casualties as that used by
RescueISI, which did not consider any uncertainty. Reducing the error in the probability of
fire did not have an impact on the allocations found. Increasing the error in probability of

7. This strategy of ambulances going to the closest civilian worked fairly well because the ambulances were
usually well spread out

405

Nair & Tambe

civilian health deterioration to 15% and higher caused some civilians to be sacrificed. This
allocation was found to have the same value in terms of the number of civilians casualties as
that used by RescueISI. Decreasing the error in probability of civilian health deterioration
-5% and lower (more negative) caused the number of ambulances to be allocated to a fire
to be the same as the number of civilians at that fire (same as human1).

0

0.5

1

1.5

2

2.5

3

-25 -20 -15 -10 -5 0 5 10 15 20 25

Percentage error

C
iv

il
ia

n
 c

a
s

u
a

lt
ie

s

fire-rate
civilian-health

Figure 18: Model sensitivity in the RoboCupRescue scenario.

7. Related Work

There are four related areas of research, that we wish to highlight. First, there has been
a considerable amount of work done in the field of multiagent teamwork (Section 7.1).
The second related area of research is the use of decision theoretic models, in particular
distributed POMDPs (Section 7.2). The third area of related work we describe (Section 7.3)
are hybrid systems that used Markov Decision Process and BDI approaches. Finally, in
Section 7.4, the related work in role allocation and reallocation in multiagent teams is
described.

7.1 BDI-based Teamwork

Several formal teamwork theories such as Joint Intentions (Cohen & Levesque, 1991),
SharedPlans (Grosz & Kraus, 1996) were proposed that tried to capture the essence of
multiagent teamwork in the logic of Beliefs-Desires-Intentions. Next, practical models
of teamwork such as COLLAGEN (Rich & Sidner, 1997), GRATE* (Jennings, 1995),
STEAM (Tambe, 1997) built on these teamwork theories (Cohen & Levesque, 1991; Grosz
& Kraus, 1996) and attempted to capture the aspects of teamwork that were reusable
across domains. In addition, to complement the practical teamwork models, the team-
oriented programming approach (Pynadath & Tambe, 2003; Tidhar, 1993a, 1993b) was
introduced to allow large number of agents to be programmed as teams. This approach
was then expanded on and applied to a variety of domains (Pynadath & Tambe, 2003; Yen
et al., 2001; da Silva & Demazeau, 2002). Other approaches for building practical multia-

406

Hybrid BDI-POMDP Framework for Multiagent Teaming

gent systems (Stone & Veloso, 1999; Decker & Lesser, 1993), while not explicitly based on
team-oriented programming, could be considered in the same family.

The research reported in this article complements this research on teamwork by intro-
ducing hybrid BDI-POMDP models that exploit the synergy between BDI and POMDP
approaches. In particular, TOP and teamwork models have traditionally not addressed
uncertainty and cost. Our hybrid model provides this capability, and we have illustrated
the benefits of this reasoning via detailed experiments.

While this article uses team-oriented programming (Tambe et al., 2000; da Silva &
Demazeau, 2002; Tidhar, 1993a, 1993b) as an example BDI approach, it is relevant to
other similar techniques of modeling and tasking collectives of agents, such as Decker and
Lesser’s (1993) TAEMS approach. In particular, the TAEMS language provides an ab-
straction for tasking collaborative groups of agents similar to TOP, while the GPGP in-
frastructure used in executing TAEMS-based tasks is analogous to the “TOP interpreter”
infrastructure shown in Figure 1. While Lesser et al. have explored the use of distributed
MDPs in analyses of GPGP coordination (Xuan & Lesser, 2002), they have not exploited
the use of TAEMS structures in decomposition or abstraction for searching optimal policies
in distributed MDPs, as suggested in this article. Thus, this article complements Lesser
et al.’s work in illustrating a significant avenue for further efficiency improvements in such
analyses.

7.2 Distributed POMDP Models

Distributed POMDP models represent a collection of formal models that are expressive
enough to capture the uncertainty in the domain and the costs and rewards associated
with states and actions. Given a group of agents, the problem of deriving separate poli-
cies for them that maximize some joint reward can be modeled using distributed POMDP
models. In particular, the DEC-POMDP (Decentralized POMDP) (Bernstein et al., 2000)
and MTDP (Multiagent Team Decision Problem) (Pynadath & Tambe, 2002) are gen-
eralizations of POMDPs to the case where there are multiple, distributed agents, basing
their actions on their separate observations. These frameworks allow us to formulate what
constitutes an optimal policy for a multiagent team and in principle derive that policy.

However, with a few exceptions, effective algorithms for deriving policies for distributed
POMDPs have not been developed. Significant progress has been achieved in efficient
single-agent POMDP policy generation algorithms (Monahan, 1982; Cassandra, Littman,
& Zhang, 1997; Kaelbling et al., 1998). However, it is unlikely such research can be directly
carried over to the distributed case. Finding optimal policies for distributed POMDPs is
NEXP-complete (Bernstein et al., 2000). In contrast, finding an optimal policy for a single
agent POMDP is PSPACE-complete (Papadimitriou & Tsitsiklis, 1987). As Bernstein et
al. note (Bernstein et al., 2000), this suggests a fundamental difference in the nature of the
problems. The distributed problem cannot be treated as one of separate POMDPs in which
individual policies can be generated for individual agents because of possible cross-agent
interactions in the reward, transition or observation functions. (For any one action of one
agent, there may be many different rewards possible, based on the actions that other agents
may take.)

407

Nair & Tambe

Three approaches have been used to solve distributed POMDPs. One approach that
is typically taken is to make simplifying assumptions about the domain. For instance, in
Guestrin et al. (2002), it is assumed that each agent can completely observe the world state.
In addition, it is assumed that the reward function (and transition function) for the team
can be expressed as the sum (product) of the reward (transition) functions of the agents
in the team. Becker et al. (2003) assume that the domain is factored such that each agent
has a completely observable local state and also that the domain is transition-independent
(one agent cannot affect another agent’s local state).

The second approach taken is to simplify the nature of the policies considered for each
of the agents. For example, Chadès et al. (2002) restrict the agent policies to be memoryless
(reactive) policies, thereby simplifying the problem to solving multiple MDPs. Peshkin et
al. (2000) take a different approach by using gradient descent search to find local optimum
finite-controllers with bounded memory. Nair et al. (2003a) present an algorithm for finding
a locally optimal policy from a space of unrestricted finite-horizon policies. The third
approach, taken by Hansen et al. (2004), involves trying to determine the globally optimal
solution without making any simplifying assumptions about the domain. In this approach,
they attempt to prune the space of possible complete policies by eliminating dominated
policies. Although a brave frontal assault on the problem, this method is expected to
face significant difficulties in scaling up due to the fundamental complexity of obtaining a
globally optimal solution.

The key difference with our work is that our research is focused on hybrid systems where
we leverage the advantages of BDI team plans, which are used in practical systems, and
distributed POMDPs that quantitatively reason about uncertainty and cost. In particular,
we use TOPs to specify large-scale team plans in complex domains and use RMTDPs for
finding the best role allocation for these teams.

7.3 Hybrid BDI-POMDP Approaches

POMDP models have been used in the context of analysis of both single agent (Schut,
Wooldridge, & Parsons, 2001) and multiagent (Pynadath & Tambe, 2002; Xuan et al., 2001)
behavior. Schut et al. compare various strategies for intention reconsideration (deciding
when to deliberate about its intentions) by modeling a BDI system using a POMDP. The
key differences with this work and our approach are that they apply their analysis to a single
agent case and do not consider the issues of exploiting BDI system structure in improving
POMDP efficiency.

Xuan and Lesser (2001) and Pynadath and Tambe (2002), both analyze multiagent
communication. While Xuan and Lesser dealt with finding and evaluating various commu-
nication policies, Pynadath and Tambe used the COM-MTDP model to deal with the prob-
lem of comparing various communication strategies both empirically and analytically. Our
approach is more general in that we explain an approach for analyzing any coordination ac-
tions including communication. We concretely demonstrate our approach for analysis of role
allocation. Additional key differences from the earlier work by Pynadath and Tambe (2002)
are as follows: (i) In RMTDP, we illustrate techniques to exploit team plan decomposition
in speeding up policy search, absent in COM-MTDP, (ii) We also introduce techniques for
belief-based evaluation absent from previous work. Nonetheless, combining RMTDP with

408

Hybrid BDI-POMDP Framework for Multiagent Teaming

COM-MTDP is an interesting avenue for further research and some preliminary steps in
this direction are presented in Nair, Tambe and Marsella (2003b).

Among other hybrid systems not focused on analysis, Scerri et al. (2002) employ Markov
Decision Processes within team-oriented programs for adjustable autonomy. The key dif-
ference between that work and ours is that the MDPs were used to execute a particular
sub-plan within the TOP’s plan hierarchy and not for making improvements to the TOP.
DTGolog (Boutilier, Reiter, Soutchanski, & Thrun, 2000) provides a first-order language
that limits MDP policy search via logical constraints on actions. Although it shares with
our work the key idea of synergistic interactions in MDPs and Golog, it differs from our
work in that it focuses on single agent MDPs in fully observable domains, and does not
exploit plan structure in improving MDP performance. ISAAC (Nair, Tambe, Marsella,
& Raines, 2004), a system for analyzing multiagent teams, also employs decision theoretic
methods for analyzing multiagent teams. In that work, a probabilistic finite automaton
(PFA) that represents the probability distribution of key patterns in the team’s behavior
are learned from logs of the team’s behaviors. The key difference with that work is that the
analysis is performed without having access to the actual team plans that the agents are
executing and hence the advice provided cannot directly be applied to improving the team,
but will need a human developer to change the team behavior as per the advice generated.

7.4 Role Allocation and Reallocation

There are several different approaches to the problem of role allocation and reallocation.
For example, Tidhar et al. (1996) and Tambe et al. (2000) performed role allocation based
on matching of capabilities, while Hunsberger and Grosz (2000) proposed the use of com-
binatorial auctions to decide on how roles should be assigned. Modi et al. (2003) showed
how role allocation can be modeled as a distributed constraint optimization problem and
applied it to the problem of tracking multiple moving targets using distributed sensors.
Shehory and Kraus (1998) suggested the use of coalition formation algorithms for deciding
quickly which agent took on which role. Fatima and Wooldridge (2001) use auctions to
decide on task allocation. It is important to note that these competing techniques are not
free of the problem of how to model the problem, even though they do not have to model
transition probabilities. Other approaches to reforming a team are reconfiguration meth-
ods due to Dunin-Keplicz and Verbrugge (2001), self-adapting organizations by Horling
and Lesser (2001) and dynamic re-organizing groups (Barber & Martin, 2001). Scerri et
al. (2003) present a role (re)allocation algorithm that allows autonomy of role reallocation
to shift between a human supervisor and the agents.

The key difference with all this prior work is our use of stochastic models (RMTDPs)
to evaluate allocations: this enables us to compute the benefits of role allocation, taking
into account uncertainty and costs of reallocation upon failure. For example, in the mission
rehearsal domain, if uncertainties were not considered, just one scout would have been
allocated, leading to costly future reallocations or even in mission failure. Instead, with
lookahead, depending on the probability of failure, multiple scouts were sent out on one or
more routes, resulting in fewer future reallocations and higher expected reward.

409

Nair & Tambe

8. Conclusion

While the BDI approach to agent teamwork has provided successful applications, tools and
techniques that provide quantitative analyses of team coordination and other team behav-
iors under uncertainty are lacking. The emerging field of distributed POMDPs provides
a decision theoretic method for quantitatively obtaining the optimal policy for a team of
agents, but faces a serious intractability challenge. Therefore, this article leverages the
benefits of both the BDI and POMDP approaches to analyze and improve key coordination
decisions within BDI-based team plans using POMDP-based methods. In order to demon-
strate these analysis methods, we concentrated on role allocation – a fundamental aspect
of agent teamwork – and provided three key contributions. First, we introduced RMTDP,
a distributed POMDP based framework, for analysis of role allocation. Second, this article
presented an RMTDP-based methodology for optimizing key coordination decisions within
a BDI team plan for a given domain. Concretely, the article described a methodology for
finding the best role allocation for a fixed team plan. Given the combinatorially many
role allocations, we introduced methods to exploit task decompositions among sub-teams
to significantly prune the search space of role allocations.

Third, our hybrid BDI-POMDP approach uncovered several synergistic interactions
between BDI team plans and distributed POMDPs:

1. TOPs were useful in constructing the RMTDP model for the domain, in identifying
the features that need to be modeled as well as in decomposing the model construction
according to the structure of the TOP. The RMTDP model could then be used to
evaluate the TOP.

2. TOPs restricted the policy search by providing RMTDPs with incomplete policies
with a limited number of open decisions.

3. The BDI approach helped in coming up with a novel efficient “belief-based” represen-
tation of policies suited for this hybrid BDI-POMDP approach and a corresponding
algorithm for evaluating such policies. This resulted in faster evaluation and also a
more compact policy representation.

4. The structure in the TOP was exploited to decompose the problem of evaluating
abstract policies, resulting in significant pruning in the search for the optimal role
allocations.

We constructed RMTDPs for two domains – RoboCupRescue and mission rehearsal
simulation – and determined the best role allocation in these domains. Furthermore, we
illustrated significant speedups in RMTDP policy search due to the techniques introduced
in this article. Detailed experiments revealed the advantages of our approach over state-of-
the-art role allocation approaches that failed to reason with uncertainty.

Our key agenda for future work is to continue scale-up of RMTDPs to even larger
scale agent teams. Such scale-up will require further efficiency improvements. We propose
to continue to exploit the interaction in the BDI and POMDP approaches in achieving
such scale-up. For instance, besides disaster rescue, distributed sensor nets and large area
monitoring applications could benefit from such a scale-up.

410

Hybrid BDI-POMDP Framework for Multiagent Teaming

Acknowledgments

This research was supported by NSF grant #0208580. We would like to thank Jim Blythe,
Anthony Cassandra, Hyuckchul Jung, Spiros Kapetanakis, Sven Koenig, Michael Littman,
Stacy Marsella, David Pynadath and Paul Scerri for discussions related to this article.
We would also like to thank the reviewers of this article whose comments have helped in
significantly improving this article.

Appendix A. TOP details

In this section, we will describe the TOP for the helicopter scenario. The details of each
subplan in Figure 4(b) are shown below:

ExecuteMission:

Context:∅
Pre-conditions: (MB <TaskForce> location(TaskForce) = START)

Achieved: (MB <TaskForce> (Achieved(DoScouting) ∧ Achieved(DoTransport)))

∧ (time > T ∨ (MB <TaskForce> Achieved(RemainingScouts) ∨
(∄ helo ∈ ScoutingTeam, alive(helo) ∧ location(helo) 6= END)))

Unachievable: (MB <TaskForce> Unachievable(DoScouting))

∨ (MB <TaskForce> (Unachievable(DoTransport)

∧ (Achieved(RemainingScouts)

∨(∄ helo ∈ ScoutingTeam, alive(helo) ∧ location(helo) 6= END))))

Irrelevant: ∅
Body:

DoScouting

DoTransport

RemainingScouts

Constraints:

DoScouting → DoTransport

DoScouting → RemainingScouts

DoScouting:

Context:ExecuteMission <TaskForce>

Pre-conditions: ∅
Achieved: ∅
Unachievable: ∅
Irrelevant:∅
Body:

WaitAtBase

ScoutRoutes

Constraints:

WaitAtBase AND ScoutRoutes

WaitAtBase:

Context: DoScouting <TaskForce>

Pre-conditions: ∅
Achieved: ∅
Unachievable: (MB <TransportTeam> ∄ helo ∈ TransportTeam, alive(helo))

411

Nair & Tambe

Irrelevant: ∅
Body:

no-op

ScoutRoutes:

Context: DoScouting <TaskForce>

Achieved: ∅
Unachievable: ∅
Irrelevant:(MB <ScoutingTeam> ∄ helo ∈ TransportTeam, alive(helo))

Body:

ScoutRoute1

ScoutRoute2

ScoutRoute3

Constraints:

ScoutRoute1 OR ScoutRoute2 OR ScoutRoute3

ScoutRoute1:

Context: ScoutRoutes <ScoutingTeam>

Pre-conditions: ∅
Achieved: (MB <SctTeamA> ∃ helo ∈ SctTeamA, location(helo) = END)

Unachievable: time > T ∨ (MB <SctTeamA> ∄ helo ∈ SctTeamA, alive(helo))

Irrelevant: ∅
Body:

if (location(SctTeamA) = START) then route(SctTeamA) ← 1

if (location(SctTeamA) 6= END) then move-forward

ScoutRoute2:

Context: ScoutRoutes <ScoutingTeam>

Pre-conditions: ∅
Achieved: (MB <SctTeamB> ∃ helo ∈ SctTeamB, location(helo) = END)

Unachievable: time > T ∨ (MB <SctTeamB> ∄ helo ∈ SctTeamB, alive(helo))

Irrelevant: ∅
Body:

if (location(SctTeamB) = START) then route(SctTeamB) ← 2

if (location(SctTeamB) 6= END) then move-forward

ScoutRoute2:

Context: ScoutRoutes <ScoutingTeam>

Pre-conditions: ∅
Achieved: (MB <SctTeamA> ∃ helo ∈ SctTeamA, location(helo) = END)

Unachievable: time > T ∨ (MB <SctTeamA> ∄ helo ∈ SctTeamA, alive(helo))

Irrelevant: ∅
Body:

if (location(SctTeamA) = START) then route(SctTeamA) ← 1

if (location(SctTeamA) 6= END) then move-forward

DoTransport:

Context: ExecuteMission <TaskForce>

Pre-conditions: ∅

412

Hybrid BDI-POMDP Framework for Multiagent Teaming

Achieved: (MB <TransportTeam> location(TransportTeam) = END)

Unachievable: time > T ∨ (MB <TransportTeam> ∄ helo ∈ TransportTeam, alive(helo))

Irrelevant: ∅
Body:

if (location(TransportTeam) = start) then

if (MB <TransportTeam> Achieved(ScoutRoute1)) then

route(TransportTeam) ← 1

elseif (MB <TransportTeam> Achieved(ScoutRoute2)) then

route(TransportTeam) ← 2

elseif (MB <TransportTeam> Achieved(ScoutRoute3)) then

route(TransportTeam) ← 3

if (route(TransportTeam) 6= null) and (location(TransportTeam) 6= END) then

move-forward

RemainingScouts:

Context: ExecuteMission <TaskForce>

Pre-conditions: ∅
Achieved: (MB <ScoutingTeam> location(ScoutingTeam) = END)

Unachievable: time > T ∨ (MB <ScoutingTeam> (∄ helo ∈ ScoutingTeam

alive(helo) ∧ location(helo) 6= END))

Irrelevant: ∅
Body:

if (location(ScoutingTeam) 6= END) then move-forward

The predicate Achieved(tplan) is true if the Achieved conditions of tplan are true. Simi-
larly, the predicates Unachievable(tplan) and Irrelevant(tplan) are true if the the Unachiev-
able conditions and the Irrelevant conditions of tplan are true, respectively. The predicate
(location(team) = END) is true if all members of team are at END.

Figure 4(b) also shows coordination relationships: An AND relationship is indicated
with a solid arc, while an OR relationship is indicated with a dotted arc. These coordi-
nation relationships indicate unachievability, achievability and irrelevance conditions that
are enforced by the TOP infrastructure. An AND relationship between team sub-plans
means that if any of the team sub-plans fail, then the parent team plan will fail. Also, for
the parent team plan to be achieved, all the child sub-plans must be achieved. Thus, for
DoScouting, WaitAtBase and ScoutRoutes must both be done:

Achieved: (MB <TaskForce> Achieved(WaitAtBase) ∧ Achieved(ScoutRoutes))

Unachievable: (MB <TaskForce> Unachievable(WaitAtBase)

∨ Unachievable(ScoutRoutes))

An OR relationship means that all the subplans must fail for the parent to fail and success of
any of the subplans means that the parent plan has succeeded. Thus, for ScoutingRoutes,
at least one of ScoutRoute1, ScoutRoute2 or ScoutRoute3 need be performed:

Achieved: (MB <ScoutingTeam> Achieved(ScoutRoute1) ∨

Achieved(ScoutRoute2)∨ Achieved(ScoutRoute3))

Unachievable: (MB <TaskForce> Unachievable(ScoutRoute1) ∧

Unachievable(ScoutRoute2) ∧ Unachievable(ScoutRoute3))

413

Nair & Tambe

Also an AND relationship affects the irrelevance conditions of the subplans that it joins. If
the parent is unachievable then all its subplans that are still executing become irrelevant.
Thus, for WaitAtBase:

Irrelevant: (MB <TaskForce> Unachievable(ScoutRoutes))

Similarly for ScoutingRoutes:

Irrelevant: (MB <TaskForce> Unachievable(ScoutRoutes))

.
Finally, we assign roles to plans — Figure 4(b) shows the assignment in brackets adja-

cent to the plans. For instance, Task Force team is assigned to jointly perform Execute

Mission.

Appendix B. RMTDP details

In this section, we present details of the RMTDP constructed for the TOP in Figure 4.

• S: We get the features of the state from the attributes tested in the preconditions
and achieved, unachievable and irrelevant conditions and the body of the team plans
and individual agent plans. Thus the relevant state variables are:location of each
helicopter, role of each helicopter,route of each helicopter, status of each helicopter
(alive or not) and time. For a team of n helicopters, the state is given by the tuple
< time, role1, . . . , rolen, loc1, . . . , locn, route1, . . . , routen, status1, . . . , statusn >.

• A: We consider actions to be the primitive actions that each agent can perform
within its individual plans. The TOP infrastructure enforces mutual belief through
communication actions. Since analyzing the cost of these is not the focus of this
research we consider communication to be implicit and we model the effect of this
communication directly in the observation function.

We consider 2 kinds of actions role-taking and role-execution actions. We assume
that the initial allocation will specify roles for all agents. This specifies whether the
agent is a scout or a transport and if a scout which scout team it is assigned to. A
scout cannot become a transport or change its team after its initial allocation while a
transport can change its role by taking one of the role-taking actions.The role-taking
and role-execution actions for each agent i are given by:
Υi,memberTransportTeam = {joinSctTeamA, joinSctTeamB, joinSctTeamC}
Υi,memberSctTeamA = Υi,memberSctTeamB = Υi,memberSctTeamCx = ∅
Φi,memberTransportTeam = {chooseRoute,moveForward}
Φi,memberSctTeamA = Φi,memberSctTeamB = Φi,memberSctTeamC = {moveForward}

• P : We obtain the transition function with the help of a human expert or through
simulations if a simulator is available. In this domain, helicopters can crash (be shot
down) if they are not at START, END or an already scouted location. The probability
that scouts will get shot down depends on which route they are on, i.e. probability
of crash on route1 is p1, probability of crash on route2 is p2 and probability of crash
on route3 is p3 and how many scouts are on the same spot. We assume that the

414

Hybrid BDI-POMDP Framework for Multiagent Teaming

probability of a transport being shot down in an unscouted location to be 1 and in
a scouted location to be 0. The probability of multiple crashes can be obtained by
multiplying the probabilities of individual crashes.

The action, moveForward, will have no effect if routei = null or loci = END or if
statusi = dead. In all other cases, the location of the agent gets incremented. We
assume that the role-taking actions scoutRoutex will always succeed if the role of the
performing agent is transport and it has not been assigned a route already.

• Ω: Each transport at START can observe the status of the other agents with some
probability depending on their positions. Each helicopter on a particular route can
observe all the helicopters on that route completely and cannot observe helicopters
on other routes.

• O: The observation function gives the probability for a group of agents to receive a
particular joint observation. In this domain we assume that observations of one agent
are independent of the observations of other agents, given the current state and the
previous joint action. Thus the probability of a joint observation can be computed by
multiplying the probabilities of each individual agent’s observations.

The probability of a transport at START observing the status of an alive scout on
route 1 is 0.95. The probability of a transport at START observing nothing about
that alive scout is 0.05 since we don’t have false negatives. Similarly if a scout on
route 1 crashes, the probability that this is visible to a transport at START is 0.98
and the probability that the transport doesn’t see this failure is 0.02. Similarly the
probabilities for observing an alive scout on route 2 and route 3 and 0.94 and 0.93
respectively and the probabilities for observing a crash on route 2 and route 3 and
0.97 and 0.96 respectively.

• R: The reward function is obtained with the help of a human expert who helps
assign value to the various states and the cost of performing various actions. For
this analysis, we assume that actions moveForward and chooseRoute have no cost.
We consider the negative reward (cost) for the replacement action, scoutRoutex, to
be RΥ, the negative reward for a failure of a helicopter to be RF , the reward for a
scout reaching END to be Rscout and the reward for a transport reaching END to be
Rtransport. E.g. RΥ = −10, RF = −50, Rscout = 5, Rtransport = 75.

• RL: These are the roles that individual agents can take in TOP organization hierarchy.
RL = {transport, scoutOnRoute1, scoutOnRoute2, scoutOnRoute3}.

Appendix C. Theorems

Theorem 3 The MAXEXP method will always yield an upper bound.

Proof sketch:

• Let policy π∗ be the leaf-level policy with the highest expected reward under a par-
ticular parent node, i, in the restricted policy space.

Vπ∗ = maxπ∈Children(i)Vπ (3)

415

Nair & Tambe

• Since the reward function is specified separately for each component, we can sepa-
rate the expected reward V into the rewards from the constituent components given
the starting states and starting observation histories of these components. Let the
team plan be divided into m components such that the components are parallel and
independent or sequentially executed.

Vπ∗ ≤
∑

1≤j≤m

maxstates[j],oHistories[j]Vjπ∗

• The expected value obtained for any component j, 1 ≤ j ≤ m for π∗ cannot be greater
than that of the highest value obtained for j using any policy.

maxstates[j],oHistories[j]Vjπ∗ ≤maxπ∈Children(i)maxstates[j],oHistories[j](Vjπ) (4)

• Hence,

Vπ∗ ≤
∑

1≤j≤m

maxπ∈Children(i)maxstates[j],oHistories[j](Vjπ)

Vπ∗ ≤MaxEstimate(i) (5)

�

References

Barber, S., & Martin, C. (2001). Dynamic reorganization of decision-making groups. In
Proceedings of the Fifth International Conference on Autonomous Agents (Agents-01),
pp. 513–520.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2003). Transition-independent
decentralized Markov decision processes. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-03), pp.
41–48.

Bernstein, D. S., Zilberstein, S., & Immerman, N. (2000). The complexity of decentral-
ized control of MDPs. In Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence(UAI-00), pp. 32–37.

Boutilier, C. (1996). Planning, learning & coordination in multiagent decision processes. In
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowl-
edge (TARK-96), pp. 195–210.

Boutilier, C., Reiter, R., Soutchanski, M., & Thrun, S. (2000). Decision-theoretic, high-
level agent programming in the situation calculus. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-00), pp. 355–362.

Cassandra, A., Littman, M., & Zhang, N. (1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97),
pp. 54–61.

416

Hybrid BDI-POMDP Framework for Multiagent Teaming

Chadès, I., Scherrer, B., & Charpillet, F. (2002). A heuristic approach for solving
decentralized-pomdp: Assessment on the pursuit problem. In Proceedings of the 2002
ACM Symposium on Applied Computing (SAC-02), pp. 57–62.

Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous, 25 (4), 487–512.

da Silva, J. L. T., & Demazeau, Y. (2002). Vowels co-ordination model. In Proceedings
of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002), pp. 1129–1136.

Dean, T., & Lin, S. H. (1995). Decomposition techniques for planning in stochastic do-
mains. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), pp. 1121–1129.

Decker, K., & Lesser, V. (1993). Quantitative modeling of complex computational task
environments. In Proceedings of the Eleventh National Conference on Artificial Intel-
ligence (AAAI-93), pp. 217–224.

Dix, J., Muoz-Avila, H., Nau, D. S., & Zhang, L. (2003). Impacting shop: Putting an
ai planner into a multi-agent environment. Annals of Mathematics and Artificial
Intelligence, 37 (4), 381–407.

Dunin-Keplicz, B., & Verbrugge, R. (2001). A reconfiguration algorithm for distributed
problem solving. Engineering Simulation, 18, 227–246.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
pp. 1123–1128.

Fatima, S. S., & Wooldridge, M. (2001). Adaptive task and resource allocation in multi-
agent systems. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents-01), pp. 537–544.

Georgeff, M. P., & Lansky, A. L. (1986). Procedural knowledge. Proceedings of the IEEE
special issue on knowledge representation, 74, 1383–1398.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative
multi-agent systems. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-03), pp. 137–144.

Grosz, B., Hunsberger, L., & Kraus, S. (1999). Planning and acting together. AI Magazine,
20 (4), 23–34.

Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial
Intelligence, 86 (2), 269–357.

Guestrin, C., Venkataraman, S., & Koller, D. (2002). Context specific multiagent coordi-
nation and planning with factored MDPs. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI-02), pp. 253–259.

Hansen, E., & Zhou, R. (2003). Synthesis of hierarchical finite-state controllers for pomdps.
In Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling (ICAPS-03), pp. 113–122.

417

Nair & Tambe

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-04), pp. 709–715.

Ho, Y.-C. (1980). Team decision theory and information structures. Proceedings of the
IEEE, 68 (6), 644–654.

Horling, B., Benyo, B., & Lesser, V. (2001). Using self-diagnosis to adapt organizational
structures. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents-01), pp. 529–536.

Hunsberger, L., & Grosz, B. (2000). A combinatorial auction for collaborative planning. In
Proceedings of the Fourth International Conference on Multiagent Systems (ICMAS-
2000), pp. 151–158.

Jennings, N. (1995). Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75 (2), 195–240.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101 (2), 99–134.

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjoh, A., & Shimada,
S. (1999). RoboCup-Rescue: Search and rescue for large scale disasters as a domain
for multiagent research. In Proceedings of IEEE Conference on Systems, Men, and
Cybernetics (SMC-99), pp. 739–743.

Levesque, H. J., Cohen, P. R., & Nunes, J. (1990). On acting together. In Proceedings of the
National Conference on Artificial Intelligence, pp. 94–99. Menlo Park, Calif.: AAAI
press.

Mailler, R. T., & Lesser, V. (2004). Solving distributed constraint optimization problems us-
ing cooperative mediation. In Proceedings of the Third International Joint Conference
on Agents and Multiagent Systems (AAMAS-04), pp. 438–445.

Marschak, J., & Radner, R. (1972). The Economic Theory of Teams. Cowles Foundation
and Yale University Press, New Haven, CT.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2003). An asynchronous complete
method for distributed constraint optimization. In Proceedings of the Second In-
ternational Joint Conference on Agents and Multiagent Systems (AAMAS-03), pp.
161–168.

Monahan, G. (1982). A survey of partially observable Markov decision processes: Theory,
models and algorithms. Management Science, 101 (1), 1–16.

Nair, R., Ito, T., Tambe, M., & Marsella, S. (2002). Task allocation in the rescue simulation
domain. In RoboCup 2001: Robot Soccer World Cup V, Vol. 2377 of Lecture Notes in
Computer Science, pp. 751–754. Springer-Verlag, Heidelberg, Germany.

Nair, R., Pynadath, D., Yokoo, M., Tambe, M., & Marsella, S. (2003a). Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),
pp. 705–711.

418

Hybrid BDI-POMDP Framework for Multiagent Teaming

Nair, R., Tambe, M., & Marsella, S. (2003b). Team formation for reformation in multi-
agent domains like RoboCupRescue. In Kaminka, G., Lima, P., & Roja, R. (Eds.),
Proceedings of RoboCup-2002 International Symposium, pp. 150–161. Lecture Notes
in Computer Science, Springer Verlag.

Nair, R., Tambe, M., Marsella, S., & Raines, T. (2004). Automated assistants to analyze
team behavior. Journal of Autonomous Agents and Multi-Agent Systems, 8 (1), 69–
111.

Papadimitriou, C., & Tsitsiklis, J. (1987). Complexity of Markov decision processes. Math-
ematics of Operations Research, 12 (3), 441–450.

Peshkin, L., Meuleau, N., Kim, K.-E., & Kaelbling, L. (2000). Learning to cooperate via
policy search. In Proceedings of the Sixteenth Conference in Uncertainty in Artificial
Intelligence (UAI-00), pp. 489–496.

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Proceedings of
Advances in Neural Information Processing Systems 16 (NIPS).

Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, 16, 389–423.

Pynadath, D. V., & Tambe, M. (2003). Automated teamwork among heterogeneous soft-
ware agents and humans. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS), 7, 71–100.

Rich, C., & Sidner, C. (1997). COLLAGEN: When agents collaborate with people. In
Proceedings of the First International Conference on Autonomous Agents (Agents-
97), pp. 284–291.

Scerri, P., Johnson, L., Pynadath, D., Rosenbloom, P., Si, M., Schurr, N., & Tambe, M.
(2003). A prototype infrastructure for distributed robot, agent, person teams. In
Proceedings of the Second International Joint Conference on Agents and Multiagent
Systems (AAMAS-03), pp. 433–440.

Scerri, P., Pynadath, D. V., & Tambe, M. (2002). Towards adjustable autonomy for the
real-world. Journal of Artificial Intelligence (JAIR), 17, 171–228.

Schut, M. C., Wooldridge, M., & Parsons, S. (2001). Reasoning about intentions in un-
certain domains. In Proceedings of the Sixth European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2001), pp. 84–
95.

Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101 (1-2), 165–200.

Sondik, E. J. (1971). The optimal control of partially observable Markov processes. Ph.D.
Thesis, Stanford.

Stone, P., & Veloso, M. (1999). Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110 (2), 241–273.

419

Nair & Tambe

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research,
7, 83–124.

Tambe, M., Pynadath, D., & Chauvat, N. (2000). Building dynamic agent organizations in
cyberspace. IEEE Internet Computing, 4 (2), 65–73.

Tidhar, G. (1993a). Team-oriented programming: Preliminary report. Tech. rep. 41, Aus-
tralian Artificial Intelligence Institute.

Tidhar, G. (1993b). Team-oriented programming: Social structures. Tech. rep. 47, Aus-
tralian Artificial Intelligence Institute.

Tidhar, G., Rao, A., & Sonenberg, E. (1996). Guided team selection. In Proceedings of the
Second International Conference on Multi-agent Systems (ICMAS-96), pp. 369–376.

Wooldridge, M. (2002). An Introduction to Multiagent Systems. John Wiley & Sons.

Xuan, P., & Lesser, V. (2002). Multi-agent policies: from centralized ones to decentral-
ized ones. In Proceedings of the First International Joint Conference on Agents and
Multiagent Systems (AAMAS-02), pp. 1098–1105.

Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in multiagent
cooperation. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents-01), pp. 616–623.

Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., & Volz, R. A. (2001). Cast: Collabora-
tive agents for simulating teamwork. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-01), pp. 1135–1144.

Yoshikawa, T. (1978). Decomposition of dynamic team decision problems. IEEE Transac-
tions on Automatic Control, AC-23 (4), 627–632.

420

