Journal of Artificial Intelligence Research 24 (2005) 157-194 Submitted 09/04; published 07/05

Learning Content Selection Rules for Generating Object
Descriptions in Dialogue

Pamela W. Jordan PJORDAN@PITT.EDU
Learning Research and Development Center € Intelligent Systems Program

University of Pittsburgh, LRDC Rm 744

Pittsburgh, PA 15260

Marilyn A. Walker M.A . WALKERQSHEFFIELD.AC.UK
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street

Sheffield S1 4DP, U.K.

Abstract

A fundamental requirement of any task-oriented dialogue system is the ability to gen-
erate object descriptions that refer to objects in the task domain. The subproblem of
content selection for object descriptions in task-oriented dialogue has been the focus of
much previous work and a large number of models have been proposed. In this paper, we
use the annotated COCONUT corpus of task-oriented design dialogues to develop feature
sets based on Dale and Reiter’s (1995) incremental model, Brennan and Clark’s (1996)
conceptual pact model, and Jordan’s (2000b) intentional influences model, and use these
feature sets in a machine learning experiment to automatically learn a model of content
selection for object descriptions. Since Dale and Reiter’s model requires a representation
of discourse structure, the corpus annotations are used to derive a representation based on
Grosz and Sidner’s (1986) theory of the intentional structure of discourse, as well as two
very simple representations of discourse structure based purely on recency. We then apply
the rule-induction program RIPPER to train and test the content selection component of an
object description generator on a set of 393 object descriptions from the corpus. To our
knowledge, this is the first reported experiment of a trainable content selection component
for object description generation in dialogue. Three separate content selection models that
are based on the three theoretical models, all independently achieve accuracies significantly
above the MAJORITY CLASS baseline (17%) on unseen test data, with the intentional in-
fluences model (42.4%) performing significantly better than either the incremental model
(30.4%) or the conceptual pact model (28.9%). But the best performing models combine
all the feature sets, achieving accuracies near 60%. Surprisingly, a simple recency-based
representation of discourse structure does as well as one based on intentional structure. To
our knowledge, this is also the first empirical comparison of a representation of Grosz and
Sidner’s model of discourse structure with a simpler model for any generation task.

1. Introduction

A fundamental requirement of any task-oriented dialogue system is the ability to generate
object descriptions that refer to objects in the task domain. For example, consider the
excerpt of a task-oriented dialogue from the COCONUT corpus in Figure 1 (Di Eugenio,
Jordan, Thomason, & Moore, 2000). The conversants in this dialogue are attempting to

(©2005 AT Access Foundation. All rights reserved.



JORDAN & WALKER

(Partial solution to problem already agreed upon in prior dialogue: 3 green chairs for 50, 1 green
chair for 100 and a green table in the dining room, and a blue sofa in the living room. The numbers
in brackets indicate the utterance breaks for analysis of the dialogue.)

G: [36] That leaves us with 250 dollars. [37] I have a yellow rug for 150 dollars. [38] Do you have
any other furniture left that matches for 100 dollars?”

S: [39] No, I have no furniture left that costs $100. [40] I guess you can buy the yellow rug for $150.
G: [41] Okay. [42] T'll buy the rug for 150 dollars. [43] T have a green chair [44] that I can buy for
100 dollars [45] that should leave us with no money.

S: [46] That sounds good. [47] Go ahead and buy the yellow rug and the green chair.

G: [48] T'll buy the green 100 dollar chair. [49] Design Complete?

S: [50] Sounds good, [51] do you want the green chair in the dining room with the other chairs? [52]
I put the yellow rug in the living room. [53] Then the design is complete.

G: [54] Sounds good. [55] Hit the design complete

Figure 1: Excerpt of a cocoNUT dialogue illustrating variable selection of attributes for
object descriptions that refer to furniture items

collaboratively construct a solution for furnishing a two room house. Each conversant starts
the task with a separate set of furniture items that can be used in the solution. In the process
of negotiating the solution, they generate object descriptions (shown in italics) for items of
furniture.

Each furniture type in the COCONUT task domain has four associated attributes: color,
price, owner and quantity. As a first step, an object description generator must decide which
of these four attributes to include in an utterance, while subsequent surface generation steps
decide where in the utterance the attributes will be expressed. For example, the task domain
objects under discussion in the dialogue in Figure 1 are a $150 yellow rug owned by Garrett
(G) and a $100 dollar green chair owned by Steve (S). In the dialogue excerpt in Figure
1, the yellow rug is first referenced in utterance 36 as a yellow rug for 150 dollars and
then subsequently as the yellow rug for 150 dollars, the rug for 150 dollars, the yellow rug,
where the owner attribute is sometimes realized in a separate noun phrase within the same
utterance. It could also have been described by any of the following: the rug, my rug, my
yellow rug, my $150 yellow rug, the $150 rug. The content of these object descriptions
varies depending on which attributes are included. How does the speaker decide which
attributes to include?

The problem of content selection for subsequent reference has been the focus of much
previous work and a large number of overlapping models have been proposed that seek to
explain different aspects of referring expression content selection (Clark & Wilkes-Gibbs,
1986; Brennan & Clark, 1996; Dale & Reiter, 1995; Passonneau, 1995; Jordan, 2000b) inter
alia. The factors that these models use include the discourse structure, the attributes and
attribute values used in the previous mention, the recency of last mention, the frequency of
mention, the task structure, the inferential complexity of the task, and ways of determining
salient objects and the salient attributes of an object. In this paper, we use a set of factors
considered important for three of these models, and empirically compare the utility of these
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factors as predictors in a machine learning experiment in order to first establish whether the
selected factors, as we represent them, can make effective contributions to the larger task of
content selection for initial as well as subsequent reference. The factor sets we utilize are:

e CONTRAST SET factors, inspired by the INCREMENTAL MODEL of Dale and Reiter
(1995);

e CONCEPTUAL PACT factors, inspired by the models of Clark and colleagues (Clark &
Wilkes-Gibbs, 1986; Brennan & Clark, 1996);

e INTENTIONAL INFLUENCES factors, inspired by the model of Jordan (2000b).

We develop features representing these factors, then use the features to represent exam-
ples of object descriptions and the context in which they occur for the purpose of learning
a model of content selection for object descriptions.

Dale and Reiter’s INCREMENTAL model focuses on the production of near-minimal sub-
sequent references that allow the hearer to reliably distinguish the task object from similar
task objects. Following Grosz and Sidner (1986), Dale and Reiter’s algorithm utilizes dis-
course structure as an important factor in determining which objects the current object
must be distinguished from. The model of Clark, Brennan and Wilkes-Gibbs is based on
the notion of a CONCEPTUAL PACT, i.e. the conversants attempt to coordinate with one
another by establishing a conceptual pact for describing an object. Jordan’s INTENTIONAL
INFLUENCES model is based on the assumption that the underlying communicative and
task-related inferences are important factors in accounting for non-minimal descriptions.
We describe these models in more detail in Section 3 and explain why we expect these
models to work well in combination.

Many aspects of the underlying content selection models are not well-defined from an
implementation point of view, so it may be necessary to experiment with different definitions
and related parameter settings to determine which will produce the best performance for a
model, as was done with the parameter setting experiments carried out by Jordan (2000b).!
However, in the experiments we describe in this paper, we strive for feature representations
that will allow the machine learner to take on more of the task of finding optimal settings
and otherwise use the results reported by Jordan (2000b) for guidance. The only variation
we test here is the representation of discourse structure for those models that require it.
Otherwise, explicit tests of different interpretations of the models are left to future work.

We report on a set of experiments designed to establish the predictive power of the fac-
tors emphasized in the three models by using machine learning to train and test the content
selection component of an object description generator on a set of 393 object descriptions
from the corpus of COCONUT dialogues. The generator goes beyond each of the models’
accounts for anaphoric expressions to address the more general problem of generating both
initial and subsequent expressions. We provide the machine learner with distinct sets of
features motivated by these models, in addition to discourse features motivated by assumed

1. Determining optimal parameter settings for a machine learning algorithm is a similar issue (Daelemans
& Hoste, 2002) but at a different level. We use the same machine learner and parameter settings for all
our experiments although searching for optimal machine learner parameter settings may be of value in
further improving performance.
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familiarity distinctions (Prince, 1981) (i.e. new vs. evoked vs. inferable discourse entities),
and dialogue specific features such as the speaker of the object description, its absolute
location in the discourse, and the problem that the conversants are currently trying to
solve. We evaluate the object description generator by comparing its predictions against
what humans said at the same point in the dialogue and only counting as correct those that
exactly match the content of the human generated object descriptions (Oberlander, 1998).2
This provides a rigorous test of the object description generator since in all likelihood there
are other object descriptions that would have achieved the speaker’s communicative goals.

We also quantify the contribution of each feature set to the performance of the object
description generator. The results indicate that the INTENTIONAL INFLUENCES features, the
INCREMENTAL features and the CONCEPTUAL PACT features are all independently signifi-
cantly better than the majority class baseline for this task, with the INTENTIONAL INFLU-
ENCES model (42.4%) performing significantly better than either the INCREMENTAL model
(30.4%) or the CONCEPTUAL PACT model (28.9%). However, the best performing models
combine features from all the models, achieving accuracies at matching human performance
near 60.0%, a large improvement over the majority class baseline of 17% in which the gen-
erator simply guesses the most frequent attribute combination. Surprisingly, our results
in experimenting with different discourse structure parameter settings show that features
derived from a simple recency-based model of discourse structure contribute as much to this
particular task as one based on intentional structure.

The coOCONUT dataset is small compared to those used in most machine learning ex-
periments. Smaller datasets run a higher risk of overfitting and thus specific performance
results should be interpreted with caution. In addition the COCONUT corpus represents only
one type of dialogue; typed, collaborative, problem solving dialogues about constraint satis-
faction problems. While the models and suggested features focus on general communicative
issues, we expect variations in the task involved and in the communication setting to im-
pact the predictive power of the feature sets. For example, the CONCEPTUAL PACT model
was developed using dialogues that focus on identifying novel, abstract figures. Because
the figures are abstract it is not clear at the start of a series of exercises what description
will best help the dialogue partner identify the target figure. Thus the need to negotiate
a description for the figures is more prominent than in other tasks. Likewise we expect
constraint satisfaction problems and the need for joint agreement on a solution to cause the
INTENTIONAL INFLUENCES model to be more prominent for the COCONUT dialogues. But
the fact that the CONCEPTUAL PACT features show predictive power that is significantly
better than the baseline suggests that while the prominence of each model inspired feature
set may vary across tasks and communication settings, we expect each to have a significant
contribution to make to a content selection model.

Clearly, for those of us whose ultimate goal is a general model of content selection
for dialogue, we need to carry out experiments on a wide range of dialogue types. But
for those of us whose ultimate goal is a dialogue application, one smaller corpus that is
representative of the anticipated dialogues is probably preferable. Despite the two notes of

2. Note that the more attributes a discourse entity has, the harder it is to achieve an exact match to a
human description, i.e. for this problem the object description generator must correctly choose among
16 possibilities represented by the power set of the four attributes.
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caution we expect our feature representations to suggest a starting point for both larger
endeavors.

Previous research has applied machine learning to several problems in natural language
generation, such as cue word selection (Di Eugenio, Moore, & Paolucci, 1997), accent place-
ment (Hirschberg, 1993), determining the form of an object description (Poesio, 2000),
content ordering (Malouf, 2000; Mellish, Knott, Oberlander, & O’Donnell, 1998; Duboue
& McKeown, 2001; Ratnaparkhi, 2002), sentence planning (Walker, Rambow, & Rogati,
2002), re-use of textual descriptions in automatic summarization (Radev, 1998), and sur-
face realization (Langkilde & Knight, 1998; Bangalore & Rambow, 2000; Varges & Mellish,
2001).

The only other machine learning approaches for content selection are those of Oh and
Rudnicky (2002) and of Roy (2002). Oh and Rudnicky report results for automatically
training a module for the CMU Communicator system that selects the attributes that the
system should express when implicitly confirming flight information in an ongoing dialogue.
For example, if the caller said I want to go to Denver on Sunday, the implicit confirmation
by the system might be Flying to Denver on Sunday. They experimentally compared a
statistical approach based on bigram models with a strategy that only confirms information
that the system has just heard for the first time, and found that the two systems performed
equally well. Roy reports results for a spoken language generator that is trained to generate
visual descriptions of geometric objects when provided with features of visual scenes. Roy’s
results show that the understandability of the automatically generated descriptions is only
8.5% lower than human-generated descriptions. Unlike our approach, neither of these con-
sider the effects of ongoing dialogue with a dialogue partner, or the effect of the dialogue
context on the generated descriptions. Our work, and the theoretical models it is based
on, explicitly focus on the processes involved in generating descriptions and redescriptions
of objects in interactive dialogue that allow the dialogue partners to remain aligned as the
dialogue progresses (Pickering & Garrod, 2004).

The most relevant prior work is that of Jordan (2000b). Jordan implemented Dale and
Reiter’s INCREMENTAL model and developed and implemented the INTENTIONAL INFLU-
ENCES model, which incorporates the INCREMENTAL model, and tested them both against
the COCONUT corpus. Jordan also experimented with different parameter settings for vague
parts of the models. The results of this work are not directly comparable because Jordan
only tested rules for subsequent reference, while here we attempt to learn rules for gener-
ating both initial and subsequent references. However, using a purely rule-based approach,
the best accuracy that Jordan reported was 69.6% using a non-stringent scoring criterion
(not an exact match) and 24.7% using the same stringent exact match scoring used here.
In this paper, using features derived from Jordan’s corpus annotations, and applying rule
induction to induce rules from training data, we achieve an exact match accuracy of nearly
47% when comparing to the most similar model and an accuracy of nearly 60% when com-
paring to the best overall model. These results appear to be an improvement over those
reported by Jordan (2000b), given both the increased accuracy and the ability to generate
initial as well as subsequent references.

Section 2 describes the COCONUT corpus, definitions of discourse entities and object
descriptions for the COCONUT domain, and the annotations on the corpus that we use
to derive the feature sets. Section 3 presents the theoretical models of content selection
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Figure 2: A snapshot of the interface for the COCONUT task

for object descriptions in more detail and describes the features inspired by the models.
Section 4 describes the experimental design and Section 5 presents the quantitative results
of testing the learned rules against the corpus, discusses the features that the machine
learner identifies as important, and provides examples of the rules that are learned. Section
6 summarizes the results and discusses future work.

2. The CoconNuT Corpus

The COCONUT corpus is a set of 24 computer-mediated dialogues consisting of a total of
1102 utterances. The dialogues were collected in an experiment where two human subjects
collaborated on a simple design task, that of buying furniture for two rooms of a house
(Di Eugenio et al., 2000). Their collaboration was carried out through a typed dialogue
in a workspace where each action and utterance was automatically logged. An excerpt
of a COCONUT dialogue is in Figure 1. A snapshot of the workspace for the COCONUT
experiments is in Figure 2.

In the experimental dialogues, the participants’ main goal is to negotiate the purchases;
the items of highest priority are a sofa for the living room and a table and four chairs for the
dining room. The participants also have specific secondary goals which further constrain
the problem solving task. Participants are instructed to try to meet as many of these
goals as possible, and are motivated to do so by rewards associated with satisfied goals.
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The secondary goals are: 1) match colors within a room, 2) buy as much furniture as you
can, 3) spend all your money. The participants are told which rewards are associated with
achieving each goal.

Each participant is given a separate budget (as shown in the mid-bottom section of
Figure 2) and an inventory of furniture (as shown in the upper-left section of Figure 2).
Furniture types include sofas, chairs, rugs and lamps, and the possible colors are red, green,
yellow or blue. Neither participant knows what is in the other’s inventory or how much
money the other has. By sharing information during the conversation, they can combine
their budgets and select furniture from each other’s inventories. Note that since a participant
does not know what furniture his partner has available until told, there is a menu (see the
mid-right section of Figure 2) that allows the participant to create furniture items based on
his partner’s description of the items available. The participants are equals and purchasing
decisions are joint. In the experiment, each set of participants solved one to three scenarios
with varying inventories and budgets. The problem scenarios varied task complexity by
ranging from tasks where items are inexpensive and the budget is relatively large, to tasks
where the items are expensive and the budget relatively small.

2.1 Discourse Entities and Object Descriptions in the Corpus

A discourse model is used to keep track of the objects discussed in a discourse. As an object
is described, the conversants relate the information about the object in the utterance to the
appropriate mental representation of the object in the discourse model (Karttunen, 1976;
Webber, 1978; Heim, 1983; Kamp & Reyle, 1993; Passonneau, 1996). The model contains
discourse entities, attributes and links between entities (Prince, 1981). A discourse entity
is a variable or placeholder that indexes the information about an object described in a
particular linguistic description to an appropriate mental representation of the object. The
discourse model changes as the discourse progresses. When an object is first described, a
discourse entity such as e; is added to the discourse model. As new utterances are produced,
additional discourse entities may be added to the model when new objects are described,
and new attributes may get associated with e; whenever it is redescribed. Attributes are not
always supplied by a noun phrase (NP). They may arise from other parts of the utterance
or from discourse inference relations that link to other discourse entities.

To illustrate the discourse inference relations relevant to COCONUT, in (1b) the green set
is an example of a new discourse entity which has a set/subset discourse inference relation
to the three distinct discourse entities for 2 $25 green chairs, 2 $100 green chairs and 1
$200 green table.

(1) a.: I have [2 $25 green chairs] and [a $200 green table].

b. : T have [2 $100 green chairs|. Let’s get [the green set].

A class inference relation exists when the referent of a discourse entity has a subsumption
relationship with a previous discourse entity. For example, in (2) the table and your green
one have a subsumption relationship.

(2)  Let’s decide on [the table] for the dining room. How about [your green one|?
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A common noun anaphora inference relation occurs in the cases of one anaphora and
null anaphora. For example, in (3) each of the marked NPs in the last part of the utterance
has a null anaphora relation to the marked NP in the first part. Note that this example
also has a class inference relation as well.

(3) I have [a variety of high tables| ,[green], [red] and [yellow] for 400, 300, and 200.

Discourse entities can also be related by predicative relationships such as is. For exam-
ple, in (4) the entities defined by my cheapest table and a blue one for $200 are not the
same discourse entities but the information about one provides more information about the
other. Note that this example also includes common noun anaphora and class inference
relations.

(4)  [My cheapest table] is [a blue one for $200].

An object description is any linguistic expression (usually an NP) that initiates the cre-
ation or update of a discourse entity for a furniture item, along with any explicit attributes
expressed within the utterance. We consider the attributes that are explicitly expressed
outside of an NP to be part of the object description since they can be realized either as
part of the noun phrase that triggers the discourse entity or elsewhere in the utterance.
Attributes that are inferred (e.g. quantity from “a” or “the”) help populate the discourse
entity but are not considered part of an object description since inferred attributes may
or may not reflect an explicit choice. The inferred attribute could be a side-effect of the

surface structure selected for realizing the object description.?

2.2 Corpus Annotations

After the corpus was collected, it was annotated by human coders for three types of
features: PROBLEM-SOLVING UTTERANCE LEVEL features as shown in Figure 3, DISCOURSE
UTTERANCE LEVEL features as illustrated in Figure 4 and DISCOURSE ENTITY LEVEL fea-
tures as illustrated in Figure 5. Some additional features are shown in Figure 6. Each of
the feature encodings shown are for the dialogue excerpt in Figure 1.

All of the features were hand-labelled on the corpus because it is a human-human corpus
but, as we will discuss further at the end of this section, many of these features would need
to be established by a system for its collaborative problem solving component to function
properly.

Looking first at Figure 6, it is the explicit attributes (as described in the previous
section) that are to be predicted by the models we are building and testing. The remaining
features are available as context for making the predictions.

The PROBLEM-SOLVING UTTERANCE LEVEL features in Figure 3 capture the problem
solving state in terms of the goals and actions that are being discussed by the conversants,
constraint changes that are implicitly assumed, or explicitly stated by the conversants, and
the size of the solution set for the current constraint equations. The solution set size for

3. While the same is true of some of the attributes that are explicitly expressed (e.g. “I” in subject position
expresses the ownership attribute), most of the attribute types of interest in the corpus are adjuncts
(e.g. “Let’s buy the chair [for $100].”).
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Utterance || Goal/ Introduce | Goal/ Change Solution
Action or Action in Size
Label continue | Identifier | Constraints
37 SelectOptionalltemLR | introduce | act4 drop color match | indeterminate
38 SelectOptionalltem introduce | actb color,price limit indeterminate
39 SelectOptionalltem continue actb none indeterminate
40 SelectOptionalltemLR | continue act4 none determinate
42 SelectOptionalltemLLR | continue act4 none determinate
43 SelectOptionalltemDR | continue | acth none indeterminate
44 SelectOptionalltemDR, | continue | acth none determinate
46 SelectOptionalltemDR, | continue | acth none determinate
47 SelectOptionalltemDR | continue act4 none determinate
SelectOptionalltemLR | continue | actb
48 SelectOptionalltemDR | continue actb none determinate
51 SelectOptionalltemDR, | continue actd, none determinate
SelectChairs introduce | act3
52 SelectOptionalltemLR | continue act4 none determinate

Figure 3: Problem solving utterance level annotations for utterances relevant to problem
solving goals and actions for the dialogue excerpt in Figure 1

Utterance || Influence Influence
on Listener on Speaker

37 ActionDirective | Offer

40 ActionDirective | Commit
42 ActionDirective | Commit
43 OpenOption nil

44 ActionDirective | Offer

46 ActionDirective | Commit
47 ActionDirective | Commit
48 ActionDirective | Commit
49 ActionDirective | Offer

51 ActionDirective | Offer

52 ActionDirective | Commit

Figure 4: Discourse utterance level annotations for utterances relevant to establishing joint
agreements for the dialogue excerpt in Figure 1

a constraint equation is characterized as being determinate if the set of values is closed
and represents that the conversants have shared relevant values with one another. An
indeterminate size means that the set of values in still open and so a solution cannot yet
be determined. The problem-solving features capture some of the situational or problem-
solving influences that may effect descriptions and indicate the task structure from which
the discourse structure can be derived (Terken, 1985; Grosz & Sidner, 1986). Each domain
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Utterance || Reference Discourse Attribute Argument
and Inference Values for Goal/Action
Coreference | Relations Identifier

37 initial ref-1 nil my,1,yellow,rug,150 actd

38 initial ref-2 nil your,furniture,100 acth

39 initial ref-3 class to ref-20 my,furniture,100 actd

40 corefers ref-1 | nil your,1,yellow,rug,150 | act4d

42 corefers ref-1 | nil my,1,rug,150 act4

43 initial ref-4 nil my,1,green,chair acth

44 corefers ref-4 | CNAnaphora ref-4 | my,100 acth

47 corefers ref-1 | nil your,1,yellow,rug act4

47 corefers ref-4 | nil your,1,green,chair acth

48 corefers ref-4 | nil my,1,green,chair,100 | acth

51 corefers ref-4 | nil 1,green,chair acth

51 initial ref-5 set of ref-12,ref-16 | chair act3

52 corefers ref-1 1,yellow rug actd

Figure 5: Discourse entity level annotations for utterances referring to furniture items i
Figure 1
Utterance || Speaker | Explicit Inferred Description
Attributes Attributes

37 G type,color,price,owner | quantity a yellow rug for 150 dollars
38 G type,color,price,owner furniture ... for 100 dollars
39 S type,price,owner furniture ... 100 dollars
40 S type,color,price,owner | quantity the yellow rug for $150
42 G type,price,owner quantity the rug for 150 dollars
43 G type,color,owner quantity a green chair
44 G price,owner [0] for 100 dollars
47 S type,color owner,quantity | the yellow rug
47 S type,color owner,quantity | the green chair
48 G type,color,price,owner | quantity the green 100 dollar chair
51 S type,color quantity the green chair
51 S type quantity the other chairs
52 S type,color quantity the yellow rug

Figure 6: Additional features for the dialogue excerpt in Figure 1

goal provides a discourse segment purpose so that each utterance that relates to a different
domain goal or set of domain goals defines a new segment.

The DISCOURSE UTTERANCE LEVEL features in Figure 4 encode the influence the ut-
terance is expected to have on the speaker and the listener as defined by the DAMSL
scheme (Allen & Core, 1997). These annotations also help capture some of the situational

influences that may effect descriptions. The possible influences on listeners include open

options, action directives and information requests. The possible influences on speakers are
offers and commitments. Open options are options that a speaker presents for the hearer’s
future actions, whereas with an action directive a speaker is trying to put a hearer under
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an obligation to act. There is no intent to put the hearer under obligation to act with
an open option because the speaker may not have given the hearer enough information to
act or the speaker may have clearly indicated that he does not endorse the action. Offers
and commitments are both needed to arrive at a joint commitment to a proposed action.
With an offer the speaker is conditionally committing to the action whereas with a commit
the speaker is unconditionally committing. With a commit, the hearer may have already
conditionally committed to the action under discussion, or the speaker may not care if the
hearer is also committed to the action he intends to do.

The DISCOURSE ENTITY LEVEL features in Figure 5 define the discourse entities that
are in the discourse model. Discourse entities, links to earlier discourse entities and the
attributes expressed previously for a discourse entity at the NP-level and utterance level
are inputs for an object description generator. Part of what is used to define the discourse
entities is discourse reference relations which include initial, coreference and discourse infer-
ence relations between different entities such as the links we described earlier; set/subset,
class, common noun anaphora and predicative. In addition, in order to link the expression
to appropriate problem solving actions, the action for which the entity is an argument is
also annotated. In order to test whether an acceptable object description is generated by
a model for a discourse entity in context, the explicit attributes used to describe the entity
are also annotated (recall Figure 6).

Which action an entity is related to helps associate entities with the correct parts of
the discourse structure and helps determine which problem-solving situations are relevant
to a particular entity. From the other discourse entity level annotations, initial represen-
tations of discourse entities and updates to them can be derived. For example, the initial
representation for “I have a yellow rug. It costs $150.” would include type, quantity, color
and owner following the first utterance. Only the quantity attribute is inferred. After the
second utterance the entity would be updated to include price.

The encoded features all have good inter-coder reliability as shown by the KAPPA values
given in Table 1 (Di Eugenio et al., 2000; Jordan, 2000b; Krippendorf, 1980). These values
are all statistically significant for the size of the labelled data set, as shown by the p-values
in the table.

Discourse | Reference Discourse Argument Attributes
Entity and Inference for Goal/
Level Coreference Relations Action
.863 .819 .857 .861
(z=19, p<.01) | (z=14, p<.01) | (z=16, p<.01) | (z=53, p<.01)
Problem | Introduce Continue Change in Solution Goal/Action
Solving Goal/Action | Goal/Action | Constraints Size
Utterance | .897 .857 .881 .8 .74
Level (z=8, p<.01) | (z=27, p<.01) | (z=11, p<.01) | (z=6, p<.01) | (z=12, p<.01)
Discourse | Influence Influence
Utterance | on Listener on Speaker
Level 72 72
(z=19, p<.01) | (z=13, p<.01)

Table 1: Kappa values for the annotation scheme
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While the availability of some of this annotated information in a dialogue system is
currently an ongoing challenge for today’s systems, a system that is to be a successful
dialogue partner in a collaborative problem solving dialogue, where all the options are not
known a priori, will have to model and update discourse entities, understand the current
problem solving state and what has been agreed upon, and be able to make, accept or reject
proposed solutions. Certainly, not all dialogue system domains and communicative settings
will need all of this information and likewise some of the information that is essential for
other domains and settings will not be necessary to engage in a COCONUT dialogue.

The experimental data consists of 393 non-pronominal object descriptions from 13 dia-
logues of the COCONUT corpus as well as features constructed from the annotations described
above. The next section explains in more detail how the annotations are used to construct
the features used in training the models.

3. Representing Models of Content Selection for Object Descriptions as
Features

In Section 1, we described how we would use the annotations on the COCONUT corpus to
construct feature sets motivated by theories of content selection for object descriptions.
Here we describe these theories in more detail, and present, with each theory, the feature
sets that are inspired by the theory. In Section 4 we explain how these features are used to
automatically learn a model of content selection for object descriptions. In order to be used
in this way, all of the features must be represented by continuous (numeric), set-valued, or
symbolic (categorial) values.

Models of content selection for object descriptions attempt to explain what motivates a
speaker to use a particular set of attributes to describe an object, both on the first mention
of an object as well as in subsequent mentions. In an extended discourse, speakers often
redescribe objects that were introduced earlier in order to say something more about the
object or the event in which it participates. We will test in part an assumption that many
of the factors relevant for redescriptions will also be relevant for initial descriptions.

All of the models described below have previously had rule-based implementations of
them tested on the COCONUT corpus and were all found to be nearly equally good at explain-
ing the redescriptions in the corpus (Jordan, 2000b). All of them share a basic assumption
about the speaker’s goal when redescribing a discourse entity already introduced into the
discourse model in prior conversation. The speaker’s primary goal is identification, i.e. to
generate a linguistic expression that will efficiently and effectively re-evoke the appropriate
discourse entity in the hearer’s mind. A redescription must be adequate for re-evoking the
entity unambiguously, and it must do so in an efficient way (Dale & Reiter, 1995). One
factor that has a major effect on the adequacy of a redescription is the fact that a discourse
entity to be described must be distinguished from other discourse entities in the discourse
model that are currently salient. These other discourse entities are called distractors. Char-
acteristics of the discourse entities evoked by the dialogue such as recency and frequency
of mention, relationship to the task goals, and position relative to the structure of the
discourse are hypothesized as means of determining which entities are mutually salient for
both conversants.

168



LEARNING CONTENT SELECTION RULES FOR GENERATING OBJECT DESCRIPTIONS

e what is mutually known: type-mk, color-mk, owner-mk, price-mk, quantity-mk

e reference-relation: one of initial, coref, set, class, cnanaphora, predicative

Figure 7: Assumed Familiarity Feature Set.

We begin the encoding of features for the object description generator with features
representing the fundamental aspects of a discourse entity in a discourse model. We divide
these features into two sets: the ASSUMED FAMILIARITY feature set and the INHERENT
feature set. The ASSUMED FAMILIARITY features in Figure 7 encode all the information
about a discourse entity that is already represented in the discourse model at the point
in the discourse at which the entity is to be described. These attributes are assumed to
be mutually known by the conversational participants and are represented by five boolean
features: type-mk, color-mk, owner-mk, price-mk, quantity-mk. For example, if type-mk has
the value of yes, this represents that the type attribute of the entity to be described is
mutually known.

Figure 7 also enumerates a reference-relation feature as described in Section 2 to encode
whether the entity is new (initial), evoked (coref) or inferred relative to the discourse
context. The types of inferences supported by the annotation are set/subset, class, common
noun anaphora (e.g. one and null anaphora), and predicative (Jordan, 2000b), which are
represented by the values (set,class,cnanaphora,predicative). These reference rela-
tions are relevant to both initial and subsequent descriptions.

e utterance-number, speaker-pair, speaker, problem-number

e attribute values:

— type: one of sofa, chair, table, rug, lamp, superordinate
— color: one of red, blue, green, yellow

— owner: one of self, other, ours

— price: range from $50 to $600

— quantity: range from 0 to 4.

Figure 8: INHERENT Feature Set: Task, Speaker and Discourse Entity Specific features.

The INHERENT FEATURES in Figure 8 are a specific encoding of particulars about the
discourse situation, such as the speaker, the task, and the actual values of the entity’s known
attributes (type, color, owner, price, quantity). We supply the values for the attributes in
case there are preferences associated with particular values. For example, there may be a
preference to include quantity, when describing a set of chairs, or price, when it is high.

The inherent features allow us to examine whether there are individual differences in
selection models (speaker, speaker-pair), or whether specifics about the attributes of the
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object, the location within the dialogue (utterance-number), and the problem difficulty
(problem-number) play significant roles in selecting attributes. The attribute values for an
entity are derived from annotated attribute features and the reference relations.

We don’t expect rules involving this feature set to generalize well to other dialogue
situations. Instead we expect them to lead to a SITUATION SPECIFIC model. Whenever
these features are used there is overfitting regardless of the training set size. Consider that
a particular speaker, speaker-pair or utterance number are specific to particular dialogues
and are unlikely to occur in another dialogue, even a new COCONUT dialogue. These feature
representations would have to be abstracted to be of value in a generator.

3.1 Dale and Reiter’s INCREMENTAL Model

Most computational work on generating object descriptions for subsequent reference (Ap-
pelt, 1985a; Kronfeld, 1986; Reiter, 1990; Dale, 1992; Heeman & Hirst, 1995; Lochbaum,
1995; Passonneau, 1996; van Deemter, 2002; Gardent, 2002; Krahmer, van Erk, & Verleg,
2003) concentrates on how to produce a minimally complex expression that singles out
the discourse entity from a set of distractors. The set of contextually salient distractors is
identified via a model of discourse structure as mentioned above. Dale and Reiter’s INCRE-
MENTAL model is the basis of much of the current work that relies on discourse structure
to determine the content of object descriptions for subsequent reference.

The most commonly used account of discourse structure for task-oriented dialogues is
Grosz and Sidner’s (1986) theory of the attentional and intentional structure of discourse.
In this theory, a data structure called a focus space keeps track of the discourse entities
that are salient in a particular context, and a stack of focus spaces is used to store the focus
spaces for the discourse as a whole. The content of a focus space and operations on the
stack of focus spaces is determined by the structure of the task. A change in task or topic
indicates the start of a new discourse segment and a corresponding focus space. All of the
discourse entities described in a discourse segment are classified as salient for the dialogue
participants while the corresponding focus space is on the focus stack. Approaches that use
a notion of discourse structure take advantage of this representation to produce descriptors
that are minimally complex given the current focus space, i.e. the description does not have
to be unambiguous with respect to the global discourse.

According to Dale and Reiter’s model, a descriptor containing information that is not
needed to identify the referent given the current focus space would not be minimally complex
but a small number of overspecifications that appear relative to the identification goal are
expected and can be explained as artifacts of cognitive processing limits. Trying to produce
a minimally complex description can be seen as an implementation of the two parts of
Grice’s Mazim of Quantity, according to which an utterance should both say as much as
is required, and no more than is required (Grice, 1975). Given an entity to describe and a
distractor set defined by the entities in the current focus space, the INCREMENTAL model
incrementally builds a description by checking a static ordering of attribute types and
selecting an attribute to include in the description if and only if it eliminates some of the
remaining distractors. As distractors are ruled out, they no longer influence the selection
process.
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e Distractor Frequencies: type-distractors, color-distractors, owner-distractors, price-distrac-
tors, quantity-distractors

e Attribute Saliency: majority-type, majority-type-freq, majority-color, majority-color-freq,
majority-price, majority-price-freq, majority-owner, majority-owner-freq, majority-quantity,
majority-quantity-freq

Figure 9: CONTRAST SET Feature Sets

A set of features called CONTRAST SET features are used to represent aspects of Dale
and Reiter’s model. See Figure 9. The goal of the encoding is to represent whether there
are distractors present in the focus space which might motivate the inclusion of a particular
attribute. First, the distractor frequencies encode how many distractors have an attribute
value that is different from that of the entity to be described.

The INCREMENTAL model also utilizes a preferred salience ordering for attributes and
eliminates distractors as attributes are added to a description. For example, adding the
attribute type when the object is a chair, eliminates any distractors that aren’t chairs. A
feature based encoding cannot easily represent a distractor set that changes as attribute
choices are made. To compensate, our encoding treats attributes instead of objects as
distractors so that the attribute saliency features encode which attribute values are most
salient for each attribute type, and a count of the number of distractors with this attribute
value. For example, if 5 of 8 distractors are red then majority-coloris red and the majority-
color-freq is 5. Taking the view of attributes as distractors has the advantage that the
preferred ordering of attributes can adjust according to the focus space. This interpretation
of Dale and Reiter’s model was shown to be statistically similar to the strict model but
with a higher mean match to the corpus (Jordan, 2000b). Thus our goal in adding these
additional features is to try to obtain the best possible performance for the INCREMENTAL
model.

Finally, an open issue with deriving the distractors is how to define a focus space (Walker,
1996a). As described above, Grosz and Sidner’s theory of discourse creates a data structure
called a focus space for each discourse segment, where discourse segments are based on the
intentions underlying the dialogue. However Grosz and Sidner provide no clear criterion
for assigning the segmentation structure. In order to explore what definition variations will
work best, we experiment with three focus space definitions, two very simple focus space
definitions based on recency, and the other based on intentional structure as described
below. To train and test for the three focus space definitions, we create separate datasets
for each of the three. To our knowledge, this is the first empirical comparison of Grosz and
Sidner’s model with a simpler model for any discourse-related task.

For intentional structure, we utilize the problem solving utterance features hand-labelled
on the COCONUT corpus with high reliability as discussed above in Section 2. The annotated
task goals are used to derive an intentional structure for the discourse, which provides a
segmentation of the discourse, as described by Grosz and Sidner (1986). The current focus
space as defined by the annotated task goals is used to define segment distractors. This
dataset we label as SEGMENT. For recency, one extremely simple focus space definition
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uses only the discourse entities from the most recent utterance as possible distractors. This
dataset we label as ONE UTTERANCE. The second extremely simple focus space definition
only considers the discourse entities from the last five utterances as possible distractors.
This dataset we label as FIVE UTTERANCE. For each dataset, the features in Figure 9 are
computed relative to the distractors determined by its focus space definition.

3.2 Jordan’s INTENTIONAL INFLUENCES Model

Jordan (2000b) proposed a model to select attributes for object descriptions for subse-
quent reference called the INTENTIONAL INFLUENCES model. This model posits that along
with the identification goal, task-related inferences and the agreement process for task ne-
gotiation are important factors in selecting attributes. Attributes that are not necessary
for identification purposes may be intentional redundancies with a communicative purpose
(Walker, 1996b) and not always just due to cognitive processing limits on finding minimally
complex descriptions (Jordan, 2000b).

A goal-directed view of sentence generation suggests that speakers can attempt to satisfy
multiple goals with each utterance (Appelt, 1985b). It suggests that this strategy also
applies to lower-level forms within the utterance (Stone & Webber, 1998). That is, the same
form can opportunistically contribute to the satisfaction of multiple goals. This many-one
mapping of goals to linguistic forms is more generally referred to as overloading intentions
(Pollack, 1991). Subsequent work has shown that this overloading can involve trade-offs
across linguistic levels. That is, an intention which is achieved by complicating a form at
one level may allow the speaker to simplify another level by omitting important information.
For example, a choice of clausal connectives at the pragmatic level can simplify the syntactic
level (Di Eugenio & Webber, 1996), and there are trade-offs in word choice at the syntax
and semantics levels (Stone & Webber, 1998).

The INTENTIONAL INFLUENCES model incorporates multiple communicative and prob-
lem solving goals in addition to the main identification goal in which the speaker intends
the hearer to re-evoke a particular discourse entity. The contribution of this model is that it
overloads multiple, general communicative and problem solving goals when generating a de-
scription. When the model was tested on the COCONUT corpus, inferences about changes in
the problem solving constraints, about conditional and unconditional commitments to pro-
posals, and about the closing of goals were all shown to be relevant influences on attribute
selection (Jordan, 2000a, 2002) while goals to verify understanding and infer informational
relations were not (Jordan, 2000b).4

The features used to approximate Jordan’s model are in Figure 10. These features cover
all of the general communicative and problem solving goals hypothesized by the model
except for the identification goal and the information relation goal. Because of the difficulty
of modelling an information relation goal with features, its representation is left to future
work.?

4. A different subset of the general goals covered by the model are expected to be influential for other
domains and communication settings, therefore a general object description generator would need to be
trained on a wide range of corpora.

5. Information relation goals may relate two arbitrarily distant utterances and additional details beyond
distance are expected to be important. Because this goal previously did not appear relevant for the
COCONUT corpus (Jordan, 2000b), we gave it a low priority for implementation.
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e task situation: goal, colormatch, colormatch-constraintpresence, pricelimit, pricelimit-con-
straintpresence, priceevaluator, priceevaluator-constraintpresence, colorlimit, colorlimit-con-
straintpresence, priceupperlimit, priceupperlimit-constraintpresence

e agreement state: influence-on-listener, commit-speaker, solution-size, prev-influence-on-lis-
tener, prev-commit-speaker, prev-solution-size, distance-of-last-state-in-utterances, distance-
of-last-state-in-turns, ref-made-in-prev-action-state, speaker-of-last-state, prev-ref-state

e previous agreement state description: prev-state-type-expressed, prev-state-color-expressed,
prev-state-owner-expressed, prev-state-price-expressed, prev-state-quantity-expressed

e solution interactions: color-contrast, price-contrast

Figure 10: Intentional Influences Feature Set.

The task situation features encode inferable changes in the task situation that are related
to item attributes, where colormatch is a boolean feature that indicates whether there has
been a change in the color match constraint. The pricelimit, colorlimit and priceupperlimit
features are also boolean features representing that there has been a constraint change
related to setting limits on values for the price and color attributes. The features with
constraintpresence appended to a constraint feature name are symbolic features that indicate
whether the constraint change was implicit or explicit. For example, if there is an agreed
upon constraint to try to select items with the same color value for a room, and a speaker
wants to relax that constraint then the feature colormatch would have the value yes. If the
speaker communicated this explicitly by saying “Let’s forget trying to match colors.” then
the constraintpresence feature would have the value explicit and otherwise it would have
the value implicit. If the constraint change is not explicitly communicated and the speaker
decides to include a color attribute when it is not necessary for identification purposes, it
may be to help the hearer infer that he means to drop the constraint

The agreement state features in Figure 10 encode critical points of agreement during
problem solving. Critical agreement states are (Di Eugenio et al., 2000):

e propose: the speaker offers the entity and this conditional commitment results in a
determinate solution size.

e partner decidable option: the speaker offers the entity and this conditional commit-
ment results in an indeterminate solution size.

e unconditional commit: the speaker commits to an entity.

e unendorsed option: the speaker offers the entity but does not show any commitment
to using it when the solution size is already determinate.

For example, if a dialogue participant is unconditionally committing in response to a
proposal, she may want to verify that she has the same item and the same entity de-
scription as her partner by repeating back the previous description. The features that
encode these critical agreement states include some DAMSL features (influence-on-listener,
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commit-speaker, prev-influence-on-listener, prev-commit-speaker), progress toward a solu-
tion (solution-size, prev-solution-size, ref-made-in-prev-action-state), and features inherent
to an agreement state (speaker-of-last-state, distance-of-last-state-in-utterances, distance-
of-last-state-in-turns). The features that make reference to a state are derived from the
agreement state features and a more extensive discourse history than can be encoded within
the feature representation. In addition, since the current agreement state depends in part
on the previous agreement state, we added the derived agreement state. The previous
agreement state description features in Figure 10 are booleans that capture dependencies
of the model on the content of the description from a previous state. For example, if the
previous agreement state for an entity expressed only type and color attributes then this
would be encoded yes for prev-state-type-expressed and prev-state-color-expressed and no
for the rest.

The solution interactions features in Figure 10 represent situations where multiple pro-
posals are under consideration which may contrast with one another in terms of solving
color-matching goals (color-contrast) or price related goals (price-contrast). When the
boolean feature color-contrast is true, it means that the entity’s color matches with the
partial solution that has already been agreed upon and contrasts with the alternatives that
have been proposed. In this situation, there may be grounds for endorsing this entity rel-
ative to the alternatives. For example, in response to S’s utterance [37] in Figure 1, in a
context where G earlier introduced one blue rug for $175, G could have said “Let’s use my
blue rug.” in response. In this case the blue rug would have a true value for color-contrast
because it has a different color than the alternative, and it matches the blue sofa that had
already been selected.

The boolean feature price-contrast describes two different situations. When the feature
price-contrast is true, it either means that the entity has the best price relative to the
alternatives, or when the problem is nearly complete, that the entity is more expensive
than the alternatives. In the first case, the grounds for endorsement are that the item is
cheaper. In the second case, it may be that the item will spend out the remaining budget
which will result in a higher score for the problem solution.

Note that although the solution interaction features depend upon the agreement states,
in that it is necessary to recognize proposals and commitments in order to identify alter-
natives and track agreed upon solutions, it is difficult to encode such extensive historical
information directly in a feature representation. Therefore the solution interaction features
are derived, and the derivation includes heuristics that use agreement state features for
estimating partial solutions. A sample encoding for the dialogue excerpt in Figure 1 for its
problem solving utterance level annotations and agreement states were given in Figures 3
and 4.

3.3 Brennan and Clark’s CONCEPTUAL PACT Model

Brennan and Clark’s CONCEPTUAL PACT model focuses on the bidirectional adaptation of
each conversational partner to the linguistic choices of the other conversational participant.
The CONCEPTUAL PACT model suggests that dialogue participants negotiate a description
that both find adequate for describing an object (Clark & Wilkes-Gibbs, 1986; Brennan
& Clark, 1996). The speaker generates trial descriptions that the hearer modifies based
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on which object he thinks he is suppose to identify. The negotiation continues until the
participants are confident that the hearer has correctly identified the intended object.

Brennan and Clark (1996) further point out that lexical availability, perceptual salience
and a tendency for people to reuse the same terms when describing the same object in a
conversation, all significantly shape the descriptions that people generate. These factors
may then override the informativeness constraints imposed by Grice’s Quantity Maxim.
Lexical availability depends on how an object is best conceptualized and the label associated
with that conceptualization (e.g. is the referent “an item of furniture” or “a sofa”). With
perceptual salience, speakers may include a highly salient attribute rather than just the
attributes that distinguish it from its distractors, e.g. “the $50 red sofa” when “the $50
sofa” may be informative enough. Adaptation to one’s conversational partner should lead
to a tendency to reuse a previous description.

The tendency to reuse a description derives from a combination of the most recent,
successfully understood description of the object, and how often the description has been
used in a particular conversation. However, this tendency is moderated by the need to
adapt a description to changing problem-solving circumstances and to make those repeated
descriptions even more efficient as their precedents become more established for a particular
pairing of conversational partners. Recency and frequency effects on reuse are reflections
of a coordination process between conversational partners in which they are negotiating a
shared way of labelling or conceptualizing the referent. Different descriptions may be tried
until the participants agree on a conceptualization. A change in the problem situation may
cause the conceptualization to be embellished with additional attributes or may instigate
the negotiation of a new conceptualization for the same referent.

The additional features suggested by this model include the previous description since
that is a candidate conceptual pact, how long ago the description was made, and how
frequently it was referenced. If the description was used further back in the dialogue or was
referenced frequently, that could indicate that the negotiation process had been completed.
Furthermore, the model suggests that, once a pact has been reached, that the dialogue
participants will continue to use the description that they previously negotiated unless the
problem situation changes. The continued usage aspect of the model is also similar to
Passonneau’s LEXICAL FOCUS model (Passonneau, 1995).

e interactions with other discourse entities: distance-last-ref, distance-last-ref-in-turns, number-
prev-mentions, speaker-of-last-ref, distance-last-related

e previous description: color-in-last-exp, type-in-last-exp, owner-in-last-exp, price-in-last-exp,
quantity-in-last-exp, type-in-last-turn, color-in-last-turn, owner-in-last-turn, price-in-last-
turn, quantity-in-last-turn, initial-in-last-turn

e frequency of attributes: freq-type-expressed, freq-color-expressed, freq-price-expressed, freq-
owner-expressed, freq-quantity-expressed

e stability history: cp-given-last-2, cp-given-last-3

Figure 11: CONCEPTUAL PACT Feature Set.
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The CONCEPTUAL PACT features in Figure 11 encode how the current description relates
to previous descriptions of the same entity. We encode recency information: when the entity
was last described in terms of number of utterances and turns (distance-last-ref, distance-
last-in-turns), when the last related description (e.g. set, class) was (distance-last-related),
how frequently it was described (number-prev-mentions), who last described it (speaker-of-
last-ref), and how it was last described in terms of turn and expression since the description
may have been broken into several utterances (color-in-last-exp, type-in-last-exp, owner-in-
last-exp, price-in-last-exp, quantity-in-last-exp, type-in-last-turn, color-in-last-turn, owner-
in-last-turn, price-in-last-turn, quantity-in-last-turn, initial-in-last-turn). We also encode
frequency information: the frequency with which attributes were expressed in previous
descriptions of it (freg-type-expressed, freq-color-expressed, freq-price-expressed, freq-owner-
expressed, freq-quantity-expressed), and a history of possible conceptual pacts that may
have been formed; the attribute types used to describe it in the last two and last three
descriptions of it if they were consistent across usages (cp-given-last-2, cp-given-last-3).

4. Experimental Method

The experiments utilize the rule learning program RIPPER (Cohen, 1996) to learn the content
selection component of an object description generator from the object descriptions in the
COCONUT corpus. Although any categorization algorithm could be applied to this problem
given the current formulation, RIPPER is a good match for this particular setup because
the if-then rules that are used to express the learned model can be easily compared with
the theoretical models of content selection described above. One drawback is that RIPPER
does not automatically take context into account during training so the discourse context
must be represented via features as well. Although it might seem desirable to use RIPPER’S
own previous predictions as additional context during training, since it will consider them
in practice, it is unnecessary and irrelevant to do so. The learned model will consist of
generation rules that are relative to what is in the discourse as encoded features (i.e. what
was actually said in the corpus) and any corrections it learns are only good for improving
performance on a static corpus.

Like other learning programs, RIPPER takes as input the names of a set of classes to be
learned, the names and ranges of values of a fixed set of features, and training data specifying
the class and feature values for each example in a training set. Its output is a classification
model for predicting the class of future examples. In RIPPER, the classification model is
learned using greedy search guided by an information gain metric, and is expressed as an
ordered set of if-then rules. By default RIPPER corrects for noisy data. In the experiments
reported here, unlike those reported by Jordan and Walker (2000), corrections for noisy
data have been suppressed since the reliability of the annotated features is high.

Thus to apply RIPPER, the object descriptions in the corpus are encoded in terms of a set
of classes (the output classification), and a set of input features that are used as predictors
for the classes. As mentioned above, the goal is to learn which of a set of content attributes
should be included in an object description. Below we describe how a class is assigned to
each object description, summarize the features extracted from the dialogue in which each
expression occurs, and the method applied to learn to predict the class of object description
from the features.
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N in Explicit attributes in

Class Name | Corpus object description
CPQ 64 Color, Price, Quantity
CPO 56 Color, Price, Owner
CPOQ 46 | Color, Price, Owner, Quantity
T 42 None (type only)

CP 41 Color, Price

0] 32 Owner

CcO 31 Color, Owner

C 18 Color

CQ 14 Color, Quantity
coQ 13 Color, Owner, Quantity
0oQ 12 Owner, Quantity
PO 11 Price, Owner

Q 5 Quantity

P 4 Price

PQ 2 Price, Quantity
POQ 2 Price, Owner, Quantity

Figure 12: Encoding of attributes to be included in terms of ML Classes, ordered by fre-
quency

4.1 Class Assignment

The corpus of object descriptions is used to construct the machine learning classes as
follows. The learning task is to determine the subset of the four attributes, color, price,
owner, quantity, to include in an object description. Thus one method for representing
the class that each object description belongs to is to encode each object description as
a member of the category represented by the set of attributes expressed by the object
description. This results in 16 classes representing the power set of the four attributes as
shown in Figure 12. The frequency of each class is also shown in Figure 12. Note that these
classes are encodings of the hand annotated explicit attributes that were shown in Figure 6
but exclude the type attribute since we are not attempting to model pronominal selections.

4.2 Feature Extraction

The corpus is used to construct the machine learning features as follows. In RIPPER, feature
values are continuous (numeric), set-valued, or symbolic. We encoded each discourse entity
for a furniture item in terms of the set of 82 total features described in Section 3 as inspired
by theories of content selection for subsequent reference. These features were either directly
annotated by humans as described in Section 2, derived from annotated features, or inherent
to the dialogue (Di Eugenio et al., 2000; Jordan, 2000b). The dialogue context in which
each description occurs is directly represented in the encodings. In a dialogue system, the
dialogue manager would have access to all these features, which are needed by the problem
solving component, and would provide them to the language generator. The entire feature
set is summarized in Figure 13.
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e Assumed Familiarity Features

mutually known attributes: type-mk, color-mk, owner-mk, price-mk, quantity-mk

reference-relation: one of initial, coref, set, class, cnanaphora, predicative

e Inherent Features

utterance-number, speaker-pair, speaker, problem-number
attribute values:

* type: one of sofa, chair, table, rug, lamp, superordinate

*

color: one of red, blue, green, yellow

owner: one of self, other, ours

*

*

price: range from $50 to $600

*

quantity: range from 0 to 4.

e Conceptual Pact Features

interactions with other discourse entities: distance-last-ref, distance-last-ref-in-turns, number-prev-men-
tions, speaker-of-last-ref, distance-last-related

previous description: color-in-last-exp, type-in-last-exp, owner-in-last-exp, price-in-last-exp, quantity-
in-last-exp, type-in-last-turn, color-in-last-turn, owner-in-last-turn, price-in-last-turn, quantity-in-last-
turn, initial-in-last-turn

frequency of attributes: freq-type-expressed, freq-color-expressed, freq-price-expressed, freq-owner-
expressed, freq-quantity-expressed

stability history: cp-given-last-2, cp-given-last-3

e Contrast Set Features

distractor frequencies: type-distractors, color-distractors, owner-distractors, price-distractors, quantity-
distractors

Attribute Saliency: majority-type, majority-type-freq, majority-color, majority-color-freq, majority-
price, majority-price-freq, majority-owner, majority-owner-freq, majority-quantity, majority-quantity-
freq

e Intentional Influences Features

Figure 13:

task situation: goal, colormatch, colormatch-constraintpresence, pricelimit, pricelimit-constraintpres-
ence, priceevaluator, priceevaluator-constraintpresence, colorlimit, colorlimit-constraintpresence, price-
upperlimit, priceupperlimit-constraintpresence

agreement state: influence-on-listener, commit-speaker, solution-size, prev-influence-on-listener, prev-
commit-speaker, prev-solution-size, distance-of-last-state-in-utterances, distance-of-last-state-in-turns,
ref-made-in-prev-action-state, speaker-of-last-state, prev-ref-state

previous agreement state description: prev-state-type-expressed, prev-state-color-expressed, prev-state-
owner-expressed, prev-state-price-expressed, prev-state-quantity-expressed

solution interactions: color-contrast, price-contrast

Full Feature Set for Representing Basis for Object Description Content Selection
in Task Oriented Dialogues.

4.3 Learning Experiments

The final input for learning is training data, i.e., a representation of a set of discourse
entities, their discourse context and their object descriptions in terms of feature and class
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values. In order to induce rules from a variety of feature representations, the training data
is represented differently in different experiments.

The goal of these experiments is to test the contribution of the features suggested by the
three models of object description content selection described in Section 3. Our prediction
is that the INCREMENTAL and the INTENTIONAL INFLUENCES models will work best in
combination for predicting object descriptions for both initial and subsequent reference.
This is because: (1) the INTENTIONAL INFLUENCES features capture nothing relevant to
the reference identification goal, which is the focus of the INCREMENTAL model, and (2) we
hypothesize that the problem solving state will be relevant for selecting attributes for initial
descriptions, and the INCREMENTAL model features capture nothing directly about the
problem solving state, but this is the focus of the INTENTIONAL INFLUENCES model. Finally
we expect the CONCEPTUAL PACT model to work best in conjunction with the INCREMENTAL
and the INTENTIONAL INFLUENCES models since it is overriding informativeness constraints,
and since, after establishing a pact, it may need to adapt the description to make it more
efficient or re-negotiate the pact as the problem-solving situation changes.

Therefore, examples are first represented using only the ASSUMED FAMILIARITY features
in Figure 7 to establish a performance baseline for assumed familiarity information. We
then add individual feature sets to the ASSUMED FAMILIARITY feature set to examine the
contribution of each feature set on its own. Thus, examples are represented using only the
features specific to a particular model, i.e. the CONCEPTUAL PACT features in Figure 11, the
CONTRAST SET features in Figure 9 or the INTENTIONAL INFLUENCES features in Figure 10.
Remember that there are three different versions of the CONTRAST SET features, derived
from three different models of what is currently “in focus”. One model (SEGMENT) is based
on intentional structure (Grosz & Sidner, 1986). The other two are simple recency based
models where the active focus space either contains only discourse entities from the most
recent utterance or the most recent five utterances (ONE UTTERANCE, FIVE UTTERANCE).

In addition to the theoretically-inspired feature sets, we include the task and dialogue
specific INHERENT features in Figure 8. These particular features are unlikely to produce
rules that generalize to other domains, including new COCONUT dialogues, because each
domain and pair of speakers will instantiate these values uniquely for a particular domain.
Thus, these features may indicate aspects of individual differences, and the role of the
specific situation in models of content selection for object descriptions.

Next, examples are represented using combinations of the features from the different
models to examine interactions between feature sets.

Finally, to determine whether particular feature types have a large impact (e.g. fre-
quency features), we report results from a set of experiments using singleton feature sets,
where those features that varied by attribute alone are clustered into sets while the rest
contain just one feature. For example, the distractor frequency attributes in Figure 9 form
a cluster for a singleton feature set whereas utterance-number is the only member of its
feature set. We experimented with singleton feature sets in order to determine if any are
making a large impact on the performance of the model feature set to which they belong.

The output of each machine learning experiment is a model for object description gen-
eration for this domain and task, learned from the training data. To evaluate these models,
the error rates of the learned models are estimated using 25-fold cross-validation, i.e. the to-
tal set of examples is randomly divided into 25 disjoint test sets, and 25 runs of the learning

179



JORDAN & WALKER

program are performed. Thus, each run uses the examples not in the test set for training
and the remaining examples for testing. An estimated error rate is obtained by averaging
the error rate on the test portion of the data from each of the 25 runs. For sample sizes in
the hundreds (the COCONUT corpus provides 393 examples), cross-validation often provides
a better performance estimate than holding out a single test set (Weiss & Kulikowski, 1991).
The major advantage is that in cross-validation all examples are eventually used for testing,
and almost all examples are used in any given training run.

5. Experimental Results

Table 2 summarizes the experimental results. For each feature set, and combination of
feature sets, we report accuracy rates and standard errors resulting from 25-fold cross-
validation. We test differences in the resulting accuracies using paired t-tests. The table
is divided into regions grouping results using similar feature sets. Row 1 provides the
accuracy for the MAJORITY CLASS BASELINE of 16.9%; this is the standard baseline that
corresponds to the accuracy achieved from simply choosing the description type that occurs
most frequently in the corpus, which in this case means that the object description generator
would always use the color, price and quantity attributes to describe a domain entity. Row
2 provides a second baseline, namely that for using the ASSUMED FAMILIARITY feature
set. This result shows that providing the learner with information about whether the
values of the attributes for a discourse entity are mutually known does significantly improve
performance over the MAJORITY CLASS BASELINE (t=2.4, p< .03). Examination of the rest
of the table shows clearly that the accuracy of the learned object description generator
depends on the features that the learner has available.

Rows 3 to 8 provide the accuracies of object description generators trained and tested
using one of the additional feature sets in addition to the FAMILIARITY feature set. Overall,
the results here show that compared to the FAMILIARITY baseline, the features for INTEN-
TIONAL INFLUENCES (FAMILIARITY,IINF t=10.0, p<.01), CONTRAST SET (FAMILIARITY,SEG
t=6.1, p< .01; FAMILIARITY,1UTT t=4.7, p< .01; FAMILIARITY,5UTT t=4.2, p< .01), and
CONCEPTUAL PACT (FAMILIARITY,CP t=6.2, p< .01) taken independently significantly im-
prove performance. The accuracies for the INTENTIONAL INFLUENCES features (Row 7) are
significantly better than for CONCEPTUAL PACT (t=5.2, p<.01) and the three parameteriza-
tions of the INCREMENTAL model (FAMILIARITY,SEG t=6, p<.01; FAMILIARITY,1UTT t=4.3,
p<.01; FAMILIARITY,5UTT t=4.2, p<.01), perhaps indicating the importance of a direct
representation of the problem solving state for this task.

In addition, interestingly, Rows 3, 4 and 5 show that features for the INCREMENTAL
model that are based on the three different models of discourse structure all perform equally
well, i.e. there are no statistically significant differences between the distractors predicted by
the model of discourse structure based on intention (SEG) and the two recency based models
(luTT, 5UTT), even though the raw accuracies for distractors predicted by the intention-
based model are typically higher.® The remainder of the table shows that the intention
based model only performs better than a recency based model when it is combined with all
features (Row 15 SEG vs. Row 16 1UTT t=2.1, p<.05).

6. This is consistent with the findings reported by Jordan (2000b) which used a smaller dataset to measure
which discourse structure model best explained the data for the INCREMENTAL model.
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Row Model Tested Feature Sets Used | Accuracy (SE)
1 BASELINE MAJORITY CLASS 16.9% (2.1)
2 BASELINE FAMILIARITY | 18.1% (2.1)
3 INCREMENTAL FAMILIARITY,SEG | 29.0% (2.2)
4 INCREMENTAL FAMILIARITY,1UTT | 29.0% (2.5)
5 INCREMENTAL FAMILIARITY,5UTT | 30.4% (2.6)
6 CONCEPTUAL PACT FAMILIARITY,CP | 28.9% (2.1)
7 INTENTIONAL INFLUENCES FAMILIARITY,IINF 42.4% (2.7)
8 SITUATION SPECIFIC FAMILIARITY,INH | 54.5% (2.3)
9 INTENTIONAL INFLUENCES,

INCREMENTAL FAMILIARITY,IINF,SEG | 46.6% (2.2)
10 INTENTIONAL INFLUENCES,
INCREMENTAL FAMILIARITY,IINF,1UTT | 42.7% (2.2)
11 INTENTIONAL INFLUENCES,
INCREMENTAL FAMILIARITY,IINF,5UTT 44.4% (2.6)
12 | ALL THEORY FEATURES COMBINED FAMILIARITY,IINF,CP,SEG 43.2% (2.8)
13 | ALL THEORY FEATURES COMBINED FAMILIARITY,IINF,CP,1UTT 40.9% (2.6)
14 | ALL THEORY FEATURES COMBINED FAMILIARITY,IINF,CP,5UTT 41.9% (3.2)
15 ALL THEORIES
& SITUATION SPECIFIC FAMILIARITY,IINF,INH,CP,SEG 59.9% (2.4)
16 ALL THEORIES
& SITUATION SPECIFIC | FAMILIARITY,IINF,INH,CP,1UTT 55.4% (2.2)
17 ALL THEORIES
& SITUATION SPECIFIC | FAMILIARITY,IINF,INH,CP,5UTT 57.6% (3.0)
18 BEST SINGLETONS FAMILIARITY,IINF,INH,CP,SEG 52.9% (2.9)
FROM ALL MODELS COMBINED
19 BEST SINGLETONS | FAMILIARITY,IINF,INH,CP,1UTT 47.8% (2.4)
FROM ALL MODELS COMBINED
20 BEST SINGLETONS | FAMILIARITY,IINF,INH,CP,5UTT 50.3% (2.8)
FROM ALL MODELS COMBINED

Table 2: Accuracy rates for the content selection component of a object description genera-
tor using different feature sets, SE = Standard Error. CP = the CONCEPTUAL PACT
features. IINF = the INTENTIONAL INFLUENCES features. INH = the INHERENT fea-
tures. SEG = the CONTRAST-SET, SEGMENT FOCUS SPACE features. 1UTT = the
CONTRAST SET, ONE UTTERANCE FOCUS SPACE features, 5UTT = the CONTRAST

Finally, the SITUATION SPECIFIC model based on the INHERENT feature set (Row 8)
which is domain, speaker and task specific performs significantly better than the FAMIL-
IARITY baseline (t=16.6, p< .01). It is also significantly better than any of the models
utilizing theoretically motivated features. It is significantly better than the INTENTIONAL
INFLUENCES model (t=5, p<.01), and the CONCEPTUAL PACT model (t=9.9, p<.01), as
well as the three parameterizations of the INCREMENTAL model (SEG t=10, p<.01; 1UTT

SET, FIVE UTTERANCE FOCUS SPACE features.

t=10.4, p<.01; SUTT t=8.8, p<.01).
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Say POQ if priceupperlimit-constraintpresence = IMPLICIT A reference-relation = class

Say COQ if goal = SELECTCHAIRS A colormatch-constraintpresence = IMPLICIT A prev-solution-size =
DETERMINATE A reference-relation = coref

Say COQ if goal = SELECTCHAIRS A distance-of-last-state-in-utterances >= 3 A speaker-of-last-state = SELF A
reference-relation = initial

Say COQ if goal = SELECTCHAIRS A prev-ref-state = STATEMENT A influence-on-listener = action-directive A
prev-solution-size = DETERMINATE

Say C if prev-commit-speaker = commit A influence-on-listener = action-directive A color-contrast = no A
speaker-of-last-state = SELF

Say C if color-contrast = yes A goal = SELECTTABLE A prev-influence-on-listener = action-directive A influence-
on-listener = na

Say C if solution-size = DETERMINATE A prev-influence-on-listener = na A prev-state-color-expressed = yes A
prev-state-price-expressed = na A prev-solution-size = DETERMINATE

Say CO if colorlimit = yes

Say CO if price-mk = yes A prev-solution-size = INDETERMINATE A price-contrast = yes A commit-speaker = na
Say CO if priceemk = yes A prev-ref-state = PARTNER-DECIDABLE-OPTION A distance-of-last-state-in-
utterances <= 1 A prev-state-type-expressed = yes

Say O if prev-influence-on-listener = open-option A reference-relation = coref

Say O if influence-on-listener = info-request A distance-of-last-state-in-turns <= 0

Say CP if solution-size = INDETERMINATE A price-contrast = yes A distance-of-last-state-in-turns >= 2

Say CP if distance-of-last-state-in-utterances <= 1 A goal = SELECTSOFA A influence-on-listener = na A
reference-relation = class

Say T if prev-solution-size = DETERMINATE A distance-of-last-state-in-turns <= 0 A prev-state-type-expressed
= yes A ref-made-in-prev-action-state = yes

Say T if prev-solution-size = DETERMINATE A colormatch-constraintpresence = EXPLICIT

Say T if prev-solution-size = DETERMINATE A goal = SELECTSOFA A prev-state-owner-expressed = na A
color-contrast = no

Say CPOQ if goal = SELECTCHAIRS A prev-solution-size = INDETERMINATE A price-contrast = no A type-mk
= no

Say CPOQ if distance-of-last-state-in-utterances >= 5 A type-mk = no

Say CPOQ if goal = SELECTCHAIRS A influence-on-listener = action-directive A distance-of-last-state-in-
utterances >= 2

Say CPO if influence-on-listener = action-directive A distance-of-last-state-in-utterances >= 2 A commit-speaker =
offer

Say CPO if goal = SELECTSOFA A distance-of-last-state-in-utterances >= 1

default Say CPQ

Figure 14: A Sampling of Rules Learned Using ASSUMED FAMILIARITY and INTENTIONAL
INFLUENCES Features. The classes encode the four attributes, e.g CPOQ =
Color,Price,Owner and Quantity, T = Type only

In Section 4.3, we hypothesized that the INCREMENTAL and INTENTIONAL INFLUENCES
models would work best in combination. Rows 9, 10 and 11 show the results of this com-
bination for each underlying model of discourse structure. Each of these combinations
provides some increase in accuracy, however the improvements in accuracy over the object
description generator based on the INTENTIONAL INFLUENCES features alone (Row 7) are
not statistically significant.

Figure 14 shows the rules that the object description generator learns given the As-
SUMED FAMILIARITY and INTENTIONAL INFLUENCES features. The rules make use of both
types of ASSUMED FAMILIARITY features and all four types of INTENTIONAL INFLUENCES
features. The features representing mutually known attributes and those representing the
attributes expressed in a previous agreement state can be thought of as overlapping with
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the CONCEPTUAL PACT model, while features representing problem-solving structure and
agreement state may overlap with the INCREMENTAL model by indicating what is in focus.
One of the rules from the rule set in Figure 14 is:

Say T if prev-solution-size = DETERMINATE A colormatch-constraintpresence
= EXPLICIT .

An example of a dialogue excerpt that matches this rule is shown in Figure 15. The
rule captures a particular style of problem solving in the dialogue in which the conversants
talk explicitly about the points involved in matching colors (we only get 650 points without
rug and bluematch in living room) to argue for including a particular item (rug). In this
case, because a solution had been proposed, the feature prev-solution-size has the value
determinate. So the rule describes those contexts in which a solution has been counter-
proposed, and support for the counter-proposal is to be presented.

D: T suggest that we buy my blue sofa 300, your 1 table high green 200, your 2 chairs red 50, my 2
chairs red 50 and you can decide the rest. What do you think

J: your 3 chair green my high table green 200 and my 1 chair green 100. your sofa blue 300 rug blue
250. we get 700 point. 200 for sofa in livingroom plus rug 10. 20 points for match. 50 points for
match in dining room plus 20 for spending all. red chairs plus red table costs 600. we only get 650
points without rug and bluematch in living room. add it up and tell me what you think.

Figure 15: Example of a discourse excerpt that matches a rule in the INTENTIONAL INFLU-
ENCES and ASSUMED FAMILIARITY rule set

Rows 12, 13 and 14 in Table 2 contain the results of combining the CONCEPTUAL PACT
features with the INTENTIONAL INFLUENCES features and the CONTRAST SET features.
These results can be directly compared with those in Rows 9, 10 and 11. Because rip-
per uses a heuristic search, the additional features have the effect of making the accuracies
for the resulting models lower. However, none of these differences are statistically signifi-
cant. Taken together, the results in Rows 9-14 indicate that the best accuracies obtainable
without using situation specific features (the INHERENT feature set), is the combination of
the INTENTIONAL INFLUENCES and CONTRAST SET features, with a best overall accuracy
of 46.6% as shown in Row 9.

Rows 15, 16 and 17 contain the results for combining all the features, including the
INHERENT feature set, for each underlying model of discourse structure. This time there is
one significant difference between the underlying discourse models in which the intention-
based model, SEGMENT, is significantly better than the ONE UTTERANCE recency model
(t=2.1, p<.05) but not the FIVE UTTERANCE recency model. Of the models in this group
only the SEGMENT model is significantly better than the models that use a subset of the
features (vs. INHERENT t=2.4, p<.03). Figure 16 shows the generation rules learned with
the best performing feature set shown in Row 15. Many task, entity and speaker specific
features from the INHERENT feature set are used in these rules. This rule set performs
at 59.9% accuracy, as opposed to 46.6% accuracy for the more general feature set (shown
in Row 9). In this final rule set, no CONCEPTUAL PACT features are used and removing
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Say Q if type=CHAIR A price>=200 A reference-relation=set A quantity>=2.

Say Q if speaker=GARRETT A color-distractors<=0 A type=CHAIR.

Say PO if color=unk A speaker-pair=GARRETT-STEVE A reference-relation=initial A color-contrast=no.

Say PO if majority-color-freq>=6 A reference-relation=set.

Say PO if utterance-number>=39 A type-distractors<=0 A owner=SELF A price>=100.

Say OQ if color=unk A quantity>=2 A majority-price-freq<=5.

Say OQ if prev-state-quantity-expressed=yes A speaker=JULIE A color=RED.

Say COQ if goal=SELECTCHAIRS A price-distractors<=3 A owner=SELF A distance-of-last-state-in-
utterances>=3 A majority-price<=200.

Say COQ if quantity>=2 A price<=-1 A ref-made-in-prev-action-state=no.

Say COQ if quantity>=2 A price-distractors<=3 A quantity-distractors>=4 A influence-on-listener=action-directive.
Say CQ if speaker-pair=DAVE-GREG A utterance-number>=22 A utterance-number<=27 A problem<=1.

Say CQ if problem>=2 A quantity>=2 A price<=-1.

Say CQ if color=YELLOW A quantity>=3 A influence-on-listener=action-directive A type=CHAIR.

Say C if price-mk=yes A majority-type=SUPERORDINATE A quantity-distractors>=3.

Say C if price-mk=yes A utterance-number<=21 A utterance-number>=18 A prev-state-price-expressed=na A
majority-price>=200 A color-distractors>=2.

Say CO if utterance-number>=16 A price<=-1 A type=CHAIR.

Say CO if price-mk=yes A speaker-pair=JILL-PENNY.

Say CO if majority-price<=75 A distance-of-last-state-in-utterances>=4 A prev-state-type-expressed=na.

Say O if color=unk A speaker-pair=GARRETT-STEVE.

Say O if color=unk A owner=OTHER A price<=300.

Say O if prev-influence-on-listener=open-option A utterance-number>=22.

Say CP if problem>=2 A quantity<=1 A type=CHAIR.

Say CP if price>=325 A reference-relation=class A distance-of-last-state-in-utterances<=0.

Say CP if speaker-pair=JON-JULIE A type-distractors<=1.

Say CP if reference-relation=set A owner=OTHER A owner-distractors<=0.

Say T if prev-solution-size=DETERMINATE A price>=250 A color-distractors<=5 A owner-distractors>=2 A
utterance-number>=15.

Say T if color=unk.

Say T if prev-state-type-expressed=yes A distance-of-last-state-in-turns<=0 A owner-distractors<=4.

Say CPOQ if goal=SELECTCHAIRS A prev-solution-size=INDETERMINATE.

Say CPOQ if speaker-pair=KATHY-MARK A prev-solution-size=INDETERMINATE A owner-distractors<=5.
Say CPOQ if goal=SELECTCHAIRS A influence-on-listener=action-directive A utterance-number<=22.

Say CPO if utterance-number>=11 A quantity<=1 A owner-distractors>=1.

Say CPO if influence-on-listener=action-directive A price>=150.

Say CPO if reference-relation=class A problem<=1.

default Say CPQ

Figure 16: A Sampling of the Best Performing Rule Set. Learned using the ASSUMED FA-
MILIARITY, INHERENT, INTENTIONAL INFLUENCES and CONTRAST SET feature
sets. The classes encode the four attributes, e.g., CPOQ = Color,Price,Owner
and Quantity, T = Type only.

these features during training had no effect on accuracy. All of the types of features in
the ASSUMED FAMILIARITY, INHERENT, and CONTRAST SET are used. Of the INTENTIONAL
INFLUENCES features, mainly the agreement state and previous agreement state descriptions
are used. Some possible explanations are that the agreement state is a stronger influence
than the task situation or that the task situation is not modelled well.

Why does the use of the INHERENT feature set contribute so much to overall accuracy
and why are so many INHERENT features used in the rule set in Figure 167 It may be that
the INHERENT features of objects would be important in any domain because there is a lot
of domain specific reasoning in the task of object description content selection. However,
these features are most likely to support rules that overfit to the current data set; as we
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have said before, rules based on the INHERENT feature set are unlikely to generalize to new
situations. However, there might be more general or abstract versions of these features
that could generalize to new situations. For example, the attribute values for the discourse
entity may be capturing aspects of the problem solving (e.g. near the end of the problem,
the price of expensive items is highly relevant). Second, the use of utterance-numbers can
be characterized as rules about the beginning, middle and end of a dialogue and may again
reflect problem solving progress. Third, the rules involving problem-number suggest that
the behavior for the first problem is different from the others and may reflect that the
dialogue partners have reached an agreement on their problem solving strategy. Finally,
the use of speaker-pair features in the rules included all but two of the possible speaker-
pairs, which may reflect differences in the agreements reached on how to collaborate. One
of the rules from this rule set is shown below:

Say CP if price >= 325 A reference-relation = class A distance-of-last-state-
in-utterances <= 0.

This rule applies to discourse entities in the dialogues of one speaker pair. An example
dialogue excerpt that matches this rule is in Figure 17. The rule reflects a particular style
of describing the items that are available to use in the problem solving, in which the speaker
first describes the class of the items that are about to be listed. This style of description
allows the speaker to efficiently list what he has available. The distance-of-last-state-in-
utterances feature captures that this style of description occurs before any proposals have
been made.

M: I have $550, my inventory consists of 2 Yellow hi-tables for $325 each. Sofas, yellow for $400
and green for $350.

Figure 17: Example of a dialogue excerpt that matches a rule in the best performing rule
set

As described above, we also created singleton feature sets, in addition to our theoreti-
cally inspired feature sets, to determine if any singleton features are, by themselves, making
a large impact on the performance of the model it belongs to. The singleton features shown
in Table 3 resulted in learned models that were significantly above the majority class base-
line. The last column of Table 3 also shows that, except for the ASSUMED FAMILIARITY and
INCREMENTAL 5UTT models, the theory model to which a particular singleton feature be-
longs is significantly better, indicating that no singleton alone is a better predictor than the
combined features in these theoretical models. The ASSUMED FAMILIARITY and INCREMEN-
TAL 5UTT models perform similarly to their corresponding single feature models indicating
that these single features are the most highly useful features for these two models.

Finally, we combined all of the singleton features in Table 3 to learn three additional
models shown in Rows 18, 19 and 20 of Table 2. These three models are not significantly
different from one another. The best performing model in Row 15, which combines all
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Source Features in Set Accuracy Better than | Source Model
Model (SE) BASELINE Better
ASSUMED FA- | type-mk, color-mk, owner-mk, | 18.1% (2.1) | t=2.4, p<.03 | identical
MILIARITY price-mk, quantity-mk
CONCEPTUAL | freq-type-expressed, freg-color- | 22.1% (1.8) | t=3.7, p<.01 | t=5.7, p<.01
PACT expressed, freq-price-expressed,
freq-owner-expressed, freq-
quantity-expressed
cp-given-last-2 20.9% (2.1) | t=3.9, p<.01 | t=4.3, p<.01
type-in-last-exp, color-in-last- | 18.9% (1.9) | t=2.8, p<.02 | t=5.7, p<.01
exp, price-in-last-exp, owner-in-
last-exp, quantity-in-last-exp

type-in-last-turn, color-in- | 18.1% (2.0) | t=34, p<.02 | t=6.4, p<.01

last-turn, price-in-last-turn,

owner-in-last-turn, quantity-in-

last-turn
INCREMENTAL| type-distractors, color- | 21.4% (2.5) | t=3.2, p<.01 | t=3.6, p<.01
SEG distractors,  price-distractors,

owner-distractors, quantity-

distractors

majority-type, majority-color, | 19.9% (2.3) | t=2.5, p<.02 | t=4.8, p<.01
majority-price, majority-owner,
majority-quantity

INCREMENTAL| type-distractors, color- | 20.8% (2.4) | t=3.2, p<.01 | t=3.2, p<.01
luTT distractors, price-distractors,

owner-distractors, quantity-

distractors
INCREMENTAL| type-distractors, color- | 25.7% (2.7) | t=4.4, p<.01 | t=1.5, NS
5UTT distractors, price-distractors,

owner-distractors, quantity-

distractors
INTENTIONAL | distance-of-last-state-in- 21.3% (2.0) | t=3.7, p<.01 | t=11, p<.01

INFLUENCES utterances
distance-of-last-state-in-turns 20.0% (2.1) | t=3.6, p<.01 | t=10.2, p<.01
colormatch 19.3% (2.2) | t=3.7, p<.01 | t=10.3, p<.01
prev-state-type-expressed, 19.2% (1.9) | t=3.6, p<.01 | t=8.8, p<.01
prev-state-color-expressed,
prev-state-owner-expressed,
prev-state-price-expressed,
prev-state-quantity-expressed
SITUATION type, color, price, owner, quan- | 24.3% (2.5) | t=4.1, p<.01 | t=12.5, p<.01
SPECIFIC tity
utterance-number 20.5% (2.3) | t=3.3, p<.01 | t=16.2, p<.01

Table 3: Performance using singleton feature sets, SE = Standard Error

features, is significantly better than 1UTT (t=4.2, p<.01) and 5UTT (t=2.8, p<.01) in Rows
19 and 20, but is not significantly different from SEG (t=2.0, NS) in Row 18. The combined
singletons SEG model (Row 18) is also not significantly different from the INHERENT model
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(Row 8). The combined singletons SEG model has the advantage that it requires just two
situation specific features and a smaller set of theoretical features.

Class recall | precision | fallout | F (1.00)
CPQ | 100.00 63.64 12.12 0.78
CPO 66.67 100.00 0.00 0.80
CPOQ | 100.00 100.00 0.00 1.00
T 50.00 100.00 0.00 0.67
CP | 100.00 100.00 0.00 1.00
O | 100.00 60.00 5.41 0.75
CcO 66.67 100.00 0.00 0.80
C 0.00 0.00 5.13 0.00
CcQ 0.00 100.00 0.00 0.00
COQ | 100.00 100.00 0.00 1.00
PO 50.00 100.00 0.00 0.67
oQ 66.67 50.00 5.41 0.57
Q 0.00 0.00 2.50 0.00
POQ 0.00 100.00 0.00 0.00
PQ 0.00 100.00 0.00 0.00

Table 4: Recall and Precision values for each class; the rows are ordered from most frequent

to least frequent class
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Table 5: Confusion matrix for a held-out test set; The row label indicates the class, while

the column indicates how the token was classified automatically.

Tables 4 and 5 show the recall and precision for each class and a sample confusion matrix
for one run of the best performing model with a held-out test-set consisting of 40 examples.
Table 4 shows that the overall tendency is for both recall and precision to be higher for
classes that are more frequent, and lower for the less frequent classes as one would expect.
Table 5 shows there aren’t any significant sources of confusion as the errors are spread out

across different classes.
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6. Discussion and Future Work

This article reports experimental results for training a generator to learn which attributes
of a discourse entity to include in an object description. To our knowledge, this is the
first reported experiment of a trainable content selection component for object description
generation in dialogue. A unique feature of this study is the use of theoretical work in
cognitive science on how speakers select the content of an object description. The theories we
used to inspire the development of features for the machine learner were based on Brennan
and Clark’s (1996) model, Dale and Reiter’s (1995) model and Jordan’s (2000b) model.
Because Dale and Reiter’s model relies on a model of discourse structure, we developed
features to represent Grosz and Sidner’s (1986) model of discourse structure, as well as
features representing two simple recency based models of discourse structure. The object
description generators are trained on the COCONUT corpus of task-oriented dialogues. The
results show that:

e The best performing learned object description generator achieves a 60% match to
human performance as opposed to a 17% majority class baseline;

e The ASSUMED FAMILIARITY feature set improves performance over the baseline;

e Features specific to the task, speaker and discourse entity (the inherent feature set)
provide significant performance improvements;

e The CONCEPTUAL PACT feature set developed to approximate Brennan and Clark’s
model of object description generation significantly improves performance over both
the baseline and ASSUMED FAMILIARITY;

e The CONTRAST SET features developed to approximate Dale and Reiter’s model sig-
nificantly improve performance over both the baseline and ASSUMED FAMILIARITY;

e The INTENTIONAL INFLUENCES features developed to approximate Jordan’s model
are the best performing theoretically-inspired feature set when taken alone, and the
combination of the INTENTIONAL INFLUENCES features with the CONTRAST SET fea-
tures is the best performing of the theoretically-based models. This combined model
achieves an accuracy of 46.6% as an exact match to human performance and holds
more promise of being general across domains and tasks than those that include the
inherent features.

e Tests using singleton feature sets from each model showed that frequency features and
the attributes last used have the most impact in the CONCEPTUAL PACT model, the
distractor set features are the most important for the INCREMENTAL models, and fea-
tures related to state have the biggest impact in the INTENTIONAL INFLUENCES model.
But none of these singleton features perform as well as the feature combinations in
the related model.

e A model consisting of a combination of the best singleton features from each of the
other models was not significantly different from the best learned object description
generator and achieved a 53% match to human performance with the advantage of
fewer situation specific features.
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Thus the choice to use theoretically inspired features is validated, in the sense that every
set of cognitive features improves performance over the baseline.

In previous work, we presented results from a similar set of experiments, but the best
model for object description generation only achieved an accuracy of 50% (Jordan & Walker,
2000). The accuracy improvements reported here are due to a number of new features that
we derived from the corpus, as well as a modification of the machine learning algorithm to
respect the fact that the training data for these experiments is not noisy.

It is hard to say how good our best-performing accuracy of 60% actually is as this is
one of the first studies of this kind. There are several issues to consider. First, the object
descriptions in the corpus may represent just one way to describe the entity at that point in
the dialogue, so that using human performance as a standard against which to evaluate the
learned object description generators provides an overly rigorous test (Oberlander, 1998;
Reiter, 2002). Furthermore, we do not know whether humans would produce identical object
descriptions given the same discourse situation. A previous study of anaphor generation
in Chinese showed that rates of match for human speakers averaged 74% for that problem
(Yeh & Mellish, 1997), and our results are comparable to that. Furthermore, the results
show that including features specific to speaker and attribute values improves performance
significantly. Our conclusion is that it may be important to quantify the best performance
that a human could achieve at matching the object descriptions in the corpus, given the
complete discourse context and the identity of the referent. In addition, the difficulty of
this problem depends on the number of attributes available for describing an object in the
domain; the object description generator has to correctly make four different decisions to
achieve an exact match to human performance. Since the COCONUT corpus is publicly
available, we hope that other researchers will improve on our results.

Another issue that must be considered is the extent to which these experiments can be
taken as a test of the theories that inspired the feature sets. There are several reasons to
be cautious in making such interpretations. First, the models were developed to explain
subsequent reference and not initial reference. Second, the feature sets cannot be claimed in
any way to be complete. It is possible that other features could be developed that provide
a better representation of the theories. Finally, RIPPER is a propositional learner, and
the models of object description generation may not be representable by a propositional
theory. For example, models of object description generation rely on a representation of
the discourse context in the form of some type of discourse model. The features utilized
here represent the discourse context and capture aspects of the discourse history, but these
representations are not as rich as those used by a rule-based implementation. However it
is interesting to note that whatever limitations these models may have, the automatically
trained models tested here perform better than the rule-based implementations of these
theoretical models, reported by Jordan (2000Db).

Another issue is the extent to which these findings might generalize across domains.
While this is always an issue for empirical work, one potential limitation of this study is
that Jordan’s model was explicitly developed to capture features specific to negotiation
dialogues such as those in the COCONUT corpus. Thus, it is possible that the features
inspired by that theory are a better fit to this data. Just as CONCEPTUAL PACT features are
less prominent for the COCONUT data and that data thus inspired a new model, we expect to
find that other types of dialogue will inspire additional features and feature representations.
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Finally, a unique contribution of this work is the experimental comparison of different
representations of discourse structure for the task of object description generation. We
tested three representations of discourse structure, one represented by features derived
from Grosz and Sidner’s model, and two recency based representations. One of the most
surprising results of this work is the finding that features based on Grosz and Sidner’s
model do not improve performance over extremely simple models based on recency. This
could be due to issues discussed by Walker (1996a), namely that human working memory
and processing limitations play a much larger role in referring expression generation and
interpretation than would be suggested by the operations of Grosz and Sidner’s focus space
model. However it could also be due to much more mundane reasons, namely that it
is possible (again) that the feature sets are not adequate representations of the discourse
structure model differences, or that the differences we found would be statistically significant
if the corpus were much larger. However, again the results on the discourse structure model
differences reported here confirm the findings reported by Jordan (2000b), i.e. it was also
true that the focus space model did not perform better than the simple recency models in
Jordan’s rule-based implementations.

In future work, we plan to perform similar experiments on different corpora with differ-
ent communications settings and problem types (e.g. planning, scheduling, designing) to
determine whether our findings are specific to the genre of dialogues that we examine here,
or whether the most general models can be applied directly to a new domain. Related to
this question of generality, we have created a binary attribute inclusion model using domain
independent feature sets but do not yet have a new annotated corpus upon which to test it.
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