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Abstract

This paper studies the problem of learning diagnostic policies from training examples. A
diagnostic policy is a complete description of the decision-making actions of a diagnostician
(i.e., tests followed by a diagnostic decision) for all possible combinations of test results.
An optimal diagnostic policy is one that minimizes the expected total cost, which is the
sum of measurement costs and misdiagnosis costs. In most diagnostic settings, there is a
tradeo� between these two kinds of costs.

This paper formalizes diagnostic decision making as a Markov Decision Process (MDP).
The paper introduces a new family of systematic search algorithms based on the AO� algo-
rithm to solve this MDP. To make AO� e�cient, the paper describes an admissible heuristic
that enables AO� to prune large parts of the search space. The paper also introduces several
greedy algorithms including some improvements over previously-published methods. The
paper then addresses the question of learning diagnostic policies from examples. When the
probabilities of diseases and test results are computed from training data, there is a great
danger of over�tting. To reduce over�tting, regularizers are integrated into the search al-
gorithms. Finally, the paper compares the proposed methods on �ve benchmark diagnostic
data sets. The studies show that in most cases the systematic search methods produce
better diagnostic policies than the greedy methods. In addition, the studies show that
for training sets of realistic size, the systematic search algorithms are practical on today's
desktop computers.

1. Introduction

A patient arrives at a doctor's o�ce complaining of symptoms such as fatigue, frequent
urination, and frequent thirst. The doctor performs a sequence of measurements. Some
of the measurements are simple questions (e.g., asking the patient's age, medical history,
family history of medical conditions), others are simple tests (e.g., measure body mass index,
blood pressure), and others are expensive tests (e.g., blood tests). After each measurement,
the doctor analyzes what is known so far and decides whether there is enough information
to make a diagnosis or whether more tests are needed. When making a diagnosis, the doctor
must take into account the likelihood of each possible disease and the costs of misdiagnoses.
For example, diagnosing a diabetic patient as healthy incurs the cost of aggravating the
patient's medical condition and delaying treatment; diagnosing a healthy patient as having
diabetes incurs the costs of unnecessary treatments. When the information that has been
gathered is su�ciently conclusive, the doctor then makes a diagnosis.
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We can formalize this diagnostic task as follows. Given a patient, the doctor can execute
a set of N possible measurements x1; : : : ; xN . When measurement xn is executed, the result
is an observed value vn. For example, if x1 is \patient's age", then v1 could be 36 (years).
Each measurement xn has an associated cost C(xn). The doctor also can choose one of K
diagnosis actions. Diagnosis action fk diagnoses the patient as su�ering from disease k. We
will denote the correct diagnosis of the patient by y. The misdiagnosis cost of predicting
disease k when the correct diagnosis is y is denoted by MC(fk; y).

The process of diagnosis consists of a sequence of decisions. In the starting state, no
measurements or diagnoses have been made. We denote this by the empty set fg. Suppose
that in this starting \knowledge state", the doctor chooses measurement x1 and receives
the result that x1 = 36 at a cost of $0.50. This is modeled as a transition to the knowledge
state fx1 = 36g with a cost of C(x1) = 0:5. Now suppose the doctor chooses x3, which
measures body mass index, and receives a result x3 = small at a cost of $1. This changes the
knowledge state to fx1 = 36; x3 = smallg at a cost of C(x3) = 1. Finally, the doctor makes
the diagnosis \healthy". Suppose that the correct diagnosis is y = diabetes. For illustrative
purposes,1 suppose that the cost of this misdiagnosis isMC(healthy; diabetes) = $100. The
diagnosis action terminates the process, with a total cost of :5 + 1 + 100 = 101:5.

We can summarize the decision-making process of the doctor in terms of a diagnostic

policy, �. The diagnostic policy speci�es for each possible knowledge state s, what action
�(s) to take, where the action can be one of the N measurement actions or one of the K
diagnosis actions. Every diagnostic policy has an expected total cost, which depends on
the joint probability distribution P (x1; : : : ; xN ; y) over the test results and the true disease
of the patients and on the costs C(xn) and MC(fk; y). The optimal diagnostic policy
minimizes this expected total cost by choosing the best tradeo� point between the cost of
performing more measurements and the cost of misdiagnosis. Every measurement gathers
information, which reduces the risk of a costly misdiagnosis. But every measurement incurs
a measurement cost.

Diagnostic decision making is most challenging when the costs of measurement and
misdiagnosis have similar magnitudes. If measurement costs are very small compared to
misdiagnosis costs, then the optimal diagnostic policy is to measure everything and then
make a diagnostic decision. Conversely, if misdiagnosis costs are very small compared to
measurement costs, then the best policy is to measure nothing and just diagnose based on
misdiagnosis costs and prior probabilities of the diseases.

Learning cost-sensitive diagnostic policies is important in many domains, from medicine
to automotive troubleshooting to network fault detection and repair (Littman et al., 2004).

We note that this formulation of optimal diagnosis assumes that all costs can be ex-
pressed on a single numerical scale, that, although it need not correspond to economic cost,
must support the principle of choosing actions by minimizing expected total cost. In medi-
cal diagnosis, there is a large body of work on methods for eliciting the patient's preferences
and summarizing them as a utility or cost function (e.g., Lenert & Soetikno, 1997).

This paper studies the problem of learning diagnostic policies from training examples.
We assume that we are given a representative set of complete training examples drawn from
P (x1; : : : ; xN ; y) and that we are told the measurement costs and misdiagnosis costs. This

1. The true cost of misdiagnosing diabetes would depend on the age of the patient and the degree of
progression of the disease, but in any case, it would probably be much higher than $100.
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kind of training data could be collected, for example, through a clinical trial in which all
measurements were performed on all patients. Because of the costs involved in collecting
such data, we assume that the training data sets will be relatively small (hundreds or a
few thousands of patients; not millions). The goal of this paper is to develop learning
algorithms for �nding good diagnostic policies from such modest-sized training data sets.
Unlike other work on test selection for diagnosis (Heckerman, Horvitz, & Middleton, 1993;
van der Gaag & Wessels, 1993; Madigan & Almond, 1996; Dittmer & Jensen, 1997), we do
not assume that a Bayesian network or inuence diagram is provided; instead we directly
learn a diagnostic policy from the data.

This framework of diagnosis ignores several issues that we hope to address in future
research. First, it assumes that each measurement action has no e�ect on the patient.
Each measurement action is a pure observation action. In real medical and equipment
diagnosis situations, some actions may also be attempted therapies or attempted repairs.
These repairs may help cure the patient or �x the equipment, in addition to gathering
information. Our approach does not handle attempted repair actions.

Second, this framework assumes that measurement actions are chosen and executed one-
at-a-time and that the cost of an action does not depend on the order in which the actions
are executed. This is not always true in medical diagnosis. For example, when ordering
blood tests, the physician can choose to order several di�erent tests as a group, which costs
much less than if the tests are ordered individually.

Third, the framework assumes that the result of each measurement action is available be-
fore the diagnostician must choose the next action. In medicine, there is often a (stochastic)
delay between the time a test is ordered and the time the results are available. Fragmentary
results may arrive over time, which may lead the physician to order more tests before all
previously-ordered results are available.

Fourth, the framework assumes that measurement actions are noise-free. That is, repeat-
ing a measurement action will obtain exactly the same result. Therefore once a measurement
action is executed, it never needs to be repeated.

Fifth, the framework assumes that the results of the measurements have discrete values.
We enforce this via a pre-processing discretization step.

These assumptions allow us to represent the doctor's knowledge state by the set of
partial measurement results: fx1 = v1; x3 = v3; : : :g and to represent the entire diagnostic
process as a Markov Decision Process (MDP). Any optimal solution to this MDP provides
an optimal diagnostic policy.

Given this formalization, there are conceptually two problems that must be addressed in
order to learn good diagnostic policies. First, we must learn the joint probability distribution
P (x1; : : : ; xN ; y). Second, we must solve the resulting MDP for an optimal policy.

In this paper, we begin by addressing the second problem. We show how to apply the
AO� algorithm to solve the MDP for an optimal policy. We de�ne an admissible heuristic
for AO� that allows it to prune large parts of the state space, so that this search becomes
more e�cient. This addresses the second conceptual problem.

However, instead of solving the �rst conceptual problem (learning the joint distribution
P (x1; : : : ; xN ; y)) directly, we argue that the best approach is to integrate the learning
process into the AO� search. There are three reasons to pursue this integration. First,
by integrating learning into the search, we ensure that the probabilities computed during
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learning are the probabilities relevant to the task. If instead we had just separately learned
some model of the joint distribution P (x1; : : : ; xN ; y), those probabilities would have been
learned in a task-independent way, and long experience in machine learning has shown that
it is better to exploit the task in guiding the learning process (e.g., Friedman & Goldszmidt,
1996; Friedman, Geiger, & Goldszmidt, 1997).

Second, by integrating learning into the search, we can introduce regularization methods
that reduce the risk of over�tting. The more thoroughly a learning algorithm searches the
space of possible policies, the greater the risk of over�tting the training data, which results in
poor performance on new cases. The main contribution of this paper (in addition to showing
how to model diagnosis as an MDP) is the development and careful experimental evaluation
of several methods for regularizing the combined learning and AO� search process.

Third, the integration of learning with AO� provides additional opportunities to prune
the AO� search and thereby improve the computational e�ciency of the learning process.
We introduce a pruning technique, called \statistical pruning", that simultaneously reduces
the AO� search space and also regularizes the learning procedure.

In addition to applying the AO� algorithm to perform a systematic search of the space of
diagnostic policies, we also consider greedy algorithms for constructing diagnostic policies.
These algorithms are much more e�cient than AO�, but we show experimentally that they
give worse performance in several cases. Our experiments also show that AO� is feasible on
all �ve diagnostic benchmark problems that we studied.

The remainder of the paper is organized as follows. First, we discuss the relationship
between the problem of learning minimum cost diagnostic policies and previous work in
cost-sensitive learning and diagnosis. In Section 3, we formulate this diagnostic learning
problem as a Markov Decision Problem. Section 4 presents systematic and greedy search
algorithms for �nding good diagnostic policies. In Section 5, we take up the question of
learning good diagnostic policies and describe our various regularization methods. Section 6
presents a series of experiments that measure the e�ectiveness and e�ciency of the various
methods on real-world data sets. Section 7 summarizes the contributions of the paper and
discusses future research directions.

2. Relationship to Previous Research

The problem of learning diagnostic policies is related to several areas of previous research
including cost-sensitive learning, test sequencing, and troubleshooting. We discuss each of
these in turn.

2.1 Cost-Sensitive Learning

The term \cost-sensitive learning" denotes any learning algorithm that is sensitive to one or
more costs. Turney (2000) provides an excellent overview. Cost-sensitive learning employs
classi�cation terminology in which a class is a possible outcome of the classi�cation process.
This corresponds in our case to the diagnosis. The forms of cost-sensitive learning most
relevant to our work concern methods sensitive to misclassi�cation costs, methods sensitive
to measurement costs, and methods sensitive to both kinds of costs.

Learning algorithms sensitive to misclassi�cation costs have received signi�cant atten-
tion. In this setting, the learning algorithm is given (at no cost) the results of all possible
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measurements, (v1; : : : ; vN ). It must then make a prediction ŷ of the class of the example,
and it pays a cost MC(ŷ; y) when the correct class is y. Important work in this setting
includes the papers of Breiman et al. (1984), Pazzani et al. (1994), Fawcett and Provost
(1997), Bradford et al. (1998), Domingos (Domingos, 1999), Zadrozny and Elkan (2001),
and Provost and Fawcett (2001).

A few researchers in machine learning have studied application problems in which there
is a cost for measuring each attribute (Norton, 1989; Nunez, 1991; Tan, 1993). In this
setting, the goal is to minimize the number of misclassi�cation errors while biasing the
learning algorithm in favor of less-expensive attributes. From a formal point of view, this
problem is ill-de�ned, because there is no explicit de�nition of an objective function that
trades o� the cost of measuring attributes against the number of misclassi�cation errors.
Nonetheless, several interesting heuristics were implemented and tested in these papers.

More recently, researchers have begun to consider both measurement and misclassi�-
cation costs (Turney, 1995; Greiner, Grove, & Roth, 2002). The objective is identical to
the one studied in this paper: to minimize the expected total cost of measurements and
misclassi�cations. Both algorithms learn from data as well.

Turney developed ICET, an algorithm that employs genetic search to tune parameters
that control a classi�cation-tree learning algorithm. Each classi�cation tree is built using
a criterion that selects attributes greedily, based on their information gain and estimated
costs. The measurement costs are adjusted in order to build di�erent classi�cation trees;
these trees are evaluated on an internal holdout set using the real measurement and misclas-
si�cation costs. The best set of measurement costs found by the genetic search is employed
to build the �nal classi�cation tree on the entire training data set.

Greiner et al.'s paper provides a PAC-learning analysis of the problem of learning an
optimal diagnostic policy|provided that the policy makes no more than L measurements,
where L is a �xed constant. Recall that N is the total number of measurements. They prove
that there exists an algorithm that runs in time polynomial in N , consumes a number of
training examples polynomial inN , and �nds a diagnostic policy that, with high probability,
is close to optimal. Unfortunately, the running time and the required number of examples is
exponential in L. In e�ect, their algorithm works by estimating, with high con�dence, the
transition probabilities and the class probabilities in states where at most L of the values
x1 = v1, . . . , xN = vN have been observed. Then the value iteration dynamic programming
algorithm is applied to compute the best diagnostic policy with at most L measurements.
In theory, this works well, but it is di�cult to convert this algorithm to work in practice.
This is because the theoretical algorithm chooses the space of possible policies and then
computes the number of training examples needed to guarantee good performance, whereas
in a real setting, the number of available training examples is �xed, and it is the space of
possible policies that must be adapted to avoid over�tting.

2.2 Test Sequencing

The �eld of electronic systems testing has formalized and studied a problem called the
test sequencing problem (Pattipati & Alexandridis, 1990). An electronic system is viewed
as being in one of K possible states. These states include one fault-free state and K � 1
faulty states. The relationship between tests (measurements) and system states is speci�ed
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as a binary diagnostic matrix which tells whether test xn detects fault fi or not. The
probabilities of the di�erent system states y are speci�ed by a known distribution P (y).

A test sequencing policy performs a series of measurements to identify the state of the
system. In test sequencing, it is assumed that the measurements are su�cient to determine
the system state with probability 1. The objective is to �nd the test sequencing policy that
achieves this while minimizing the expected number of tests. Hence, misdiagnosis costs are
irrelevant, because the test sequencing policy must guarantee zero misdiagnoses. Several
heuristics for AO� have been applied to compute the optimal test sequencing policy (Pat-
tipati & Alexandridis, 1990).

The test sequencing problem does not involve learning from examples. The required
probabilities are provided by the diagnostic matrix and the fault distribution P (y).

2.3 Troubleshooting

Another task related to our work is the task of troubleshooting (Heckerman, Breese, &
Rommelse, 1994). Troubleshooting begins with a system that is known to be functioning
incorrectly and ends when the system has been restored to a correctly-functioning state.
The troubleshooter has two kinds of actions: pure observation actions (identical to our mea-
surement actions) and repair actions (e.g., removing and replacing a component, replacing
batteries, �lling the gas tank, rebooting the computer, etc.). Each action has a cost, and
the goal is to �nd a troubleshooting policy that minimizes the expected cost of restoring
the system to a correctly-functioning state.

Heckerman et al. (1994, 1995) show that for the case where the only actions are pure
repair actions and there is only one broken component, there is a very e�cient greedy
algorithm that computes the optimal troubleshooting policy. They incorporate pure ob-
servation actions via a one-step value of information (VOI) heuristic. According to this
heuristic, they compare the expected cost of a repair-only policy with the expected cost of a
policy that makes exactly one observation action and then executes a repair-only policy. If
an observe-once-and-then-repair-only policy is better, they execute the chosen observation
action, obtain the result, and then again compare the best repair-only policy with the best
observe-once-and-then-repair-only policy. Below, we de�ne a variant of this VOI heuristic
and compare it to the other greedy and systematic search algorithms developed in this
paper.

Heckerman et al. consider only the case where the joint distribution P (x1; : : : ; xN ; y) is
provided by a known Bayesian network. To convert their approach into a learning approach,
they could �rst learn the Bayesian network and then compute the troubleshooting policy.
But we suspect that an approach that integrates the learning of probabilities into the
search for good policies|along the lines described in this paper|would give better results.
Exploring this question is an important direction for future research.

3. Formalizing Diagnosis as a Markov Decision Problem

The process of diagnosis is a sequential decision making process. After every decision, the
diagnostician must decide what to do next (perform another measurement, or terminate by
making a diagnosis). This can be modeled as a Markov Decision Problem (MDP).
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An MDP is a mathematical model for describing the interaction of an agent with an
environment. An MDP is de�ned by a set of states S (including the start state), an action set
A, the transition probabilities Ptr(s

0js; a) of moving from state s to state s0 after executing
action a, and the (expected immediate) costs C(s; a; s0) associated with these transitions.
Because the state representation contains all the relevant information for future decisions,
it is said to exhibit the Markov property.

A policy � maps states into actions. The value of a state s under policy �, V �(s), is the
expected sum of future costs incurred when starting in state s and following � afterwards
(Sutton & Barto, 1999, chapter 3). The value function V � of a policy � satis�es the following
recursive relationship, known as the Bellman equation for V �:

V �(s) =
X
s02S

Ptr(s
0js; �(s))�

�
C(s; �(s); s0) + V �(s0)

�
;8�;8s: (1)

This can be viewed as a one-step lookahead from state s to each of the next states s0 reached
after executing action �(s). Given a policy �, the value of state s can be computed from
the value of its successor states s0, by adding the expected costs of the transitions, then
weighting them by the transition probabilities.

Solving the MDP means �nding a policy with the smallest value. Such a policy is called
the optimal policy ��, and its value is the optimal value function V �. Value iteration is an
algorithm that solves MDPs by iteratively computing V � (Puterman, 1994).

The problem of learning diagnostic policies can be represented as an MDP. We �rst
de�ne the actions of this MDP, then the states, and �nally the transition probabilities and
costs. All costs are positive.

As discussed above, we assume that there are N measurement actions (tests) and K
diagnosis actions. Measurement action n (denoted xn) returns the value of attribute xn,
which we assume is a discrete variable with Vn possible values. Diagnosis action k (denoted
fk) is the act of predicting that the correct diagnosis of the example is k. An action
(measurement or diagnosis) is denoted by a.

In our diagnostic setting, a case is completely described by the results of all N measure-
ment actions and the correct diagnosis y: (v1; : : : ; vN ; y). In our framework, each case is
drawn independently according to an (unknown) joint distribution P (x1; : : : ; xN ; y). Once
a case is drawn, all the values de�ning it stay constant. Test xn reveals to the diagnostic
agent the value xn = vn of this case. As a consequence, once a case has been drawn, the
order in which the tests are performed does not change the values that will be observed.
That is, the joint distribution P (xi = vi; xj = vj) is independent of the order of the tests
xi and xj .

It follows that we can de�ne the state of the MDP as the set of all attribute-value pairs
observed thus far. This state representation has the Markov property because it contains all
relevant past information. There is a unique start state, s0 = fg, in which no attributes have
been measured. The set of all states S contains one state for each possible combination of
measured attributes, as found in the training data. Each training example provides evidence
for the reachability of 2N states. The set A(s) of actions executable in state s consists of
those attributes not yet measured plus all of the diagnosis actions.

We also de�ne a special terminal state sf . Every diagnosis action makes a transition to
sf with probability 1 (i.e., once a diagnosis is made, the task terminates). By de�nition, no
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actions are executable in the terminal state, and its value function is zero. Note that the
terminal state is always reached, because there are only �nitely-many measurement actions
after which a diagnosis action must be executed.

We now de�ne the transition probabilities and the immediate costs of the MDP. For
measurement action xn executed in state s, the result state will be s0 = s [ fxn = vng,
where vn is the observed value of xn. The expected cost of this transition is denoted C(xn),
since we assume it depends only on which measurement action xn is executed, and not on
the state in which it is executed nor the resulting value vn that is observed. The probability
of this transition is Ptr(s

0js; xn) = P (xn = vnjs).

The misdiagnosis cost of diagnosis action fk depends on the correct diagnosis y of the
example. Let MC(fk; y) be the misdiagnosis cost of guessing diagnosis k when the correct
diagnosis is y. Because the correct diagnosis y of an example is not part of the state
representation, the cost of a diagnosis action (which depends on y) performed in state s
must be viewed as a random variable whose value is MC(fk; y) with probability P (yjs),
which is the probability that the correct diagnosis is y given the current state s. Hence,
our MDP has a stochastic cost function for diagnosis actions. This does not lead to any
di�culties, because all that is required to compute the optimal policy for an MDP is the
expected cost of each action. In our case, the expected cost of diagnosis action fk in state s
is

C(s; fk) =
X
y

P (yjs) �MC(fk; y); (2)

which is independent of y.

For uniformity of notation, we will write the expected immediate cost of action a in
state s as C(s; a), where a can be either a measurement action or a diagnosis action.

For a given start state s0, the diagnostic policy � is a decision tree (Rai�a, 1968).
Figure 1 illustrates a simple example of a diagnostic policy. The root is the starting state
s0 = fg. Each node is labeled with a state s and a corresponding action �(s). If the action
is a measurement action, xn, the possible results are the di�erent possible observed values
vn, leading to children nodes. If the action is a diagnosis action, fk, the possible results are
the diagnoses y. If �(s) is a measurement action, the node is called an internal node, and if
�(s) is a diagnosis action, the node is called a leaf node. Each branch in the tree is labeled
with its probability of being followed (conditioned on reaching its parent node). Each node
s is labeled with V �(s), the expected total cost of executing the diagnostic policy starting
at node s. Notice that the value of a leaf is the expected cost of diagnosis, C(s; fk).

The fact that a diagnostic policy is a decision tree is potentially confusing, because a
similar data structure, the classi�cation tree (often also called a decision tree), has been
the focus of so much work in the machine learning literature (e.g., Quinlan, 1993). It
is important to remember that whereas the evaluation criterion for a classi�cation tree
is the misclassi�cation error rate, the evaluation criterion for a decision tree diagnostic

policy is the expected total cost of diagnosis. One way of clarifying this di�erence is to
note that a given classi�cation tree can be transformed into many equivalent classi�cation
trees by changing the order in which the tests are performed (see Utgo�'s work on tree
manipulation operators, Utgo�, 1989). These equivalent classi�ers all implement the same
classi�cation function y = f(x1; : : : ; xN ). But if we consider these \equivalent" trees as
diagnostic policies, they will have di�erent expected total diagnosis costs, because tests
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Figure 1: An example of diagnostic policy � for diabetes. Body Mass Index (BMI) is tested
�rst. If it is small, a Healthy diagnosis is made. If BMI is large, Insulin is tested
before making a diagnosis. The costs of measurements (BMI and Insulin) are
written below the name of the variable. The costs of misdiagnoses are written
next to the solid squares. Probabilities are written on the branches. The values
of the states are written below each state. The value of the start state, V �(s0) =
28:99, can be computed in a single sweep, starting at the leaves, as follows. First
the expected costs of the diagnosis actions are computed (e.g., the upper-most
Diabetes diagnosis action has an expected cost of 0:7� 0 + 0:3� 80 = 24). Then
the value of the Insulin subtree is computed as the cost of measuring Insulin
(22.78) + 0:8 � 24 + 0:2 � 20 = 45:98. Finally, the value of the whole tree is
computed as the cost of measuring BMI (1) + 0:5� 45:98 + 0:5 � 10 = 28:99.
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Figure 2: Another diagnostic policy �2, making the same classi�cation decisions as � in
Figure 1, but with a changed order of tests, and therefore with a di�erent policy
value.

closer to the root of the tree will be executed more often, so their measurement costs will
make a larger contribution to the total diagnosis cost. For example, the policy � in Figure 1
�rst performs a cheap test, BMI. This policy has a value of 28:99. The tree �2 in Figure 2
makes the same classi�cation decisions (with an error rate of 19%), but it �rst tests Insulin,
which is more expensive, and this increases the policy value to 40:138.
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4. Searching for Good Diagnostic Policies

We now consider systematic and greedy search algorithms for computing diagnostic policies.
In this section, we will assume that all necessary probabilities are known. We defer the
question of learning those probabilities to Section 5. We note that this is exactly what all
previous uses of AO� have done. They have always assumed that the required probabilities
and costs were known.

Given the MDP formulation of the diagnostic process, we could proceed by constructing
the entire state space and then applying dynamic programming algorithms (e.g., value
iteration or policy iteration) to �nd the optimal policy. However, the size of the state space
is exponential: given N measurement actions, each with V possible outcomes, there are (V +
1)N +1 states in the MDP (counting the special terminal state sf , and taking into account
that each measurement may not have been performed yet). We seek search algorithms that
only consider a small fraction of this huge space. In this section, we will study two general
approaches to dealing with this combinatorial explosion of states: systematic search using
the AO� algorithm and various greedy search algorithms.

4.1 Systematic Search

When an MDP has a unique start state and no (directed) cycles, the space of policies can
be represented as an AND/OR graph (Qi, 1994; Washington, 1997; Hansen, 1998). An
AND/OR graph is a directed acyclic graph that alternates between two kinds of nodes:
AND nodes and OR nodes. Each OR node represents a state s in the MDP state space.
Each child of an OR node is an AND node that represents one possible action a executed
in state s. Each child of an AND node is an OR node that represents a state s0 that results
from executing action a in state s. Figure 3 shows an example of an AND/OR graph for a
diabetes diagnosis problem with three tests (BMI, Glucose, and Insulin) and two diagnosis
actions (Diabetes and Healthy).

In our diagnostic setting, the root OR node corresponds to the starting state s0 = fg.
Each OR node s has one AND child (s; xn) for each measurement action (test) xn that can
be executed in s. Each OR node could also have one child for each possible diagnosis action
fk that could be performed in s, but to save time and memory, we include only the one
diagnosis action fk that has the minimum expected cost. We will denote this by fbest. Each
time an OR node is created, an AND child for fbest is created immediately. This leaf AND
node stores the action-value function Q(s; fbest) = C(s; fbest). Note that multiple paths
from the root may lead to the same OR node, by changing the order of the tests.

In our implementation, each OR node stores a representation of the state s, a current
policy �(s) which speci�es a test or a diagnosis action, and a current value function V �(s).
Each AND node (s; xn) stores a probability distribution over the outcomes of xn, and an
action-value function Q�(s; xn), the expected cost of measuring xn and then continuing
with policy �.

Every possible policy � corresponds to a subtree of the full AND/OR graph. Each
OR node s in this subtree (starting at the root) contains only the one AND child (s; a)
corresponding to the action a = �(s) chosen by policy �.

The AO� algorithm (Nilsson, 1980) computes the optimal policy for an AND/OR graph.
AO� is guided by a heuristic function. We describe the heuristic function in terms of state-
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Figure 3: An example of an AND/OR graph. The root OR node corresponds to the state
s0 = fg. There is a child AND node for each of the test actions (BMI, Glucose
and Insulin), and also for the diagnosis actions (Healthy and Diabetes). The
choice of the BMI test in the root node leads to the AND node (s0; BMI), which
speci�es the expectation over the outcomes of the test BMI (small and large).
If BMI is small, the child of AND node (s0; BMI) is the OR node with state
fBMI = smallg; in this OR node, there is a choice among the actions Healthy,
Diabetes, Glucose and Insulin.

action pairs, h(s; a), instead of in terms of states. The heuristic function is admissible if
h(s; a) � Q�(s; a) for all states s and actions a. This means that h underestimates the
total cost of executing action a in state s and following the optimal policy afterwards. The
admissible heuristic allows the AO� algorithm to safely ignore an action a0 if there is another
action a for which it is known that Q�(s; a) < h(s; a0). Under these conditions, (s; a0) cannot
be part of any optimal policy.

The AO� search begins with an AND/OR graph containing only the root node. It then
repeats the following steps: In the current best policy, it selects an AND node to expand; it
expands it (expanding an AND node creates its children OR nodes); and then it recomputes
(bottom-up) the optimal value function and policy of the revised graph. The algorithm
terminates when the best policy has no unexpanded AND nodes (in other words, the leaf
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Figure 4: Qopt(s; x) for unexpanded AND node (s; x) is computed using one-step lookahead
and hopt to evaluate the resulting states s0. x is an attribute not yet measured in
state s, and v is one of its values.

OR nodes of the policy specify diagnosis actions, so this policy is a complete diagnostic
policy).

During AO� search, we maintain two policies, whose actions and value functions are
stored in the nodes of the AND/OR graph. We call the �rst policy the optimistic policy,
�opt. As we show below, its value function V opt is a lower bound on the optimal value
function V �. This is the policy that appears in Nilsson's original description of AO�, and
it provides enough information to compute an optimal policy �� (Martelli & Montanari,
1973). During the search, the optimistic policy �opt is an incomplete policy, because it
includes some unexpanded AND nodes; when �opt becomes a complete policy, it is in fact
an optimal policy.

The second policy that we maintain is called the realistic policy, �real. We will show
that its value function, V real, is an upper bound on the optimal value function V �. The
realistic policy is always a complete policy, so it is executable after each iteration of AO�.
By maintaining the realistic policy, AO� becomes an anytime algorithm.

We now de�ne these two policies in more detail and introduce our admissible heuristic.

4.1.1 Admissible Heuristic

Our admissible heuristic provides an optimistic estimate, Qopt(s; x), of the expected cost
of an unexpanded AND node (s; x). It is based on an incomplete two-step lookahead search
(see Figure 4). The �rst step of the lookahead search computes Qopt(s; x) = C(s; x) +P

s0 Ptr(s
0js; x) � hopt(s0). Here s0 iterates over the states resulting from measuring test x.

The second step of the lookahead is de�ned by the function hopt(s0) = mina02A(s0) C(s
0; a0);

which is the minimum over the cost of the diagnosis action fbest and the cost of each of the
remaining tests x0 in s0. That is, rather than considering the states s00 that would result from
measuring x0, we only consider the cost of measuring x0 itself. It follows immediately that
hopt(s0) � V �(s0);8s0, because C(s0; x0) � Q�(s0; x0) = C(s0; x0) +

P
s00 Ptr(s

00js0; x0) � V �(s00).
The key thing to notice is that the cost of a single measurement x0 is less than or equal to
the cost of any policy that begins by measuring x0, because the policy must pay the cost
of at least one more action (diagnosis or measurement) before entering the terminal state
sf . Consequently, Qopt(s; x) � Q�(s; x), so Qopt is an admissible heuristic for state s and
action x.
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4.1.2 Optimistic Values and Optimistic Policy

The de�nition of the optimistic action-value value Qopt can be extended to all AND nodes
in the AND/OR graph through the following recursion:

Qopt(s; a) =

8><
>:

C(s; a), if a = fk (a diagnosis action)
C(s; a) +

P
s0 Ptr(s

0js; a) � hopt(s0), if (s; a) is unexpanded
C(s; a) +

P
s0 Ptr(s

0js; a) � V opt(s0), if (s; a) is expanded,
(3)

where V opt(s)
def
= mina2A(s)Q

opt(s; a). Recall that A(s) consists of all attributes not yet
measured in s and all diagnosis actions.

The optimistic policy is �opt(s) = argmina2A(s)Q
opt(s; a): Every OR node s stores its

optimistic value V opt(s) and policy �opt(s), and every AND node (s; a) stores Qopt(s; a).
Theorem 4.1 proves that Qopt and V opt form an admissible heuristic. The proofs for all
theorems in this paper appear in the thesis of Bayer-Zubek (2003).

Theorem 4.1 For all states s and all actions a 2 A(s), Qopt(s; a) � Q�(s; a); and V opt(s) �
V �(s):

4.1.3 Realistic Values and Realistic Policy

In the current graph constructed by AO�, suppose that we delete all unexpanded AND
nodes (s; a). We call the resulting graph the realistic graph, because every leaf node will
select a diagnosis action. The optimal policy computed from this graph is called the realistic
policy, �real. It is a complete policy leaves specify diagnosis actions of minimum expected
misdiagnosis cost.

Every OR node s stores the realistic value V real(s) and policy �real(s), and every AND
node (s; a) stores a realistic action-value value, Qreal(s; a). For a 2 A(s), de�ne

Qreal(s; a) =

8><
>:

C(s; a), if a = fk (a diagnosis action)
C(s; a) +

P
s0 Ptr(s

0js; a) � V real(s0), if (s; a) is expanded
ignore, if (s; a) is unexpanded

(4)

and V real(s) = mina2A0(s)Q
real(s; a); where the set A0(s) is A(s) without the unex-

panded actions. The realistic policy is �real(s) = argmina2A0(s)Q
real(s; a):

Theorem 4.2 The realistic value function V real is an upper bound on the optimal value

function: V �(s) � V real(s);8s:

4.1.4 Selecting a Node for Expansion

In the current optimistic policy �opt, we choose to expand the unexpanded AND node
(s; �opt(s)) with the largest impact on the root node. This is de�ned as

argmax
s

[V real(s)� V opt(s)] � Preach(sj�
opt);

where Preach(sj�
opt) is the probability of reaching state s from the start state while following

policy �opt. The di�erence V real(s) � V opt(s) is an upper bound on how much the value
of state s could change if �opt(s) is expanded.
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The rationale for this selection is based on the observation that AO� terminates when
V opt(s0) = V real(s0). Therefore, we want to expand the node that makes the biggest step
toward this goal.

4.1.5 Our Implementation of AO� (High Level)

Our implementation of AO� is the following:

repeat

select an AND node (s; a) to expand (using �opt; V opt; V real).
expand (s; a).

do bottom-up updates of Qopt; V opt; �opt and of Qreal; V real; �real.
until there are no unexpanded nodes reachable by �opt.

The updates of value functions are based on one-step lookaheads (Equations 3 and 4), us-
ing the value functions of the children. At each iteration, we start from the newly expanded
AND node (s; a), compute its Qopt(s; a) and Qreal(s; a), then compute V opt(s); �opt(s),
V real(s); and �real(s) in its parent OR node, and propagate these changes up in the
AND/OR graph all the way to the root. Full details on our implementation of AO� appear
in the thesis of Bayer-Zubek (2003).

As more nodes are expanded, the optimistic values V opt increase, becoming tighter lower
bounds to the optimal values V �, and the realistic values V real decrease, becoming tighter
upper bounds. V opt and V real converge to the value of the optimal policy: V opt(s) =
V real(s) = V �(s), for all states s reached by ��.

The admissible heuristic avoids exploring expensive parts of the AND/OR graph; indeed,
when V real(s) < Qopt(s; a), action a does not need to be expanded (this is a heuristic

cuto�). Initially, V real(s) = C(s; fbest), and this explains why measurement costs that are
large relative to misdiagnosis costs produce many cuto�s.

4.2 Greedy Search

Now that we have considered the AO� algorithm for systematic search, we turn our attention
to several greedy search algorithms for �nding good diagnostic policies. Greedy search
algorithms grow a decision tree starting at the root, with state s0 = fg. Each node in the
tree corresponds to a state s in the MDP, and it stores the corresponding action a = �(s)
chosen by the greedy algorithm. The children of node s correspond to the states that result
from executing action a in state s. If a diagnosis action fk is chosen in state s, then the
node has no children in the decision tree (it is a leaf node).

All of the greedy algorithms considered in this paper share the same general template,
which is shown as pseudo-code in Table 1. At each state s, the greedy algorithm performs
a limited lookahead search and then commits to the choice of an action a to execute in
s, which thereby de�nes �(s) = a. It then generates child nodes corresponding to the
states that could result from executing action a in state s. The algorithm is then invoked
recursively on each of these child nodes.

Once a greedy algorithm has committed to xn = �(s), that choice is �nal. Note however,
that some of our regularization methods may prune the policy by replacing a measurement
action (and its descendents) with a diagnosis action. In general, greedy policies are not
optimal, because they do not perform a complete analysis of the expected total cost of
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Table 1: The Greedy search algorithm. Initially, the function Greedy() is called with the
start state s0.

function Greedy(state s) returns a policy � (in the form of a decision tree).

(1) if (stopping conditions are not met)
(2) select measurement action xn to execute

set �(s) := xn
for each resulting value vn of the test xn add the subtree

Greedy(state s [ fxn = vng)
else

(3) select diagnosis action fbest, set �(s) := fbest:

executing xn in s before committing to an action. Nevertheless, they are e�cient because
of their greediness.

In the following discussion, we describe several di�erent greedy algorithms. We de�ne
each one by describing how it re�nes the numbered lines in the template of Table 1.

4.2.1 InfoGainCost Methods

InfoGainCost methods are inspired by the C4.5 algorithm for constructing classi�cation
trees (Quinlan, 1993). C4.5 chooses the attribute xn with the highest conditional mutual
information with the class labels in the training examples. In our diagnostic setting, the
analogous criterion is to choose the measurement action that is most predictive of the correct
diagnosis. Speci�cally, let xn be a proposed measurement action, and de�ne P (xn; yjs) to
be the joint distribution of xn and the correct diagnosis y conditioned on the information
that has already been collected in state s. The conditional mutual information between xn
and y, I(xn; yjs), is de�ned as

I(xn; yjs) = H(yjs)�H(yjs; xn)

= H(yjs)�
X
vn

P (xn = vnjs) �H(yjs [ fxn = vng)

where H(y) =
P

y �P (y) logP (y) is the Shannon entropy of random variable y.

The mutual information is also called the information gain, because it quanti�es the
average amount of information we gain about y by measuring xn.

The InfoGainCost methods penalize the information gain by dividing it by the cost of the
test. Speci�cally, they choose the action xn that maximizes I(xn; yjs)=C(xn). This criterion
was introduced by Norton (1989). Other researchers have considered various monotonic
transformations of the information gain prior to dividing by the measurement cost (Tan,
1993; Nunez, 1991). This de�nes step (2) of the algorithm template.

All of the InfoGainCost methods employ the stopping conditions de�ned in C4.5. The
�rst stopping condition applies if P (yjs) is 1 for some value y = k. In this case, the
diagnosis action is chosen to be fbest = k. The second stopping condition applies if no more
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measurement actions are available (i.e., all tests have been performed). In this case, the
diagnosis action is set to the most likely diagnosis: fbest := argmaxy P (yjs).

Notice that the InfoGainCost methods do not make any use of the misdiagnosis costs
MC(fk; y).

4.2.2 Modified InfoGainCost Methods (MC+InfoGainCost)

We propose extending the InfoGainCost methods so that they consider misdiagnosis costs
in the stopping conditions. Speci�cally, in step (3), the MC+InfoGainCost methods set
fbest to be the diagnosis action with minimum expected cost:

�(s) := fbest = argmin
fk

X
y

P (yjs) �MC(fk; y):

4.2.3 One-step Value of Information (VOI)

While the previous greedy methods either ignore the misdiagnosis costs or only consider
them when choosing the �nal diagnosis actions, the VOI approach considers misdiagnosis
costs (and measurement costs) at each step.

Traditionally, the value of information of a measurement is de�ned as the di�erence
between the expected value of the best action after performing the measurement and the
expected value of the best action before performing the measurement. Since our objective is
cost minimization, we need to reverse the sign in the above de�nition. However, we still keep
the notation VOI instead of cost of information. Instead of taking into account all future
decisions, we make a greedy approximation to VOI, called one-step VOI, in which we only
consider the cost of the best diagnosis action before and after performing the measurement
xn in state s:

1-step-VOI(s; xn) = min
fk

X
y

P (yjs) �MC(fk; y)

�
X
vn

P (xn = vnjs)�

"
min
fk

X
y

P (yjs [ fxn = vng) �MC(fk; y)

#
:

The test xn is performed only if its value exceeds its cost, 1-step-VOI(s; xn) > C(xn).

Intuitively, the one-step VOI method repeatedly asks the following question: Is it worth
executing one more measurement before making a diagnosis, or is it better to make a
diagnosis now?

In state s, the one-step VOI method �rst computes the cost of stopping and choosing
the action fbest that minimizes expected misdiagnosis costs:

C(s; fbest) = min
fk

X
y

P (yjs) �MC(fk; y):

Then, for each possible measurement action xn, the method computes the expected cost of
measuring xn and then choosing minimum cost diagnosis actions in each of the resulting
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states:

1-step-LA(s; xn) = C(xn) +
X
vn

P (xn = vnjs)�

"
min
fk

X
y

P (yjs [ fxn = vng) �MC(fk; y)

#
:

(5)
De�ne xbest = argminxn 1-step-LA(s; xn).

With these de�nitions, we can describe the one-step VOI method in terms of the tem-
plate in Table 1 as follows. The stopping condition (1) is that C(s; fbest) � 1-step-LA(s; xbest);
the method also stops when all tests have been performed. The choice of measurement ac-
tion (2) is xbest. And the choice of the �nal diagnosis action in step (3) is fbest.

5. Learning, Over�tting, and Regularization

In the previous section, we considered search algorithms for �nding good diagnostic policies.
All of these algorithms require various probabilities, particularly P (xn = vnjs) and P (yjs)
for every state-action pair (s; xn) or (s; fk) generated during their search.

One way to obtain these probabilities is to �t a probabilistic model P (x1; : : : ; xN ; y)
to the training data and then apply probabilistic inference to this model to compute the
desired probabilities. For example, an algorithm such as K2 (Cooper & Herskovits, 1992)
could be applied to learn a Bayesian network from the training data. The advantage of
such an approach is that it would cleanly separate the process of learning the probabilities
from the process of searching for a good policy.

But the chief disadvantage of such an approach is that it prevents us from exploiting
the problem solving task to determine which probabilities should be learned accurately
and which probabilities can be ignored (or learned less accurately). Consequently, we have
adopted a di�erent approach in which the learning is fully integrated into the search process.
This is very important, because it enables us to control over�tting and it also provides
additional opportunities for speeding up the search.

The basic way to integrate learning into the search process is very simple. Each time
the search algorithm needs to estimate a probability, the algorithm examines the training
data and computes the required probability estimate. For example, if an algorithm needs
to estimate P (x1 = v1jfx3 = v3; x5 = v5g), it can make a pass over the training data
and count the number of training examples where x3 = v3 and x5 = v5. Denote this by
#(x3 = v3; x5 = v5). It can make a second pass over the data and count #(x1 = v1; x3 =
v3; x5 = v5). From these two quantities, it can compute the maximum likelihood estimate:

P̂ (x1 = v1 j fx3 = v3; x5 = v5g) =
#(x1 = v1; x3 = v3; x5 = v5)

#(x3 = v3; x5 = v5)
:

In general,

P̂ (xn = vnjs) =
#(s [ fxn = vng)

#(s)
:

Similarly, P (yjs) is estimated as the fraction of training examples matching state s that
have diagnosis y:

P̂ (yjs) =
#(s; y)

#(s)
:
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This process can obviously be made more e�cient by allowing the training data to
\ow" through the AND/OR graph (for AO� algorithm) or the classi�cation tree (for greedy
algorithms) as it is being constructed. Hence, the starting state (the root) stores a list of
all of the training examples. The OR node for state s stores a list of all of the training
examples that match s. An example matches a state if it agrees with all of the measurement
results that de�ne that state. An AND node that measures xn in state s can be viewed as
partitioning the training examples stored in OR node s into disjoint subsets according to
their observed values on test xn. The same method has been employed in classi�cation tree
algorithms for many years (Breiman et al., 1984; Quinlan, 1993).

Unfortunately, this straightforward approach, when combined with both the systematic
and greedy search algorithms, often results in over�tting|that is, �nding policies that give
very good performance on the training data but that give quite poor performance on new
cases.

Figure 5 illustrates this for AO�. This �gure shows an anytime graph in which the
value V real(s0) of the current realistic policy, �

real, is plotted after each node expansion (or
iteration of the algorithm). V real is evaluated both on the training data and on a disjoint
test data set. On the training data, the quality of the learned policy improves monotonically
with the number of iterations|indeed, this is guaranteed by the AO� algorithm. But on
the test data, the performance of the realistic policies gets worse after 350 iterations. Upon
convergence, AO� has learned the optimal policy with respect to the training data, but this
policy performs badly on the test data.

Machine learning research has developed many strategies for reducing over�tting. The
remainder of this section describes the regularizers that we have developed for both system-
atic and greedy search algorithms. First, we discuss regularizers for AO�. Then we discuss
regularizers for greedy search.

5.1 Regularizers for AO� Search

Over�tting tends to occur when the learning algorithm extracts too much detailed infor-
mation from the training data. This can happen, for example, when the learning algorithm
considers too many alternative policies for a given amount of training data. It can also
occur when the algorithm estimates probabilities from very small numbers of training ex-
amples. Both of these problems arise in AO�. AO� considers many di�erent policies in a
large AND/OR graph. And as the AND/OR graph grows deeper, the probabilities in the
deeper nodes are estimated from fewer and fewer training examples.

We have pursued three main strategies for regularization: (a) regularizing the probability
estimates computed during the search, (b) reducing the amount of search through pruning
or early stopping, and (c) simplifying the learned policy by post-pruning to eliminate parts
that may have over�t the training data.

5.1.1 Laplace Correction (denoted by `L')

To regularize probability estimates, a standard technique is to employ Laplace cor-
rections. Suppose measurement xn has Vn possible outcomes. As discussed above, the
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Figure 5: Illustration of AO� over�tting. This anytime graph shows that the best realistic
policy, according to the test data, was discovered after 350 iterations, after which
AO� over�ts.

maximum likelihood estimate for P (xn = vnjs) is

P̂ (xn = vnjs) =
#(s [ fxn = vng)

#(s)
:

The Laplace-corrected estimate is obtained by adding 1 to the numerator and Vn to the
denominator:

P̂L(xn = vn j s) =
#(s [ fxn = vng) + 1

#(s) + Vn
:

Similarly, the Laplace-corrected estimate for a diagnosis y is obtained by adding 1 to
the numerator and K (the number of possible diagnoses) to the denominator:

P̂L(yjs) =
#(s; y) + 1

#(s) +K
:

One advantage of the Laplace correction is that no probability value will ever be esti-
mated as 0 or 1. Those probability values are extreme, and hence, extremely dangerous.
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Figure 6: Anytime graphs of AO� and AO� with Laplace correction. The Laplace regularizer
helps AO�, both in the anytime graph and in the value of the last policy learned.

For example, if AO� believes that P (xn = vnjs) = 0, then it will not expand this branch
further in the tree. Even more serious, if AO� believes that P (y = cjs) = 0, then it will not
consider the potential misdiagnosis cost MC(fk; y = c) when computing the expected costs
of diagnosis actions fk in state s.

Figure 6 shows that AO� with the Laplace regularizer gives worse performance on the
training data but better performance on the test data than AO�. Despite this improvement,
AO� with Laplace still over�ts: a better policy that was learned early on is discarded later
for a worse one.

5.1.2 Statistical Pruning (SP)

Our second regularization technique reduces the size of the AO� search space by pruning
subtrees that are unlikely to improve the current realistic policy.

The statistical motivation is the following: given a small training data sample, there are
many pairs of diagnostic policies that are statistically indistinguishable. Ideally, we would
like to prune all policies in the AND/OR graph that are statistically indistinguishable from
the optimal policies. Since this is not possible without �rst expanding the graph, we need
a heuristic that approximately implements the following indi�erence principle:
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Figure 7: Statistical pruning (SP) checks whether V opt(s) falls inside a con�dence interval
around V real(s). If it does, then SP prunes �opt(s) (the unexpanded optimistic
policy).

Indi�erence Principle. Given two diagnostic policies whose values are statistically

indistinguishable based on the training data set, a learning algorithm can choose arbitrarily

between them.

This heuristic is called statistical pruning (abbreviated SP), and it is applied in each
OR node s whose optimistic policy is selected for expansion. The two diagnostic policies
under consideration are the currently unexpanded optimistic policy �opt(s) and the current
realistic policy �real(s). The action speci�ed by �opt(s) will be pruned from the graph if a
statistical test cannot reject the null hypothesis that V opt(s) = V real(s). In other words,
between an incomplete policy �opt and a complete policy �real, we prefer the latter.

The statistical test is computed as follows. To each of the training examples te that
matches state s, we can apply �real and compute the total cost of diagnosis (starting from
state s). From this information, we can compute a 95% con�dence interval on V real(s) (e.g.,
using a standard normal distribution assumption). If V opt(s) falls inside this con�dence
interval, then we cannot reject the null hypothesis that V opt(s) = V real(s). Therefore, by
the indi�erence principle, we can choose �real(s) and prune �opt(s). This is illustrated in
Figure 7.

Because V opt(s) is a lower bound on V �(s) (see Theorem 4.1) and V real(s) is an upper
bound on V �(s) (see Theorem 4.2), we can relate statistical pruning to the indi�erence
principle in a slightly stronger way. If V opt(s) falls inside the con�dence interval for V real(s),
then V �(s) must also fall inside the con�dence interval, because V opt(s) � V �(s) � V real(s).
Hence, with at least 95% con�dence, we cannot reject the null hypothesis that V real(s) =
V �(s). Hence, the indi�erence principle authorizes us to choose �real, since it is statistically
indistinguishable from the optimal policy. However, this argument only remains true as
long as �real remains unchanged. Subsequent expansions by AO� may change �real and
invalidate this statistical decision.

The SP heuristic is applied as the AND/OR graph is grown. When an AND node (s; a)
is selected for expansion, SP �rst checks to see if this AND node should be pruned instead.
If it can be pruned, the action a will be ignored in further computations (SP deletes it from
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the set of available actions A(s)). AO� then updates Qopt; V opt; and �opt in the graph. No
updates to �real or V real are needed, because pruning a does not change the realistic graph.

In previous work (Bayer-Zubek & Dietterich, 2002), we described a version of the SP
heuristic that employed a paired-di�erence statistical test instead of the simple con�dence
interval test described here. On synthetic problems, these two statistical tests gave nearly
identical results. We prefer the con�dence interval test, because it allows us to relate
V real(s) and V �(s).

Some care must be taken when combining statistical pruning with Laplace corrections.
With Laplace corrections, the mean of the observed total cost of the training examples
matching state s when processed by �real is not the same as V real(s), because the latter is
computed using Laplace-corrected probabilities. To �x this problem, we compute the width
of the con�dence interval by applying �real to each training example matching state s and
then use V real(s) as the center of the con�dence interval.

5.1.3 Early Stopping (ES)

Another way to limit the size of the search space considered by AO� is to halt the search
early. This method has long been applied to regularize neural networks (e.g., Lang, Waibel,
& Hinton, 1990). Early stopping employs an internal validation set to decide when to halt
AO�. The training data is split in half. One half is called the \subtraining data", and the
other half is called the \holdout data". AO� is trained on the subtraining data, and after
every iteration, �real is evaluated on the holdout data. The �real that gives the lowest total
cost on the holdout data is remembered, and when AO� eventually terminates, this best
realistic policy is returned as the learned policy.

Early stopping can be combined with the Laplace correction simply by running AO�

with Laplace corrections on the subtraining set. There is no need to Laplace-correct the
evaluation of �real on the holdout set.

5.1.4 Pessimistic Post-Pruning (PPP) Based on Misdiagnosis Costs

Our �nal AO� regularizer is pessimistic post-pruning. It is based on the well-known method
invented by Quinlan for pruning classi�cation trees in C4.5 (Quinlan, 1993). PPP takes a
complete policy � and the training data set and produces a \pruned" policy �0 with the hope
that �0 exhibits less over�tting. This PPP is applied to the �nal realistic policy computed
by AO�.

The central idea of PPP is to replace the expected total cost V �(s) at each state s with
a statistical upper bound UB(s) that takes into account the uncertainty due to the amount
and variability of the training data. At internal node s, if the upper bound shows that
selecting the best diagnosis action would be preferred to selecting measurement action �(s),
then node s is converted to a leaf node (and the UB estimates of its ancestors in the policy
are updated). PPP can be performed in a single traversal of the decision tree for �.

Computation begins at the leaves of policy � (i.e., the states s where �(s) chooses a
diagnosis action fk). Let UB(s) be the upper limit of a 95% normal con�dence interval
for C(s; fk) (i.e., the expected misdiagnosis cost of choosing action fk in state s). This is
computed by taking each training example that matches state s, assigning it the diagnosis
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fk, and then computing the misdiagnosis cost MC(fk; y), where y is the correct diagnosis
of the training example.

The upper bound at an internal node is computed according to the recursion

UB(s) = C(s; �(s)) +
X
s0

Ptr(s
0js; �(s)) � UB(s0):

This is just the Bellman equation for state s but with the value function replaced by the UB
function. �(s) will be pruned, and replaced by the diagnosis action fbest with the minimum
expected cost, if the upper bound on C(s; fbest) is less than UB(s) for the internal node,
computed above. In this case, UB(s) is set to be the upper bound on C(s; fbest).

PPP can be combined with Laplace regularization as follows. First, in computing UB(s)
for a leaf node,K \virtual" training examples are added to state s, such that there is one vir-
tual example for each diagnosis. In other words, the normal con�dence interval is computed
using the misdiagnosis costs of the training examples that match s plus oneMC(�(s); y) for
each possible diagnosis y. Note that all probabilities P (yjs) and Ptr(s

0js; �(s)) were already
Laplace-corrected when running AO� with Laplace corrections.

5.1.5 Summary of AO� Regularizers

We have described the following regularizers: Laplace corrections (L), statistical pruning
(SP), early stopping (ES), and pessimistic post-pruning (PPP). We have also shown how
to combine Laplace regularization with each of the others.

5.2 Regularizers for Greedy Search

We now describe four regularizers that we employed with greedy search.

5.2.1 Minimum Support Pruning

For the InfoGainCost and InfoGainCost+MC methods, we adopt the minimum support
stopping condition of C4.5 (Quinlan, 1993). In order for measurement action xn to be
chosen, at least two of its possible outcomes vn must lead to states that have at least 2
training examples matching them. If not, then xn is not eligible for selection in step (2) of
Table 1.

5.2.2 Pessimistic Post-Pruning (PPP) Based on Misdiagnosis Rates

For the InfoGainCost method, we applied C4.5's standard pessimistic post-pruning. After
InfoGainCost has grown the decision tree, the tree is traversed in post-order. For each leaf
node s, the pessimistic error estimate is computed as

UB(s) = n�

2
4p+ zc �

s
p(1� p)

n
+

1

2n

3
5 ;

where n is the number of training examples reaching the leaf node, p is the error rate
committed by the diagnosis action on the training examples at this leaf, and zc = 1:15
is the 75% critical value for the normal distribution. UB(s) is the upper limit of a 75%
con�dence interval for the binomial distribution (n; p) plus a continuity correction.
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At an internal node s, the pessimistic error estimate is simply the sum of the pessimistic
error estimates of its children. An internal node is converted to a leaf node if the sum of its
children's pessimistic errors is greater than or equal to the pessimistic error that it would
have if it were converted to a leaf node.

Laplace regularization can be combined with PPP by replacing the observed error rate
p with its Laplace-corrected version (this is computed by adding one \virtual" example for
each diagnosis).

5.2.3 Post-Pruning Based on Expected Total Costs

For the MC+InfoGainCost method, we apply a post-pruning procedure that is based not
on a pessimistic estimate but rather on the estimated total cost of diagnosis. Recall that
MC+InfoGainCost grows the decision tree in the same way as InfoGainCost, but it as-
signs diagnosis actions to the leaf nodes by choosing the action with the smallest expected
misdiagnosis cost on the training data.

This can be further regularized by traversing the resulting decision tree and converting an
internal node s where �(s) = xn into a leaf node (where �(s) = fbest) if the expected cost of
choosing diagnosis action fbest is less than the expected total cost of choosing measurement
action xn. This is implemented by computing C(s; fbest) and Q�(s; xn) and comparing
them. If C(s; fbest) � Q�(s; xn), then node s is converted to a leaf node. This computation
can be carried out in a single post-order traversal of the decision tree corresponding to �.

Laplace corrections can be combined with this pruning procedure by applying Laplace
corrections to all probabilities employed in computing Q�(s; xn) and C(s; fbest).

Bradford et al. (1998) present a similar method of pruning decision trees based on
misclassi�cation costs (and zero attribute costs), combined with Laplace correction for class
probability estimates (there is no Laplace correction for transition probabilities).

It is interesting to note that this post-pruning based on total costs is not necessary for
VOI, because pruning is already built-in. Indeed, any internal node s in the VOI policy
�, with �(s) = xn, has Q

�(s; xn) � V OI(s; xn) < C(s; fbest) (the proof of this theorem
appears in the thesis of Bayer-Zubek (2003)).

5.2.4 Laplace Correction

As with AO�, we could apply Laplace corrections to all probabilities computed during
greedy search.

For the InfoGainCost method, Laplace correction of diagnosis probabilities P (yjs) does
not change the most likely diagnosis. For the MC+InfoGainCost method, Laplace correction
of diagnosis probabilities may change the diagnosis action with the minimum expected cost.
Laplace correction is not applied in the computation of the information gain I(xn; yjs). For
the InfoGainCost method, Laplace correction is only applied in the pruning phase, to the
error rate p. For the MC+InfoGainCost method, Laplace correction is applied, as the policy
is grown, to P (yjs) when computing C(s; fk), and it is also applied during the post-pruning
based on expected total costs, to both P (xn = vnjs) and P (yjs).

For the VOI method, Laplace correction is applied to all probabilities employed in
Equation 5 and in the computation of C(s; fbest).
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6. Experimental Studies

We now present an experimental study to measure and compare the e�ectiveness and ef-
�ciency of the various search and regularization methods described above. The goal is to
identify one or more practical algorithms that learn good diagnostic policies on real prob-
lems with modest-sized training data sets. The main questions are: Which algorithm is the
best among all the algorithms proposed? If there is no overall winner, which is the most
robust algorithm?

6.1 Experimental Setup

We performed experiments on �ve medical diagnosis problems based on real data sets found
at the University of California at Irvine (UCI) repository (Blake & Merz, 1998). The
�ve problems are listed here along with a short name in parentheses that we will use
to refer to them: Liver disorders (bupa), Pima Indians Diabetes (pima), Cleveland Heart
Disease (heart), the originalWisconsin Breast Cancer (breast-cancer), and the SPECT heart
database (spect). These data sets describe each patient by a vector of attribute values and
a class label. We de�ne a measurement action for each attribute; when executed, the action
returns the measured value of that attribute. We de�ne one diagnosis action for each class
label.

The domains were chosen for two reasons. First, they are all real medical diagnosis
domains. Second, measurement costs have been provided for three of them (bupa, pima, and
heart) by Peter Turney (Turney, 1995); for the other two domains, we set all measurement
costs to be 1. Table 2 briey describes the medical domains; more information is available
in the thesis of Bayer-Zubek (2003).

Some pre-processing steps were applied to all domains. First, all training examples
that contained missing attribute values were removed from the data sets. Second, if a data
set contained more than two classes, selected classes were merged so that only two classes
(healthy and sick) remained. Third, any existing division of the data into training and
test sets was ignored, and the data were simply merged into a single set. Each real-valued
attribute xn was discretized into 3 levels (as de�ned by two thresholds, �1 and �2) such that
the discretized variable takes on a value of 0 if xn � �1, a value of 1 if �1 < xn � �2 and a
value of 2 otherwise. The values of the thresholds were chosen to maximize the information
gain between the discretized variable and the class. The information gain was computed
using the entire data set.

For each domain, the transformed data (2 classes, discretized attributes with no missing
values) was used to generate 20 random splits into training sets (two thirds of data) and
test sets (one third of data), with sampling strati�ed by class. Such a split (training data,
test data) is called a replica. We repeated each of our experiments on each of the replicas
to obtain a rough idea of the amount of variability that can be expected from one replica to
another. However, it is important to note that because the replicas are not independent (i.e.,
they share data points), we must use caution in combining the results of di�erent replicas
when drawing conclusions about the superiority of one algorithm compared to another.
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Table 2: Medical domains. For each domain, we list the number of examples, the number
of tests, and the minimum and the maximum cost for a test.

domain # examples # tests min test cost max test cost
bupa 345 5 7.27 9.86
pima 768 8 1 22.78
heart 297 13 1 102.9

breast-cancer 683 9 1 1
spect 267 22 1 1

6.1.1 Setting the Misdiagnosis Costs (MC)

None of the �ve UCI domains speci�es misdiagnosis costs, so we performed our experiments
using �ve di�erent levels of misdiagnosis costs for each domain. These cost levels were
designed such that in the initial state s0 both diagnosis decisions f0 and f1 have equal
expected cost and so that the diagnostic policies are non-trivial (i.e., they perform at least
one measurement, but do not perform all possible measurements). We call the �ve MC
levels MC1, MC2, MC3, MC4, and MC5, and they progressively make misdiagnosis more
expensive. Full details of the methodology are given in the thesis of Bayer-Zubek (2003).

6.1.2 Memory Limit

For large domains (with many measurements), the AND/OR graph constructed by AO�

grows very large, especially in the following cases: the measurements are not very informa-
tive; the measurement costs are low relative to the misdiagnosis costs, so our admissible
heuristic does not produce many cuto�s; the optimal policy is very deep; and there are
many policies tied with the optimal one and AO� needs to expand all of them to prove to
itself that there is no better alternative.

To make systematic search feasible, we need to prevent the AND/OR graph from growing
too large. We do this by imposing a limit on the total amount of memory that the AND/OR
graph can occupy. We measure memory usage based on the amount of memory that would
be required by an optimized AND/OR graph data structure. This \theoretical" memory
limit is set to 100 MB. Because our actual implementation is not optimized, this translates
into a limit of 500 MB. When the memory limit is reached, the current realistic policy
is returned as the result of the search. All of our algorithms (greedy and systematic)
converge within this memory limit on all �ve domains, with one exception: AO� with large
misdiagnosis costs reaches the memory limit on the spect data set.

It is interesting to note that even on a domain with many measurements, the systematic
search algorithms may converge before reaching the memory limit. This is a consequence of
the fact that for modest-sized training data sets, the number of reachable states in the MDP
(i.e., states that can be reached with non-zero probability by some policy) is fairly small,
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because not all possible combinations of attribute values can appear in a modest-sized data
set.

6.1.3 Notations for our Learning Algorithms

In the remainder of this paper, we will employ the following abbreviations to identify the
various search algorithms and their regularizers. In all cases, the su�x \L" indicates that
Laplace corrections were applied to the algorithm as described in Section 5.

� Nor, Nor-L denote InfoGainCost with Norton's criterion for selecting actions and pes-
simistic post-pruning based on misdiagnosis rates.

� MC-N, MC-N-L denote MC+InfoGainCost with Norton's criterion for selecting mea-
surement actions. Diagnosis actions are selected to minimize expected misdiagnosis
costs. Post-pruning is based on expected total costs.

� VOI, VOI-L denote the one-step Value of Information greedy method.

� AO�, AO�-L denote AO�.

� SP, SP-L denote AO� with Statistical Pruning.

� ES, ES-L denote AO� with Early Stopping. For early stopping, half of the training
data is held out to choose the stopping point, and the other half is used by AO� to
compute transition probabilities.

� PPP, PPP-L denote AO� with Pessimistic Post-Pruning.

6.1.4 Evaluation Methods

To evaluate each algorithm, we train it on the training set to construct a policy. Then we
compute the value of this policy on the test set, which we denote by Vtest. To compute
Vtest, we sum the measurement costs and misdiagnosis cost for each test example, as it is
processed by the policy, and then divide the total cost for all examples by the number of
test examples.

Note that in our framework, Vtest is always computed using both measurement costs
and misdiagnosis costs, even if the policy was constructed by a learning algorithm (e.g.,
InfoGainCost) that ignores misdiagnosis costs.

In order to compare learning algorithms, we need some way of comparing their Vtest
values to see if there is a statistically signi�cant di�erence among them. Even if two learning
algorithms are equally good, their Vtest values may be di�erent because of random variation
in the choice of training and test data sets. Ideally, we would employ a statistical procedure
similar to analysis of variance to determine whether the observed di�erences in Vtest can be
explained by di�erences in the learning algorithm (rather than by random variation in the
data sets). Unfortunately, no such procedure exists that is suitable for comparing diagnostic
policies. Hence, we adopted the following procedure.

As discussed above, we have generated 20 replicas of each of our data sets. In addition,
we have built �ve misdiagnosis cost matrices for each data set. We apply each learning
algorithm to each replica using each of the �ve MC matrices, which requires a total of 500
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runs of each learning algorithm for all domains. For each replica and cost matrix and each
pair of learning algorithms (call them alg1 and alg2), we apply the BDeltaCost bootstrap
statistical test (Margineantu & Dietterich, 2000) to decide whether the policy constructed
by alg1 is better than, worse than, or indistinguishable from the policy constructed by alg2
(based on a 95% con�dence level). Depending on the BDeltaCost results, we say that
alg1 wins, loses, or ties alg2.

The BDeltaCost test is applied to each replica of each data set. These BDeltaCost
results are then combined to produce an overall score for each algorithm according to the
following chess metric. For a given pair of algorithms, alg1 and alg2, and a domain D, let
(wins; ties; losses) be the cumulative BDeltaCost results of alg1 over alg2, across all �ve
misdiagnosis cost matrices and all 20 replicas. The chess metric is computed by counting
each win as one point, each tie as half a point, and each loss as zero points:

Score(alg1; alg2;D)
def
= wins+ 0:5� ties:

We can also compute the overall chess score for an algorithm by summing its chess scores
against all of the other algorithms:

Score(alg1;D) =
X

alg26=alg1

Score(alg1; alg2;D):

Note that if the total number of \games" played by an algorithm is Total = wins +
ties+ losses, and if all the games turned out to be ties, the chess score would be 0:5�Total,
which we will call the Tie-Score. If the algorithm's chess score is greater than the Tie-Score,
then the algorithm has more wins than losses.

The pairwise BDeltaCost tests account for variation in Vtest resulting from the ran-
dom choice of the test sets. The purpose of the 20 replicas is to account also for random
choice of training sets. Ideally, the 20 training sets would be disjoint, and this would al-
low us to compute an unbiased estimate of the variability in Vtest due to the training sets.
Unfortunately, because the amount of training data is limited, we cannot make the train-
ing sets independent, and as a result, the overall chess scores probably underestimate this
source of variability.

6.2 Results

We now present the results of the experiments.

6.2.1 Laplace Correction Improves All Algorithms

We �rst studied the e�ect of the Laplace regularizer on each algorithm. For each of the
seven algorithms with the Laplace correction, we computed its chess score with respect
to its non-Laplace version, on each domain. The total number of \games" an algorithm
plays against its non-Laplace version is 100 (there are 5 misdiagnosis costs and 20 replicas);
therefore, Tie-Score = 50.

Figure 8 shows that on each domain, the Laplace-corrected algorithm scores more wins
than losses versus the non-Laplace-corrected algorithm (because each score is greater than
Tie-Score). This supports the conclusion that the Laplace correction improves the perfor-
mance of each algorithm. Some algorithms, such as Nor and AO�, are helped more than
others by Laplace.
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Figure 8: The score of each Laplace-corrected algorithm versus its non-Laplace version, on
each domain, is greater than the Tie-Score. Therefore the Laplace version has
more wins than losses.

Since the Laplace regularizer improved each algorithm, we decided to compare only the
Laplace-corrected versions of the algorithms in all subsequent experiments.

6.2.2 The Most Robust Algorithm

To determine which algorithm is the most robust across all �ve domains, we computed
the overall chess score of each Laplace-corrected algorithm against all the other Laplace-
corrected algorithms, on each domain. The total number of \games" is 600 (there are
5 misdiagnosis costs matrices, 20 replicas, and 6 \opponent" algorithms); therefore, the
Tie-Score is 300.

Figure 9 shows that the best algorithm varies depending on the domain: ES-L is best
on bupa, VOI-L is best on pima and spect, SP-L is best on heart, and MC-N-L is best on
breast-cancer. Therefore no single algorithm is best everywhere. Nor-L is consistently bad
on each domain; its score is always below the Tie-Score. This is to be expected, since
Nor-L does not use misdiagnosis costs when learning its policy. MC-N-L, which does use
misdiagnosis costs, always scores better than Nor-L.
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Figure 9: The overall chess score of each Laplace-corrected algorithm, versus all the other
Laplace-corrected algorithms. The most robust algorithm is SP-L; it was the only
one whose score is greater than Tie-Score (and therefore it has more wins than
losses) on every domain.

The fact that VOI-L is best in two domains is very interesting, because it is an e�cient
greedy algorithm. Unfortunately, VOI-L obtains the worst score in two other domains: heart
and breast-cancer.

The only algorithm that has more wins than losses in every domain is SP-L, which com-
bines AO� search, Laplace corrections, and statistical pruning. SP-L always scored among
the top three algorithms. Consequently, we recommend it as the most robust algorithm.
However, in applications where SP-L (or any of the systematic search algorithms) is too
expensive to run, VOI-L can be recommended, since it is the best of the greedy methods.

In addition to looking at the overall chess scores, we also studied the actual Vtest values.
To visualize the di�erences in Vtest values, we plotted a graph that we call a \pair graph".
Figure 10 shows pair graphs comparing VOI-L and SP-L on all �ve domains. The horizontal
axis in each graph corresponds to the 20 replicas, and the vertical axis to Vtest values for the
two algorithms (VOI-L and SP-L) on that replica. The 20 replicas are sorted according to
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the Vtest of VOI-L. If the two algorithms were tied on a replica (according to BDeltaCost),
then their Vtest values are connected by a vertical dotted line.

On bupa and heart, the Vtest of SP-L is mostly smaller (better) than the Vtest of VOI-L,
but BDeltaCost �nds them tied. On pima and spect, the situation is reversed (VOI-L is
almost always better than SP-L), and on several replicas the di�erence is statistically signif-
icant. On breast-cancer, SP-L is better than VOI-L, and again the di�erence is sometimes
signi�cant. In general, the pair graphs con�rm the chess score results and support our main
conclusion that SP-L is the most robust learning algorithm.

6.2.3 Impact of Heuristics and Regularizers on Memory Consumption

We now consider the e�ect of the admissible heuristic and the Laplace and Statistical Prun-
ing regularizers on the amount of memory required for AO� search. To do this, we measured
the amount of memory consumed by �ve di�erent algorithm con�gurations: AO� without
the admissible heuristic, AO� with the admissible heuristic, AO� with the admissible heuris-
tic and the Laplace correction, AO� with the admissible heuristic and statistical pruning,
and, �nally, AO� with the admissible heuristic, Laplace correction, and statistical pruning.
For AO� without the admissible heuristic, we set the action-value of every unexpanded
AND node (s; xn) to zero, i.e., Qopt(s; xn) = 0. The results are plotted in Figure 11. The
memory amounts plotted are computed by taking the actual memory consumed by our
implementation and converting it to the memory that would be consumed by an optimized
implementation.

There are several important conclusions to draw from these �gures. First, note that AO�

without the admissible heuristic requires much more memory than AO� with the admissible
heuristic. Hence, the admissible heuristic is pruning large parts of the search space. This is
particularly evident at low settings of the misdiagnosis costs (MC1 and MC2). At these low
settings, AO� is able to �nd many cuto�s because the expected cost of diagnosis is less than
the cost of making additional measurements (as estimated by the admissible heuristic). The
savings is much smaller at MC levels 4 and 5.

The second important conclusion is that the Laplace correction increases the size of the
search space and the amount of memory consumed. The reason is that without the Laplace
correction, many test outcomes have zero probability, so they are pruned by AO�. With
the Laplace correction, these outcomes must be expanded and evaluated. The e�ect is very
minor at low MC levels, because the AND/OR graph is much smaller, and consequently
there is enough training data to prevent zero-probability outcomes. But at high MC levels,
the Laplace correction can cause increases of a factor of 10 or more in the amount of memory
consumed.

The third important conclusion is that statistical pruning signi�cantly decreases the size
of the AND/OR graph in almost all cases. The only exception is heart at MC4 and MC5,
where statistical pruning increases the amount of memory needed by AO�. It seems para-
doxical that statistical pruning could lead to an overall increase in the size of the AND/OR
graph that is explored. The explanation is that there can be an interaction between sta-
tistical pruning at one point in the AND/OR graph and additional search elsewhere. If a
branch is pruned that would have given a signi�cantly smaller value for V �, this can pre-
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Figure 11: Memory consumed in each domain for �ve combinations of AO� with and with-
out the admissible heuristic, Laplace corrections, and statistical pruning and for
�ve levels of misdiagnosis costs.
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vent heuristic cuto�s elsewhere in the graph. So in some cases, pruning can increase overall
memory consumption.

The �nal conclusion is that statistical pruning dramatically reduces the amount of mem-
ory required by AO� with the Laplace correction. Even in cases, such as heart, where statis-
tical pruning causes AO� (without Laplace) to consume more space, SP reduces the amount
of space needed with the Laplace correction by nearly an order of magnitude. Nonetheless,
statistical pruning is not able to completely compensate for the extra memory consumption
of the Laplace corrections, so the �nal algorithm (AO� + SP + L) requires more memory
than AO� without any admissible heuristic at high MC levels, and AO� + SP + L requires
much more memory than AO� with the admissible heuristic.

Despite the large amount of memory required, there was only one domain (spect at
MC4 and MC5) where the AO� hit the memory limit. Hence, we can see that in terms of
memory, systematic search with AO� is feasible on today's desktop workstations.

6.2.4 CPU Time

In addition to measuring memory consumption, we also measured the CPU time required
by all of our algorithms. The results are plotted in Figure 12. As expected, the systematic
search algorithms require several orders of magnitude more CPU time than the greedy
methods. However, even the most expensive algorithm con�gurations require less than
1000 seconds to execute. Note that as the misdiagnosis cost level increases, the amount of
CPU time increases. This is a direct reection of the corresponding increase in the size of
the AND/OR graph that is explored by the algorithms.

7. Conclusions

The problem addressed in this paper is to learn a diagnostic policy from a data set of labeled
examples, given both measurement costs and misdiagnosis costs. The tradeo� between these
two types of costs is an important issue that machine learning research has only just begun
to study.

We formulated the process of diagnosis as a Markov Decision Problem. We then showed
how to apply the AO� algorithm to solve this MDP to �nd an optimal diagnostic policy. We
also showed how to convert the AO� algorithm into an anytime algorithm by computing the
realistic policy at each point in the search (the realistic policy is the best complete policy
found so far). We de�ned an admissible heuristic for AO� that is able to prune large parts
of the search space on our problems. We also presented three greedy algorithms for �nding
diagnostic policies.

The paper then discussed the interaction between learning from training data and search-
ing for a good diagnostic policy. Experiments demonstrated that over�tting is a very serious
problem for AO�. The central contribution of the paper is the development of methods for
regularizing the AO� search to reduce over�tting and, in some cases, also to reduce the
size of the search space. Four regularization techniques (Laplace corrections, statistical
pruning, early stopping, and pessimistic post-pruning) were presented. The paper also in-
troduced regularizers for the greedy search algorithms by extending existing methods from
classi�cation tree learning.
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Figure 12: CPU time for all 14 algorithm con�gurations on the �ve domains (in each case
averaged over 20 replicas). The three curves plot CPU time for misdiagnosis
cost levels MC1, MC3, and MC5.
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The various search and regularization algorithms were tested experimentally on �ve
classi�cation problems drawn from the UCI repository. A methodology for assigning mis-
diagnosis costs was developed so that these problems could be converted into cost-sensitive
diagnosis problems. The paper also introduced a methodology for combining the results
of multiple training/test replicas into an overall \chess score" for evaluating the learning
algorithms.

The experiments showed that all of the search algorithms were improved by including
Laplace corrections when estimating probabilities from the training data. The experiments
also showed that the systematic search algorithms were generally more robust than the
greedy search algorithms across the �ve domains. The best greedy algorithm was VOI-L,
but although it obtained the best score on two domains, it produced the worst score on two
other domains. The most robust learning algorithm was SP-L. It combines systematic AO�

search with Laplace corrections and statistical pruning.
Systematic search for diagnostic policies has not been studied previously by machine

learning researchers, probably because it has generally been regarded as computationally
infeasible. A surprising conclusion of this paper is that AO� is computationally feasible
when applied to the problem of learning diagnostic policies from training examples. This
conclusion is based both on experimental evidence|AO� required less than 500 MB of
memory on virtually all of our benchmark scenarios|and theoretical analysis.

From a theoretical perspective, there are �ve factors that help make AO� feasible in
this setting: the modest amount of training data, the modest number of possible tests, the
small number of outcomes for each test, the admissible heuristic, and the statistical pruning
regularizer. We discuss each of these factors in turn:

Modest amount of training data. In learning for diagnosis, there is a cost for measur-
ing each attribute of each training example. Consequently, each training example is
expensive to collect, and this puts a practical limit on the size of the training data
set. This in turn limits the space of reachable states in the MDP. As a result, the
AND/OR graph searched by AO� does not grow too large. As the amount of training
data grows, this graph will gradually grow larger and at some point, it will become
too large for the available memory. Good results may still be obtained by imposing a
memory limit, as we did in the spect experiments.

Modest number of possible tests. Our experiments only considered domains with 22
or fewer tests. The number of tests determines the branching factor of the OR nodes
in the graph, so the size of the graph scales exponentially in this quantity. However, if
most of the tests can be pruned by the admissible heuristic or by statistical pruning,
the exponential explosion can be avoided. Whether this is possible in any particular
problem depends on the relative costs and informativeness of the di�erent tests.

Small number of outcomes for each test. We discretized each continuous measurement
to have only 3 outcomes. The number of outcomes determines the branching factor
of the AND nodes in the graph, so the graph size scales exponentially in this quantity
as well. This quantity can be controlled through discretization (see below).

The admissible heuristic. The problem of learning for diagnosis is non-trivial only when
the costs of making measurements are comparable to the costs of misdiagnosis. But
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when this is true, our admissible heuristic is able to prune large parts of the search
space.

Statistical pruning. Finally, the statistical pruning regularizer is able to prune parts of
the search space that are unlikely to produce improved policies.

Notice that the size of the AND/OR graph does not increase as the number of possible
diagnoses increases. Hence, the AO* search approach scales well with the number of possible
diagnostic outcomes.

In cases where the AND/OR graph becomes infeasibly large, we recommend VOI-L, since
our experiments showed that it was the best greedy method.

The MDP framework for diagnosis is general enough to handle several extensions to the
learning algorithms studied in this paper. For example, in our experiments, we considered
only diagnosis problems that involve two classes, \healthy" and \sick." But this could easily
be generalized to consider an arbitrary number of classes. Our implementations assumed
that the cost of a measurement depends only on the attribute being measured, C(xn). This
can easily be generalized so that the cost of a measurement depends on which tests have
already been executed and the results that they produced, and it can also depend on the
result of the measurement. In other words, the cost function of a measurement can be
generalized to C(s; xn; s

0), where s is the current state of the MDP, xn is the measurement,
and s0 is the resulting state s0 = s [ fxn = vng. Our implementations also assumed that
the misdiagnosis costs were �xed for all patients, but this could be extended to allow the
costs to vary from one patient to another. These changes in the diagnosis problem (multiple
classes and complex costs) do not modify the size or complexity of the MDP.

Some important extensions to the diagnostic setting will require extensions to the MDP
framework as well. For example, to handle treatment actions that have side e�ects, noisy
actions that may need to be repeated, or actions that have delayed results, the de�nition
of a state in the MDP needs to be extended. An initial examination of these extensions
suggest that each of them will cause the MDP state space to grow signi�cantly, and this
may make it infeasible to search the space of diagnostic policies systematically. Hence, these
extensions will probably require new ideas for their solution.

Another important direction for future work is to extend our approach to handle tests
with a large number of possible outcomes, including particularly tests with continuous
measured values. We applied standard information-gain methods for discretizing contin-
uous attributes, but an interesting direction for future work is to develop cost-sensitive
discretization methods.

A �nal challenge for future research is to learn good diagnostic policies from incom-
plete training data. The algorithms presented in this paper assume that each attribute of
each training example has been measured. Such data are hard to obtain. But every day,
thousands of patients are seen by physicians, medical tests are performed, and diagnostic
decisions are made. These data are incomplete, because each physician is following his or
her own diagnostic policy that certainly does not perform all possible medical tests. The
resulting training examples have many missing values, but these values are not \missing at
random", so standard methods for handling missing values cannot be applied. Methods for
learning diagnostic policies from such data would be very valuable in many applications.
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The problem of learning a diagnostic policy from data collected while executing some
other diagnostic policy is identical to the problem of \o�-policy" reinforcement learning
(Sutton & Barto, 1999). In reinforcement learning, the diagnostic policy generating the
data is called the exploration policy. Much is known about creating exploration policies
that enable learning of optimal policies. For example, if the exploration policy has non-zero
probability of executing every action in every state, then the optimal policy can still be
learned. If the exploration policy can be controlled by the learning system, then much more
selective exploration can produce the optimal policy (Kearns & Singh, 1998). By extending
these ideas, it may be possible to learn diagnostic policies from data collected routinely in
hospitals and clinics.

The problem of learning diagnostic policies is fundamental to many application domains
including medicine, equipment diagnosis, and autonomic computing. A diagnostic policy
must balance the cost of gathering information by performing measurements with the cost
of making incorrect diagnoses. This paper has shown that AO�-based systematic search,
when combined with regularization methods for preventing over�tting, is a feasible method
for learning good diagnostic policies from labeled examples.
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