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Abstract
Real-time search methods are suited for tasks in which the agent is interacting with an initially

unknown environment in real time. In such simultaneous planning and learning problems, the agent
has to select its actions in a limited amount of time, while sensing only a local part of the environ-
ment centered at the agent’s current location. Real-time heuristic search agents select actions using
a limited lookahead search and evaluating the frontier states with a heuristic function. Over re-
peated experiences, they refine heuristic values of states to avoid infinite loops and to converge to
better solutions. The wide spread of such settings in autonomous software and hardware agents has
led to an explosion of real-time search algorithms over the last two decades. Not only is a potential
user confronted with a hodgepodge of algorithms, but he also faces the choice of control parameters
they use. In this paper we address both problems. The first contribution is an introduction of a sim-
ple three-parameter framework (named LRTS) which extracts the core ideas behind many existing
algorithms. We then prove that LRTA*, ε-LRTA* , SLA*, and γ-Trap algorithms are special cases
of our framework. Thus, they are unified and extended with additional features. Second, we prove
completeness and convergence of any algorithm covered by the LRTS framework. Third, we prove
several upper-bounds relating the control parameters and solution quality. Finally, we analyze the
influence of the three control parameters empirically in the realistic scalable domains of real-time
navigation on initially unknown maps from a commercial role-playing game as well as routing in
ad hoc sensor networks.

1. Motivation

In this paper, we consider a simultaneous planning and learning problem. One motivating applica-
tion lies with navigation on an initially unknown map under real-time constraints. As an example,
consider a robot driving to work every morning. Imagine the robot to be a newcomer to the town.
The first route the robot finds may not be optimal because traffic jams, road conditions, and other
factors are initially unknown. With the passage of time, the robot continues to learn and eventually
converges to a nearly optimal commute. Note that planning and learning happen while the robot is
driving and therefore are subject to time constraints.

Present-day mobile robots are often plagued by localization problems and power limitations,
but their simulation counter-parts already allow researchers to focus on the planning and learning
problem. For instance, the RoboCup Rescue simulation league (Kitano, Tadokoro, Noda, Matsub-
ara, Takahashi, Shinjou, & Shimada, 1999) requires real-time planning and learning with multiple
agents mapping out an unknown terrain. Pathfinding is done in real time as various crises, involving
fire spread and human victims trapped in rubble, progress while the agents plan.

Similarly, many current-generation real-time strategy games employ a priori known maps. Full
knowledge of the maps enables complete search methods such as A* (Hart, Nilsson, & Raphael,
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1968) and Dijkstra’s algorithm (Dijkstra, 1959). Prior availability of the maps allows pathfinding
engines to pre-compute various data to speed up on-line navigation. Examples of such data include
visibility graphs (Woodcock, 2000), influence maps (Pottinger, 2000), space triangulation (Kall-
mann, Bieri, & Thalmann, 2003), state abstraction hierarchies (Holte, Drummond, Perez, Zimmer,
& MacDonald, 1994; Holte, 1996; Botea, Müller, & Schaeffer, 2004) and route waypoints (Reece,
Krauss, & Dumanoir, 2000). However, the forthcoming generations of commercial and academic
games (Buro, 2002) will require the agent to cope with initially unknown maps via exploration
and learning during the game, and therefore will greatly limit the applicability of complete search
algorithms and pre-computation techniques.

Incremental search methods such as dynamic A* (D*) (Stenz, 1995) and D* Lite (Koenig &
Likhachev, 2002) can deal with initially unknown maps and are widely used in robotics, including
DARPA’s Unmanned Ground Vehicle program, Mars rover, and other mobile robot prototypes (Her-
bert, McLachlan, & Chang, 1999; Thayer, Digney, Diaz, Stentz, Nabbe, & Hebert, 2000). They
work well when the robot’s movements are slow with respect to its planning speed (Koenig, 2004).
In real-time strategy games, however, the AI engine can be responsible for hundreds to thousands
of agents traversing a map simultaneously and the planning cost becomes a major factor. To illus-
trate: even at the smaller scale of the six-year old “Age of Empires 2” (Ensemble-Studios, 1999),
60-70% of simulation time is spent in pathfinding (Pottinger, 2000). This gives rise to the following
questions:

1. How can planning time per move, and particularly the first-move delay, be minimized so that
each agent moves smoothly and responds to user requests nearly instantly?

2. Given real-time execution, local sensory information, and initially unknown terrain, how can
the agent learn a near-optimal path and, at the same time, minimize the learning time and
memory required?

The rest of the paper is organized as follows. We first introduce a family of real-time search algo-
rithms designed to address these questions. We then make the first contribution by defining a simple
parameterized framework that unifies and extends several popular real-time search algorithms. The
second contribution lies with a theoretical analysis of the resulting framework wherein we prove
convergence and completeness as well as several performance bounds. Finally, we evaluate the
influence of the control parameters in two different domains: single agent navigation in unknown
maps and routing in ad hoc sensor networks. Detailed pseudocode needed to reimplement the al-
gorithms as well as to follow the theorem proofs is presented in Appendix A. Theorem proofs
themselves are found in Appendix B.

2. Real-time Heuristic Search and Related Work

We situate our survey of real-time heuristic search literature in the framework of agent-centered
search (Koenig, 2001). While traditional off-line search methods first plan a path from start to
goal state and then move the agent along the path, agent-centered search interleaves planning and
execution. Furthermore, the planning is restricted to the areas of the search space around the current
state of the agent such as the physical location of a mobile robot or the current board position in
a game. The agent-centered search methods thus satisfy these two requirements: (i) at all times,
the agent is in a single state which can be changed only via taking actions and, therefore, incurring
execution cost; (ii) the agent can see only the states around its current state.
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Real-time heuristic search methods are a subset of agent-centered search methods. They are
distinguished by the following two additional properties: (i) the planning time per move can be
upper-bounded by a user-supplied constant (hence real-time); (ii) they associate a heuristic function
with each state (hence heuristic). The former requirement is motivated by the need to act quickly in
control tasks such as flying a helicopter (Ng, Coates, Diel, Ganapathi, Schulte, Tse, Berger, & Liang,
2004) or playing a real-time strategy computer game (Buro, 2002). The latter property allows the
agent to avoid infinite cycles on a map by learning the proper distances from each state to the goal
state. Unlike learning the map and using it for planning (Stenz, 1995; Koenig & Likhachev, 2002;
Chimura & Tokoro, 1994; Sturtevant, 2005), acquiring high-quality heuristic values lets the agent
select the right action very quickly thereby improving its reaction time. Having the heuristic values
also allows the agent to pick the next best action should the primary choice become unavailable
(e.g., due to a road block on the map). Remarkably, learning state and state-action values is the
prevailing technique in Reinforcement Learning (Sutton, 2005).

Learning real-time search algorithms, such as LRTA* (Korf, 1990), interleave planning and
execution in an on-line decision-making setting. As the planning time per each action executed by
the agent is bounded, these algorithms can be used as control policies for autonomous agents, even
in an unknown and/or non-stationary environment (Koenig & Simmons, 1998; Koenig, 1999; Ishida
& Korf, 1991, 1995; Ishida, 1997). In particular, the ability to make decisions after only a small-
scale local search makes these algorithms well suited for routing in large-scale wireless networks of
simple sensors and actuators where each node is aware only of its nearby neighbors and no global
map exists. In such scenarios, not only does the limited amount of computation per node suit the
low computing power and energy requirements, but also the network collectively learns its own
topology over time (Yu, Govindan, & Estrin, 2001; Shang, Fromherz, Zhang, & Crawford, 2003).

Since the pioneering LRTA* (Korf, 1990), research in the field of learning real-time heuristic
search has developed in several major directions. Ishida and Korf (1991) investigated modifica-
tions to LRTA* for non-stationary environments. Shimbo and Ishida (2003) studied convergence
to suboptimal solutions as well as mechanisms for bounding the amount of state space exploration.
Furcy and Koenig (2000) considered a different learning mechanism speeding up the convergence.
Russell and Wefald (1991) researched a decision-theoretic approach to balancing partial planning
and execution. Shue and Zamani (1993) and Bulitko (2004) proposed a backtracking component
suggesting yet another way to control the exploration of the environment.

Note that while the original LRTA* algorithm can be viewed as a special case of real-time dy-
namic programming (Barto, Bradtke, & Singh, 1995), in general, real-time heuristic search methods
have several notable differences from reinforcement learning methods. First, they usually assume
a deterministic environment and thus take advantage of more aggressive value update rules. Sec-
ond, they employ non-trivial initial heuristics and can converge even faster when such a heuristic
is admissible (Pearl, 1984) by never decreasing heuristic values of states. Third, real-time heuristic
search methods often use more extensive and sophisticated local search methods than the ε-greedy
control policy commonly used in reinforcement learning. Examples include dynamically selected
lookahead search space in DTA* (Russell & Wefald, 1991), additional heuristic for tie-breaking
in FALCONS (Furcy & Koenig, 2000), and heuristic upper-bounds for safe space exploration in
bounded LRTA* (Shimbo & Ishida, 2003). This improves the quality of decision-making by com-
pensating for inaccuracies in the heuristic function and speeds up the learning process. Finally,
backtracking extensions (Shue & Zamani, 1993; Bulitko, 2004) give the agent another mechanism
to maintain consistency of its heuristic.
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The multitude of learning real-time search algorithms (LRTA*, ε-LRTA* , δ-LRTA*, FAL-
CONS, eFALCONS, SLA*, γ-Trap, SLA*T, DTA*, etc.) available to the user can be disorienting
since he has to decide not only on the algorithm to use but also on the algorithm parameters which
can have a major impact on performance. The problem is further complicated by the fact that the
empirical studies have been done in different test beds making the results incomparable directly. To
illustrate: Furcy and Koenig (2000) and Shimbo and Ishida (2003) appear to use the same testbed
(the 8-puzzle). Yet, their results on the same algorithm (LRTA*) differ substantially. A closer in-
spection reveals that two different goal states were used leading to the major discrepancies in the
performance. To compound these problems, most performance metrics have been measured with
the myopic lookahead search of depth one. This is in contrast to game-playing practice where most
competitive systems gain a substantial benefit from a deeper search horizon (Schaeffer, Culberson,
Treloar, Knight, Lu, & Szafron, 1992; Hsu, Campbell, & Hoane, 1995; Buro, 1995).

We take a step towards a unified view of learning in real-time search and make four contribu-
tions. First, we introduce a simple three-parameter framework (named LRTS) that includes LRTA*,
ε-LRTA* , SLA* and γ-Trap as its special cases. A by-product of this generalization is an extension
of the first three algorithms to variable depth lookahead. Second, we prove completeness and con-
vergence for any combination of the parameters. Third, we prove non-trivial theoretical bounds on
the influence of the parameters. Fourth, we present a large-scale empirical evaluation in practically
relevant domains.

3. Problem Formulation

In this section, we formally introduce the learning real-time search problem settings and the metrics
we will be using.

Definition 3.1 The search space is defined as a tuple (S, A, c, s0, Sg, h0) where S is a finite set of
states, A is a finite set of actions, c : S×A→ R+ is the cost function with c(s, a) being the incurred
cost of taking action a in state s, s0 is the initial state, Sg ⊂ S is the set of goal states, and h0 is the
initial heuristic (e.g., Manhattan distance).

We adopt the assumptions of Shue and Zamani (1993), Shimbo and Ishida (2003) that (i) for
every action in every state there exists a reverse action (possibly with a different cost), (ii) every
applicable action leads to another state (i.e., no self-loops), and (iii) at least one goal state in Sg is
reachable from s0. Assumption (i) is needed for the backtracking mechanism used in SLA* (Shue
& Zamani, 1993). It holds in many combinatorial and path-planning problems. Its applicability
to domains where reversing an action may require a non-trivial sequence of actions is a subject
of future research. Assumption (ii) is adopted for the sake of proof simplicity. In other words,
the results presented in this paper hold even if self-loops (of positive cost) are present. As with
all real-time search algorithms we are unifying, we assume that the environment is stationary and
deterministic. Extension of our algorithms on dynamic/stochastic domains is a subject of current
research.

Definition 3.2 The execution cost of traveling from state s1 to state s2 denoted by dist(s1, s2)
is defined as the minimal cumulative execution cost the agent is to incur by traveling from s1

to s2. Throughout the paper, we will assume that dist satisfies the standard triangle inequality:
∀s1, s2, s3 ∈ S [dist(s1, s3) ≤ dist(s1, s2) + dist(s2, s3)]. Then, for any state s its true execution
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cost h∗ is defined as the minimal execution cost to the nearest goal: h∗(s) = minsg∈Sg dist(s, sg). A
heuristic approximation h to the true execution cost is called admissible iff ∀s ∈ S [h(s) ≤ h∗(s)].
The value of h in state s will be referred to as the heuristic value of state s. We will assume that
the heuristic value of the initial heuristic function is 0 for any goal state. The latter assumption
holds trivially if the initial heuristic function is admissible. A depth d child of state s is any state s′

reachable from s in the minimum of d actions (denoted by ‖s, s′‖ = d). The depth d neighborhood
of state s is then defined as S(s, d) = {sd ∈ S | ‖s, sd‖ = d}.

Definition 3.3 Search agents operate by starting in a fixed start state s0 and executing actions sug-
gested by their control policies. A trial is defined as a sequence of states the algorithm visits between
the start state and the first goal state it encounters. Once a trial is completed, the agent is reset to the
start state and the next trial begins. Final trial is defined as the first trial on which no learning (i.e.,
updates to the heuristic function) occurs.1 A convergence run is the sequence of trials from the first
trial to the final trial.

4. Performance Measures

Each problem instance is fully specified by the search space which includes the start and goal states.
The agent is run until convergence and the following statistics are collected:

execution convergence cost is the sum of execution costs of the actions taken by the agent during
the convergence process (i.e., on the convergence run);

planning cost is the average cost of planning per action during the convergence process. Planning
cost of an action is the number of states the agent considered to decide on taking the action;

total convergence cost is the total planning convergence cost for all actions during convergence
plus the execution convergence cost scaled by a factor called “planning speed”. The scaling
factor represents the amount of planning (measured in the number of nodes considered) the
agent would be able to do in the time it takes to execute a unit of travel. For instance, the
computer on-board an AIBO robodog may be able to plan with 10,000 states in the time it
takes the AIBO to traverse 1 foot of distance on the ground. Correspondingly, the planning
speed will be 10,000 states per foot. This is a commonly used way of combining the execution
and planning costs into a single metric (Russell & Wefald, 1991; Koenig, 2004);2

memory is the total amount of memory (measured in the number of state values) the agent used
to store the heuristic function during the convergence run. Note that the initial heuristic is
usually represented in a compact algorithmic form as opposed to a table. Therefore, memory
is required to store only the heuristic values modified during learning;

first-move delay (lag) is the amount of planning time (measured in milliseconds3) the agent takes
before deciding on the first move. This is an important metric in real-time strategy games,

1. Note that if random tie-breaking is used, more learning can actually take place after a learning-free trial. We use fixed
tie-breaking throughout this paper for simplicity.

2. Note that unlike total planning cost, total convergence cost allows us to model domains where some actions are
expensive disproportionally to their running time (e.g., taking damage by running into a wall). Additionally, we use
the standard real-time search framework and assume that planning and execution are not simultaneous but interleaved.

3. All timings are taken on a PowerMac G5 running at 2GHz. Apple gcc 3.3 compiler is used.
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wherein hundreds to thousands of units can be tasked simultaneously and yet have to react to
user’s commands as quickly as possible;

suboptimality of the final solution is defined as the percentage by which the execution cost of
the final trial exceeds that of the best possible solution. For instance, if a pathfinding agent
had the execution cost of 120 on the final trial and the shortest path has the cost of 100, the
suboptimality is 20%.

5. Application Domains

In the paper, we illustrate the algorithms in two realistic testbeds: real-time navigation in unknown
terrain and routing in ad hoc wireless sensor networks. The former domain is more standard to
single-agent search and so we will use it throughout the paper to illustrate our points. The latter
domain is a relative newcomer to the field of real-time heuristic search. We will use it later in
the paper (Section 8) to demonstrate how learning single-search methods can handle a practically
important yet different task.

Note that both domains have the desired attributes listed in the introduction. Indeed, in both
domains, the state space is initially unknown, the agent is in a single current state to be changed via
executing actions, the agent can sense only a local part of the state space centered on the agent’s
current state, the planning time per action should be minimized, and there are repeated trials.

5.1 Real-time navigation in next-generation video games

The agent is tasked to travel from the start state (xs, ys) to the single goal state (xg, yg). The
coordinates are on a two-dimensional rectangular grid. In each state, up to eight moves are available
leading to the eight immediate neighbors. Each straight move (i.e., north, south, west, east) has a
travel cost of 1 while each diagonal move has a travel cost of

√
2. Each state on the map can be

passable or occupied by a wall. In the latter case, the agent is unable to move into it. Initially,
the map in its entirety is unknown to the agent. In each state (x, y) the agent can see the status
(occupied/free) in the neighborhood of the visibility radius v: {(x′, y′) | |x′−x| ≤ v & |y′− y| ≤
v}. The initial heuristic we use is the so-called octile distance defined as the length of a shortest
path between the two locations if all cells are passable. It is a translation of Manhattan distance onto
the case of eight moves and can be easily computed in a closed form.

Note that classical A* search is inapplicable due to an initially unknown map. Specifically, it is
impossible for the agent to plan its path through state (x, y) unless it is either positioned within the
visibility radius of the state or has visited this state on a prior trial. A simple solution to this problem
is to generate the initial path under the assumption that the unknown areas of the map contain no
occupied states (the free space assumption of Koenig, Tovey, & Smirnov, 2003). With the octile
distance as the heuristic, the initial path is close to the straight line since the map is assumed to be
empty. The agent follows the existing path until it runs into an occupied state. During the travel,
it updates the explored portion of the map in its memory. Once the current path is blocked, A* is
invoked again to generate a new complete path from the current position to the goal. The process
repeats until the agent arrives at the goal. It is then reset to the start state and a new trial begins. The
convergence run ends when no new states are seen.4

4. Note that this framework can be easily extended to the case of multiple start and goal states.
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To increase planning efficiency, several methods of re-using information over subsequent plan-
ning episodes have been suggested. Two popular versions are D* (Stenz, 1995) and D* Lite (Koenig
& Likhachev, 2002). Powerful as they are, these enhancements do not reduce the first-move lag time.
Specifically, after the agent is given the destination coordinates, it has to conduct an A* search from
its position to the destination before it can move. Even on small maps, this delay can be substantial.
This is in contrast to LRTA* (Korf, 1990), which only performs a small local search to select the
first move. As a result, several orders of magnitude more agents can respond to a user’s request in
the time it takes one A* agent.

As present-day games circumvent these problem by using fully observable maps and pre-
computing auxiliary data structures beforehand, we conduct our experiments in a research proto-
type, called Hierarchical Open Graph (HOG), developed at the University of Alberta by Nathan
Sturtevant. It allows one to load maps from commercial role-playing and real-time strategy games
such as Baldur’s Gate (BioWare, 1999) and WarCraft III (Blizzard, 2002). We use five maps ranging
in size from 214 × 192 states (of which 2765 are traversable) to 235 × 204 (with 16142 traversable
states). The largest map is shown in Figure 1. A total of 1000 problem instances on the five maps
were randomly chosen so that their shortest path lengths fall in the ten bins: 1-10, 11-20, . . . , 91-100
with 100 problems per bin. We will use this suite of 1000 problems throughout the paper.

Figure 1: Left: one of the five test maps from Baldur’s Gate – a commercial role-playing game by
BioWare. Right: a close-up showing the agent as a dot in the middle.

6. LRTS: A Unifying Framework

In this section we will introduce the primary contribution of this paper — the unifying framework
of real-time heuristic search — in an incremental fashion. Namely, we will start with the base
algorithm, LRTA*, and then analyze three extensions: deeper lookahead, optimality weight, and
backtracking. Each extension is illustrated with a hand-traced micro-example and empirical results
in the real-time pathfinding domain. A unifying algorithm constitutes the section’s finale.

6.1 Learning Real-Time A* (LRTA*)

LRTA* introduced by Korf (1990), is the first and best known learning real-time heuristic search
algorithm . The key idea lies with interleaving acting and backing up heuristic values (Figure 2).5

5. For clarity, all pseudocode in this paper describes a single trial only.

125



BULITKO & LEE

Specifically, in the current state s, LRTA* with a lookahead of one considers the immediate neigh-
bors (lines 4-5 in Figure 2). For each neighbor state, two values are computed: the execution cost
of getting there from the current state (henceforth denoted by g) and the estimated execution cost of
getting to the closest goal state from the neighbor state (henceforth denoted by h). While g is known
precisely, h is a heuristic estimate. LRTA* then travels to the state with the lowest f = g + h value
(line 7). Additionally, it updates the heuristic value of the current state if the minimum f -value is
greater than the heuristic value of the current state (line 6).6

LRTA*
1 initialize the heuristic: h← h0

2 reset the current state: s← sstart
3 while s 6∈ Sg do
4 generate children one move away from state s
5 find the state s′ with the lowest f = g + h
6 update h(s) to f(s′) if f(s′) is greater
7 execute the action to get to s′

8 end while

Figure 2: LRTA* algorithm with a lookahead of one.

Korf (1990) showed that in finite domains where the goal state is reachable from any state and
all action costs are non-zero, LRTA* finds a goal on every trial. Additionally, if the initial heuristic
function is admissible then LRTA* will converge to an optimal solution after a finite number of
trials. Compared to A* search, LRTA* with a lookahead of one has a considerably shorter first-
move lag and finds suboptimal solutions much faster. However, converging to an optimal (e.g.,
lowest execution cost) solution can be expensive in terms of the number of trials and the total
execution cost. Table 1 lists measurements averaged over 1000 convergence runs on the five game
maps in the pathfinding domain (details in Section 5.1). The differences become more pronounced
for larger problems (Figure 3).

Table 1: LRTA* with a lookahead of one vs. A* in pathfinding.

Algorithm First-move lag Convergence execution cost
A* 3.09 ms 159

LRTA* 0.05 ms 9346

6.2 Extension 1: Deeper Lookahead Search

LRTA* follows the heuristic landscape to a local minimum. It avoids getting stuck there by raising
the heuristic values and eventually eliminating the local minimum. Thus, local heuristic minima,
caused by inaccuracies in the initial heuristic values, are eliminated through the process of learning.
Ishida (1997) referred to such inaccuracies in the heuristic as “heuristic depressions”. He studied
them for the basic case of LRTA* with a lookahead of one. Heuristic depressions were later gener-
alized for the case of weighted LRTA* and arbitrary lookahead in (Bulitko, 2004) under the name
of γ-traps.

6. This condition is not necessary if the heuristic is consistent as f -values will be non-decreasing along all lookahead
branches. In general, there is no need to decrement the h-value of any state if the initial heuristic is admissible.
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Figure 3: Differences between LRTA* and A* as pathfinding problems scale up.

In the process of “filling in” heuristic depressions, the agent can incur substantial execution cost
by moving back and forth inside the depression. This happens due to the fact that LRTA* with a
lookahead of one is myopic and conducts a minimum amount of planning per move. If planning is
cheaper than execution, then a natural solution is to increase the amount of planning per move with
the hope of eliminating heuristic local minima at a lower execution cost.

In LRTA*, additional planning per move is implemented through deeper lookahead search. The
heuristic update and action selection rules introduced in the previous section can be extended to an
arbitrary lookahead depth in a manner inspired by the standard mini-max search in games (Korf,
1990). Korf called the new rule “mini-min” and empirically observed that deeper lookahead de-
creases the execution cost but increases the planning cost per move. The phenomenon can be illus-
trated with a hand-traceable example in Figure 4. Each of the six states is shown as a circle with
the actions shown as edges. Each action has the cost of 1. The initial heuristic h0 is admissible but
inaccurate. Heuristic values before and after the first trial are shown as numbers under each state
(circle).

start

1 2 1 1 3h0:
5 moves

goal

0

1 2 3 3 30

start

1 2 1 1 3h0:
3 moves

goal

0

1 2 3 1 30h1: h1:

Figure 4: Initial and final heuristics of LRTA* with a lookahead of one (left) and two (right).

Both LRTA* with a lookahead of one and two converge to their final heuristics in one trial. However,
the additional ply of lookahead takes advantage of the two extra heuristic values and, as a result,
reduces the execution cost from 5 to 3 moves. On the other hand, the planning cost of each move
increases from 2 to 4 nodes.

In general, more planning per action “compensates” for inaccuracies in the heuristic function
and allows one to select better moves. Table 2 demonstrates this effect averaged over the 1000
pathfinding problems. The reduction of execution cost due to deeper lookahead becomes more
pronounced in larger problems (Figure 5).

Lookahead search in LRTA*-like algorithms has received considerable attention in the literature.
Russell and Wefald (1991) and Koenig (2004) analyzed selection of the lookahead depth optimal in
terms of the total cost (i.e., a weighted combination of the planning and execution costs). Bulitko,
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Table 2: Effects of deeper lookahead in LRTA*.

Lookahead First move lag Execution convergence cost
1 0.05 ms 9346
3 0.26 ms 7795
5 0.38 ms 6559
7 0.68 ms 5405
9 0.92 ms 4423
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Figure 5: Convergence of LRTA* with different lookaheads as problems scale up.

Li, Greiner, and Levner (2003) and Bulitko (2003) examined pathological cases of deeper lookahead
increasing both execution and planning costs.

6.3 Extension 2: Heuristic Weight

Scalability of LRTA* to large problems is determined by two of its attributes. First, it uses the
initial “optimistic” heuristic function for the unknown areas of the search space and more informed,
“realistic” function for the explored areas. This results in the so-called “optimism in the face of un-
certainty” where the agent eagerly explores novel parts of the space. Consequently, the convergence
time is lengthened and the solution quality oscillates significantly over consecutive trials (Shimbo
& Ishida, 2003). Second, the complete convergence process can be intractable in terms of running
time and the amount of memory required to store the heuristic because optimal solutions are sought.
Indeed, even simple problems can be intractable in terms of finding optimal solutions (e.g., the
generalized sliding tile puzzle of Ratner & Warmuth, 1986).

A weighted version of LRTA* was proposed by Shimbo and Ishida (2003) as a systematic way
of giving up optimality of the converged solution. The authors argued that optimal solutions are
rarely needed in practice, nor can they be achieved in large domains. Consequently, the user must
settle for suboptimal but satisficing solutions. Weighted LRTA* is the same algorithm (LRTA*)
run with an inadmissible initial heuristic. The inadmissibility is bounded as for every state its h(s)
value is required to be upper-bounded by (1 + ε)h∗(s) where h∗(s) is the true distance to goal. The
resulting ε-admissibility leads to ε-optimality of the solution to which such an ε-LRTA* converges.
By giving up optimality in the ε-controlled fashion, the algorithm gains faster convergence, smaller
memory requirements, and higher stability. Note that 0-LRTA* is equivalent to the original LRTA*.

Shimbo and Ishida (2003) used Manhattan distance scaled by (1 + ε) as the initial heuristic
h0. The underlying idea can be illustrated in a five-state domain (Figure 6). On the left, the initial
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heuristic is listed immediately under the five states (shown as circles). Each action (shown with an
edge) has the execution cost of 1. Every trial of LRTA* will involve four moves and will update
the heuristic values. The values after each trial are listed as successive rows. After 16 moves (4
trials), LRTA* will converge to the perfect heuristic. On the right, we start with the same heuristic
multiplied by (1+ε) = 2. As shown there, 1-LRTA* takes only one trial (i.e., 4 moves) to converge.

goal start

0 0 1 1 2
0 1 1 2 2

0 1 2 2 3

0 1 2 3 3

initial heuristic:

final heuristic: 0 1 2 3 4

4 moves

4 moves

4 moves

4 moves

goal start

0 0 2 2 4
0 1 2 3 4

initial heuristic:
final heuristic:

4 moves

Figure 6: Heuristic values over successive trials of: LRTA* (left) and 1-LRTA* (right).

In general, by scaling the initial (admissible) heuristic by (1+ε), the amount of underestimation
of an admissible initial heuristic relative to the perfect heuristic is reduced in many states. Therefore,
the number of updates (line 6 in LRTA*, Figure 2) needed to increase the initial heuristic value of a
state to its final value is reduced. Correspondingly, the execution convergence cost is lowered and
learning is sped up. Figure 7 illustrates the correlation in the pathfinding domain. The discrepancy
is the amount of underestimation in the initial heuristic (1+ ε)h0 averaged over all states of the map
at hand (s ∈ S):

avg
sgoal, s∈S

h∗(s, sgoal)−̇(1 + ε)h0(s, sgoal)
h∗(s, sgoal)

. (6.1)

Here −̇ denotes non-negative subtraction: a−̇b equals a− b if the result is positive and 0 otherwise.
As usual, h∗ is the perfect heuristic and h0 is the octile distance. The heuristics are taken with
respect to the 1000 random goal states (sgoal) defined in Section 5.1.
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Figure 7: Convergence cost of ε-LRTA* vs. the weighted initial heuristic discrepancy. The points
on the graph correspond to these values of (1 + ε): 3.3, 2.0, 1.5, 1.1, 1.0.

On the negative side, the scaling is uniform over all states and will sometimes result in the scaled
values exceeding the perfect heuristic values. Such inadmissibility can lead to suboptimal solutions
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as illustrated in Figure 8. Specifically, the initial heuristic is admissible (the values of the five states
are shown above the circles in the left part of the figure). All actions (shown as arrows) have the
execution cost of 1. Thus, LRTA* converges to the optimal path (i.e., through the top state). On the
other hand, scaling the heuristic by (1 + ε) = 3 (shown on the right) leads 2-LRTA* to converge on
a longer suboptimal path (through the bottom two states).

Start
Goal00

0
6

3

Start
Goal00

0
2

1

Figure 8: 2-LRTA* converges to a suboptimal path.

In summary, scaling an initial (admissible) heuristic by 1 + ε tends to reduce the underestima-
tion error of the heuristic thereby speeding up convergence. As the weighted heuristic becomes
progressively more overestimating, suboptimality of the final solutions increases and, eventually,
overall convergence slows down (due to less informative weighted heuristic). Table 3 illustrates the
trends in the pathfinding domain. Once again, the effect is more pronounced for larger problems
(Figure 9).

Note that a similar effect has been observed with weighted A* search wherein a weight w is
put on the heuristic h. When w exceeds 1, fewer nodes are expanded at the cost of suboptimal
solutions (Korf, 1993). Table 4 lists the results of running weighted A* on the pathfinding problems
used in Table 3.
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Figure 9: Impact of heuristic weight as pathfinding problems scale up.

6.4 Extension 3: Backtracking

Both LRTA* and ε-LRTA* learn by updating their heuristic function while advancing in the state
space. SLA* (Shue & Zamani, 1993) introduced a backtracking mechanism. That is, upon making
an update to heuristic value of the current state, the agent backtracks to its previous state. This
provides the agent with two opportunities: (i) to update the heuristic value of the previous state and
(ii) possibly select a different action in the previous state. An alternative scheme would be to update
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Table 3: Effects of scaling the initial heuristic in ε-LRTA* .

Heuristic weight (1 + ε) Execution convergence cost Suboptimality
10.0 2832 3.17%
5.0 2002 2.76%
3.3 1908 2.20%
2.0 2271 1.52%
1.5 3639 0.97%
1.1 6520 0.25%
1.0 (LRTA*) 9346 0.00%

Table 4: Effects of scaling the initial heuristic in weighted A*.

Heuristic weight Planning convergence cost Suboptimality
10.0 1443 3.48%
5.0 1568 3.08%
3.3 1732 2.37%
2.0 2074 1.69%
1.5 3725 1.16%
1.1 5220 0.30%
1.0 (A*) 10590 0.00%

heuristic values of previously visited states in memory (i.e., without physically moving the agent
there). This is the approach exploited, for example, by temporal difference methods with eligibility
traces (Watkins, 1989; Sutton & Barto, 1998). It does not give the agent opportunity (ii) above.
Naturally, all backtracking moves are counted in execution cost.

goal start

0 1 1 2 3
0 1 2 2 3

0 1 2 3 3

initial heuristic:

final heuristic: 0 1 2 3 4

4 moves

4 moves

4 moves

goal start

0 1 1 2 3
0 1 2 3 4

initial heuristic:
final heuristic:

8 moves

Figure 10: Heuristic values over successive trials of: LRTA* (left) and SLA* (right).

The underlying intuition can be illustrated with a simple example in Figure 10. Once again,
consider a one-dimensional five-state domain. Each action has an execution cost of one. The initial
heuristic is accurate in the left two states and one lower in the right three states. On each trial,
LRTA* will raise the heuristic value of a single state. Therefore, three trials (12 moves) are needed
to make the heuristic perfect. SLA*, on the other hand, gets to the middle state in 2 moves, updates
its value from 1 to 2, backtracks to the second state from the right, increases its value from 2 to 3,
backtracks to the right most state, and increases its value from 3 to 4. The agent will then take 4
moves towards the goal, following the now perfect heuristic. As a result, the first trial is longer (8
vs. 4 moves) but the overall number of moves until convergence is reduced (from 12 to 8).

The SLA* algorithm is nearly identical to LRTA* with a lookahead of one (Figure 2). The only
difference is that upon increasing the state value in line 6, the agent takes an action leading to its
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previous state and not the state s′ as in line 7 of LRTA*. If the previous state does not exist (i.e., the
algorithm reached the start state) then no action is taken but the heuristic value is still updated.

SLA* backtracks every time its heuristic is updated (i.e., learning took place). This causes very
substantial execution cost of the first trial. In fact, as we will prove in Theorem 7.8, all learning
occurs during the first trial. In larger problems, the user may want a suboptimal solution before
the convergence process completes. To address this problem, SLA*T, introduced in (Shue, Li, &
Zamani, 2001), gives the user control over the amount of learning to be done per trial. Namely,
SLA*T backtracks only after it exhausts a user-specified learning quota.

There are two primary effects of backtracking on the metrics we consider in this paper. First,
larger values of learning quota decrease the execution cost on each trial as less backtracking occurs.
In the extreme, the learning quota can be set to infinity, transforming SLA*T into backtracking-free
LRTA* with a lookahead of one. On the other end of the spectrum (with a learning quota of zero),
SLA*T always backtracks upon updating a heuristic value and becomes equivalent to SLA*. More
backtracking tends to speed up the convergence process (i.e., decrease the convergence execution
cost) as fewer trials are needed to converge (recall the example in Figure 10). Empirically, the
first effect of backtracking is most clearly seen in the 8-puzzle (Table 5) as well as the pathfinding
task with small maps (Table 6). It is still an open question why the trend is not observed on larger
pathfinding tasks (Table 7).

Table 5: Effects of backtracking in the 8-puzzle.

Learning quota First trial execution cost Convergence execution cost Memory required
0 (SLA*) 1846 2321 728
7 424 52766 18751
13 375 57816 20594
∞ (LRTA*) 371 58002 25206

Table 6: Effects of backtracking in the pathfinding domain with small maps.

Learning quota First trial execution cost Convergence execution cost
0 (SLA*) 434 457
10 413 487
50 398 592
1000 390 810
∞ (LRTA*) 235 935

The second effect of backtracking is reduction in the amount of memory required to store the
learned heuristic values.7 During backtracking, the agent tends to update heuristic values in previ-
ously visited states. Such updates do not require additional memory to be allocated. The memory-
saving effect is seen across all problem sizes in Table 5 and Table 7.

6.5 Combining the Extensions

The previous sections introduced three extensions of the base algorithm LRTA*. Table 8 lists six
algorithms that use the extensions. The first entry summarizes the arbitrary-depth LRTA* which

7. Recall that the initial heuristic values are not stored in the table but come from an effectively computable function
such as the Manhattan distance.
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Table 7: Effects of backtracking in the pathfinding domain with large maps.

Learning quota Convergence execution cost Memory required
0 (SLA*) 9741 174
10 10315 178
100 11137 207
1000 10221 258
10000 9471 299
∞ (LRTA*) 9346 303

Table 8: Real-time heuristic methods compared along several dimensions.

Algorithm Lookahead Learning rule Execution Optimality Backtracking
LRTA* arbitrary mini-min, frontier one action optimal none

ε-LRTA* arbitrary mini-min, frontier one action ε-optimal none
SLA* one ply mini-min, frontier one action optimal always

SLA*T one ply mini-min, frontier one action optimal controlled by T
γ-Trap arbitrary max of min, all states d actions γ-optimal always
LRTS arbitrary max of min, all states d actions γ-optimal controlled by T

uses the mini-min backup rule to propagate the heuristic values from the search frontier to the in-
terior states in the lookahead tree. It executes one action and converges to an optimal solution. No
backtracking is used. Weighted LRTA* (ε-LRTA* ) converges to an ε-optimal solution but is iden-
tical to LRTA* in all other columns of the table. SLA* and SLA*T are myopic versions of LRTA*
but use backtracking: unlimited or controlled by the learning quota T respectively. Backtracking
was independently introduced in another algorithm, called γ-Trap (Bulitko, 2004), which also used
a heuristic weight parameter γ = 1/(1 + ε) to the same effect as weighted LRTA*. Additionally,
γ-Trap employed a more aggressive heuristic update rule, denoted by “max of min” in the table, and
used heuristic values of all states (as opposed to the frontier of the lookahead search only). Instead
of taking a single action between the lookahead search episodes, it applied d actions to amortize the
planning cost.

We will now combine the three extensions into a single algorithm called Learning Real-Time
Search or LRTS. It is shown in the last row of the table and, in a simplified fashion, in Figure 11.
The detailed pseudo-code necessary to re-implement the algorithm as well as to follow the theorem
proofs is found in Figure 20, Appendix A. We will now step through the operation of LRTS and
explain the control parameters.

In line 1, the trial is initialized by setting the current state s of the agent to the start state sstart and
resetting the amount of learning done on the trial (u). As long as the goal state sgoal is not reached,
the LRTS agent interleaves planning (lines 3 and 4), learning (line 5), and execution (lines 6-11).
During the planning state, LRTS uses the model of its environment (implicitly updated when new
states comes into the agent’s radius of visibility) to generate all child states of the current state up
to d moves away. On each lookahead level (i = 1, 2, . . . , d), LRTS finds the most promising state
(si) that minimizes the weighted estimate of the total distance:

si = arg min
s′∈S(s,i)

(
γ · g(s′) + h(s′)

)
, (6.2)
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where g(s′) is the shortest distance from the current state s to its child s′ and h(s′) is the heuristic
estimate of the distance from the child state s′ to the goal state sgoal. Throughout this paper we will
be breaking ties in a systematic fashion as detailed later in the paper. Note that the distance g(s′)
from the current state s to the child state s′ is weighted by the control parameter γ ∈ (0, 1]. The
same behavior can be obtained by multiplying the initial heuristic by 1+ε = 1/γ in ε-LRTA* except
that it makes the initial heuristic inadmissible (Theorem 7.2).

LRTS(d, γ, T )
1 initialize: s← sstart, u← 0
2 while s 6∈ Sg do
3 generate children i moves away, i = 1 . . . d
4 on level i, find the state si with the lowest f = γ · g + h
5 update h(s) to max

1≤i≤d
f(si) if it is greater

6 increase the amount of learning u by |∆h|
7 if u ≤ T then
8 execute d moves to get to the state sd

9 else
10 execute d moves to backtrack to the previous state, set u = T
11 end if
12 end while

Figure 11: LRTS algorithm combines the three extensions of LRTA*.

The lookahead search conducted in line 5 has the complexity of O(bd) if no child state is reached
more than once and b is the branching factor. On maps, however, the complexity is much reduced
to O(dn) where n is the dimensionality of the map. Thus, in both the path-planning and the sensor
network routing task, the lookahead has a complexity of O(d2).

Like γ-Trap , LRTS uses the so-called “max of min” heuristic update (or learning) rule in line 5.
Specifically, if the initial heuristic is admissible, then the agent will want to increase it as aggres-
sively as possible while keeping it admissible. Lemma 7.1 will prove that setting the heuristic value
h of the current state s to the maximum of minima found on each ply preserves the admissibility of
h at all times.

In line 6 the amount of increase to the heuristic value of the current state (h(s)) is then added to
the cumulative amount of learning done so far on the trial (u). If the new amount of learning does
not exceed the learning quota T then the agent will execute d moves to the most promising frontier
state sd seen during the lookahead (line 8). The moves are added to the path so that they can be
“undone” later on during backtracking. If the new amount of learning exceeds the learning quota T
then the agent will backtrack to its previous state (line 10). By doing so, it will “undo” the last d
actions. The last d actions are thus removed from the path traveled so far on the trial. Note that the
backtracking actions count in execution cost.

We now encourage the reader to revisit the hand-traceable examples found in Sections 6.2,
6.3, 6.4 as they show LRTS operation in simple domains. In the weighting example (Section 6.3), γ
should be set to 1/(1+ε) to enable LRTS to behave as ε-LRTA* . This concludes the presentation of
the LRTS algorithm and we will now highlight its properties with theoretical and empirical results.
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7. Theoretical Results

The LRTS framework includes LRTA*, weighted LRTA*, SLA*, and γ-Trap as special cases (Ta-
ble 8). This fact is presented formally in the following theorems. All proofs are found in Ap-
pendix B. Note that while the following assumptions are not mandatory for real-time search, they
are needed for the proofs. Specifically, the search space is assumed to be deterministic and station-
ary. Additionally, the agent’s current state is affected only by the agent’s actions. Finally, the agent
possesses a sufficient knowledge of the environment to conduct a local-search (i.e., lookahead) of
depth d in its current state.

Theorem 7.1 LRTS(d = 1, γ = 1, T =∞) is equivalent to LRTA* with a lookahead of one.

Theorem 7.2 LRTS(d = 1, γ = 1
1+ε , T =∞) initialized with an admissible heuristic h0 is equiv-

alent to ε-LRTA* initialized with (1 + ε)h0.

Theorem 7.3 LRTS(d = 1, γ = 1, T = 0) is equivalent to SLA*.

Theorem 7.4 LRTS(d, γ, T = 0) is equivalent to γ-Trap(d, γ).

In the past, convergence and completeness have been proven for the special cases (LRTA*, ε-
LRTA* , and SLA*). We will now prove these properties for any valid values of the lookahead
d ∈ N, d ≥ 1, the heuristic weight γ ∈ R, γ ∈ (0, 1], and the learning quota T ∈ R ∪ {∞}, T ≥ 0.

Definition 7.1 A tie-breaking scheme is employed when two or more states have equal f = g + h
values. Among candidate states with equal f -values, random tie-breaking selects one at random.
This scheme was used in (Shimbo & Ishida, 2003). Systematic tie-breaking used by Furcy and
Koenig (2000) uses a fixed action ordering per current state. The orderings are, however, generated
randomly for each search problem. Finally, fixed tie-breaking always uses the same action ordering.
We use the latter scheme for all our experiments as it is the simplest.

Lemma 7.1 (Admissibility) For any valid T, γ, d and an admissible initial heuristic h0, the heuris-
tic function h is maintained admissible at all times during LRTS(d, γ, T ) search.

Theorem 7.5 (Completeness) For any valid T, γ, d and an admissible initial heuristic h0,
LRTS(d, γ, T ) arrives at a goal state on every trial.

Theorem 7.6 (Convergence) For any valid T, γ, d and an admissible initial heuristic h0,
LRTS(d, γ, T ) with systematic or fixed tie-breaking converges to its final solution after a finite
number of trials. It makes zero updates to its heuristic function on the final trial. Each subsequent
trial will be identical to the final trial.

Theorem 7.7 (Suboptimality) For any valid T, γ, d and an admissible initial heuristic h0, the ex-
ecution cost of the final trial of LRTS(d, γ, T ) is upper-bounded by h∗(s0)

γ . In other words, the
suboptimality of the final solution is no worse than 1

γ − 1.

A non-trivial upper-bound of h∗(s0)+T
γ can be imposed on the solution produced by LRTS on

the first trial. This requires, however, a minor extension of the LRTS algorithm. Thus, we list the
extension and the theorem in Figure 21, Appendix A and Theorem B.1, Appendix B respectively.
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Theorem 7.8 (One trial convergence) For any valid γ, d and an admissible initial heuristic h0, the
second trial of LRTS(T = 0) with systematic or fixed tie-breaking is guaranteed to be final. Thus,
all learning and exploration are done on the first trial.

8. Combinations of Parameters

We have introduced a three-parameter algorithm unifying several previously proposed extensions
to the base LRTA*. We have also demonstrated theoretically and empirically the influence of each
parameter independently of the other two parameters in Sections 6.2, 6.3, and 6.4. The summary
of the influences is found in Table 9. An up-arrow/down-arrow means an increase/decrease in the
metric. Notation a→ p→ b indicates that the parameter p increases from a to b. To illustrate: ↓ at
the intersection of the row labeled “convergence execution cost” and the column labeled “1→ d→
∞” states that the convergence execution cost decreases as d goes up.

Table 9: Summary of influences of LRTS parameters in the pathfinding domain.

metric / parameter 1→ d→∞ 0→ γ → 1 0→ T →∞
convergence execution cost ↓ ↓ for small γ, ↑ for large γ ↑ for small T , ↓ for large T

planning cost per move ↑ no influence no influence
convergence memory ↓ ↑ ↑

first-move lag ↑ no influence no influence
suboptimality of final solution ↓ for small γ ↓ no influence

8.1 Interaction among parameters

In this section we consider effects of parameter combinations. Figure 12 shows the impact of the
lookahead depth d as a function of the heuristic weight γ and the learning quota T . Specifically, for
each value of γ and T , the left plot shows the difference between the convergence execution costs
for lookahead values of d = 1 and d = 10:

impact-of-d(γ, T ) = execution-cost(d = 1, γ, T )− execution-cost(d = 10, γ, T ). (8.1)
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Figure 12: Impact of lookahead d for different values of heuristic weight γ and learning quota T .

Brighter shades indicate higher impact of increasing d from 1 to 10. Likewise, the right plot
demonstrates the impact of d on the memory required for convergence. Brighter shades indicate
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stronger impact of d (i.e., larger differences). Each point is averaged over the 1000 convergence
runs in the pathfinding domain. We observe that larger values of learning quota and higher values of
heuristic weight magnify the reduction of memory due to increasing lookahead depth. Note that the
plot does not show the memory requirements for different values of γ and T but rather the reduction
in the memory requirements when d increases from 1 to 10.

Figure 13 shows the impact of γ as a function of d and T under the same conditions. Learning
quota does not seem to affect the impact of γ on suboptimality of the final solution. However, deeper
lookahead does make γ less effective in that respect. We believe it is because deeper lookahead
compensates for more inaccuracies in the heuristic function. Therefore, weighting the heuristic
with γ makes less difference.
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Figure 13: Impact of heuristic weight γ for different values of lookahead d and learning quota T .

Figure 14 shows the impact of T as a function of d and γ on the same 1000 pathfinding problems.
Reducing the learning quota T from 500 to 0 results in an increased amount of backtracking. As
discussed previously, more backtracking tends to save memory and speed up convergence. The
figure shows both trends and demonstrates that d and γ affect the impact of backtracking. The left
plot shows that more backtracking is most effective in speeding up convergence for lower heuristic
weights (γ = 0.1). On the contrary, the right plot indicates that higher heuristic weights (close to
γ = 1) make backtracking most effective in reducing the memory required for convergence.
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Figure 14: Impact of learning quota T for different values of heuristic weight γ and lookahead d.
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Overall, the influences are non-trivial and, according to our experiments, domain-specific.
While some can be explained readily, others appear to be a result of the interaction of the three
parameters with the structure of the problem space. Consequently, selection of optimal parameters
for a specific performance metric and a concrete domain is presently a matter of trial and error.
While manual tuning of control parameters is a typical scenario in Artificial Intelligence, future
research will investigate automatic parameter adjustment.

8.2 Minimizing performance measures

In this section, we list parameter combinations optimizing each of the performance measures and
explain the underlying rationale. The best combinations of parameters are sought in the following
parameter space: lookahead d ∈ {1, 2, . . . , 10}, heuristic weight γ ∈ {0.1, 0.2, . . . , 1.0}, and the
learning quota T ∈ {0, 5, 10, 50, 100, 500, 1000, 5000, 10000,∞}. For each of the one thousand
combinations of the parameters, we ran LRTS until convergence on the test suite of 1000 pathfinding
problems described in Section 5.1. The results are shown in Table 10 and explained below.

Table 10: LRTS control parameters minimizing performance metrics.

Metric Lookahead d Heuristic weight γ Learning quota T
execution convergence cost 10 0.3 ∞
planning convergence cost 1 0.3 ∞

planning cost per move 1 any any
total convergence cost (speed < 185.638) 1 0.3 ∞
total convergence cost (speed ≥ 185.638) 10 0.3 ∞

suboptimality any 1.0 any
memory 10 0.3 0

Execution convergence cost is lowest when the quality of individual moves is the highest.
Thus, deeper lookahead leading to more planning per move is favored. High values of γ are unde-
sirable as LRTS seeks near-optimal solutions and takes longer to converge. Very low values of γ
are also undesirable as the weighted initial heuristic becomes less and less informative (Table 3).
Hence, the best value lays somewhere in the middle (0.3). Finally, no backtracking is preferred as
then convergence is the fastest on the larger maps used in this experiment (Table 7).

Planning convergence cost is defined as the total planning cost of all moves until convergence
is achieved. Deeper lookahead leads to faster convergence but quadratically increases the planning
cost of every move (cf., Section 6.5). Hence, overall, shallow lookahead is preferred. This also
explains the optimal parameter combination for minimizing planning cost per move which in LRTS
depends on d only.

Total convergence cost. Here we minimize a weighted sum of the planning and execution
costs. This is a common objective previously studied in (Russell & Wefald, 1991; Koenig, 2004).
We adopt the settings of the latter and bring the two metrics (the execution cost and the planning
cost) to a single scalar expressed in the number of states. Namely, our total convergence cost is
defined as the convergence execution cost multiplied by the planning speed plus the total planning
cost (Section 4). For instance, if the agent converged in 1000 units of execution cost, considered
a total of 5000 states while planning (i.e., an average of five states per unit of execution cost), and
the planning speed is 200 (i.e., 200 states can be considered in planning while one unit of travel is
executed), then the total convergence cost is 1000×200+5000 = 205000, clearly dominated by the
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execution component. More planning per move tends to decrease the convergence execution cost
and thus is preferred when the planning speed is high (i.e., planning is cheap relative to execution
and the execution cost dominates the total cost). Conversely, less planning per move is preferred
when the planning speed is low. Both Russell and Wefald (1991) and Koenig (2004) used this
reasoning to select the optimal lookahead depth in their LRTA*-based real-time search algorithms.
In the pathfinding domain, the best values of γ and T for fastest convergence are 0.3 and ∞ as
discussed above. The best value of lookahead depends on the planning speed: deeper lookahead (10
vs. 1) is preferred when the planning speed is sufficiently high and more planning per move can be
afforded.

Suboptimality is zero with γ = 1 regardless of d and T .

Memory. The optimal parameter combination (10, 0.3, 0) is consistent with the previous anal-
ysis: more backtracking (T = 0) reduces memory consumption, lower heuristic weight γ leads to
less exploration (since LRTS is satisfied with suboptimal solutions), and since heuristic values are
stored d actions apart, higher lookahead is preferred.

Adjusting LRTS control parameters allows the agent to achieve convergence where it has been
previously impossible due to memory limitations. In the following, we adopt the settings of Shimbo
and Ishida (2003) and Bulitko (2004) and consider one hundred 15-puzzles first published by Korf
(1985). It is known that FALCONS and LRTA* with a lookahead of one are unable to converge to
optimal solutions on any of the 100 puzzles with memory limited to 40 million states (Shimbo &
Ishida, 2003). On the other hand, convergence to suboptimal solutions can be achieved with both
ε-LRTA* (Shimbo & Ishida, 2003) and γ-Trap (Bulitko, 2004).

Table 11: Convergence on Korf’s one hundred 15-puzzles in four million states of memory.

Algorithm d T max γ Suboptimality
FALCONS - - - no convergence on any problem

LRTA* - - - no convergence on any problem
LRTS 1 ∞ 0.29 50%
LRTS 2 0 0.6 10%
LRTS 4 0 0.7 4%

We make the task more challenging by reducing the memory limit ten fold from forty to four
million states. While we were unable to find a set of d, T, γ parameters that allowed LRTS to
converge to optimal solutions on all 100 instances, the algorithm did converge to solutions that
were, on average, only 4% worse than optimal on all 100 puzzles (Table 11). Lower values of T
and higher values of d increase the memory cost efficiency and allow to increase γ which leads to
higher quality solutions.

In summary, adjusting the control parameters of LRTS significantly affects its performance. Our
analysis of the individual and combined influence of the parameters on several practically relevant
performance metrics gives a practitioner a better intuition for application-specific parameter tuning.
Perhaps more importantly, it opens an interesting line of research on automatic selection of optimal
parameters on the basis of effectively measurable properties of a domain and the target performance
metric.

139



BULITKO & LEE

8.3 Application Domain #2: Routing in Sensor Networks

A second application of LRTS considered is routing in ad hoc wireless sensor networks. Sensor
nodes generally have limited computational power and energy, thus simple, energy efficient routing
routines are typically used within sensor networks. Various applications exist, including military
(Shang et al., 2003), environmental monitoring (Braginsky & Estrin, 2002) and reconnaissance
missions (Yan, He, & Stankovic, 2003). As such, routing in sensor networks is of interest to a large
community of users.

The Distance Vector Routing (DVR) algorithm is widely used in network routing (Royer & Toh,
1999). In particular, DVR is employed within the Border Gateway Protocol used to route traffic
over the entire Internet. In DVR, each network node maintains a heuristic estimate of its distance
to the destination/goal node. We observe that DVR is conceptually very similar to LRTA* with a
lookahead of one. Thus, applying LRTS in the network routing domain is essentially equivalent
to extending DVR with the heuristic weight γ and the backtracking mechanism controlled by the
learning quota T . Note that there is no analogue of deeper lookahead in DVR since each network
node does not learn an explicit model of the network and, consequently, is not aware of any network
nodes beyond its immediate neighbors. Hence, d is limited to one.

In order to demonstrate the impact of the two DVR extensions, we chose the setup used in a
recent application of real-time heuristic search to network routing (Shang et al., 2003). Specifically,
the network sensor nodes are assumed to be dropped from the sky to monitor territory, landing in a
random dispersion, and thus necessitating ad hoc routing in order to allow for data transmissions.
We consider the case of a fixed destination for each transmission, simulating each source node
providing information to a central information hub (e.g., a satellite up-link).

Note that LRTA* in the pathfinding domain has access to the heuristic values of its neighbors
at no extra cost since all heuristic values are stored in centralized memory. This is not the case in
ad hoc networks, wherein each node maintains an estimate of the number of hops to the goal node
(the h heuristic). A naive application of LRTA* would query the neighbor nodes in order to retrieve
their h values. This would, however, substantially increase the amount of network traffic, thereby
depleting nodes’ energy sources faster and making the network more easily detectable. We adopted
the standard solution where each node not only stores its own heuristic value but also the last known
heuristic values of its immediate neighbors. Then, whenever a node updates its own heuristic value,
it notifies all of its neighbors of the change by broadcasting a short control message. The last major
difference from pathfinding is that the nodes do not know either their geographical position or the
coordinates of the destination node. Thus, the Euclidian distance is not available and the initial
heuristic is initialized to one for all nodes except the destination node where it is set to zero.

In the experiments reported below, N sensor nodes are randomly distributed on an X × Y
two-dimensional grid so that no two nodes occupy the same location. Each node has a fixed trans-
mission radius which determines the number of neighbors a node can broadcast messages to (and
whose heuristic values it has to store). To specify a single problem instance, distinct start (source)
node and goal (destination or hub) nodes are randomly selected from the N nodes. The start node
needs to transmit a data message to the goal node. In doing so, it can send a message to one of its
neighbors who will then re-transmit the message to another node, etc. Each transmission between
two neighboring nodes incurs an execution cost of one hop. Once the message reaches the destina-
tion/goal node, a new trial begins with the same start and goal nodes. Convergence occurs when no
heuristic values are updated during the trial.
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The objective is to find a shortest route from the start node to the goal node by learning better
heuristic values over repeated trials. We take measurements of four metrics paralleling those used
in the domain of pathfinding:

convergence execution cost is the total number of hops traveled by messages during convergence;

first trial execution cost is the number of hops traveled on the first trial;

suboptimality of the final solution is the excess of the execution cost of the final trial over the
shortest path possible. For instance, if the network converged to a route of 120 hops while the
shortest route is 100 hops, the suboptimality is 20%;

convergence traffic is defined as the total volume of information transmitted throughout the net-
work during convergence. Each data message counts as one. Short control messages (used to
notify node’s neighbors of an update to the node’s heuristic function) count as one third.

Interference is not modeled in this simulation. We assume scheduling is performed independently
of the routing strategy, and that different schedules will not severely affect the performance of the
routing algorithms. Note that, since transmission delay and timings are not modeled, it would be
difficult to model interference accurately.

Four batches of networks of 50, 200, 400, and 800 nodes each were considered. The nodes
were randomly positioned on a square grid of the dimensions 20 × 20, 30 × 30, 50 × 50, and
80× 80 respectively. Each batch consisted of 100 randomly generated networks. For each network,
25 convergence runs were performed with the parameter values running γ = {0.1, 0.3, 0.5, 0.7, 1}
and T = {0, 10, 100, 1000, 100000}. In the following, we present the results from the batch of
800-node networks. The same trends were observed in smaller networks as well.

We start out by demonstrating the influence of the two control parameters in isolation. Table 12
shows the influence of the heuristic weight γ with no backtracking. As expected, smaller values
of γ speed up the convergence but increase the suboptimality of the final solution. These results
parallel the ones reported in Table 3 for the pathfinding domain.

Table 12: Effects of heuristic weighting in network routing.

Heuristic weight γ Execution convergence cost Suboptimality
1.0 (DVR) 8188 0%
0.7 8188 0%
0.5 8106 0%
0.3 7972 0.29%
0.1 7957 0.33%

Table 13 demonstrates the influence of the learning quota T when the heuristic weight γ is set to
one. Smaller values of T increase the amount of backtracking and speed up convergence cost but
lengthen the first trial. This parallels the results in the 8-puzzle (Table 5) as well as in pathfinding
with small maps (Table 6).
We will now consider the impact of parameter combination. The fixed lookahead depth of one
makes the two-dimensional parameter space easier to visualize on contour plots. Thus, instead of
plotting the impact of a parameter on a metric as a function of the other two control parameters, we
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Table 13: Effects of backtracking in network routing.

Learning quota T First trial execution cost Convergence execution cost
105 (DVR) 549 8188
103 1188 8032
102 4958 6455
10 5956 6230
0 6117 6138
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Figure 15: First-trial and convergence execution costs in network routing.

will now plot the metric itself. Figure 15 shows the first trial and convergence execution costs for
all combinations of γ and T . Brighter areas indicates higher costs.
Figure 16 shows the suboptimality of the final solution and the total traffic on a convergence run,
averaged over 100 networks of 800 nodes each. Again, brighter areas indicate higher values.
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Figure 16: Suboptimality of the final solution and the total traffic in network routing.

In summary, by extending the DVR algorithm with the heuristic weight and the backtracking mech-
anisms of LRTS, reduction of the convergence execution cost and the total network traffic can be
achieved. As a result, near-optimal routes are found faster, at a lower energy consumption. This
promising result raises several questions for further research. First, how will additional routing
constraints, such as the ones investigated in (Shang et al., 2003), affect the performance of LRTS?
Second, how will the benefits of LRTS scale to the case of several messages with the same destina-
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tion passing through the network simultaneously? The latter question also applies to path-planning
with multiple memory-sharing units which is a common situation in squad-based games.

9. Summary and Future Research

In this paper, we considered simultaneous planning and learning problems such as real-time
pathfinding in initially unknown environments as well as routing in ad hoc wireless sensor net-
works. Learning real-time search methods plan by conducting a limited local search and learn by
maintaining and refining a state-based heuristic function. Thus, they can react quickly to user’s
commands and yet converge to better solutions over repeated experiences.

We analyzed three complementary extensions of the base LRTA* algorithm and showed their
effects with hand-traceable examples, theoretical bounds, and extensive empirical evaluation in two
different domains. We then proposed a simple algorithm, called LRTS, unifying the extensions and
studied the problem of choosing optimal parameter combinations.

Current and future work includes extending LRTS with automated state space abstraction mech-
anisms, function approximation methods for the heuristic, and automated parameter selection tech-
niques. It will also be of interest to investigate the convergence process of a team of LRTS-based
agents with shared memory and extend LRTS for moving targets and stochastic/dynamic environ-
ments in video games, robotics, and networking.
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Appendix A. Detailed Pseudocode

In this section we list pseudocode of the algorithms at the level of detail necessary to implement
them as well as to follow the proofs listed in the Appendix B.

LRTA*
OUTPUT: a series of actions leading from s0 to a goal state

1 if h is undefined then set h to h0

2 reset the current state: s← s0

3 while s 6∈ Sg do
4 generate depth 1 neighborhood S(s, 1) = {s′ ∈ S | ‖s, s′‖ = 1}
5 compute h′(s) = min

s′∈S(s,1)
(dist(s, s′) + h(s′))

6 if h′(s) > h(s) then update h(s)← h′(s)
7 update current state s← arg min

s′∈S(s,1)
(dist(s, s′) + h(s′))

Figure 17: LRTA* algorithm.

SLA*
OUTPUT: a series of actions leading from s0 to a goal state

1 if h is undefined then set h to h0

2 reset the current state: s← s0

3 reset the path traveled so far: path← ∅
4 while s 6∈ Sg do
5 generate depth 1 neighborhood S(s, 1) = {s′ ∈ S | ‖s, s′‖ = 1}
6 compute h′(s) = min

s′∈S(s,1)
(dist(s, s′) + h(s′))

7 if h′(s) > h(s) then
8 update h(s)← h′(s)
9 update current state s← pop(path) [or remain in state s if path = ∅]
10 else
11 push s onto the stack path
12 update current state s← arg min

s′∈S(s,1)
(dist(s, s′) + h(s′))

Figure 18: SLA* algorithm.
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γ-Trap(d, γ)
INPUT:

d: lookahead depth
γ: optimality weight

OUTPUT: path: a series of actions leading from s0 to a goal state

1 if h is undefined then set h to h0

2 reset the current state: s← s0

3 reset the stack: path← ∅
4 reset the cumulative learning amount u← 0
5 while s 6∈ Sg do
6 set d← min{d, min{k | S(s, k) = ∅}}
7 reset set G← ∅
8 for k=1 to d do
9 generate depth k neighborhood S(s, k) = {s′ ∈ S | ‖s, s′‖ = k}
10 if S(s, k) ∩ Sg 6= ∅ then update G← G ∪ {k}
11 compute fmin(s, k) = min

s′∈S(s,k)
(γ · dist(s, s′) + h(s′))

12 compute smin(s, k) = arg min
s′∈S(s,k)

(γ · dist(s, s′) + h(s′))

13 end for

14 compute h′(s)←

 max
1≤k≤d

fmin(s, k) if G = ∅,

max
1≤k≤min{G}

fmin(s, k) otherwise.

15 if h′(s) ≤ h(s) then
16 push s onto stack path

17 update the current state s←

{
smin(s, d) if G = ∅,
arg min

k∈G
fmin(s, k) otherwise.

18 else
19 update h(s)← h′(s)
20 backtrack: s← pop(path) [or remain in state s if path = ∅].
21 end if
22 end while

Figure 19: γ-Trap algorithm.
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LRTS(d, γ, T )
INPUT:

d′: lookahead depth
γ: optimality weight
T : learning threshold

OUTPUT: path: a series of actions leading from s0 to a goal state

1 if h is undefined then set h to h0

2 reset the current state: s← s0

3 reset the stack: path← ∅
4 reset the cumulative learning amount u← 0
5 while s 6∈ Sg do
6 set d← min{d′,min{k | S(s, k) = ∅}}
7 reset set G← ∅
8 for k=1 to d do
9 generate depth k neighborhood S(s, k) = {s′ ∈ S | ‖s, s′‖ = k}
10 if S(s, k) ∩ Sg 6= ∅ then update G← G ∪ {k}
11 compute fmin(s, k) = min

s′∈S(s,k)
(γ · dist(s, s′) + h(s′))

12 compute smin(s, k) = arg min
s′∈S(s,k)

(γ · dist(s, s′) + h(s′))

13 end for

14 compute h′(s)←

 max
1≤k≤d

fmin(s, k) if G = ∅,

max
1≤k≤min{G}

fmin(s, k) otherwise.

15 if h′(s) > h(s) then
16 compute amount of learning on this move: `← h′(s)− h(s)
17 update h(s)← h′(s)
18 else
19 reset ` = 0
20 end if
21 if u + ` ≤ T then
22 push s onto stack path

23 update the current state: s←

{
smin(s, d) if G = ∅,
arg min

k∈G
fmin(s, k) otherwise.

24 accumulate learning amount u← u + `
25 else
26 backtrack: s← pop(path) [or remain in state s if path = ∅].
27 end if
28 end while

Figure 20: LRTS algorithm.

23a if ∃s′ [s = s′ & s′ ∈ path] then
23b remove s′ and all following states from path
23c end if

Figure 21: Additional lines facilitating incremental pruning in LRTS. These are to be inserted be-
tween lines 23 and 24 in Figure 20.
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Appendix B. Theorem Proofs

Theorem 7.1 LRTS(d = 1, γ = 1, T =∞) is equivalent to LRTA* with a lookahead of one.

Proof. We will show that in any state s LRTS(d = 1, γ = 1, T = ∞) (i) takes the same action as
LRTA* does and (ii) updates the h function in the same way LRTA* does.

(i) In state s, LRTS(d = 1, γ = 1, T = ∞) goes to state smin(s, 1) (line 23, Figure 20)
which is equivalent to the state arg min

s1∈S(s,1)
(dist(s, s1) + h(s1)) to which LRTA* will move (line

7, Figure 17).8

(ii) LRTS(d = 1, γ = 1, T = ∞) updates h(s) to h′(s) in line 17 in Figure 20 when h′(s) >
h(s) (line 15) which is equivalent to LRTA*’s update under the same condition in line 6, Figure 17.
�

Theorem 7.2 LRTS(d = 1, γ = 1
1+ε , T =∞) initialized with an admissible heuristic h0 is equiva-

lent to ε-LRTA* initialized with (1 + ε)h0.

Proof. These two algorithms begin with and maintain different heuristic functions. Let hLRTS
t be the

heuristic function LRTS(d = 1, γ = 1
1+ε , T =∞) maintains at iteration t.9 Likewise, let hε-LRTA*

t

denote the heuristic function ε-LRTA* maintains at iteration t. We will also denote by sLRTS
t the

current state of LRTS(d = 1, γ = 1
1+ε , T = ∞) at iteration t. Likewise, sε-LRTA*

t is the current
state of ε-LRTA* at iteration t. We show by induction over iteration number t that for ∀t:

hε-LRTA*
t = (1 + ε)hLRTS

t . (B.1)

Base step: since ε-LRTA* initialized with (1 + ε)h0 and LRTS(d = 1, γ = 1
1+ε , T = ∞) is

initialized with h0, equation B.1 trivially holds at t = 0.
Inductive step: suppose equation B.1 holds at iteration t. We will show that it holds at iteration
t + 1.

First, we show that both algorithms are bound to be at the same state st. Suppose not: sLRTS
t 6=

sε-LRTA*
t . Then since both start in state s0 there must have been the earliest t0 < t such that

sLRTS
t0 = sε-LRTA*

t0 but sLRTS
t0+1 6= sε-LRTA*

t0+1 . This means that in state st0 different actions were taken by
LRTS and ε-LRTA* . LRTS takes action in line 23 of Figure 20 and would move to state:

arg min
s′∈S(st0 ,1)

(
1

1 + ε
· dist(st0 , s

′) + hLRTS
t0 (s′)

)
. (B.2)

ε-LRTA* moves to the following state (line 7 in Figure 17):

arg min
s′∈S(st0 ,1)

(
dist(st0 , s

′) + hε-LRTA*
t0 (s′)

)
. (B.3)

Since hε-LRTA*
t0 = (1 + ε)hLRTS

t0 (as t0 < t and equation B.1 holds at time t by the inductive
hypothesis), the action in B.2 is the same as in B.3.

8. Throughout the paper we assume that tie-breaking is done in a consistent way among all algorithms.
9. One can measure iterations by counting the number of times the while condition is executed (line 5 in Figure 20 and

line 3 in Figure 17).
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The update to h in LRTS(d = 1, γ = 1
1+ε , T = ∞) occurs in line 17, Figure 20. Substituting

the expression for h′(s) we arrive at:

hLRTS
t+1 (st) = min

s′∈S(st,1)

(
1

1 + ε
dist(st, s

′) + hLRTS
t (s′)

)
(B.4)

=
1

1 + ε
min

s′∈S(st,1)

(
dist(st, s

′) + (1 + ε)hLRTS
t (s′)

)
(B.5)

=
1

1 + ε
min

s′∈S(st,1)

(
dist(st, s

′) + hε-LRTA*
t (s′)

)
(B.6)

=
1

1 + ε
hε-LRTA*

t+1 (st) (B.7)

which concludes the inductive proof. �

Theorem 7.3 LRTS(d = 1, γ = 1, T = 0) is equivalent to SLA*.

Proof. When T = 0, condition u + ` ≤ T in line 21 of Figure 20 will hold if and only if h(s)
is not updated (i.e., h′(s) ≤ h(s) in line 15). If that is the case the forward move executed in line
23 is equivalent to SLA*’s forward move in lines 11, 12 of Figure 18. If h(s) is indeed updated
then both LRTS and SLA* will backtrack by executing line 26 in Figure 20 and line 9 in Figure 18
respectively. The proof is concluded with the observation that h′(s) computed by LRTS(d = 1, γ =
1, T = 0) is equivalent to h′(s) computed by SLA* in line 6 of Figure 18. �

Theorem 7.4 LRTS(d, γ, T = 0) is equivalent to γ-Trap(d, γ).

Proof. Substituting T = 0 in line 21 of Figure 20, we effectively obtain γ-Trap (Figure 19). �

Lemma 7.1 (Admissibility) For any valid T, γ, d and an admissible initial heuristic h0, the heuristic
function h is maintained admissible at all times during LRTS(d, γ, T ) search.

Proof. We will prove this lemma by induction over the iteration number t. At t = 0 the statement
trivially holds since the initial heuristic h0 is admissible. Suppose ht is admissible then we will
show that ht+1 is admissible. Heuristic ht+1 can be different from ht only in state st as it is updated
in lines 14 and 17 of Figure 20. Combining the expressions together, we obtain:

ht+1(st) = max
1≤k≤d

min
s′∈S(st,k)

(γ dist(st, s
′) + ht(s′)), (B.8)

if no goal states have been discovered during the lookahead (G = ∅) and:

ht+1(st) = min
k∈G

min
s′∈S(st,k)

(γ dist(st, s
′) + ht(s′)), (B.9)

otherwise. Suppose the max min or minmin is reached in state s◦:

ht+1(st) = γ dist(st, s
◦) + ht(s◦), s◦ ∈ S(st,m), 1 ≤ m ≤ d. (B.10)

The shortest path from state st and the closest goal state intersects neighborhood S(st,m) of depth
m. Let us denote state from S(st,m) belonging to the shortest path by s∗ (Figure 22).
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st
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Figure 22: To the proof of admissibility.

Since ht is admissible in all states, γ ≤ 1, and s◦ was chosen as
arg min

s∈S(st,m)
(γ dist(st, s) + ht(s)) we conclude that:

ht+1(st) = γ dist(st, s
◦) + ht(s◦) (B.11)

≤ γ dist(st, s
∗) + ht(s∗) (B.12)

≤ dist(st, s
∗) + h∗(s∗) (B.13)

= h∗(st). (B.14)

Thus, ht+1 is an admissible heuristic which concludes the induction. �

Theorem 7.5 (Completeness) For any valid T, γ, d and an admissible initial heuristic h0,
LRTS(d, γ, T ) arrives at a goal state on every trial.

Proof. Since heuristic h is maintained admissible at all times and each update increases its value by
a positive amount lower-bounded by a constant, only a finite number of updates can be made on any
trial. Let the last update be made in state su−1, u ≥ 0 in the sequence of states s0, s1, . . . traversed
on the trial. We will show that the sequence of states su, su+1, . . . is guaranteed to terminate in
a goal state. In other words, LRTS cannot loop in the finite state space forever avoiding the goal
states. As there are no updates made in su, su+1, . . . , it must hold that10 for ∀j ≥ u:

h(sj) ≥ max
1≤k≤d

min
s′∈S(sj ,k)

(γ dist(sj , s
′) + h(s′)), (B.15)

h(sj) ≥ γ dist(sj , sj+1) + h(sj+1), (B.16)

h(sj)− h(sj+1) ≥ γ dist(sj , sj+1). (B.17)

Since γ > 0 and for any states a 6= b [dist(a, b) > 0], it follows that h(su) > h(su+1) > h(su+2) >
. . . . As the state space is finite, this series of states must terminate in a goal state with h(sn) = 0.
Thus, for any valid parameter values, LRTS ends in a goal state on every trial. �

10. Similar reasoning applies to the case of G 6= ∅ when minmin is used instead of max min.
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Theorem 7.6 (Convergence) For any valid T, γ, d and an admissible initial heuristic h0,
LRTS(d, γ, T ) with systematic or fixed tie-breaking converges to its final solution after a finite
number of trials. It makes zero updates to its heuristic function on the final trial. Each subsequent
trial will be identical to the final trial.

Proof. From the proof of Theorem 7.5 it is clear that there will be a trial with zero updates to the
heuristic function h. We will call this trial the final trial and will demonstrate that each subsequent
trial will be identical to the final trial. Suppose not. Then in the final trial s0, s1, . . . , sn there is the
earliest state sj such that the next trial is different from the final trial in state sj+1. This implies that
on the subsequent trial LRTS took a different action in state sj from the action it took in the same
state on the final trial. As there are no updates to the heuristic function, the action must have been
selected in line 23 of Figure 20. Expanding the expression, we get:11

sj+1 = smin(sj , d) = arg min
s′∈S(sj ,d)

(γ dist(sj , s
′) + h(s′)). (B.18)

Since the ties are broken in a systematic or fixed fashion, the choice of state sj+1 is unique which
contradicts with our assumption on existence of a subsequent trial different from the final trial. �

Theorem 7.7 For any valid T, γ, d and an admissible initial heuristic h0, the converged solution
cost12 of LRTS(d, γ, T ) is upper-bounded by h∗(s0)

γ .

Proof. First, let us denote the converged solution cost (i.e., the execution cost of the final trial) by
̂solution. From theorem 7.6 it follows that there will be a final trial with no updates to the heuristic

function. Suppose s0, . . . , sn are the states traversed during the final trial. Since no updates are
made to the heuristic function, the condition h′(si) ≤ h(si) in line 15 of Figure 20 must have held
for all si, i = 0, . . . , n. Substituting the expression for h′(si) from line 14, we arrive at:13

max
1≤k≤d

min
s′∈S(si,k)

(
γ dist(si, s

′) + h(s′)
)
≤ h(si). (B.19)

Since:

si+1 = min
s′∈S(si,d)

(
γ dist(si, s

′) + h(s′)
)

(B.20)

we conclude that:

γ dist(si, si+1) + h(si+1) ≤ h(si) (B.21)

γ dist(si, si+1) ≤ h(si)− h(si+1). (B.22)

Summing up these telescoping inequalities for i = 0, . . . , n− 1, we derive:

n−1∑
i=0

dist(si, si+1) ≤
h(s0)− h(sn)

γ
. (B.23)

11. The case of G 6= ∅ is handled similarly.
12. Henceforth “converged solution cost” is defined as the execution cost of the final trial.
13. Once again, the case of G 6= ∅ is handled similarly.
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Since sn ∈ Sg, h(sn) = 0. The sum of distances travelled is the travel cost of the final trial and is
the converged solution cost by definition.14 Thus, we conclude that the converged solution cost is
upper bounded by h(s0)

γ ≤ h∗(s0)
γ . �

Theorem 7.8 For any valid γ, d and an admissible initial heuristic h0, the second trial of LRTS(T =
0) with systematic or fixed tie-breaking is guaranteed to be final. Thus, all learning and exploration
are done on the first trial.

Proof. Consider a sequence of states [s0, s1, . . . , sn] traversed during the first trial. Here s0 is
the start state and sn is the goal state found. Each transition st → st+1, t = 0, . . . , n − 1 was
carried out via a forward move (line 23 in Figure 20) or backtracking move (line 26). During move
t = 0, . . . , n − 1, the heuristic function may have been changed (line 17) in state st. We will use
ht to denote the heuristic function before the update in line 17. The update results in ht+1. Note
that the update changes h in state st only so that ht(s) = ht+1(s) for all s 6= st. In particular, since
st+1 6= st

15 we have ht+1(st+1) = ht(st+1).
Since T = 0, all n moves can be divided in two groups: forward moves that do not change

the h function and backtracking moves which do. We will now prune the sequence of states
[s0, s1, . . . , sn] using a backtracking stack. Namely, at the beginning the stack contains s0. Every
forward move 0 ≤ t ≤ n−1 will add st+1 to the stack. Every backtracking move 0 ≤ t ≤ n−1 will
remove st+1 from the stack. Carrying this procedure for t = 0, . . . , n − 1, we derive the sequence
of states: p′ = [s0, . . . , sm] leading from the initial state s0 to the goal state sm. Clearly, m ≤ n.

Observe that since all backtracking moves were removed from the original move sequence, the
only moves left are forward moves with no updates to h. Thus, let us define ĥ-value of any state s
visited on the trial as:

ĥ(s) =

{
h(s) after the most recent backtracking move from state s;

initial h(s) if no backtracking move was taken in s during the trial.

Since now T = 0, for any state si, i = 0, . . . ,m there have been no updates in h after the last
backtracking move from that state (if any). In other words, if h is the final heuristic then ∀i =
0, . . . ,m

[
h(si) = ĥ(si)

]
. It also means that in every k-neighborhood (1 ≤ k ≤ d) of each state

si ∈ p′ there was a state s′ with ĥ(s′) + γ dist(si, s
′) ≤ ĥ(si).

We now have to show that no updates to h will be done on the second trial. Suppose this is not
the case. Then there must exist the earliest state sj ∈ p′, 0 ≤ j < m such that LRTS on the second
trial updated h(sj) to be greater than ĥ(sj). As we reasoned above, the final value of h(sj) on the
first trial was ĥ(sj) and there was no need to increase it. By the assumption, LRTS did increase
h(sj) on the second trial. Consequently, at least one state in one of sj’s neighborhoods was updated
during first trial (as no updates on the second trial had happened yet).

Formally, h(s′), where s′ ∈ S(sj , k) for some 1 ≤ k ≤ d, was increased during the first trial
but after state sj was visited in p′. Additionally, this means that as a result of this update it must
hold that:

hnew(s′) + k > h(sj). (B.24)

14. It is easy to check that there the sequence of states on the final trial has no repetitions. Therefore, ̂solution =Pn−1
i=0 dist(si, si+1).

15. Except for possibly the case of backtracking in st = s0 which does not affect the proof.
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Figure 23: To the proof of Theorem 7.8.

Thus, on the first trial, state s′ must have been arrived at via a sequence of forward moves starting
in state sj (shown as the dashed curve in Figure 23). During the forward moves with no h-updates,
h(scurrent) > h(snext) holds. This means that there was a sequence of states traversed by forward
moves that started with sj and ended with s′. Since hnew(s′) + k > h(sj), LRTS must have had to
backtrack from s′ to at least sj . Then it would have updated h(sj) to hnew(sj) ≥ hnew(s′) + k on
the first trial. Consequently, state s′ cannot be the cause of an update to h(sj) on the second trial
as inequality B.24 will no longer hold, leading to a contradiction. Thus, no updates to h are carried
out on the second trial. �

Let us define solution(i) as the execution cost of a path p between the start and the goal states
such that: (i) p lies fully in the set of states traversed by the agent on trial i and (ii) p minimizes the
execution cost.

Theorem B.1 For any valid T, γ, d and an admissible initial heuristic h0, the first trial of
LRTS(d, γ, T ) with systematic or fixed tie-breaking and incremental pruning (see Figure 21) re-
sults in solution(1) ≤ h∗(s0)+T

γ .

Proof. We will prove this theorem in three steps.

Notation. Consider a sequence of states [s0, s1, . . . , sn] traversed during the first trial. Here
state s0 is the start state and state si is the current state (s) after i-th iteration line 27 in LRTS
(Figure 20). State sn is the goal state reached at the end of the first trial. Within iteration i (0 ≤ i ≤
n−1), two states are computed as follows. At the beginning of the iteration (line 6), si is the current
state s. During the forward move (line 23), state s is set to si+1 = smin(si, d).16 Let us denote the
heuristic value of state si at the beginning of iteration i as hi(si). After the possible update in line
17, the new heuristic value is hi+1(si). Also, let us denote the amount of learning ` during iteration
i as `i. More precisely:

`i =

{
hi+1(si)− hi(si) if h′(s) > h(s) in line 15,
0 otherwise.

(B.25)

Under this notation, it is easy to see that the following inequality holds:

γ dist(si, si+1) + hi(si+1) ≤ hi(si) + `i (B.26)

16. The case of seeing a goal state, i.e., G 6= ∅, is dealt with in a similar fashion.
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when a forward move (line 23) happens. Note that on iteration i, state si is the only state in
which the heuristic value can be updated. Thus, for ∀sj 6= si [hi+1(sj) = hi(sj)]. In particular17,
hi+1(si+1) = hi(si+1) which allows to transform inequality B.26 into:

γ dist(si, si+1) + hi+1(si+1) ≤ hi(si) + `i. (B.27)

Forward moves. We will now consider the case of revisiting states during forward moves.
Namely, suppose that in the sequence of states [s0, s1, . . . , sn], state si+k = si and k > 0 is the
smallest k such that this equation holds. We will also assume that no backtracking (line 26) took
place between states si and si+k. The pruning module (lines 23a through 23c in Figure 21) will
purge all states between si and si+k. Therefore, move si+k → si+k+1 will immediately follow
move si−1 → si making the new sequence: si−1 → si(= si+k)→ si+k+1.

For state si−1, the inequality B.27 is:

γ dist(si−1, si) + hi(si) ≤ hi−1(si−1) + `i−1. (B.28)

For state si+k, the inequality B.27 is:

γ dist(si+k, si+k+1) + hi+k+1(si+k+1) ≤ hi+k(si+k) + `i+k. (B.29)

Remembering that si = si+k and the only increase of h(si) was possible when the algorithm left
state si, we conclude that hi(si)+`i = hi+k(si+k). To be consistent with the pruned move sequence
si−1 → si+k → si+k+1, we re-write inequality B.28 as:

γ dist(si−1, si+k) + hi+k(si+k)− `i ≤ hi−1(si−1) + `i−1. (B.30)

Adding B.29 and B.30 and re-grouping terms, we arrive at:

γ [dist(si−1, si+k) + dist(si+k, si+k+1)]
≤ hi−1(si−1)− hi+k+1(si+k+1) + `i−1 + `i + `i+k. (B.31)

This means that the weighted sum of distances in the sequence of states [si−1, si+k, si+k+1] can be
upper bounded by the differences in h in the first and the last states plus the sum of learning amounts
for each of the three states. It is easy to show that in the absence of backtracking, inequality B.31
generalizes for the entire pruned sequence [s0, s1, . . . , sn] sequence. Note that pruning done to
the sequence will manifest itself as gaps in the enumeration of the states. This is similar to the
subsequence si−1, si, si+1, . . . , si+k, si+k+1 used earlier in the proof becoming si−1, si+k, si+k+1.
Let us denote the pruned sequence of indices as I . Then inequality B.31 becomes:

γ
∑
i∈I

dist(si, si+1) ≤ h0(s0)− hn(sn) +
n−1∑
i=0

`i. (B.32)

Noticing that h0(s0) ≤ h∗(s0) and hn(sn) = 0 as sn is a goal state, we arrive at:

γ
∑
i∈I

dist(si, si+1) ≤ h∗(s0) +
n−1∑
i=0

`i. (B.33)

17. The special case of si = s0 can be dealt with in a simple fashion.
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Finally, observing that the total amount of learning is upper bounded by the learning quota T and
that the sum of distances along the pruned state sequence is exactly solution(1), we derive the
desired upper bound:

solution(1) ≤ h∗(s0) + T

γ
. (B.34)

Backtracking. The finale of the proof lies with showing that backtracking (line 26 in LRTS)
does not affect the derivation in the previous section. Suppose, LRTS traversed states si → si+1 →
si+2 → . . . and then backtracked to state si on iteration i+k (i.e., si+k = si). In the pruned solution
sequence all states between si−1 and si+k will be removed from path (line 26) creating a gap in the
enumeration: . . . , si−1, si+k, si+k+1, . . . . Observing that states si−1, si = si+k, si+k+1 (i) were not
backtracked from and (ii) were not among the states removed from the path during backtracking,18

we conclude that backtracking did not affect the heuristic value of these three states. Therefore, the
previous derivation still holds which concludes the proof of the theorem. �

References

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72(1), 81–138.

BioWare (1999). Baldur’s Gate. http://www.bioware.com/games/baldur_gate.

Blizzard (2002). Warcraft 3: Reign of chaos. http://www.blizzard.com/war3.

Botea, A., Müller, M., & Schaeffer, J. (2004). Near Optimal Hierarchical Path-Finding. Journal of
Game Development, 1(1), 7–28.

Braginsky, D., & Estrin, D. (2002). Rumor routing algorithm for sensor networks. In Proceedings
of the First ACM Workshop on Sensor Networks and Applications, pp. 22–31.

Bulitko, V. (2003). Lookahead pathologies and meta-level control in real-time heuristic search.
In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pp. 13–16, Porto,
Portugal.

Bulitko, V., Li, L., Greiner, R., & Levner, I. (2003). Lookahead pathologies for single agent search.
In Proceedings of International Joint Conference on Artificial Intelligence, pp. 1531–1533,
Acapulco, Mexico.

Bulitko, V. (2004). Learning for adaptive real-time search. Tech. rep. http: // arxiv. org / abs / cs.AI
/ 0407016, Computer Science Research Repository (CoRR).

Buro, M. (1995). Probcut: An effective selective extension of the alpha-beta algorithm. ICCA
Journal, 18, 71–76.

Buro, M. (2002). ORTS: A hack-free RTS game environment. In Proceedings of International
Computers and Games Conference, p. 12, Edmonton, Canada.

Chimura, F., & Tokoro, M. (1994). The Trailblazer search: A new method for searching and captur-
ing moving targets. In Proceedings of the National Conference on Artificial Intelligence, pp.
1347–1352.

18. The fact the three states cannot be among the states removed during backtracking is due to the incremental pruning
mechanism in lines 23a, 23b, and 23c of Figure 21. The pruning mechanism clearly separates updates to the heuristic
function made during forward and backward moves.

154



LEARNING IN REAL-TIME SEARCH: A UNIFYING FRAMEWORK

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.. Numerische Mathematik,
1, 269–271.

Ensemble-Studios (1999). Age of empires II: Age of kings. http: // www.microsoft.com / games /
age2.

Furcy, D., & Koenig, S. (2000). Speeding up the convergence of real-time search. In Proceedings
of the National Conference on Artificial Intelligence, pp. 891–897.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

Herbert, M., McLachlan, R., & Chang, P. (1999). Experiments with driving modes for urban robots.
In Proceedings of the SPIE Mobile Robots.

Holte, R., Drummond, C., Perez, M., Zimmer, R., & MacDonald, A. (1994). Searching with ab-
stractions: A unifying framework and new high-performance algorithm. In Proceedings of
the Canadian Artificial Intelligence Conference, pp. 263–270.

Holte, R. (1996). Hierarchical A*: Searching abstraction hierarchies efficiently. In Proceedings of
the National Conference on Artificial Intelligence, pp. 530 – 535.

Hsu, F., Campbell, M., & Hoane, A. (1995). Deep Blue system overview. In Proceedings of the 9th
ACM International Conference on Supercomputing, pp. 240–244.

Ishida, T. (1997). Real-time Search for Learning Autonomous Agents. Kluwer Academic Publishers.

Ishida, T., & Korf, R. (1991). Moving target search. In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 204–210.

Ishida, T., & Korf, R. (1995). A realtime search for changing goals. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(6), 609–619.

Kallmann, M., Bieri, H., & Thalmann, D. (2003). Fully dynamic constrained Delaunay triangula-
tions. In Brunnett, G., Hamann, B., Mueller, H., & Linsen, L. (Eds.), Geometric Modelling
for Scientific Visualization, pp. 241 – 257. Springer-Verlag, Heidelberg, Germany.

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., & Shimada, S. (1999).
Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents
research. In Proceedings of the IEEE Conference on Man, Systems, and Cybernetics.

Koenig, S. (1999). Exploring unknown environments with real-time search or reinforcement learn-
ing. In Proceedings of the Neural Information Processing Systems, pp. 1003–1009.

Koenig, S., & Likhachev, M. (2002). D* Lite. In Proceedings of the National Conference on
Artificial Intelligence, pp. 476–483.

Koenig, S., Tovey, C., & Smirnov, Y. (2003). Performance bounds for planning in unknown terrain.
Artificial Intelligence, 147, 253–279.

Koenig, S. (2001). Agent-centered search. Artificial Intelligence Magazine, 22(4), 109–132.

Koenig, S. (2004). A comparison of fast search methods for real-time situated agents. In Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 2, pp. 864 – 871.

155



BULITKO & LEE

Koenig, S., & Simmons, R. (1998). Solving robot navigation problems with initial pose uncertainty
using real-time heuristic search. In Proceedings of the International Conference on Artificial
Intelligence Planning Systems, pp. 144 – 153.

Korf, R. (1985). Depth-first iterative deepening : An optimal admissible tree search. Artificial
Intelligence, 27(3), 97–109.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42(2-3), 189–211.

Korf, R. (1993). Linear-space best-first search. Artificial Intelligence, 62, 41–78.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2004).
Inverted autonomous helicopter flight via reinforcement learning. In Proceedings of the In-
ternational Symposium on Experimental Robotics.

Pearl, J. (1984). Heuristics. Addison-Wesley.

Pottinger, D. C. (2000). Terrain analysis in realtime strategy games. In Proceedings of Computer
Game Developers Conference.

Ratner, D., & Warmuth, M. (1986). Finding a shortest solution for the N × N extension of the
15-puzzle is intractable. In Proceedings of the National Conference on Artificial Intelligence,
pp. 168–172.

Reece, D., Krauss, M., & Dumanoir, P. (2000). Tactical movement planning for individual combat-
ants. In Proceedings of the 9th Conference on Computer Generated Forces and Behavioral
Representation.

Royer, E., & Toh, C. (1999). A review of current routing protocols for ad hoc mobile wireless
networks. In IEEE Personal Communications, Vol. 6, pp. 46–55.

Russell, S., & Wefald, E. (1991). Do the right thing: Studies in limited rationality. MIT Press.

Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., & Szafron, D. (1992). A world champi-
onship caliber checkers program. Artificial Intelligence, 53(2-3), 273–290.

Shang, Y., Fromherz, M. P., Zhang, Y., & Crawford, L. S. (2003). Constraint-based routing for
ad-hoc networks. In Proceedings of the IEEE International Conference on Information Tech-
nology: Research and Education, pp. 306–310, Newark, NJ, USA.

Shimbo, M., & Ishida, T. (2003). Controlling the learning process of real-time heuristic search.
Artificial Intelligence, 146(1), 1–41.

Shue, L.-Y., Li, S.-T., & Zamani, R. (2001). An intelligent heuristic algorithm for project scheduling
problems. In Proceedings of the Thirty Second Annual Meeting of the Decision Sciences
Institute, San Francisco.

Shue, L.-Y., & Zamani, R. (1993). An admissible heuristic search algorithm. In Proceedings of the
7th International Symposium on Methodologies for Intelligent Systems, Vol. 689 of LNAI, pp.
69–75. Springer Verlag.

Stenz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings of the
International Conference on Artificial Intelligence, pp. 1652–1659.

Sturtevant, N. (2005). Path refinement in A* search. Tech. rep., University of Alberta.

Sutton, R. (2005). The value function hypothesis. http:// rlai.cs.ualberta.ca/ RLAI/ valuefunction-
hypothesis. html.

156



LEARNING IN REAL-TIME SEARCH: A UNIFYING FRAMEWORK

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press.

Thayer, S., Digney, B., Diaz, M., Stentz, A., Nabbe, B., & Hebert, M. (2000). Distributed robotic
mapping of extreme environments. In Proceedings of the SPIE: Mobile Robots XV and Tele-
manipulator and Telepresence Technologies VII.

Watkins, C. (1989). Learning from Delayed Rewards. Ph.D. thesis, Kings College, Cambridge
University.

Woodcock, S. (2000). Can AI SDKs help?. Game Developer magazine.

Yan, T., He, T., & Stankovic, J. A. (2003). Differentiated surveillance for sensor networks. In
Proceedings of the 1st international conference on Embedded networked sensor systems, pp.
51–62.

Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data
dissemination protocol for wireless sensor networks. Tech. rep. UCLA/CSD-TR-01-0023,
UCLA Computer Science Department.

157


