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Abstract

Distributed Constraint Satisfaction (DCSP) has long been considered an important
problem in multi-agent systems research. This is because many real-world problems can
be represented as constraint satisfaction and these problems often present themselves in a
distributed form. In this article, we present a new complete, distributed algorithm called
asynchronous partial overlay (APO) for solving DCSPs that is based on a cooperative me-
diation process. The primary ideas behind this algorithm are that agents, when acting as a
mediator, centralize small, relevant portions of the DCSP, that these centralized subprob-
lems overlap, and that agents increase the size of their subproblems along critical paths
within the DCSP as the problem solving unfolds. We present empirical evidence that shows
that APO outperforms other known, complete DCSP techniques.

1. Introduction

The Distributed constraint satisfaction problem has become a very useful representation
that is used to describe a number of problems in multi-agent systems including distributed
resource allocation (Conry, Kuwabara, Lesser, & Meyer, 1991) and distributed scheduling
(Sycara, Roth, Sadeh, & Fox, 1991). Some researchers in cooperative multi-agent systems
have focused on developing methods for solving these problems that are based on one key as-
sumption. Particularly, the agents involved in the problem solving process are autonomous.
This means that the agents are only willing to exchange information that is directly relevant
to the shared problem and retain the ability to refuse a solution when it obviously conflicts
with some internal goal.

These researchers believe that the focus on agent autonomy precludes the use of central-
ization because it forces the agents to reveal all of their internal constraints and goals which
may, for reasons of privacy or pure computational complexity, be impossible to achieve.
Several algorithms have been developed with the explicit purpose of allowing the agents
to retain their autonomy even when they are involved in a shared problem which exhibits
interdependencies. Probably the best known algorithms that fit this description can be
found in the work of Yokoo et al. in the form of distributed breakout (DBA) (Yokoo &
Hirayama, 1996), asynchronous backtracking (ABT) (Yokoo, Durfee, Ishida, & Kuwabara,
1992), and asynchronous weak-commitment (AWC) (Yokoo & Hirayama, 2000).
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Unfortunately, a common drawback to each of these algorithms is that in an effort to
provide the agents which complete privacy, these algorithms prevent the agents from
making informed decisions about the global effects of changing their local allocation, sched-
ule, value, etc. For example, in AWC, agents have to try a value and wait for another agent
to tell them that it will not work through a nogood message. Because of this, agents never
learn true reason why another agent or set of agents is unable to accept the value, they only
learn that their value in combination with other values doesn’t work.

In addition, these techniques suffer because they have complete distribution of the con-
trol. In other words, each agent makes decisions based on its incomplete and often inaccurate
view of the world. The result is that this leads to unnecessary thrashing in the problem
solving because the agents are trying to adapt to the behavior of the other agents, who in
turn are trying to adapt to them. Pathologically, this behavior can be counter-productive to
convergence of the protocol(Fernandez, Bejar, Krishnamachari, Gomes, & Selman, 2003).

This iterative trial and error approach to discovering the implicit and implied constraints
within the problem causes the agents to pass an exponential number of messages and ac-
tually reveals a great deal of information about the agents’ constraints and domain values
(Yokoo, Suzuki, & Hirayama, 2002). In fact, in order to be complete, agents using AWC
have to be willing to reveal all of their shared constraints and domain values. The key thing
to note about this statement is that AWC still allows the agents to retain their autonomy
even if they are forced to reveal information about the variables and constraints that form
the global constraint network.

In this paper, we present a cooperative mediation based DCSP protocol, called Asyn-
chronous Partial Overlay (APO). Cooperative mediation represents a new methodology
that lies somewhere between centralized and distributed problem solving because it uses
dynamically constructed, partial centralization. This allows cooperative mediation based
algorithms, like APO, to utilize the speed of current state-of-the-art centralized solvers
while taking advantage of opportunities for parallelism by dynamically identifying relevant
problem structure.

APO works by having agents asynchronously take the role of mediator. When an agent
acts as a mediator, it computes a solution to a portion of the overall problem and recom-
mends value changes to the agents involved in the mediation session. If, as a result of its
recommendations, it causes conflicts for agents outside of the session, it links with them
preventing itself from repeating the mistake in future sessions.

Like AWC, APO provides the agents with a great deal of autonomy by allowing anyone
of them to take over as the mediator when they notice an undesirable state in the current
solution to the shared problem. Further adding to their autonomy, agents can also ignore
recommendations for changing their local solution made by other agents. In a similar
way to AWC, APO is both sound and complete when the agents are willing to reveal the
domains and constraints of their shared variables and allows the agents to obscure the
states, domains, and constraints of their strictly local variables.

In the rest of this article, we present a formalization of the DCSP problem (section
2). In section 3, we describe the underlying assumptions and motivation for this work.
We then present the APO algorithm (section 4.1) and give an example of the protocol’s
execution on a simple 3-coloring problem (section 4.2). We go on to give the proofs for
the soundness and completeness of the algorithm (section 4.3). In section 5, we present
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the results of extensive testing that compares APO with AWC within the distributed graph
coloring domain and the complete compatibility version of the SensorDCSP domain (Bejar,
Krishnamachari, Gomes, & Selman, 2001) across a variety of metrics including number of
cycles, messages, bytes transmitted, and serial runtime. In each of these cases, we will show
that APO significantly outperforms AWC (Yokoo, 1995; Hirayama & Yokoo, 2000). Section
6 summarizes the article and discusses some future research directions.

2. Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) consists of the following:

• a set of n variables V = {x1, . . . , xn}.

• discrete, finite domains for each of the variables D = {D1, . . . , Dn}.

• a set of constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a predicate on
the Cartesian product Di1 × · · · × Dij that returns true iff the value assignments of
the variables satisfies the constraint.

The problem is to find an assignment A = {d1, . . . , dn|di ∈ Di} such that each of the
constraints in R is satisfied. CSP has been shown to be NP-complete, making some form
of search a necessity.

In the distributed case, DCSP, using variable-based decomposition, each agent is as-
signed one or more variables along with the constraints on their variables. The goal of each
agent, from a local perspective, is to ensure that each of the constraints on its variables
is satisfied. Clearly, each agent’s goal is not independent of the goals of the other agents
in the system. In fact, in all but the simplest cases, the goals of the agents are strongly
interrelated. For example, in order for one agent to satisfy its local constraints, another
agent, potentially not directly related through a constraint, may have to change the value
of its variable.

In this article, for the sake of clarity, we restrict ourselves to the case where each agent
is assigned a single variable and is given knowledge of the constraints on that variable.
Since each agent is assigned a single variable, we will refer to the agent by the name of
the variable it manages. Also, we restrict ourselves to considering only binary constraints
which are of the form Ri(di1, di2). Since APO uses centralization as its core, it is easy to
see that the algorithm would work if both of these restrictions are removed. This point will
be discussed as part of the algorithm description in section 4.1.4.

Throughout this article, we use the term constraint graph to refer to the graph formed by
representing the variables as nodes and the constraints as edges. Also, a variable’s neighbors
are the variables with which it shares constraints.
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3. Assumptions and Motivation

3.1 Assumptions

The following are the assumptions made about the environments and agents for which this
protocol was designed:

1. Agents are situated, autonomous, computing entities. As such, they are capable of
sensing their environment, making local decisions based on some model of intention-
ality, and acting out their decisions. Agents are rationally and resource bounded.
As a result, agents must communicate to gain information about each others state,
intentions, decisions, etc.

2. Agents within the multi-agent system share one or more joint goals. In this paper,
this goal is Boolean in nature stemming from the DCSP formulation.

3. Because this work focuses on cooperative problem solving, the agents are cooperative.
This does not necessarily imply they will share all of their state, intentions, etc. with
other agents, but are, to some degree, willing to exchange information to solve joint
goals. It also does not imply that they will change their intentions, state, or decisions
based on the demands of another agent. Agents still maintain their autonomy and
the ability to refuse or revise the decisions of other agents based on their local state,
intentions, decisions, etc.

4. Each agent has the capability of computing solutions to the joint goal based on their
potentially limited rationality. This follows naturally from the ability of agents to
make their own decisions, i.e., every agent is capable of computing a solution to its
own portion of the joint goal based on its own desires.

3.2 Motivation for Mediation-Based Problem Solving

The Websters dictionary defines the act of mediating as follows:

Mediate: 1. to act as an intermediary; especially to work with opposing sides
in order to resolve (as a dispute) or bring about (as a settlement). 2. to bring
about, influence, or transmit by acting as an intermediate or controlling agent
or mechanism. (Merriam-Webster, 1995)

By its very definition, mediation implies some degree of centralizing a shared problem in
order for a group of individuals to derive a conflict free solution. Clearly in situations where
the participants are willing (cooperative), mediation is a powerful paradigm for solving
disputes. It’s rather strange, considering this, that very little has been done on looking at
mediation as a cooperative method for solving DCSPs.

Probably, the earliest mediation-based approach for solving conflicts amongst agents in
an airspace management application(Cammarata, McArthur, & Steeb, 1983). This work
investigates using various conflict resolution strategies to deconflict airspace in a distributed
air traffic control system. The author proposes a method for solving disputes where the
involved agents elect a leader to solve the problem. Once elected, the leader becomes
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S1
{1,2}

S2
{1,2}

Figure 1: A simple distributed problem with two variables.

responsible for recognizing the dispute, devising a plan to correct it, and acting out the
plan. Various election schemes are tested, but unfortunately, the leader only has authority
to modify its own actions in order to resolve the conflicts. This obviously leads to situations
where the plan is suboptimal.

In (Hayden, Carrick, & Yang, 1999), the authors describe mediation as one of a num-
ber possible coordination mechanisms. In this work, the mediator acts as a intermediary
between agents and can also act to coordinate their behavior. As an intermediary, the me-
diator routes messages, provides directory services, etc. This provides for a loose coupling
of the agents, since they only need to know the mediator. The mediator can also act to
coordinate the agents behavior if they have tight interdependencies.

Most of the research work on mediation-based problem solving involved settling disputes
between competitive or semi-competitive agents. Probably one of the best examples of
using mediation in this manner can be found in the PERSUADER system(Sycara, 1988).
PERSUADER was designed to settle conflicts between adversarial parties that are involved
in a labor dispute. PERSUADER uses case-based reasoning to suggest concessions in order
to converge on a satisfactory solution. Another example of using mediation in this way
can be found in in a system called Designer Fabricator Interpreter (DFI) (Werkman, 1990).
In DFI, mediation is used to resolve conflicts as one of a series of problem solving steps.
Whenever the first step fails, in this case iterative negotiation, a mediator agent steps in and
tries to convince the agents to relax their constraints. If this fails, the mediator mandates
a final solution.

There may be several reasons why mediation has not been more deeply explored as
a cooperative problem solving method. First, researchers have focused strongly on using
distributed computing as a way of exploiting concurrency to distribute the computation
needed to solve hard problems (Rao & Kumar, 1993). Because of this, even partially
and/or temporarily centralizing sections of the problem can be viewed as contradictory
to the central goal. Second, researchers have often claimed that part of the power of the
distributed methods lies in the ability of the techniques to solve problems that are naturally
distributed. For example, supply chain problems generally have no central monitoring
authority. Again, directly sharing the reasons why a particular choice is made in the form of
a constraint can seem to contradict the use of distributed methods. Lastly, researchers often
claim that for reasons of privacy or security the problem should be solved in a distributed
fashion. Clearly, sharing information to solve a problem compromises an agents ability to
be private and/or violates its security in some manner.

Although, parallelism, natural distribution, security, and privacy, may all seem like good
justifications for entirely distributed problem solving, in actuality, whenever a problem has
interdependencies between distributed problem solvers, some degree of centralization and
information sharing must take place in order to derive a conflict-free solution.
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Consider, as a simple example, the problem in figure 1. In this figure, two problem
solvers, each with one variable, share the common goal of having a different value from one
another. Each of the agents has only two allowable values: {1, 2}. Now, in order to solve
this problem, each agent must individually decide that they have a different value from the
other agent. To do this, at the very least, one agent must transmit its value to the other. By
doing this, it removes half of its privacy (by revealing one of its possible values), eliminates
security (because the other agent could make him send other values by telling him that this
value is no good), and partially centralizes the problem solving (agent S2 has to compute
solutions based on the solution S1 presented and decide if the problem is solved and agent
S1 just relies on S2 to solve it.) In even this simple example, achieving totally distributed
problem solving is impossible.

In fact, if you look at the details of any of the current approaches to solving DCSPs,
you will observe a significant amount of centralization occurring. Most of these approaches
perform this centralization incrementally as the problem solving unfolds in an attempt to
restrict the amount of internal information being shared. Unfortunately, on problems that
have interdependencies among the problem solvers, revealing an agent’s information (such
as the potential values of their variables) is unavoidable. In fact, solutions that are derived
when one or more agents conceals all of the information regarding a shared constraint or
variable are based on incomplete information and therefore may not always be sound.

It follows then, that since you cannot avoid some amount of centralization, mediation
is a natural method for solving problems that contain interdependencies among distributed
problem solvers.

4. Asynchronous Partial Overlay

As a cooperative mediation based protocol, the key ideas behind the creation of the APO
algorithm are

• Using mediation, agents can solve subproblems of the DCSP using internal search.

• These local subproblems can and should overlap to allow for more rapid convergence
of the problem solving.

• Agents should, over time, increase the size of the subproblem they work on along
critical paths within the CSP. This increases the overlap with other agents and ensures
the completeness of the search.

4.1 The Algorithm

Figures 2, 3, 4, 5, and 6 present the basic APO algorithm. The algorithm works by con-
structing a good list and maintaining a structure called the agent view. The agent view
holds the names, values, domains, and constraints of variables to which an agent is linked.
The good list holds the names of the variables that are known to be connected to the owner
by a path in the constraint graph.

As the problem solving unfolds, each agent tries to solve the subproblem it has central-
ized within its good list or determine that it is unsolvable which indicates the entire global
problem is over-constrained. To do this, agents take the role of the mediator and attempt
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procedure initialize
di ← random d ∈ Di;
pi ← sizeof(neighbors) + 1;
mi ← true;
mediate← false;
add xi to the good list;
send (init, (xi, pi, di, mi, Di, Ci)) to neighbors;
initList← neighbors;

end initialize;

when received (init, (xj , pj , dj , mj , Dj , Cj)) do
Add (xj , pj , dj , mj , Dj , Cj) to agent view;
if xj is a neighbor of some xk ∈ good list do

add xj to the good list;
add all xl ∈ agent view ∧ xl /∈ good list

that can now be connected to the good list;
pi ← sizeof(good list);

end if;
if xj /∈ initList do

send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
else

remove xj from initList;
check agent view;

end do;

Figure 2: The APO procedures for initialization and linking.

to change the values of the variables within the mediation session to achieve a satisfied
subsystem. When this cannot be achieved without causing a violation for agents outside of
the session, the mediator links with those agents assuming that they are somehow related to
the mediator’s variable. This process continues until one of the agents finds an unsatisfiable
subsystem, or all of the conflicts have been removed.

In order to facilitate the problem solving process, each agent has a dynamic priority
that is based on the size of their good list (if two agents have the same sized good list then
the tie is broken using the lexicographical ordering of their names). Priorities are used by
the agents to decide who mediates a session when a conflicts arises. Priority ordering is
important for two reasons. First, priorities ensure that the agent with the most knowledge
gets to make the decisions. This improves the efficiency of the algorithm by decreasing
the effects of myopic decision making. Second, priorities improve the effectiveness of the
mediation process because lower priority agents expect higher priority agents to mediate.
This improves the likelihood that lower priority agents will be available when a mediation
request is sent.
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when received (ok?, (xj , pj , dj , mj)) do
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

procedure check agent view
if initList 6= ∅ or mediate 6=false do

return;
m′

i ← hasConflict(xi);
if m′

i and ¬∃j(pj > pi ∧mj = = true)
if ∃(d′i ∈ Di) (d′i ∪ agent view does not conflict)

and di conflicts exclusively with lower priority neighbors
di ← d′i;
send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;

else
do mediate;

else if mi 6= m′
i

mi ← m′
i;

send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
end if;

end check agent view;

Figure 3: The procedures for doing local resolution, updating the agent view and the
good list.

4.1.1 Initialization (Figure 2)

On startup, the agents are provided with the value (they pick it randomly if one isn’t
assigned) and the constraints on their variable. Initialization proceeds by having each of
the agents send out an “init” message to its neighbors. This initialization message includes
the variable’s name (xi), priority (pi), current value(di), the agent’s desire to mediate (mi),
domain (Di), and constraints (Ci). The array initList records the names of the agents that
initialization messages have been sent to, the reason for which will become immediately
apparent.

When an agent receives an initialization message (either during the initialization or
through a later link request), it records the information in its agent view and adds the
variable to the good list if it can. A variable is only added to the good list if it is a
neighbor of another variable already in the good list. This ensures that the graph created
by the variables in the good list always remains connected, which focuses the agent’s internal
problem solving on variables which it knows it has an interdependency with. The initList
is then checked to see if this message is a link request or a response to a link request. If an
agent is in the initList, it means that this message is a response, so the agent removes the
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procedure mediate
preferences← ∅;
counter ← 0;
for each xj ∈ good list do

send (evaluate?, (xi, pi)) to xj ;
counter ++;

end do;
mediate ← true;

end mediate;

when receive (wait!, (xj , pj)) do
update agent view with (xj , pj);
counter - -;
if counter == 0 do choose solution;

end do;

when receive (evaluate!, (xj , pj , labeled Dj)) do
record (xj , labeled Dj) in preferences;
update agent view with (xj , pj);
counter - -;
if counter == 0 do choose solution;

end do;

Figure 4: The procedures for mediating an APO session.

name from the initList and does nothing further. If the agent is not in the initList then it
means this is a request, so a response “init” is generated and sent.

It is important to note that the agents contained in the good list are a subset of the
agents contained in the agent view. This is done to maintain the integrity of the good list
and allow links to be bidirectional. To understand this point, consider the case when a
single agent has repeatedly mediated and has extended its local subproblem down a long
path in the constraint graph. As it does so, it links with agents that may have a very limited
view and therefore are unaware of their indirect connection to the mediator. In order for
the link to be bidirectional, the receiver of the link request has to store the name of the
requester in its agent view, but cannot add them to their good list until a path can be
identified. As can be seen in section 4.3, the bi-directionality of links is important to ensure
the protocol’s soundness.

4.1.2 Checking the agent view (Figure 3)

After all of the initialization messages are received, the agents execute the check agent view
procedure (at the end of figure 2). In this procedure, the current agent view (which contains
the assigned, known variable values) is checked to identify conflicts between the variable
owned by the agent and its neighbors. If, during this check (called hasConflict in the
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procedure choose solution
select a solution s using a Branch and Bound search that:

1. satisfies the constraints between agents in the good list
2. minimizes the violations for agents outside of the session

if ¬∃s that satisfies the constraints do
broadcast no solution;

for each xj ∈ agent view do
if xj ∈ preferences do

if d′j ∈ s violates an xk and xk /∈ agent view do
send (init, (xi, pi, di, mi, Di, Ci)) to xk;
add xk to initList;

end if;
send (accept!, (d′j , xi, pi, di, mi)) to xj ;
update agent view for xj

else
send (ok?, (xi, pi, di, mi)) to xj ;

end if;
end do;
mediate ← false;
check agent view;

end choose solution;

Figure 5: The procedure for choosing a solution during an APO mediation.

figure), an agent finds a conflict with one or more of its neighbors and has not been told by
a higher priority agent that they want to mediate, it assumes the role of the mediator.

An agent can tell when a higher priority agent wants to mediate because of the mi flag
mentioned in the previous section. Whenever an agent checks its agent view it recomputes
the value of this flag based on whether or not it has existing conflicts with its neighbors.
When this flag is set to true it indicates that the agent wishes to mediate if it is given
the opportunity. This mechanism acts like a two-phase commit protocol, commonly seen in
database systems, and ensures that the protocol is live-lock and dead-lock free.

When an agent becomes the mediator, it first attempts to rectify the conflict(s) with
its neighbors by changing its own variable. This simple, but effective technique prevents
mediation sessions from occurring unnecessarily, which stabilizes the system and saves mes-
sages and time. If the mediator finds a value that removes the conflict, it makes the change
and sends out an “ok?” message to the agents in its agent view. If it cannot find a non-
conflicting value, it starts a mediation session. An “ok?” message is similar to an “init”
message, in that it contains information about the priority, current value, etc. of a variable.

4.1.3 Mediation (Figures 4, 5, and 6)

The most complex and certainly most interesting part of the protocol is the mediation. As
was previously mentioned in this section, an agent decides to mediate if it is in conflict
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when received (evaluate?, (xj , pj)) do
mj ← true;
if mediate == true or ∃k(pk > pj ∧mk = = true) do

send (wait!, (xi, pi));
else

mediate ← true;
label each d ∈ Di with the names of the agents

that would be violated by setting di ← d;
send (evaluate!, (xi, pi, labeled Di));

end if;
end do;

when received (accept!, (d, xj , pj , dj , mj)) do
di ← d;
mediate ← false;
send (ok?, (xi, pi, di, mi)) to all xj in agent view;
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

Figure 6: Procedures for receiving an APO session.

with one of its neighbors and is not expecting a session request from a higher priority
agent. The mediation starts with the mediator sending out “evaluate?” messages to each
of the agents in its good list. The purpose of this message is two-fold. First, it informs
the receiving agent that a mediation is about to begin and tries to obtain a lock from that
agent. This lock, referred to as mediate in the figures, prevents the agent from engaging
in two sessions simultaneously or from doing a local value change during the course of a
session. The second purpose of the message is to obtain information from the agent about
the effects of making them change their local value. This is a key point. By obtaining this
information, the mediator gains information about variables and constraints outside of its
local view without having to directly and immediately link with those agents. This allows
the mediator to understand the greater impact of its decision and is also used to determine
how to extend its view once it makes its final decision.

When an agent receives a mediation request, it responds with either a “wait!” or
“evaluate!” message. The “wait” message indicates to the requester that the agent is
currently involved in a session or is expecting a request from an agent of higher priority
than the requester, which in fact could be itself. If the agent is available, it labels each of
its domain elements with the names of the agents that it would be in conflict with if it were
asked to take that value. This information is returned in the “evaluate!” message.

The size of the “evaluate!” message is strongly related to the number of variables and the
size of the agent’s domain. In cases where either of these are extremely large, a number of
techniques can be used to reduce the overall size of this message. Some example techniques
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include standard message compression, limiting the domain elements that are returned to be
only ones that actually create conflict or simply sending relevant value/variable pairs so the
mediator can actually do the labeling. This fact means that the largest “evaluate!” message
ever actually needed is polynomial in the number of agents (O(V )). In this implementation,
for graph coloring, the largest possible “evaluate!” message is O(|Di|+ |V |).

It should be noted that the agents do not need to return all of the names when they
have privacy or security reasons. This effects the completeness of the algorithm, because
the completeness relies on one or more of the agents eventually centralizing the entire
problem in the worst case. As was mentioned in section 3.2, whenever an agent attempts to
completely hide information about a shared variable or constraint in a distributed problem,
the completeness is necessarily effected.

When the mediator has received either a “wait!” or “evaluate!” message from the agents
that it sent a request to, it chooses a solution. The mediator determines that it has received
all of the responses by using the counter variable which is set to the size of the good list
when the “evaluate?” messages are first sent. As the mediator receives either a “wait!” or
“evaluate!” message, it decrements this counter. When it reaches 0, all of the agents have
replied.

Agents that sent a ”wait!” message are dropped from the mediation while for agents
that sent an ”evaluate!” message their labeled domains specified in the message are recorded
and used in the search process. The mediator then uses the current values along with the
labeled domains it has received in the “evaluate!” messages to conduct a centralized search.

Currently, solutions are generated using a Branch and Bound search (Freuder & Wallace,
1992) where all of the constraints in the good list must be satisfied and the number of outside
conflicts are minimized. This is very similar to the the min-conflict heuristic (Minton,
Johnston, Philips, & Laird, 1992). Notice that although this search takes all of the variables
and constraints in its good list into consideration, the solution it generates may not adhere
to the variable values of the agents that were dropped from the session. These variables are
actually considered outside of the session and the impact of not being able to change their
values is calculated as part of the min-conflict heuristic. This causes the search to consider
the current values of dropped variables as weak-constraints on the final solution.

In addition, the domain for each of the variables in the good list is ordered such that
the variable’s current value is its first element. This causes the search to use the current
value assignments as the first path in the search tree and has the tendency to minimize the
changes being made to the current assignments. These heuristics, when combined together,
form a lock and key mechanism that simultaneously exploits the work that was previously
done by other mediators and acts to minimize the number of changes in those assignments.
As will be presented in section 5, these simple feed-forward mechanisms, combined with the
limited centralization needed to solve problems, account for considerable improvements in
the algorithms runtime performance.

If no satisfying assignments are found during this search, the mediator announces that
the problem is unsatisfiable and the algorithm terminates. Once the solution is chosen,
“accept!” messages are sent to the agents in the session, who, in turn, adopt the proposed
answer.

The mediator also sends “ok” messages to the agents that are in its agent view, but for
whatever reason were not in the session. This simply keeps those agents’ agent views up-
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to-date, which is important for determining if a solution has been reached. Lastly, using the
information provided to it in the “evaluate!” messages, the mediator sends “init” messages
to any agent that is outside of its agent view, but it caused conflict for by choosing a
solution. This “linking” step extends the mediators view along paths that are likely to be
critical to solving the problem or identifying an over-constrained condition. This step also
ensures the completeness of the protocol.

Although termination detection is not explicitly part of the APO protocol, a technique
similar to (Wellman & Walsh, 1999) could easily be added to detect quiescence amongst
the agents.

4.1.4 Multiple Variables and n-ary Constraints

Removing the restrictions presented in section 2 is a fairly straightforward process. Because
APO uses linking as part of the problem solving process, working with n-ary constraints
simply involves linking with the n agents within the constraint during initialization and
when a post-mediation linking needs to occur. Priorities in this scheme are identical to
those used for binary constraints.

Removing the single agent per variable restriction is also not very difficult and in fact is
one of the strengths of this approach. By using a spanning tree algorithm on initialization,
the agents can quickly identify the interdependencies between their internal variables which
they can then use to create separate good lists for each of the disconnected components
of their internal constraint graph. In essence, on startup, the agents would treat each
of these decomposed problems as a separate problem, using a separate mi flag, priority,
good list, etc. As the problem solving unfolds, and the agent discovers connections between
the internal variables (through external constraints), these decomposed problems could be
merged together and utilize a single structure for all of this information.

This technique has the advantages of being able to ensure consistency between depen-
dent internal variables before attempting to mediate (because of the local checking before
mediation), but allows the agent to handle independent variables as separate problems.
Using a situation aware technique such as this one has been shown to yield the best results
in previous work(Mammen & Lesser, 1998). In addition, this technique allows the agents
to hide variables that are strictly internal. By doing pre-computation on the decomposed
problems, the agents can construct constraints which encapsulate each of the subproblems
as n-ary constraints where n is the number of variables that have external links. These de-
rived constraints can then be sent as part of the “init” message whenever the agent receives
a link request for one of its external variables.

4.2 An Example

Consider the 3-coloring problem presented in figure 7. In this problem, there are 8 agents,
each with a variable and 12 edges or constraints between them. Because this is a 3-coloring
problem, each variable can only be assigned one of the three available colors {Black, Red,
or Blue}. The goal is to find an assignment of colors to the variables such that no two
variables, connected by an edge, have the same color.

In this example, four constraints are in violation: (ND0,ND1), (ND1,ND3), (ND2,ND4),
and (ND6,ND7). Following the algorithm, upon startup each agent adds itself to its
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Figure 7: An example of a 3-coloring problem with 8 nodes and 12 edges.

good list and sends an “init” message to its neighbors. Upon receiving these messages,
the agents add each of their neighbors to their good list because they are able to identify a
shared constraint with themselves.

Once the startup has been completed, each of the agents checks its agent view. All of
the agents, except ND5, find that they have conflicts. ND0 (priority 3) waits for ND1 to
mediate (priority 5). ND6 and ND7, both priority 4, wait for ND4 (priority 5, tie with
ND3 broken using lexicographical ordering). ND1, having an equal number of agents in
its good list, but a lower lexicographical order, waits for ND4 to start a mediation. ND3,
knowing it is highest priority amongst its neighbors, first checks to see if it can resolve
its conflict by changing its value, which in this case, it cannot. ND3 starts a session that
involves ND1, ND5, ND6, and ND7. It sends each of them an “evaluate?” message. ND4
being highest priority amongst its neighbors, and unable to resolve its conflict locally, also
starts a session by sending “evaluate?” messages to ND1, ND2, ND6, and ND7.

When each of the agents in the mediation receives the “evaluate?” message, they first
check to see if they are expecting a mediation from a higher priority agent. In this case,
ND1, ND6, and ND7 are expecting from ND4 so tell ND3 to wait. Then they label their
domain elements with the names of the variables that they would be in conflict with as
a result of adopting that value. This information is sent in an “evaluate!” message. The
following are the labeled domains for the agents that are sent to ND4:

• ND1 - Black causes no conflicts; Red conflicts with ND0 and ND3; Blue conflicts with
ND2 and ND4

• ND2 - Black causes no conflicts; Red conflicts with ND0 and ND3; Blue conflicts with
ND4

• ND6 - Black conflicts with ND7; Red conflicts with ND3; Blue conflicts with ND4

• ND7 - Black conflicts with ND6; Red conflicts with ND3; Blue conflicts with ND4
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Figure 8: The state of the sample problem after ND3 leads the first mediation.

The following are the responses sent to ND3:

• ND1 - wait!

• ND5 - Black causes no conflicts; Red conflicts with ND3; Blue causes no conflicts

• ND6 - wait!

• ND7 - wait!

Once all of the responses are received, the mediators, ND3 and ND4, conduct a branch
and bound searches that attempt to find a satisfying assignment to their subproblems and
minimizes the amount of conflict that would be created outside of the mediation. If either
of them cannot find at least one satisfying assignment, it broadcasts that a solution cannot
be found.

In this example, ND3, with the limited information that it has, computes a satisfying
solution that changes its own color and to remain consistent would have also changed the
colors of ND6 and ND7. Since it was told by ND6 and ND7 to wait, it changes its color,
sends an “accept’ !” message to ND5 and “ok?” messages to ND1, ND6 and ND7. Having
more information, ND4 finds a solution that it thinks will solve its subproblem without
creating outside conflicts. It changes its own color to red, ND7 to blue, and ND1 to black
leaving the problem in the state shown in figure 8.

ND1, ND4, ND5, ND6 and ND7 inform the agents in their agent view of their new
values, then check for conflicts. This time, ND1, ND3, and ND6 notice that their values are
in conflict. ND3, having the highest priority, becomes the mediator and mediates a session
with ND1, ND5, ND6, and ND7. Following the protocol, ND3 sends out the “evaluate?”
messages and the receiving agents label and respond. The following are the labeled domains
that are returned:

• ND1 - Black conflicts with ND3; Red conflicts with ND0 and ND4; Blue conflicts with
ND2
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Figure 9: The final solution after ND2 leads the second mediation.

• ND5 - Black conflicts with ND3; Red causes no conflicts; Blue causes no conflicts

• ND6 - Black conflicts with ND3; Red conflicts with ND4; Blue conflicts with ND7

• ND7 - Black conflicts with ND3 and ND6; Red conflicts with ND4; Blue causes no
conflicts

ND3, after receiving these messages, conducts its search and finds a solution that solves
its subproblem. It chooses to change its color to red. ND1, ND3, ND5, ND6, and ND7
check their agent view and find no conflicts. Since, at this point, none of the agents have
any conflict, the problem is solved (see figure 9).

4.3 Soundness and Completeness

In this section we will show that the APO algorithm is both sound and complete. For these
proofs, it is assumed that all communications are reliable, meaning that if a message is sent
from xi to xj that xj will receive the message in a finite amount of time. We also assume
that if xi sends message m1 and then sends message m2 to xj , that m1 will be received
before m2. Lastly, we assume that the centralized solver used by the algorithm is sound and
complete. Before we prove the soundness and completeness, it helps to have a few principal
lemmas established.

Lemma 1 Links are bidirectional. i.e. If xi has xj in its agent view then eventually xj

will have xi in its agent view.

Proof:
Assume that xi has xj in its agent view and that xi is not in the agent view of xj . In

order for xi to have xj in its agent view, xi must have received an “init” message at some
point from xj . There are two cases.

Case 1: xj is in the initList of xi. In this case, xi must have sent xj an “init” message
first, meaning that xj received an “init” message and therefore has xi in its agent view, a
contradiction.
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Case 2: xj is not in the initList of xi. In this case, when xi receives the “init” message
from xj , it responds with an “init” message. That means that if the reliable communication
assumption holds, eventually xj will receive xi’s “init” message and add xi to its agent view.
Also a contradiction.

Lemma 2 If agent xi is linked to xj and xj changes its value, then xi will eventually be
informed of this change and update its agent view.

Proof:
Assume that xi has a value in its agent view for xj that is incorrect. This would mean

that at some point xj altered its value without informing xi. There are two cases:
Case 1: xj did not know it needed to send xi an update. i.e. xi was not in xj ’s

agent view. Contradicts lemma 1.
Case 2: xj did not inform all of the agents in its agent view when it changes its value.

It is clear from the code that this cannot happen. Agents only change their values in the
check agent view, choose solution, and accept! procedures. In each of these cases, it informs
all of the agents within its agent view by either sending an “ok?” or through the “accept!”
message that a change to its value has occurred. A contradiction.

Lemma 3 If xi is in conflict with one or more of its neighbors, does not expect a mediation
from another higher priority agent in its agent view, and is currently not in a session, then
it will act as mediator.

Proof:
Directly from the procedure check agent view.

Lemma 4 If xi mediates a session that has a solution, then each of the constraints between
the agents involved in the mediation will be satisfied.

Proof:
Assume that there are two agents xj and xk (either of them could be xi), that were

mediated over by xi and after the mediation there is a conflict between xj and xk. There
are two ways this could have happened.

Case 1: One or both of the agents must have a value that xi did not assign to it as
part of the mediation.

Assume that xj and/or xk has a value that xi did not assign. We know that since xi

mediated a session including xj and xk, that xi did not receive a “wait!” message from
either of xj or xk. This means that they could not have been mediating. This also means
that they must have set their mediate flags to true when xi sent them the “evaluate?”
message. Since the only times an agent can change its value is when its mediate flag is
false, it is mediating, or has been told to by a mediator, xj and/or xk could only have
changed their values is if xi told them to, which contradicts the assumption.

Case 2: xi assigned them a value that caused them to be in conflict with one another.
Let’s assume that xi assigned them conflicting values. This means that xi chose a

solution that did not take into account the constraints between xj and xk. But, we know
that xi only chooses satisfying solutions that include all of the constraints between all of
the agents in the good list. This leads to a contradiction.
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This lemma is important because it says that once a mediator has successfully concluded
its session, the only conflicts that can exist are on constraints that were outside of the
mediation. This can be viewed as the mediator pushing the constraint violations outside
of its view. In addition, because mediators get information about who the violations are
being pushed to and establish links with those agents, over time, they gain more context.
This is a very important point when considering the completeness of the algorithm.

Theorem 1 The APO algorithm is sound. i.e. It reaches a stable state only if it has either
found an answer or no solution exists.

Proof:
In order to be sound, the agents can only stop when they have reached an answer. The

only condition in which they would stop without having found an answer is if one or more
of the agents is expecting a mediation request from a higher priority agent that does not
send it. In other words, the protocol has deadlocked.

Let’s say we have 3 agents, xi, xj , and xk with pi < pj ∨ pk < pj (i could be equal to k)
and xk has a conflict with xj . There are two cases in which xj would not mediate a session
that included xi, when xi was expecting it to:

Case 1: xi has mj = true in its agent view when the actual value should be false.
Assume that xi has mj = true in its agent view when the true value of mj = false.

This would mean that at some point xj changed the value of mj to false without informing
xi. There is only one place that xj changes the value of mj , this is in the check agent view
procedure (see figure 3). Note that in this procedure, whenever the flag changes value from
true to false, the agent sends an “ok” message to all the agents in its agent view. Since
by lemma 1 we know that xi is in the agent view of xj , xi must have received the message
saying that mj = false, contradicting the assumption.

Case 2: xj believes that xi should be mediating when xi does not believe it should be.
i.e. xj thinks that mi = true and pi > pj .

By the previous case, we know that if xj believes that mi = true that this must be the
case. We only need to show that pi < pj . Let’s say that p′i is the priority that xj believes
xi has and assume that xj believes that p′i > pj when, in fact pi < pj . This means that at
some point xi sent a message to xj informing it that its current priority was p′i. Since we
know that priorities only increase over time (the good list only gets larger), we know that
p′i ≤ pi (xj always has the correct value or underestimates the priority of xi). Since pj > pi

and pi ≥ p′i then pj > p′i which contradicts the assumption.
This is also an important point when considering how the algorithm behaves. This proof

says that agents always either know or underestimate the true value of their neighbors’
priorities. Because of this, the agents will attempt to mediate when in fact sometimes,
they shouldn’t. The side effect of this attempt, however, is that the correct priorities are
exchanged so the same mistake doesn’t get repeated. The other important thing to mention
is the case were the priority values become equal. In this case, the tie is broken by using
the alphabetical order of names of the agents. This ensures that there is always a way to
break ties.

Definition 1 Oscillation is a condition that occurs when a subset V ′ ⊆ V of the agents are
infinitely cycling through their allowable values without reaching a solution. In other words,
the agents are live-locked
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By this definition, in order to be considered part of an oscillation, an agent within the
subset must be changing its value (if it’s stable, it’s not oscillating) and it must be connected
to the other members of the subset by a constraint (otherwise, it is not actually a part of
the oscillation).

Theorem 2 The APO algorithm is complete. i.e. if a solution exists, the algorithm will
find it. If a solution does not exist, it it will report that fact.

Proof:

A solution does not exist whenever the problem is over-constrained. If the problem
is over-constrained, the algorithm will eventually produce a good list where the variables
within it and their associated constraints lead to no solution. Since a subset of the variables
is unsatisfiable, the entire problem is unsatisfiable, therefore, no solution is possible. The
algorithm terminates with failure if and only if this condition is reached.

Since we have now shown in Theorem 1 that whenever the algorithm reaches a stable
state, the problem is solved and that when it finds a subset of the variables that is unsat-
isfiable it terminates, we only need to show that it reaches one of these two states in finite
time. The only way for the agents to not reach a stable state is when one or more of the
agents in the system is in an oscillation.

There are two cases to consider, the easy case is when a single agent is oscillating
(|V ′| = 1) and the other case is when more than one agent is oscillating (|V ′| > 1).

Case 1: There is an agent xi that is caught in an infinite loop and all other agents are
stable.

Let’s assume that xi is in an infinite processing loop. That means that no matter what
it changes its value to, it is in conflict with one of its neighbors, because if it changed its
value to something that doesn’t conflict with its neighbors, it would have a solution and
stop. If it changes its value to be in conflict with some xj that is higher priority than it,
then xj will mediate with xi, contradicting the assumption that all other agents are stable.
If xi changes its value to be in conflict with a lower priority agent, then by lemma 3, it will
act as mediator with its neighbors. Since it was assumed that each of the other agents is
in a stable state, then all of the agents in xi’s good list will participate in the session and
by lemma 4, agent xi will have all of its conflicts removed. This means that xi will be in a
stable state contradicting the assumption that it was in an infinite loop.

Case 2: Two or more agents are in an oscillation.

Let’s say we have a set of agents V ′ ⊆ V that are in an oscillation. Now consider an
agent xi that is within V ′. We know that the only conditions in which xi changes its value
is when it can do so and solve all of its conflicts (a contradiction because xi wouldn’t be
considered part of the oscillation), as the mediator, or as the receiver of a mediation from
some other agent in V ′. The interesting case is when an agent acts as the mediator.

Consider the case when xi is the mediator and call the set of agents that it is mediating
over Vi. We know according to definition 1 that after the mediation, that at least one
conflict must be created or remain otherwise the oscillation would stop and the problem
would be solved. In fact, we know that each of the remaining conflicts must contain an
agent from the set V ′−Vi by lemma 4. We also know that for each violated constraint that
has a member from Vi, that xi will link with any agent that is part of those constraints and
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not a member of Vi. The next time xi mediates, the set Vi will include these members and
the number of agents in the set V ′ − Vi is reduced. In fact, whenever xi mediates the set
V ′ − Vi will be reduced (assuming it is not told to wait! by one or more agents. In this
case, it takes longer to reduce this set, but the proof still holds). Eventually, after O(|V |2)
mediations, some xi within V ′ must have Vi = V ′ (every agent within the set must have
mediated |V ′| times in order for this to happen). When this agent mediates it will push the
violations outside of the set V ′ or it will solve the subproblem by lemma 4. Either of these
conditions contradicts the oscillation assumption. Therefore, the algorithm is complete.
QED

It should be fairly clear that, in domains that are exponential, the algorithm’s worse-
case runtime is exponential. The space complexity of the algorithm is, however, polynomial,
because the agents only retain the names, priorities, values, and constraints of other agents.

5. Evaluation

A great deal of testing and evaluation has been conducted on the APO algorithm. Almost
exclusively, these test are done comparing the APO algorithm with the currently fastest
known, complete algorithm for solving DCSPs called the Asynchronous Weak Commitment
(AWC) protocol. In this section we will describe the AWC protocol (section 5.1), then will
describe the distributed 3-coloring domain and present results from extensive testing done
in this domain (section 5.2). This testing compares these two algorithms across a variety
of metrics, including the cycle time, number of messages, and serial runtime.

Next, we will describe the tracking domain (section 5.3) and present results from testing
in this domain as well. For this domain, we modified the core search algorithm of APO to
take advantage of the polynomial complexity of this problem. This variant called, APO-
Flow, will also be described.

5.1 The Asynchronous Weak Commitment (AWC) Protocol

The AWC protocol (Yokoo, 1995) was one of the first algorithms used for solving DCSPs.
Like the APO algorithm, AWC is based on variable decomposition. Also, like APO, AWC
assigns each agent a priority value that dynamically changes. AWC, however, uses the
weak-commitment heuristic (Yokoo, 1994) to assign these priorities values which is where
it gets its name.

Upon startup, each of the agents selects a value for its variable and sends “ok?” messages
to its neighbors (agents it shares a constraint with). This message includes the variables
value and priority (they all start at 0).

When an agent receives an “ok?” message, it updates its agent view and checks its
nogood list for violated nogoods. Each nogood is composed of a set of nogood pairs which
describe the combination of agents and values that lead to an unsatisfiable condition. Ini-
tially, the only nogoods in an agent’s nogood list are the constraints on its variable.

When checking its nogood list, agents only check for violations of higher priority no-
goods. The priority of a nogood is defined as the priority of the lowest priority variable in
the nogood. If this value is greater than the priority of the agent’s variable, the nogood is
higher priority. Based on the results from this check, one of three things can happen:
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1. If no higher priority nogoods are violated, the agent does nothing.

2. If there are higher priority nogoods that are violated and this can be repaired by
simply changing the agent’s variable value, then the agent changes its value and sends
out “ok?” messages to the agents in its agent view. If there are multiple possible
satisfying values, then the agent chooses the one that minimizes the number of violated
lower priority nogoods.

3. If there are violated higher priority nogoods and this cannot be repaired by changing
the value of its variable, the agent generates a new nogood. If this nogood is the
same as a previously generated nogood, it does nothing. Otherwise, it then sends this
new nogood to every agent that has a variable contained in the nogood and raises the
priority value of its variable. Finally, it changes its variable value to one that causes
the least amount of conflict and sends out “ok?” messages.

Upon receiving a nogood message from another agent, the agent adds the nogood to
its nogood list and rechecks for nogood violations. If the new nogood includes the names
of agents that are not in its agent view it links to them. This linking step is essential to
the completeness of the search(Yokoo et al., 1992), but causes the agents to communicate
nogoods and ok? messages to agents that are not their direct neighbors in the constraint
graph. The overall effect is an increase in messages and a reduction in the amount of
privacy being provided to the agents because they communicate potential domain values
and information about their constraints through the exchange of ok? and nogood messages
with a larger number of agents.

One of the more recent advances to the AWC protocol has been the addition of resolvent-
based nogood learning (Hirayama & Yokoo, 2000) which is an adaptation of classical nogood
learning methods (Ginsberg, 1993; Cha & Iwana, 1996; Frost & Dechter, 1994).

The resolvent method is used whenever an agent finds that it needs to generate a new
nogood. Agents only generate new nogoods when each of their domain values are in violation
with at least one higher priority nogood already in their nogood list. The resolvent method
works by selecting one of these higher priority nogoods for each of the domain values and
aggregating them together into a new nogood. This is almost identical to a resolvent in
propositional logic which is why it is referred to as resolvent-based learning. The AWC
protocol used for all of our testing incorporates resolvent-based nogood learning.

5.2 Distributed Graph Coloring

Following directly from the definition for a CSP, a graph coloring problem, also known as
a k-colorability problem, consists of the following:

• a set of n variables V = {x1, . . . , xn}.

• a set of possible colors for each of the variables D = {D1, . . . , Dn} where each Di is
has exactly k allowable colors.

• a set of constraints R = {R1, . . . , Rm} where each Ri(di, dj) is predicate which imple-
ments the “not equals” relationship. This predicate returns true iff the value assigned
to xi differs from the value assigned to xj .
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Figure 10: Comparison of the number of cycles needed to solve satisfiable, low-density 3-
coloring problems of various sizes by AWC and APO.

The problem is to find an assignment A = {d1, . . . , dn|di ∈ Di} such that each of the
constraints in R is satisfied. Like the general CSP, graph coloring has been shown to be
NP-complete for all values of k > 2.

To test the APO algorithm, we implemented the AWC and APO algorithms and con-
ducted experiments in the distributed 3-coloring domain. The distributed 3-coloring prob-
lem is a 3-coloring problem with n variables and m binary constraints where each agent is
given a single variable. We conducted 3 sets of graph coloring based experiments to compare
the algorithms’ computation and communication costs.

5.2.1 Satisfiable Graphs

In the first set of experiments, we created solvable graph instances with m = 2.0n (low-
density), m = 2.3n (medium-density), and m = 2.7n (high-density) according to the method
presented in (Minton et al., 1992). Generating graphs in this way involves partitioning the
variables into k equal-sized groups. Edges are then added by selecting two of the groups at
random and adding an edge between a random member of each group. This method ensures
that the resulting graphs are satisfiable, but also tests a very limited and very likely easier
subset of the possible graphs. These tests were done because they are traditionally used by
other researchers in DCSPs.

These particular values for m were chosen because they represent the three major regions
within the phase-transition for 3-colorability (Culberson & Gent, 2001). A phase transition
in a CSP is defined based on an order parameter, in this case the average node degree
d. The transition occurs at the point where random graphs created with that order value
yield half satisfiable and half unsatisfiable instances. Values of the order parameter that are
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Figure 11: Comparison of the number of cycles needed to solve satisfiable, medium-density
3-coloring problems of various sizes by AWC and APO.

lower than the transition point (more than 50% of the instance are satisfiable) are referred
to being to the left of the transition. The opposite is true of values to the right.

Phase transitions are important because that are strongly correlated with the overall dif-
ficulty of finding a solution to the graph (Cheeseman, Kanefsky, & Taylor, 1991; Monasson,
Zecchina, Kirkpatrick, Selman, & Troyansky, 1999; Culberson & Gent, 2001). Within the
phase transition, randomly created instances are typically difficult to solve. Interestingly,
problems to the right and left of the phase transitions tend to be much easier.

In 3-colorability, the value d = 2.0 is to the left of the phase transition. In this region,
randomly created graphs are very likely to be satisfiable and are usually easy to find solve.
At d = 2.3, which is in the middle of the phase transition the graph has about a 50% chance
of being satisfiable and is usually hard to solve. For m = 2.7n, right of the phase transition,
graphs are more than likely to be unsatisfiable and, again, are also easier to solve.

A number of papers (Yokoo & Hirayama, 2000, 1996; Hirayama & Yokoo, 2000) have
reported that m = 2.7n is within the critical phase transition for 3-colorability. This seems
to have been caused by a misinterpretation of previous work in this area(Cheeseman et al.,
1991). Although Cheeseman, Kanefsky, and Taylor reported that m = 2.7n was within the
critical region for 3-colorability, they were using reduced graphs for their analysis.

A reduced graph is one in which the trivially colorable nodes and non-relevant edges
have been removed. For example, one can easily remove any node with just two edges in
a 3-coloring problem because it can always be trivially colored. Additionally, nodes that
possess a unique domain element from their neighbors can also be easily removed.

In later work, Culberson and Gent identified the critical region as being approximately
d = 2.3 and therefore was included in our tests(Culberson & Gent, 2001). One should note,
however, that because phase transitions are typically done on completely random graphs
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APO APO AWC AWC
d Nodes Mean StDev Mean StDev p(AWC ≤ APO)

15 17.82 8.15 17.38 12.70 0.77
30 27.07 17.11 24.62 19.23 0.27

2.0 45 39.97 25.79 43.76 30.98 0.34
60 53.24 32.32 69.96 49.03 0.01
75 59.83 35.35 80.32 103.76 0.07
90 80.75 54.30 82.92 61.01 0.81

Overall 0.01

15 15.04 5.55 20.49 11.27 0.00
30 34.01 16.81 41.30 29.58 0.04

2.3 45 47.72 26.58 109.99 74.85 0.00
60 92.73 72.46 135.60 146.57 0.01
75 114.02 75.84 185.84 119.94 0.00
90 160.88 125.12 189.04 91.27 0.07

Overall 0.00

15 13.83 3.56 20.29 10.32 0.00
30 27.28 10.10 39.99 24.08 0.00

2.7 45 42.47 18.01 62.92 35.23 0.00
60 52.15 23.12 86.89 43.69 0.00
75 64.54 26.26 104.09 46.62 0.00
90 87.14 42.82 127.04 64.97 0.00

Overall 0.00

Table 1: Comparison of the number of cycles needed to solve satisfiable 3-coloring problems
of various sizes and densities by AWC and APO.
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Figure 12: Comparison of the number of cycles needed to solve satisfiable, high-density
3-coloring problems of various sizes by AWC and APO.

and by its very definition involves both satisfiable and unsatisfiable instances, it is very
hard to apply the phase-tranisition results to graphs created using the technique described
at the beginning of the section because it only generates satisfiable instances. A detailed
phase transition analysis has not been done on this graph generation technique and in fact,
we believe that these graphs tend to be easier than randomly created satisfiable ones of the
same size and order.

To evaluate the relative strengths and weakness of each of the approaches, we measured
the number of cycles and the number of messages used during the course of solving each
of the problems. During a cycle, incoming messages are delivered, the agent is allowed
to process the information, and any messages that were created during the processing are
added to the outgoing queue to be delivered at the beginning of the next cycle. The actual
execution time given to one agent during a cycle varies according to the amount of work
needed to process all of the incoming messages. The random seeds used to create each
graph instance and variable instantiation were saved and used by each of the algorithms for
fairness.

For this comparison between AWC and APO, we randomly generated 10 graphs of size
n = 15, 30, 45, 60, 75, 90 and m = 2.0n, 2.3n, 2.7n and for each instance generated 10 initial
variable assignments. Therefore, for each combination of n and m, we ran 100 trials making
a total of 1800 trials. The results from this experiment can be seen in figures 10 through 15
and table 1. We should mention that the results of the testing on AWC obtained from these
experiments agree with previous results (Hirayama & Yokoo, 2000) verifying the correctness
of our implementation.

At first glance, figure 10 appears to indicate that for satisfiable low-density graph in-
stances, AWC and APO perform almost identically in terms of cycles to completion. Look-
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% Links % Links % Central % Central
Nodes Mean StDev Mean StDev

15 32.93 3.52 60.53 9.12
30 17.24 2.59 42.53 8.06

APO 45 11.97 1.84 33.27 6.61
60 9.30 1.30 29.00 7.31
75 7.42 0.95 24.60 6.73
90 6.51 0.96 24.93 6.16

15 55.76 12.31 79.73 11.45
30 32.89 8.88 60.97 10.98

AWC 45 27.00 7.89 56.49 11.57
60 26.47 9.12 56.98 14.23
75 21.99 7.67 53.19 13.29
90 20.11 7.89 50.38 13.78

Table 2: Link statistics for satisfiable, low-density problems.

% Links % Links % Central % Central
Nodes Mean StDev Mean StDev

15 37.46 3.45 67.60 8.26
30 21.24 2.85 51.37 9.32

APO 45 14.90 2.27 43.67 11.40
60 12.85 2.99 42.98 13.06
75 11.17 2.45 43.76 12.69
90 10.07 3.10 40.47 14.55

15 63.19 12.06 83.56 8.96
30 42.84 11.83 72.20 12.09

AWC 45 52.05 13.52 80.67 11.24
60 43.69 14.59 74.93 14.56
75 47.77 14.10 79.41 12.18
90 44.04 10.84 77.98 10.52

Table 3: Link statistics for satisfiable, medium-density problems.
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% Links % Links % Central % Central
Nodes Mean StDev Mean StDev

15 43.28 2.86 74.53 8.34
30 24.29 2.61 59.30 9.75

APO 45 18.07 2.06 52.62 10.21
60 13.86 1.77 47.78 11.32
75 11.85 1.57 46.37 11.32
90 10.86 1.85 50.73 14.48

15 78.87 12.29 93.60 7.75
30 58.03 11.66 86.27 9.54

AWC 45 54.06 13.44 82.67 13.34
60 53.01 12.77 83.47 11.04
75 49.63 11.36 81.91 9.93
90 47.72 13.81 80.32 15.06

Table 4: Link statistics for satisfiable, high-density problems.

ing at the associated table (Table 1), however, reveals that overall, the pairwise T-test
indicates that with 99% confidence, APO outperforms AWC on these graphs.

As the density, or average degree, of the graph increases, the difference becomes more
apparent. Figures 11 and 12 show that APO begins to scale much more efficiently than
AWC. This can be attributed to the ability of APO to rapidly identify strong interdepen-
dencies between variables and to derive solutions to them using a centralized search of the
partial subproblem.

Tables 2 through 4, partially verify this statement. As you can see, on average, less than
50% of the possible number of links (n ∗ (n− 1)) are used by APO in solving problems (%
Links column). In addition, the maximum amount of centralization (% Central column)
occuring within any single agent (i.e. the number of agents in its agent view) remains fairly
low. The highest degree of centralization occurs for small, high-density graphs. Intuitively,
this makes a lot of sense because in these graphs, a single node is likely to have a high
degree from the very start. Combine this fact with the dynamic priority ordering and the
result is large amounts of central problem solving.

The most profound differences in the algorithms can be seen in figures 13, 14, and 15 and
table 5. APO uses at least an order of magnitude less messages than AWC. Table 6 shows
that these message savings lead to large savings in the number of bytes being transmitted as
well. Even though APO uses about twice as many bytes per message as AWC (the messages
were not optimized at all), the total amount of information be passed around is significantly
less in almost every case.

Again, looking at the linking structure that AWC produces gives some insights into why
it uses some many more messages than APO. Because agents communicate with all of the
agents they are linked to whenever their value changes, and a large number of changes can
occur in single cycle, AWC can have a tremendous amount of thrashing behavior. APO,
on the other hand, avoids this problem because the process of mediating implicitly creates
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APO APO AWC AWC
d Nodes Mean StDev Mean StDev p(AWC ≤ APO)

15 361.50 179.57 882.19 967.21 0.00
30 1117.15 844.33 2431.71 3182.51 0.00

2.0 45 2078.72 1552.98 6926.86 7395.22 0.00
60 3387.13 2084.69 18504.17 22281.59 0.00
75 4304.22 2651.15 21219.01 22714.98 0.00
90 6742.14 4482.54 33125.57 39766.56 0.00

Overall 0.01

15 379.15 188.69 1205.50 923.85 0.00
30 1640.08 931.22 6325.21 6914.79 0.00

2.3 45 3299.05 2155.45 44191.89 44693.33 0.00
60 8773.16 9613.84 70104.74 69050.66 0.00
75 14368.87 12066.32 178683.02 173493.21 0.00
90 25826.74 29172.66 201145.37 143236.26 0.00

Overall 0.00

15 433.64 164.12 1667.71 1301.03 0.00
30 1623.89 787.59 9014.02 8104.34 0.00

2.7 45 3859.99 1921.51 28964.43 22900.89 0.00
60 5838.36 3140.53 66857.87 53221.05 0.00
75 9507.60 4486.04 116016.71 82857.63 0.00
90 16455.59 10679.92 196239.22 163722.90 0.00

Overall 0.00

Table 5: Comparison of the number of messages needed to solve satisfiable 3-coloring prob-
lems of various sizes and densities by AWC and APO.
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APO APO AWC AWC
d Nodes Mean StDev Mean StDev p(AWC ≤ APO)

15 10560.76 4909.09 11590.38 13765.19 0.49
30 32314.97 23138.55 32409.93 45336.65 0.98

2.0 45 59895.10 42740.82 95061.77 106391.51 0.00
60 97126.79 57428.70 259529.42 326087.70 0.00
75 123565.94 73493.72 294502.71 328696.59 0.00
90 192265.35 123384.05 466084.60 581963.72 0.00

Overall 0.00

15 11370.13 4951.75 16260.19 13237.31 0.00
30 47539.20 25486.74 88946.59 101077.04 0.00

2.3 45 95098.49 59312.25 644007.01 675192.26 0.00
60 247417.78 262844.89 1018059.11 1029273.23 0.00
75 401618.24 327990.65 2626178.31 2606377.80 0.00
90 712035.13 782835.83 2935211.45 2138087.17 0.00

Overall 0.00

15 13415.51 4280.15 22393.61 18578.25 0.00
30 48542.24 21331.96 125072.76 116518.80 0.00

2.7 45 112541.02 52729.10 405535.81 327349.47 0.00
60 170174.55 85705.12 945039.32 773937.60 0.00
75 272391.95 122177.07 1641250.63 1204185.34 0.00
90 465571.42 288265.82 2793725.78 2397839.47 0.00

Overall 0.00

Table 6: Comparison of the number of bytes transmitted by APO and AWC for satisfiable
graph instances of various sizes and density.
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Figure 13: Comparison of the number of messages needed to solve satisfiable, low-density
3-coloring problems of various sizes by AWC and APO.
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Figure 14: Comparison of the number of messages needed to solve satisfiable, medium-
density 3-coloring problems of various sizes by AWC and APO.

regions of stability in the problem landscape while the mediator decides on a solution. In
addition, because APO uses partial centralization to solve problems, it avoids having to use
a large number of messages to discover implied constraints through trial and error.
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Figure 15: Comparison of the number of messages needed to solve satisfiable, high-density
3-coloring problems of various sizes by AWC and APO.
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Figure 16: Phase transition curve for the 60 node randomly generated graphs used in test-
ing.

As we will see in the next two experiments, the high degree of centralization caused
by its unfocused linking degrades AWC’s performance even more when solving randomly
generated, possibly unsatisfiable, graph instances.
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Figure 17: Number of cycles needed to solve completely random 60 variable problems of
various density using AWC and APO.

APO APO % APO AWC AWC % AWC
Density Mean StDev Solved Mean StDev Solved p(AWC ≤ APO)

1.8 49.88 41.98 100 52.51 77.06 100 0.62
2.0 88.77 83.79 100 189.42 237.17 96 0.00
2.1 116.79 107.21 100 377.54 364.55 80 0.00
2.3 116.41 264.65 100 660.65 362.80 55 0.00
2.5 56.21 45.12 100 640.66 335.65 65 0.00
2.7 27.62 25.66 100 537.99 324.87 83 0.00
2.9 17.74 13.69 100 476.20 271.63 92 0.00

Overall 0.00

Table 7: Number of cycles needed to solve completely random 60 variable problems of
various density using AWC and APO.
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Figure 18: Number of messages needed to solve completely random 60 variable problems of
various density using AWC and APO.

5.2.2 Random Graphs

In the second set of experiments, we generated completely random 60 node graphs with
average degrees from d = 1.8 to 2.9. This series was conducted to test the completeness of
the algorithms, verify the correctness of their implementations, and to study the effects of
the phase transition on their performance. For each value of d, we generated 200 random
graphs each with a single set of initial values. Graphs were generate by randomly choosing
two nodes and connecting them. If the edge already existed, another pair was chosen. The
phase transition curve for these instances can be seen in figure 16.

In total, 1400 graphs were generated and tested. Due to time constraints, we stopped
the execution of AWC once 1000 cycles had completed (APO never reached 1000). The
results of these experiments are shown in figures 17 and 18 and tables 7 and 8.

On these graphs, APO significantly outperforms AWC on all but the simplest problems
(see figure 17). These results can most directly be attributed to AWC’s poor performance
on unsatisfiable problem instances (Fernandez et al., 2003). In fact, in the region of the
phase transition, AWC was unable to complete 45% of the graphs within the 1000 cycles.

In addition, to solve these problems, AWC uses at least an order of magnitude more
messages that APO. These results can be seen in figure 18. By looking at table 9, it is easy
to see why this occurs. AWC has a very high degree of linking and centralization. In fact,
on d = 2.9 graphs, AWC reaches an average of 93% centralization and 75% of complete
inter-agent linking.

To contrast this, APO has very loose linking throughout the entire phase transition and
centralizes on average around 50% of the entire problem. These results are very encour-
aging and reinforce the idea that partial overlays and extending along critical paths yields
improvements in the convergence on solutions.
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APO APO AWC AWC
Density Mean StDev Mean StDev p(AWC ≤ APO)

1.8 2822.61 3040.39 12741.58 47165.70 0.00
2.0 7508.33 9577.86 126658.29 269976.18 0.00
2.1 12642.68 16193.56 356993.39 444899.21 0.00
2.3 15614.37 15761.90 882813.45 566715.73 0.00
2.5 8219.74 7415.76 1080277.25 661909.63 0.00
2.7 4196.58 4201.80 1047001.18 738367.27 0.00
2.9 2736.20 2286.39 1000217.83 699199.90 0.00

Overall 0.00

Table 8: Number of messages needed to solve completely random 60 variable problems of
various density using AWC and APO.

% Links % Links % Central % Central
Density Mean StDev Mean StDev

1.8 8.09 1.50 26.19 6.94
2.0 10.93 3.28 36.92 13.77
2.1 13.31 4.49 46.68 15.86

APO 2.3 15.56 4.94 55.91 18.18
2.5 14.37 3.74 53.86 18.25
2.7 13.19 3.32 47.33 19.59
2.9 13.12 2.70 45.26 17.55

1.8 16.28 6.58 41.08 12.42
2.0 34.34 13.44 65.00 14.41
2.1 46.52 13.95 75.24 10.66

AWC 2.3 64.13 11.43 86.06 5.61
2.5 70.06 10.51 89.46 4.55
2.7 72.95 10.65 91.71 3.80
2.9 75.19 9.62 92.78 5.63

Table 9: Link statistics for 60 node random problems.

5.2.3 Runtime Tests

In the third set of experiments, we directly compared the serial runtime performance of
AWC against APO. Serial runtime is measured using the following formula:

serialtime =
cycles
∑

i=0

∑

a∈agents

time(a, i)
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Figure 19: Comparison of the number of seconds needed to solve random, low-density 3-
coloring problems of various sizes by AWC, APO, and centralized Backtracking.
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Figure 20: Comparison of the number of seconds needed to solve random, medium-density
3-coloring problems of various sizes by AWC, APO, and centralized Backtrack-
ing.
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Figure 21: Comparison of the number of seconds needed to solve random, high-density 3-
coloring problems of various sizes by AWC, APO, and centralized Backtracking.

APO APO AWC AWC BT BT
d Nodes Mean StDev Mean StDev Mean StDev

15 0.26 0.21 2.72 4.40 0.02 0.02
2.0 30 0.78 0.66 10.52 18.99 1.65 4.14

45 1.27 1.18 257.88 1252.25 245.14 587.31
60 2.02 1.74 890.12 4288.43 27183.64 56053.26

15 0.18 0.23 3.96 3.23 0.03 0.01
2.3 30 0.98 0.88 112.95 144.24 0.86 1.07

45 2.19 2.26 1236.27 1777.51 150.73 241.02
60 10.51 12.97 32616.24 62111.52 92173.71 222327.59

15 0.09 0.06 3.51 2.90 0.02 0.01
2.7 30 0.40 0.39 61.43 59.77 0.29 0.36

45 0.66 0.63 460.56 690.98 35.58 57.75
60 5.47 5.44 4239.16 4114.30 2997.04 4379.97

Table 10: Comparison of the number of seconds needed to solve random 3-coloring problems
of various sizes and densities using AWC, APO, and centralized Backtracking.
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Which is just the total accumulated runtime needed to solve the problem when only one
agent is allowed to process at a time.

For these experiments, we again generated random graphs, this time varying the size
and the density of the graph. We generated 25 graphs for the values of n = 15, 30, 45, 60 and
the densities of d = 2.0, 2.3, 2.7, for a total of 300 test cases. To show that the performance
difference in APO and AWC was not caused by the speed of the central solver, we ran a
centralized backtracking algorithm on the same graph instances. Although, APO uses the
branch and bound algorithm, the backtracking algorithm used in this test provides a best
case lower bound on the runtime of APO’s internal solver.

Each of the programs used in this test was run on an identical 2.4GHz Pentium 4 with
768 Mbytes of RAM. These machines where entirely dedicated to the tests so there was a
minimal amount of interference by competing processes. In addition, no computational cost
was assigned to message passing because the simulator passes messages between cycles. The
algorithms were, however, penalized for the amount of time they took to process messages.
Although we realize that the specific implementation of an algorithm can greatly effect its
runtime performance, every possible effort was made to optimize the AWC implementation
used for these experiments in an effort to be fair.

The results of this test series can be seen in figures 19, 20, and 21. You should note
that the scale used for these graphs is logarithmic. From looking at these results, two
things should become apparent. Obviously, the first is that APO outperforms AWC in
every case. Second, APO actually outperforms its own centralized solver on graphs larger
than 45 nodes. This indicates two things. First, the solver that is currently in APO is
very poor and second that APO’s runtime performance is not a direct result of the speed of
centralized solver that it is using. In fact, these tests show that the improved performance
of APO over AWC is caused by APO’s ability to take advantage of the problem’s structure.

If we were to replace the centralized solver used in these tests with a state-of-the-art
solver, we would expect two things. The first is that we would expect the serial runtime of
the APO algorithm to decrease simply from the speedup caused by the centralized solver.
The second, and more importantly, is that the centralized solver would always outperform
APO. This is because current CSP solvers take advantage of problem structure unlike the
solver used in these tests. We are in no way making a claim that APO improves any
centralized solver. We are simply stating that APO outperforms AWC for reasons other
than the speed of its current internal solver.

5.3 Tracking Domain

To test APO’s adaptability to various centralized solvers, we created an implementation
of the complete-compatibility version of the SensorDCSP formulation (Bejar et al., 2001;
Krishnamachari, Bejar, & Wicker, 2002; Fernandez et al., 2003). In this domain, there
are a number of sensors and a number of targets randomly placed within an environment.
Because of range restrictions, only sensors that are within some distance dist can see a
target. The goal is to find an assignment of sensors to targets such that each target has
three sensors tracking it.

Following directly from the definition for a CSP, a SensorDCSP problem consists of the
following:
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Figure 22: An example of a tracking problem. There are 30 targets (labeled with their
name) and 224 sensors (black dots). Lines connecting sensors and targets indi-
cate that the sensor is assigned to tracking the target.
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• a set of n targets T = {T1, . . . , Tn}.

• a set of possible sensors that can “see” each of the targets D = {D1, . . . , Dn}.

• a set of constraints R = {R1, . . . , Rm} where each Ri(ai, aj) is predicate which im-
plements the “not intersects” relationship. This predicate returns true iff the sensors
assigned to Ti does not have any elements in common with the sensors assigned to Tj .

The problem is to find an assignment A = {a1, . . . , an} such that each of the constraints
in R is satisfied and each ai is a set of

(|Di|
c

)

sensors from Di where c = min(|Di|, 3). This
indicates that each target requires 3 sensors, if enough are available, or all of the sensors, if
there are less than 3.

Since, in this implementation, each of the sensors is compatible with one another, the
overall complexity of the problem is polynomial, using a reduction to feasible flow in a
bipartite graph(Krishnamachari, 2002). Because of this, the centralized solver used by
the APO agents was changed to a modified version of the Ford-Fulkerson maximum flow
algorithm (Ford & Fulkerson, 1962; Cormen, Leiserson, & Rivest, 1999), which has been
proven to run in polynomial time.

An example of the tracking problem can be seen in figure 22. In this example, there
are 224 sensors (black dots) placed in an ordered pattern in the environment. There are
30 targets (labeled with their names) which are randomly placed at startup. The lines
connecting sensors to targets indicate that the sensor is assigned to the target. Note that
this instance of the problem is satisfiable.

5.3.1 Modifying APO for the Tracking Domain

Because the tracking domain is so closely related to the general CSP formulation, very few
changes were made to either AWC or APO for these tests. We did, however, decide to test
the adaptability of APO to a new centralized problem solver. To do this, we changed the
centralized problem solver to the Ford Fulkerson max-flow algorithm in figure 23. Ford-
Fulkerson works by repeatedly finding paths with remaining capacity through the residual
flow network and augmenting the flows along those paths. The algorithm terminates when
no additional paths can be found. A detailed explanation of the algorithm as well as a proof
of its optimality can be found in (Cormen et al., 1999).

Like mapping bipartite graphs into max-flow, the SensorDCSP problem is also easily
mapped into max-flow. In figures 24 and 25 you can see the mapping of a simple sensor
allocation problem into a max-flow problem. Notice that the capacity of the flow between
the sensors and targets is 1. This ensures that a sensor cannot be used by more than a
single target. Also, notice that the capacity of the targets to t is 3. In fact, this value is to
min(|Di|, 3).

To use this algorithm within APO, the mediator simply translates the problem into
a network flow graph G using the following rules whenever it runs the choose solution
procedure in figure 5:

1. Add the nodes s and t to G.

2. For each Ti ∈ T add a node Ti and an edge (Ti, t) with capacity min(|Di|, 3) to G.
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Ford-Fulkerson (G, s, t)
for each edge (u, v) ∈ E[G] do

f [u, v]← 0;
f [v, u]← 0;

end do;

while there exists a path p from s to t
in the residual network Gf do

cf (p)← min{cf (u, v) : (u, v) ∈ p};
for each edge (u, v) ∈ p do

f [u, v]← f [u, v] + cf (p);
f [v, u]← −f [u, v];

end do;
end do;

end Ford-Fulkerson;

Figure 23: The Ford-Fulkerson maximum flow algorithm.

S1
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Figure 24: A simple sensor to target allocation problem.

3. For each unique sensor Si in the domains of Ti ∈ T , add a node Si, an edge (s, Si)
with capacity 1, and an edge (Si, Ti) with capacity 1 to G.
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Figure 25: The flow network for the simple target allocation problem in figure 24.

It then executes the Ford-Fulkerson algorithm. Once the algorithm finishes, the mediator
checks the residual capacity of the edges between the targets and t. If any of these edges has
residual flow, then the problem is unsatisfiable. Otherwise, the assignment can be derived
by finding all of the (Si, Ti) edges that have a flow of 1.

One of the nicest characteristics of the Ford-Fulkerson algorithm is that it works regard-
less of the order that the paths in the residual network are chosen. In our implementation,
we used a breadth-first search which, in addition to identifying paths in the residual net-
work, minimized the cost of the path. Cost in this sense refers to the amount of external
conflict that is created by having a sensor assigned to a target. This modification maintains
the min-conflict heuristic which is an integral part of extending the mediators local view.

5.3.2 Results

To test APO and AWC in this domain, we ran a test series which used a 200ft × 200ft
environment with 224 sensors placed in an ordered grid-based pattern. We chose to place
the sensors in an ordered fashion to reduce the variance obtained within the results. We ran
a test series which varied the sensor to target ratio from 10:1 to 3.8:1 (22 to 59 targets) in
increments of 0.2 which is across the spectrum from mostly satisfiable to mostly unsatisfiable
instances (see figure 26). We then conducted 250 trial runs with a random target placement
for each of these values to get a good statistical sampling.

In total, 6750 test cases were used. For comparison, we measured the number of messages
and cycles that were taken by the algorithms to find a solution. The random seeds used to
place the targets were saved, so APO and AWC were both tested using identical problem
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Figure 26: Phase transition curve for the 224 sensor environment used for testing.
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Figure 27: Number of cycles needed to solve random target configurations in a field of 224
sensors using AWC and APO.

instances. The correctness of the algorithms was verified by cross-checking the solutions
(satisfiable/unsatisfiable) obtained during these tests, which matched identically.

As can be seen in figure 27 and 28 and tables 11 and 12, APO outperforms AWC on all
but the simplest cases. Part of the reason for this is the minimum 3 cycles it takes APO to
finish a mediation session. In problems that have very sparsely connected interdependencies,
this cost tends to dominate. All-in-all, as the T-tests indicate, APO is significantly better
than AWC in terms of both cycles to completion and number of messages used for problems
in this domain.
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APO APO AWC AWC
Targets Mean StDev Mean StDev p(AWC ≤ APO)

22 6.36 2.33 5.88 6.61 0.29
23 6.65 3.39 7.32 10.55 0.36
24 7.12 4.72 8.83 19.96 0.18
25 6.55 3.24 7.15 10.56 0.39
26 6.80 4.28 9.65 15.78 0.01
27 7.09 5.02 10.85 19.89 0.00
28 7.38 5.88 11.05 15.89 0.00
29 7.10 4.89 9.24 13.76 0.02
30 7.55 5.99 13.15 25.58 0.00
31 7.18 6.11 12.42 22.22 0.00
32 6.88 6.31 11.73 18.21 0.00
33 7.62 7.59 12.32 24.04 0.00
34 7.47 7.81 15.88 28.82 0.00
35 7.56 7.49 14.74 29.01 0.00
36 8.08 9.89 15.70 25.46 0.00
37 7.48 8.38 20.70 39.63 0.00
39 7.55 10.87 16.12 26.43 0.00
40 6.45 10.54 15.74 21.66 0.00
41 7.45 13.11 17.56 30.98 0.00
43 5.96 7.79 16.10 22.91 0.00
45 4.80 7.25 17.61 28.50 0.00
47 5.15 8.31 18.52 30.27 0.00
49 4.53 5.90 15.33 25.28 0.00
51 3.52 2.00 14.34 22.60 0.00
53 4.12 5.82 13.13 22.55 0.00
56 3.14 0.59 10.45 20.81 0.00
59 3.28 2.26 7.46 10.47 0.00

Overall 0.00

Table 11: Number of cycles needed to solve random target configurations in a field of 224
sensors using AWC and APO.
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APO APO AWC AWC
Targets Mean StDev Mean StDev p(AWC ≤ APO)

22 78.28 32.58 95.68 133.53 0.04
23 89.52 54.01 133.12 237.74 0.00
24 105.53 90.36 184.19 616.36 0.04
25 102.92 57.18 149.18 298.85 0.02
26 116.36 86.58 245.99 566.03 0.00
27 128.58 98.63 263.32 587.30 0.00
28 149.23 144.81 279.49 493.05 0.00
29 145.72 93.24 231.98 335.98 0.00
30 167.50 144.27 378.89 874.99 0.00
31 169.30 152.83 404.40 997.82 0.00
32 174.32 152.89 362.63 570.41 0.00
33 212.59 237.60 410.05 923.25 0.00
34 218.74 246.18 811.58 2243.79 0.00
35 221.93 230.44 613.64 1422.33 0.00
36 258.41 354.13 671.00 1333.50 0.00
37 258.95 342.97 947.95 2116.98 0.00
39 303.64 501.10 815.32 1373.29 0.00
40 293.24 649.42 884.32 1407.99 0.00
41 342.33 724.64 912.65 1517.10 0.00
43 274.39 267.95 1279.97 2194.84 0.00
45 277.26 414.19 1334.38 2470.13 0.00
47 311.91 405.1 1471.82 2172.13 0.00
49 303.66 299.13 1487.65 2503.62 0.00
51 269.37 110.57 1571.46 2157.52 0.00
53 333.42 390.08 1804.47 2815.94 0.00
56 296.36 45.54 1895.23 3731.98 0.00
59 339.21 202.98 1765.18 3676.16 0.00

Overall 0.00

Table 12: Number of messages needed to solve random target configurations targets in a
field of 224 sensors using AWC and APO.

572



Asynchronous Partial Overlay: A New Algorithm for DCSP

Targets
20 25 30 35 40 45 50 55 60

M
es

sa
ge

s

0

500

1000

1500

2000
APO

AWC

Figure 28: Number of messages needed to solve random target configurations targets in a
field of 224 sensors using AWC and APO.

6. Conclusions and Future Directions

In this article, we presented a new complete, distributed constraint satisfaction protocol
called Asynchronous Partial Overlay (APO). Like AWC, APO allows the agents to retain
their autonomy because they can obscure or completely hide internal variables and con-
straints. In addition, agents can refuse solutions posed by a mediator, instead taking over
as the mediator if for some reason they are unhappy with a proposed solution. We also
presented an example of its execution on a simple problem (section 4.2) and proved the
soundness and completeness of the algorithm (section 4.3). Through extensive empirical
testing on 10,250 graph instances from the graph coloring and tracking domain, we also
showed that APO significantly outperforms the currently best known distributed constraint
satisfaction algorithm, AWC (Yokoo, 1995). These tests have shown that APO is better
than AWC in terms of cycles to completion, message usage, and runtime performance. We
have also shown that the runtime characteristics can not be directly attributed to the speed
of the centralized solver.

APO’s performance enhancements can be attributed to a number of things. First,
APO exhibits a hill-climbing nature early in the search which becomes more focused and
controlled as time goes on. Like other hill-climbing techniques this often leads to a satisfiable
solution early in the search. Second, by using partial overlaying of the information that the
agents use in decision making, APO exploits the work that has been previously done by
other mediators. This forms a lock and key mechanism which promotes solution stability.
Lastly, and most importantly, because APO uses dynamic, partial centralization, the agents
work on smaller, highly relevant portions of the overall problem. By identifying these areas
of decomposability, the search space can be greatly reduced which, in some cases, improves
the efficiency of the centralized search algorithm.

There are a vast number of improvements planned for APO in the future. Probably the
most important is to improve the centralized solver that it uses. In this article, an inefficient
solver was chosen to show the strengths of the distributed portions of APO. We expect
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that additional improvements in the algorithm’s runtime performance can be obtained by
using a faster centralized search engine. In addition, modern solvers often use methods
like graph reductions, unit propagation and backbone guided search. It is conceivable that
information gained from the centralized search engine could be used to prune the domains
from the variables for consistency reasons and variables from the centralized subproblem
for relevance reasons. We expect this will further focus the efforts of the agents additionally
reducing the search time and communications usage of the algorithm.

Along with these improvements is the selective use of memory for recording nogoods.
Unlike AWC which uses the nogoods to ensure a complete search, APO’s completeness relies
on one of the agents centralizing the entire problem in the worst case. Because of this key
difference, APO can be improved by simply remembering a small, powerful subset of the
nogoods that it discovers from mediation session to session. This would allow the algorithm
to improve future search by exploiting work that it had done previously.

What should be clear is that APO, and the cooperative mediation methodology as a
whole, opens up new areas for future exploration and new questions to be answered in
distributed problem solving. We believe that this work shows a great deal of promise for
addressing a vast number of problems and represents a bridge between centralized and
distributed problem solving techniques.
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