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Abstract
Fast Downward is a classical planning system based on heuristic search. It can deal with gen-

eral deterministic planning problems encoded in the propositional fragment of PDDL2.2, including
advanced features like ADL conditions and effects and derived predicates (axioms). Like other
well-known planners such as HSP and FF, Fast Downward is a progression planner, searching the
space of world states of a planning task in the forward direction. However, unlike other PDDL plan-
ning systems, Fast Downward does not use the propositional PDDL representation of a planning
task directly. Instead, the input is first translated into an alternative representation called multi-
valued planning tasks, which makes many of the implicit constraints of a propositional planning
task explicit. Exploiting this alternative representation, Fast Downward uses hierarchical decom-
positions of planning tasks for computing its heuristic function, called the causal graph heuristic,
which is very different from traditional HSP-like heuristics based on ignoring negative interactions
of operators.

In this article, we give a full account of Fast Downward’s approach to solving multi-valued
planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving
axioms and conditional effects and present some novel techniques for search control that are used
within Fast Downward’s best-first search algorithm: preferred operators transfer the idea of help-
ful actions from local search to global best-first search, deferred evaluation of heuristic functions
mitigates the negative effect of large branching factors on search performance, and multi-heuristic
best-first search combines several heuristic evaluation functions within a single search algorithm
in an orthogonal way. We also describe efficient data structures for fast state expansion (successor
generators and axiom evaluators) and present a new non-heuristic search algorithm called focused
iterative-broadening search, which utilizes the information encoded in causal graphs in a novel
way.

Fast Downward has proven remarkably successful: It won the “classical” (i. e., propositional,
non-optimising) track of the 4th International Planning Competition at ICAPS 2004, following in
the footsteps of planners such as FF and LPG. Our experiments show that it also performs very
well on the benchmarks of the earlier planning competitions and provide some insights about the
usefulness of the new search enhancements.

1. Introduction

Consider a typical transportation planning task: The postal service must deliver a number of parcels
to their respective destinations using its vehicle fleet of cars and trucks. Let us assume that a car
serves all the locations of one city, and that different cities are connected via highways that are
served by trucks. For the sake of simplicity, let us further assume that travelling on each segment of
road or highway incurs the same cost. This is not a highly realistic assumption, but for the purposes
of exposition it will do. There can be any number of parcels, posted at arbitrary locations and with
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Figure 1: A transportation planning task. Deliver parcel p1 from C to G and parcel p2 from F to E,
using the cars c1, c2, c3 and truck t. The cars may only use inner-city roads (thin edges),
the truck may only use the highway (thick edge).

arbitrary destinations. Moreover, cities can be of varying size, there can be one or several cars
within each city, and there can be one or several trucks connecting the cities. Cars will never leave
a city. Fig. 1 shows an example task of this kind with two cities, three cars and a single truck. There
are two parcels to be delivered, one of which (p1) must be moved between the two cities, while the
other (p2) can stay within its initial city.

The astute reader familiar with the planning literature will have noticed by now that we are
essentially describing the LOGISTICS domain, a standard benchmark for classical planning systems,
extended to roadmaps that are not complete graphs. (Part of) a propositional STRIPS-like encoding
of the task is shown in Fig. 2.

How would human planners go about solving tasks of this kind? Very likely, they would use a
hierarchical approach: For p1, it is clear that the parcel needs to be moved between cities, which is
only possible by using the truck. Since in our example each city can access the highway at only one
location, we see that we must first load the parcel into some car at its initial location, then drop it off
at the first city’s highway access location, load it into the truck, drop it off at the other city’s highway
access location, load it into the only car in that city, and finally drop it off at its destination. We
can commit to this “high-level” plan for delivering p1 without worrying about “lower-level” aspects
such as path planning for the cars. It is obvious to us that any good solution will have this structure,
since the parcel can only change its location in a few clearly defined ways (Fig. 3). The same figure
shows that the only reasonable plans for getting p2 to its destination require loading it into the car
in its initial city and dropping it off at its target location. There is no point in ever loading it into the
truck or into any of the cars in the left city.

So say we have committed to the (partially ordered, as movements of the two parcels can be
interleaved) “high-level plan” shown in Fig. 5. All we need to do to complete the plan is choose
a linearization of the high-level steps and fill in movements of the vehicle fleet between them. We
have thus decomposed the planning task into a number of subproblems. The parcel scheduling
problem (where, and by which vehicles, a parcel should be loaded and unloaded) is separated from
the path planning problem for each vehicle in the fleet (how to move it from point X to Y). Both
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Variables:
at-p1-a, at-p1-b, at-p1-c, at-p1-d, at-p1-e, at-p1-f, at-p1-g,
at-p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-g,
at-c1-a, at-c1-b, at-c1-c, at-c1-d,
at-c2-a, at-c2-b, at-c2-c, at-c2-d,
at-c3-e, at-c3-f, at-c3-g,
at-t-d, at-t-e,
in-p1-c1, in-p1-c2, in-p1-c3, in-p1-t,
in-p2-c1, in-p2-c2, in-p2-c3, in-p2-t

Init:
at-p1-c, at-p2-f, at-c1-a, at-c2-b, at-c3-g, at-t-e

Goal:
at-p1-g, at-p2-e

Operator drive-c1-a-d:
PRE: at-c1-a ADD: at-c1-d DEL: at-c1-a

Operator drive-c1-b-d:
PRE: at-c1-b ADD: at-c1-d DEL: at-c1-b

Operator drive-c1-c-d:
PRE: at-c1-c ADD: at-c1-d DEL: at-c1-c

...
Operator load-c1-p1-a:

PRE: at-c1-a, at-p1-a ADD: in-p1-c1 DEL: at-p1-a
Operator load-c1-p1-b:

PRE: at-c1-b, at-p1-b ADD: in-p1-c1 DEL: at-p1-b
Operator load-c1-p1-c:

PRE: at-c1-c, at-p1-c ADD: in-p1-c1 DEL: at-p1-c
...
Operator unload-c1-p1-a:

PRE: at-c1-a, in-p1-c1 ADD: at-p1-a DEL: in-p1-c1
Operator unload-c1-p1-b:

PRE: at-c1-b, in-p1-c1 ADD: at-p1-b DEL: in-p1-c1
Operator unload-c1-p1-c:

PRE: at-c1-c, in-p1-c1 ADD: at-p1-c DEL: in-p1-c1
...

Figure 2: Part of a typical propositional encoding of the transportation planning task (no actual
PDDL syntax).
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Figure 3: Domain transition graph for the parcels p1 and p2. Indicates how a parcel can change
its state. For example, the arcs between “at D” and “in t” correspond to the actions of
loading/unloading the parcel at location D with the truck t.
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Figure 4: Domain transition graphs for the cars c1 and c2 (left), truck t (centre), and car c3 (right).
Note how each graph corresponds to the part of the roadmap that can be traversed by the
respective vehicle.
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Figure 5: High-level plan for the transportation planning task.
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Figure 6: Causal dependencies in the transportation planning task.

of these are graph search problems, and the corresponding graphs are shown in Fig. 3 and Fig. 4.
Graphs of this kind will be formally introduced as domain transition graphs in Section 5.

Of course these graph search problems interact, but they only do so in limited ways: State
transitions for the parcels have associated conditions regarding the vehicle fleet, which need to be
considered in addition to the actual path planning in Fig. 3. For example, a parcel can only change
state from “at location A” to “inside car c1” if the car c1 is at location A. However, state transitions
for the vehicles have no associated conditions from other parts of the planning task, and hence
moving a vehicle from one location to another is indeed as easy as finding a path in the associated
domain transition graph. We say that the parcels have causal dependencies on the vehicles because
there are operators that change the state of the parcels and have preconditions on the state of the
vehicles. Indeed, these are the only causal dependencies in this task, since parcels do not depend on
other parcels and vehicles do not depend on anything except themselves (Fig. 6). The set of causal
dependencies of a planning task is visualized in its causal graph.

We argue that humans often solve planning tasks in the hierarchical fashion outlined in the pre-
ceding paragraphs, and that algorithmic approaches to action planning can usefully apply similar
ideas. Indeed, as we will show in the following section, we are not the first to introduce domain tran-
sition graphs and causal graphs. However, earlier work has almost exclusively focused on acyclic
causal graphs, and for a good reason: If the causal graph of a planning task exhibits a cycle, hi-
erarchical decomposition is not possible, because the subproblems that must be solved to achieve
an operator precondition are not necessarily smaller than the original task. As far as we are aware,
we were the first (Helmert, 2004) to present a general planning algorithm that focuses on exploit-
ing hierarchical information from causal graphs. However, our causal graph heuristic also requires
acyclicity; in the general case, it considers a relaxed planning problem in which some operator
preconditions are ignored to break causal cycles.

Knowing that cycles in causal graphs are undesirable, we take a closer look at the transportation
planning task. Let us recall our informal definition of causal graphs: The causal graph of a planning
task contains a vertex for each state variable and arcs from variables that occur in preconditions to
variables that occur in effects of the same operator. So far, we may have given the impression that
the causal graph of the example task has the well-behaved shape shown in Fig. 6. Unfortunately,
having a closer look at the STRIPS encoding in Fig. 2, we see that this is not the case: The correct
causal graph, shown in Fig. 7, looks very messy. This discrepancy between the intuitive and actual
graph is due to the fact that in our informal account of “human-style” problem solving, we made
use of (non-binary) state variables like “the location of car c1” or “the state of parcel p1”, while
STRIPS-level state variables correspond to (binary) object-location propositions like “parcel p1 is
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Figure 7: Causal graph for the STRIPS encoding of the transportation planning task.

at location A”. It would be much nicer if we were given a multi-valued encoding of the planning
task that explicitly contains a variable for “the location of car c1” and similar properties. Indeed,
the nice looking acyclic graph in Fig. 6 is the causal graph of the multi-valued encoding shown in
Fig. 8.

Having provided some intuition for its underlying concepts, let us now state our design goal
for the Fast Downward planning system: To develop an algorithm that efficiently solves general
propositional planning tasks by exploiting the hierarchical structure inherent in causal graphs. We
need to overcome three major obstacles in this undertaking:

• First, propositionally encoded planning tasks usually have very unstructured causal graphs.
However, the intuitive dependencies often become visible in encodings with multi-valued
state variables. To exploit this fact in an automated PDDL planning system, we have devised
an automatic algorithm for “translating” (or reformulating) propositional tasks to multi-valued
ones. The translation algorithm can be considered independently from the rest of the plan-
ner; in fact, it is now also used as part of other planning systems (van den Briel, Vossen, &
Kambhampati, 2005). To keep the article focused, we do not discuss the translation algorithm
here, referring to our earlier work for some of its central ideas (Edelkamp & Helmert, 1999).
Instead, we consider its output, a multi-valued planning task, as a base formalism.

• Second, no matter how clever the encoding is, most planning tasks are not completely hier-
archical in nature. To deal with causal cycles, we consider relaxations where some causal
dependencies are ignored and use solutions to the relaxed problem within a heuristic search
algorithm.

• Third, even for planning tasks that can be solved hierarchically, finding such a solution is dif-
ficult (indeed, still PSPACE-complete). For this reason, our heuristic function only considers
a fragment of a task at a time, namely subproblems induced by a single state variable and its
predecessors in the causal graph. Even this planning problem is still NP-complete, so that we
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Variables:
p1, p2 ∈ {at-a, at-b, at-c, at-d, at-e, at-f, at-g,

in-c1, in-c2, in-c3, in-t}
c1, c2 ∈ {at-a, at-b, at-c, at-d}
c3 ∈ {at-e, at-f, at-g}
t ∈ {at-d, at-e}

Init:
p1 = at-c, p2 = at-f
c1 = at-a, c2 = at-b, c3 = at-g, t = at-e

Goal:
p1 = at-g, p2 = at-e

Operator drive-c1-a-d:
PRE: c1 = at-a EFF: c1 = at-d

Operator drive-c1-b-d:
PRE: c1 = at-b EFF: c1 = at-d

Operator drive-c1-c-d:
PRE: c1 = at-c EFF: c1 = at-d

...
Operator load-c1-p1-a:

PRE: c1 = at-a, p1 = at-a EFF: p1 = in-c1
Operator load-c1-p1-b:

PRE: c1 = at-b, p1 = at-b EFF: p1 = in-c1
Operator load-c1-p1-c:

PRE: c1 = at-c, p1 = at-c EFF: p1 = in-c1
...
Operator unload-c1-p1-a:

PRE: c1 = at-a, p1 = in-c1 EFF: p1 = at-a
Operator unload-c1-p1-b:

PRE: c1 = at-b, p1 = in-c1 EFF: p1 = at-b
Operator unload-c1-p1-c:

PRE: c1 = at-c, p1 = in-c1 EFF: p1 = at-c
...

Figure 8: Part of an encoding of the transportation planning task with multi-valued state variables.
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are content with an incomplete solution algorithm within the heuristic solver. This solution
algorithm has theoretical shortcomings but never failed us in practice.

Having introduced the rationale of our approach, we discuss related work in the next section.
This is followed by an overview of the general architecture of the Fast Downward planning system in
Section 3. The planning system consists of three components: translation, knowledge compilation,
and search. The translation component converts PDDL2.2 tasks to multi-valued planning tasks,
which we formally introduce in Section 4. The knowledge compilation component is discussed in
Section 5, the search component in Section 6. We conclude with a presentation of experimental
results in Section 7 and some discussion in Section 8.

2. Related Work

As a planning system based on heuristic forward search, Fast Downward is clearly related to other
heuristic planners such as HSP (Bonet & Geffner, 2001) or FF (Hoffmann & Nebel, 2001) on the
architectural level. However, in this section we focus on work that is related on the conceptual level,
i. e., work that uses similar forms of hierarchical decomposition of causal graphs and work that uses
similar forms of search in domain transition graphs.

2.1 Causal Graphs and Abstraction

The term causal graph first appears in the literature in the work by Williams and Nayak (1997), but
the general idea is considerably older. The approach of hierarchically decomposing planning tasks
is arguably as old as the field of AI Planning itself, having first surfaced in Newell and Simon’s
(1963) work on the General Problem Solver.

Still, it took a long time for these notions to evolve to their modern form. Sacerdoti’s (1974)
ABSTRIPS algorithm introduced the concept of abstraction spaces for STRIPS-like planning tasks.
An abstraction space of a STRIPS task is the state space of an abstracted task, which is obtained
by removing all preconditions from the operators of the original task that belong to a given set of
propositions (which are abstracted away).1 To solve a planning task, ABSTRIPS first generates a
plan for an abstracted task, then refines this plan by inserting concrete plans between the abstract
plan steps that “bridge the gap” between abstract states by satisfying the operator preconditions
which were ignored at the abstract level. The idea is easily generalized to several levels of ab-
straction forming an abstraction hierarchy, with a very abstract level at the top where almost all
preconditions are ignored, successively introducing more preconditions at every layer until the final
layer of the hierarchy equals the original planning task.

One problem with this approach to planning is that in general there is no guarantee that the
abstract plans bear any resemblance to reasonable concrete plans. For example, if abstraction spaces
are chosen badly, it is quite possible that finding a concrete plan that satisfies the precondition of the
first operator in the abstract plan is more difficult than solving the original goal at the concrete level.
Such shortcomings spawned a large amount of research on the properties of abstraction hierarchies
and how they can be generated automatically.

1. In later work by other authors, propositions which are abstracted away are also removed from the operator effects.
This only makes a difference in subtle cases that require the presence of axioms; we do not distinguish between these
two kinds of abstraction here.
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Tenenberg (1991) gives one of the first formal accounts of the properties of different kinds of
abstraction. Among other contributions, he defines the so-called upward solution property, which
can be informally stated as: “If there exists a concrete solution, then there also exists an abstract
solution”. Rather surprisingly, not all abstractions considered at the time satisfied this very basic
property, without which one would be loathe to call a given state space an “abstraction” of another
state space.

A limitation of the upward solution property is that it states no relationship between the concrete
and abstract plan at all. For ABSTRIPS-style hierarchical planning to be successful, the abstract
plan must bear some resemblance to a concrete one; otherwise there is little point in trying to
refine it. Indeed, Tenenberg introduces stronger versions of the upward solution property, but more
relevant to Fast Downward is Knoblock’s (1994) work on the ordered monotonicity property. An
abstraction space satisfies the ordered monotonicity property if, roughly speaking, any concrete
solution can be derived from some abstract solution while leaving the actions in the abstract plan
intact and relevant to the concrete plan. Clearly, this is a very important property for ABSTRIPS-
like hierarchical planning.

It is in Knoblock’s article that causal graphs first surface (although he does not introduce a name
for them). Translated to our terminology, Knoblock proves the following relationship between
useful abstractions and causal graphs: If the causal graph contains no path from a variable that
is not abstracted away to a variable that is abstracted away, then the abstraction has the ordered
monotonicity property. In particular, this means that for acyclic causal graphs, it is possible to devise
an abstraction hierarchy where only one new variable is introduced at each level.

Besides these theoretical contributions, Knoblock presents a planning system called ALPINE
which computes an abstraction hierarchy for a planning task from its causal graph and exploits
this within a hierarchical refinement planner. Although the planning method is very different, the
derivation of the abstraction hierarchy is very similar to Fast Downward’s method for generating
hierarchical decompositions of planning tasks (Section 5.2).

By itself, the ordered monotonicity property is not sufficient to guarantee good performance
of a hierarchical planning approach. It guarantees that every concrete solution can be obtained in
a natural way from an abstract solution, but it does not guarantee that all abstract solutions can
be refined to concrete ones. Such a guarantee is provided by the downward refinement property,
introduced by Bacchus and Yang (1994).

The downward refinement property can rarely be guaranteed in actual planning domains, so
Bacchus and Yang develop an analytical model for the performance of hierarchical planning in sit-
uations where a given abstract plan can only be refined with a certain probability p < 1. Based on
this analysis, they present an extension to ALPINE called HIGHPOINT, which selects an abstrac-
tion hierarchy with high refinement probability among those that satisfy the ordered monotonicity
property. In practice, it is not feasible to compute the refinement probability, so HIGHPOINT ap-
proximates this value based on the notion of k-ary necessary connectivity.

2.2 Causal Graphs and Unary STRIPS Operators

Causal graphs are first given a name by Jonsson and Bäckström (1995, 1998b), who call them
dependency graphs. They study a fragment of propositional STRIPS with negative conditions which
has the interesting property that plan existence can be decided in polynomial time, but minimal
solutions to a task can be exponentially long, so that no polynomial planning algorithm exists. They
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present an incremental planning algorithm with polynomial delay, i. e., a planning algorithm that
decides within polynomial time whether or not a given task has a solution, and, if so, generates such
a solution step by step, requiring only polynomial time between any two subsequent steps.2

The fragment of STRIPS covered by Jonsson and Bäckström’s algorithm is called 3S and is
defined by the requirement that the causal graph of the task is acyclic and each state variables
is static, symmetrically reversible, or splitting. Static variables are those for which it is easy to
guarantee that they never change their value in any solution plan. These variables can be detected
and compiled away easily. Symmetrically reversible variables are those where for each operator
which makes them true there is a corresponding operator with identical preconditions which makes
them false, and vice versa. In other words, a variable is symmetrically reversible iff its domain
transition graph is undirected. Finally, a variable v is splitting iff its removal from the causal graph
weakly disconnects its positive successors (those variables which appear in effects of operators of
which v is a precondition) from its negative successors (those variables which appear in effects of
operators of which ¬v is a precondition).

Williams and Nayak (1997) independently prove that incremental (or, in their setting, reactive)
planning is a polynomial problem in a STRIPS-like setting where causal graphs are acyclic and
all operators are reversible. If all operators are reversible (according to the definition by Williams
and Nayak), all variables are symmetrically reversible (according to the definition by Jonsson and
Bäckström), so this is actually a special case of the previous result. However, Williams and Nayak’s
work applies to a more general formalism than propositional STRIPS, so that the approaches are
not directly comparable.

More recently, Domshlak and Brafman provide a detailed account of the complexity of find-
ing plans in the propositional STRIPS (with negation) formalism with unary operators and acyclic
graphs (Domshlak & Brafman, 2002; Brafman & Domshlak, 2003).3 Among other results, they
prove that the restriction to unary operators and acyclic graphs does not reduce the complexity
of plan existence: the problem is PSPACE-complete, just like unrestricted propositional STRIPS
planning (Bylander, 1994). They also show that for singly connected causal graphs, shortest plans
cannot be exponentially long, but the problem is still NP-complete. For an even more restricted class
of causal graphs, namely polytrees of bounded indegree, they present a polynomial planning algo-
rithm. More generally, their analysis relates the complexity of STRIPS planning in unary domains
to the number of paths in their causal graph.

2.3 Multi-Valued Planning Tasks

With the exception of Williams and Nayak’s paper, all the work discussed so far exclusively deals
with propositional planning problems, where all state variables assume values from a binary do-
main. As we observed in the introduction, the question of propositional vs. multi-valued encodings
usually has a strong impact on the connectivity of the causal graph of a task. In fact, apart from the
trivial MOVIE domain, none of the common planning benchmarks exhibits an acyclic causal graph

2. However, there is no guarantee that the length of the generated solution is polynomially related to the length of an
optimal solution; it might be exponentially longer. Therefore, the algorithm might spend exponential time on tasks
that can be solved in polynomial time.

3. According to our formal definition of causal graphs in Section 5.2, operators with several effects always induce
cycles in the causal graph, so acyclic causal graph implies unary operators. Some researchers define causal graphs
differently, so we name both properties explicitly here.
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when considering its propositional representation. By contrast, the multi-valued encoding of our
introductory example does have an acyclic causal graph.

Due to the dominance of the PDDL (and previously, STRIPS) formalism, non-binary state vari-
ables are not studied very often in the classical planning literature. One of the most important ex-
ceptions to this rule is the work on the SAS+ planning formalism, of which the papers by Bäckström
and Nebel (1995) and Jonsson and Bäckström (1998a) are most relevant to Fast Downward. The
SAS+ planning formalism is basically equivalent to the multi-valued planning tasks we introduce
in Section 4 apart from the fact that it does not include derived variables (axioms) or conditional
effects. Bäckström and Nebel analyse the complexity of various subclasses of the SAS+ formal-
ism and discover three properties (unariness, post-uniqueness and single-valuedness) that together
allow optimal planning in polynomial time. One of these three properties (unariness) is related to
acyclicity of causal graphs, and one (post-uniqueness) implies a particularly simple shape of domain
transition graphs (namely, in post-unique tasks, all domain transition graphs must be simple cycles
or trees).

Bäckström and Nebel do not analyse domain transition graphs formally. Indeed, the term is only
introduced in the later article by Jonsson and Bäckström (1998a), which refines the earlier results
by introducing five additional restrictions for SAS+ tasks, all of which are related to properties of
domain transition graphs.

Neither of these two articles discusses the notion of causal graphs. Indeed, the only earlier work
we are aware of which includes both causal graphs and domain transition graphs as central concepts
is the article by Domshlak and Dinitz (2001) on the state-transition support (STS) problem, which
is essentially equivalent to SAS+ planning with unary operators. In the context of STS, domain
transition graphs are called strategy graphs and causal graphs are called dependence graphs, but
apart from minor details, the semantics of the two formalisms are identical. Domshlak and Dinitz
provide a map of the complexity of the STS problem in terms of the shape of its causal graph,
showing that the problem is NP-complete or worse for almost all non-trivial cases. One interesting
result is that if the causal graph is a simple chain of n nodes and all variables are three-valued,
the length of minimal plans can already grow as Ω(2n). By contrast, propositional tasks with the
same causal graph shape admit polynomial planning algorithms according to the result by Brafman
and Domshlak (2003), because such causal graphs are polytrees with a constant indegree bound
(namely, a bound of 1).

To summarize and conclude our discussion of related work, we observe that the central con-
cepts of Fast Downward and the causal graph heuristic, such as causal graphs and domain transition
graphs, are firmly rooted in previous work. However, Fast Downward is the first attempt to marry
hierarchical problem decomposition to the use of multi-valued state variables within a general plan-
ning framework. It is also the first attempt to apply techniques similar to those of Knoblock (1994)
and Bacchus and Yang (1994) within a heuristic search planner.

The significance of this latter point should not be underestimated: For classical approaches to
hierarchical problem decomposition, it is imperative that an abstraction satisfies the ordered mono-
tonicity property, and it is important that the probability of being able to refine an abstract plan
to a concrete plan is high, as the analysis by Bacchus and Yang shows. Unfortunately, non-trivial
abstraction hierarchies are rarely ordered monotonic, and even more rarely guarantee high refine-
ment probabilities. Within a heuristic approach, these “must-haves” turn into “nice-to-haves”: If
an abstraction hierarchy is not ordered monotonic or if an abstract plan considered by the heuristic
evaluator is not refinable, this merely reduces the quality of the heuristic estimate, rather than caus-
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Translation

• Normalization
• Invariant synthesis
• Grounding
• Translation to MPT

Knowledge
Compilation

• Domain transition
graphs

• Causal graph
• Successor generator
• Axiom evaluator

Search

• Causal graph heuristic
• FF heuristic
• Greedy best-first search
• Multi-heuristic best-first search
• Focused iterative-broadening search

Figure 9: The three phases of Fast Downward’s execution.

ing the search to fail (in the worst case) or spend a long time trying to salvage non-refinable abstract
plans (in the not much better case).

3. Fast Downward

We will now describe the overall architecture of the planner. Fast Downward is a classical planning
system based on the ideas of heuristic forward search and hierarchical problem decomposition. It
can deal with the full range of propositional PDDL2.2 (Fox & Long, 2003; Edelkamp & Hoffmann,
2004), i. e., in addition to STRIPS planning, it supports arbitrary formulae in operator preconditions
and goal conditions, and it can deal with conditional and universally quantified effects and derived
predicates (axioms).

The name of the planner derives from two sources: Of course, one of these sources is Hoff-
mann’s very successful FF (“Fast Forward”) planner (Hoffmann & Nebel, 2001). Like FF, Fast
Downward is a heuristic progression planner, i. e., it computes plans by heuristic search in the space
of world states reachable from the initial situation. However, compared to FF, Fast Downward uses
a very different heuristic evaluation function called the causal graph heuristic. The heuristic eval-
uator proceeds “downward” in so far as it tries to solve planning tasks in the hierarchical fashion
outlined in the introduction. Starting from top-level goals, the algorithm recurses further and further
down the causal graph until all remaining subproblems are basic graph search tasks.

Similar to FF, the planner has shown excellent performance: The original implementation of the
causal graph heuristic, plugged into a standard best-first search algorithm, outperformed the previ-
ous champions in that area, FF and LPG (Gerevini, Saetti, & Serina, 2003), on the set of STRIPS
benchmarks from the first three international planning competitions (Helmert, 2004). Fast Down-
ward itself followed in the footsteps of FF and LPG by winning the propositional, non-optimizing
track of the 4th International Planning Competition at ICAPS 2004 (referred to as IPC4 from now
on).

As mentioned in the introduction, Fast Downward solves a planning task in three phases (Fig. 9):

• The translation component is responsible for transforming the PDDL2.2 input into a non-
binary form which is more amenable to hierarchical planning approaches. It applies a num-
ber of normalizations to compile away syntactic constructs like disjunctions which are not
directly supported by the causal graph heuristic and performs grounding of axioms and oper-
ators. Most importantly, it uses invariant synthesis methods to find groups of related propo-
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sitions which can be encoded as a single multi-valued variable. The output of the translation
component is a multi-valued planning task, defined in the following section.

• The knowledge compilation component generates four kinds of data structures that play a
central role during search: Domain transition graphs encode how, and under what conditions,
state variables can change their values. The causal graph represents the hierarchical depen-
dencies between the different state variables. The successor generator is an efficient data
structure for determining the set of applicable operators in a given state. Finally, the axiom
evaluator is an efficient data structure for computing the values of derived variables. The
knowledge compilation component is described in Section 5.

• The search component implements three different search algorithms to do the actual planning.
Two of these algorithms make use of heuristic evaluation functions: One is the well-known
greedy best-first search algorithm, using the causal graph heuristic. The other is called multi-
heuristic best-first search, a variant of greedy best-first search that tries to combine several
heuristic evaluators in an orthogonal way; in the case of Fast Downward, it uses the causal
graph and FF heuristics. The third search algorithm is called focused iterative-broadening
search; it is closely related to Ginsberg and Harvey’s (1992) iterative broadening. It is not
a heuristic search algorithm in the sense that it does not use an explicit heuristic evaluation
function. Instead, it uses the information encoded in the causal graph to estimate the “useful-
ness” of operators towards satisfying the goals of the task. The search component is described
in Section 6.

4. Multi-Valued Planning Tasks

Let us now formally introduce the problem of planning with multi-valued state variables. Our
formalism is based on the SAS+ planning model (Bäckström & Nebel, 1995; Jonsson & Bäckström,
1998a), but extends it with axioms and conditional effects.

Definition 1 Multi-valued planning tasks (MPTs)
A multi-valued planning task (MPT) is given by a 5-tuple Π = 〈V, s0, s?,A,O〉 with the following
components:

• V is a finite set of state variables, each with an associated finite domain Dv . State vari-
ables are partitioned into fluents (affected by operators) and derived variables (computed by
evaluating axioms). The domains of derived variables must contain the undefined value ⊥.

A partial variable assignment or partial state over V is a function s on some subset of V such
that s(v) ∈ Dv wherever s(v) is defined. A partial state is called an extended state if it is
defined for all variables in V and a reduced state or state if it is defined for all fluents in V .
In the context of partial variable assignments, we write v = d for the variable-value pairing
(v, d) or v 7→ d.

• s0 is a state over V called the initial state.

• s? is a partial variable assignment over V called the goal.

• A is a finite set of (MPT) axioms over V . Axioms are triples of the form 〈cond, v, d〉, where
cond is a partial variable assignment called the condition or body of the axiom, v is a derived
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variable called the affected variable, and d ∈ Dv is called the derived value for v. The pair
(v, d) is called the head of the axiom and can be written as v := d.

The axiom set A is partitioned into a totally ordered set of axiom layers A1 ≺ · · · ≺ Ak

such that within the same layer, each affected variable may only be associated with a single
value in axiom heads and bodies. In other words, within the same layer, axioms with the
same affected variable but different derived values are forbidden, and if a variable appears
in an axiom head, then it may not appear with a different value in a body. This is called the
layering property.

• O is a finite set of (MPT) operators over V . An operator 〈pre, eff〉 consists of a partial
variable assignment pre over V called its precondition, and a finite set of effects eff. Effects
are triples 〈cond, v, d〉, where cond is a (possibly empty) partial variable assignment called
the effect condition, v is a fluent called the affected variable, and d ∈ Dv is called the new
value for v.

For axioms and effects, we also use the notation cond → v := d in place of 〈cond, v, d〉.

To provide a formal semantics for MPT planning, we first need to formalize axioms:

Definition 2 Extended states defined by a state
Let s be a state of an MPT Π with axioms A, layered as A1 ≺ · · · ≺ Ak. The extended state defined
by s, written as A(s), is the result s′ of the following algorithm:

algorithm evaluate-axioms(A1 , . . . , Ak, s):
for each variable v:

s′(v) :=

{

s(v) if v is a fluent variable
⊥ if v is a derived variable

for i ∈ {1, . . . , k}:
while there exists an axiom (cond → v := d) ∈ Ai with cond ⊆ s′ and s′(v) 6= d:

Choose such an axiom cond → v := d.
s′(v) := d

In other words, axioms are evaluated in a layer-by-layer fashion using fixed point computations,
which is very similar to the semantics of stratified logic programs. It is easy to see that the layering
property from Definition 1 guarantees that the algorithm terminates and produces a deterministic
result. Having defined the semantics of axioms, we can now define the state space of an MPT:

Definition 3 MPT state spaces
The state space of an MPT Π = 〈V, s0, s?,A,O〉, denoted as S(Π), is a directed graph. Its vertex
set is the set of states of V , and it contains an arc (s, s′) iff there exists some operator 〈pre, eff〉 ∈ O
such that:

• pre ⊆ A(s),

• s′(v) = d for all effects cond → v := d ∈ eff such that cond ⊆ A(s), and

• s′(v) = s(v) for all other fluents.
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Finally, we can define the MPT planning problem:

Definition 4 MPT planning
MPT-PLANEX is the following decision problem: Given an MPT Π with initial state s0 and goal
s?, does S(Π) contain a path from s0 to some state s′ with s? ⊆ A(s′)?

MPT-PLANNING is the following search problem: Given an MPT Π with initial state s0 and goal
s?, compute a path in S(Π) from s0 to some state s′ with s? ⊆ A(s′), or prove that none exists.

The MPT-PLANEX problem is easily shown to be PSPACE-hard because it generalizes the plan
existence problem for propositional STRIPS, which is known to be PSPACE-complete (Bylander,
1994). It is also easy to see that the addition of multi-valued domains, axioms and conditional effects
does not increase the theoretical complexity of MPT planning beyond propositional STRIPS. Thus,
we conclude our formal introduction of MPT planning by stating that MPT-PLANEX is PSPACE-
complete, and turn to the practical side of things in the following section.

5. Knowledge Compilation

The purpose of the knowledge compilation component is to set the stage for the search algorithms
by compiling the critical information about the planning task into a number of data structures for ef-
ficient access. In other contexts, computations of this kind are often called preprocessing. However,
“preprocessing” is such a nondescript word that it can mean basically anything. For this reason, we
prefer a term that puts a stronger emphasis on the role of this module: To rephrase the critical infor-
mation about the planning task in such a way that it is directly useful to the search algorithms. Of
the three building blocks of Fast Downward (translation, knowledge compilation, search), it is the
least time-critical part, always requiring less time than translation and being dominated by search
for all but the most trivial tasks.

Knowledge compilation comprises three items. First and foremost, we compute the domain
transition graph of each state variable. The domain transition graph for a state variable encodes
under what circumstances that variable can change its value, i. e., from which values in the domain
there are transitions to which other values, which operators or axioms are responsible for the tran-
sition, and which conditions on other state variables are associated with the transition. Domain
transition graphs are described in Section 5.1. They are a central concept for the computation of the
causal graph heuristic, described in Section 6.1.

Second, we compute the causal graph of the planning task. Where domain transition graphs en-
code dependencies between values for a given state variable, the causal graph encodes dependencies
between different state variables. For example, if a given location in a planning task can be unlocked
by means of a key that can be carried by the agent, then the variable representing the lock state of
the location is dependent on the variable that represents whether or not the key is being carried.
This dependency is encoded as an arc in the causal graph. Like domain transition graphs, causal
graphs are a central concept for the computation of the causal graph heuristic, giving it its name.
The causal graph heuristic requires causal graphs to be acyclic. For this reason, the knowledge com-
pilation component also generates an acyclic subgraph of the real causal graph when cycles occur.
This amounts to a relaxation of the planning task where some operator preconditions are ignored.
In addition to their usefulness for the causal graph heuristic, causal graphs are also a key concept
of the focused iterative-broadening search algorithm introduced in Section 6.5. We discuss causal
graphs in Section 5.2.
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Third, we compute two data structures that are useful for any forward-searching algorithm for
MPTs, called successor generators and axiom evaluators. Successor generators compute the set
of applicable operators in a given world state, and axiom evaluators compute the values of derived
variables for a given reduced state. Both are designed to do their job as quickly as possible, which
is especially important for the focused iterative-broadening search algorithm, which does not com-
pute heuristic estimates and thus requires the basic operations for expanding a search node to be
implemented efficiently. These data structures are discussed in Section 5.3.

5.1 Domain Transition Graphs

The domain transition graph of a state variable is a representation of the ways in which the variable
can change its value, and of the conditions that must be satisfied for such value changes to be al-
lowed. Domain transition graphs were introduced by Jonsson and Bäckström (1998a) in the context
of SAS+ planning. Our formalization of domain transition graphs generalizes the original definition
to planning tasks involving axioms and conditional effects.

Definition 5 Domain transition graphs
Let Π = 〈V, s0, s?,A,O〉 be a multi-valued planning task, and let v ∈ V be a state variable of Π.

The domain transition graph of v, in symbols DTG(v), is a labelled directed graph with vertex
set Dv . If v is a fluent, DTG(v) contains the following arcs:

• For each effect cond → v := d′ of an operator o with precondition pre such that pre ∪ cond
contains some condition v = d, an arc from d to d′ labelled with pre ∪ cond \ {v = d}.

• For each effect cond → v := d′ of an operator o with precondition pre such that pre ∪ cond
does not contain the condition v = d for any d ∈ Dv , an arc from each d ∈ Dv \ {d′} to d′

labelled with pre ∪ cond.

If v is a derived variable, DTG(v) contains the following arcs:

• For each axiom cond → v := d′ ∈ A such that cond contains some condition v = d, an arc
from d to d′ labelled with cond \ {v = d}.

• For each axiom cond → v := d′ ∈ A such that cond does not contain the condition v = d

for any d ∈ Dv , an arc from each d ∈ Dv \ {d
′} to d′ labelled with cond.

Arcs of domain transition graphs are called transitions. Their labels are referred to as the
conditions of the transition.

Domain transition graphs can be weighted, in which case each transition has an associated
non-negative integer weight. Unless stated otherwise, we assume that all transitions derived from
operators have weight 1 and all transitions derived from axioms have weight 0.

The definition is somewhat lengthy, but its informal content is easy to grasp: The domain tran-
sition graph for v contains a transition from d to d′ if there exists some operator or axiom that can
change the value of v from d to d′. Such a transition is labelled with the conditions on other state
variables that must be true if the transition shall be applied. Multiple transitions between the same
values using different conditions are allowed and occur frequently.

We have already seen domain transition graphs in the introductory section (Figs. 3 and 4), al-
though they were only introduced informally and did not show the arc labels usually associated
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Figure 10: Domain transition graphs of a GRID task. Top left: DTG(r) (robot); right: DTG(k)
(key); bottom left: DTG(d) (door).

with transitions. Fig. 10 shows some examples from a simple task in the GRID domain, featur-
ing a 3 × 2 grid with a single initially locked location in the centre of the upper row, unlockable
by a single key. In the MPT encoding of the task, there are three state variables: variable r with
Dr = { (x, y) | x ∈ {1, 2, 3}, y ∈ {1, 2} } encodes the location of the robot, variable k with
Dk = Dr ∪ {carried} encodes the state of the key, and variable d with Dd = {closed, open}
encodes the state of the initially locked grid location.

If all operators of an MPT are unary (i. e., only have a single effect) and we leave aside axioms
for a moment, then there is a strong correspondence between the state space of an MPT and its
domain transition graphs. Since vertices in domain transition graphs correspond to values of state
variables, a given state is represented by selecting one vertex in each domain transition graph, called
the active vertex of this state variable. Applying an operator means changing the active vertex
of some state variable by performing a transition in the corresponding domain transition graph.
Whether or not such a transition is allowed depends on its condition, which is checked against the
active vertices of the other domain transition graphs.

Let us use the GRID example to illustrate this correspondence. Consider an initial state where
the robot is at location (1, 1), the key is at location (3, 2), and the door is locked. We represent this
by placing pebbles on the appropriate vertices of the three domain transition graphs. We want to
move the pebble in the domain transition graph of the key to location (2, 1). This can be done by
moving the robot pebble to vertex (1, 2), then (2, 2), then (3, 2), moving the key pebble to the vertex
carried, moving the robot pebble back to vertex (2, 2), moving the door pebble to open, moving the
robot pebble to vertex (2, 1) and finally moving the key pebble to vertex (2, 1).
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Figure 11: Domain transition graphs for the freezing variable in the GRID task, normal (left) and
extended (right). Note that only the extended graph shows how to change state from
“freezing” (>) to “not freezing” (⊥).

The example shows how plan execution can be viewed as simultaneous traversal of domain
transition graphs (cf. Domshlak & Dinitz, 2001). This is an important notion for Fast Downward
because the causal graph heuristic computes its heuristic estimates by solving subproblems of the
planning task by looking for paths in domain transition graphs in basically the way we have de-
scribed.

As mentioned before, this view of MPT planning is only completely accurate for unary tasks
without axioms, for which the domain transition graphs are indeed a complete representation of the
state space. For non-unary operators, we would need to “link” certain transitions in different domain
transition graphs which belong to the same operator. These could then only be executed together.
For axioms, we would need to mark certain transitions as “mandatory”, requiring that they be taken
whenever possible. (This is only intended as a rough analogy and leaves out details like layered
axioms.)

In our previous work (Helmert, 2004), we have successfully applied this view of planning to
STRIPS tasks. Extending the notion to plans with conditional effects provides no challenges be-
cause domain transition graphs always consider planning operators one effect at a time, in which
case effect condition can simply be seen as part of the operator precondition. However, axioms
provide a challenge that is easily overlooked. If we want to change the value of a fluent from d to
d′, the domain transition graph contains all the important information; just find a path from d to d ′

and try to find out how the associated conditions can be achieved. Consider the same problem for
a derived state variable. Let us assume that unlocking the location in the GRID example leads to a
drought, causing the robot to freeze if it enters a horizontally adjacent location. We could encode
this with a new derived variable f (for freezing) with domain Df = {>,⊥}, defined by the axioms
d = open, r = (1, 1) → f := > and d = open, r = (3, 1) → f := >. The domain transition graph
DTG(f) is depicted in Fig. 11 (left).

The problem with that domain transition graph is that it does not tell us how we can change the
state of variable f from > to ⊥. In general, in MPTs derived from STRIPS tasks where derived
predicates occur negatively in any condition, the domain transition graph does not contain sufficient
information for changing the value of a derived variable from “true” to “false”. Derived variables
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never assume the value ⊥ due to a derivation of this value; because of negation as failure semantics,
they only assume the value by default if no other value can be derived. If we want to reason about
ways of setting the value of a derived variable to ⊥, we will need to make this information explicit.

In logical notation, whether or not a derived variable assumes a given value by triggering an
axiom at a given layer is determined by a formula in disjunctive normal form, with one disjunct
for each axiom setting the value. For example, our axioms d = open, r = (1, 1) → f := > and
d = open, r = (3, 1) → f := > correspond to the DNF formula (d = open ∧ r = (1, 1)) ∨ (d =
open∧r = (3, 1)). If we want to know when these rules do not trigger, we must negate this formula,
leading to the CNF formula (d 6= open∨r 6= (1, 1))∧(d 6= open∨r 6= (3, 1)). To be able to encode
this information in the domain transition graph, we need to replace the inequalities with equalities
and translate the formula back to DNF. Since such transformations can increase the formula size
dramatically, we apply simplifications along the way, removing duplicated and dominated disjuncts.
The result in this case is the DNF formula d = closed ∨ r = (2, 1) ∨ r = (1, 2) ∨ r = (2, 2) ∨ r =
(3, 2).

A domain transition graph for a derived variable which has been enriched to contain the possible
ways of causing the variable to assume the value ⊥ is called an extended domain transition graph,
as shown for the GRID example in Fig. 11 (right). Since computing the extended domain transition
graph can be costly and is not always necessary, the knowledge compilation component scans the
conditions of the planning task (axioms, operator preconditions and effect conditions, goal) for
occurrences of pairings of the type v = ⊥ for derived variables v. Extended domain transition
graphs are only computed for those derived variables for which they are required.

Note that negative occurrences of derived variables can cascade: If u, v and w are derived
variables with domain {>,⊥} and the condition v = ⊥ is present in some operator precondition,
and moreover v is defined by the axiom u = >, w = > → v := >, then v assumes the value ⊥
whenever u or w do, so we would require extended domain transition graphs for u and w as well.

On the other hand, multiple layers of negation as failure can cancel each other out: If derived
variable v only occurs in conditions of the form v = ⊥ but never in positive form and is defined by
the axiom u = ⊥, w = ⊥ → v := >, then we do not necessarily require extended domain transition
graphs for u and w.

In general, whether or not we need extended domain transition graphs for a derived variable is
determined by the following rules:

• If v is a derived variable for which the condition v = d for d 6= ⊥ appears in an operator
precondition, effect condition or in the goal, then v is used positively.

• If v is a derived variable for which the condition v = ⊥ appears in an operator precondition,
effect condition or in the goal, then v is used negatively.

• If v is a derived variable for which the condition v = d for d 6= ⊥ appears in the body of an
axiom whose head is used positively (negatively), then v is used positively (negatively).

• If v is a derived variable for which the condition v = ⊥ appears in the body of an axiom
whose head is used positively (negatively), then v is used negatively (positively).

The knowledge compilation component computes extended domain transition graphs for all de-
rived variables which are used negatively and (standard) domain transition graphs for all other state
variables. Normal domain transition graphs are computed by going through the set of axioms and
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the set of operator effects following Definition 5, which is reasonably straight-forward; the com-
putation of extended domain transition graphs has been outlined above. Therefore, the algorithmic
aspects of this topic should not require further discussion.

5.2 Causal Graphs

Causal graphs have been introduced informally in the introduction. Here is a formal definition.

Definition 6 Causal graphs
Let Π be a multi-valued planning task with variable set V . The causal graph of Π, in symbols
CG(Π), is the directed graph with vertex set V containing an arc (v, v ′) iff v 6= v′ and one of the
following conditions is true:

• The domain transition graph of v′ has a transition with some condition on v.

• The set of affected variables in the effect list of some operator includes both v and v ′.

In the first case, we say that an arc is induced by a transition condition. In the second case we say
that it is induced by co-occurring effects.

Of course, arcs induced by transition conditions and arcs induced by co-occurring effects are
not mutually exclusive. The same causal graph arc can be generated for both reasons.

Informally, the causal graph contains an arc from a source variable to a target variable if changes
in the value of the target variable can depend on the value of the source variable. Such arcs are
included also if this dependency is of the form of an effect on the source variable. This agrees with
the definition of dependency graphs by Jonsson and Bäckström (1998b), although these authors
distinguish between the two different ways in which an arc in the graph can be introduced by using
labelled arcs.

Whether or not co-occurring effects should induce arcs in the causal graph depends on the in-
tended semantics: If such arcs are not included, the set of causal graph ancestors anc(v) of a variable
v are precisely those variables which are relevant if our goal is to change the value of v. Plans for
this goal can be computed without considering any variables outside anc(v), by eliminating all vari-
ables outside anc(v) from the planning task and simplifying axioms and operators accordingly. We
call this the achievability definition of causal graphs, because causal graphs encode what variables
are important for achieving a given assignment to a state variable.

However, with the achievability definition, a planner that only considers anc(v) while generating
an action sequence that achieves a given valuation for v may modify variables outside of anc(v), i. e.,
the generated plans have side effects which could destroy previously achieved goals or otherwise
have a negative impact on overall planning. Therefore, we prefer our definition, which we call the
separability definition of causal graphs.

5.2.1 ACYCLIC CAUSAL GRAPHS

Following the separability definition of causal graphs, solving a subproblem over variables anc(v)
is always possible without changing any values outside of anc(v). This leads us to the following
observation.
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Observation 7 Acyclic causal graphs and strongly connected domain transition graphs
Let Π be an MPT such that CG(Π) is acyclic, all domain transition graphs are strongly connected,
there are no derived variables, and no trivially false conditions occur in operators or goals. Then
Π has a solution.

By trivially false conditions, we mean conditions of the kind {v = d, v = d′} for d 6= d′.
Note the similarity of Observation 7 to the results of Williams and Nayak (1997) on planning in do-
mains with unary operators, acyclic causal graphs and reversible transitions. Under the separability
definition of causal graphs, acyclic causal graphs imply unariness of operators because operators
with several effects introduce causal cycles. Moreover, strong connectedness of domain transition
graphs is closely related to Williams’ and Nayak’s reversibility property, although it is a weaker
requirement.

The truth of the observation can easily be seen inductively: If the planning task has only one state
variable and the domain transition graph is strongly connected, then any state (of the one variable)
can be transformed into any other state by applying graph search techniques. If the planning task
has several state variables and the causal graph is acyclic, we pick a sink of the causal graph, i. e.,
a variable v without outgoing arcs, and check if a goal is defined for this variable. If not, we
remove the variable from the task, thus reducing the problem to one with fewer state variables,
solved recursively. If yes, we search for a path from s0(v) to s?(v) in the domain transition graph
of v, which is guaranteed to exist because the graph is strongly connected. This yields a “high-level
plan” for setting v to s?(v) which can be fleshed out by recursively inserting the plans for setting
the variables of the predecessors of v in the causal graph to the values required for the transitions
that form the high-level plan. Once the desired value of v has been set, v can be eliminated from
the planning task and the remaining problem can be solved recursively.

The algorithm is shown in Fig. 12. Although it is backtrack-free, it can require exponential
time to execute because the generated plans can be exponentially long. This is unavoidable; even
for MPTs that satisfy the conditions of Observation 7, shortest plans can be exponentially long. A
family of planning tasks with this property is given in the proof of Theorem 4.4 in the article by
Bäckström and Nebel (1995).

This method for solving multi-valued planning tasks is essentially planning by refinement: We
begin by constructing a very abstract skeleton plan, which is merely a path in some domain transition
graph, then lower the level of abstraction by adding operators to satisfy the preconditions required
for the transitions taken by the path. Strong connectedness of domain transition graphs guarantees
that every abstract plan can actually be refined to a concrete plan. This is precisely Bacchus and
Yang’s (1994) downward refinement property (cf. Section 2.1).

5.2.2 GENERATING AND PRUNING CAUSAL GRAPHS

The usefulness of causal graphs for planning by refinement is not limited to the acyclic case. Con-
sider a subset V ′ of the task variables which contains all its causal graph descendants. In general, if
we restrict the task to V ′ by removing all occurrences of other variables from the initial state, goal,
operators and axioms, we obtain an abstraction of the original problem which satisfies Knoblock’s
(1994) ordered monotonicity property (Section 2.1).

Unfortunately, one major problem with this approach is that the requirement to include all causal
graph descendants is quite limiting. It is not uncommon for the causal graph of a planning task to
be strongly connected, in which case this technique will not allow us to abstract away any variables
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algorithm solve-easy-MPT(V , s0, s?, O):
if s? = ∅:

{ The goal is empty: the empty plan is a solution. }
return 〈〉.

else:
Let v ∈ V be a variable not occurring in preconditions or effect conditions in O.
{ Such a variable always exists if the causal graph of the task is acyclic. }
V ′ := V \ {v}.
O′ := { o ∈ O | o does not affect v }.
plan := 〈〉
if s?(v) is defined:

Let t1, . . . , tk be a path of transitions in DTG(v) from s0(v) to s?(v).
{ t1, . . . , tk is a “high-level plan” that reaches the goal for v,

but ignores preconditions on other variables. }
for each t ∈ {t1, . . . , tk}:

{ Recursively find a plan that achieves the conditions of t. }
Let cond and o be the condition and operator associated with t.
Let s′0 be the state reached after executing plan, restricted to V ′.
Extend plan by solve-easy-MPT(V ′, s′0, cond,O′).
Extend plan by o.

{ After dealing with v, recursively plan for goals on the remaining variables. }
Let s′0 be the state reached after executing plan, restricted to V ′.
s′? := s? restricted to V ′.
Extend plan by solve-easy-MPT(V ′, s′0, s

′
?,O

′).
return plan

Figure 12: Planning algorithm for MPTs with acyclic causal graph and strongly connected domain
transition graphs.
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at all. However, in a heuristic approach, we are free to simplify the planning task. In particular,
by ignoring some operator preconditions for the purposes of heuristic evaluation, we can make an
arbitrary causal graph acyclic. Clearly, the more aspects of the real task we ignore, the worse we can
expect our heuristic to approximate the actual goal distance. Considering this, our aim is to ignore
as little information as possible. We will now explain how this is done.

The knowledge compilation component begins its causal graph processing by generating the
“full” causal graph (Definition 6). One consequence of the separability definition of causal graphs
is that all state variables which are not ancestors of variables mentioned in the goal are completely
irrelevant. Therefore, having computed the graph, we then compute the causal graph ancestors of
all variables in the goal. Any state variables which are not found to be goal ancestors are elimi-
nated from the planning task and causal graph, and associated operators and axioms are removed.4

Afterwards, we compute a pruned causal graph, an acyclic subgraph of the causal graph with the
same vertex set. We try do this in such a fashion that “important” causal dependencies are retained
whenever possible. More specifically, we apply the following algorithm.

First, we compute the strongly connected components of the causal graph. Cycles only occur
within strongly connected components, so each component can be dealt with separately. Second,
for each connected component, we compute a total order ≺ on the vertices, retaining only those
arcs (v, v′) for which v ≺ v′. If v ≺ v′, we say that v′ has a higher level than v. The total order is
computed in the following way:

1. We assign a weight to each arc in the causal graph. The weight of an arc is n if it is induced
by n axioms or operators. The lower the cumulated weight of the incoming arcs of a vertex,
the fewer conditions are ignored by assigning a low level to this vertex.

2. We then pick a vertex v with minimal cumulated weight of incoming arcs and select it for the
lowest level, i. e., we set v ≺ v′ for all other vertices v′ in the strongly connected component.

3. Since v has been dealt with, we remove the vertex and its incident arcs from consideration for
the rest of the ordering algorithm.

4. The remaining problem is solved by iteratively applying the same technique to order the other
vertices until only a single vertex remains.

The reader will notice that the pruning choices within a strongly connected component are
performed by a greedy algorithm. We could also try to find sets of arcs of minimal total weight such
that eliminating these arcs results in an acyclic graph. However, this is an NP-equivalent problem,
even in the case of unweighted graphs (Garey & Johnson, 1979, problem GT8).

After generating the pruned causal graph, we also prune the domain transition graphs by remov-
ing from the transition labels of DTG(v) all conditions on variables v ′ with v ≺ v′. These are the
conditions that are ignored by the heuristic computation. Finally, we simplify the domain transition
graphs by removing dominated transitions: If t and t′ are transitions between the same two values
of a variable, and the condition of t is a proper subset of the condition of t′, then transition t is
easier to apply than t′, so that we remove t′. Similarly, if there are several transitions with identical
conditions, we only keep one of them.

4. This simplification is closely related to Knoblock’s criterion for the problem-specific ordered monotonicity property
(Knoblock, 1994).
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Figure 13: Causal graph of a LOGISTICS task. State variables ti and ai encode the locations of
trucks and airplanes, state variables pi the locations of packages.
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Figure 14: Causal graph of a MYSTERY task (left) and of a relaxed version of the task (right). State
variables fi encode the fuel at a location, state variables li and ci encode the locations
and remaining capacities of trucks, and state variables pi encode the locations of pack-
ages.

5.2.3 CAUSAL GRAPH EXAMPLES

To give some impression of the types of causal graphs typically found in the standard benchmarks
and the effects of pruning, we show some examples of increasing graph complexity.

As our first and simplest example, Fig. 13 shows the causal graph of a task from the LOGISTICS

domain, featuring two trucks, two airplanes and two packages. As can be seen, the graph is acyclic,
so it requires no pruning for the causal graph heuristic. Since LOGISTICS tasks also feature strongly
connected domain transition graphs, they can even be solved by the polynomial solve-easy-MPT
algorithm.

As a slightly more complicated example, the next figure, Fig. 14, shows a task from the MYS-
TERY domain with three locations, two trucks and two packages. The causal graph contains a
number of cycles, but these are mostly local. By pruning arcs from vertices li to fj , we ignore the
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Figure 15: Causal graph of a GRID task (left) and of a relaxed version of the task (right). State
variable r encodes the location of the robot, a encodes the status of the robot arm (empty
or carrying a key), l encodes the status of the locked location (locked or open), and k1

and k2 encode the locations of the two keys.

fact that we must move trucks to certain locations if we want to use up fuel at that location. As
using up fuel is not a very useful thing to do, this is not a big loss in information. By pruning arcs
from vertices pi to cj , we ignore the fact that vehicles can only increase or decrease their current
capacity by unloading or loading packages. Compared to heuristics based on ignoring delete ef-
fects, this is not a great loss in information, since ignoring delete effects in the MYSTERY domain
almost amounts to ignoring capacity and fuel constraints altogether. By pruning just these arcs,
we can eliminate all cycles in the causal graph, so the MYSTERY domain can be considered fairly
well-behaved.

A worse case is shown in Fig. 15, which shows an example from the GRID domain with an
arbitrary number of locations, of which a single one is locked. There are two keys, one of which
can unlock the locked location. Eliminating cycles here requires a few minor relaxations regarding
the status of the robot arm (empty or non-empty), but also one major simplification, namely the
elimination of the arc from l to r representing the fact that the robot can only enter the locked
location if it has been unlocked.

As a (nearly) worst-case example, consider a task in the BLOCKSWORLD domain (no figure). A
typical MPT encoding uses one state variable h for encoding whether or not the hand is empty and
two state variables per block in the task: For the i-th block, ti encodes whether or not the block is
lying on the table, and bi encodes which block is lying on top of it, or if it is clear or being held by
the arm. In the causal graph of such a task, variable h has ingoing arcs from and outgoing arcs to all
other state variables, and all state variables bi are connected to each other in both directions. Only
the state variables ti have a slightly simpler connection structure, being only connected to h and
to bi for the same value of i. Any relaxation of the problem that eliminates cycles from the causal
graph loses a large amount of information, and it is not surprising that the DEPOT domain, which
includes a BLOCKSWORLD subproblem, is the one for which the precursor of Fast Downward fared
worst (Helmert, 2004). Still, it should be pointed out that planners that ignore delete effects have
similar problems with BLOCKSWORLD-like domains, as the comparison between the FF and causal
graph heuristics in the same article shows.
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5.3 Successor Generators and Axiom Evaluators

In addition to good heuristic guidance, a forward searching planning system needs efficient methods
for generating successor states if it is to be applied to the benchmark suite from the international
planning competitions. For some domains, our causal graph heuristic or other popular methods
like the FF heuristic provide excellent goal estimates, yet still planning can be too time-consuming
because of very long plans and vast branching factors.

The variant of best-first search implemented in Fast Downward does not compute the heuristic
estimate for each state that is generated. Essentially, heuristic evaluations are only computed for
closed nodes, while computation is deferred for nodes on the search frontier. For domains with
strong heuristic guidance and large branching factors, the number of nodes on the frontier can by
far dominate the number of nodes in the closed set. As a case in point, consider the problem instance
SATELLITE #29. For solving this task, the default configuration of Fast Downward only computes
heuristic estimates for 67 597 world states while adding 107 233 381 states to the frontier. Clearly,
determining the set of applicable operators quickly is of critical importance in such a scenario.

In some SATELLITE tasks, there are almost 1 000 000 ground operators, so we should try to
avoid individually checking each operator for applicability. Similarly, in the biggest PSR tasks,
more than 100 000 axioms must be evaluated in each state to compute the values of the derived
variables, so this computation must be made efficient. For these purposes, Fast Downward uses two
data structures called successor generators and axiom evaluators.

5.3.1 SUCCESSOR GENERATORS

Successor generators are recursive data structures very similar to decision trees. The internal nodes
have associated conditions, which can be likened to the decisions in a decision tree, and the leaves
have associated operator lists which can be likened to a set of classified samples in a decision tree
leaf. They are formally defined as follows.

Definition 8 Successor generators
A successor generator for an MPT Π = 〈V, s0, s?,A,O〉 is a tree consisting of selector nodes and
generator nodes.

A selector node is an internal node of the tree. It has an associated variable v ∈ V called the
selection variable. Moreover, it has |Dv|+1 children accessed via labelled edges, one edge labelled
v = d for each value d ∈ Dv , and one edge labelled >. The latter edge is called the don’t care
edge of the selector.

A generator node is a leaf node of the tree. It has an associated set of operators from O called
the set of generated operators.

Each operator o ∈ O must occur in exactly one generator node, and the set of edge labels
leading from the root to this node (excluding don’t care edges) must equal the precondition of o.

Given a successor generator for an MPT Π and a state s of Π, we can compute the set of
applicable operators in s by traversing the successor generator as follows, starting from the root:

• At a selector node with selection variable v, follow the edge v = s(v) and the don’t care edge.

• At a generator node, report the generated operators as applicable.
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algorithm evaluate-axiom-layer(s, Ai):
for each axiom a ∈ Ai:

a.counter := |a.cond|
for each variable v:

for each axiom a ∈ Ai with a condition v = s(v) in the body:
a.counter := a.counter − 1

while there exists an axiom a ∈ Ai with a.counter = 0 that was not yet considered:
Let 〈v, d〉 be the head of such an axiom.
if s(v) 6= d:

s(v) := d

for each axiom a ∈ Ai with a condition v = d in the body:
a.counter := a.counter − 1

Figure 16: Computing the values of the derived variables in a given planning state.

To build a successor generator for Π, we apply a top-down algorithm which considers the task
variables in an arbitrary order v1 ≺ v2 ≺ · · · ≺ vn. At the root node, we choose v1 as selection vari-
able and classify the set of operators according to their preconditions with respect to v1. Operators
with a precondition v1 = d will be represented in the child of the root accessed by the edge with the
corresponding label, while operators without preconditions on v1 will be represented in the child
of the root accessed by the don’t care edge. In the children of the root, we choose v2 as selection
variable, in the grandchildren v3, and so on.

There is one exception to this rule to avoid creating unnecessary selection nodes: If no operator
in a certain branch of the tree has a condition on vi, then vi is not considered as a selection variable
in this branch. The construction of a branch ends when all variables have been considered, at which
stage a generator node is created for the operators associated with that branch.

5.3.2 AXIOM EVALUATORS

Axiom evaluators are a simple data structure used for efficiently implementing the well-known
marking algorithm for propositional Horn logic (Dowling & Gallier, 1984), extended and modified
for the layered logic programs that correspond to the axioms of an MPT. They consist of two parts.
Firstly, an indexing data structure maps a given variable/value pairing and a given axiom layer to
the set of axioms in the given layer in whose body the pairing appears. Secondly, a set of counters,
one for each axiom, counts the number of conditions of the axiom that have not yet been derived.

Within Fast Downward, axioms are evaluated in two steps. First, all derived variables are set to
their default value ⊥. Second, algorithm evaluate-axiom-layer (Fig. 16) is executed for each axiom
layer in sequence to determine the final values of the derived variables.

We assume that the reader is familiar enough with the marking algorithm not to require much
explanation, so we only point out that the test whether or not an axiom is ready to trigger is imple-
mented by means of a queue in which axioms are put as soon as their counter reaches 0. The actual
implementation of evaluate-axiom-layer within Fast Downward initializes axiom counters slightly
more efficiently than indicated by the pseudo-code. However, this is a minor technical detail, so we
turn to the remaining piece of Fast Downward’s architecture, the search component.
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6. Search

Unlike the translation and knowledge compilation components, for which there is only a single
mode of execution, the search component of Fast Downward can perform its work in various alter-
native ways. There are three basic search algorithms to choose from:

1. Greedy best-first search: This is the standard textbook algorithm (Russell & Norvig, 2003),
modified with a technique called deferred heuristic evaluation to mitigate the negative influ-
ence of wide branching. We have also extended the algorithm to deal with preferred opera-
tors, similar to FF’s helpful actions (Hoffmann & Nebel, 2001). We discuss greedy best-first
search in Section 6.3. Fast Downward uses this algorithm together with the causal graph
heuristic, discussed in Section 6.1.

2. Multi-heuristic best-first search: This is a variation of greedy best-first search which evaluates
search states using multiple heuristic estimators, maintaining separate open lists for each.
Like our variant of greedy best-first search, it supports the use of preferred operators. Multi-
heuristic best-first search is discussed in Section 6.4. Fast Downward uses this algorithm
together with the causal graph and FF heuristics, discussed in Sections 6.1 and 6.2.

3. Focused iterative-broadening search: This is a simple search algorithm that does not use
heuristic estimators, and instead reduces the vast set of search possibilities by focusing on
a limited operator set derived from the causal graph. It is an experimental algorithm; in the
future, we hope to further develop the basic idea of this algorithm into a more robust method.
Focused iterative-broadening search is discussed in Section 6.5.

For the two heuristic search algorithms, a second choice must be made regarding the use of
preferred operators. There are five options supported by the planner:

1. Do not use preferred operators.

2. Use the helpful transitions of the causal graph heuristic as preferred operators.

3. Use the helpful actions of the FF heuristic as preferred operators.

4. Use helpful transitions as preferred operators, falling back to helpful actions if there are no
helpful transitions in the current search state.

5. Use both helpful transitions and helpful actions as preferred operators.

Each of these five options can be combined with any of the two heuristic search algorithms,
so that there is a total of eleven possible settings for the search component, ten using one of the
heuristic algorithms and one using focused iterative-broadening search.

In addition to these basic settings, the search component can be configured to execute several
alternative configurations in parallel by making use of an internal scheduler. Both configurations of
Fast Downward that participated in IPC4 made use of this feature by running one configuration of
the heuristic search algorithms in parallel with focused iterative-broadening search. As its heuristic
search algorithm, the configuration Fast Downward employed greedy best-first search with helpful
transitions, falling back to helpful actions when necessary (option 4.). The configuration Fast Di-
agonally Downward employed multi-heuristic best-first search using helpful transitions and helpful
actions as preferred operators (option 5.).
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To avoid confusion between the complete Fast Downward planning system and the particular
configuration called “Fast Downward”, we will refer to the IPC4 planner configurations as FD and
FDD for the rest of this paper. The name of the planning system as a whole is never abbreviated.

6.1 The Causal Graph Heuristic

The causal graph heuristic is the centrepiece of Fast Downward’s heuristic search engine. It esti-
mates the cost of reaching the goal from a given search state by solving a number of subproblems of
the planning task which are derived by looking at small “windows” of the (pruned) causal graph. For
some additional intuitions about the design of the heuristic and a discussion of theoretical aspects,
we refer to the article in which the heuristic was first introduced (Helmert, 2004).

6.1.1 CONCEPTUAL VIEW OF THE CAUSAL GRAPH HEURISTIC

For each state variable v and each pair of values d, d′ ∈ Dv , the causal graph heuristic computes
a heuristic estimate costv(d, d′) for the cost of changing the value of v from d to d′, assuming that
all other state variables carry the same values as in the current state. (This is a simplification. Cost
estimates are not computed for state variables v or values d for which they are never required. We
ignore this fact when discussing the heuristic on the conceptual level.) The heuristic estimate of
a given state s is the sum over the costs costv(s(v), s?(v)) for all variables v for which a goal
condition s?(v) is defined.

Conceptually, cost estimates are computed one variable after the other, traversing the (pruned)
causal graph in a bottom-up fashion. By bottom-up, we mean that we start with the variables that
have no predecessors in the causal graphs; we call this order of computation “bottom-up” because
we consider variables that can change their state of their own accord low-level, while variables
whose state transitions require the help of other variables have more complex transition semantics
and are thus considered high-level. Note that in our figures depicting causal graphs, high-level
variables are typically displayed near the bottom.

For variables without predecessors in the causal graph, costv(d, d′) simply equals the cost of
a shortest path from d to d′ in the (pruned) domain transition graph DTG(v). For other variables,
cost estimates are also computed by graph search in the domain transition graph. However, the
conditions of transitions must be taken into account during path planning, so that in addition to
counting the number of transitions required to reach the destination value, we also consider the costs
for achieving the value changes of the other variables necessary to set up the transition conditions.

The important point here is that in computing the values costv(d, d′), we completely consider
all interactions of the state variable v with its predecessors in the causal graph. If changing the
value from d to d′ requires several steps and each of these steps has an associated condition on a
variable v′, then we realize that v′ must assume the values required by those conditions in sequence.
For example, if v represents a package in a transportation task that must be moved from A to B by
means of a vehicle located at C , then we recognize that the vehicle must first move from C to A

and then from A to B in order to drop the package at B. This is very different to the way HSP-
or FF-based heuristics work on such examples. However, we only consider interactions with the
immediate predecessors of v in the causal graph. Interactions that occur via several graph layers are
not captured by the heuristic estimator.

In essence, we compute costv(d, d′) by solving a particular subproblem of the MPT, induced by
the variable v and its predecessors in the pruned causal graph. For this subproblem, we assume that
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algorithm compute-costs-bottom-up(Π, s):
for each variable v of Π, traversing the pruned causal graph in bottom-up order:

Let V ′ be the set of immediate predecessors of v in the pruned causal graph.
for each pair of values (d, d′) ∈ Dv ×Dv:

Generate a planning task Πv,d,d′ with the following components:
— Variables: V ′ ∪ {v}.
— Initial state: v = d and v′ = s(v′) for all v′ ∈ V ′.
— Goal: v = d′.
— Axioms and operators:

1. Those corresponding to transitions in the pruned DTG of v.
2. For all variables v′ ∈ V ′ and values e, e′ ∈ Dv′ , an operator

with precondition v′ = e, effect v′ = e′ and cost cost′v(e, e
′).

{ Note that all variables v′ ∈ V ′ have been considered previously,
so that their cost values are known. }

Set costv(d, d′) to the cost of a plan π that solves Πv,d,d′ .

Figure 17: The compute-costs-bottom-up algorithm, a high-level description of the causal graph
heuristic.

v is initially set to d, we want v to assume the value d′, and all other state variables carry the same
value as in the current state. We call this planning problem the local subproblem for v, d and d ′, or
the local subproblem for v and d if we leave the target value d′ open.

For a formalization of these intuitive notions of how the cost estimates are generated, consider
the pseudo-code in Fig. 17. It does not reflect the way the heuristic values are actually computed
within Fast Downward; the algorithm in the figure would be far too expensive to evaluate for each
search state. However, it computes the same cost values as Fast Downward does, provided that the
algorithm generating the plans π in the last line of the algorithm is the same one as the one used for
the “real” cost estimator.

6.1.2 COMPUTATION OF THE CAUSAL GRAPH HEURISTIC

The actual computation of the causal graph heuristic traverses the causal graph in a top-down direc-
tion starting from the goal variables, rather than bottom-up starting from variables without causal
predecessors. In fact, this top-down traversal of the causal graph is the reason for Fast Downward’s
name.

Computing cost estimates in a top-down traversal implies that while the algorithm is computing
plans for local subproblems of a given variable, it typically does not yet know the costs for changing
the state of its causal predecessors. The algorithm compute-costs addresses this by evaluating the
cost values of dependent variables through recursive invocations of itself.

For a given variable-value pairing v = d, we always compute the costs costv(d, d′) for all values
of d′ ∈ Dv at the same time, similar to the way Dijkstra’s algorithm computes the shortest path not
from a single source to a single destination vertex, but from a single source to all possible destination
vertices. Computing the costs for all values of d′ is not (much) more expensive than computing only
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one of these values, and once all cost values have been determined, we can cache them and re-use
them if they are needed again later during other parts of the computation of the heuristic value for
the current state.

In fact, the similarity to shortest path problems is not superficial but runs quite deeply. If we
ignore the recursive calls for computing cost values of dependent variables, compute-costs is ba-
sically an implementation of Dijkstra’s algorithm for the single-source shortest path problem on
domain transition graphs. The only difference to the “regular” algorithm lies in the fact that we do
not know the cost for using an arc in advance. Transitions of derived variables have a base cost
of 0 and transitions of fluents have a base cost of 1, but in addition to the base cost, we must pay
the cost for achieving the conditions associated with a transition. However, the cost for achieving a
given condition v′ = e′ depends on the current value e of that state variable at the time the transition
is taken. Thus, we can only compute the real cost for a transition once we know the values of the
dependent state variables in the relevant situation.

Of course, there are many different ways of taking transitions through domain transition graphs,
all potentially leading to different values for the dependent state variables. When we first introduced
the causal graph heuristic, we showed that deciding plan existence for the local subproblems is NP-
complete (Helmert, 2004), so we are content with an approach that does not lead to a complete
planning algorithm, as long as it works well for the subproblems we face in practice.

The approach we have chosen is to achieve each value of state variable v in the local subproblem
for v and d as quickly as possible, following a greedy policy. In the context of the Dijkstra algorithm,
this means that we start by finding the cheapest possible plan to make a transition from d to some
other value d′. Once we have found the cheapest possible plan πd′ , we commit to it, annotating the
vertex d′ of the domain transition graph with the local state obtained by applying plan πd′ to the
current state. In the next step, we look for the cheapest possible plan to achieve another value d ′′,
by either considering transitions that start from the initial value d, or by considering transitions that
continue the plan πd′ by moving to a neighbour of d′. This process is iterated until all vertices of
the domain transition graph have been reached or no further progress is possible.

Our implementation follows Dijkstra’s algorithm (Fig. 18). We have implemented the prior-
ity queue as a vector of buckets for maximal speed and use a cache to avoid generating the same
costv(d, d′) value twice for the same state. In addition to this, we use a global cache that is shared
throughout the whole planning process so that we need to compute the values costv(d, d′) for vari-
ables v with few ancestors in the pruned causal graph only once. (Note that costv(d, d′) only depends
on the current values of the ancestors of v.)

Apart from these and some other technical considerations, Fig. 18 gives an accurate account
of Fast Downward’s implementation of the causal graph heuristic. For more details, including
complexity considerations and a worked-out example, we refer to the original description of the
algorithm (Helmert, 2004).

6.1.3 STATES WITH INFINITE HEURISTIC VALUE

We noted that Fast Downward uses an incomplete planning algorithm for determining solutions to
local planning problems. Therefore, there can be states s with costv(s(v), s?(v)) = ∞ even though
the goal condition v = s?(v) can still be reached. This means that we cannot trust infinite values
returned by the causal graph heuristic. In our experience, states with infinite heuristic evaluation
from which it is still possible to reach the goal are rare, so we indeed treat such states as dead ends.
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algorithm compute-costs(Π, s, v, d):
Let V ′ be the set of immediate predecessors of v in the pruned causal graph of Π.
Let DTG be the pruned domain transition graph of v.
costv(d, d) := 0
costv(d, d′) := ∞ for all d′ ∈ Dv \ {d}
local-stated := s restricted to V ′

unreached := Dv

while unreached contains a value d′ ∈ Dv with costv(d, d′) < ∞:
Choose such a value d′ ∈ unreached minimizing costv(d, d′).
unreached := unreached \ {d′}
for each transition t in DTG leading from d′ to some d′′ ∈ unreached:

transition-cost := 0 if v is a derived variable; 1 if v is a fluent
for each pair v′ = e′ in the condition of t:

e := local-stated′(v′)
call compute-costs(Π, s, v′, e).
transition-cost := transition-cost + costv′(e, e′)

if costv(d, d′) + transition-cost < costv(d, d′′):
costv(d, d′′) := costv(d, d′) + transition-cost
local-stated′′ := local-stated′

for each pair v′ = e′ in the condition of t:
local-stated′′(v′) := e′

Figure 18: Fast Downward’s implementation of the causal graph heuristic: the compute-costs algo-
rithm for computing the estimates costv(d, d′) for all values d′ ∈ Dv in a state s of an
MPT Π.
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If it turns out that all states at the search frontier are dead ends, we cannot make further progress
with the causal graph heuristic. In this case, we use a sound dead-end detection routine to verify the
heuristic assessment. If it turns out that all frontier states are indeed dead ends, then we report the
problem as unsolvable. Otherwise, search is restarted with the FF heuristic (cf. Section 6.2), which
is sound for purposes of dead-end detection.5

The dead-end detection routine has been originally developed for STRIPS-like tasks. However,
extending it to full MPTs is easy; in fact, no changes to the core algorithm are required, as it works
at the level of domain transition graphs and is still sound when applied to tasks with conditional
effects and axioms. Since it is not a central aspect of Fast Downward, we do not discuss it here,
referring to our earlier work instead (Helmert, 2004).

6.1.4 HELPFUL TRANSITIONS

Inspired by Hoffmann’s very successful use of helpful actions within the FF planner (Hoffmann &
Nebel, 2001), we have extended our algorithm for computing the causal graph heuristic so that in
addition to the heuristic estimate, it also generates a set of applicable operators considered useful
for steering search towards the goal.

To compute helpful actions in FF, Hoffmann’s algorithm generates a plan for the relaxed plan-
ning task defined by the current search state and considers those operators helpful which belong to
the relaxed plan and are applicable in the current state.

Our approach follows a similar idea. After computing the heuristic estimate costv(s(v), s?(v))
for a variable v for which a goal condition is defined, we look into the domain transition graph of
v to trace the path of transitions leading from s(v) to s?(v) that gave rise to the cost estimate. In
particular, we consider the first transition on this path, starting at s(v). If this transition corresponds
to an applicable operator, we consider that operator a helpful transition and continue to check the
next goal. If the transition does not correspond to an applicable operator because it has associated
conditions of the form v′ = e′ which are not currently satisfied, then we recursively look for help-
ful transitions in the domain transition graph of each such variable v ′, checking the path that was
generated during the computation of costv′(s(v′), e′).

The recursive process continues until we have found all helpful transitions. Unlike the case
for FF, where helpful actions can be found for all non-goal states, we might not find any helpful
transition at all. It may be the case that a transition does not correspond to an applicable operator
even though it has no associated conditions; this can happen when some operator preconditions are
not represented in the pruned domain transition graph due to cycles in the causal graph. Even so,
we have found helpful transitions to be a useful tool in guiding our best-first search algorithms.

6.2 The FF Heuristic

The FF heuristic is named after Hoffmann’s planning algorithm of the same name, in the context
of which it was originally introduced (Hoffmann & Nebel, 2001). It is based on the notion of
relaxed planning tasks that ignore negative interactions. In the context of MPTs, ignoring negative
interactions means that we assume that each state variable can hold several values simultaneously.
An operator effect or axiom that sets a variable v to a value d in the original task corresponds to

5. In practice, we have never observed the causal graph heuristic to fail on a solvable task. Therefore, the fallback
mechanism is only used for some unsolvable tasks in the MICONIC-FULLADL domain which are not recognized by
our dead-end detection technique.
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an effect or axiom that adds the value d to the range of values assumed by v in the relaxed task. A
condition v = d in the original task corresponds to a condition requiring d to be an element of the
set of values currently assumed by v in the relaxed task.

It is easy to see that applying some operator in a solvable relaxed planning task can never render
it unsolvable. It can only lead to more operators being applicable and more goals being true, if it has
any significant effect at all. For this reason, relaxed planning tasks can be solved efficiently, even
though optimal solutions are still NP-hard to compute (Bylander, 1994). A plan for the relaxation
of a planning task is called a relaxed plan for that task.

The FF heuristic estimates the goal distance of a world state by generating a relaxed plan for
the task of reaching the goal from this world state. The number of operators in the generated plan
is then used as the heuristic estimate. Our implementation of the FF heuristic does not necessarily
generate the same, or even an equally long, relaxed plan as FF. In our experiments, this did not turn
out to be problematic, as both implementations appear to be equally informative.

While the FF heuristic was originally introduced for ADL domains, extending it to tasks involv-
ing derived predicates is straight-forward. One possible extension is to simply assume that each
derived predicate is initially set to its default value ⊥ and treat axioms as relaxed operators of cost
0. In a slightly more complicated, but also more accurate approach, derived variables are initialized
to their actual value in a given world state, allowing the relaxed planner to achieve the value ⊥
(or other values) by applying the transitions of the extended domain transition graph of the derived
variable. We have followed the second approach.

In addition to heuristic estimates, the FF heuristic can also be exploited for restricting or biasing
the choice of operators to apply in a given world state s. The set of helpful actions of s consists of
all those operators of the relaxed plan computed for s that are applicable in that state. As mentioned
in the introduction to this section, Fast Downward can be configured to treat helpful actions as
preferred operators.

There is a wealth of work on the FF heuristic in the literature, so we do not discuss it further.
For a more thorough treatment, we point to the references (Hoffmann & Nebel, 2001; Hoffmann,
2001, 2002, 2005).

6.3 Greedy Best-First Search in Fast Downward

Fast Downward uses greedy best-first search with a closed list as its default search algorithm. We
assume that the reader is familiar with the algorithm and refer to the literature for details (Russell &
Norvig, 2003).

Our implementation of greedy best-first search differs from the textbook algorithm in two ways.
First, it can treat helpful transitions computed by the causal graph heuristic or helpful actions com-
puted by the FF heuristic as preferred operators. Second, it performs deferred heuristic evaluation
to reduce the influence of large branching factors. We now turn to describing these two search
enhancements.

6.3.1 PREFERRED OPERATORS

To make use of helpful transitions computed by the causal graph heuristic or helpful actions com-
puted by the FF heuristic, our variant of greedy best-first search supports the use of so-called pre-
ferred operators. The set of preferred operators of a given state is a subset of the set of applicable
operators for this state. Which operators are considered preferred depends on the settings for the
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search component, as discussed earlier. The intuition behind preferred operators is that a randomly
picked successor state is more likely to be closer to the goal if it is generated by a preferred opera-
tor, in which case we call it a preferred successor. Preferred successors should be considered before
non-preferred ones on average.

Our search algorithm implements this preference by maintaining two separate open lists, one
containing all successors of expanded states and one containing preferred successors exclusively.
The search algorithm alternates between expanding a regular successor and a preferred successor.
On even iterations it will consider the one open list, on odd iterations the other. No matter which
open list a state is taken from, all its successors are placed in the first open list, and the preferred
successors are additionally placed in the second open list. (Of course we could limit the first open
list to only contain non-preferred successors; however, typically the total number of successors is
vast and the number of preferred successors is tiny. Therefore, it is cheaper to add all successors
to the first open list and detect duplicates upon expansion than scan through the list of successors
determining for each element whether or not it is preferred.)

Since the number of preferred successors is smaller than the total number of successors, this
means that preferred successors are typically expanded much earlier than others. This is especially
important in domains where heuristic guidance is weak and a lot of time is spent exploring plateaus.
When faced with plateaus, Fast Downward’s open lists operate in a first-in-first-out fashion. (In
other words: For a constant heuristic function, our search algorithm behaves like breadth-first
search.) Preferred operators typically offer much better chances of escaping from plateaus since
they lead to significantly lower effective branching factors.

6.3.2 DEFERRED HEURISTIC EVALUATION

Upon expanding a state s, the textbook version of greedy best-first search computes the heuristic
evaluation of all successor states of s and sorts them into the open list accordingly. This can be
wasteful if s has many successors and heuristic evaluations are costly, two conditions that are often
true for heuristic search approaches to planning.

This is where our second modification comes into play. If a successor with a better heuristic
estimate than s is generated early and leads to a promising path towards the goal, we would like
to avoid generating the other successors. Let us assume that s has 1000 successors, and that s ′,
the 10th successor of s being generated, has a better heuristic estimate than s. Furthermore, let us
assume that the goal can be reached from s′ on a path with non-increasing heuristic estimates. Then
we would like to avoid computing heuristic values for the 990 later successors of s altogether.

Deferred heuristic evaluation achieves this by not computing heuristic estimates for the succes-
sors of an expanded state s immediately. Instead, the successors of s are placed in the open list
together with the heuristic estimate of state s, and their own heuristic estimates are only computed
when and if they are expanded, at which time it is used for sorting their successors into the open
list, and so on. In general, each state is sorted into the open list according to the heuristic evaluation
of its parent, with the initial state being an exception. In fact, we do not need to put the successor
state itself into the open list, since we do not require its representation before we want to evaluate
its heuristic estimate. Instead, we save memory by storing only a reference to the parent state and
the operator transforming the parent state into the successor state in the open list.

It might not be clear how this approach can lead to significant savings in time, since deferred
evaluation also means that information is only available later. The potential savings become most
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apparent when considering deferred heuristic evaluation together with the use of preferred operators:
If an improving successor s′ of a state s is reached by a preferred operator, it is likely that it will be
expanded (via the second open list) long before most other successors — or even most siblings —
of s. In the situation described above, where there exists a non-increasing path from s ′ to the goal,
heuristic evaluations will never be computed for most successors of s. In fact, deferred heuristic
evaluation can significantly improve search performance even when preferred operators are not
used, especially in tasks where branching factors are large and the heuristic estimate is informative.

At first glance, deferred heuristic evaluation might appear related to another technique for re-
ducing the effort of expanding a node within a best-first search algorithm, namely A∗ with Partial
Expansion (Yoshizumi, Miura, & Ishida, 2000). However, this algorithm is designed for reducing
the space requirements of best-first search at the expense of additional heuristic evaluations: When
expanding a node, A∗ with Partial Expansion computes the heuristic value of all successors, but
only stores those in the open queue whose heuristic values fall below a certain relevance threshold.
In later iterations, it might turn out that the threshold was chosen too low, in which case the node
needs to be re-expanded and the heuristic values of its successors re-evaluated. In general, A∗ with
Partial Expansion will never compute fewer heuristic estimates than standard A∗, but it will usually
require less memory.

However, for heuristic search approaches to planning (and certainly for Fast Downward), heuris-
tic evaluations are usually so costly in time that memory for storing open and closed lists is not a
limiting factor. We are thus willing to trade off memory with time in the opposite way: Deferred
heuristic evaluation normally leads to more node expansions and higher space requirements than
standard best-first search because the heuristic values used for guiding the search are less informa-
tive (they evaluate the predecessor of a search node rather than the node itself). However, heuristic
computations are only required for nodes that are actually removed from the open queue rather than
for all nodes on the fringe, and the latter are usually significantly more numerous.

6.4 Multi-Heuristic Best-First Search

As an alternative to greedy best-first search, Fast Downward supports an extended algorithm called
multi-heuristic best-first search. This algorithm differs from greedy best-first search in its use of
multiple heuristic estimators, based on our observation that different heuristic estimators have dif-
ferent weaknesses. It may be the case that a given heuristic is sufficient for directing the search
towards the goal except for one part of the plan, where it gets stuck on a plateau. Another heuristic
might have similar characteristics, but get stuck in another part of the search space.

Various ways of combining heuristics have been proposed in the literature, typically adding
together or taking the maximum of the individual heuristic estimates. We believe that it is often
beneficial not to combine the different heuristic estimates into a single numerical value. Instead,
we propose maintaining a separate open list for each heuristic estimator, which is sorted according
to the respective heuristic. The search algorithm alternates between expanding a state from each
open list. Whenever a state is expanded, estimates are calculated according to each heuristic, and
the successors are put into each open list.

When Fast Downward is configured to use multi-heuristic best-first search, it computes esti-
mates both for the causal graph heuristic and FF heuristic, maintaining two open lists. Of course,
the approach can be combined with the use of preferred operators; in this case, the search algorithm
maintains four open lists, as each heuristic distinguishes between normal and preferred successors.
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algorithm reach-one-goal(Π, v, d, cond):
for each ϑ ∈ {0, 1, . . . , max-threshold}:

Let Oϑ be the set of operators of Π whose modification distance with respect to v

is at most ϑ.
Assign the cost c to each operator o ∈ Oϑ with modification distance c with

respect to v.
Call the uniform-cost-search algorithm with a closed list, using the operator set Oϑ,

to find a state satisfying {v = d} ∪ cond.
return the plan if uniform-cost-search succeeded.

Figure 19: The reach-one-goal procedure for reaching a state with v = d. The value max-threshold
is equal to the maximal modification distance of any operator with respect to v.

6.5 Focused Iterative-Broadening Search

The focused iterative-broadening search algorithm is the most experimental piece of Fast Down-
ward’s search arsenal. In its present form, the algorithm is unsuitable for many planning domains,
especially those containing comparatively few different goals. Yet we think that it might contain the
nucleus for a successful approach to domain-independent planning which is very different to most
current methods, so we include it for completeness and as a source of inspiration.

The algorithm is intended as a first step towards developing search techniques that emphasize the
idea of using heuristic criteria locally, for limiting the set of operators to apply, rather than globally,
for choosing which states to expand from a global set of open states. We made first experiments in
this direction after observing the large boost in performance that can be obtained by using preferred
operators in heuristic search. The algorithm performed surprisingly well in some of the standard
benchmark domains, while performing badly in most others.

As the name suggests, the algorithm focuses the search by concentrating on one goal at a time,
and by restricting its attention to operators which are supposedly important for reaching that goal:

Definition 9 Modification distances
Let Π be an MPT, let o be an operator of Π, and let v be a variable of Π.

The modification distance of o with respect to v is defined as the minimum, over all variables
v′ that occur as affected variables in the effect list of o, of the distance from v ′ to v in CG(Π).

For example, operators that modify v directly have a modification distance of 0 with respect to
v, operators that modify variables which occur in preconditions of operators modifying v have a
modification distance of 1, and so on. We assume that in order to change the value of a variable,
operators with a low modification distance with respect to this variable are most useful.

Fig. 19 shows the reach-one-goal procedure for achieving a single goal of an MPT. For the time
being, assume that the cond parameter is always ∅. The procedure makes use of the assumption
that high modification distance implies low usefulness in two ways. First, operators with high
modification distance with respect to the goal variable are considered to have a higher associated
cost, and are hence applied less frequently. Second, operators whose modification distance is beyond
a certain threshold are forbidden completely. Instead of choosing a threshold a priori, the algorithm
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first tries to find a solution with the lowest possible threshold of 0, increasing the threshold by 1
whenever the previous search has failed. The uniform-cost-search algorithm mentioned in Fig. 19
is the standard textbook method (Russell & Norvig, 2003).

Although we were ignorant of this fact at the time our algorithm was conceived, the core idea of
reach-one-goal is not new: Ginsberg and Harvey (1992) present a search technique called iterative
broadening, which is also based on the idea of repeatedly doing a sequence of uninformed searches
with an ever-growing set of operators. Their work demonstrates the superiority of iterative broad-
ening over standard depth-bounded search both empirically and analytically under the reasonable
assumption that the choices made at each branching point are equally important.6 The original it-
erative broadening algorithm applies to scenarios without any knowledge of the problem domain,
so it chooses the set of operators which may be applied at every search node randomly, rather than
using heuristic information from the causal graph as in our case. However, Ginsberg and Harvey
already discuss the potential incorporation of heuristics into the operator selection. The introduc-
tion of operator costs (in the form of modification distances) is new, but it is a fairly straightforward
extension where heuristic information is available.

The focused iterative-broadening search algorithm is based on the reach-one-goal method; the
idea is to achieve the goals of the planning task one after the other, by using the reach-one-goal
algorithm as the core subroutine for satisfying individual goals. Since it is not obvious what a good
order of achieving the goals would be, one invocation of reach-one-goal is started for each goal in
parallel. As each one-goal solver focuses on the (supposedly) relevant operators for reaching its
particular goal, there is hope that the number of states considered before a goal is reached is small.
Once one of the one-goal solvers reaches its goal, the resulting plan is reported and all sub-searches
are stopped. The overall search algorithm commits to this part of the plan; the situation in which
the first goal has been reached is considered a new initial state.

From this situation, we try to satisfy the second goal, by once more starting parallel invocations
of reach-one-goal for each possible second goal. Of course, this can lead to a situation where the
search algorithm oscillates between goals, first achieving goal a, then abandoning it in favour of goal
b, without any sign of making real progress. Therefore, we demand that reach-one-goal achieves
the second goal in addition to the one we reached first, by setting the cond argument accordingly.
Once two goals have been reached, the sub-searches are again stopped, sub-searches for the third
goal are started, and so on, until all goals have been reached.

In some sense, our focusing technique is similar to the beam search algorithm (Lowerre, 1976),
which also performs a fixed number of concurrent searches to avoid committing to a particular path
in the search space too early. Beam search uses a heuristic function to evaluate which branches of
search should be abandoned and where new branches should be spawned. While focused iterative-
broadening search does not appear to use heuristic evaluations at first glance, the number of satisfied
goals of a state is used as an evaluation criterion in essentially the same way. One important differ-
ence to beam search is our use of modification distances relative to a particular goal, which means
that the different “beams” explore the state space in qualitatively different ways.

There is one final twist: To motivate reach-one-goal not to needlessly wander away from sat-
isfied goals, we forbid applying operators that undo any of the previously achieved goals in cond.
This is an old idea called goal protection (Joslin & Roach, 1989). It is well-known that protecting

6. See the original analysis for a precise definition of “equally important” (Ginsberg & Harvey, 1992). While Ginsberg
and Harvey’s assumption is certainly not valid in practice, we find it much more convincing than the competing model
where goal states are uniformly distributed across the search fringe.
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algorithm reach-one-goal(Π, v, d, cond):
for each ϑ ∈ {0, 1, . . . , max-threshold}:

Let Oϑ be the set of operators of Π whose modification distance with respect to v

is at most ϑ and which do not affect any state variable occurring in cond.
Assign the cost c to each operator o ∈ Oϑ with modification distance c with

respect to v.
Call the uniform-cost-search algorithm with a closed list, using the operator set Oϑ,

to find a state satisfying {v = d} ∪ cond.
return the plan if uniform-cost-search succeeded.

for each ϑ ∈ {0, 1, . . . , max-threshold}:
Let Oϑ be the set of operators of Π whose modification distance with respect to v

is at most ϑ.
Assign the cost c to each operator o ∈ Oϑ with modification distance c with

respect to v.
Call the uniform-cost-search algorithm with a closed list, using the operator set Oϑ,

to find a state satisfying {v = d} ∪ cond.
return the plan if uniform-cost-search succeeded.

Figure 20: The reach-one-goal procedure for reaching a state with v = d (corrected).

goals renders a search algorithm incomplete, even in state spaces where all operators are reversible
and local search approaches like focused iterative-broadening search would be otherwise complete.
In particular, search must fail in planning tasks which are not serializable (Korf, 1987). Therefore,
if the first solution attempt fails, the algorithm is restarted without goal protection. The complete
procedure is shown in Fig. 20, which concludes our discussion of Fast Downward’s search compo-
nent.

7. Experiments

To evaluate the performance of Fast Downward, and specifically the differences between the various
configurations of the search component, we have performed a number of experiments on the set of
benchmarks from the previous international planning competitions. The purpose of these experi-
ments is to compare Fast Downward to the state of the art in PDDL planning, and to contrast the
performance of the different search algorithms of Fast Downward (greedy best-first search with and
without preferred operators, multi-heuristic best-first search with and without preferred operators,
and focused iterative-broadening search).

To clearly state the purpose of our experiments, let us also point out two areas worthy of study
that we do not choose to investigate here:

• We do not compare the causal graph heuristic to other heuristics, such as the FF or HSP
heuristics. Such a comparison would require evaluating the different heuristics within oth-
erwise identical planning systems. We have performed such an experiment before (Helmert,
2004) and thus prefer to dedicate this section to an evaluation of the complete Fast Downward
planning system, rather than just its heuristic function.
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• We do not give a final answer to the question why Fast Downward performs well or badly in
the domains we analyse. Where we do observe bad performance, we try to give a plausible
explanation for this, but we do not conduct a full-blown study of heuristic quality in the spirit
of Hoffmann’s work on the FF and h+ heuristics (Hoffmann, 2005). While we do believe that
much could be learned from such an investigation, it is a major undertaking that would go
beyond the scope of this article.

Our aim in this section is to evaluate the Fast Downward planner as a whole, so there are a
number of algorithmic questions which we do not address. For example, one might wonder what (if
any) speed-up can be obtained by using successor generators over simpler methods which test each
operator for applicability whenever a node is expanded. Another question concerns the extent to
which deferred heuristic evaluation affects search performance. To keep this section at a reasonable
length, we do not discuss either of these questions here. However, we have conducted experiments
addressing them, and include their results in an electronic appendix to this paper.7

7.1 Benchmark Set

The benchmark set we use consists of all propositional planning tasks from the fully automated
tracks of the first four international planning competitions hosted at AIPS 1998, AIPS 2000, AIPS
2002 and ICAPS 2004. The set of benchmark domains is shown in Fig. 21. Altogether, the bench-
mark suite comprises 1442 tasks. (The numbers in Fig. 21 add up to 1462, but the 20 SATELLITE

instances that were introduced for IPC3 were also part of the benchmark set of IPC4, so we only
count them once.)

We distinguish between three classes of domains:

• STRIPS domains: These domains do not feature derived predicates or conditional effects, and
all conditions appearing in goal and operators are conjunctions of positive literals.

• ADL domains: These domains make use of conditional effects in their operator and/or contain
more general conditions than simple conjunctions in their goals and operators. However, they
do not require axioms.

• PDDL2.2 domains: These domains use the full range of propositional PDDL2.2, including
those features present in ADL domains and axioms.

At IPC4, some domains were presented in different formulations, meaning that the same real-
world task was encoded in several different ways. Participants were asked to only work on one
formulation per domain, being able to choose their preferred formulation for a given domain freely.
For example, the AIRPORT domain was available in a STRIPS formulation and an ADL formulation.

However, the organizers did not strictly follow the rule of considering different encodings of
the same real-world task different formulations, rather than different domains proper. Namely, for
the PSR-MIDDLE and PROMELA domains, encodings with and without axioms were available, and
these were considered as different domains on the grounds that the encodings without axioms were

7. See http://www.jair.org/. The short summary is that successor generators speed up search by up to two
orders of magnitude in extreme cases like the largest SATELLITE tasks, but have little impact on performance most of
the time. Deferred heuristic evaluation is very beneficial in some domains, with speed-ups of more than one order of
magnitude being common, is somewhat beneficial in the majority of domains, with speed-ups between 2 and 4, and
is very rarely detrimental to performance.
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Competition Domain Class Number of tasks

IPC1 (AIPS 1998) ASSEMBLY ADL 30
GRID STRIPS 5
GRIPPER STRIPS 20
LOGISTICS STRIPS 35
MOVIE STRIPS 30
MYSTERY STRIPS 30
MPRIME STRIPS 35

IPC2 (AIPS 2000) BLOCKSWORLD STRIPS 35
FREECELL STRIPS 60
LOGISTICS STRIPS 28
MICONIC-STRIPS STRIPS 150
MICONIC-SIMPLEADL ADL 150
MICONIC-FULLADL ADL 150
SCHEDULE ADL 150

IPC3 (AIPS 2002) DEPOT STRIPS 22
DRIVERLOG STRIPS 20
FREECELL STRIPS 20
ROVERS STRIPS 20
SATELLITE STRIPS 20
ZENOTRAVEL STRIPS 20

IPC4 (ICAPS 2004) AIRPORT STRIPS 50
PROMELA-OPTICALTELEGRAPH PDDL2.2 48
PROMELA-PHILOSOPHERS PDDL2.2 48
PIPESWORLD-NOTANKAGE STRIPS 50
PIPESWORLD-TANKAGE STRIPS 50
PSR-SMALL STRIPS 50
PSR-MIDDLE PDDL2.2 50
PSR-LARGE PDDL2.2 50
SATELLITE STRIPS 36

Figure 21: Planning domains of the first four international planning competitions.
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much larger and hence likely more difficult to solve. We apply the formulation vs. encoding view
more strictly and thus only consider one PSR-MIDDLE domain and one domain for each of the two
PROMELA variants, PROMELA-PHILOSOPHERS and PROMELA-OPTICALTELEGRAPH.

Of the IPC1 benchmark set, all tasks are solvable except for 11 MYSTERY instances. Of the
IPC2 benchmark set, all tasks are solvable except for 11 MICONIC-FULLADL instances. All
IPC3 benchmarks are solvable. For IPC4, we have not checked all instances of the PIPESWORLD-
TANKAGE domain, but we assume that all are tasks are solvable.

If run in any of the heuristic search modes, Fast Downward proves the unsolvability of the
unsolvable MYSTERY and MICONIC-FULLADL tasks by using the dead-end detection routine de-
scribed in our earlier article on the causal graph heuristic (Helmert, 2004), or in some cases in the
MICONIC-FULLADL domain by exhaustively searching all states with a finite FF heuristic. Of
course, if an unsolvable task is proved unsolvable by the planner, we report this as a “successfully
solved” instance in the experimental results.

7.2 Experimental Setup

As discussed in Section 6, there are eleven possible configurations of Fast Downward’s search
component. However, not all of them are equally reasonable. For example, if we use FF’s helpful
actions, it would seem wasteful not to use the FF heuristic estimate, since these two are calculated
together. Therefore, for the greedy best-first search setup, we exclude configurations where FF
helpful actions are always computed. For the multi-heuristic best-first search setup, we exclude
configurations where only one type of preferred operators is considered, but not the other, since this
would seem to be a very arbitrary choice. This leaves us with six different configurations of the
planner:

1. G: Use greedy best-first search without preferred operators.

2. G + P: Use greedy best-first search with helpful transitions as preferred operators.

3. G + P+: Use greedy best-first search with helpful transitions as preferred operators. Use
helpful actions as preferred operators in states with no helpful transitions.

4. M: Use multi-heuristic best-first search without preferred operators.

5. M + P: Use multi-heuristic best-first search with helpful transitions and helpful actions as
preferred operators.

6. F: Use focused iterative-broadening search.

We apply each of these planner configurations to each of the 1442 benchmark tasks, using a
computer with a 3.066 GHz Intel Xeon CPU — the same machine that was used at IPC4 — and set
a memory limit of 1 GB and a timeout of 300 seconds.

To compare Fast Downward to the state of the art, we try to solve each benchmark with the
best-performing planners from the literature. Unfortunately, this involves some intricacies: some
planners are not publicly available, and others only cover a restricted subset of PDDL2.2. For the
main experiment, we thus partition the benchmark domains into three sets depending on which
planners are available for comparison.
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Domain Task Configuration Preprocessing Search
FREECELL (IPC2) probfreecell-10-1 M + P 9.30 s 298.64 s
GRID prob05 M 10.04 s 291.01 s
MPRIME prob14 M 22.38 s 291.67 s
PSR-LARGE p30-s179-n30-l3-f30 G + P 43.43 s 265.29 s
SATELLITE (IPC4) p33-HC-pfile13 M + P 180.74 s 169.09 s

Figure 22: Tasks which could be solved by some configuration of Fast Downward with a search
timeout of 300 seconds, but not with a total processing timeout of 300 seconds. The
column “preprocessing” shows the total time for translation and knowledge compilation.

7.3 Translation and Knowledge Compilation vs. Search

Of course, the results we report for Fast Downward include the time spent in all three components
of the planner: translation, knowledge compilation, and search. Therefore, in the following presen-
tation of results, we only consider a task solved if the total processing time is below 300 seconds.
However, we have also investigated which tasks can be solved with a timeout of 300 seconds for the
search component alone, allowing the other components to use an arbitrary amount of resources. It
turns out that this only makes a difference in five cases, most of which could have been solved in a
total time below 310 seconds (Fig. 22). Only in one of these five cases, a SATELLITE instance of
exorbitant size, did search take less time than the other two phases combined. These results show
that the search component is the only time-critical part of Fast Downward in practice. Therefore,
we do not report separate performance results for the individual components.

7.4 STRIPS Domains from IPC1–3

Let us now present the results of the main experiment. We abstain from listing runtimes for individ-
ual planning tasks due to the prohibitively large amount of data. These are available as an electronic
appendix to this article.8 Instead, we report the following information:

• Tables showing the number of tasks not solved by each planner within the 300 second timeout.
Here, we present individual results for each domain.

• Graphs showing the number of tasks solved in a given time by each planner. Here, we do not
present separate results for each domain, as this would require too many graphs.

We do not discuss plan lengths; our observations in this regard are similar to those made for the
original implementation of the causal graph heuristic (Helmert, 2004).

Fig. 23 shows the number of unsolved tasks for each of the STRIPS domains from IPC1–3.
Figs. 24 and 25 show the number of tasks solved by each planner within a given time bound between
0 and 300 seconds. In addition to the six configurations of Fast Downward under consideration, the
table includes four other columns.

Under the heading “Any”, we include results for a hypothetical meta-planner that guesses the
best of the six configuration of Fast Downward for each input task and then executes Fast Downward

8. http://www.jair.org/
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Domain #Tasks G G+P G+P+ M M+P F Any CG FF LPG

BLOCKSWORLD 35 0 0 0 0 0 17 0 0 4 0
DEPOT 22 12 13 13 12 8 11 7 14 3 0
DRIVERLOG 20 2 0 0 1 0 1 0 3 5 0
FREECELL (IPC2) 60 4 4 12 11 12 40 3 2 3 55
FREECELL (IPC3) 20 0 0 5 1 2 14 0 0 2 19
GRID 5 1 2 1 1 0 4 0 1 0 1
GRIPPER 20 0 0 0 0 0 0 0 0 0 0
LOGISTICS (IPC1) 35 1 0 0 4 0 26 0 0 0 4
LOGISTICS (IPC2) 28 0 0 0 0 0 0 0 0 0 0
MICONIC-STRIPS 150 0 0 0 0 0 0 0 0 0 0
MOVIE 30 0 0 0 0 0 0 0 0 0 0
MYSTERY 30 1 2 1 0 0 13 0 1 12 15
MPRIME 35 0 0 0 2 0 14 0 1 3 7
ROVERS 20 2 0 0 0 0 2 0 3 0 0
SATELLITE (IPC3) 20 1 0 0 0 0 6 0 0 0 0
ZENOTRAVEL 20 0 0 0 0 0 0 0 0 0 0

Total 550 24 21 32 32 22 148 10 25 32 101

Figure 23: Number of unsolved tasks for the STRIPS domains from IPC1, IPC2, and IPC3.
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Figure 24: Number of tasks solved vs. runtime for the STRIPS domains from IPC1, IPC2 and IPC3.
This graph shows the results for the various configurations of Fast Downward.
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Figure 25: Number of tasks solved vs. runtime for the STRIPS domains from IPC1, IPC2 and IPC3.
This graph shows the results for CG, FF and LPG and the hypothetical “Any” planner
which always chooses the best configuration of Fast Downward. The result for greedy
best-first search with helpful transitions is repeated for ease of comparison with Fig. 24.
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with this setting. Under the heading “CG”, we report the results for our first implementation of the
causal graph heuristic (Helmert, 2004).9 Finally, “FF” and “LPG” refer to the well-known planners
(Hoffmann & Nebel, 2001; Gerevini et al., 2003) which won the fully-automated tracks of IPC2
and IPC3. They were chosen for comparison on this benchmark set because they showed the best
performance by far of all publicly available planners we experimented with. For LPG, which uses a
randomized search strategy, we attempted to solve each task five times and report the median result.

The results show excellent performance of Fast Downward on this set of benchmarks. Com-
pared to CG, which was already shown to solve more tasks than FF and LPG on this benchmark set
(Helmert, 2004), we get another slight improvement for half of the planner configurations. One of
the configurations, multi-heuristic best-first search using preferred operators, solves all benchmarks
in all domains except DEPOT and FREECELL. Even more importantly, the number of tasks not
solved by any of the Fast Downward configurations is as small as 10. Note that the planning com-
petitions typically allowed a planner to spend 30 minutes on each task; under these time constraints,
we could allocate five minutes to each of the six configurations of Fast Downward, getting results
which are at least as good as those reported for the “Any” planner. Results might even be better
under a cleverer allocation scheme.

Even the configuration using focused iterative-broadening search performs comparatively well
on these benchmarks, although it cannot compete with the other planners. Not surprisingly, this
version of the planner has difficulties in domains with many dead ends (FREECELL, MYSTERY,
MPRIME) or where goal ordering is very important (BLOCKSWORLD, DEPOT). It also fares com-
paratively badly in domains with very large instances, namely LOGISTICS (IPC1) and SATELLITE.
The reader should keep in mind that FF and LPG are excellent planning systems; of all the other
planners we experimented with, including all those that were awarded prizes at the first three plan-
ning competitions, none solved more benchmarks from this group than focused iterative-broadening
search.

The one domain that proves quite resistant to Fast Downward’s solution attempts in any config-
uration is DEPOT. As we already observed in the initial experiments with the causal graph heuristic
(Helmert, 2004), we believe that one key problem here is that Fast Downward, unlike FF, does not
use any goal ordering techniques, which are very important in this domain. The fact that the domain
includes a BLOCKSWORLD-like subproblem is also problematic, as it gives rise to very dense causal
graphs as we demonstrated in Section 5.2.3.

7.5 ADL Domains from IPC1–3

Second, we present results for the ADL domains of the first three planning competitions. This is a
much smaller group than the previous, including only four domains. This time, we cannot consider
CG or LPG, since neither CG nor the publicly available version of LPG supports ADL domains.
Therefore, we compare to FF exclusively. Again, we report the number of unsolved tasks in each
domain (Fig. 26) and present graphs showing how quickly the tasks are solved (Figs. 27 and 28).

These results do not look as good as for the first group of domains. Results in both MICONIC

domains are good, even improving on those of FF. However, greedy best-first search performs very
badly in the ASSEMBLY domain, and all configurations perform badly in the SCHEDULE domain.

9. Apart from missing support for ADL and axioms, CG is very similar to Fast Downward using greedy best-first search
and no preferred operators (configuration G). The translation and knowledge compilation components are essentially
identical. The older search component mainly differs from Fast Downward in that it does not use deferred heuristic
evaluation.
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Domain #Tasks G G+P G+P+ M M+P F Any FF

ASSEMBLY 30 28 27 25 3 0 30 0 0
MICONIC-SIMPLEADL 150 0 0 0 0 0 0 0 0
MICONIC-FULLADL 150 9 8 9 9 8 90 6 12
SCHEDULE 150 134 93 93 132 28 113 25 0
Total 480 171 128 127 144 36 233 31 12

Figure 26: Number of unsolved tasks for the ADL domains from IPC1, IPC2 and IPC3.
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Figure 27: Number of tasks solved vs. runtime for the ADL domains from IPC1, IPC2 and IPC3.
This graph shows the results for the various configurations of Fast Downward.
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Figure 28: Number of tasks solved vs. runtime for the ADL domains from IPC1, IPC2 and IPC3.
This graph shows the results for FF and the hypothetical “Any” planner which always
chooses the best configuration of Fast Downward. The result for multi-heuristic best-
first search with preferred operators is repeated for ease of comparison with Fig. 27.

238



THE FAST DOWNWARD PLANNING SYSTEM

Currently, we have no good explanation for the ASSEMBLY behaviour. For the SCHEDULE do-
main, the weak performance again seems to be related to missing goal ordering techniques: In
many SCHEDULE tasks, several goals are defined for the same object which can only be satisfied
in a certain order. For instance, for objects that should be cylindrical, polished and painted, these
three goals must be satisfied in precisely this order: making an object cylindrical reverts the effects
of polishing and painting, and polishing reverts the effect of painting. Not recognising these con-
straints, the heuristic search algorithm assumes to be close to the goal when an object is already
polished and painted but not cylindrical, and is loathe to transform the object into cylindrical shape
because this would undo the already achieved goals. With some rudimentary manual goal ordering,
ignoring painting goals until all other goals have been satisfied, the number of tasks not solved by
multi-heuristic best-first search with preferred operators drops from 28 to 3. These three failures
appear to be due to the remaining ordering problems with regard to cylindrical and polished objects.

7.6 Domains from IPC4

Third and finally, we present results for the IPC4 domains. Here, we do not compare to FF: for these
benchmarks, FF does not perform as well as the best planners from the competition. Besides, several
of the IPC4 competitors are extensions of FF or hybrids using FF as part of a bigger system, so FF-
based planning is well-represented even if we limit our attention to the IPC4 planners. For this
comparison, we chose the four most successful competition participants besides Fast Downward,
namely LPG-TD, SGPlan, Macro-FF and YAHSP (cf. the results in Hoffmann & Edelkamp, 2005).
Similar to the previous two experiments, we report the number of unsolved tasks in each domain
(Fig. 29) and present graphs showing how quickly the tasks are solved (Figs. 30 and 31).

Fast Downward is competitive with the other planners across domains, and better than all others
in some. The PIPESWORLD domains are the only ones in which any of the other planners is notice-
ably better than the two competition versions of Fast Downward. This is the case for YAHSP in both
PIPESWORLD domain variants and for SGPlan in PIPESWORLD-NOTANKAGE. The PIPESWORLD

domain is not very hierarchical in nature; this might be a domain where the decomposition ap-
proach of the causal graph heuristic is not very appropriate. The results of the heuristic search
configurations in the PROMELA-OPTICALTELEGRAPH domain are extremely bad and require fur-
ther investigation.

Interestingly, focused iterative-broadening search performs very well on some of the bench-
marks from this suite. One of the reasons for this is that in many of the tasks of the IPC4 suite, there
are many individual goals which are easy to serialize and can be solved mostly independently.10

Comparing the configuration G to G + P+ and especially M to M + P, we also observe that us-
ing preferred operators is very useful for these benchmarks, even more so than in the two previous
experiments.

As a final remark, we observe that if we implemented the “Any” meta-planner by calling the six
Fast Downward configurations in a round-robin fashion, we would obtain a planning system that
could solve all but 54 of the IPC4 benchmarks within a 6 ·5 = 30 minute timeout. This is almost on
par with the top performer of IPC4, Fast Diagonally Downward, which solved all but 52 of the IPC4
benchmarks under the same timeout. Thus, this is a benchmark set for which exploring different
planner configurations definitely pays off.

10. We have devised an experiment which shows that if this property is artificially violated by a simple goal reformulation,
the performance of the algorithm degrades quickly; see the electronic appendix for details.
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Domain #Tasks G G+P G+P+ M M+P F Any

AIRPORT 50 28 30 17 18 14 0 0
PIPESWORLD-NOTANKAGE 50 24 25 23 14 7 10 7
PIPESWORLD-TANKAGE 50 36 36 36 34 17 34 14
PROMELA-OPTICALTELEGRAPH 48 48 47 48 47 46 13 13
PROMELA-PHILOSOPHERS 48 0 0 0 16 0 21 0
PSR-SMALL 50 0 0 0 0 0 1 0
PSR-MIDDLE 50 0 0 0 0 0 22 0
PSR-LARGE 50 22 20 22 23 22 39 20
SATELLITE (IPC4) 36 8 0 0 8 3 22 0
Total 432 166 158 146 160 109 162 54

Domain FD FDD LPG-TD Macro-FF SGPlan YAHSP

AIRPORT 0 0 7 30 6 17
PIPESWORLD-NOTANKAGE 11 7 10 12 0 0
PIPESWORLD-TANKAGE 34 19 29 29 20 13
PROMELA-OPTICALTELEGRAPH 22 22 37 31 29 36
PROMELA-PHILOSOPHERS 0 0 1 36 0 19
PSR-SMALL 0 0 2 50 6 3
PSR-MIDDLE 0 0 0 19 4 50
PSR-LARGE 22 22 50 50 39 50
SATELLITE (IPC4) 0 3 1 0 6 0
Total 89 73 137 257 110 188

Figure 29: Number of unsolved tasks for the IPC4 domains. Results for the various configurations
of Fast Downward are listed in the upper part, results for the competition participants
in the lower part. “FD” and “FDD” denote the versions of Fast Downward that partic-
ipated in IPC4 under the names “Fast Downward” and “Fast Diagonally Downward”
(cf. Section 6).

240



THE FAST DOWNWARD PLANNING SYSTEM

432 (100%)

389 (90%)

346 (80%)

302 (70%)

259 (60%)

216 (50%)

173 (40%)

130 (30%)

86 (20%)

43 (10%)

0s 50s 100s 150s 200s 250s 300s

S
ol

ve
d 

Ta
sk

s

Search Time

PSfrag replacements

FDD (Fast Downward)

FD (Fast Downward)

YAHSP

Macro-FF

SGPlan

LPG-TD

CG

FF

LPG

Any (Fast Downward)

G + P+ (Fast Downward)
G + P (Fast Downward)

G (Fast Downward)

M + P (Fast Downward)

M (Fast Downward)
F (Fast Downward)

Figure 30: Number of tasks solved vs. runtime for the IPC4 domains. This graph shows the results
for the various configurations of Fast Downward.
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Figure 31: Number of tasks solved vs. runtime for the IPC4 domains. This graph shows the results
for the hypothetical “Any” planner which always chooses the best configuration of Fast
Downward, the competition configurations of Fast Downward and the best four other
participants.
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7.7 Conclusions from the Experiment

How can we interpret these experimental results? Our first conclusion is that Fast Downward is
clearly competitive with the state of the art. This is especially true for the configuration using
multi-heuristic best-first search with preferred operators (M+P), which outperforms all competing
planning systems both on the set of STRIPS domains from IPC1–3 and on the domains from IPC4.
If it were not for the problems in the SCHEDULE domain, the same would be true for the remaining
group of benchmarks, the ADL domains from IPC1–3.

With regard to the second objective of the investigation, evaluating the relative strengths of the
different planner configurations, the M+P configuration emerges as a clear-cut winner. In 23 out of
29 domains, no other configuration solves more tasks, and unlike the other configurations, there is
only one domain (PROMELA-OPTICALTELEGRAPH) in which it performs very badly. We conclude
that both multi-heuristic best-first search and the use of preferred operators are promising extensions
to heuristic planners.

This is particularly true for preferred operators. Indeed, after the M+P configuration, the two
variants of greedy best-first search with preferred operators show the next best overall performance,
both in terms of the number of domains where they are among the top performers and in terms of
the total number of tasks solved. Comparing G to G+P, there are ten domains in which the variant
using preferred operators solves more tasks than the one not using them; the opposite is true in five
domains. Comparing M to M+P, the difference is even more striking, with the preferred operator
variant outperforming the other in fifteen domains, while being worse in two (in both of which it
only solves one task less). These are convincing arguments for the use of preferred operators.

8. Summary and Discussion

Before we turn to discussion, let us briefly summarize the contributions of this article. As a moti-
vating starting point, we explained that planning tasks often exhibit a simpler structure if expressed
with multi-valued state variables, rather than the traditional propositional representations. We then
introduced Fast Downward, a planning system based on the idea of converting tasks into a multi-
valued formalism and exploiting the causal information underlying such encodings.

Fast Downward processes PDDL planning tasks in three stages. We skipped the first of these
stages, translation, which automatically transforms a PDDL task into an equivalent multi-valued
planning task with a nicer causal structure. We explained the inner workings of the second stage,
knowledge compilation, demonstrating in depth what kind of knowledge the planner extracts from
the problem representation, discussing causal graphs, domain transition graphs, successor gen-
erators and axiom evaluators. During our discussion of Fast Downward’s search component, we
introduced its heuristic search algorithms, which use the technique of deferred heuristic evaluation
to reduce the number of states for which a heuristic goal distance estimate must be computed. In
addition to greedy best-first search, Fast Downward employs the multi-heuristic best-first search
algorithm to usefully integrate the information of two heuristic estimators, namely the causal graph
heuristic and FF heuristic. Both heuristic search algorithms can utilize preference information
about operators. We also introduced Fast Downward’s experimental focused iterative-broadening
search algorithm, which is based on the idea of pruning the set of operators to only consider those
successor states which are likely to lead towards a specific goal.

We thus tried to give a complete account of the Fast Downward planning system’s approach to
solving multi-valued planning tasks, including its motivation, architecture, and algorithmic founda-
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tions. In the previous section, we demonstrated its empirical behaviour, showing good performance
across the whole range of propositional benchmarks from the previous planning competitions.

Among all the novel algorithms and search enhancements discussed in this article, there are two
aspects of Fast Downward which we consider of central importance and which we would like to
emphasize. One of them is the use of multi-valued state variables for PDDL-style planning. We
believe that multi-valued representations are much more structured and hence much more amenable
to automated reasoning — be it for the purposes of heuristic evaluation, problem decomposition,
or other aspects of planning such as goal ordering or extraction of landmarks. The other central
idea is the use of hierarchical decompositions within a heuristic planning framework. Hierarchical
approaches to domain-independent planning have a considerable potential, but since the work of
Knoblock (1994) and Bacchus and Yang (1994), little work has been published. With Fast Down-
ward, we hope to renew interest in this area, which we believe to be a very promising ground for
further advances in automated planning.

For the future, there are several aspects of Fast Downward that we would like to investigate
further. First, we intend to experiment with other search techniques along the lines of focused
iterative-broadening search, which emphasize heuristically evaluating operator usefulness rather
than heuristically evaluating states.

Second, we would like to come up with an efficient heuristic for multi-valued planning tasks
which does not require pruning cycles of the causal graph. Initial experiments in this direction have
shown that it is difficult to achieve this goal without losing the performance of Fast Downward’s
heuristic estimator, but perhaps better heuristic accuracy can outweigh worse per-state performance
in many cases.

Third, we want to investigate in how far the performance of the planner could be improved
by encoding some domains differently. In some cases, merging a set of state variables which are
closely interrelated into a single state variable whose domain is the product of the domains of the
original state variables might be beneficial. Also, we want to test if hand-tailored encodings lead to
better performance than automatically derived ones, and if so, how large the performance gap is.

Fourth and finally, we would like to evaluate the behaviour of the causal graph heuristic in
specific planning domains both empirically and theoretically, following Hoffmann’s work on the FF
heuristic (Hoffmann, 2001, 2002, 2005). Hopefully, this will give some indication when we can
expect good performance from the causal graph heuristic and when it is advisable to look for other
approaches.
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