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Abstract

Code optimization and high level synthesis can be posed as constraint satisfaction and
optimization problems, such as graph coloring used in register allocation. Graph coloring is
also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and
scheduling. Provably optimal solutions may be desirable for commercial and defense ap-
plications. Additionally, for applications such as register allocation and code optimization,
naturally-occurring instances of graph coloring are often small and can be solved optimally.
A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 In-
teger Linear Programming (ILP) suggests generic problem-reduction methods, rather than
problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2)
heuristics tend to ignore structure, and (3) many relevant problems are provably inapprox-
imable.

Problem reductions often lead to highly symmetric SAT instances, and symmetries are
known to slow down SAT solvers. In this work, we compare several avenues for symme-
try breaking, in particular when certain kinds of symmetry are present in all generated
instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic
improvement in SAT solvers and automatically benefit from future progress. We can
use a variety of black-box SAT solvers without modifying their source code because our
symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry
breaking predicates (SBPs) during pre-processing.

An important result of our work is that among the types of instance-independent SBPs
we studied and their combinations, the simplest and least complete constructions are the
most effective. Our experiments also clearly indicate that instance-independent symmetries
should mostly be processed together with instance-specific symmetries rather than at the
specification level, contrary to what has been suggested in the literature.

1. Introduction

Detecting and using problem structure, such as symmetries, can often be very useful in
accelerating the search for solutions of constraint satisfaction problems (CSPs). This is
particularly true for algorithms which perform exhaustive searches and benefit from prun-
ing the search tree. This work conducts a theoretical and empirical study of the impact of
breaking structural symmetries in 0-1 ILP reductions of the exact graph coloring problem
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which has applications in a number of fields. For example, in compiler design, many tech-
niques for code optimization and high-level synthesis operate with relatively few objects at
a time. Graph coloring used for register allocation during program compilation (Chaitin,
Auslander, Chandra, Cocke, Hopkins, & Markstein, 1981) is limited by small numbers of
registers in embedded processors as well as by the number of local variables and virtual
registers. Graph coloring is also relevant to AI applications such as planning, scheduling,
and map coloring. Recent work on graph coloring in AI has included algorithms based on
neural networks (Jagota, 1996), evolutionary algorithms (Galinier & Hao, 1999), scatter
search (J.-P. Hamiez, 2001) and several other approaches discussed in Section 2. While
many of these search procedures are heuristic, our work focuses on exact graph coloring,
which is closely related to several useful combinatorial problems such as maximal inde-
pendent set and vertex cover. We seek provably optimal solutions because they may be
desirable in commercial and defense applications for competitive reasons, and can often be
found. Our work focuses on solving exact graph coloring by reduction to 0-1 ILP. While
the idea of solving NP − complete problems by reduction is well-known, it is rarely used in
practice because algorithms developed for “standard” problems, such as SAT, may not be
competitive with domain-specific techniques that are aware of problem structure. However,
many applications imply problem-specific constraints and non-trivial objective functions.
These extensions may upset heuristics for standard problems. Heuristics, particularly those
based on local search, often fail to use structure in problem instances (Prestwich, 2002)
and are inefficient when used with problem reductions. In contrast, exact solvers based on
branch-and-bound and back-tracking tend to adapt to new constraints and can be applied
through problem reduction. There is a growing literature on handling structure in optimal
solvers (Aloul, Ramani, Markov, & Sakallah, 2003; Crawford, Ginsberg, Luks, & Roy, 1996;
Huang & Darwiche, 2003), and our work falls into this category as well.

The NP-spec project (Cadoli, Palopoli, Schaerf, & Vasileet, 1999) offers a framework
for formulating a wide range of combinatorial problems and automatically reducing their
instances to instances of Boolean satisfiability. This approach is attractive because it circum-
vents problem-specific solvers and leverages recent breakthroughs in Boolean satisfiability
(Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001). However, this approach remains unex-
plored in practice, possibly because the efficiency of problem-solving may be reduced when
domain-specific structure is lost during problem reductions. This drawback is addressed
by recent work on the detection of structure, particularly symmetry, in SAT and 0-1 ILP
instances in order to accelerate exact solvers (Crawford et al., 1996; Aloul et al., 2003;
Aloul, Ramani, Markov, & Sakallah, 2004). In these papers, symmetries in a SAT/0-1
ILP instance are detected by reduction to graph automorphism, i.e. the formula is rep-
resented by a graph and the automorphism problem for that graph is solved using graph
automorphism software packages (McKay, 1990; Darga, Liffiton, Sakallah, & Markov, 2004).
Until recently, this type of symmetry detection was frequently inefficient because solving
the automorphism problem for large graphs can be time-consuming. However, more re-
cent automorphism software (Darga et al., 2004) has removed this bottleneck to a large
extent. Moreover, adding simple symmetry breaking predicates as new constraints signifi-
cantly speeds up exact SAT solvers (Aloul et al., 2003). This work can be viewed as a case
study of symmetry breaking in problem reductions, as we focus on graph coloring and its
variants that can be reduced to Boolean satisfiability and 0-1 ILP. Our main goals are to (i)
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accelerate optimal solving of graph coloring instances, and (ii) compare different strategies
for breaking instance-independent symmetries. There are two distinct sources of symmetries
in graph-coloring instances: (i) colors can be arbitrarily permuted (instance-independent
symmetries), and (ii) some graphs may be invariant under certain permutations of vertices
(instance-dependent symmetries). Previous work (Crawford et al., 1996; Aloul et al., 2003,
2004) deals only with instance-dependent symmetries in SAT and 0-1 ILP instances. Sym-
metries are first detected by reduction to graph automorphism and then broken by adding
symmetry breaking predicates (SBPs) to the formulation. The advantage of such a strat-
egy is that every instance-independent symmetry is also instance-dependent, whereas the
reverse does not hold. Symmetries that exist due to problem formulation appear in every
instance of the problem, in addition to symmetries that exist due to specific parameter
values for an instance. Given that there may be many instance-specific symmetries, one
may process all symmetries at once using publicly available symmetry processing packages
such as Shatter (Aloul et al., 2003; Aloul, Markov, & Sakallah, 2003). Alternatively, one
may add symmetry breaking predicates for instance-independent symmetries early, hoping
to speed-up the processing of remaining symmetries. This type of symmetry breaking has
not been discussed in earlier work (Aloul et al., 2003, 2003), and in this paper we study its
utility for the graph coloring problem.

Our work deals with symmetries of problem and instance descriptions; we distinguish
(i) symmetries of generic problem specifications from (ii) symmetries of problem-instance
data. The former symmetries translate to the latter but not the other way around —
an example from graph coloring is given by color permutations versus automorphisms of
specific graphs. While both types of symmetries can be detected by solving the graph auto-
morphism problem, symmetries in specifications can often be captured manually, whereas
capturing symmetries in problem instances may require large-scale computation and non-
trivial software. Indeed, when specification-level symmetries are instantiated, the size of
their support (the number of objects moved) typically increases dramatically. For example,
color permutations in graph coloring should be simultaneously applied to every vertex of a
graph in question. Detecting symmetries with larger support seems like a waste of compu-
tational effort. To this end, recent work on breaking symmetries in specifications (Cadoli
& Mancini, 2003) prefers instance-independent techniques and breaks symmetries only at
the specification level. This approach is particularly relevant with constraint solvers and
languages that process problem specifications prior to seeing actual problem instances and
can amortize the symmetry-detection effort. Also, in a more general setting, using instance-
independent symmetry breaking does not rule out applying redundant (or complementary)
instance-specific techniques at a later stage.

Until recently automatic symmetry detection had been a serious bottleneck in handling
symmetries. For example, if graph automorphism is solved using the program Nauty

(McKay, 1990), detecting symmetries often can take longer than constraint solving without
symmetry breaking. This was observed for microprocessor verification SAT instances by
Aloul et. al. in 2002 (Aloul et al., 2003). Therefore, detecting symmetries early and
representing them in a more structured way appears attractive, especially given that this
may potentially increase the efficiency of symmetry-breaking. However, the symmetry-
detection bottleneck has recently been eliminated in many applications with the software
tool Saucy (Darga et al., 2004) that often finds symmetries of practical graphs many times
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faster than Nauty. This development undermines, to some extent, the potential benefits of
symmetry processing at the specification level and puts the spotlight on symmetry-breaking.
To that end, SBPs added in different circumstances may have different efficiency, and while
it is unclear a priori which approach is more successful, the differences in performance
may be significant. Since SBPs appear to the solver as additional constraints, they may
either speed up or frustrate the solver (the latter effect is clearly visible in our experiments
with CPLEX). Outcomes of practical experiments are also affected by recent dramatic
improvements in the efficiency of symmetry-breaking predicates (Aloul et al., 2003, 2004).
While it seems difficult to justify any particular expectation for empirical performance,
we are fortunate to observe clear trends in experimental data presented in Section 4 and
summarize them with simple rules.

While we focus on graph coloring instances, our techniques are immediately applicable
to related CSP problems, e.g., those produced by adding new types of constraints that can
be easily expressed in SAT or 0-1 ILP when graph coloring is converted to those generic
problems. We also expect that our conclusions about symmetry-breaking carry over to other
CSPs that can be economically reduced to SAT and 0-1 ILP, e.g., maximum independent
set, minimum dominating set, etc. Another advantage of our approach is being able to use a
variety of existing and future SAT and 0-1 ILP solvers without modifying their source code.
Unfortunately, this precludes the use of dynamic symmetry-breaking that would require
modifying the source code and may adversely affect performance by disturbing the fragile
balance between the amount of reasoning and searching performed by modern SAT solvers.
Specifically, heuristics for variable ordering and decision selection may be affected, as well
as the recording of learned conflict clauses (nogoods).

The main contributions of this work are listed below.

• Using the symmetry breaking flow for pseudo-Boolean (PB) formulas described by
Aloul et. al in 2004 (Aloul et al., 2004), we detect and break symmetries in DIMACS
graph coloring benchmarks expressed as instances of 0-1 ILP. We show that instance-
dependent symmetry breaking enables many medium-sized instances to be optimally
solved in reasonable time on commodity PCs

• We propose instance-independent techniques for breaking symmetries during prob-
lem formulation, assess their relative strength and completeness, and evaluate them
empirically using well-known academic and commercial tools

• We show empirically that instance-dependent techniques are, in general, more effective
than instance-independent symmetry breaking for the benchmarks in question. In
fact, only the simplest and least complex instance-independent SBPs are competitive

The remaining part of the paper is organized as follows. Section 2 covers background on
graph coloring, SAT and 0-1 ILP, as well as previous work on symmetry breaking. Instance-
independent symmetry breaking predicates are discussed in Section 3. Section 4 presents
our empirical results and Section 5 concludes the paper. The Appendix gives detailed results
for the queens family of instances.
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2. Background and Previous Work

This section discusses problem definitions and applications of some existing algorithms for
exact graph coloring. We also discuss previous work on symmetry breaking for SAT and
0-1 ILP in some detail.

2.1 Graph Coloring

Given an undirected graph G(V,E), a vertex coloring of the graph is an assignment of a
label (color) to each node such that the labels on adjacent nodes are different. A minimum
coloring uses the smallest possible number of colors, known as the chromatic number of
a graph. The decision version of graph coloring (K−coloring) asks whether vertices in a
graph can be colored using ≤ K colors for a given K.

A clique of an undirected graph G(V,E) is a set of mutually adjacent vertices in the
graph. The maximum clique problem consists of seeking a clique of maximal size, i.e.,
a clique with at least as many vertices as any other clique in the graph. The maximum
clique and graph coloring problems are closely related. Specifically, the max-clique size
is a lower bound on the chromatic number of the graph. Over the years, a number of
different algorithms for solving graph coloring have been developed, because of its funda-
mental importance in computer science. These algorithms fall into three broad categories:
polynomial-time approximation schemes, optimal algorithms, and heuristics. We briefly
discuss work in each of these categories below. There are a number of online resources on
graph coloring (Trick, 1996; Culberson, 2004) that offer more detailed bibliographies.

As far as approximation schemes are concerned, the most common technique used is
successive augmentation. In this approach a partial coloring is found on a small number of
vertices and this is extended vertex by vertex until the entire graph is colored. Examples
include the algorithms by Leighton (Leighton, 1979) for large scheduling problems, and by
Welsh and Powell (Welsh & Powell, 1967) for time-tabling. More recent work has attempted
to tighten the worst-case bounds on the chromatic number of the graph. The algorithm
providing the currently best worst-case ratio (number of colors used divided by optimal
number) is due to Haldorsson (Haldorsson, 1990), and guarantees a ratio of no more than

O
(

n(log log n)2

(log n)3

)

, where n is the number of vertices. General heuristic methods that have

been tried include simulated annealing (Chams, Hertz, & Werra, 1987; Aragon, Johnson,
McGeoch, & Schevon, 1991) and tabu search (Hertz & Werra, 1987). A well-known heuristic
that is still widely used is the DSATUR algorithm by Brelaz (Brelaz, 1979) which colors
vertices according to their saturation degree. The saturation degree of a vertex is the number
of different colors to which it is adjacent. The DSATUR heuristic repeatedly picks a vertex
with maximal saturation degree and colors it with the lowest-numbered color possible.
This heuristic is optimal for bipartite graphs. Algorithms for finding optimal colorings
are frequently based on implicit enumeration, and are discussed in more detail later in
this section. Both the graph coloring and max-clique problems are NP-complete (Garey &
Johnson, 1979) and even finding near-optimal solutions with good approximation guarantees
is NP-hard (Feige, Goldwasser, Lovasz, Safra, & Szege, 1991). The inapproximability of
graph coloring suggests that it may be more difficult to solve heuristically than, say, the
Traveling Salesman Problem for which Polynomial-Time Approximation Schemes (PTAS)
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are known for Euclidean and Manhattan graphs. For this and a number of other reasons,
we study optimal graph coloring and many application-derived instances that are solvable
in reasonable time. Several applications are outlined next.

Time-Tabling and Scheduling problems involve placing pairwise restrictions on jobs
that cannot be performed simultaneously. For example, two classes taught by the same fac-
ulty member cannot be scheduled in the same time slot. The problem has been studied in
previous work by Leighton (Leighton, 1979) and De Werra (Werra, 1985). More generally,
graph coloring is an important problem in Artificial Intelligence because of its close rela-
tionship to planning and scheduling. Several traditional AI techniques have been applied to
this problem, including parallel algorithms using neural networks (Jagota, 1996). Genetic
and hybrid evolutionary algorithms have also been developed, notably by Galinier et. al.
in 1999 (Galinier & Hao, 1999), in addition to more traditional optimization methodology,
such as scatter search (J.-P. Hamiez, 2001). There have also been studies of benchmarking
models for graph coloring, such as the recent work by Walsh (Walsh, 2001), which shows
that graphs with high vertex degrees are more likely to occur in real-world applications.

Register Allocation is a very active application of graph coloring. This problem
seeks to assign variables to a limited number of hardware registers during program execution.
Accessing variables in registers is much faster than fetching them from memory. However,
the number of registers is limited and is typically much smaller than the number of variables.
Therefore, multiple variables must be assigned to the same register. There are restrictions
on these assignments. Two variables conflict with each other if they are live at the same
time, i.e. one is used both before and after the other within a short period of time (for
instance, within a subroutine). The goal is to assign variables that do not conflict so as
to minimize the use of non-register memory. To formalize this, one creates a graph where
nodes represent variables and edges represent conflicts between variables. A coloring maps
to a conflict-free assignment, and if the number of registers exceeds the chromatic number,
a conflict-free register assignment exists (Chaitin et al., 1981).

Printed Circuit Board Testing (Garey & Johnson, 1979) involves the problem of
testing printed circuit boards (PCBs) for unintended short circuits (caused by stray lines of
solder). This gives rise to a graph coloring problem in which the vertices correspond to the
nets on board and there is an edge between two vertices if there is a potential for a short
circuit between the corresponding nets. Coloring the graph corresponds to partitioning the
nets into “supernets,” where the nets in each supernet can be simultaneously tested for
shorts against all other nets, thereby speeding up the testing process.

Radio frequency assignment for broadcast services in geographic regions (includ-
ing commercial radio stations, taxi dispatch, police and emergency services). The list of all
possible frequencies is fixed by government agencies, but adjacent geographic regions can-
not use overlapping frequencies. To reduce frequency assignment to graph coloring, each
geographic region needing K frequencies is represented with a K−clique, and all N × K

possible bipartite edges are introduced between two geographically adjacent regions needing
N and K frequencies respectively.

Other applications of graph coloring in circuit design and layout include circuit cluster-
ing, scheduling for signal flow graphs, and many others. Benchmarks from these applications
are not publicly available, and therefore do not appear in this paper. However, all the sym-
metry breaking techniques described here extend to instances from any application. The
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benchmarks we use here do include register allocation, n−queens, and several other appli-
cations discussed in more detail in Section 4. Empirically, we observe that many of the
instances in this paper can be optimally solved in reasonable time, especially when sym-
metry breaking is employed. Since this work deals with finding optimal solutions for graph
coloring, we discuss previous work on finding exact algorithms for this problem in some
detail.

The literature on exact graph coloring includes generic algorithms (Kubale & Jackowski,
1985) and specialized algorithms for a particular application, such as Chaitin’s register al-
location algorithm (Chaitin et al., 1981). At the moment, there does not appear to be a
comprehensive survey of techniques for this problem. However, online surveys (Trick, 1996;
Culberson, 2004) contain reasonably large bibliographies and even downloadable source
code for coloring algorithms in some cases. Published algorithms for finding optimal graph
colorings are mainly based on implicit enumeration. The algorithm proposed by Brown
(Brown, 1972) enumerates solutions for a given instance of graph coloring and checks each
solution for correctness and optimality. The algorithm introduces a special tree construc-
tion to avoid redundancy in enumerating solutions. The work by Brelaz (Brelaz, 1979)
improves upon this algorithm by creating an initial coloring based on some clique in the
graph and then considering assignments induced by this coloring. The work by Kubale and
Kusz (Kubale & Kusz, 1983) discusses the empirical performance of implicit enumeration
algorithms, and later work by Kubale and Jackowski (Kubale & Jackowski, 1985) augments
traditional implicit enumeration techniques with more sophisticated backtracking methods.

Our work deals with solving graph coloring by reduction to another problem, in this
case 0-1 ILP. This type of reduction has been discussed in the past, notably in the recent
work by Mehrotra and Trick (Mehrotra & Trick, 1996), which proposes an optimal coloring
algorithm which expresses graph coloring using ILP-like constraints. It relies on an auxiliary
independent set formulation, where each independent set in a graph is represented by a
variable. There can be prohibitively many variables but in practical cases this number may
be reduced by column generation, a method that first tries to solve a linear relaxation using
a subset of variables and then adds more where needed. This approach inherently breaks
problem symmetries, and thus rules out the use of SBPs as a way to speed up the search
process. Our ILP construction differs considerably from the one described above, since it
does not rely on an independent set formulation, but assigns colors to individual vertices by
using indicator variables. The construction is described in more detail later in this section.
Solving graph coloring by reduction allows exact solutions to be found by using SAT/0-1
ILP solvers as black boxes. Earlier work by Coudert (Coudert, 1997) demonstrated that
finding exact solutions for application-derived graph coloring benchmarks often takes no
longer than heuristic approaches, and that heuristic solutions may differ from the optimal
value by as much as 100%. Coudert (Coudert, 1997) proposes an algorithm that finds
exact graph coloring solutions by solving the max-clique problem. The algorithm uses
a technique called “q−color pruning”, which assigns colors to vertices and systematically
removes vertices that can be colored by q colors, where q is greater than a specified limit.
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2.2 Breaking Symmetries in CSPs

Several earlier works have addressed the importance of symmetry breaking in the search for
solutions of CSPs. It has been shown (Krishnamurthy, 1985) that symmetry facilitates short
proofs of propositions such as the pigeonhole principle, whereas pure-resolution proofs are
necessarily exponential in size. Finding such proofs is, of course, a very difficult problem,
but the performance of many CSP techniques can be lower-bounded by the best-case proof
size. A typical approach to use symmetries is to prevent a CSP solver from considering
redundant symmetric solutions. This is called symmetry-breaking and can be accomplished
by adding constraints, often called symmetry-breaking predicates (SBPs). Static symmetry-
breaking, such as the instance-independent constructions proposed in this work and the
instance-dependent predicates from the literature (Aloul et al., 2003; Crawford et al., 1996),
detects symmetries and adds SBPs during pre-processing and not when branching toward
possible solutions. The Symmetry Breaking by Dominance Detection (SBDD) procedure
described by Fahle in 2001 (Fahle, Schamberger, & Sellmann, 2001) detects symmetric
choice points during search. Each choice point generated by the search algorithm is checked
against previously expanded search nodes. If the same or an equivalent choice point has
been previously expanded, the choice point is not visited again. The global cut algorithm
proposed by Focacci and Milano (Focacci & Milano, 2001) records all nogoods found during
search whose symmetric images should be pruned. This set of nogoods, called the “global cut
seed” is used to generate global cut constraints that prune symmetric images for the entire
search tree, while ensuring that correctness of the original constraints is not violated. Later
work (Puget, 2002) has proposed improved methods for nogood recording. These works
do not offer a systematic strategy for symmetry detection - they either require symmetries
to be known or declared in advance, or record information during search that enables
symmetry detection. Our work outlines and implements a complete strategy to detect
and break symmetries automatically during pre-processing, so that a black-box solver can
be used during search. This context is broader than those that justify the development
of specialized solvers. On the other hand, our techniques do not conflict with dynamic
symmetry-breaking and some of our results can potentially be reused in that context.

A promising new partially-dynamic approach to symmetry-breaking, called Group Equiv-
alence (GE) trees is proposed by Roney et. al. (Roney-Dougal, Gent, Kelsey, & Linton,
2004). This work aims to reduce the per-node overhead associated with dynamic approaches.
A GE tree is constructed from a CSP with a symmetry group G such that the nodes of the
tree represent equivalence classes of partial assignments under the group. This approach is
illustrated by tracking value symmetries, i.e., simultaneous permutations of values in CSP
variables. The work also shows that GE trees empirically outperform several well-known
symmetry-breaking methodologies, such as SBDDs. In comparison, our work compares dif-
ferent ways to handle arbitrary compositions of variable and value symmetries (in graph
coloring, value symmetries are seen at the specification level, whereas variable symmetries
can only be seen in problem instances). To this end, our static techniques appear compat-
ible rather than competing with the use of GE trees. There have also been many symme-
try breaking approaches with particular relevance to graph coloring. Recent work by Gent
(Gent, 2001) proposes constraints that break symmetry between “indistinguishable values”,
but does not evaluate them empirically. Like the lowest-index ordering (LI) constraints pro-
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posed by us in Section 3, these constraints also use the pre-existing sequential numbering of
vertices in an instance of graph coloring to enforce distinctions between symmetric vertices.
The construction appears complex compared to alternative SBPs and not as effective in our
experiments as simpler constructions. Another related work is (Hentenryck, Agren, Flener,
& Pearson, 2003), which proposes a constant-time, constant-space algorithm for detect-
ing and breaking value symmetries in a class of CSPs that includes graph coloring. More
recently, Benhamou (Benhamou, 2004) discusses symmetry breaking for CSPs modeled us-
ing not-equals constraints (NECSP), and uses graph coloring as an illustrative example.
The paper defines a sufficient condition for symmetry such that certain symmetries can be
detected in linear time. The removal of these symmetries leads to considerable gains in
backtracking search algorithms for NECSPs. In general, our empirical results, reported in
Section 4, appear competitive with those for state-of-the-art dynamic approaches. However,
designing the world’s best graph-colorer is not the goal of our research. Instead, we focus
on more efficient problem reductions to SAT and 0-1 ILP by improving symmetry-breaking.
To ensure a broad applicability of our results, we treat SAT solvers as black boxes, and
perform a comprehensive comparison of static SBPs and report empirical trends. While
a more comprehensive comparison against existing graph coloring literature would be of
great value, making it rigorous, conclusive and revealing requires that the best static and
the best dynamic symmetry-breaking techniques are known. To this end, we speculate that
a more likely winner would be a hybrid. Additional major issues to be resolved include
the tuning of solvers to specific benchmarks (noted in the work by Kirovski and Potkon-
jak (Kirovski & Potkonjak, 1998), differences in experimental setup, different software and
hardware platforms, etc. Given that such a comparison is not completely in the scope of
our work, it is better delegated to a dedicated publication. However, to demonstrate that
our techniques are competitive with related work, we provide a comparison with the best
results from recent literature (Benhamou, 2004; Coudert, 1997) in Section 4.3.

2.3 SAT and 0-1 ILP

One can solve the decision version of graph coloring by reducing it to Boolean satisfiability,
and the optimization version by reduction to 0-1 ILP. The Boolean satisfiability (SAT)
problem involves finding an assignment to a set of 0-1 variables that satisfies a set of
constraints, called clauses, expressed in conjunctive normal form (CNF). A CNF formula
on n binary variables, x1, . . . , xn consists of a conjunction of clauses, ω1, . . . , ωm. A clause
consists of a disjunction of literals. A literal l is an occurrence of a Boolean variable or
its complement. The 0-1 ILP problem is closely related to SAT, and allows the use of
pseudo-Boolean (PB) constraints, which are linear inequalities with integer coefficients that
can be expressed in the normalized form (Aloul, Ramani, Markov, & Sakallah, 2002) of:
a1x1 + a2x2 + . . . anxn ≤ b where ai, b ∈ Z+ and xi are literals of Boolean variables.1

In some cases a single PB constraint can replace an exponential number of CNF clauses
(Aloul et al., 2002). In general, the efficiency of CNF reductions is encoding-dependent.
Earlier work by Warners (Warners, 1998) shows that a linear-overhead conversion exists
from linear inequalities with integer coefficients and 0-1 variables to CNF. However, CNF

1. Using the relations (Ax ≥ b) ⇔ (−Ax ≤ −b) and xi = (1 − xi), any arbitrary PB constraint can be
expressed in normalized form with only positive coefficients.
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encodings which do not use this conversion may be less efficient. When converting CNF
to PB, a single CNF constraint can always be expressed as a single 0-1 ILP constraint (by
replacing disjunctions between literals in the constraint with ‘+’ and setting the right-hand-
side value as ≥ 1). However, this may not always be suitable since certain operations, such
as disjunction, implication and inequality are more intuitively expressed as CNF, and can be
efficiently processed by SAT solvers such as Chaff (Moskewicz et al., 2001). A conversion
to 0-1 ILP is more desirable for arithmetic operations, or “counting constraints”, whose
CNF equivalent requires polynomially many clauses (and exponentially many for some
conversions). To maximize the advantages of both CNF and PB formats, most recent
0-1 ILP solvers such as PBS (Aloul et al., 2002) and Galena (Chai & Kuehlmann, 2003)
allow a formula to possess CNF and PB components. Additionally, 0-1 ILP solvers also
provide for the solution of optimization problems. Subject to given constraints, one may
request the minimization (or maximization) of an objective function which must be a linear
combination of the problem variables.

Exact SAT solvers (Goldberg & Novikov, 2002; Moskewicz et al., 2001; Silva & Sakallah,
1999) are typically based on the original Davis-Logemann-Loveland (DLL) backtrack search
algorithm (Davis, Logemann, & Loveland, 1962). Recently, several powerful methods have
been proposed to expedite the backtrack search algorithm, such as conflict diagnosis (Silva
& Sakallah, 1999) and watched literal Boolean constraint propagation (BCP) (Moskewicz
et al., 2001). With these improvements, modern SAT solvers (Moskewicz et al., 2001;
Goldberg & Novikov, 2002) are capable of solving instances with several million variables
and clauses in reasonable time. This increase in scalability and scope has enabled a number
of SAT-based applications in various domains, including circuit layout (Aloul et al., 2003),
microprocessor verification, symbolic model checking, and many others. More recent work
has focused on extending advances in SAT to 0-1 ILP (Aloul et al., 2002; Chai & Kuehlmann,
2003). In this work, we focus on solving instances of exact graph coloring by reduction to
0-1 ILP and the use of SBPs. Our choice of 0-1 ILP is motivated by the following reasons.

Firstly, 0-1 ILP permits the use of a more general input format than CNF, allowing
greater efficiency in problem encoding, but at the same time is similar enough to SAT to
allow improved methods for SAT-solving to be used without paying a penalty for generality.
The specialized 0-1 ILP solvers PBS (Aloul et al., 2002) and Galena (Chai & Kuehlmann,
2003) both propose sophisticated new techniques for 0-1 ILP that are based on recent
decision heuristics (Moskewicz et al., 2001), conflict diagnosis and backtracking techniques
(Silva & Sakallah, 1999) for SAT solvers. As a result, they empirically perform better than
both the generic ILP solver CPLEX (ILOG, 2000) and the leading-edge SAT solver zChaff on
several DIMACS SAT benchmarks and application-derived instances such as FPGA routing
instances from circuit layout. Also, since 0-1 ILP is an optimization problem, unlike SAT
which is a decision problem, 0-1 ILP solvers possess the ability to maximize/minimize an
objective function. They can, therefore, be directly applied to the optimization version of
exact graph coloring, unlike pure CNF-SAT solvers that can only be used on the k−coloring
decision variant. It is possible to solve the optimization version by repeatedly solving
instances of the k−coloring using a SAT solver, with the value of k being updated after each
call. However, 0-1 ILP solvers do not require this extra step, and moreover tend to provide
better performance than repeated calls to a SAT solver on many Boolean optimization
problems (Aloul et al., 2002).
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It is possible to use a generic ILP solver, such as the commercial solver CPLEX (ILOG,
2000) instead of a specialized 0-1 ILP solver without any changes in problem formulation.
However, Aloul et al. (Aloul et al., 2002) show that this generalization is not always
desirable, particularly in the case of Boolean optimization problems such as Max-SAT. 0-1
ILP is also especially useful for evaluating the effectiveness of symmetry breaking for graph
coloring, the primary purpose of this work. Detecting and breaking symmetries in SAT
formulas has been shown to speed up the problem-solving process (Crawford et al., 1996;
Aloul et al., 2003). Recently, symmetry breaking techniques for SAT have been extended
to 0-1 ILP (Aloul et al., 2004), and have been shown to produce search speedups in this
domain as well. However, a similar extension for non-binary variables for generic ILP does
not presently exist. There is evidence (Aloul et al., 2002) that the advantages of symmetry
breaking may depend on the actual algorithm used in the search. Specifically, results in
the cited work suggest that the generic ILP solver CPLEX is actually slowed down by the
addition of SBPs. Since CPLEX is a commercial tool and the algorithms used by it are not
publicly known, it is difficult to pinpoint a reason for this disparity. However, our empirical
results in Section 4 do bear out these observations. The remainder of this section discusses
the reduction of graph coloring to 0-1 ILP and explains previous work in symmetry breaking
in some detail.

2.4 Detecting and Breaking Symmetries in 0-1 ILPs

Previous work (Crawford et al., 1996; Aloul et al., 2003) has shown that breaking symmetries
in CNF formulas effectively prunes the search space and can lead to significant runtime
speedups. Breaking symmetries prevents symmetric images of search paths from being
searched, thus pruning the search tree. The papers cited in this work all use variants of
the approach first described by Crawford et al. (Crawford et al., 1996), which detects
symmetries in a CNF formula using graph automorphism. The formula is expressed as an
undirected graph such that the symmetry group of the graph is isomorphic to the symmetry
group of the CNF formula. Symmetries induce equivalence relations on the set of truth
assignments of the CNF formula. All assignments in an equivalence class result in the same
truth value for the formula (satisfying or not). Therefore, it is only necessary to consider
one assignment from each such class.

Techniques for symmetry breaking proposed in the literature follow the following steps:
(i) construction of a colored graph from a CNF formula (ii) detection of symmetries in
the graph using graph automorphism software (iii) use of the detected symmetries to con-
struct symmetry breaking predicates (SBPs) that can be appended as additional clauses to
the CNF formula (iv) solution of the new CNF formula thus created using a SAT solver.
Crawford’s construction (Crawford, 1992) uses 3 colors for vertices, one for positive lit-
erals, one for negative literals and a third for clauses. Edges are added between literals
in a clause and the corresponding clause vertex, and between positive and negative literal
vertices for Boolean consistency. As an optimization, binary clauses (with just two literals)
are represented by adding an edge between the two involved literals, so an extra vertex
is not needed. This is useful because the runtime of graph automorphism programs such
as Nauty (McKay, 1990) generally increases with the number of vertices in the graph.
However, with this optimization Boolean consistency is not enforced, since binary clausal
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edges could be confused with Boolean consistency edges between positive and negative lit-
erals of the same variable. This may be improved by representing binary clausal edges
as double edges (Crawford et al., 1996), thus distinguishing between the two edge types.
However, Nauty (and other graph automorphism programs) do not support the uses of
double edges, so this construction is not very useful in practice. Furthermore, the cited
constructions (Crawford, 1992; Crawford et al., 1996) do not allow detection of phase-shift
symmetries, when a variable’s positive literal is mapped to its negative literal and vice versa,
since they color positive and negative literals differently. Our previous work (Aloul et al.,
2003) improves upon these constructions by giving positive and negative literal vertices the
same color, and allowing binary clauses and Boolean consistency edges to be represented
the same way, i.e. a single edge between two literal vertices. Although this construction
may allow spurious symmetries - when clause edges are mapped into consistency edges - this
can occur only when a formula contains circular chains of implications over a subset of its
variables. For example, given a subset of variables x1 . . . xn, such a chain is a collection of
clauses (y1 ⇒ y2)(y2 ⇒ y3) . . . (yn−1 ⇒ yn), where each yi is a positive or negative literal of
xi. These circular chains rarely occur in practice, and can be easily checked for. Therefore,
the efficient graph construction described above can be used in most practical cases.

Graph automorphisms are detected in Crawford’s work (Crawford et al., 1996) as well
as our previous work (Aloul et al., 2003) using the program Nauty (McKay, 1990), which
is part of the GAP (Groups, Algebra and Programming) package. Nauty accepts graphs
in the GAP input format and returns a list of generators for the automorphism group (the
term “generators” is used in a mathematical sense, the symmetry group partitions the set of
vertex permutations for the graph into equivalence classes such that all permutations in the
same class are equivalent. Nauty returns the set of generators for this symmetry group).
More recent work ((Aloul et al., 2003, 2004)) uses the automorphism program Saucy (Darga
et al., 2004), which is more efficient than Nauty and can also process larger graphs with
more vertices. After generators of the symmetry group are detected, symmetry breaking
predicates are added to the instance in a pre-processing step. Crawford et al. (Crawford
et al., 1996) propose the addition of SBPs that choose lexicographically smallest assignments
(lex-leaders) from each equivalence class. We refer to such SBPs as instance-dependent
SBPs, since the symmetries are first detected and then broken, and therefore the exact
number and nature of SBPs added always depends on the connectivity of the graph itself.
Although detecting symmetries is non-trivial, using modern software such as Nauty and
Saucy the detection time is frequently insignificant when compared with SAT-solving time.
Crawford et. al. (Crawford et al., 1996) construct lex-leader SBPs for the entire symmetry
group, using the group generators returned by Nauty. This type of symmetry breaking
is complete. However, the approach used by Aloul et al. in TCAD 2003 (Aloul et al.,
2003) shows that incomplete symmetry breaking, which breaks symmetries only between
generators, is often effective in practice and much more efficient since it does not require the
whole group to be reconstructed. The SBP construction proposed in the cited work (Aloul
et al., 2003) is quadratic in the number of problem variables, compared with the earlier
construction (Crawford et al., 1996), which could run to exponential size. This construction
is further improved in the 2003 work by Aloul, Sakallah and Markov (Aloul et al., 2003),
which describes efficient, tautology-free SBP construction, whose size is linear in the number
of problem variables. Empirical results from both Crawford’s work (Crawford et al., 1996) as
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well as the work in TCAD 2003 (Aloul et al., 2003) show that breaking symmetries produces
large search speedups on a number of CNF benchmark families, including pigeonhole and
Urquhart benchmarks, microprocessor verification, FPGA routing and ASIC global routing
benchmarks from the VLSI domain.

Our work on symmetry breaking in SAT (Aloul et al., 2003) has also been extended
to to optimization problems that include both CNF and PB constraints, and an objective
function (Aloul et al., 2004). As before, symmetries are detected by reduction to graph
automorphism. A PB formula for an optimization problem is represented by an undirected
graph. Graph symmetries are detected using the graph automorphism tool Saucy (Darga
et al., 2004). Efficient symmetry breaking predicates (Aloul et al., 2003) are appended to
the formula as CNF clauses. The empirical results for our work on symmetry breaking
in 0-1 ILP (Aloul et al., 2004) show that the addition of symmetry breaking predicates
to PB formulas results in considerable search speedups for the specialized 0-1 ILP solver
PBS (Aloul et al., 2002). In this work, we use the above methodology (Aloul et al., 2004)
for detecting and breaking instance-dependent symmetries in instances of graph coloring
expressed as 0-1 ILP. These instance-dependent SBPs are compared with a number of
instance-independent SBP constructions described in the next section.

Detecting and breaking symmetries in application-derived SAT instances amounts to a
recovery of structure from the original application. The loss of structure during problem
reductions is one reason why reduction-based techniques are often not competitive with
domain-specific algorithms, and recent work on symmetry breaking is useful in this context.
Other types of structure include clusters (Huang & Darwiche, 2003; Aloul, Markov, &
Sakallah, 2004). Huang et al. (Huang & Darwiche, 2003) propose an algorithm that detects
clusters in SAT instances and uses them to produce variable orderings, and these structure-
aware orderings result in considerable empirical improvements with the SAT solver zChaff
(Moskewicz et al., 2001).

2.5 Reducing Graph Coloring to 0-1 ILP

We express an instance of the minimal graph coloring problem as a 0-1 ILP optimization
problem, consisting of (i) CNF and PB constraints that model the graph (ii) an objective
function to minimize the number of colors used.

Consider a graph G(V,E). Let n = |V | be the number of vertices in G, and m = |E| be
the number of edges. An instance of the K−coloring problem for G (i.e., can the vertices
in V be colored with K colors) is formulated as follows.

• For each vertex vi, K indicator variables xi,1, . . . , xi,K , denote possible color assign-
ments to vi. Variable xi,j is set to 1 to indicate that vertex vi is colored with color j,
and 0 otherwise

• For each vertex vi, a PB constraint of the form
∑K

j=1 xi,j = 1 ensures that each vertex
is colored with exactly one color.

• Each edge ei in E connects two vertices (va, vb). For each edge ei, we define CNF
constraints of the form

∧K
j=1(xa,j ∨ xb,j) to specify that no two vertices connected by

an edge can be given the same color.
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• To track used colors, we define K new variables, y1, . . . , yK . Variable yi is true if and
only if at least one vertex uses color i. This is expressed using the following CNF
constraints:

∧K
j=1 (yj ⇔ (

∨n
i=1 xi,j)).

• The optimization objective is to minimize the number of yi variables set to true, i.e.
MIN

∑K
i=1 yi

The total number of variables in the formula is nK+K. The total number of constraints
is computed as follows. There are totally n 0-1 ILP constraints (one per vertex) to ensure
that each vertex uses exactly one color. For each edge, there are K CNF clauses specifying
that the two vertices connected by that edge cannot have the same color, giving a total
of mK CNF clauses. There are an additional nK CNF clauses (K per vertex) for setting
indicator variables, and K CNF clauses, one per color, to complete the iff condition for indi-
cator variables. This gives a total of K · (m+n+1) CNF clauses and n 0-1 ILP constraints,
plus one objective function, in the converted formula. For dense graphs, where |E| ≈ |V |2,
the resulting formula size is quadratic in the number of vertices of the graph, but for sparser
graphs it may be linear. A key observation is that instance-dependent symmetries in graph
coloring survive the above reduction to 0-1 ILP. For instance-independent symmetries (i.e.
permutations of colors) this is easy to see, since the ordering of colors can be changed
without having any effect on the formula and producing the same set of constraints. For
instance-dependent symmetries, consider two vertices va and vb that are symmetric to each
other and can be swapped in the original graph. Clearly, the constraints that specify that
va and vb must use exactly one color are interchangeable, as are the constraints that deter-
mine color usage based on the colors assigned to va and vb. It only remains to show that
the connectivity constraints that control colors of vertices adjacent to va and vb are also
symmetric. This is clear from the fact that for every edge Ei incident on va, there must
be a corresponding edge Ej incident on vb for the two vertices to be symmetric (Ei and Ej

can be the same edge). Therefore, for the set of K CNF clauses added to the formula to
represent Ei, there must be a symmetric set of clauses added for Ej , and thus connectivity
is preserved.

It is also clear that the 0-1 ILP formulation does not introduce spurious symmetries, i.e.
any symmetry in the formula is a symmetry in the graph. A spurious symmetry arises when
(i) variables of different types can be mapped into each other, e.g. vertex color variables are
mapped to color usage indicator variables and (ii) variables of the same type are mapped
into each other when the corresponding vertices are not actually symmetric. From the
construction of the 0-1 ILP formula, it is clear that all K variables per vertex that indicate
a vertex’s color can be permuted, as can the K color usage variables, since these all appear
in exactly the same constraints. This corresponds to the instance-independent symmetry -
colors in an instance of graph coloring can be arbitrarily permuted. However, vertex color
variables appear in constraints restricting the number of colors a vertex can use and also in
constraints that describe the connectivity of the graph, whereas color usage variables appear
only in constraints that specify when they are set. Therefore, the two types of variables
cannot map to one another. Since all constraints regarding color and connectivity of a
vertex are written using all K color variables for that vertex, these variables are symmetric
to each other only in groups of K, i.e. if one such variable for a given vertex v1 is symmetric
to a variable for another vertex v2, then all K variables for v1 and v2 are correspondingly
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symmetric. Additionally, this symmetry between variables indicates a correspondence of
clauses in which they occur. This is only possible if the vertices v1 and v2 are symmetric in
terms of connectivity (instance-dependent symmetry). Thus, both types of symmetries are
preserved during conversion to 0-1 ILP, and no false symmetries are added. Therefore, we
can apply known techniques for symmetry detection in 0-1 ILP.

3. Instance-Independent SBPs

The question addressed in this work is whether instance-independent SBPs added during
the reduction can provide even greater speedups, possibly by accelerating the detection
of instance-dependent symmetries. To answer this question, we propose three provably
correct SBP constructions of varying strength, and one heuristic that is intended to break
a small number of symmetries with minimal overhead. Each construction is implemented
and empirical results are reported in Section 4.

We use the following notation. Consider an instance of the K−coloring problem, which
asks whether a graph G(V,E) can be colored using ≤ K colors and minimizes the number
of colors. Assume the colors are numbered 1 . . . K. We denote a valid color assignment by
(n1, n2, . . . , nK) where ni is the number of vertices colored with color i, and |V | =

∑K
i=1 ni.

Each ni in the color assignment denotes the cardinality of the independent set colored with
color i. We are not concerned with the actual composition of the independent sets here,
since that is an instance-dependent issue. Instance-independent symmetries are only the
arbitrary permutations of colors between different independent sets.

The effects of each proposed construction are illustrated using the example in Figure
1. The figure is an example of the 4-coloring problem on a graph with four vertices. Part
(a) of the figure shows the graph to be colored. For visual clarity, part (b) shows color
patterns corresponding to the different color numbers. It is clear from the figure that the
vertices V1, V2 and V3 form a clique, and must use different colors. However, V4 can be given
the same color as either V1 or V2, and therefore only 3 colors are needed for this instance.
The instance can be partitioned into independent sets in two ways: {{V1, V4}, {V2}, {V3}}
and {{V1}, {V2, V4}, {V3}}. Our SBPs do not actually address how the independent sets
are composed, because this is an instance-dependent issue. However, given any partition
of independent sets, colors can be arbitrarily permuted between sets in the partition. The
instance-independent SBPs proposed here restrict this permutation. In the examples below,
we assume the first partition of independent sets i.e. {{V1, V4}, {V2}, {V3}}. Results are
proved with respect to the permutation of colors for this partition.

3.1 Null-Color Elimination (NU)

Consider a K−coloring problem with colors 1 . . . K for a graph G(V,E). Assume that G can
be minimally colored withK − 1 colors. Consider an optimal solution where color i is not
used: (n1, n2, ..ni−1, 0, ni+1, . . . , nK). This assignment is equivalent to another assignment,

(n′
1, n

′
2, ..n

′
j−1, 0, n

′
j+1...n

′
K)

where i 6= j and n′
i = nj. For example, the assignment (1, 0, 2, 3) is equivalent to (1, 3, 2, 0),

(0, 1, 2, 3), (1, 2, 0, 3). This is due to the existence of null colors, which create symmetries in

303



Ramani, Aloul, Markov, & Sakallah

1:

2:

3:

4:

(b)(a)

V1

V2

V3 V4

V1

V2

V3 V4

(c)

V1

V2

V3 V4

V1

V2

V3 V4

V1

V2

V3 V4

(d)

V1

V2

V3 V4

V1

V2

V3 V4

(e)

(1,0,2,1) (1,2,1,0)

(1,1,2,0) (2,1,1,0)

(2,1,1,0) (1,1,2,0)

Figure 1: Instance-independent symmetry breaking predicates (SBPs).
Part (a) shows the original graph with no vertices colored.
Part (b) shows the color key. Part (c) shows how null-
color SBPs prevent color 4 from being used. Part (d) shows
how cardinality based SBPs assign colors in the order of in-
dependent set sizes, allowing fewer assignments than null-
color SBPs. Part (e) demonstrates how lowest-index ordered
SBPs break symmetries that are undetected by other types
of SBPs.
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an instance of K−coloring because any color can be swapped with a null color. Null colors
are extraneous because they are not actually required to color any vertices, and so can be
inserted anywhere in a solution, as seen above. We propose a construction that enforces
an ordering on null colors: null colors may appear only at the end of a color assignment,
after all non-null colors. This is implemented by adding K−1 CNF constraints of the form:
yk+1 ⇒ yk for 1 ≤ k ≤ K−1, to the original formulation. In the example above, only one of
the four symmetric assignments (1, 3, 2, 0) would be allowed under this construction. Since
our ILP formulation defines and sets the K indicator variables that track color usage, it is
extremely easy to enforce null color elimination as described above. The SBPs require the
addition of no extra variables and only K − 1 new CNF clauses.

We prove that the proposed construction is correct. Assume that under the original
formulation, an optimal solution for graph G(V,E) uses m colors. Assume that this solution
contains null colors and non-null colors, and with null-color elimination, there is a different
optimal solution that uses m′ colors, where m 6= m′. The only colors used in this solution
are 1 . . . m′, since null colors cannot occur before non-null colors. Since our construction
adds SBPs without changing the original constraints, any legal solution that satisfies the
SBPs will satisfy all constraints in the original formulation. The solution to the original
satisfies all constraints in the new formulation except the SBPs. If m < m′, we can re-order
the solution so that all null colors are placed last. This will satisfy all SBPs and use m

colors, where m < m′, violating the assumption that the m′-color solution was optimal. If
m′ < m, we already have a solution that satisfies all the original constraints and uses fewer
colors, which again violates assumptions of optimality.

An illustration of the use of NU predicates for the example in Figure 1 (a) is shown in
Figure 1 (c). The figure shows two valid minimal-color assignments to the graph vertices in
the example. The assignment on the left uses colors 1, 3 and 4, while the one on the right
uses colors 1, 2 and 3. The assignments are symmetric but under NU predicates only the
right-hand side assignment is permissible.

3.2 Cardinality-Based Color Ordering (CA)

Null-color elimination is useful only in cases where null colors exist. For a K−coloring
problem where all colors are needed, the construction breaks no symmetries. Even when
null colors exist, several symmetries go undetected. In the first example from above, null-
color elimination permits six symmetric color assignments (1, 2, 3, 0), (1, 3, 2, 0), (2, 1, 3, 0),
(2, 3, 1, 0) (3, 2, 1, 0) and (3, 1, 2, 0). This is because restrictions are placed on null colors,
but the ordering of non-null colors is unrestricted. A stronger construction would distin-
guish between the independent sets themselves. We propose an alternative construction,
which assigns colors based on the cardinality of independent sets. This subsumes null-color
elimination, since null colors can be viewed as coloring sets of cardinality 0. The cardi-
nality rule is implemented as follows: the largest independent set is assigned the color 1,
the second-largest the color 2, etc. In the example above, only the assignment (3, 2, 1, 0) is
valid. This is enforced by adding K−1 PB constraints of the form:

∑n
i=1 xi,k ≥

∑n
i=1 xi,k+1,

where 1 ≤ k ≤ K − 1. Again, this construction is fairly simple to implement, requiring
only K − 1 additional constraints. However, these are 0-1 ILP constraints with multiple

305



Ramani, Aloul, Markov, & Sakallah

variables, unlike the simple CNF implication clauses between two variables used for the NU
predicates. Thus, there is some overhead for greater completeness.

We prove the CA construction correct as follows. Assume an optimal solution under
this construction uses m < K colors: (n1, n2, . . . , nm), where (n1 ≥ n2 . . . ≥ nm). Colors
> m are not used on any vertex, Assume there exists an optimal solution to the original
formulation that uses m′ colors: (n′

1, n
′
2, . . . , n

′
m′), (where n′

1, etc. are not arranged in
descending order). Without loss of generality, assume that m′ < m. We can sort the
numbers n′

1, . . . , n
′
m′ and reassign colors in descending order. We would have a solution

with m′ colors satisfying cardinality constraints. However, m′ < m, which is not possible if
the m−color solution was optimal. A similar argument applies when m < m′.

For the example from Figure 1 (a), only the largest independent set under the partition
we are considering, i.e. {V1, V4} can be given color 1. Therefore, the assignment on the right
of Figure 1 (c), which assigns the largest set color 2 and is correct under NU predicates,
is incorrect under the CA construction. The left-hand side of Figure 1 (d) shows another
assignment that is correct under NU predicates but incorrect under CA predicates, since
it assigns the set {V1, V4} color 3. A correct assignment, shown on the right-hand side of
Figure 1 (d), gives the largest set color 1 and since both the other sets have one element each,
they can each be assigned either color 2 or color 3. Thus, several symmetric assignments
which survive NU predicates are prohibited under this construction.

3.3 Lowest Index Color Ordering (LI)

While more complete than NU predicates, CA predicates do not break symmetries when
different independent sets have the same cardinality. Consider a graph G where V =
{v1, . . . , v8}, and an optimal solution, satisfying cardinality-based ordering, that partitions
V into 4 independent sets: S1 = {v4, v6, v7}, S2 = {v1, v5}, S3 = {v3, v8}, S4 = {v2}. A
solution that assigns colors 2 and 3 to S2 and S3 is symmetric to one that assigns colors 2
and 3 to S3 and S2. Both are legal under cardinality-based ordering. In order to completely
break symmetries, it is not adequate to distinguish between sets solely on the basis of
cardinality (unless no two sets have the same cardinality). It is necessary to construct
SBPs based on the actual composition of sets in a partition, which is unique. However,
the distinctions that we make on the basis of composition are not to be confused with
instance-dependent SBPs, since our construction is implemented before the symmetries in
an instance are known, and regardless of its actual composition. The SBPs here specify
broad guidelines for the coloring of independent sets that are applicable to all graphs. To
improve upon cardinality-based ordering, we propose a set of predicates to enforce the
lowest-index ordering (LI). Consider all vertices with color i, and find the lowest index ji

among those. We require that the lowest indices for each color be ordered. This constraint
can be enforced by adding inequalities for colors with adjacent numbers.

Note that each color has a unique lowest-index vertex — otherwise some vertex would
have to be colored with two colors. In the above example, the only color assignment
compatible with the partitioning of vertices into independent sets is: color 1 to S1, 2 to S3,
3 to S4, and 4 to S2.

To evaluate the strength of this symmetry-breaking technique, consider an arbitrary
coloring and a color permutation that remains a symmetry after the LI constraints are
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imposed. If any colors are permuted simultaneously on all vertices, this will permute the
lowest indices for those colors. Since all lowest indices are different, their ordering is com-
pletely determined by the ordering of colors, and thus the color permutation we chose must
be the identity permutation. In other words, no instance-independent symmetries remain
after symmetry-breaking with LI.

We implement lowest-index color ordering as follows. For each vertex vi, we declare a
new set of K variables, Vi,1, . . . Vi,K . Variable Vi,k being set implies that vertex vi is the
lowest-index vertex colored with color k. This is enforced by the following CNF constraints:

Vi,k ⇒
(

∧i−1
j=1 Vj,k

)

. Also, exactly one Vi,j variable must be true for every color used.

Therefore, we add the constraints: yk ⇒
∨n

i=1 Vi,k, where 1 ≤ k ≤ K, yk are the variables
that indicate color k is used, and n = |V | from Section 2. Finally, the following CNF

clause is added for each Vi,k to ensure lowest-index ordering: Vi,k ⇒
(

∨n
j=i+1 Vj,k−1

)

, Since

the LI ordering completely breaks symmetries between independent sets, it subsumes earlier
constructions. However, it does come at an added cost. While the NU and CA constructions
required no new variables and only K − 1 constraints, the LI construction requires nK new
variables and an additional 2nK CNF clauses, which is almost double the size of the original
formula.

The LI construction can be proved correct by the same means as the CA construction.
Given an optimal assignment of colors to independent sets, we can sort the independent sets
in order of lowest-index vertex and assign colors from 1 to K accordingly, without affecting
correctness.

Figure 1 (e) illustrates the effect of LI SBPs on the example in Figure 1 (a). The graph
on the left, which is shown as being correct for CA predicates in Figure 1 (d) is incorrect
under the LI construction, because the lowest-index vertex with color 2 (V3) does not have a
higher index than the lowest-index vertex with color 3, which is V2. The graph on the right
shows the correct assignment, which under LI predicates is the only permissible assignment
for the partition {{V3}, {V2}, {V1, V4}}.

In addition to being very complex, LI predicates are so rigid that they obscure symme-
tries of the original instance. For example, in Figure 1 (a), it is easily seen that the vertices
V1 and V2 are symmetric and can be permuted with no effect on the resulting graph. This
symmetry is instance-dependent - it is decided by the way V1 and V2 are connected. With-
out the addition of any SBPs, it is apparent that under any legal coloring of the graph, the
colors given to V1 and V2 can be swapped regardless of how V3 and V4 are colored. The NU
predicates preserve this symmetry, since they are only concerned with null colors which by
definition could not be used on V1 and V2. The CA predicates also preserve the symmetry
since V1 and V2 can be interchangeably used in any independent set, and swapping them
between sets would not have any effect on the cardinality of the sets. However, under the
LI predicates, an independent set containing V1 must always be given a higher-numbered
color than a set containing V2, and the two cannot be interchanged. If V1 was given any
color other than the highest color in use, there would exist some independent set whose
color index was 1 greater than the color assigned to V1, and for this set, the lowest-index
predicate would not be satisfied. Thus, LI predicates actually destroy any vertex permuta-
tions in the graph. This is seen in our empirical results in Section 4, where the addition of
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LI SBPs leaves no symmetries in any of the benchmarks. This is unusual because ordinarily
benchmarks of reasonable size would contain at least some vertex permutations.

3.4 Selective Coloring (SC)

It is noticeable that the ILP formulation and constraints can be very complex for more
complete SBPs, such as the LI predicates above, which introduce several additional variables
and clauses. This raises the question of whether such a complex construction is actually
counterproductive - it may break symmetries, but require so much effort during search that
the benefit of complete symmetry breaking is lost. To investigate this, we also propose
a simple “heuristic” construction to break some symmetries between vertices while adding
almost no additional constraints. To impact as many vertices as possible, we find the vertex
vl with the largest degree of all vertices in the graph. We then color vl with color 1. This
is achieved by simply adding the unary clause xl,1. We search vl’s neighbors to find the
vertex vl′ with the highest degree out of all vertices adjacent to vl. We color vl′ with color
2, by adding the unary clause xl′,2. This construction has the effect of simplifying color
assignment for all vertices adjacent to vl and vl′ . No vertex adjacent to vl can be colored
color 1, and no vertex adjacent to vl′ can be colored color 2. Moreover, all vertices in an
independent set with vl (vl′) must be colored color 1 (color 2). If vl and vl′ have sufficiently
large degree, this construction can restrict many vertex assignments. An even stronger
construction would be to find a triangular clique and fix colors for all three vertices in it;
however, clique finding is complicated and some graphs may not possess any such cliques.
We refer to this construction as selective coloring.

The extent to which selective coloring breaks symmetries is instance-dependent. It fails
to completely break symmetries for almost all graphs. However, it is a simple construction,
adding just two constraints as unary clauses. These are easily resolved in pre-processing by
most SAT solvers, so any symmetry breaking achieved by this construction has virtually no
overhead.

We note that all instance-independent predicates defined here are only concerned with
symmetries between colors, which exist in any instance of graph coloring. However, addi-
tional instance-independent symmetries may be introduced during the reduction to graph
coloring for certain applications. For example, in the radio frequency assignment applica-
tion from Section 2, adding all possible bipartite edges between cliques for adjacent regions
will result in symmetries between vertices in these cliques. Additional predicates can be
added to instances from this application to break these symmetries.

4. Empirical Results

This section describes our experimental setup, empirical results, and performance compared
with related work.

4.1 Experimental Setup

We used 20 medium-sized instances from the DIMACS graph coloring benchmark suite. We
briefly describe each family of benchmarks used below.
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• Random graphs. Benchmarks with randomly created connections between vertices,
named DSJ

• Book graphs. Edges represent interaction between characters in a book. There are
four such benchmarks: anna, david, huck, jean

• Mileage graphs. These represent distances between cities on a map, and are named
miles

• Football game graphs. Indicate relationships between teams that must play each
other in college football games. In the tables these are referred to as games

• n−queens graphs. Instances of the n−queens problem, named queen

• Register allocation graphs. Represent the register allocation problem for different
systems. We use two families in this work, named mulsol, zeroin

• Mycielski graphs. Instances of triangle-free graphs based on the Mycielski (My-
cielski, 1955) transformation, called myciel

Table 1 gives the name, size (number of vertices and edges) and the chromatic number
for each benchmark. We use a maximum value of K = 20 for K−coloring. For benchmarks
with chromatic number > 20, we do not report the chromatic number.

Our problem formulation with a fixed K is application-driven. Indeed, in many do-
mains it is only useful to find the exact chromatic number when it is below a well-known
threshold. For example, in graph coloring instances from register allocation, there cannot
be more colors than processor registers. PC processors often have 32 registers, and high-end
CPUs may have more. However, realistic graphs are relatively sparse and have low chro-
matic numbers. On the other hand, processors embedded in cellular phones, automobiles
and point-of-sale terminals may have very few registers, leading to tighter constraints on
acceptable chromatic numbers. The value K = 20 used in our experiments is in no way
special, but the results achieved with it are representative of other results. Also, while we
apply the K = 20 bound to all instances here to study trends, more reasonable bounds can
be determined on a per-instance basis using the following simple procedure.

1. Apply any heuristic for min-coloring to determine a feasible upper bound

2. If the value is relatively small, perform linear search by incrementally tightening the
color constraint, otherwise perform binary search

Benchmark graphs are transformed into instances of 0-1 ILP using the conversion de-
scribed in Section 2. To solve instances of 0-1 ILP, we used the academic 0-1 ILP solvers
PBS (Aloul et al., 2002), Galena (Chai & Kuehlmann, 2003), and Pueblo (Sheini, 2004),
and also the commercial ILP solver CPLEX version 7.0. Pueblo is more recent than PBS
and Galena, and incorporates Pseudo-Boolean (PB) learning based on ILP cutting-plane
techniques. We use a later version of PBS, PBS II, that enhances the original PBS algo-
rithms (Aloul et al., 2002) with learning techniques from the Pueblo solver (Sheini, 2004).
We do not include the results with the original version of PBS that are reported in (Ramani,
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Instance #V #E K

anna 138 986 11
david 87 812 11
DSJC125.1 125 1472 5
DSJC125.9 125 13922 > 20
games120 120 1276 9
huck 74 602 11
jean 80 508 10
miles250 128 774 8
mulsol.i.2 188 3885 >20
mulsol.i.4 185 3946 >20
myciel3 11 20 4
myciel4 23 71 5
myciel5 47 236 6
queen5 5 25 320 5
queen6 6 36 580 7
queen7 7 49 952 7
queen8 12 96 2736 12
zeroin.i.1 211 4100 >20
zeroin.i.2 211 3541 >20
zeroin.i.3 206 3540 >20

Table 1: DIMACS graph coloring bench-
marks

Aloul, Markov, & Sakallah, 2004), since it has been retired by the newer version. However,
in the Appendix we report detailed results for n− queens instances using the older version of
PBS along with results for the other solvers, for the sake of a more detailed study. PBS II is
implemented in C++ and compiled using g++. Galena and Pueblo binaries were provided
by the authors. PBS was run using the variable state independent decaying sum (VSIDS)
decision heuristic option (Moskewicz et al., 2001). Galena was run using its default options
of linear search with cardinality reduction (CARD) learning. All experiments are run on
Sun-Blade-1000 workstations with 2GB RAM, CPUs clocked at 750MHz and the Solaris
operating system. Time-out limits for all solvers are set at 1000 seconds.

We use the symmetry breaking flow first proposed in our earlier work (Aloul et al.,
2004) to detect and break symmetries in our original ILP formulation from Section 2. This
flow uses the tool Shatter (Aloul et al., 2003), which uses the Saucy (Darga et al., 2004)
graph automorphism program and the efficient SBP construction from (Aloul et al., 2003).
We also check for unbroken symmetries in formulations produced by each of the instance-
independent constructions described in Section 3. Our runtimes for symmetry detection
and for solving the reduced 0-1 ILP problems are reported in the next section.

4.2 Runtimes for Symmetry Detection and 0-1 ILP Solving

Table 2 shows symmetry detection results and runtimes. The numbers reported in the table
are sums of individual results for all 20 benchmarks used. We report statistics as sums
because reporting results for all of SBPs on all benchmarks would be space-consuming, and
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SBP CNF Stats Sym. Stats (SAUCY)
Type #V #CL # PB #S #G Time

no SBPs 437K 777505 3193 1.1e+168 994 185

NU 437K 777885 3193 5.0e+149 614 49
CA 437K 777505 3630 5.0e+149 614 49
LI 870K 4019980 3193 2.0e+01 0 84
SC 437K 777545 3193 3.0e+164 941 167
NU+SC 437K 777925 3193 5.0e+148 597 47

Table 2: CNF formula sizes, symmetry detection results
and runtimes, totaled for 20 benchmarks from
Table 1, with K = 20. NU = null-color elimina-
tion; CA = cardinality-based; LI = lowest-index;
SC = selective coloring. For the LI SBPs, one in-
stance of the “do-nothing” symmetry is counted
in each case, giving a total of 20 symmetries and
0 generators. Saucy is run on an Intel Xeon dual
processor at 2 GHz running RedHat Linux 9.0.

would also not illustrate trends as clearly. This work is concerned with characterizing the
broad impact of symmetry breaking. However, we show detailed results for the queens

instances in the Appendix.

The first column in the table indicates the type of construction: we use no SBPs for
the basic formulation, NU for null-color elimination, CA for cardinality-based ordering,
LI for lowest-index ordering, and SC for selective coloring (the last row shows NU and SC
in combination). The next three columns show the number of variables, CNF clauses, and
PB constraints in the problems. The last three columns show the number of symmetries,
number of symmetry generators, and symmetry detection runtimes for Saucy. Henceforth,
we will refer to instance-dependent SBPs as external, because they are added to an in-
stance after symmetries are detected and are not part of the problem formulation. The top
row is separated from the bottom 5 rows because it represents statistics without instance-
independent SBPs. We observe that adding instance-independent SBPs during problem
formulation does cut down the symmetry detection runtime considerably. Saucy has a to-
tal runtime of 185 seconds when no instance-independent SBPs are added, but its runtimes
with NU, CA, LI and NU + SC constructions are much smaller. Only the SC construction
has a comparable runtime because it is a heuristic and breaks very few symmetries. The
columns showing numbers of symmetries and generators support this observation: the NU,
CA, LI and NU + SC constructions all have far fewer symmetries than the top row, but the
SC construction has almost the same number. For these benchmarks, the LI construction,
breaks all symmetries, even instance-dependent vertex permutations that may exist in a
graph. Saucy reports finding no symmetries for this construction (except one instance of
the do-nothing symmetry for each graph, which is trivial). However, Saucy runtimes for
this construction are larger than for the NU, CA and NU + SC constructions (85 seconds
to approximately 49 seconds) even though there are no symmetries in the instances after LI
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SBP PBS II, PB Learning CPLEX Galena Pueblo
Type Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs

Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S

no SBPs 17K 3 4.2K 16 6.3K 14 13K 7 1.7K 2 3K 17 18K 3 1.6K 19

NU 8.2K 13 7.5K 13 5.9K 15 6.5K 15 8.3K 11 6.7K 11 9.1K 12 8.3K 13
CA 13K 6 12K 8 11K 11 11K 10 19K 1 17K 3 9K 12 10K 12
LI 15K 6 15K 6 16K 4 16K 4 15K 5 15K 5 16K 5 16K 5
SC 14K 6 65 20 5.3K 15 12K 8 16K 4 94.4 20 15k 5 2.1K 18
NU+SC 6.9K 14 6.8K 14 4.5K 16 6.4K 14 6.1K 14 6.1K 14 7.3K 13 7.1K 13

Table 3: Runtimes and number of solutions found before and after SBPs are added
for all constructions using PBS II (with PB learning), CPLEX, Galena and
Pueblo; all experiments are run on SunBlade 1000 workstations. Timeouts
for all solvers were set at 1000s. The maximum color limit is set at 20,
instances with k > 20 are unsatisfiable under these formulations. This is
not a comparison of solvers. We solve ILP formulations with equal optimal
values using different solvers to weed out solver-specific issues. Best results
for a given solver are shown in boldface. In the entries, K denotes multiples
of 1000s seconds rounded to the nearest integer.

predicates are added. A likely reason for this is the sharp increase in instance size caused
by the LI construction. In general, the SC construction has very little effect on the number
of symmetries - when used by itself, it leaves most symmetries intact, and when used with
the NU construction, the improvement over the NU construction alone is very small.

Table 3 shows the effect of symmetry breaking on runtimes of PBS II (Aloul et al., 2002),
CPLEX (ILOG, 2000), Galena (Chai & Kuehlmann, 2003) and Pueblo (Sheini, 2004). The
first column in the table specifies the construction type, followed by the total runtime for
each solver (with and without the addition of instance-independent SBPs) and the number
of instances solved for the construction. For each solver, the best performance among all
configurations (largest number of instances solved and corresponding runtime) is boldfaced.
Results are given first for the new version of PBS, PBS II based on (Sheini, 2004), followed
by CPLEX, Galena and Pueblo. Runtimes for the older version of PBS can be obtained
from our earlier work (Ramani et al., 2004). To compare performance of an individual solver
for different constructions, observe the runtime and solution entries for different rows in the
same column, and to compare performance for different solvers on the same constructions,
observe numbers for the same row across all columns. We observe the following trends.

1. All benchmarks possess a large number of symmetries. Different instance-independent
SBPs achieve varying degrees of completeness: the lowest-index ordering (LI) breaks
all symmetries in the benchmarks used, while the selective coloring (SC) SBP breaks
the fewest symmetries. Saucy runtimes for residual symmetry detection after the
addition of instance-independent SBPs are highest for the no SBPs construction and
the SC construction, since they possess the largest numbers of symmetries

2. For the case where no SBPs of any kind are added, CPLEX performs well, solving
14 out of 20 instances within the time limit. However, PBS II, Galena and Pueblo
perform poorly - Galena solves only 2 instances and PBS II and Pueblo each solve 3
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3. PBS II, Galena and Pueblo benefit considerably from instance-dependent symmetry
breaking. When instance-dependent SBPs are used without any of the instance-
independent constructions we propose, PBS II solves 16 instances within the time
limit, while Galena and Pueblo solve 17 and 19 instances respectively. However,
CPLEX is hampered by the addition of instance-dependent SBPs, and solves only 7
instances in this case

4. Adding only instance-independent SBPs improves performance for all specialized 0-
1 ILP solvers over the no-SBP version. The best performance for PBS II, Galena
and Pueblo is seen for the NU + SC construction - PBS II and Galena solve 14
instances, and Pueblo solves 13. For CPLEX, the NU + SC construction shows
marginal improvement over the no-SBPs case (16 instances are solved), but the more
complex constructions, CA and LI, actually undermine performance - CPLEX solves
only 4 instances with the LI construction. In general, complex SBP constructions
perform much worse than simple ones. PBS II, Pueblo and Galena also perform
poorly with the CA and LI constructions - Galena solves only 1 instance with the CA
construction with no help from instance-dependent SBPs, and very few instances are
solved with the LI construction for any solver

5. Adding instance-independent SBPs alone does not solve as many instances as adding
instance-dependent SBPs to the SBP-free formulation. The best performance seen
with instance-independent SBPs is 14 instances solved, by Galena and PBS II, and
16 instances solved by CPLEX, with the NU + SC construction. When instance-
dependent SBPs are added PBS II and Galena solve all 20 instances with the SC
construction. The CA and LI constructions leave very few (or none at all) symmetries
to be broken by instance-dependent SBPs. Consequently, there is almost no difference
in results with and without instance-dependent SBPs for these constructions. How-
ever, they do not achieve the same performance improvements as instance-dependent
SBPs, due to their size and complexity

6. Using instance-dependent SBPs in conjunction with the SC construction is useful.
With this combination, PBS II and Galena solve all 20 instances within the time
limit, and Pueblo solves 18. Runtime is also considerably improved for PBS II and
Galena – PBS II solves all 20 instances in a total of 65 seconds, and Galena in 94.4
seconds. The best overall performance, in terms of number of solutions and runtime, is
seen with this combination. In general, however, the SC construction is not dominant
on its own. Results for the SC construction alone are very similar to results with no
SBPs, and results for the NU + SC combination are very similar to those achieved by
using only NU SBPs. The SC construction is effective at “boosting” the performance
of other constructions

7. The three specialized 0-1 ILP solvers - PBS II, Galena and Pueblo, exhibit the same
performance trends with respect to the constructions used, and their performances
are all comparable, in terms of both the number of solutions found and runtime This
indicates that the variations in performance are due to the different SBPs, not due to
differing solver implementations. All solvers are independent implementations based
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SBP PBS II, PB Learning CPLEX Galena Pueblo
Type Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs Orig. w/i.-d. SBPs

Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S Tm. #S

No SBPs 18K 2 6.2K 14 11K 9 8.2K 12 19K 1 9.1K 11 19K 1 7.5K 13
NU 9.2K 12 7.9K 13 11K 9 12K 8 10K 10 7.6K 13 11K 11 9.5K 11
CA 13K 7 13K 9 13K 9 14K 8 19K 1 17K 4 11K 11 13K 8
LI 15K 5 15K 5 19K 2 19K 2 16K 5 16K 5 17K 3 17K 3
SC 15K 5 5.3K 15 10K 10 12K 9 16K 4 5.3K 15 16K 4 6.0K 15

NU + SC 7.1K 13 7.0K 13 9.7K 11 9.9K 11 9.2K 12 6.9K 14 8.0K 13 7.4K 13

Table 4: Total runtimes and number of solutions found before and after SBPs are
added for all constructions using PBS II (with PB learning), CPLEX,
Galena and Pueblo. The experimental setup is the same as that used in
Table 3 but with a color limit of K = 30. Best results for a solver are bold-
faced. Fewer instances are solved than in Table 3 because the higher color
limit results in larger and potentially more difficult instances.

on the same algorithmic framework (the Davis-Logemann-Loveland backtrack search
procedure), but PBS II and Galena also have learning capabilities

8. Adding instance-dependent SBPs to any construction usually adversely affects the
performance of CPLEX. This has been previously noted in other work (Aloul et al.,
2004). Since the CPLEX algorithms and implementation are not available in the
public domain, it is difficult to account for this effect. However, PBS and Galena with
symmetry breaking significantly outperform CPLEX without symmetry breaking

9. We report results as the sum of runtimes for all instances to illustrate trends. On
a per-instance basis, the same trends are displayed. For example, for the no-SBPs
case in the top row, PBS II solves 3 instances and Galena solves 2, but the two
instances solved by Galena are among those solved by PBS II. In general, the same
instances tend to be “easy” or “difficult” for the 0-1 ILP solvers, although CPLEX
behaves differently. An example of this behavior for the queens family of instances is
illustrated in the Appendix

Overall, the results suggest that for graph coloring, adding instance-independent SBPs alone
is not competitive with the use of instance-dependent SBPs alone. The best results are
achieved using a combination of both types, and even here, the instance-independent SBPs
used are the most simple variety. This is true even when symmetry detection runtimes are
taken into consideration. We attribute this result to the complexity of instance-independent
SBPs we use, and also to the fact that improvements in graph automorphism software
(Darga et al., 2004) have greatly reduced the overhead of detecting symmetries by reduction
to graph automorphism. Previously, for static approaches that require symmetries to be
detected and broken in advance, the task of symmetry detection was often a bottleneck
that could actually take longer than the search itself. With this bottleneck removed, the
advantages of static symmetry breaking - simple predicates that address specific symmetries
rather than complex constructions that alter the problem specification considerably - are
more clearly illustrated. Even among instance-independent predicates, simple constructions
are more effective than complex ones. As we have noted in Section 3, simple constructions
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like NU and SC add very few additional constraints and do not alter the original problem
greatly. However, the CA and LI constructions add many more constraints, which may
confuse the specialized 0-1 ILP solvers.

It is important to note that color permutations, while instance-independent, do ap-
pear at the instance-specific level. Thus, the symmetries targeted by instance-independent
predicates are a subset of those targeted by instance-dependent predicates. Our instance-
independent constructions are not intended to cover a different set of symmetries, but rather
to break some of the same symmetries during problem formulation, thus reducing or elim-
inating the overhead of any instance-dependent methods that may follow. The fact that
this strategy is not successful suggests that, for the same set of symmetries, the instance-
dependent predicates we use are more efficient and easier for solvers to tackle.

To verify our claims about performance trends, we show results for an additional set of
experiments with increased color limit K = 30 in Table 4. The instances are re-formulated
with K = 30 and with different SBP constructions. This experiment is intended to verify
trends from the K = 20 case, and to investigate whether instances with chromatic number
> 20, that are unsatisfiable in the first case, can be colored with ≤ 30 colors. Results
from Table 4 validate our observations from Table 3 – the best results for PBS II, Galena
and Pueblo are again achieved with the NU + SC (with no instance-dependent SBPs) and
SC (with instance-dependent SBPs) constructions. However, with this formulation fewer
instances are solved than for the K = 20 case, possibly because the K = 30 limit results
in larger instances. Also, for instances whose chromatic number is much closer to 30 than
20, it may be harder to prove optimality, whereas proving unsatisfiability for the K = 20
experiments may be simpler.

4.3 Comparison with Related Work

Here, we discuss the empirical performance of our approach when compared with related
work (Coudert, 1997; Benhamou, 2004). We note that both cited works describe algorithms
specifically developed for graph coloring, and the search procedures cannot be used to solve
other problems. Our approach, on the other hand, solves hard problems by reduction to
generic problems such as SAT or 0-1 ILP, and this work on graph coloring can be viewed as a
case study. Consequently, we use problem-specific knowledge only during the actual problem
formulation (instance-independent SBPs are also added during reduction), but not during
search itself. This may be useful for applications where problem-specific solvers cannot be
developed or acquired due to limited resources. Our goal is to determine whether symmetry
breaking can improve the performance of reduction-based methods, which are traditionally
not competitive with problem-specific methods. Thus, while our techniques may not be
superior to all problem-specific solvers on all instances, we hope to show reasonably strong
performance over a broad spectrum of instances.

Common data points between our work and Coudert’s (Coudert, 1997) include instances
of queens, myciel and DSCJ125.1. Referring to our detailed results for queens instances in
the Appendix, we note that our runtimes are competitive with those of Coudert’s algorithm
- for example, on queen5 5, both algorithms have a runtime of 0.01s. On larger instances,
however, our runtimes are somewhat slower. On the myciel instances, we obtain the best
results with the Pueblo solver and the SC predicates, with runtimes of 0.01, 0.06, and 1.80s
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on myciel3, 4, and 5, compared with 0.01, 0.02 and 4.17 for Coudert’s algorithm. Therefore,
it appears that our approach is competitive on these common data points. Moreover, other
studies (Kirovski & Potkonjak, 1998) have observed that Coudert’s work does not provide
results for several hard real-world problem classes, particularly those where modeling results
in dense graphs. Our work is more general, and cannot be biased to favor certain types of
graphs.

The algorithm described by Benhamou (Benhamou, 2004) shows very competitive run-
times on a number of DIMACS benchmarks, particularly instances of register allocation.
For example, the DSJC125.1 instance is solved by Benhamou’s algorithm in 0.01 seconds,
while the best time achieved by us is 1.12 seconds, using the Pueblo solver with only
instance-dependent SBPs. However, we note that Benhamou’s algorithm determines the
upper limit for the chromatic number K using more instance-specific knowledge, for exam-
ple, for DSCJ125.1, it is set at K = 5. We solve all instances with K = 20, which may be
too large a limit in some cases. The value of K affects the size of the resulting 0-1 ILP
reductions and SBPs, which is likely to affect runtime. We also note that the DIMACS
benchmarks used in the cited work (Benhamou, 2004) are primarily register allocation and
randomly generated instances, whereas we achieve reasonably good performance on a wide
variety of benchmark applications. Moreover, Benhamou’s approach relies on modeling
graph coloring as a not-equals CSP, which does not bode well for generality. Many CSPs
cannot be modeled using only not-equals constraints. Additionally, the symmetry detec-
tion, breaking and search procedures described in that work are specific to graph coloring,
whereas our work can be extended to several other problems, only requiring a reduction to
SAT/0-1 ILP.

5. Conclusions

Our work shows that problem reduction to 0-1 ILP is a viable method for optimally solving
combinatorial problems without investing in specialized solvers. This approach is likely to
be even more successful as the efficiency of 0-1 ILP solvers improves in the future, and as
they are able to better handle problem structure. In particular, problem reductions may
produce highly-structured instances making the ability to automatically detect and exploit
structure very important. In the case of graph coloring we demonstrate that a generic,
publicly-available symmetry breaking flow from our earlier work (Aloul et al., 2004) signifi-
cantly improves empirical results in conjunction with the academic 0-1 ILP solvers PBS II,
a new version of the solver PBS (Aloul et al., 2002), Galena (Chai & Kuehlmann, 2003) and
Pueblo (Sheini, 2004). All specialized 0-1 ILP solvers significantly outperform the commer-
cial generic ILP solver CPLEX 7.0 when symmetry-breaking is used. The performance of
CPLEX actually deteriorates when SBPs are added, and on the original instances with no
SBPs, CPLEX is able to solve more instances than the 0-1 ILP solvers. However, the best
performance overall is obtained with the 0-1 ILP solvers on instances with SBPs added.
Although our techniques are tested on standard DIMACS benchmarks instances, we note
that the symmetry-breaking flow described here can be applied to graph coloring instances
from any application.

We are particularly interested in comparing strategies for breaking symmetries that are
present in every ILP instance produced by problem reduction (instance-independent sym-
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metries). Such symmetries may be known even before the first instances of the original
problem are delivered (i.e., symmetries may be detected at the specification level), and
one has the option to use them during problem reduction. Intuitively, this may prevent
discovering these symmetries in every instance and thus improve the overall CPU time. To
this end, we propose four constructions for instance-independent symmetry breaking pred-
icates (SBPs). These constructions vary in terms of strength and completeness. Our goal
in experiments was to compare the performance of the four instance-independent SBP con-
structions relative to each other, as well as to assess their performance when compared with
instance-dependent SBPs. Instance-independent SBPs have the advantage of not requiring
the additional step of symmetry detection, since they are part of the problem specification.
Additionally, they are designed with more information about the problem itself, and their
effect on solutions is clear - for example, we know that null-color elimination will force all the
lower-numbered colors to be used in a solution. Instance-dependent SBPs are detected and
added automatically on the 0-1 ILP reduction of an instance without any understanding
of their significance. On the other hand, instance-dependent constructions are less com-
plex and result in more compact predicates. Our empirical data indicate that simplicity
of construction is a more powerful factor in determining performance - instance-dependent
SBPs consistently outperform instance-independent SBPs, and the most complete and com-
plex instance-independent constructions (LI) are actually the weakest in performance. It
is clear from our results that symmetry breaking itself is useful in graph coloring: adding
instance-dependent SBPs always speeds up search over the no-SBPs case. It is likely that
instance-independent SBPs are less successful due to their complex construction. Simpler
instance-independent constructions (NU, SC) outperform the more complex ones (CA, LI).
It is well known that the syntactic structure of CNF and PB constraints may dramatically
affect the efficiency of SAT and ILP solvers. Shorter clauses and PB constraints are much
preferable as they are easier to resolve against other constraints, and are more useful to
the learning strategies employed by exact SAT solvers. Another factor that gives instance-
dependent SBPs the advantage is the ease of symmetry detection, which was previously a
bottleneck. Due to improved software (Darga et al., 2004), the overhead of symmetry de-
tection via reduction to graph automorphism in SAT/0-1 ILP instances is almost negligible.

We also show that the three specialized 0-1 ILP solvers, PBS II, Galena and Pueblo,
all exhibit similar performance trends for different constructions. This indicates that per-
formance is not decided by solver-specific issues, but by the difficulty of the instances and
the SBPs added to them. CPLEX does not display the same behavior as the other solvers,
and is in fact slowed down by the addition of instance-dependent SBPs and by several
instance-independent constructions. CPLEX is a commercial solver for generic ILP prob-
lems, and its algorithms and decision heuristics are likely to be very different than those
used by academic solvers. However, since details about CPLEX are not publicly available,
it is not possible to accurately explain its behavior. We do note that while CPLEX does
not appear to benefit from symmetry breaking, its performance on the reduced instances
with no SBPs of any kind is superior to the 0-1 ILP solvers. However, once SBPs are added
the specialized solvers solve more instances than CPLEX in less time.

In the context of generic search and combinatorial optimization problems defined in
the NP-spec language (Cadoli et al., 1999), our empirical data suggest that new theoretical
breakthroughs are required to make use of instance-independent symmetries during problem
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reductions to SAT or 0-1 ILP. At our current level of understanding, the simple strategy
of processing instance-independent and instance-dependent symmetries together produces
smallest runtimes for graph coloring benchmarks. Our current and future work is focused
on developing more effective SBPs for this problem, and also investigating the utility of
symmetry breaking for other hard search problems. Moreover, while our work uses instance-
independent predicates only for color symmetries, our results and analysis may have broader
scope, for example, in applications such as radio frequency assignment (Section 2) where
symmetries are introduced during the reduction to graph coloring and are likely to be
preserved during future reductions. The issues involved in using instance-dependent vs.
instance-independent SBPs are very relevant to such applications.
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Appendix A: Performance Analysis on Queens Instances

This section provides a more detailed discussion of our results on individual benchmarks
in the queens family of instances. The problem posed by queens instances is whether
queens can be placed on an n × m chessboard without conflicts. The instances we use in
our experiments are queens 5 × 5, 6 × 6, 7 × 7 and 8 × 12. Table 5 shows results for the
queens family. Results are shown for every instance with no SBPs, with each of the four
constructions NU, CA, LI and SC, and with the NU + SC combination. All constructions
are tested with and without instance-dependent SBPs as before. We report results for the
original version of PBS, from (Aloul et al., 2002), and for PBS II, CPLEX, Galena and
Pueblo as in Section 4. Experiments are run on Sun Blade 1000 workstations as before. In
the table, we report solver runtime if an instance is solved, and T/O for a timeout at 1000
seconds. The best results for a solver on a particular instance are boldfaced.

While there is greater variation when considering performance on a per-instance basis,
the table largely reflects the same trends reported in Section 4. For example, when no
instance-dependent SBPs are used, PBS, PBS II, Galena and Pueblo all largely perform
best with the NU + SC construction. When instance-dependent SBPs are added, the best
performance is seen with the SC construction in most cases. CPLEX does not display the
same behavior as the other solvers, and its performance clearly deteriorates when instance-
dependent SBPs are added to any construction. A similar effect has been observed in related
work (Aloul et al., 2004). Results for the original version of PBS (Aloul et al., 2002), which
could not be included in Section 4, have been added in this section. It can be seen that
PBS follows the same trends as PBS II, Galena and Pueblo, reinforcing our claim that this
behavior is not solver-dependent.
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PBS PBS II CPLEX Galena Pueblo
Inst.-dep. Inst.-dep. Inst.-dep. Inst.-dep. Inst.-dep.

Inst. SBP SBPs used? SBPs used? SBPs used? SBPs used? SBPs used?
Name Type No Yes No Yes No Yes No Yes No Yes

no SBPs T/O 0.19 34.52 0.04 1.11 643.93 83.06 0.35 203.09 0.01

NU 1.84 T/O 0.01 0.02 1.38 23.67 0.21 0.27 0.08 0.1
queen5 5 CA T/O T/O 0.31 0.24 39.2 2.76 T/O T/O 0.14 0.52

LI 135 134.71 1.48 1.48 262.96 217.21 5.4 5.4 8.48 8.48
SC 15.99 0.19 0.15 0.07 0.45 229.79 0.29 0.29 0.25 0.19
NU + SC 8.63 12.34 0 0.01 0.83 0.88 0.3 1 0.06 0.07
no SBPs T/O 3.61 T/O 0.21 T/O T/O T/O 0.87 T/O 0.49
NU 331.63 521.12 56.63 13.59 T/O T/O 192.17 19.11 123.99 18.88

queen6 6 CA T/O T/O 50.6 780.57 T/O T/O T/O T/O 196.94 80.53
LI T/O T/O T/O T/O T/O T/O T/O T/O T/O T/O
SC T/O 0.58 T/O 0.1 242.79 T/O T/O 1.0 T/O 0.32

NU + SC 2.89 1.72 1.4 0.63 95.91 T/O 11.19 1.05 4.85 2.64
no SBPs T/O 36.56 T/O 1.79 243.3 T/O T/O T/O T/O 1.13

NU 0.45 3.29 36.31 24.74 119.16 459.44 56.6 147.52 9.59 15.49
queen7 7 CA T/O T/O T/O T/O 271.2 T/O T/O T/O 692.67 150.86

LI T/O T/O 53.3 53.4 T/O T/O 78.85 78.8 212.18 213.8
SC T/O 8.42 38.57 0.85 38.04 T/O T/O 1.33 217.82 1.23
NU + SC 5.65 38.07 4.37 5.73 119.7 T/O 17.46 5.16 25.73 14.04
no SBPs T/O 1.31 T/O 0.52 T/O T/O T/O T/O T/O T/O
NU T/O T/O T/O T/O T/O T/O T/O 138.61 T/O T/O

queen8 12 CA T/O T/O T/O T/O T/O T/O T/O T/O T/O T/O
LI T/O T/O T/O T/O T/O T/O T/O T/O T/O T/O
SC T/O 1.05 T/O 0.47 T/O T/O T/O 1.9 T/O 0.98

NU + SC T/O T/O 787.26 780.14 T/O T/O 52.1 53.63 T/O T/O

Table 5: Detailed results for queens instances. For each instance, we show results
for the solvers PBS, PBS II, CPLEX, Galena and Pueblo. All solvers
are run on SunBlade 1000 workstations. Instances are tested with no
instance-independent SBPs, with each of the four proposed constructions
in Section 3 and with a combination of the NU and SC constructions. All
instance-independent SBPs are tested alone and with instance-dependent
SBPs added. The table shows the runtime for a given instance under dif-
ferent construction. T/O indicates a timeout at 1000 seconds. Best results
for a given solver on each instance are shown in boldface.
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