
Journal of Artificial Intelligence Research 27 (2006) 119–151 Submitted 1/06; published 10/06

A Comparison of Different Machine Transliteration Models

Jong-Hoon Oh rovellia@nict.go.jp
Computational Linguistics Group
National Institute of Information and Communications Technology (NICT)
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289 Japan

Key-Sun Choi kschoi@cs.kaist.ac.kr
Computer Science Division, Department of EECS
Korea Advanced Institute of Science and Technology (KAIST)
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 Republic of Korea

Hitoshi Isahara isahara@nict.go.jp

Computational Linguistics Group
National Institute of Information and Communications Technology (NICT)
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289 Japan

Abstract

Machine transliteration is a method for automatically converting words in one lan-
guage into phonetically equivalent ones in another language. Machine transliteration plays
an important role in natural language applications such as information retrieval and ma-
chine translation, especially for handling proper nouns and technical terms. Four machine
transliteration models – grapheme-based transliteration model, phoneme-based translitera-
tion model, hybrid transliteration model, and correspondence-based transliteration model –
have been proposed by several researchers. To date, however, there has been little research
on a framework in which multiple transliteration models can operate simultaneously. Fur-
thermore, there has been no comparison of the four models within the same framework and
using the same data. We addressed these problems by 1) modeling the four models within
the same framework, 2) comparing them under the same conditions, and 3) developing a
way to improve machine transliteration through this comparison. Our comparison showed
that the hybrid and correspondence-based models were the most effective and that the
four models can be used in a complementary manner to improve machine transliteration
performance.

1. Introduction

With the advent of new technology and the flood of information through the Web, it has
become increasingly common to adopt foreign words into one’s language. This usually en-
tails adjusting the adopted word’s original pronunciation to follow the phonological rules
of the target language, along with modification of its orthographical form. This phonetic
“translation” of foreign words is called transliteration. For example, the English word
data is transliterated into Korean as ‘de-i-teo’1 and into Japanese as ‘de-e-ta’. Translit-
eration is particularly used to translate proper names and technical terms from languages

1. In this paper, target language transliterations are represented in their Romanized form with single
quotation marks and hyphens between syllables.

c©2006 AI Access Foundation. All rights reserved.

Oh, Choi, & Isahara

using Roman alphabets into ones using non-Roman alphabets such as from English to
Korean, Japanese, or Chinese. Because transliteration is one of the main causes of the
out-of-vocabulary (OOV) problem, transliteration by means of dictionary lookup is imprac-
tical (Fujii & Tetsuya, 2001; Lin & Chen, 2002). One way to solve the OOV problem is
to use machine transliteration. Machine transliteration is usually used to support machine
translation (MT) (Knight & Graehl, 1997; Al-Onaizan & Knight, 2002) and cross-language
information retrieval (CLIR) (Fujii & Tetsuya, 2001; Lin & Chen, 2002). For CLIR, machine
transliteration bridges the gap between the transliterated localized form and its original form
by generating all possible transliterations from the original form (or generating all possible
original forms from the transliteration)2. For example, machine transliteration can assist
query translation in CLIR, where proper names and technical terms frequently appear in
source language queries. In the area of MT, machine transliteration helps preventing trans-
lation errors when translations of proper names and technical terms are not registered in
the translation dictionary. Machine transliteration can therefore improve the performance
of MT and CLIR.

Four machine transliteration models have been proposed by several researchers: graph-
eme3-based transliteration model (ψG) (Lee & Choi, 1998; Jeong, Myaeng, Lee, &
Choi, 1999; Kim, Lee, & Choi, 1999; Lee, 1999; Kang & Choi, 2000; Kang & Kim, 2000;
Kang, 2001; Goto, Kato, Uratani, & Ehara, 2003; Li, Zhang, & Su, 2004), phoneme4-
based transliteration model (ψP) (Knight & Graehl, 1997; Lee, 1999; Jung, Hong, &
Paek, 2000; Meng, Lo, Chen, & Tang, 2001), hybrid transliteration model (ψH) (Lee,
1999; Al-Onaizan & Knight, 2002; Bilac & Tanaka, 2004), and correspondence-based
transliteration model (ψC) (Oh & Choi, 2002). These models are classified in terms of
the units to be transliterated. The ψG is sometimes referred to as the direct method because
it directly transforms source language graphemes into target language graphemes without
any phonetic knowledge of the source language words. The ψP is sometimes referred to as
the pivot method because it uses source language phonemes as a pivot when it produces
target language graphemes from source language graphemes. The ψP therefore usually
needs two steps: 1) produce source language phonemes from source language graphemes;
2) produce target language graphemes from source phonemes5. The ψH and ψC make use
of both source language graphemes and source language phonemes when producing target
language transliterations. Hereafter, we refer to a source language grapheme as a source

2. The former process is generally called “transliteration”, and the latter is generally called “back-
transliteration” (Knight & Graehl, 1997)

3. Graphemes refer to the basic units (or the smallest contrastive units) of a written language: for example,
English has 26 graphemes or letters, Korean has 24, and German has 30.

4. Phonemes are the simplest significant unit of sound (or the smallest contrastive units of a spoken lan-
guage); for example, /M/, /AE/, and /TH/ in /M AE TH/, the pronunciation of math. We use the
ARPAbet symbols to represent source phonemes. ARPAbet is one of the methods used for coding source
phonemes into ASCII characters (http://www.cs.cmu.edu/~laura/pages/arpabet.ps). Here we denote
source phonemes and pronunciation with two slashes, as in /AH/, and use pronunciation based on The
CMU Pronunciation Dictionary and The American Heritage(r) Dictionary of the English Language.

5. These two steps are explicit if the transliteration system produces target language transliterations after
producing the pronunciations of the source language words; they are implicit if the system uses phonemes
implicitly in the transliteration stage and explicitly in the learning stage, as described elsewhere (Bilac
& Tanaka, 2004)

120

A Comparison of Machine Transliteration Models

grapheme, a source language phoneme as a source phoneme, and a target language grapheme
as a target grapheme.

The transliterations produced by the four models usually differ because the models use
different information. Generally, transliteration is a phonetic process, as in ψP , rather
than an orthographic one, as in ψG (Knight & Graehl, 1997). However, standard translit-
erations are not restricted to phoneme-based transliterations. For example, the standard
Korean transliterations of data, amylase, and neomycin are, respectively, the phoneme-
based transliteration ‘de-i-teo’, the grapheme-based transliteration ‘a-mil-la-a-je’, and ‘ne-
o-ma-i-sin’, which is a combination of the grapheme-based transliteration ‘ne-o’ and the
phoneme-based transliteration ‘ma-i-sin’. Furthermore, if the unit to be transliterated is
restricted to either a source grapheme or a source phoneme, it is hard to produce the correct
transliteration in many cases. For example, ψP cannot easily produce the grapheme-based
transliteration ‘a-mil-la-a-je’, the standard Korean transliteration of amylase, because ψP

tends to produce ‘a-mil-le-i-seu’ based on the sequence of source phonemes /AE M AH
L EY S/. Multiple transliteration models should therefore be applied to better cover the
various transliteration processes. To date, however, there has been little published research
regarding a framework in which multiple transliteration models can operate simultaneously.
Furthermore, there has been no reported comparison of the transliteration models within
the same framework and using the same data although many English-to-Korean transliter-
ation methods based on ψG have been compared to each other with the same data (Kang
& Choi, 2000; Kang & Kim, 2000; Oh & Choi, 2002).

To address these problems, we 1) modeled a framework in which the four translit-
eration models can operate simultaneously, 2) compared the transliteration
models under the same conditions, and 3) using the results of the comparison,
developed a way to improve the performance of machine transliteration.

The rest of this paper is organized as follows. Section 2 describes previous work relevant
to our study. Section 3 describes our implementation of the four transliteration models.
Section 4 describes our testing and results. Section 5 describes a way to improve machine
transliteration based on the results of our comparison. Section 6 describes a translitera-
tion ranking method that can be used to improve transliteration performance. Section 7
concludes the paper with a summary and a look at future work.

2. Related Work

Machine transliteration has received significant research attention in recent years. In most
cases, the source language and target language have been English and an Asian language, re-
spectively – for example, English to Japanese (Goto et al., 2003), English to Chinese (Meng
et al., 2001; Li et al., 2004), and English to Korean (Lee & Choi, 1998; Kim et al., 1999;
Jeong et al., 1999; Lee, 1999; Jung et al., 2000; Kang & Choi, 2000; Kang & Kim, 2000;
Kang, 2001; Oh & Choi, 2002). In this section, we review previous work related to the four
transliteration models.

2.1 Grapheme-based Transliteration Model

Conceptually, the ψG is direct orthographical mapping from source graphemes to target
graphemes. Several transliteration methods based on this model have been proposed, such

121

Oh, Choi, & Isahara

as those based on a source-channel model (Lee & Choi, 1998; Lee, 1999; Jeong et al.,
1999; Kim et al., 1999), a decision tree (Kang & Choi, 2000; Kang, 2001), a transliteration
network (Kang & Kim, 2000; Goto et al., 2003), and a joint source-channel model (Li et al.,
2004).

The methods based on the source-channel model deal with English-Korean transliter-
ation. They use a chunk of graphemes that can correspond to a source phoneme. First,
English words are segmented into a chunk of English graphemes. Next, all possible chunks of
Korean graphemes corresponding to the chunk of English graphemes are produced. Finally,
the most relevant sequence of Korean graphemes is identified by using the source-channel
model. The advantage of this approach is that it considers a chunk of graphemes repre-
senting a phonetic property of the source language word. However, errors in the first step
(segmenting the English words) propagate to the subsequent steps, making it difficult to
produce correct transliterations in those steps. Moreover, there is high time complexity
because all possible chunks of graphemes are generated in both languages.

In the method based on a decision tree, decision trees that transform each source
grapheme into target graphemes are learned and then directly applied to machine translit-
eration. The advantage of this approach is that it considers a wide range of contextual
information, say, the left three and right three contexts. However, it does not consider any
phonetic aspects of transliteration.

Kang and Kim (2000) and Goto et al. (2003) proposed methods based on a transliter-
ation network for, respectively, English-to-Korean and English-to-Japanese transliteration.
Their frameworks for constructing a transliteration network are similar – both are composed
of nodes and arcs. A node represents a chunk of source graphemes and its corresponding
target graphemes. An arc represents a possible link between nodes and has a weight showing
its strength. Like the methods based on the source-channel model, their methods consider
the phonetic aspect in the form of chunks of graphemes. Furthermore, they segment a chunk
of graphemes and identify the most relevant sequence of target graphemes in one step. This
means that errors are not propagated from one step to the next, as in the methods based
on the source-channel model.

The method based on the joint source-channel model simultaneously considers the source
language and target language contexts (bigram and trigram) for machine transliteration.
Its main advantage is the use of bilingual contexts.

2.2 Phoneme-based Transliteration Model

In the ψP , the transliteration key is pronunciation or the source phoneme rather than
spelling or the source grapheme. This model is basically source grapheme-to-source phoneme
transformation and source phoneme-to-target grapheme transformation.

Knight and Graehl (1997) modeled Japanese-to-English transliteration with weighted
finite state transducers (WFSTs) by combining several parameters including romaji-to-
phoneme, phoneme-to-English, English word probabilities, and so on. A similar model was
developed for Arabic-to-English transliteration (Stalls & Knight, 1998). Meng et al. (2001)
proposed an English-to-Chinese transliteration method based on English grapheme-to-phoneme
conversion, cross-lingual phonological rules, mapping rules between English phonemes and
Chinese phonemes, and Chinese syllable-based and character-based language models. Jung

122

A Comparison of Machine Transliteration Models

et al. (2000) modeled English-to-Korean transliteration with an extended Markov window.
The method transforms an English word into English pronunciation by using a pronuncia-
tion dictionary. Then it segments the English phonemes into chunks of English phonemes;
each chunk corresponds to a Korean grapheme as defined by handcrafted rules. Finally, it
automatically transforms each chunk of English phonemes into Korean graphemes by using
an extended Markov window.

Lee (1999) modeled English-to-Korean transliteration in two steps. The English grapheme-
to-English phoneme transformation is modeled in a manner similar to his method based
on the source-channel model described in Section 2.1. The English phonemes are then
transformed into Korean graphemes by using English-to-Korean standard conversion rules
(EKSCR) (Korea Ministry of Culture & Tourism, 1995). These rules are in the form of
context-sensitive rewrite rules, “PAPXPB → y”, meaning that English phoneme PX is
rewritten as Korean grapheme y in the context PA and PB, where PX , PA, and PB rep-
resent English phonemes. For example, “PA = ∗, PX = /SH/, PB = end → ‘si’” means
“English phoneme /SH/ is rewritten into Korean grapheme ‘si’ if it occurs at the end of
the word (end) after any phoneme (∗)”. This approach suffers from both the propagation
of errors and the limitations of EKSCR. The first step, grapheme-to-phoneme transforma-
tion, usually results in errors, and the errors propagate to the next step. Propagated errors
make it difficult for a transliteration system to work correctly. In addition, EKSCR does
not contain enough rules to generate correct Korean transliterations since its main focus is
mapping from an English phoneme to Korean graphemes without taking into account the
contexts of the English grapheme.

2.3 Hybrid and Correspondence-based Transliteration Models

Attempts to use both source graphemes and source phonemes in machine transliteration
led to the correspondence-based transliteration model (ψC) (Oh & Choi, 2002) and the
hybrid transliteration model (ψH) (Lee, 1999; Al-Onaizan & Knight, 2002; Bilac & Tanaka,
2004). The former makes use of the correspondence between a source grapheme and a source
phoneme when it produces target language graphemes; the latter simply combines ψG and
ψP through linear interpolation. Note that the ψH combines the grapheme-based translit-
eration probability (Pr(ψG)) and the phoneme-based transliteration probability (Pr(ψP))
using linear interpolation.

Oh and Choi (2002) considered the contexts of a source grapheme and its correspond-
ing source phoneme for English-to-Korean transliteration. They used EKSCR as the ba-
sic rules in their method. Additional contextual rules are semi-automatically constructed
by examining the cases in which EKSCR produced incorrect transliterations because of
a lack of contexts. These contextual rules are in the form of context-sensitive rewrite
rules, “CACXCB → y”, meaning “CX is rewritten as target grapheme y in the context
CA and CB”. Note that CX , CA, and CB represent the correspondence between the En-
glish grapheme and phoneme. For example, we can read “CA = (∗ : /V owel/), CX =
(r : /R/), CB = (∗ : /Consonant/) → NULL” as “English grapheme r corresponding to
phoneme /R/ is rewritten into null Korean graphemes when it occurs after vowel phonemes,
(∗ : /V owel/), before consonant phonemes, (∗ : /Consonant/)”. The main advantage of
this approach is the application of a sophisticated rule that reflects the context of the source

123

Oh, Choi, & Isahara

grapheme and source phoneme by considering their correspondence. However, there is lack
of portability to other languages because the rules are restricted to Korean.

Several researchers (Lee, 1999; Al-Onaizan & Knight, 2002; Bilac & Tanaka, 2004) have
proposed hybrid model-based transliteration methods. They model ψG and ψP with WF-
STs or a source-channel model and combine ψG and ψP through linear interpolation. In
their ψP , several parameters are considered, such as the source grapheme-to-source phoneme
probability, source phoneme-to-target grapheme probability, and target language word prob-
ability. In their ψG, the source grapheme-to-target grapheme probability is mainly consid-
ered. The main disadvantage of the hybrid model is that the dependence between the source
grapheme and source phoneme is not taken into consideration in the combining process; in
contrast, Oh and Choi’s approach (Oh & Choi, 2002) considers this dependence by using
the correspondence between the source grapheme and phoneme.

3. Modeling Machine Transliteration Models

In this section, we describe our implementation of the four machine transliteration models
(ψG, ψP , ψH , and ψC) using three machine learning algorithms: memory-based learning,
decision-tree learning, and the maximum entropy model.

3.1 Framework for Four Machine Transliteration Models

Figure 1 summarizes the differences among the transliteration models and their component
functions. The ψG directly transforms source graphemes (S) into target graphemes (T).
The ψP and ψC transform source graphemes into source phonemes and then generate target
graphemes6. While ψP uses only the source phonemes, ψC uses the correspondence between
the source grapheme and the source phoneme when it generates target graphemes. We
describe their differences with two functions, φPT and φ(SP)T . The ψH is represented as the
linear interpolation of Pr(ψG) and Pr(ψP) by means of α (0 ≤ α ≤ 1). Here, Pr(ψP) is the
probability that ψP will produce target graphemes, while Pr(ψG) is the probability that ψG

will produce target graphemes. We can thus regard ψH as being composed of component
functions of ψG and ψP (φSP , φPT , and φST). Here we use the maximum entropy model
as the machine learning algorithm for ψH because ψH requires Pr(ψP) and Pr(ψG), and
only the maximum entropy model among memory-based learning, decision-tree learning,
and the maximum entropy model can produce the probabilities.

To train each component function, we need to define the features that represent training
instances and data. Table 1 shows five feature types, fS , fP , fStype, fPtype, and fT . The
feature types used depend on the component functions. The modeling of each component
function with the feature types is explained in Sections 3.2 and 3.3.

3.2 Component Functions of Each Transliteration Model

Table 2 shows the definitions of the four component functions that we used. Each is defined
in terms of its input and output: the first and last characters in the notation of each
correspond respectively to its input and output. The role of each component function in

6. According to (g◦f)(x) = g(f(x)), we can write (φ(SP)T ◦φSP)(x) = φ(SP)T (φSP (x)) and (φPT ◦φSP)(x) =
φPT (φSP (x)).

124

A Comparison of Machine Transliteration Models

SSS

PPP

TTT

φPT

φST

φSP

φ(SP)T

S: Source graphemes
P: Source Phonemes
T: Target graphemes

SS: Source graphemes: Source graphemes
PP: Source : Source PhonemesPhonemes
TT: : Target graphemesTarget graphemes)Pr()1(

)Pr(:

 :

 :

 :

)(

G

PH

SPTSPC

SPPTP

STG

ψα
ψαψ
φφψ

φφψ
φψ

×−+
×

o

o

Figure 1: Graphical representation of each component function and four transliteration
models: S is a set of source graphemes (e.g., letters of the English alphabet), P is
a set of source phonemes defined in ARPAbet, and T is a set of target graphemes.

Feature type Description and possible values

fS,Stype

fS
Source graphemes in S:
26 letters in English alphabet

fStype
Source grapheme types:
Consonant (C) and Vowel (V)

fP,P type

fP
Source phonemes in P
(/AA/, /AE/, and so on)

fPtype
Source phoneme types: Consonant (C), Vowel (V),
Semi-vowel (SV), and silence (/∼/)

fT Target graphemes in T

Table 1: Feature types used for transliteration models: fS,Stype indicates both fS and fStype,
while fP,P type indicates both fP and fPtype.

each transliteration model is to produce the most relevant output from its input. The
performance of a transliteration model therefore depends strongly on that of its component
functions. In other words, the better the modeling of each component function, the better
the performance of the machine transliteration system.

The modeling strongly depends on the feature type. Different feature types are used
by the φ(SP)T , φPT , and φST functions, as shown in Table 2. These three component
functions thus have different strengths and weaknesses for machine transliteration. The
φST function is good at producing grapheme-based transliterations and poor at producing

125

Oh, Choi, & Isahara

Notation Feature types used Input Output
φSP fS,Stype, fP si, c(si) pi

φ(SP)T fS,Stype, fP,P type, fT si, pi, c(si), c(pi) ti
φPT fP,P type, fT pi, c(pi) ti
φST fS,Stype, fT si, c(si) ti

Table 2: Definition of each component function: si, c(si), pi, c(pi), and ti respectively repre-
sent the ith source grapheme, the context of si (si−n, · · · , si−1 and si+1, · · · , si+n),
the ith source phoneme, the context of pi (pi−n, · · · , pi−1 and pi+1, · · · , pi+n), and
the ith target grapheme.

phoneme-based ones. In contrast, the φPT function is good at producing phoneme-based
transliterations and poor at producing grapheme-based ones. For amylase and its standard
Korean transliteration, ‘a-mil-la-a-je’, which is a grapheme-based transliteration, φST tends
to produce the correct transliteration; φPT tends to produce wrong ones like ‘ae-meol-le-i-
seu’, which is derived from /AE M AH L EY S/, the pronunciation of amylase. In contrast,
φPT can produce ‘de-i-teo’, which is the standard Korean transliteration of data and a
phoneme-based transliteration, while φST tends to give a wrong one, like ‘da-ta’.

The φ(SP)T function combines the advantages of φST and φPT by utilizing the corre-
spondence between the source grapheme and source phoneme. This correspondence en-
ables φ(SP)T to produce both grapheme-based and phoneme-based transliterations. Fur-
thermore, the correspondence provides important clues for use in resolving transliteration
ambiguities7. For example, the source phoneme /AH/ produces much ambiguity in ma-
chine transliteration because it can be mapped to almost every vowel in the source and
target languages (the underlined graphemes in the following example corresponds to /AH/:
holocaust in English, ‘hol-lo-ko-seu-teu’ in its Korean counterpart, and ‘ho-ro-ko-o-su-to’ in
its Japanese counterpart). If we know the correspondence between the source grapheme and
source phoneme, we can more easily infer the correct transliteration of /AH/ because the
correct target grapheme corresponding to /AH/ usually depends on the source grapheme
corresponding to /AH/. Moreover, there are various Korean transliterations of the source
grapheme a: ‘a’, ‘ae’, ‘ei’, ‘i’, and ‘o’. In this case, the English phonemes corresponding
to the English grapheme can help a component function resolve transliteration ambigui-
ties, as shown in Table 3. In Table 3, the a underlined in the example words shown in
the last column is pronounced as the English phoneme in the second column. By looking
at English grapheme and its corresponding English phoneme, we can find correct Korean
transliterations more easily.

Though φ(SP)T is more effective than both φST and φPT in many cases, φ(SP)T some-
times works poorly when the standard transliteration is strongly biased to either grapheme-
based or phoneme-based transliteration. In such cases, either the source grapheme or source
phoneme does not contribute to the correct transliteration, making it difficult for φ(SP)T

to produce the correct transliteration. Because φST , φPT , and φ(SP)T are the core parts

7. Though contextual information can also be used to reduce ambiguities, we limit our discussion here to
the feature type.

126

A Comparison of Machine Transliteration Models

Korean Grapheme English Phoneme Example usage
‘a’ /AA/ adagio, safari, vivace
‘ae’ /AE/ advantage, alabaster, travertine
‘ei’ /EY/ chamber, champagne, chaos
‘i’ /IH/ advantage, average, silage
‘o’ /AO/ allspice, ball, chalk

Table 3: Examples of Korean graphemes derived from English grapheme a and its corre-
sponding English phonemes: the underlines in the example words indicate the
English grapheme corresponding to English phonemes in the second column.

of ψG, ψP , and ψC , respectively, the advantages and disadvantages of the three component
functions correspond to those of the transliteration models in which each is used.

Transliteration usually depends on context. For example, the English grapheme a can
be transliterated into Korean graphemes on the basis of its context, like ‘ei’ in the context
of -ation and ‘a’ in the context of art. When context information is used, determining
the context window size is important. A context window that is too narrow can degrade
transliteration performance because of a lack of context information. For example, when
English grapheme t in -tion is transliterated into Korean, the one right English grapheme is
insufficient as context because the three right contexts, -ion, are necessary to get the correct
Korean grapheme, ‘s’. A context window that is too wide can also degrade transliteration
performance because it reduces the power to resolve transliteration ambiguities. Many
previous studies have determined that an appropriate context window size is 3. In this
paper, we use a window size of 3, as in previous work (Kang & Choi, 2000; Goto et al.,
2003). The effect of the context window size on transliteration performance will be discussed
in Section 4.

Table 4 shows how to identify the most relevant output in each component function using
context information. The L3-L1, C0, and R1-R3 represent the left context, current context
(i.e., that to be transliterated), and right context, respectively. The φSP function produces
the most relevant source phoneme for each source grapheme. If SW = s1 · s2 · . . . · sn is
an English word, SW ’s pronunciation can be represented as a sequence of source phonemes
produced by φSP ; that is, PSW = p1 · p2 · . . . · pn, where pi = φSP (si, c(si)). φSP transforms
source graphemes into phonemes in two ways. The first one is to search in a pronunciation
dictionary containing English words and their pronunciation (CMU, 1997). The second one
is to estimate the pronunciation (or automatic grapheme-to-phoneme conversion) (Ander-
sen, Kuhn, Lazarides, Dalsgaard, Haas, & Noth, 1996; Daelemans & van den Bosch, 1996;
Pagel, Lenzo, & Black, 1998; Damper, Marchand, Adamson, & Gustafson, 1999; Chen,
2003). If an English word is not registered in the pronunciation dictionary, we must esti-
mate its pronunciation. The produced pronunciation is used for φPT in ψP and φ(SP)T in
ψC . For training the automatic grapheme-to-phoneme conversion in φSP , we use The CMU
Pronouncing Dictionary (CMU, 1997).

The φST , φPT , and φ(SP)T functions produce target graphemes using their input. Like
φSP , these three functions use their previous outputs, which are represented by fT . As

127

Oh, Choi, & Isahara

Type L3 L2 L1 C0 R1 R2 R3 Output

φSP

fS $ $ $ b o a r
→ /B/fStype $ $ $ C V V C

fP $ $ $ ε

φST

fS $ $ $ b o a r
→ ‘b’fStype $ $ $ C V V C

fT $ $ $ ε

φPT

fP $ $ $ /B/ /AO/ /∼/ /R/
→ ‘b’fPtype $ $ $ C V /∼/ C

fT $ $ $ ε

φ(SP)T

fS $ $ $ b o a r

→ ‘b’
fP $ $ $ /B/ /AO/ /∼/ /R/
fStype $ $ $ C V V C
fPtype $ $ $ C V /∼/ C
fT $ $ $ ε

Table 4: Framework for each component function: $ represents start of words and ε means
unused contexts for each component function.

shown in Table 4, φST , φPT , and φ(SP)T produce target grapheme ‘b’ for source grapheme
b and source phoneme /B/ in board and /B AO R D/. Because the b and /B/ are the
first source grapheme of board and the first source phoneme of /B AO R D/, respectively,
their left context is $, which represents the start of words. Source graphemes (o, a, and r)
and their type (V: vowel, V: vowel, and C: consonant) can be the right context in φST and
φ(SP)T . Source phonemes (/AO/, /∼/, and /R/) and their type (V: vowel, /∼/: silence,
V: vowel) can be the right context in φPT and φ(SP)T . Depending on the feature type
used in each component function and described in Table 2, φST , φPT , and φ(SP)T produce
a sequence of target graphemes, TSW = t1 · t2 · . . . · tn, for SW = s1 · s2 · . . . · sn and
PSW = p1 · p2 · . . . · pn. For board, SW , PSW , and TSW can be represented as follows. The
/∼/ represents silence (null source phonemes), and the ‘∼’ represents null target graphemes.

• SW = s1 · s2 · s3 · s4 · s5 = b · o · a · r · d
• PSW = p1 · p2 · p3 · p4 · p5 = /B/ · /AO/ · / ∼ / · /R/ · /D/

• TSW = t1 · t2 · t3 · t4 · t5 = ‘b’· ‘o’ · ‘∼’ · ‘∼’ · ‘deu’

3.3 Machine Learning Algorithms for Each Component Function

In this section we describe a way to model component functions using three machine learn-
ing algorithms (the maximum entropy model, decision-tree learning, and memory-based
learning)8. Because the four component functions share a similar framework, we limit our
focus to φ(SP)T in this section.

8. These three algorithms are typically applied to automatic grapheme-to-phoneme conversion (Andersen
et al., 1996; Daelemans & van den Bosch, 1996; Pagel et al., 1998; Damper et al., 1999; Chen, 2003).

128

A Comparison of Machine Transliteration Models

3.3.1 Maximum entropy model

The maximum entropy model (MEM) is a widely used probability model that can in-
corporate heterogeneous information effectively (Berger, Pietra, & Pietra, 1996). In the
MEM, an event (ev) is usually composed of a target event (te) and a history event (he);
say ev =< te, he >. Event ev is represented by a bundle of feature functions, fei(ev),
which represent the existence of certain characteristics in event ev. A feature function is
a binary-valued function. It is activated (fei(ev) = 1) when it meets its activating condi-
tion; otherwise it is deactivated (fei(ev) = 0) (Berger et al., 1996). Let source language
word SW be composed of n graphemes. SW, PSW , and TSW can then be represented as
SW = s1, · · · , sn, PSW = p1, · · · , pn, and TSW = t1, · · · , tn, respectively. PSW and TSW

represent the pronunciation and target language word corresponding to SW, and pi and ti
represent the source phoneme and target grapheme corresponding to si. Function φ(SP)T

based on the maximum entropy model can be represented as

Pr(TSW |SW,PSW) = Pr(t1, · · · , tn|s1, · · · , sn, p1, · · · , pn) (1)

With the assumption that φ(SP)T depends on the context information in window size k, we
simplify Formula (1) to

Pr(TSW |SW,PSW) ≈
∏

i

Pr(ti|ti−k, · · · , ti−1, pi−k, · · · , pi+k, si−k, · · · , si+k) (2)

Because t1, · · · , tn, s1, · · · , sn, and p1, · · · , pn can be represented by fT , fS,Stype, and fP,P type,
respectively, we can rewrite Formula (2) as

Pr(TSW |SW,PSW) ≈
∏

i

Pr(ti|fT(i−k,i−1)
, fP,P type(i−k,i+k)

, fS,Stype(i−k,i+k)
) (3)

where i is the index of the current source grapheme and source phoneme to be transliterated
and fX(l,m) represents the features of feature type fX located from position l to position m.

An important factor in designing a model based on the maximum entropy model is
to identify feature functions that effectively support certain decisions of the model. Our
basic philosophy of feature function design for each component function is that the context
information collocated with the unit of interest is important. We thus designed the feature
function with collocated features in each feature type and between different feature types.
Features used for φ(SP)T are listed below. These features are used as activating conditions
or history events of feature functions.

• Feature type and features used for designing feature functions in φ(SP)T (k = 3)

– All possible features in fS,Stypei−k,i+k
, fP,P typei−k,i+k

, and fTi−k,i−1
(e.g., fSi−1 ,

fPi−1 , and fTi−1)

– All possible feature combinations between features of the same feature type (e.g.,
{fSi−2 , fSi−1 , fSi+1}, {fPi−2 , fPi , fPi+2}, and {fTi−2 , fTi−1})

– All possible feature combinations between features of different feature types (e.g.,
{fSi−1 , fPi−1}, {fSi−1 , fTi−2} , and {fPtypei−2 , fPi−3 , fTi−2})
∗ between fS,Stypei−k,i+k

and fP,P typei−k,i+k

129

Oh, Choi, & Isahara

fej
te he
ti fT(i−k,i−1)

fS,Stype(i−k,i+k)
fP,P type(i−k,i+k)

fe1 ‘b’ – fSi = b fPi = /B/
fe2 ‘b’ – fSi−1 = $ –
fe3 ‘b’ fTi−1 = $ fSi+1 = o and fStypei+2 = V fPi = /B/
fe4 ‘b’ – – fPi+1 = /AO/
fe5 ‘b’ fTi−2 = $ fSi+3 = r fPtypei = C

Table 5: Feature functions for φ(SP)T derived from Table 4.

∗ between fS,Stypei−k,i+k
and fTi−k,i−1

∗ between fP,P typei−k,i+k
and fTi−k,i−1

Generally, a conditional maximum entropy model that gives the conditional probability
Pr(y|x) is represented as Formula (4) (Berger et al., 1996).

Pr(y|x) =
1

Z(x)
exp(

∑

i

λifei(x, y)) (4)

Z(x) =
∑
y

exp(
∑

i

λifei(x, y))

In φ(SP)T , the target event (te) is target graphemes to be assigned, and the history event
(he) can be represented as a tuple < fT(i−k,i−1)

, fS,Stype(i−k,i+k)
, fP,P type(i−k,i+k)

>. Therefore,
we can rewrite Formula (3) as

Pr(ti|fT(i−k,i−1)
, fS,Stype(i−k,i+k)

, fP,P type(i−k,i+k)
) (5)

= Pr(te|he) =
1

Z(he)
exp(

∑

i

λifei(he, te))

Table 5 shows example feature functions for φ(SP)T ; Table 4 was used to derive the
functions. For example, fe1 represents an event where he (history event) is “fSi is b and
fPi is /B/” and te (target event) is “fTi is ‘b’”. To model each component function based
on the MEM, Zhang’s maximum entropy modeling tool is used (Zhang, 2004).

3.3.2 Decision-tree learning

Decision-tree learning (DTL) is one of the most widely used and well-known methods for
inductive inference (Quinlan, 1986; Mitchell, 1997). ID3, which is a greedy algorithm
that constructs decision trees in a top-down manner, uses the information gain, which is a
measure of how well a given feature (or attribute) separates training examples on the basis of
their target class (Quinlan, 1993; Manning & Schutze, 1999). We use C4.5 (Quinlan, 1993),
which is a well-known tool for DTL and an implementation of Quinlan’s ID3 algorithm.

The training data for each component function is represented by features located in L3-
L1, C0, and R1-R3, as shown in Table 4. C4.5 tries to construct a decision tree by looking
for regularities in the training data (Mitchell, 1997). Figure 2 shows part of the decision

130

A Comparison of Machine Transliteration Models

tree constructed for φ(SP)T in English-to-Korean transliteration. A set of the target classes
in the decision tree for φ(SP)T is a set of the target graphemes. The rectangles indicate the
leaf nodes, which represent the target classes, and the circles indicate the decision nodes.
To simplify our examples, we use only fS and fP . Note that all feature types for each
component function, as described in Table 4, are actually used to construct decision trees.
Intuitively, the most effective feature from among L3-L1, C0, and R1-R3 for φ(SP)T may be
located in C0 because the correct outputs of φ(SP)T strongly depend on the source grapheme
or source phoneme in the C0 position. As we expected, the most effective feature in the
decision tree is located in the C0 position, that is, C0(fP). (Note that the first feature
to be tested in decision trees is the most effective feature.) In Figure 2, the decision tree
produces the target grapheme (Korean grapheme) ‘o’ for the instance x(SPT) by retrieving
the decision nodes from C0(fP) = /AO/ to R1(fP) = / ∼ / represented by ‘∗’.

C0(fP): /AO/ (*)C0(C0(ffPP): /AO/ (*)): /AO/ (*)

C0(fS): aC0(fS): aC0(fS): eC0(fS): e C0(fS): o(*)C0(C0(ffSS): o(*)): o(*)

‘o’‘o’ ‘a’‘a’ ‘eu’‘eu’

C0(fS): othersC0(fS): others……

R1(fP): /R/R1(fP): /R/ R1(fP): /~/(*)R1(R1(ffPP): /~/(*)): /~/(*) R1(fP): othersR1(fP): others

‘o’‘o’‘o’ (*)‘‘ oo’’ (*)(*)

C0(fS): iC0(fS): i

L2(fS): aL2(fS): a L2(fS): rL2(fS): rL2(fS): $L2(fS): $ ……

‘o’→draob$$fS

x(SPT)

fP

Feature type

/D//R//~//AO//B/$$

φ(SP)TR3R2R1C0L1L2L3

Figure 2: Decision tree for φ(SP)T .

3.3.3 Memory-based learning

Memory-based learning (MBL), also called “instance-based learning” and “case-based learn-
ing”, is an example-based learning method. It is based on a k-nearest neighborhood algo-
rithm (Aha, Kibler, & Albert, 1991; Aha, 1997; Cover & Hart, 1967; Devijver & Kittler.,
1982). MBL represents training data as a vector and, in the training phase, it places all
training data as examples in memory and clusters some examples on the basis of the k-
nearest neighborhood principle. Training data for MBL is represented in the same form
as training data for a decision tree. Note that the target classes for φ(SP)T , which MBL
outputs, are target graphemes. Feature weighting to deal with features of differing impor-
tance is also done in the training phase9. It then produces an output using similarity-based

9. TiMBL (Daelemans, Zavrel, Sloot, & Bosch, 2004) supports gain ratio weighting, information gain
weighting, chi-squared (χ2) weighting, and shared variance weighting of the features.

131

Oh, Choi, & Isahara

reasoning between test data and the examples in memory. If the test data is x and the
set of examples in memory is Y , the similarity between x and Y can be estimated using
distance function ∆(x, Y)10. MBL selects an example yi or the cluster of examples that are
most similar to x and then assigns the example’s target class to x’s target class. We use
an MBL tool called TiMBL (Tilburg memory-based learner) version 5.0 (Daelemans et al.,
2004).

4. Experiments

We tested the four machine transliteration models on English-to-Korean and English-to-
Japanese transliteration. The test set for the former (EKSet) (Nam, 1997) consisted of
7,172 English-Korean pairs – the number of training items was about 6,000 and that of the
blind test items was about 1,000. EKSet contained no transliteration variations, meaning
that there was one transliteration for each English word. The test set for the latter (EJSet)
contained English-katakana pairs from EDICT (Breen, 2003) and consisted of 10,417 pairs
– the number of training items was about 9,000 and that of the blind test items was about
1,000. EJSet contained transliteration variations, like <micro, ‘ma-i-ku-ro’>, and <micro,
‘mi-ku-ro’>; the average number of Japanese transliterations for an English word was 1.15.
EKSet and EJSet covered proper names, technical terms, and general terms. We used
The CMU Pronouncing Dictionary (CMU, 1997) for training pronunciation estimation (or
automatic grapheme-to-phoneme conversion) in φSP . The training for automatic grapheme-
to-phoneme conversion was done ignoring the lexical stress of vowels in the dictionary (CMU,
1997). The evaluation was done in terms of word accuracy (WA), the evaluation measure
used in previous work (Kang & Choi, 2000; Kang & Kim, 2000; Goto et al., 2003; Bilac &
Tanaka, 2004). Here, WA can be represented as Formula (6). A generated transliteration
for an English word was judged to be correct if it exactly matched a transliteration for that
word in the test data.

WA =
number of correct transliterations output by system

number of transliterations in blind test data
(6)

In the evaluation, we used k-fold cross-validation (k=7 for EKSet and k=10 for EJSet). The
test set was divided into k subsets. Each was used in turn for testing while the remainder was
used for training. The average WA computed across all k trials was used as the evaluation
results presented in this section.

We conducted six tests.

• Hybrid Model Test: Evaluation of hybrid transliteration model by changing value of α
(the parameter of the hybrid transliteration model)

• Comparison Test I: Comparison among four machine transliteration models

• Comparison Test II: Comparison of four machine transliteration models to previously
proposed transliteration methods

10. Modified value difference metric, overlap metric, Jeffrey divergence metric, dot product metric, etc. are
used as the distance function (Daelemans et al., 2004).

132

A Comparison of Machine Transliteration Models

• Dictionary Test: Evaluation of transliteration models on words registered and not
registered in pronunciation dictionary to determine effect of pronunciation dictionary
on each model

• Context Window-Size Test: Evaluation of transliteration models for various sizes of
context window

• Training Data-Size Test: Evaluation of transliteration models for various sizes of train-
ing data sets

4.1 Hybrid Model Test

The objective of this test was to estimate the dependence of the performance of ψH on
parameter α. We evaluated the performance by changing α from 0 to 1 at intervals of
0.1 (i.e., α=0, 0.1, 0.2, · · ·, 0.9, 1.0). Note that the hybrid model can be represented as
“α× Pr(ψP) + (1− α)× Pr(ψG)”. Therefore, ψH is ψG when α = 0 and ψP when α = 1.
As shown in Table 6, the performance of ψH depended on that of ψG and ψP . For example,
the performance of ψG exceeded that of ψP for EKSet. Therefore, ψH tended to perform
better when α ≤ 0.5 than when α > 0.5 for EKSet. The best performance was attained
when α = 0.4 for EKSet and when α = 0.5 for EJSet. Hereinafter, we use α = 0.4 for
EKSet and α = 0.5 for EJSet as the linear interpolation parameter for ψH .

α EKSet EJSet
0 58.8% 58.8%
0.1 61.2% 60.9%
0.2 62.0% 62.6%
0.3 63.0% 64.1%
0.4 64.1% 65.4%
0.5 63.4% 65.8%
0.6 61.1% 65.0%
0.7 59.6% 63.4%
0.8 58.2% 62.1%
0.9 57.0% 61.2%
1.0 55.2% 59.2%

Table 6: Results of Hybrid Model Test.

4.2 Comparison Test I

The objectives of the first comparison test were to compare performance among the four
transliteration models (ψG, ψP , ψH , and ψC) and to compare the performance of each model
with the combined performance of three of the models (ψG+P+C). Table 7 summarizes the
performance of each model for English-to-Korean and English-to-Japanese transliteration,

133

Oh, Choi, & Isahara

where DTL, MBL11 and MEM represent decision-tree learning, memory-based learning,
and maximum entropy model.

The unit to be transliterated was restricted to either a source grapheme or a source
phoneme in ψG and ψP ; it was dynamically selected on the basis of the contexts in ψH

and ψC . This means that ψG and ψP could produce an incorrect result if either a source
phoneme or a source grapheme, which, respectively, they do not consider, holds the key to
producing the correct transliteration result. For this reason, ψH and ψC performed better
than both ψG and ψP .

Transliteration Model
EKSet EJSet

DTL MBL MEM DTL MBL MEM
ψG 53.1% 54.6% 58.8% 55.6% 58.9% 58.8%
ψP 50.8% 50.6% 55.2% 55.8% 56.1% 59.2%
ψH N/A N/A 64.1% N/A N/A 65.8%
ψC 59.5% 60.3% 65.5% 64.0% 65.8% 69.1%
ψG+P+C 72.0% 71.4% 75.2% 73.4% 74.2% 76.6%

Table 7: Results of Comparison Test I.

In the table, ψG+P+C means the combined results for the three transliteration models,
ψG, ψP , and ψC . We exclude ψH from the combining because it is implemented only
with the MEM (the performance of combining the four transliteration models are discussed
in Section 5). In evaluating ψG+P+C , we judged the transliteration results to be correct
if there was at least one correct transliteration among the results produced by the three
models. Though ψC showed the best results among the three transliteration models due to
its ability to use the correspondence between the source grapheme and source phoneme, the
source grapheme or the source phoneme can create noise when the correct transliteration
is produced by the other one. In other words, when the correct transliteration is strongly
biased to either grapheme-based or phoneme-based transliteration, ψG and ψP may be more
suitable for producing the correct transliteration.

Table 8 shows example transliterations produced by each transliteration model. The
ψG produced correct transliterations for cyclase and bacteroid, while ψP did the same for
geoid and silo. ψC produced correct transliterations for saxhorn and bacteroid, and ψH

produced correct transliterations for geoid and bacteroid. As shown by these results, there
are transliterations that only one transliteration model can produce correctly. For example,
only ψG, ψP , and ψC produced the correct transliterations of cyclase, silo, and saxhorn,
respectively. Therefore, these three transliteration models can be used in a complementary
manner to improve transliteration performance because at least one can usually produce the
correct transliteration. This combination increased the performance by compared to ψG,
ψP , and ψC (on average, 30.1% in EKSet and 24.6% in EJSet). In short, ψG, ψP , and ψC are
complementary transliteration models that together produce more correct transliterations,

11. We tested all possible combinations between ∆(x, Y) and a weighting scheme supported by
TiMBL (Daelemans et al., 2004) and did not detect any significant differences in performance for the
various combinations. Therefore, we used the default setting of TiMBL (Overlap metric for ∆(x, Y) and
gain ratio weighting for feature weighting).

134

A Comparison of Machine Transliteration Models

so combining different transliteration models can improve transliteration performance. The
transliteration results produced by ψG+P+C are analyzed in detail in Section 5.

ψG ψP

cyclase ‘si-keul-la-a-je’ ∗‘sa-i-keul-la-a-je’
bacteroid ‘bak-te-lo-i-deu’ ∗‘bak-teo-o-i-deu’

geoid ∗‘je-o-i-deu’ ‘ji-o-i-deu’
silo ∗‘sil-lo’ ‘sa-il-lo’

saxhorn ∗‘saek-seon’ ∗‘saek-seu-ho-leun’
ψH ψC

cyclase ∗‘sa-i-keul-la-a-je’ ∗‘sa-i-keul-la-a-je’
bacteroid ‘bak-te-lo-i-deu’ ‘bak-te-lo-i-deu’

geoid ‘ji-o-i-deu’ ∗‘ge-o-i-deu’
silo ∗‘sil-lo’ ∗‘sil-lo’

saxhorn ∗‘saek-seon’ ‘saek-seu-hon’

Table 8: Example transliterations produced by each transliteration model (∗ indicates an
incorrect transliteration).

In our subsequent testing, we used the maximum entropy model as the machine learning
algorithm for two reasons. First, it produced the best results of the three algorithms we
tested12. Second, it can support ψH .

4.3 Comparison Test II

In this test, we compared four previously proposed machine transliteration methods (Kang
& Choi, 2000; Kang & Kim, 2000; Goto et al., 2003; Bilac & Tanaka, 2004) to the four
transliteration models (ψG, ψP , ψH , and ψC), which were based on the MEM. Table 9 shows
the results. We trained and tested the previous methods with the same data sets used for
the four transliteration models. Table 10 shows the key features of the methods and models
from the viewpoint of information type and usage. Information type indicates the type of
information considered: source grapheme, source phoneme, and correspondence between
the two. For example, the first three methods use only the source grapheme. Information
usage indicates the context used and whether the previous output is used.

It is obvious from the table that the more information types a transliteration model
considers, the better its performance. Either the source phoneme or the correspondence –
which are not considered in the methods of Kang and Choi (2000), Kang and Kim (2000),
and Goto et al. (2003) – is the key to the higher performance of the method of Bilac and
Tanaka (2004) and the ψH and ψC .

From the viewpoint of information usage, the models and methods that consider the
previous output tended to achieve better performance. For example, the method of Goto et
al. (2003) had better results than that of Kang and Choi (2000). Because machine translit-

12. A one-tail paired t-test showed that the results with the MEM were always significantly better (except
for φG in EJSet) than those of DTL and MBL (level of significance = 0.001).

135

Oh, Choi, & Isahara

Method/Model EKSet EJSet

Previous methods

Kang and Choi (2000) 51.4% 50.3%
Kang and Kim (2000) 55.1% 53.2%

Goto et al. (2003) 55.9% 56.2%
Bilac and Tanaka (2004) 58.3% 62.5%

MEM-based models

ψG 58.8% 58.8%
ψP 55.2% 59.2%
ψH 64.1% 65.8%
ψC 65.5% 69.1%

Table 9: Results of Comparison Test II.

Method/Model
Info. type Info. usage
S P C Context PO

Kang and Choi (2000) + – – < −3 ∼ +3 > –
Kang and Kim (2000) + – – Unbounded +

Goto et al. (2003) + – – < −3 ∼ +3 > +
Bilac and Tanaka (2004) + + – Unbounded –

ψG + – – < −3 ∼ +3 > +
ψP – + – < −3 ∼ +3 > +
ψH + + – < −3 ∼ +3 > +
ψC + + + < −3 ∼ +3 > +

Table 10: Information type and usage for previous methods and four transliteration mod-
els, where S, P, C, and PO respectively represent the source grapheme, source
phoneme, correspondence between S and P, and previous output.

eration is sensitive to context, a reasonable context size usually enhances transliteration
ability. Note that the size of the context window for the previous methods was limited to 3
because a context window wider than 3 degrades performance (Kang & Choi, 2000) or does
not significantly improve it (Kang & Kim, 2000). Experimental results related to context
window size are given in Section 4.5.

Overall, ψH and ψC had better performance than the previous methods (on average,
17.04% better for EKSet and 21.78% better for EJSet), ψG (on average, 9.6% better for
EKSet and 14.4% better for EJSet), and ψP (on average, 16.7% better for EKSet and
19.0% better for EJSet). In short, a good machine transliteration model should 1) consider
either the correspondence between the source grapheme and the source phoneme or both
the source grapheme and the source phoneme, 2) have a reasonable context size, and 3)
consider previous output. The ψH and ψC satisfy all three conditions.

136

A Comparison of Machine Transliteration Models

4.4 Dictionary Test

Table 11 shows the performance of each transliteration model for the dictionary test. In this
test, we evaluated four transliteration models according to a way of pronunciation generation
(or grapheme-to-phoneme conversion). Registered represents the performance for words
registered in the pronunciation dictionary, and Unregistered represents that for unregistered
words. On average, the number of Registered words in EKSet was about 600, and that in
EJSet was about 700 in k-fold cross-validation test data. In other words, Registered words
accounted for about 60% of the test data in EKSet and about 70% of the test data in
EJSet. The correct pronunciation can always be acquired from the pronunciation dictionary
for Registered words, while the pronunciation must be estimated for Unregistered words
through automatic grapheme-to-phoneme conversion. However, the automatic grapheme-
to-phoneme conversion does not always produce correct pronunciations – the estimated rate
of correct pronunciations was about 70% accuracy.

EKSet EJSet
Registered Unregistered Registered Unregistered

ψG 60.91% 55.74% 61.18% 50.24%
ψP 66.70% 38.45% 64.35% 40.78%
ψH 70.34% 53.31% 70.20% 50.02%
ψC 73.32% 54.12% 74.04% 51.39%

ALL 80.78% 68.41% 81.17% 62.31%

Table 11: Results of Dictionary Test: ALL means ψG+P+H+C .

Analysis of the results showed that the four transliteration models fall into three cate-
gories. Since the ψG is free from the need for correct pronunciation, that is, it does not use
the source phoneme, its performance is not affected by pronunciation correctness. Therefore,
ψG can be regarded as the baseline performance for Registered and Unregistered. Because
ψP (φPT ◦ φSP), ψH (α× Pr(ψP)+(1 − α)× Pr(ψG)), and ψC (φ(SP)T ◦ φSP) depend on
the source phoneme, their performance tends to be affected by the performance of φSP .
Therefore, ψP , ψH , and ψC show notable differences in performance between Registered
and Unregistered. However, the performance gap differs with the strength of the depen-
dence. ψP falls into the second category: its performance strongly depends on the correct
pronunciation. ψP tends to perform well for Registered and poorly for Unregistered. ψH

and ψC weakly depend on the correct pronunciation. Unlike ψP , they make use of both
the source grapheme and source phoneme. Therefore, they can perform reasonably well
without the correct pronunciation because using the source grapheme weakens the negative
effect of incorrect pronunciation in machine transliteration.

Comparing ψC and ψP , we find two interesting things. First, ψP was more sensitive to
errors in φSP for Unregistered. Second, ψC showed better results for both Registered and
Unregistered. Because ψP and ψC share the same function, φSP , the key factor accounting
for the performance gap between them is the component functions, φPT and φ(SP)T . From
the results shown in Table 11, we can infer that φ(SP)T (in ψC) performed better than
φPT (in ψP) for both Registered and Unregistered. In φ(SP)T , the source grapheme corre-

137

Oh, Choi, & Isahara

sponding to the source phonemes, which φPT does not consider, made two contributions
to the higher performance of φ(SP)T . First, the source grapheme in the correspondence
made it possible to produce more accurate transliterations. Because φ(SP)T considers the
correspondence, φ(SP)T has a more powerful transliteration ability than φPT , which uses
just the source phonemes, when the correspondence is needed to produce correct transliter-
ations. This is the main reason φ(SP)T performed better than φPT for Registered. Second,
source graphemes in the correspondence compensated for errors produced by φSP in pro-
ducing target graphemes. This is the main reason φ(SP)T performed better than φPT for
Unregistered. In the comparison between ψC and ψG, the performances were similar for Un-
registered. This indicates that the transliteration power of ψC is similar to that of ψG, even
though the pronunciation of the source language word may not be correct. Furthermore, the
performance of ψC was significantly higher than that of ψG for Registered. This indicates
that the transliteration power of ψC is greater than that of ψG if the correct pronunciation
is given.

The behavior of ψH was similar to that of ψC . For Unregistered, Pr(ψG) in ψH made
it possible for ψH to avoid errors caused by Pr(ψP). Therefore, it worked better than ψP .
For Registered, Pr(ψP) enabled ψH to perform better than ψG.

The results of this test showed that ψH and ψC perform better than ψG and ψP while
complementing ψG and ψP (and thus overcoming their disadvantage) by considering either
the correspondence between the source grapheme and the source phoneme or both the
source grapheme and the source phoneme.

4.5 Context Window-Size Test

In our testing of the effect of the context window size, we varied the size from 1 to 5.
Regardless of the size, ψH and ψC always performed better than both ψG and ψP . When
the size was 4 or 5, each model had difficulty identifying regularities in the training data.
Thus, there were consistent drops in performance for all models when the size was increased
from 3 to 4 or 5. Although the best performance was obtained when the size was 3, as shown
in Table 12, the differences in performance were not significant in the range of 2-4. However,
there was a significant difference between a size of 1 and a size of 2. This indicates that
a lack of contextual information can easily lead to incorrect transliteration. For example,
to produce the correct target language grapheme of t in -tion, we need the right three
graphemes (or at least the right two) of t, -ion (or -io). The results of this testing indicate
that the context size should be more than 1 to avoid degraded performance.

4.6 Training Data-Size Test

Table 13 shows the results of the Training Data-Size Test using MEM-based machine
transliteration models. We evaluated the performance of the four models and ALL while
varying the size of the training data from 20% to 100%. Obviously, the more training data
used, the higher the system performance. However, the objective of this test was to deter-
mine whether the transliteration models perform reasonably well even for a small amount
of training data. We found that ψG was the most sensitive of the four models to the amount
of training data; it had the largest difference in performance between 20% and 100%. In
contrast, ALL showed the smallest performance gap. The results of this test shows that

138

A Comparison of Machine Transliteration Models

EKSet

Context Size ψG ψP ψH ψC ALL

1 44.9% 44.9% 51.8% 52.4% 65.8%
2 57.3% 52.8% 61.7% 64.4% 74.4%
3 58.8% 55.2% 64.1% 65.5% 75.8%
4 56.1% 54.6% 61.8% 64.3% 74.4%
5 53.7% 52.6% 60.4% 62.5% 73.9%

EJSet

Context Size ψG ψP ψH ψC ALL

1 46.4% 52.1% 58.0% 62.0% 70.4%
2 58.2% 59.5% 65.6% 68.7% 76.3%
3 58.8% 59.2% 65.8% 69.1% 77.0%
4 56.4% 58.5% 64.4% 68.2% 76.0%
5 53.9% 56.4% 62.9% 66.3% 75.5%

Table 12: Results of Context Window-Size Test: ALL means ψG+P+H+C .

combining different transliteration models is helpful in producing correct transliterations
even if there is little training data.

EKSet

Training Data Size ψG ψP ψH ψC ALL

20% 46.6% 47.3% 53.4% 57.0% 67.5%
40% 52.6% 51.5% 58.7% 62.1% 71.6%
60% 55.2% 53.0% 61.5% 63.3% 73.0%
80% 58.9% 54.0% 62.6% 64.6% 74.7%
100% 58.8% 55.2% 64.1% 65.5% 75.8%

EJSet

Training Data Size ψG ψP ψH ψC ALL

20% 47.6% 51.2% 56.4% 60.4% 69.6%
40% 52.4% 55.1% 60.7% 64.8% 72.6%
60% 55.2% 57.3% 62.9% 66.6% 74.7%
80% 57.9% 58.8% 65.4% 68.0% 76.7%
100% 58.8% 59.2% 65.8% 69.1% 77.0%

Table 13: Results of Training Data-Size Test: ALL means ψG+P+H+C .

5. Discussion

Figures 3 and 4 show the distribution of the correct transliterations produced by each
transliteration model and by the combination of models, all based on the MEM. The ψG,

139

Oh, Choi, & Isahara

ψP , ψH , and ψC in the figures represent the set of correct transliterations produced by each
model through k-fold validation. For example, |ψG| = 4,220 for EKSet and |ψG| = 6,121
for EJSet mean that ψG produced 4,220 correct transliterations for 7,172 English words
in EKSet (|KTG| in Figure 3) and 6,121 correct ones for 10,417 English words in EJSet
(|JTG| in Figure 4). An important factor in modeling a transliteration model is to reflect the
dynamic transliteration behaviors, which means that a transliteration process dynamically
uses the source grapheme and source phoneme to produce transliterations. Due to these
dynamic behaviors, a transliteration can be grapheme-based transliteration, phoneme-based
transliteration, or some combination of the two. The forms of transliterations are classified
on the basis of the information upon which the transliteration process mainly relies (either
a source grapheme or a source phoneme or some combination of the two). Therefore, an
effective transliteration system should be able to produce various types of transliterations
at the same time. One way to accommodate the different dynamic transliteration behaviors
is to combine different transliteration models, each of which can handle a different behavior.
Synergy can be achieved by combining models so that one model can produce the correct
transliteration when the others cannot. Naturally, if the models tend to produce the same
transliteration, less synergy can be realized from combining them. Figures 3 and 4 show the
synergy gained from combining transliteration models in terms of the size of the intersection
and the union of the transliteration models.

ψG ψP

ψC

|KTG-(ψG ∪ ψP ∪ ψC)|
=1,777

3,051

207
407

82

624

344

680

(a) ψG+ψP +ψC

ψG ψP

ψH

|KTG-(ψG ∪ ψP ∪ ψH)|
=2,002

3,126

374
188

7

457

119

899

(b) ψG+ψP +ψH

ψH ψP

ψC

|KTG-(ψH ∪ ψP ∪ ψC)|
=1,879

3,423

129
305

267

252

311

713

(c) ψP +ψH+ψC

ψG ψH

ψC

|KTG-(ψG ∪ψH ∪ψC)|
=1,859

3,685

369
393

340

451

763

46

(d) ψG+ψH+ψC

Figure 3: Distributions of correct transliterations produced by models for English-to-
Korean transliteration. KTG represents “Korean Transliterations in the Gold
standard”. Note that |ψG ∪ ψP ∪ ψH ∪ ψC | = 5,439, |ψG ∩ ψP ∩ ψH ∩ ψC | =
3,047, and |KTG| = 7,172.

The figures show that, as the area of intersection between different transliteration models
becomes smaller, the size of their union tends to become bigger. The main characteristics
obtained from these figures are summarized in Table 14. The first thing to note is that
|ψG ∩ ψP | is clearly smaller than any other intersection. The main reason for this is that
ψG and ψP use no common information (ψG uses source graphemes while ψP uses source
phonemes). However, the others use at least one of source grapheme and source phoneme
(source graphemes are information common to ψG, ψH , and ψC while source phonemes
are information common to ψP , ψH , and ψC). Therefore, we can infer that the synergy
derived from combining ψG and ψP is greater than that derived from the other combinations.

140

A Comparison of Machine Transliteration Models

ψG ψP

ψC

|JTG-(ψG ∪ ψP ∪ ψC)|
=2,444

4,796

261
379

141

963

628

805

(a) ψG+ψP +ψC

ψG ψP

ψH

|JTG-(ψG ∪ ψP ∪ ψH)|
=2,870

4,925

308
378

12

916

202

806

(b) ψG+ψP +ψH

ψH ψP

ψC

|JTG-(ψH ∪ ψP ∪ ψC)|
=2,601

5,574

135
222

267

185

647

786

(c) ψP +ψH+ψC

ψG ψH

ψC

|JTG-(ψG ∪ψH ∪ψC)|
=2,529

5,418

176
207

313

942

649

183

(d) ψG+ψH+ψC

Figure 4: Distributions of correct transliterations produced by models for English-to-
Japanese transliteration. JTG represents “Japanese Transliterations in the Gold
standard”. Note that |ψG ∪ ψP ∪ ψH ∪ ψC |=8,021, |ψG ∩ ψP ∩ ψH ∩ ψC |=4,786,
and |JTG| = 10,417.

EKSet EJSet
|ψG| 4,202 6,118
|ψP | 3,947 6,158
|ψH | 4,583 6,846
|ψC | 4,680 7,189

|ψG ∩ ψP | 3,133 4,937
|ψG ∩ ψC | 3,731 5,601
|ψG ∩ ψH | 4,025 5,731
|ψC ∩ ψH | 4,136 6,360
|ψP ∩ ψC | 3,675 5,759
|ψP ∩ ψH | 3,583 5,841
|ψG ∪ ψP | 5,051 7,345
|ψG ∪ ψC | 5,188 7,712
|ψG ∪ ψH | 4,796 7,239
|ψC ∪ ψH | 5,164 7,681
|ψP ∪ ψC | 4,988 7,594
|ψP ∪ ψH | 4,982 7,169

Table 14: Main characteristics obtained from Figures 3 and 4.

However, the size of the union between the various pairs of transliteration models in Table 14
shows that |ψC ∪ ψH | and |ψG ∪ ψC | are bigger than |ψG ∪ ψP |. The main reason for this
might be the higher transliteration power of ψC and ψH compared to that of ψG and ψP

– ψC and ψH cover more of the KTG and JTG than both ψG and ψP . The second thing
to note is that the contribution of each transliteration model to |ψG ∪ ψP ∪ ψH ∪ ψC | can
be estimated from the difference between |ψG ∪ ψP ∪ ψH ∪ ψC | and the union of the three
other transliteration models. For example, we can measure the contribution of ψH from the

141

Oh, Choi, & Isahara

difference between |ψG ∪ ψP ∪ ψH ∪ ψC | and |ψG ∪ ψP ∪ ψC |. As shown in Figures 3(a)
and 4(a)), ψH makes the smallest contribution while ψC (Figures 3(b) and 4(b)) makes the
largest contribution. The main reason for ψH making the smallest contribution is that it
tends to produce the same transliteration as the others, so the intersection between ψH and
the others tends to be large.

It is also important to rank the transliterations produced by a transliteration system for
a source language word on the basis of their relevance. While a transliteration system can
produce a list of transliterations, each reflecting a dynamic transliteration behavior, it will
fail to perform well unless it can distinguish between correct and wrong transliterations.
Therefore, a transliteration system should be able to produce various kinds of translitera-
tions depending on the dynamic transliteration behaviors and be able to rank them on the
basis of their relevance. In addition, the application of transliteration results to natural
language applications such as machine translation and information retrieval requires that
the transliterations be ranked and assigned a relevance score.

In summary, 1) producing a list of transliterations reflecting dynamic translit-
eration behaviors (one way is to combine the results of different transliteration models,
each reflecting one of the dynamic transliteration behaviors) and 2) ranking the translit-
erations in terms of their relevance are both necessary to improve the performance of
machine transliteration. In the next section, we describe a way to calculate the relevance
of transliterations produced by a combination of the four transliteration models.

6. Transliteration Ranking

The basic assumption of transliteration ranking is that correct transliterations are more
frequently used in real-world texts than incorrect ones. Web data reflecting the real-world
usage of transliterations can thus be used as a language resource to rank transliterations.
Transliterations that appear more frequently in web documents are given either a higher
rank or a higher score. The goal of transliteration ranking, therefore, is to rank correct
transliterations higher and rank incorrect ones lower. The transliterations produced for a
given English word by the four transliteration models (ψG, ψP , ψH , and ψC), based on the
MEM, were ranked using web data.

Our transliteration ranking relies on web frequency (number of web documents). To
obtain reliable web frequencies, it is important to consider a transliteration and its cor-
responding source language word together rather than the transliteration alone. This is
because our aim is to find correct transliterations corresponding to a source language word
rather than to find transliterations that are frequently used in the target language. There-
fore, the best approach to transliteration ranking using web data is to find web documents
in which transliterations are used as translations of the source language word.

A bilingual phrasal search (BPS) retrieves the Web with a Web search engine query,
which is a phrase composed of a transliteration and its source language word (e.g., {‘a-mil-
la-a-je’ amylase}). The BPS enables the Web search engine to find web documents that
contain correct transliterations corresponding to the source language word. Note that a
phrasal query is represented in brackets, where the first part is a transliteration and the
second part is the corresponding source language word. Figure 5 shows Korean and Japanese
web documents retrieved using a BPS for amylase and its Korean/Japanese transliterations,

142

A Comparison of Machine Transliteration Models

Retrieved Korean web pages for query
{‘a-mil-la-a-je’ amylase}

Retrieved Korean web pages for query
{‘a-mil-la-a-je’ amylase}

Retrieved Japanese web pages for query
{‘a-mi-ra-a-je’ amylase}

Retrieved Japanese web pages for query
{‘a-mi-ra-a-je’ amylase}

QueryQuery

아밀라아제아밀라아제아밀라아제아밀라아제 amylase
아밀라아제아밀라아제아밀라아제아밀라아제 (amylase)
아밀라아제아밀라아제아밀라아제아밀라아제 [amylase]
‘a-mil-la-a-je’ amylase
‘a-mil-la-a-je’ (amylase)
‘a-mil-la-a-je’ [amylase]

아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제 amylaseamylase
아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제 ((amylaseamylase))
아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제아밀라아제 [[amylaseamylase]]
‘a-mil-la-a-je’ amylaseamylase
‘a-mil-la-a-je’ ((amylaseamylase))
‘a-mil-la-a-je’ [[amylaseamylase]]

アミラーゼアミラーゼアミラーゼアミラーゼ amylase
アミラーゼアミラーゼアミラーゼアミラーゼ (amylase)
アミラーゼアミラーゼアミラーゼアミラーゼ [amylase]

‘a-mi-ra-a-je’amylase
‘a-mi-ra-a-je’(amylase)
‘a-mi-ra-a-je’[amylase]

アミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼ amylaseamylase
アミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼ ((amylaseamylase))
アミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼアミラーゼ [[amylaseamylase]]

‘a-mi-ra-a-je’amylaseamylase
‘a-mi-ra-a-je’ ((amylaseamylase))
‘a-mi-ra-a-je’ [[amylaseamylase]]

Figure 5: Desirable retrieved web pages for transliteration ranking.

‘a-mil-la-a-je’ and ‘a-mi-ra-a-je’. The web documents retrieved by a BPS usually contain a
transliteration and its corresponding source language word as a translation pair, with one
of them often placed in parentheses, as shown in Figure 5.

A dilemma arises, though, regarding the quality and coverage of retrieved web docu-
ments. Though a BPS generally provides high-quality web documents that contain correct
transliterations corresponding to the source language word, the coverage is relatively low,
meaning that it may not find any web documents for some transliterations. For exam-
ple, a BPS for the Japanese phrasal query {‘a-ru-ka-ro-si-su’ alkalosis} and the Korean
phrasal query {‘eo-min’ ermine} found no web documents. Therefore, alternative search
methods are necessary when the BPS fails to find any relevant web documents. A bilingual
keyword search (BKS) (Qu & Grefenstette, 2004; Huang, Zhang, & Vogel, 2005; Zhang,
Huang, & Vogel, 2005) can be used when the BPS fails, and a monolingual keyword search
(MKS) (Grefenstette, Qu, & Evans, 2004) can be used when both the BPS and BKS fail.
Like a BPS, a BKS makes use of two keywords, a transliteration and its source language
word, as a search engine query. Whereas a BPS retrieves web documents containing the
two keywords as a phrase, a BKS retrieves web documents containing them anywhere in
the document. This means that the web frequencies of noisy transliterations are sometimes
higher than those of correct transliterations in a BKS, especially when the noisy translitera-
tions are one-syllable transliterations. For example, ‘mok’, which is a Korean transliteration
produced for mook and a one-syllable noisy transliteration, has a higher web frequency than
‘mu-keu’, which is the correct transliteration for mook, because ‘mok’ is a common Korean

143

Oh, Choi, & Isahara

noun that frequently appears in Korean texts with the meaning of neck. However, a BKS
can improve coverage without a great loss of quality in the retrieved web documents if the
transliterations are composed of two or more syllables.

Though a BKS has higher coverage than a BPS, it can fail to retrieve web documents
in some cases. In such cases, an MKS (Grefenstette et al., 2004) is used. In an MKS,
a transliteration alone is used as the search engine query. A BPS and a BKS act like a
translation model, while an MKS acts like a language model. Though an MKS cannot give
information as to whether the transliteration is correct, it does provide information as to
whether the transliteration is likely to be a target language word. The three search methods
are used sequentially (BPS, BKS, MKS). If one method fails to retrieve any relevant web
documents, the next one is used. Table 15 summarizes the conditions for applying each
search method.

Along with these three search strategies, three different search engines are used to obtain
more web documents. The search engines used for this purpose should satisfy two condi-
tions: 1) support Korean/Japanese web document retrieval and 2) support both phrasal
and keyword searches. Google13, Yahoo14, and MSN15 satisfy these conditions, and we used
them as our search engines.

Search method Condition
BPS

∑
j

∑
ck∈C WFBPSj(e, ck)) 6= 0

BKS
∑

j

∑
ck∈C WFBPSj(e, ck)) = 0∑

j

∑
ck∈C WFBKSj(e, ck)) 6= 0

MKS

∑
j

∑
ck∈C WFBPSj(e, ck) = 0∑

j

∑
ck∈C WFBKSj(e, ck) = 0∑

j

∑
ck∈C WFMKSj(e, ck) 6= 0

Table 15: Conditions under which each search method is applied.

RF (e, ci) =
∑

j

NWFj(e, ci) =
∑

j

WFj(e, ci)∑
ck∈C WFj(e, ck)

(7)

Web frequencies acquired from these three search methods and these three search en-
gines were used to rank transliterations on the basis of Formula (7), where ci is the ith

transliteration produced by the four transliteration models, e is the source language word
of ci, RF is a function for ranking transliterations, WF is a function for calculating web
frequency, NWF is a function for normalizing web frequency, C is a set of produced translit-
erations, and j is an index for the jth search engine. We used the normalized web frequency
as a ranking factor. The normalized web frequency is the web frequency divided by the
total web frequency of all produced transliterations corresponding to one source language
word. The score for a transliteration is then calculated by summing up the normalized

13. http://www.google.com

14. http://www.yahoo.com

15. http://www.msn.com

144

A Comparison of Machine Transliteration Models

web frequencies of the transliteration given by the three search engines. Table 16 shows an
example ranking for the English word data and its possible Korean transliterations, ‘de-i-
teo’, ‘de-i-ta’, and ‘de-ta’, which web frequencies are obtained using a BPS. The normalized
WFBPS (NWFBPS) for search engine A was calculated as follows.

• NWFBPS (data, ‘de-i-teo’) = 94,100 / (94,100 + 67,800 + 54) = 0.5811

• NWFBPS (data, ‘de-i-ta’) = 67,800 / (94,100 + 67,800 + 54) = 0.4186

• NWFBPS (data, ‘de-ta’) = 54 / (94,100 + 67,800 + 54) = 0.0003

The ranking score for ‘de-i-teo’ was then calculated by summing up NWFBPS (data, ‘de-i-
teo’) for each search engine:

• RFBPS (data, ‘de-i-teo’) = 0.5810 + 0.7957 + 0.3080 = 1.6848

Search Engine
e=data

c1= ‘de-i-teo’ c2= ‘de-i-ta’ c3= ‘de-ta’
WF NWF WF NWF WF NWF

A 94,100 0.5811 67,800 0.4186 54 0.0003
B 101,834 0.7957 26,132 0.2042 11 0.0001
C 1,358 0.3080 3,028 0.6868 23 0.0052

RF 1.6848 1.3096 0.0056

Table 16: Example transliteration ranking for data and its transliterations; WF , NWF ,
and RF represent WFBPS , NWFBPS , and RFBPS , respectively.

6.1 Evaluation

We tested the performance of the transliteration ranking under two conditions: 1) with all
test data (ALL) and 2) with test data for which at least one transliteration model produced
the correct transliteration (CTC). Testing with ALL showed the overall performance of the
machine transliteration while testing with CTC showed the performance of the translit-
eration ranking alone. We used the performance of the individual transliteration models
(ψG, ψP , ψH , and ψC) as the baseline. The results are shown in Table 17. “Top-n” means
that the correct transliteration was within the Top-n ranked transliterations. The average
number of produced Korean transliterations was 3.87 and that of Japanese ones was 4.50;
note that ψP and ψC produced more than one transliteration because of pronunciation
variations. The results for both English-to-Korean and English-to-Japanese transliteration
indicate that our ranking method effectively filters out noisy transliterations and positions
the correct transliterations in the top rank; most of the correct transliterations were in
Top-1. We see that transliteration ranking (in Top-1) significantly improved performance
of the individual models for both EKSet and EJSet16. The overall performance of the

16. A one-tail paired t-test showed that the performance improvement was significant (level of significance
= 0.001.

145

Oh, Choi, & Isahara

transliteration (for ALL) as well that of the ranking (for CTC) were relatively good. No-
tably, the CTC performance showed that web data is a useful language resource for ranking
transliterations.

Test data EKSet EJSet

ALL

ψG 58.8% 58.8%
ψP 55.2% 59.2%
ψH 64.1% 65.8%
ψC 65.5% 69.1%

ALL
Top-1 71.5% 74.8%
Top-2 75.3% 76.9%
Top-3 75.8% 77.0%

CTC
Top-1 94.3% 97.2%
Top-2 99.2% 99.9%
Top-3 100% 100%

Table 17: Results of Transliteration ranking.

6.2 Analysis of Results

We defined two error types: production errors and ranking errors. A production error
is when there is no correct transliteration among the produced transliterations. A ranking
error is when the correct transliteration does not appear in the Top-1 ranked transliterations.

We examined the relationship between the search method and the transliteration rank-
ing. Table 18 shows the ranking performance by each search method. The RTC represents
correct transliterations ranked by each search method. The NTC represents test data
ranked, that is, the coverage of each search method. The ratio of RTC to NTC represents
the upper bound of performance and the difference between RTC and NTC is the number
of errors.

The best performance was with a BPS. A BPS handled 5,270 out of 7,172 cases for
EKSet and 8,829 out of 10,417 cases for EJSet. That is, it did the best job of retrieving
web documents containing transliteration pairs. Analysis of the ranking errors revealed
that the main cause of such errors in a BPS was transliteration variations. These variations
contribute to ranking errors in two ways. First, when the web frequencies of transliteration
variations are higher than those of the standard ones, the variations are ranked higher than
the standard ones, as shown by the examples in Table 19. Second, when the transliterations
include only transliteration variations (i.e., there are no correct transliterations), the correct
ranking cannot be. In this case, ranking errors are caused by production errors. With a
BPS, there were 603 cases of this for EKSet and 895 cases for EJSet.

NTC was smaller with a BKS and an MKS because a BPS retrieves web documents
whenever possible. Table 18 shows that production errors are the main reason a BPS fails
to retrieve web documents. (When a BKS or MKS was used, production errors occurred in

146

A Comparison of Machine Transliteration Models

EKSet EJSet
BPS BKS MKS BPS BKS MKS

Top-1 83.8% 55.1% 16.7% 86.2% 19.0% 2.7%
Top-2 86.6% 58.4% 27.0% 88.3% 22.8% 4.2%
Top-3 86.6% 58.2% 31.3% 88.35% 22.9% 4.3%
RTC 4,568 596 275 7,800 188 33
NTC 5,270 1,024 878 8,829 820 768

Table 18: Ranking performance of each search method.

Transliteration Web Frequency

compact → Korean
‘kom-paek-teu’ 1,075
‘keom-paek-teu’∗ 1,793

pathos → Korean
‘pa-to-seu’ 1,615
‘pae-to-seu’∗ 14,062

cohen → Japanese
‘ko-o-he-n’ 23
‘ko-o-e-n’∗ 112

criteria → Japanese
‘ku-ra-i-te-ri-a’ 104
‘ku-ri-te-ri-a’∗ 1,050

Table 19: Example ranking errors when a BPS was used (∗ indicates a variation).

all but 87117 cases for EKSet and 22118 cases for EJSet). The results also show that a BKS
was more effective than an MKS.

The trade-off between the quality and coverage of retrieved web documents is an im-
portant factor in transliteration ranking. A BPS provides better quality rather than wider
coverage, but is effective since it provides reasonable coverage.

7. Conclusion

We tested and compared four transliteration models, grapheme-based transliteration
model (ψG), phoneme-based transliteration model (ψP), hybrid transliteration
model (ψH), and correspondence-based transliteration model (ψC), for English-to-
Korean and English-to-Japanese transliteration. We modeled a framework for the four
transliteration models and compared them within the framework. Using the results, we
examined a way to improve the performance of machine transliteration.

We found that the ψH and ψC are more effective than the ψG and ψP . The main reason
for the better performance of ψC is that it uses the correspondence between the source
grapheme and the source phoneme. The use of this correspondence positively affected
transliteration performance in various tests.

17. 596 (RTC of BKS in EKSet) + 275 (RTC of MKS in EKSet) = 871
18. 188 (RTC of BKS for EJSet) + 33 (RTC of MKS for EJSet) = 221

147

Oh, Choi, & Isahara

We demonstrated that ψG, ψP , ψH , and ψC can be used as complementary translitera-
tion models to improve the chances of producing correct transliterations. A combination of
the four models produced more correct transliterations both in English-to-Korean translit-
eration and English-to-Japanese transliteration compared to each model alone. Given these
results, we described a way to improve machine transliteration that combines different
transliteration models: 1) produce a list of transliterations by combining transliter-
ations produced by multiple transliteration models; 2) rank the transliterations
on the basis of their relevance.

Testing showed that transliteration ranking based on web frequency is an effective way
to calculate the relevance of transliterations. This is because web data reflects real-world
usage, so it can be used to filter out noisy transliterations, which are not used as target
language words or are incorrect transliterations for a source language word.

There are several directions for future work. Although we considered some translit-
eration variations, our test sets mainly covered standard transliterations. In corpora or
web pages, however, we routinely find other types of transliterations – misspelled translit-
erations, transliterations of common phrases, etc. – along with the standard translitera-
tions and transliteration variations. Therefore, further testing using such transliterations
is needed to enable the transliteration models to be compared more precisely. To achieve
a machine transliteration system capable of higher performance, we need a more sophisti-
cated transliteration method and a more sophisticated ranking algorithm. Though many
correct transliterations can be acquired through the combination of the four transliteration
models, there are still some transliterations that none of the models can produce. We need
to devise a method that can produce them. Our transliteration ranking method works well,
but, because it depends on web data, it faces limitations if the correct transliteration does
not appear in web data. We need a complementary ranking method to handle such cases.
Moreover, to demonstrate the effectiveness of these four transliteration models, we need to
apply them to various natural language processing applications.

Acknowledgments

We are grateful to Claire Cardie and the anonymous reviewers for providing constructive
and insightful comments to earlier drafts of this paper.

References

Aha, D. W. (1997). Lazy learning: Special issue editorial. Artificial Intelligence Review,
11:710.

Aha, D. W., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine
Learning, 6 (3766).

Al-Onaizan, Y., & Knight, K. (2002). Translating named entities using monolingual and
bilingual resources. In Proceedings of ACL 2002, pp. 400–408.

Andersen, O., Kuhn, R., Lazarides, A., Dalsgaard, P., Haas, J., & Noth, E. (1996). Com-
parison of two tree-structured approaches for grapheme-to-phoneme conversion. In
Proceedings of ICSLP 1996, pp. 1808–1811.

148

A Comparison of Machine Transliteration Models

Berger, A. L., Pietra, S. D., & Pietra, V. J. D. (1996). A maximum entropy approach to
natural language processing. Computational Linguistics, 22 (1), 39–71.

Bilac, S., & Tanaka, H. (2004). Improving back-transliteration by combining information
sources. In Proceedings of IJCNLP2004, pp. 542–547.

Breen, J. (2003). EDICT Japanese/English dictionary .le. The Electronic Dictionary Re-
search and Development Group, Monash University. http://www.csse.monash.edu.
au/~jwb/edict.html.

Chen, S. F. (2003). Conditional and joint models for grapheme-to-phoneme conversion. In
Proceedings of Eurospeech, pp. 2033–2036.

CMU (1997). The CMU pronouncing dictionary version 0.6. http://www.speech.cs.cmu.
edu/cgi-bin/cmudict.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory, 13 (2127).

Daelemans, W., Zavrel, J., Sloot, K. V. D., & Bosch, A. V. D. (2004). TiMBL: Tilburg
Memory-Based Learner - version 5.1 reference guide. Tech. rep. 04-02, ILK Technical
Report Series.

Daelemans, W., & van den Bosch, A. (1996). Language-independent data-oriented
grapheme-to-phoneme conversion. In J. Van Santen, R. Sproat, J. O., & Hirschberg,
J. (Eds.), Progress in Speech Synthesis, pp. 77–90. Springer Verlag, New York.

Damper, R. I., Marchand, Y., Adamson, M. J., & Gustafson, K. (1999). Evaluating the
pronunciation component of text-to-speech systems for English: A performance com-
parison of different approaches. Computer Speech and Language, 13 (2), 155–176.

Devijver, P. A., & Kittler., J. (1982). Pattern recognition: A statistical approach. Prentice-
Hall.

Fujii, A., & Tetsuya, I. (2001). Japanese/English cross-language information retrieval: Ex-
ploration of query translation and transliteration. Computers and the Humanities,
35 (4), 389–420.

Goto, I., Kato, N., Uratani, N., & Ehara, T. (2003). Transliteration considering context
information based on the maximum entropy method. In Proceedings of MT-Summit
IX, pp. 125–132.

Grefenstette, G., Qu, Y., & Evans, D. A. (2004). Mining the web to create a language
model for mapping between English names and phrases and Japanese. In Proceedings
of Web Intelligence, pp. 110–116.

Huang, F., Zhang, Y., & Vogel, S. (2005). Mining key phrase translations from web cor-
pora. In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pp. 483–490.

Jeong, K. S., Myaeng, S. H., Lee, J. S., & Choi, K. S. (1999). Automatic identification and
back-transliteration of foreign words for information retrieval. Information Processing
and Management, 35 (1), 523–540.

149

Oh, Choi, & Isahara

Jung, S. Y., Hong, S., & Paek, E. (2000). An English to Korean transliteration model of
extended markov window. In Proceedings of the 18th conference on Computational
linguistics, pp. 383 – 389.

Kang, B. J. (2001). A resolution of word mismatch problem caused by foreign word translit-
erations and English words in Korean information retrieval. Ph.D. thesis, Computer
Science Dept., KAIST.

Kang, B. J., & Choi, K. S. (2000). Automatic transliteration and back-transliteration by
decision tree learning. In Proceedings of the 2nd International Conference on Language
Resources and Evaluation, pp. 1135–1411.

Kang, I. H., & Kim, G. C. (2000). English-to-Korean transliteration using multiple un-
bounded overlapping phoneme chunks. In Proceedings of the 18th International Con-
ference on Computational Linguistics, pp. 418–424.

Kim, J. J., Lee, J. S., & Choi, K. S. (1999). Pronunciation unit based automatic English-
Korean transliteration model using neural network. In Proceedings of Korea Cognitive
Science Association, pp. 247–252.

Knight, K., & Graehl, J. (1997). Machine transliteration. In Proceedings of the 35th Annual
Meetings of the Association for Computational Linguistics, pp. 128–135.

Korea Ministry of Culture & Tourism (1995). English to Korean standard conversion rule.
http://www.hangeul.or.kr/nmf/23f.pdf.

Lee, J. S. (1999). An English-Korean transliteration and retransliteration model for Cross-
lingual information retrieval. Ph.D. thesis, Computer Science Dept., KAIST.

Lee, J. S., & Choi, K. S. (1998). English to Korean statistical transliteration for information
retrieval. Computer Processing of Oriental Languages, 12 (1), 17–37.

Li, H., Zhang, M., & Su, J. (2004). A joint source-channel model for machine transliteration.
In Proceedings of ACL 2004, pp. 160–167.

Lin, W. H., & Chen, H. H. (2002). Backward machine transliteration by learning pho-
netic similarity. In Proceedings of the Sixth Conference on Natural Language Learning
(CoNLL), pp. 139–145.

Manning, C., & Schutze, H. (1999). Foundations of Statistical natural language Processing.
MIT Press.

Meng, H., Lo, W.-K., Chen, B., & Tang, K. (2001). Generating phonetic cognates to
handle named entities in English-Chinese cross-language spoken document retrieval.
In Proceedings of Automatic Speech Recognition and Understanding, 2001. ASRU ’01,
pp. 311–314.

Mitchell, T. M. (1997). Machine learning. New-York: McGraw-Hill.

Nam, Y. S. (1997). Foreign dictionary. Sung An Dang.

Oh, J. H., & Choi, K. S. (2002). An English-Korean transliteration model using pronunci-
ation and contextual rules. In Proceedings of COLING2002, pp. 758–764.

Pagel, V., Lenzo, K., & Black, A. W. (1998). Letter to sound rules for accented lexicon com-
pression. In Proceedings of International Conference on Spoken Language Processing,
pp. 2015–2018.

150

A Comparison of Machine Transliteration Models

Qu, Y., & Grefenstette, G. (2004). Finding ideographic representations of Japanese names
written in Latin script via language identification and corpus validation.. In Proc. of
ACL, pp. 183–190.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauffman.

Stalls, B. G., & Knight, K. (1998). Translating names and technical terms in arabic text.
In Proceedings of COLING/ACL Workshop on Computational Approaches to Semitic
Languages, pp. 34–41.

Zhang, L. (2004). Maximum entropy modeling toolkit for python and C++. http://
homepages.inf.ed.ac.uk/s0450736/software/maxent/manual.pdf.

Zhang, Y., Huang, F., & Vogel, S. (2005). Mining translations of OOV terms from the web
through cross-lingual query expansion. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pp.
669–670.

151

