
Journal of Artificial Intelligence Research 27 (2006) 299-334 Submitted 01/06; published 11/06

Properties and Applications of Programs with Monotone and Convex
Constraints

Lengning Liu LLIU1@CS.UKY.EDU

Mirosław Truszczyński MIREK@CS.UKY.EDU

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract

We study properties of programs with monotone and convex constraints. We extend to these
formalisms concepts and results from normal logic programming. They include the notions of
strong and uniform equivalence with their characterizations, tight programs and Fages Lemma,
program completion and loop formulas. Our results provide an abstract account of properties of
some recent extensions of logic programming with aggregates, especially the formalism of lparse
programs. They imply a method to compute stable models of lparse programs by means of off-the-
shelf solvers of pseudo-boolean constraints, which is often much faster than the smodels system.

1. Introduction

We study programs with monotone constraints (Marek & Truszczyński, 2004; Marek, Niemelä,
& Truszczyński, 2004, 2006) and introduce a related class of programs with convex constraints.
These formalisms allow constraints to appear in the heads of program rules, which sets them apart
from other recent proposals for integrating constraints into logic programs (Pelov, 2004; Pelov,
Denecker, & Bruynooghe, 2004, 2006; Dell’Armi, Faber, Ielpa, Leone, & Pfeifer, 2003; Faber,
Leone, & Pfeifer, 2004), and makes them suitable as an abstract basis for formalisms such as lparse
programs (Simons, Niemelä, & Soininen, 2002).

We show that several results from normal logic programming generalize to programs with mono-
tone constraints. We also discuss how these techniques and results can be extended further to the
setting of programs with convex constraints. We then apply some of our general results to design
and implement a method to compute stable models of lparse programs and show that it is often
much more effective than smodels (Simons et al., 2002).

Normal logic programming with the semantics of stable models is an effective knowledge repre-
sentation formalism, mostly due to its ability to express default assumptions (Baral, 2003; Gelfond
& Leone, 2002). However, modeling numeric constraints on sets in normal logic programming is
cumbersome, requires auxiliary atoms and leads to large programs hard to process efficiently. Since
such constraints, often called aggregates, are ubiquitous, researchers proposed extensions of normal
logic programming with explicit means to express aggregates, and generalized the stable-model se-
mantics to the extended settings.

Aggregates imposing bounds on weights of sets of atoms and literals, called weight constraints,
are especially common in practical applications and are included in all recent extensions of logic
programs with aggregates. Typically, these extensions do not allow aggregates to appear in the

c©2006 AI Access Foundation. All rights reserved.

LIU & TRUSZCZYŃSKI

heads of rules. A notable exception is the formalism of programs with weight constraints (Niemelä,
Simons, & Soininen, 1999; Simons et al., 2002), which we refer to as lparse programs1.

Lparse programs are logic programs whose rules have weight constraints in their heads and
whose bodies are conjunctions of weight constraints. Normal logic programs can be viewed as a
subclass of lparse programs and the semantics of lparse programs generalizes the stable-model
semantics of normal logic programs (Gelfond & Lifschitz, 1988). Lparse programs are one of the
most commonly used extensions of logic programming with weight constraints.

Since rules in lparse programs may have weight constraints as their heads, the concept of one-
step provability is nondeterministic, which hides direct parallels between lparse and normal logic
programs. An explicit connection emerged when Marek and Truszczyński (2004) and Marek et al.
(2004, 2006) introduced logic programs with monotone constraints. These programs allow aggre-
gates in the heads of rules and support nondeterministic computations. Marek and Truszczyński
(2004) and Marek et al. (2004, 2006) proposed a generalization of the van Emden-Kowalski one-
step provability operator to account for that nondeterminism, defined supported and stable models
for programs with monotone constraints that mirror their normal logic programming counterparts,
and showed encodings of smodels programs as programs with monotone constraints.

In this paper, we continue investigations of programs with monotone constraints. We show that
the notions of uniform and strong equivalence of programs (Lifschitz, Pearce, & Valverde, 2001;
Lin, 2002; Turner, 2003; Eiter & Fink, 2003) extend to programs with monotone constraints, and
that their characterizations (Turner, 2003; Eiter & Fink, 2003) generalize, too.

We adapt to programs with monotone constraints the notion of a tight program (Erdem & Lifs-
chitz, 2003) and generalize Fages Lemma (Fages, 1994).

We introduce extensions of propositional logic with monotone constraints. We define the com-
pletion of a monotone-constraint program with respect to this logic, and generalize the notion of a
loop formula. We then prove the loop-formula characterization of stable models of programs with
monotone constraints, extending to the setting of monotone-constraint programs results obtained
for normal logic programs by Clark (1978) and Lin and Zhao (2002).

Programs with monotone constraints make explicit references to the default negation operator.
We show that by allowing a more general class of constraints, called convex, default negation can be
eliminated from the language. We argue that all results in our paper extend to programs with convex
constraints.

Our paper shows that programs with monotone and convex constraints have a rich theory that
closely follows that of normal logic programming. It implies that programs with monotone and con-
vex constraints form an abstract generalization of extensions of normal logic programs. In particu-
lar, all results we obtain in the abstract setting of programs with monotone and convex constraints
specialize to lparse programs and, in most cases, yield results that are new.

These results have practical implications. The properties of the program completion and loop
formulas, when specialized to the class of lparse programs, yield a method to compute stable models
of lparse programs by means of solvers of pseudo-boolean constraints, developed by the proposi-
tional satisfiability and integer programming communities (Eén & Sörensson, 2003; Aloul, Ramani,
Markov, & Sakallah, 2002; Walser, 1997; Manquinho & Roussel, 2005; Liu & Truszczyński, 2003).
We describe this method in detail and present experimental results on its performance. The results
show that our method on problems we used for testing typically outperforms smodels.

1. Aggregates in the heads of rules have also been studied recently by Son and Pontelli (2006) and Son, Pontelli, and
Tu (2006).

300

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

2. Preliminaries

We consider the propositional case only and assume a fixed set At of propositional atoms. It does
not lead to loss of generality, as it is common to interpret programs with variables in terms of their
propositional groundings.

The definitions and results we present in this section come from papers by Marek and Trusz-
czyński (2004) and Marek et al. (2006). Some of them are more general as we allow constraints
with infinite domains and programs with inconsistent constraints in the heads.
Constraints. A constraint is an expression A = (X, C), where X ⊆ At and C ⊆ P(X) (P(X)
denotes the powerset of X). We call the set X the domain of the constraint A = (X, C) and denote it
by Dom(A). Informally speaking, a constraint (X, C) describes a property of subsets of its domain,
with C consisting precisely of these subsets of X that satisfy the constraint (have property) C.

In the paper, we identify truth assignments (interpretations) with the sets of atoms they assign
the truth value true. That is, given an interpretation M ⊆ At , we have M |= a if and only if a ∈M .
We say that an interpretation M ⊆ At satisfies a constraint A = (X, C) (M |= A), if M ∩X ∈ C.
Otherwise, M does not satisfy A, (M 6|= A).

A constraint A = (X, C) is consistent if there is M such that M |= A. Clearly, a constraint
A = (X, C) is consistent if and only if C 6= ∅.

We note that propositional atoms can be regarded as constraints. Let a ∈ At and M ⊆ At . We
define C(a) = ({a}, {{a}}). It is evident that M |= C(a) if and only if M |= a. Therefore, in the
paper we often write a as a shorthand for the constraint C(a).
Constraint programs. Constraints are building blocks of rules and programs. Marek and Trusz-
czyński (2004) defined constraint programs as sets of constraint rules

A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (1)

where A, A1, . . . , An are constraints and not is the default negation operator.
In the context of constraint programs, we refer to constraints and negated constraints as literals.

Given a rule r of the form (1), the constraint (literal) A is the head of r and the set {A1, . . . ,
Ak, . . . ,not(Ak+1), . . . ,not(Am)} of literals is the body of r2. We denote the head and the body
of r by hd(r) and bd(r), respectively. We define the the headset of r, written hset(r), as the domain
of the head of r. That is, hset(r) = Dom(hd(r)).

For a constraint program P , we denote by At(P) the set of atoms that appear in the domains of
constraints in P . We define the headset of P , written hset(P), as the union of the headsets of all
rules in P .
Models. The concept of satisfiability extends in a standard way to literals not(A) (M |= not(A)
if M 6|= A), to sets (conjunctions) of literals and, finally, to constraint programs.
M-applicable rules. Let M ⊆ At be an interpretation. A rule (1) is M -applicable if M satisfies
every literal in bd(r). We denote by P (M) the set of all M -applicable rules in P .
Supported models. Supportedness is a property of models. Intuitively, every atom a in a supported
model must have “reasons” for being “in”. Such reasons are M -applicable rules whose heads con-
tain a in their domains. Formally, let P be a constraint program and M a subset of At(P). A model
M of P is supported if M ⊆ hset(P (M)).
Examples. We illustrate the concept with examples. Let P be the constraint program that consists
of the following two rules:

2. Sometimes we view the body of a rule as the conjunction of its literals.

301

LIU & TRUSZCZYŃSKI

({c, d, e}, {{c}, {d}, {e}, {c, d, e}})←
({a, b}, {{a}, {b}})← ({c, d}, {{c}, {c, d}}),not(({e}, {{e}}))

A set M = {a, c} is a model of P as M satisfies the heads of the two rules. Both rules in P are
M -applicable. The first of them provides the support for c, the second one — for a. Thus, M is a
supported model.

A set M ′ = {a, c, d, e} is also a model of P . However, a has no support in P . Indeed, a only
appears in the headset of the second rule. This rule is not M ′-applicable and so, it does not support
a. Therefore, M ′ is not a supported model of P . 4

Nondeterministic one-step provability. Let P be a constraint program and M a set of atoms. A set
M ′ is nondeterministically one-step provable from M by means of P , if M ′ ⊆ hset(P (M)) and
M ′ |= hd(r), for every rule r in P (M).

The nondeterministic one-step provability operator T nd
P for a program P is an operator on

P(At) such that for every M ⊆ At , T nd
P (M) consists of all sets that are nondeterministically

one-step provable from M by means of P .
The operator T nd

P is nondeterministic as it assigns to each M ⊆ At a family of subsets of At ,
each being a possible outcome of applying P to M . In general, T nd

P is partial, since there may be
sets M such that T nd

P (M) = ∅ (no set can be derived from M by means of P). For instance, if
P (M) contains a rule r such that hd(r) is inconsistent, then T nd

P (M) = ∅.
Monotone constraints. A constraint (X, C) is monotone if C is closed under superset, that is, for
every W, Y ⊆ X , if W ∈ C and W ⊆ Y then Y ∈ C.

Cardinality and weight constraints provide examples of monotone constraints. Let X be a finite
set and let Ck(X) = {Y : Y ⊆ X, k ≤ |Y |}, where k is a non-negative integer. Then (X, Ck(X))
is a constraint expressing the property that a subset of X has at least k elements. We call it a lower-
bound cardinality constraint on X and denote it by kX .

A more general class of constraints are weight constraints. Let X be a finite set, say X =
{x1, . . . , xn}, and let w, w1, . . . , wn be non-negative reals. We interpret each wi as the weight as-
signed to xi. A lower-bound weight constraint is a constraint of the form (X, Cw), where Cw con-
sists of those subsets of X whose total weight (the sum of weights of elements in the subset) is at
least w. We write it as

w[x1 = w1, . . . , xn = wn].

If all weights are equal to 1 and w is an integer, weight constraints become cardinality con-
straints. We also note that the constraint C(a) is a cardinality constraint 1{a} and also a weight
constraint 1[a = 1]. Finally, we observe that lower-bound cardinality and weight constraints are
monotone.

Cardinality and weight constraints (in a somewhat more general form) appear in the language of
lparse programs (Simons et al., 2002), which we discuss later in the paper. The notation we adopted
for these constraints in this paper follows the one proposed by Simons et al. (2002).

We use cardinality and weight constraints in some of our examples. They are also the focus of
the last part of the paper, where we use our abstract results to design a new algorithm to compute
models of lparse programs.
Monotone-constraint programs. We call constraint programs built of monotone constraints —
monotone-constraint programs or programs with monotone constraints. That is, monotone-constraint
programs consist of rules of rules of the form (1), where A, A1, . . . , Am are monotone constraints.

302

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

From now on, unless explicitly stated otherwise, programs we consider are monotone-constraint
programs.

2.1 Horn Programs and Bottom-up Computations

Since we allow constraints with infinite domains and inconsistent constraints in heads of rules, the
results given in this subsection are more general than their counterparts by Marek and Truszczyński
(2004) and Marek et al. (2004, 2006). Thus, for the sake of completeness, we present them with
proofs.

A rule (1) is Horn if k = m (no occurrences of the negation operator in the body or, equivalently,
only monotone constraints). A constraint program is Horn if every rule in the program is Horn.

With a Horn constraint program we associate bottom-up computations, generalizing the corre-
sponding notion of a bottom-up computation for a normal Horn program.

Definition 1. Let P be a Horn program. A P -computation is a (transfinite) sequence 〈Xα〉 such
that

1. X0 = ∅,

2. for every ordinal number α, Xα ⊆ Xα+1 and Xα+1 ∈ Tnd
P (Xα),

3. for every limit ordinal α, Xα =
⋃

β<α Xβ .

Let t = 〈Xα〉 be a P -computation. Since for every β < β ′, Xβ ⊆ Xβ′ ⊆ At , there is a least
ordinal number αt such that Xαt+1 = Xαt

, in other words, a least ordinal when the P -computation
stabilizes. We refer to αt as the length of the P -computation t.
Examples. Here is a simple example showing that some programs have computations of length
exceeding ω and so, the transfinite induction in the definition cannot be avoided. Let P be the
program consisting of the following rules:

({a0}, {{a0}})← .
({ai}, {{ai}})← (Xi−1, {Xi−1}), for i = 1, 2, . . .
({a}, {{a}})← (X∞, {X∞}),

where Xi = {a0, . . . ai}, 0 ≤ i, and X∞ = {a0, a1, . . .}. Since the body of the last rule con-
tains a constraint with an infinite domain X∞, it does not become applicable in any finite step of
computation. However, it does become applicable in the step ω and so, a ∈ Xω+1. Consequently,
Xω+1 6= Xω. 4

For a P -computation t = 〈Xα〉, we call
⋃

α Xα the result of the computation and denote it by
Rt. Directly from the definitions, it follows that Rt = Xαt

.

Proposition 1. Let P be a Horn constraint program and t a P -computation. Then Rt is a supported
model of P .

Proof. Let M = Rt be the result of a P -computation t = 〈Xα〉. We need to show that: (1) M is a
model of P ; and (2) M ⊆ hset(P (M)).
(1) Let us consider a rule r ∈ P such that M |= bd(r). Since M = Rt = Xαt

(where αt is the
length of t), Xαt

|= bd(r). Thus, Xαt+1 |= hd(r). Since M = Xαt+1, M is a model of r and,
consequently, of P , as well.

303

LIU & TRUSZCZYŃSKI

(2) We will prove by induction that, for every set Xα in the computation t, Xα ⊆ hset(P (M)). The
base case holds since X0 = ∅ ⊆ hset(P (M)).

If α = β + 1, then Xα ∈ Tnd
P (Xβ). It follows that Xα ⊆ hset(P (Xβ)). Since P is a Horn

program and Xβ ⊆M , hset(P (Xβ)) ⊆ hset(P (M)). Therefore, Xα ⊆ hset(P (M)).
If α is a limit ordinal, then Xα =

⋃
β<α Xβ . By the induction hypothesis, for every β < α,

Xβ ⊆ hset(P (M)). Thus, Xα ⊆ hset(P (M)). By induction, M ⊆ hset(P (M)).

Derivable models. We use computations to define derivable models of Horn constraint programs.
A set M of atoms is a derivable model of a Horn constraint program P if for some P -computation
t, we have M = Rt. By Proposition 1, derivable models of P are supported models of P and so,
also models of P .

Derivable models are similar to the least model of a normal Horn program in that both can be
derived from a program by means of a bottom-up computation. However, due to the nondeterminism
of bottom-up computations of Horn constraint programs, derivable models are not in general unique
nor minimal.
Examples. For example, let P be the following Horn constraint program:

P = {1{a, b} ←}

Then {a}, {b} and {a, b} are its derivable models. The derivable models {a} and {b} are minimal
models of P . The third derivable model, {a, b}, is not a minimal model of P . 4

Since inconsistent monotone constraints may appear in the heads of Horn rules, there are Horn
programs P and sets X ⊆ At , such that T nd

P (X) = ∅. Thus, some Horn constraint programs have
no computations and no derivable models. However, if a Horn constraint program has models, the
existence of computations and derivable models is guaranteed.

To see this, let M be a model of a Horn constraint program P . We define a canonical compu-
tation tP,M = 〈XP,M

α 〉 by specifying the choice of the next set in the computation in part (2) of
Definition 1. Namely, for every ordinal β, we set

XP,M
β+1 = hset(P (XP,M

β)) ∩M.

That is, we include in XP,M
α all those atoms occurring in the heads of XP,M

β -applicable rules that

belong to M . We denote the result of tP,M by Can(P, M). Canonical computations are indeed
P -computations.

Proposition 2. Let P be a Horn constraint program. If M ⊆ At is a model of P , the sequence tP,M

is a P -computation.

Proof. As P and M are fixed, to simplify the notation in the proof we will write Xα instead of
XP,M

α .
To prove the assertion, it suffices to show that (1) hset(P (Xα)) ∩ M ∈ T nd

P (Xα), and (2)
Xα ⊆ hset(P (Xα)) ∩M , for every ordinal α.
(1) Let X ⊆M and r ∈ P (X). Since all constraints in bd(r) are monotone, and X |= bd(r), M |=
bd(r), as well. From the fact that M is a model of P it follows now that M |= hd(r). Consequently,
M ∩ hset(P (X)) |= hd(r) for every r ∈ P (X). Since M ∩ hset(P (X)) ⊆ hset(P (X)),

M ∩ hset(P (X)) ∈ T nd
P (X).

304

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

Directly from the definition of the canonical computation for P and M we obtain that for every
ordinal α, Xα ⊆M . Thus, (1), follows.
(2) We proceed by induction. The basis is evident as X0 = ∅. Let us consider an ordinal α > 0
and let us assume that (2) holds for every ordinal β < α. If α = β + 1, then Xα = Xβ+1 =
hset(P (Xβ)) ∩M . Thus, by the induction hypothesis, Xβ ⊆ Xα. Since P is a Horn constraint
program, it follows that P (Xβ) ⊆ P (Xα). Thus

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M.

If α is a limit ordinal then for every β < α, Xβ ⊆ Xα and, as before, also P (Xβ) ⊆ P (Xα). Thus,
by the induction hypothesis for every β < α,

Xβ ⊆ hset(P (Xβ)) ∩M ⊆ hset(P (Xα)) ∩M,

which implies that
Xα =

⋃

β<α

Xβ ⊆ hset(P (Xα)) ∩M.

Canonical computations have the following fixpoint property.

Proposition 3. Let P be a Horn constraint program. For every model M of P , we have

hset(P (Can(P, M))) ∩M = Can(P, M).

Proof. Let α be the length of the canonical computation tP,M . Then, XP,M
α+1 = XP,M

α = Can(P, M).
Since Xα+1 = hset(Xα) ∩M , the assertion follows.

We now gather properties of derivable models that extend properties of the least model of normal
Horn logic programs.

Proposition 4. Let P be a Horn constraint program. Then:

1. For every model M of P , Can(P, M) is a greatest derivable model of P contained in M

2. A model M of P is a derivable model if and only if M = Can(P, M)

3. If M is a minimal model of P then M is a derivable model of P .

Proof. (1) Let M ′ be a derivable model of P such that M ′ ⊆ M . Let T = 〈Xα〉 be a P -derivation
such that M ′ = Rt. We will prove that for every ordinal α, Xα ⊆ XP,M

α . We proceed by transfinite
induction. Since X0 = XP,M

0 = ∅, the basis for the induction is evident. Let us consider an ordinal
α > 0 and assume that for every ordinal β < α, Xβ ⊆ XP,M

β .

If α = β + 1, then Xα ∈ Tnd
P (Xβ) and so, Xα ⊆ hset(P (Xβ)). By the induction hypothesis

and by the monotonicity of the constraints in the bodies of rules in P , Xα ⊆ hset(P (XP,M
β)). Thus,

since Xα ⊆ Rt = M ′ ⊆M ,

Xα ⊆ hset(P (XP,M
β)) ∩M = XP,M

β+1 = XP,M
α .

305

LIU & TRUSZCZYŃSKI

The case when α is a limit ordinal is straightforward as Xα =
⋃

β<α Xβ and XP,M
α =

⋃
β<α XP,M

β .
(2) (⇐) If M = Can(P, M), then M is the result of the canonical P -derivation for P and M . In
particular, M is a derivable model of P .
(⇒) if M is a derivable model of P , then M is also a model of P . From (1) it follows that
Can(P, M) is the greatest derivable model of P contained in M . Since M itself is derivable,
M = Can(P, M).
(3) From (1) it follows that Can(P, M) is a derivable model of P and that Can(P, M) ⊆M . Since
M is a minimal model, Can(P, M) = M and, by (2), M is a derivable model of P .

2.2 Stable Models

In this section, we will recall and adapt to our setting the definition of stable models proposed and
studied by Marek and Truszczyński (2004) and Marek et al. (2004, 2006) Let P be a monotone-
constraint program and M a subset of At(P). The reduct of P , denoted by P M , is a program
obtained from P by:

1. removing from P all rules whose body contains a literal not(B) such that M |= B;

2. removing literals not(B) for the bodies of the remaining rules.

The reduct of a monotone-constraint program is Horn since it contains no occurrences of default
negation. Therefore, the following definition is sound.

Definition 2. Let P be a monotone-constraint program. A set of atoms M is a stable model of P if
M is a derivable model of P M . We denote the set of stable models of P by St(P).

The definitions of the reduct and stable models follow and generalize those proposed for normal
logic programs, since in the setting of Horn constraint programs, derivable models play the role of
a least model.

As in normal logic programming and its standard extensions, stable models of monotone-
constraint programs are supported models and, consequently, models.

Proposition 5. Let P be a monotone-constraint program. If M ⊆ At(P) is a stable model of P ,
then M is a supported model of P .

Proof. Let M be a stable model of P . Then, M is a derivable model of P M and, by Proposition 1,
M is a supported model of P M . It follows that M is a model of P M . Directly from the definition
of the reduct it follows that M is a model of P .

It also follows that M ⊆ hset(P M (M)). For every rule r in P M (M), there is a rule r′ in P (M),
which has the same head and the same non-negated literals in the body as r. Thus, hset(P M (M)) ⊆
hset(P (M)) and, consequently, M ⊆ hset(P (M)). It follows that M is a supported model of
P .

Examples. Here is an example of stable models of a monotone-constraint program. Let P be a
monotone-constraint program that contains the following rules:

2{a, b, c} ← 1{a, d},not(1{c})
1{b, c, d} ← 1{a},not(3{a, b, d}))
1{a} ←

306

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

Let M = {a, b}. Therefore, M 6|= 1{c} and M 6|= 3{a, b, d}. Hence the reduct P M contains the
following three Horn rules:

2{a, b, c} ← 1{a, d}
1{b, c, d} ← 1{a}
1{a} ←

Since M = {a, b} is a derivable model of P M , M is a stable model of P .
Let M ′ = {a, b, c}. Then M ′ |= 1{c} and M 6|= 3{a, b, d}. Therefore, the reduct P M ′

contains
two Horn rules:

1{b, c, d} ← 1{a}
1{a} ←

Since M ′ = {a, b, c} is a derivable models of P M ′

, M ′ is also a stable model of P . We note that
stable models of a monotone-constraint program, in general, do not form an anti-chain. 4

If a normal logic program is Horn then its least model is its (only) stable model. Here we have
an analogous situation.

Proposition 6. Let P be a Horn monotone-constraint program. Then M ⊆ At(P) is a derivable
model of P if and only if M is a stable model of P .

Proof. For every set M of atoms P = P M . Thus, M is a derivable model of P if and only if it is a
derivable model of P M or, equivalently, a stable model of P .

In the next four sections of the paper we show that several fundamental results concerning
normal logic programs extend to the class of monotone-constraint programs.

3. Strong and Uniform Equivalence of Monotone-constraint Programs

Strong equivalence and uniform equivalence concern the problem of replacing some rules in a logic
program with others without changing the overall semantics of the program. More specifically,
the strong equivalence concerns replacement of rules within arbitrary programs, and the uniform
equivalence concerns replacements of all non-fact rules. In each case, the stipulation is that the
resulting program must have the same stable models as the original one. Strong (and uniform)
equivalence is an important concept due to its potential uses in program rewriting and optimization.

Strong and uniform equivalence have been studied in the literature mostly for normal logic
programs (Lifschitz et al., 2001; Lin, 2002; Turner, 2003; Eiter & Fink, 2003).

Turner (2003) presented an elegant characterization of strong equivalence of smodels programs,
and Eiter and Fink (2003) described a similar characterization of uniform equivalence of normal
and disjunctive logic programs. We show that both characterizations can be adapted to the case of
monotone-constraint programs. In fact, one can show that under the representations of normal logic
programs as monotone-constraint programs (Marek et al., 2004, 2006) our definitions and charac-
terizations of strong and uniform equivalence reduce to those introduced and developed originally
for normal logic programs.

307

LIU & TRUSZCZYŃSKI

3.1 M-maximal Models

A key role in our approach is played by models of Horn constraint programs satisfying a certain
maximality condition.

Definition 3. Let P be a Horn constraint program and let M be a model of P . A set N ⊆ M such
that N is a model of P and M∩hset(P (N)) ⊆ N is an M -maximal model of P , written N |=M P .

Intuitively, N is an M -maximal model of P if N satisfies each rule r ∈ P (N) “maximally”
with respect to M . That is, for every r ∈ P (N), N contains all atoms in M that belong to hset(r)
— the domain of the head of r.

To illustrate this notion, let us consider a Horn constraint program P consisting of a single rule:

1{p, q, r} ← 1{s, t}.

Let M = {p, q, s, t} and N = {p, q, s}. One can verify that both M and N are models of P .
Moreover, since the only rule in P is N -applicable, and M ∩ {p, q, r} ⊆ N , N is an M -maximal
model of P . On the other hand, N ′ = {p, s} is not M -maximal even though N ′ is a model of P and
it is contained in M .

There are several similarities between properties of models of normal Horn programs and M -
maximal models of Horn constraint programs. We state and prove here one of them that turns out to
be especially relevant to our study of strong and uniform equivalence.

Proposition 7. Let P be a Horn constraint program and let M be a model of P . Then M is an
M -maximal model of P and Can(P, M) is the least M -maximal model of P .

Proof. The first claim follows directly from the definition. To prove the second one, we simplify the
notation: we will write N for Can(P, M) and Xα for XP,M

α .
We first show that N is an M -maximal model of P . Clearly, N ⊆M . Moreover, by Proposition

3, hset(P (N)) ∩M = N . Thus, N is indeed an M -maximal model of P .
We now show N is the least M -maximal model of P .
Let N ′ be any M -maximal model of P . We will show by transfinite induction that N ⊆ N ′.

Since X0 = ∅, the basis for the induction holds. Let us consider an ordinal α > 0 and let us assume
that Xβ ⊆ N ′, for every β < α. To show N ⊆ N ′, it is sufficient to show that Xα ⊆ N ′.

Let us assume that α = β +1 for some β < α. Then, since Xβ ⊆ N ′ and P is a Horn constraint
program, we have P (Xβ) ⊆ P (N ′). Consequently,

Xα = Xβ+1 = hset(P (Xβ)) ∩M ⊆ hset(P (N ′)) ∩M ⊆ N ′,

the last inclusion follows from the fact thatN ′ is an M -maximal model of P .
If α is a limit ordinal, then Xα =

⋃
β<α Xβ and the inclusion Xα ⊆ N ′ follows directly from

the induction hypothesis.

3.2 Strong Equivalence and SE-models

Monotone-constraint programs P and Q are strongly equivalent, denoted by P ≡s Q, if for every
monotone-constraint program R, P ∪R and Q ∪R have the same set of stable models.

To study the strong equivalence of monotone-constraint programs, we generalize the concept of
an SE-model due to Turner (2003).

308

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

There are close connections between strong equivalence of normal logic programs and the logic
here-and-there. The semantics of the logic here-and-there is given in terms of Kripke models with
two words which, when rephrased in terms of pairs of interpretations (pairs of sets of propositional
atoms), give rise to SE-models.

Definition 4. Let P be a monotone-constraint program and let X, Y be sets of atoms. We say that
(X, Y) is an SE-model of P if the following conditions hold: (1) X ⊆ Y ; (2) Y |= P ; and (3)
X |=Y P Y . We denote by SE(P) the set of all SE-models of P .

Examples. To illustrate the notion of an SE-model of a monotone-constraint program, let P consist
of the following two rules:

2{p, q, r} ← 1{q, r},not(3{p, q, r})}
1{p, s} ← 1{p, r},not(2{p, r})

We observe that M = {p, q} is a model of P . Let N = ∅. Then N ⊆ M and P M (N) is empty. It
follows that M ∩ hset(P M (N)) = ∅ ⊆ N and so, N |=M PM . Hence, (N, M) is an SE-models
of P .

Next, let N ′ = {p}. It is clear that N ′ ⊆ M . Moreover, P M (N ′) = {1{p, s} ← 1{p, r}}.
Hence M ∩ hset(P M (N ′)) = {p} ⊆ N ′ and so, N ′ |=M PM . That is, (N ′, M) is another SE-
model of P . 4

SE-models yield a simple characterization of strong equivalence of monotone-constraint pro-
grams. To state and prove it, we need several auxiliary results.

Lemma 1. Let P be a monotone-constraint program and let M be a model of P . Then (M, M) and
(Can(PM , M), M) are both SE-models of P .

Proof. The requirements (1) and (2) of an SE-model hold for (M, M). Furthermore, since M is a
model of P , M |= P M . Finally, we also have hset(P (M)) ∩M ⊆M . Thus, M |=M PM .

Similarly, the definition of a canonical computation and Proposition 1, imply the first two re-
quirements of the definition of SE-models for (Can(P M , M), M). The third requirement follows
from Proposition 7.

Lemma 2. Let P and Q be two monotone-constraint programs such that SE(P) = SE(Q). Then
St(P) = St(Q).

Proof. If M ∈ St(P), then M is a model of P and, by Lemma 1, (M, M) ∈ SE(P). Hence,
(M, M) ∈ SE(Q) and, in particular, M |= Q. By Lemma 1 again,

(Can(QM , M), M) ∈ SE(Q).

By the assumption,
(Can(QM , M), M) ∈ SE(P)

and so, Can(QM , M) |=M PM or, in other terms, Can(QM , M) is an M -maximal model of P M .
Since M ∈ St(P), M = Can(P M , M). By Proposition 7, M is the least M -maximal model
of PM . Thus, M ⊆ Can(QM , M). On the other hand, we have Can(QM , M) ⊆ M and so,
M = Can(QM , M). It follows that M is a stable model of Q. The other inclusion can be proved
in the same way.

309

LIU & TRUSZCZYŃSKI

Lemma 3. Let P and R be two monotone-constraint programs. Then SE(P ∪ R) = SE(P) ∩
SE(R).

Proof. The assertion follows from the following two simple observations. First, for every set Y of
atoms, Y |= (P ∪ R) if and only if Y |= P and Y |= R. Second, for every two sets X and Y of
atoms, X |=Y (P ∪R)Y if and only if X |=Y P Y and X |=Y RY .

Lemma 4. Let P , Q be two monotone-constraint programs. If P ≡s Q, then P and Q have the
same models.

Proof. Let M be a model of P . By r we denote a constraint rule (M, {M}) ← . Then, M ∈
St(P ∪ {r}). Since P and Q are strongly equivalent, M ∈ St(Q ∪ {r}). It follows that M is a
model of Q ∪ {r} and so, also a model of Q. The converse inclusion can be proved in the same
way.

Theorem 1. Let P and Q be monotone-constraint programs. Then P ≡s Q if and only if SE(P) =
SE(Q).

Proof. (⇐) Let R be an arbitrary monotone-constraint program. Lemma 3 implies that SE(P ∪
R) = SE(P) ∩ SE(R) and SE(Q ∪ R) = SE(Q) ∩ SE(R). Since SE(P) = SE(Q), we have
that SE(P ∪ R) = SE(Q ∪ R). By Lemma 2, P ∪ R and Q ∪ R have the same stable models.
Hence, P ≡s Q holds.
(⇒) Let us assume SE(P) \SE(Q) 6= ∅ and let us consider (X, Y) ∈ SE(P) \SE(Q). It follows
that X ⊆ Y and Y |= P . By Lemma 4, Y |= Q. Since (X, Y) /∈ SE(Q), X 6|=Y QY . It follows
that X 6|= QY or hset(QY (X)) ∩ Y 6⊆ X . In the first case, there is a rule r ∈ QY (X) such that
X 6|= hd(r). Since X ⊆ Y and QY is a Horn constraint program, r ∈ QY (Y). Let us recall that
Y |= Q and so, we also have Y |= QY . It follows that Y |= hd(r). Since hset(r) ⊆ hset(QY (X)),
Y ∩ hset(QY (X)) |= hd(r). Thus, hset(QY (X)) ∩ Y 6⊆ X (otherwise, by the monotonicity of
hd(r), we would have X |= hd(r)).

The same property holds in the second case. Thus, it follows that

(hset(QY (X)) ∩ Y) \X 6= ∅.

We define
X ′ = (hset(QY (X)) ∩ Y) \X.

Let R be a constraint program consisting of the following two rules:

(X, {X})←
(Y, {Y })← (X ′, {X ′}).

Let us consider a program Q0 = Q ∪R. Since Y |= Q and X ⊆ Y , Y |= Q0. Thus, Y |= QY
0 and,

in particular, Can(QY
0 , Y) is well defined. Since R ⊆ QY

0 , X ⊆ Can(QY
0 , Y). Thus, we have

hset(QY
0 (X)) ∩ Y ⊆ hset(QY

0 (Can(QY
0 , Y))) ∩ Y = Can(QY

0 , Y)

(the last equality follows from Proposition 3). We also have Q ⊆ Q0 and so,

X ′ ⊆ hset(QY (X)) ∩ Y ⊆ hset(QY
0 (X)) ∩ Y.

310

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

Thus, X ′ ⊆ Can(QY
0 , Y). Consequently, by Proposition 3, Y ⊆ Can(QY

0 , Y). Since Can(QY
0 , Y)

⊆ Y , Y = Can(QY
0 , Y) and so, Y ∈ St(Q0).

Since P and Q are strongly equivalent, Y ∈ St(P0), where P0 = P ∪ R. Let us recall that
(X, Y) ∈ SE(P). By Proposition 7, Can(P Y , Y) is a least Y -maximal model of P Y . Since X
is a Y -maximal model of P (as X |=Y P Y), it follows that Can(P Y , Y) ⊆ X . Since X ′ 6⊆ X ,
Can(P Y

0 , Y) ⊆ X . Finally, since X ′ ⊆ Y , Y 6⊆ X . Thus, Y 6= Can(P Y
0 , Y), a contradiction.

It follows that SE(P)\SE(Q) = ∅. By symmetry, SE(Q)\SE(P) = ∅, too. Thus, SE(P) =
SE(Q).

3.3 Uniform Equivalence and UE-models

Let D be a set of atoms. By rD we denote a monotone-constraint rule

rD = (D, {D})← .

Adding a rule rD to a program forces all atoms in D to be true (independently of the program).
Monotone-constraint programs P and Q are uniformly equivalent, denoted by P ≡u Q, if for

every set of atoms D, P ∪ {rD} and Q ∪ {rD} have the same stable models.
An SE-model (X, Y) of a monotone-constraint program P is a UE-model of P if for every

SE-model (X ′, Y) of P with X ⊆ X ′, either X = X ′ or X ′ = Y holds. We write UE(P) to
denote the set of all UE-models of P . Our notion of a UE-model is a generalization of the notion of
a UE-model due to Eiter and Fink (2003) to the setting of monotone-constraint programs.
Examples. Let us look again at the program we used to illustrate the concept of an SE-model. We
showed there that (∅, {p, q}) and ({p}, {p, q}) are SE-models of P . Directly from the definition of
UE-models it follows that ({p}, {p, q}) is a UE-model of P . 4

We will now present a characterization of uniform equivalence of monotone-constraint programs
under the assumption that their sets of atoms are finite. One can prove a characterization of uniform
equivalence of arbitrary monotone-constraint programs, generalizing one of the results by Eiter and
Fink (2003). However, both the characterization and its proof are more complex and, for brevity, we
restrict our attention to the finite case only.

We start with an auxiliary result, which allows us to focus only on atoms in At(P) when de-
ciding whether a pair (X, Y) of sets of atoms is an SE-model of a monotone-constraint program
P .

Lemma 5. Let P be a monotone-constraint program, X ⊆ Y two sets of atoms. Then (X, Y) ∈
SE(P) if and only if (X ∩At(P), Y ∩At(P)) ∈ SE(P).

Proof. Since X ⊆ Y is given, and X ⊆ Y implies X ∩At(P) ⊆ Y ∩At(P), the first condition of
the definition of an SE-model holds on both sides of the equivalence.

Next, we note that for every constraint C, Y |= C if and only if Y ∩Dom(C) |= C. Therefore,
Y |= P if and only if Y ∩At(P) |= P . That is, the second condition of the definition of an SE-model
holds for (X, Y) if and only if it holds for (X ∩At(P), Y ∩At(P)).

Finally, we observe that P Y = P Y ∩At(P) and P (X) = P (X ∩At(P)). Therefore,

Y ∩ hset(P Y (X)) = Y ∩ hset(P Y ∩At(P)(X ∩At(P))).

Since hset(P Y ∩At(P)(X ∩At(P))) ⊆ At(P), it follows that

Y ∩ hset(P Y (X)) ⊆ X

311

LIU & TRUSZCZYŃSKI

if and only if
Y ∩At(P) ∩ hset(P Y ∩At(P)(X ∩At(P))) ⊆ X ∩At(P).

Thus, X |=Y P Y if and only if X ∩At(P) |=Y ∩At(P) P Y ∩At(P). That is, the third condition of the
definition of an SE-model holds for (X, Y) if and only if it holds for (X ∩At(P), Y ∩At(P)).

Lemma 6. Let P be a monotone-constraint program such that At(P) is finite. Then for every
(X, Y) ∈ SE(P) such that X 6= Y , the set

{X ′ : X ⊆ X ′ ⊆ Y, X ′ 6= Y, (X ′, Y) ∈ SE(P)} (2)

has a maximal element.

Proof. If At(P)∩X = At(P)∩Y , then for every element y ∈ Y \X , Y \{y} is a maximal element
of the set (2). Indeed, since (X, Y) ∈ SE(P), by Lemma 5, (X ∩ At(P), Y ∩ At(P)) ∈ SE(P).
Since X ∩ At(P) = Y ∩ At(P) and y 6∈ At(P), X ∩ At(P) = (Y \ {y}) ∩ At(P). Therefore,
((Y \{y})∩At(P), Y ∩At(P)) ∈ SE(P). Then from Lemma 5 and the fact Y \{y} ⊆ Y , we have
(Y \ {y}, Y) ∈ SE(P). Therefore, Y \ {y} belongs to the set (2) and so, it is a maximal element
of this set.

Thus, let us assume that At(P) ∩ X 6= At(P) ∩ Y . Let us define X ′ = X ∪ (Y \ At(P)).
Then X ⊆ X ′ ⊆ Y and X ′ 6= Y . Moreover, no element in X ′ \ X belongs to At(P). That is,
X ′ ∩ At(P) = X ∩ At(P). Thus, by Lemma 5, (X ′, Y) ∈ SE(P) and so, X ′ belongs to the set
(2). Since Y \X ′ ⊆ At(P), by the finiteness of At(P) it follows that the set (2) contains a maximal
element containing X ′. In particular, it contains a maximal element.

Theorem 2. Let P and Q be two monotone-constraint programs such that At(P)∪At(Q) is finite.
Then P ≡u Q if and only if UE(P) = UE(Q).

Proof. (⇐) Let D be an arbitrary set of atoms and Y be a stable model of P ∪ {rD}. Then Y is
a model of P ∪ {rD}. In particular, Y is a model of P and so, (Y, Y) ∈ UE(P). It follows that
(Y, Y) ∈ UE(Q), too. Thus, Y is a model of Q. Since Y is a model of rD, D ⊆ Y . Consequently,
Y is a model of Q ∪ {rD} and thus, also of (Q ∪ {rD})

Y .
Let X = Can((Q ∪ {rD})

Y , Y). Then D ⊆ X ⊆ Y and, by Proposition 7, X is a Y -maximal
model of (Q∪{rD})

Y . Consequently, X is a Y -maximal model of QY . Since X ⊆ Y and Y |= Q,
(X, Y) ∈ SE(Q).

Let us assume that X 6= Y . Then, by Lemma 6, there is a maximal set X ′ such that X ⊆ X ′ ⊆
Y , X ′ 6= Y and (X ′, Y) ∈ SE(Q). It follows that (X ′, Y) ∈ UE(Q). Thus, (X ′, Y) ∈ UE(P)
and so, X ′ |=Y P Y . Since D ⊆ X ′, X ′ |=Y (P ∪ {rD})

Y . We recall that Y is a stable model of
P ∪ {rD}. Thus, Y = Can((P ∪ {rD})

Y , Y). By Proposition 7, Y ⊆ X ′ and so we get X ′ = Y ,
a contradiction. It follows that X = Y and, consequently, Y is a stable model of Q ∪ {rD}.

By symmetry, every stable model of Q ∪ {rD} is also a stable model of P ∪ {rD}.
(⇒) First, we note that (Y, Y) ∈ UE(P) if and only if Y is a model of P . Next, we note that P and
Q have the same models. Indeed, the argument used in the proof of Lemma 4 works also under the
assumption that P ≡u Q. Thus, (Y, Y) ∈ UE(P) if and only if (Y, Y) ∈ UE(Q).

Now let us assume that UE(P) 6= UE(Q). Let (X, Y) be an element of (UE(P) \ UE(Q)) ∪
(UE(Q) \ UE(P)). Without loss of generality, we can assume that (X, Y) ∈ UE(P) \ UE(Q).
Since (X, Y) ∈ UE(P), it follows that

312

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

1. X ⊆ Y

2. Y |= P and, consequently, Y |= Q

3. X 6= Y (otherwise, by our earlier observations, (X, Y) would belong to UE(Q)).

Let R = (Q ∪ {rX})
Y . Clearly, R is a Horn constraint program. Moreover, since Y |= Q and

X ⊆ Y , Y |= R. Thus, Can(R, Y) is defined. We have X ⊆ Can(R, Y) ⊆ Y . We claim that
Can(R, Y) 6= Y . Let us assume to the contrary that Can(R, Y) = Y . Then Y ∈ St(Q ∪ {rX}).
Hence, Y ∈ St(P ∪ {rX}), that is, Y = Can((P ∪ {rX})

Y , Y). By Proposition 7, Y is the
least Y -maximal model of (P ∪ {rX})

Y and X is a Y -maximal model of (P ∪ {rX})
Y (since

(X, Y) ∈ SE(P), X |=Y P Y and so, X |=Y (P ∪ {rX})
Y , too). Consequently, Y ⊆ X and, as

X ⊆ Y , X = Y , a contradiction.
Thus, Can(R, Y) 6= Y . By Proposition 7, Can(R, Y) is a Y -maximal model of R. Since

QY ⊆ R, it follows that Can(R, Y) is a Y -maximal model of QY and so, (Can(R, Y), Y) ∈
SE(Q). Since Can(R, Y) 6= Y , from Lemma 6 it follows that there is a maximal set X ′ such that
Can(R, Y) ⊆ X ′ ⊆ Y , X ′ 6= Y and (X ′, Y) ∈ SE(Q). By the definition, (X ′, Y) ∈ UE(Q).
Since (X, Y) /∈ UE(Q). X 6= X ′. Consequently, since X ⊆ X ′, X ′ 6= Y and (X, Y) ∈ UE(P),
(X ′, Y) /∈ UE(P).

Thus, (X ′, Y) ∈ UE(Q) \ UE(P). By applying now the same argument as above to (X ′, Y)
we show the existence of X ′′ such that X ′ ⊆ X ′′ ⊆ Y , X ′ 6= X ′′, X ′′ 6= Y and (X ′′, Y) ∈ SE(P).
Consequently, we have X ⊆ X ′′, X 6= X ′′ and Y 6= X ′′, which contradicts the fact that (X, Y) ∈
UE(P). It follows then that UE(P) = UE(Q).

Examples. Let P = {1{p, q} ← not(2{p, q})}, and Q = {p ← not(q), q ← not(p)}. Then
P and Q are strongly equivalent. We note that both programs have {p}, {q}, and {p, q} as models.
Furthermore, ({p}, {p}), ({q}, {q}), ({p}, {p, q}), ({q}, {p, q}), ({p, q}, {p, q}) and (∅, {p, q}) are
“all” SE-models of the two programs 3.

Thus, by Theorem 1, P and Q are strongly equivalent.
We also observe that the first five SE-models are precisely UE-models of P and Q. Therefore,

by Theorem 2, P and Q are also uniformly equivalent.
It is possible for two monotone-constraint programs to be uniformly but not strongly equivalent.

If we add rule p← to P , and rule p← q to Q, then the two resulting programs, say P ′ and Q′, are
uniformly equivalent. However, they are not strongly equivalent. The programs P ′ ∪ {q ← p} and
Q′ ∪ {q ← p} have different stable models. Another way to show it is by observing that (∅, {p, q})
is an SE-model of Q′ but not an SE-model of P ′. 4

4. Fages Lemma

In general, supported models and stable models of a logic program (both in the normal case and the
monotone-constraint case) do not coincide. Fages Lemma (Fages, 1994), later extended by Erdem
and Lifschitz (2003), establishes a sufficient condition under which a supported model of a nor-
mal logic program is stable. In this section, we show that Fages Lemma extends to programs with
monotone constraints.

3. From Lemma 5 and Theorem 1, it follows that only those SE-models that contain atoms only from At(P) ∪ At(Q)
are the essential ones.

313

LIU & TRUSZCZYŃSKI

Definition 5. A monotone-constraint program P is called tight on a set M ⊆ At(P) of atoms, if
there exists a mapping λ from M to ordinals such that for every rule A← A1, . . . , Ak,not(Ak+1),
. . . ,not(Am) in P (M), if X is the domain of A and Xi the domain of Ai, 1 ≤ i ≤ k, then for
every x ∈M ∩X and for every a ∈M ∩

⋃k
i=1 Xi, λ(a) < λ(x).

We will now show that tightness provides a sufficient condition for a supported model to be
stable. In order to prove a general result, we first establish it in the Horn case.

Lemma 7. Let P be a Horn monotone-constraint program and let M be a supported model of P .
If P is tight on M , then M is a stable model of P .

Proof. Let M be an arbitrary supported model of P such that P is tight on M . Let λ be a mapping
showing the tightness of P on M . We will show that for every ordinal α and for every atom x ∈M
such that λ(x) ≤ α, x ∈ Can(P, M). We will proceed by induction.

For the basis of the induction, let us consider an atom x ∈M such that λ(x) = 0. Since M is a
supported model for P and x ∈M , there exists a rule r ∈ P (M) such that x ∈ hset(r). Moreover,
since P is tight on M , for every A ∈ bd(r) and for every y ∈ Dom(A) ∩M , λ(y) < λ(x) = 0.
Thus, for every A ∈ bd(r), Dom(A)∩M = ∅. Since M |= bd(r) and since P is a Horn monotone-
constraint program, it follows that ∅ |= bd(r). Consequently, hset(r) ∩M ⊆ Can(P, M) and so,
x ∈ Can(P, M).

Let us assume that the assertion holds for every ordinal β < α and let us consider x ∈ M such
that λ(x) = α. As before, since M is a supported model of P , there exists a rule r ∈ P (M) such
that x ∈ hset(r). By the assumption, P is tight on M and, consequently, for every A ∈ bd(r) and
for every y ∈ Dom(A) ∩M , λ(y) < λ(x) = α. By the induction hypothesis, for every A ∈ bd(r),
Dom(A) ∩M ⊆ Can(P, M). Since P is a Horn monotone-constraint program, Can(P, M) |=
bd(r). By Proposition 3, hset(r) ∩M ⊆ Can(P, M) and so, x ∈ Can(P, M).

It follows that M ⊆ Can(P, M). By the definition of a canonical computation, we have
Can(P, M) ⊆M . Thus, M = Can(P, M). By Proposition 6, M is a stable model of P .

Given this lemma, the general result follows easily.

Theorem 3. Let P be a monotone-constraint program and let M be a supported model of P . If P
is tight on M , then M is a stable model of P .

Proof. One can check that if M is a supported model of P , then it is a supported model of the reduct
PM . Since P is tight on M , the reduct P M is tight on M , too. Thus, M is a stable model of P M

(by Lemma 7) and, consequently, a derivable model of P M (by Proposition 6). It follows that M is
a stable model of P .

5. Logic PL
mc and the Completion of a Monotone-constraint Program

The completion of a normal logic program (Clark, 1978) is a propositional theory whose models are
precisely supported models of the program. Thus, supported models of normal logic programs can
be computed by means of SAT solvers. Under some conditions, for instance, when the assumptions
of Fages Lemma hold, supported models are stable. Thus, computing models of the completion
can yield stable models, an idea implemented in the first version of cmodels software (Babovich &
Lifschitz, 2002).

314

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

Our goal is to extend the concept of the completion to programs with monotone constraints. The
completion, as we define it, retains much of the structure of monotone-constraint rules and allow
us, in the restricted setting of lparse programs, to use pseudo-boolean constraint solvers to compute
supported models of such programs. In this section we define the completion and prove a result
relating supported models of programs to models of the completion. We discuss extensions of this
result in the next section and their practical computational applications in Section 8.

To define the completion, we first introduce an extension of propositional logic with monotone
constraints, a formalism we denote by PLmc . A formula in the logic PLmc is an expression built
from monotone constraints by means of boolean connectives ∧, ∨ (and their infinitary counterparts),
→ and ¬. The notion of a model of a constraint, which we discussed earlier, extends in a standard
way to the class of formulas in the logic PLmc .

For a set L = {A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} of literals, we define

L∧ = A1 ∧ . . . ∧Ak ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let P be a monotone-constraint program. We form the completion of P , denoted Comp(P), as
follows:

1. For every rule r ∈ P we include in Comp(P) a PLmc formula

[bd(r)]∧ → hd(r)

2. For every atom x ∈ At(P), we include in Comp(P) a PLmc formula

x→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(we note that when the set of rules in P is infinite, the disjunction may be infinitary).

The following theorem generalizes a fundamental result on the program completion from normal
logic programming (Clark, 1978) to the case of programs with monotone constraints.

Theorem 4. Let P be a monotone-constraint program. A set M ⊆ At(P) is a supported model of
P if and only if M is a model of Comp(P).

Proof. (⇒) Let us suppose that M is a supported model of P . Then M is a model of P , that is, for
each rule r ∈ P , if M |= bd(r) then M |= hd(r). Since M |= bd(r) if and only if M |= [bd(r)]∧,
it follows that all formulas in Comp(P) of the first type are satisfied by M .

Moreover, since M is a supported model of P , M ⊆ hset(P (M)). That is, for every atom
x ∈ M , there exists at least one rule r in P such that x ∈ hset(r) and M |= bd(r). Therefore, all
formulas in Comp(P) of the second type are satisfied by M , too.
(⇐) Let us now suppose that M is a model of Comp(P). Since M |= bd(r) if and only if M |=
[bd(r)]∧, and since M satisfies formulas of the first type in Comp(P), M is a model of P .

Let x ∈ M . Since M satisfies the formula x →
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}, it follows

that M satisfies
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}. That is, there is r ∈ P such that M satisfies

[bd(r)]∧ (and so, bd(r), too) and x ∈ hset(r). Thus, x ∈ hset(P (M)). Hence, M is a supported
model of P .

Theorems 3 and 4 have the following corollary.

315

LIU & TRUSZCZYŃSKI

Corollary 5. Let P be a monotone-constraint program. A set M ⊆ At(P) is a stable model of P if
P is tight on M and M is a model of Comp(P).

We observe that for the material in this section it is not necessary to require that constraints
appearing in the bodies of program rules be monotone. However, since we are only interested in this
case, we adopted the monotonicity assumption here, as well.

6. Loops and Loop Formulas in Monotone-constraint Programs

The completion alone is not quite satisfactory as it relates supported not stable models of monotone-
constraint programs with models of PLmc theories. Loop formulas, proposed by Lin and Zhao
(2002), provide a way to eliminate those supported models of normal logic programs, which are not
stable. Thus, they allow us to use SAT solvers to compute stable models of arbitrary normal logic
programs and not only those, for which supported and stable models coincide.

We will now extend this idea to monotone-constraint programs. In this section, we will restrict
our considerations to programs P that are finitary, that is, At(P) is finite. This restriction implies
that monotone constraints that appear in finitary programs have finite domains.

Let P be a finitary monotone-constraint program. The positive dependency graph of P is the
directed graph GP = (V, E), where V = At(P) and 〈u, v〉 is an edge in E if there exists a rule
r ∈ P such that u ∈ hset(r) and v ∈ Dom(A) for some monotone constraint A ∈ bd(r) (that is,
A appears non-negated in bd(r)). We note that positive dependency graphs of finitary programs are
finite.

Let G = (V, E) be a directed graph. A set L ⊆ V is a loop in G if the subgraph of G induced
by L is strongly connected. A loop is maximal if it is not a proper subset of any other loop in G.
Thus, maximal loops are vertex sets of strongly connected components of G. A maximal loop is
terminating if there is no edge in G from L to any other maximal loop.

These concepts can be extended to the case of programs. By a loop (maximal loop, terminating
loop) of a monotone-constraint program P , we mean the loop (maximal loop, terminating loop)
of the positive dependency graph GP of P . We observe that every finitary monotone-constraint
program P has a terminating loop, since GP is finite.

Let X ⊆ At(P). By GP [X] we denote the subgraph of GP induced by X . We observe that if
X 6= ∅ then every loop of GP [X] is a loop of GP .

Let P be a monotone-constraint program P . For every model M of P (in particular, for every
model M of Comp(P)), we define M− = M \ Can(PM , M). Since M is a model of P , M is a
model of P M . Thus, Can(P M , M) is well defined and so is M−.

For every loop in the graph GP we will now define the corresponding loop formula. First, for a
constraint A = (X, C) and a set L ⊆ At , we set A|L = (X, {Y ∈ C : Y ∩ L = ∅}) and call A|L

the restriction of A to L. Next, let r be a monotone-constraint rule, say

r = A← A1, . . . , Ak,not(Ak+1), . . . ,not(Am).

If L ⊆ At , then define a PLmc formula βL(r) by setting

βL(r) = A1|L ∧ . . . ∧Ak |L ∧ ¬Ak+1 ∧ . . . ∧ ¬Am.

Let L be a loop of a monotone-constraint program P . Then, the loop formula for L, denoted by
LP (L), is the PLmc formula

LP (L) =
∨

L→
∨
{βL(r) : r ∈ P and L ∩ hset(r) 6= ∅}

316

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

(we recall that we use the convention to write a for the constraint C(a) = ({a}, {{a}}). A loop
completion of a finitary monotone-constraint program P is the PLmc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop in GP }.

The following theorem exploits the concept of a loop formula to provide a necessary and suffi-
cient condition for a model being a stable model. transfinite one.

Theorem 6. Let P be a finitary monotone-constraint program. A set M ⊆ At(P) is a stable model
of P if and only if M is a model of LComp(P).

Proof. (⇒) Let M be a stable model of P . Then M is a supported model of P and, by Theorem 4,
M |= Comp(P).

Let L be a loop in P . If M ∩ L = ∅ then M |= LP (L). Thus, let us assume that M ∩ L 6= ∅.
Since M is a stable model of P , M is a derivable model of P M , that is, M = Can(P M , M).
Let (Xn)n=0,1,... be the canonical P M -derivation with respect to M (since we assume that P is
finite and each constraint in P has a finite domain, P -derivations reach their results in finitely many
steps). Since Can(P M , M) ∩ L = M ∩ L 6= ∅, there is a smallest index n such that Xn ∩ L 6= ∅.
In particular, it follows that n > 0 (as X0 = ∅) and L ∩Xn−1 = ∅.

Since Xn = hset(PM (Xn−1) ∩M and Xn ∩ L 6= ∅, there is a rule r ∈ P M (Xn−1) such that
hset(r) ∩ L 6= ∅, that is, such that L ∩ hset(r)) 6= ∅. Let r′ be a rule in P , which contributes r to
PM . Then, for every literal not(A) ∈ bd(r′), M |= not(A). Let A ∈ bd(r′). Then A ∈ bd(r) and
so, Xn−1 |= A. Since Xn−1 ∩ L = ∅, Xn−1 |= A|L, too, By the monotonicity of A|L, M |= A|L.
Thus, M |= βL(r′). Since hset(r′) ∩ L 6= ∅, L ∩ hset(r)) 6= ∅ and so, M |= LP (L). Thus,
M |= LComp(P).
(⇐) Let us consider a set M ⊆ At(P) such that M is not a stable model of P . If M is not a
supported model of P that M 6|= Comp(P) and so M is not a model of LComp(P). Thus, let us
assume that M is a supported model of P . It follows that M− 6= ∅. Let L ⊆ M− be a terminating
loop for GP [M−].

Let r′ be an arbitrary rule in P such that L∩hset(r′)) 6= ∅, and let r be the rule obtained from r′

by removing negated constraints from its body. Now, let us assume that M |= βr′(L). It follows that
for every literal not(A) ∈ bd(r′), M |= not(A). Thus, r ∈ P M . Moreover, since L is a terminating
loop for GP [M−], for every constraint A ∈ bd(r′), Dom(A)∩M− ⊆ L. Since M |= A|L, it follows
that Can(PM , M) |= A. Consequently, hset(r′) ∩ L ⊆ hset(r′) ∩M ⊆ Can(P M , M) and so,
L ∩ Can(PM , M) 6= ∅, a contradiction. Thus, M 6|=

∨
{βr′(L) : r′ ∈ P and L ∩ hset(r′)) 6= ∅}.

Since M |=
∨

L, it follows that M 6|= LP (L) and so, M 6|= LComp(P).

The following result follows directly from the proof of Theorem 6 and provides us with a way
to filter out specific non-stable supported models from Comp(P).

Theorem 7. Let P be a finitary monotone-constraint program and M a model of Comp(P). If M−

is not empty, then M violates the loop formula of every terminating loop of GP [M−].

Finally, we point out that, Theorem 6 does not hold when a program P contains infinitely many
rules. Here is a counterexample:
Examples. Let P be the set of following rules:

317

LIU & TRUSZCZYŃSKI

1{a0} ← 1{a1}
1{a1} ← 1{a2}
· · ·
1{an} ← 1{an+1}
· · ·

Let M = {a0, . . . , an, . . .}. Then M is a supported model of P . The only stable model of P is
∅. However, M− = M \ ∅ does not contain any terminating loop. The problem arises because there
is an infinite simple path in GP [M−]. Therefore, GP [M−] does not have a sink, yet it does not have
a terminating loop either. 4

The results of this section, concerning the program completion and loop formulas — most im-
portantly, the loop-completion theorem — form the basis of a new software system to compute
stable models of lparse programs. We discuss this matter in Section 8.

7. Programs with Convex Constraints

We will now discuss programs with convex constraints, which are closely related to programs with
monotone constraints. Programs with convex constraints are of interest as they do not involve ex-
plicit occurrences of the default negation operator not, yet are as expressive as programs with
monotone-constraints. Moreover, they directly subsume an essential fragment of the class of lparse
programs (Simons et al., 2002).

A constraint (X, C) is convex, if for every W, Y, Z ⊆ X such that W ⊆ Y ⊆ Z and W, Z ∈ C,
we have Y ∈ C. A constraint rule of the form (1) is a convex-constraint rule if A, A1, . . . , An are
convex constraints and m = k. Similarly, a constraint program built of convex-constraint rules is a
convex-constraint program.

The concept of a model discussed in Section 2 applies to convex-constraint programs. To define
supported and stable models of convex-constraint programs, we view them as special programs with
monotone-constraints.

To this end, we define the upward and downward closures of a constraint A = (X, C) to be
constraints A+ = (X, C+) and A− = (X, C−), respectively, where

C+ = {Y ⊆ X : for some W ∈ C, W ⊆ Y }, and
C− = {Y ⊆ X : for some W ∈ C, Y ⊆W}.

We note that the constraint A+ is monotone. We call a constraint (X, C) antimonotone if C is closed
under subset, that is, for every W, Y ⊆ X , if Y ∈ C and W ⊆ Y then W ∈ C. It is clear that the
constraint A− is antimonotone.

The upward and downward closures allow us to represent any convex constraint as the “con-
junction” of a monotone constraint and an antimonotone constraint.Namely, we have the following
property of convex constraints.

Proposition 8. A constraint (X, C) is convex if and only if C = C+ ∩ C−.

Proof. (⇐) Let us assume that C = C+∩C−and let us consider a set M such that M ′ ⊆M ⊆M ′′,
where M ′, M ′′ ∈ C. it follows that M ′ ∈ C+ and M ′′ ∈ C−. Thus, M ∈ C+ and M ∈ C−.
Consequently, M ∈ C, which implies that (X, C) is convex.

318

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

(⇒) The definitions directly imply that C ⊆ C+ and C ⊆ C−. Thus, C ⊆ C+ ∩ C−. Let us
consider M ∈ C+∩C−. Then there are sets M ′, M ′′ ∈ C such that M ′ ⊆M and M ⊆M ′′. Since
C is convex, M ∈ C. Thus, C+ ∩ C− ⊆ C and so, C = C+ ∩ C−.

Proposition 8 suggests an encoding of convex-constraint programs as monotone-constraint pro-
grams. To present it, we need more notation. For a constraint A = (X, C), we call the constraint
(X, C), where C = P(X) \ C, the dual constraint for A. We denote it by A. It is a direct conse-
quence of the definitions that a constraint A is monotone if and only if its dual A is antimonotone.

Let C be a convex constraint. We set mc(C) = {C} if C is monotone. We set mc(C) =
{not(C)}, if C is antimonotone. We define mc(C) = {C+,not(C−)}, if C is neither monotone
nor antimonotone. Clearly, C and mc(C) have the same models.

Let P be a convex-constraint program. By mc(P) we denote the program with monotone con-
straints obtained by replacing every rule r in P with a rule r′ such that

hd(r′) = hd(r)+ and bd(r′) =
⋃
{mc(A) : A ∈ bd(r)}

and, if hd(r) is not monotone, also with an additional rule r′′ such that

hd(r′′) = (∅, ∅) and bd(r′′) = {hd(r)−} ∪ bd(r′).

By our observation above, all constraints appearing in rules of mc(P) are indeed monotone, that is,
mc(P) is a program with monotone constraints.

It follows from Proposition 8 that M is a model of P if and only if M is a model of mc(P). We
extend this correspondence to supported and stable models of a convex constraint program P and
the monotone-constraint program mc(P).

Definition 6. Let P be a convex constraint program. Then a set of atoms M is a supported (or
stable) model of P if M is a supported (or stable) model of mc(P).

With these definitions, monotone-constraint programs can be viewed (almost) directly as convex-
constraint programs. Namely, we note that monotone and antimonotone constraints are convex.
Next, we observe that if A is a monotone constraint, the expression not(A) has the same meaning
as the antimonotone constraint A in the sense that for every interpretation M , M |= not(A) if and
only if M |= A.

Let P be a monotone-constraint program. By cc(P) we denote the program obtained from P by
replacing every rule r of the form (1) in P with r′ such that

hd(r′) = hd(r) and bd(r′) =
⋃
{Ai : i = 1, . . . , k} ∪

⋃
{Aj : j = k + 1, . . . , m}

One can show that programs P and cc(P) have the same models, supported models and stable
models. In fact, for every monotone-constraint program P we have P = mc(cc(P)).
Remark. Another consequence of our discussion is that the default negation operator can be elim-
inated from the syntax at the price of allowing antimonotone constraints and using antimonotone
constraints as negated literals. 2

Due to the correspondences we have established above, one can extend to convex-constraint
programs all concepts and results we discussed earlier in the context of monotone-constraint pro-
grams. In many cases, they can also be stated directly in the language of convex-constraints. The

319

LIU & TRUSZCZYŃSKI

most important for us are the notions of the completion and loop formulas, as they lead to new
algorithms for computing stable models of lparse programs. Therefore, we will now discuss them
in some detail.

As we just mentioned, we could use Comp(mc(P)) as a definition of the completion Comp(P)
for a convex-constraint logic program P . Under this definition Theorems 9 extends to the case
of convex-constraint programs. However, Comp(mc(P)) involves monotone constraints and their
negations and not convex constraints that appear in P . Therefore, we will now propose another
approach, which preserves convex constraints of P .

To this end, we first extend the logic PLmc with convex constraints. In this extension, which
we denote by PLcc and refer to as the propositional logic with convex-constraints, formulas are
boolean combinations of convex constraints. The semantics of such formulas is given by the notion
of a model obtained by extending over boolean connectives the concept of a model of a convex
constraint.

Thus, the only difference between the logic PLmc , which we used to define the completion and
loop completion for monotone-convex programs and the logic PLcc is that the former uses mono-
tone constraints as building blocks of formulas, whereas the latter is based on convex constraints. In
fact, since monotone constraints are special convex constraints, the logic PLmc is a fragment of the
logic PLcc .

Let P be a convex-constraint program. The completion of P , denoted by
Comp(P), is the following set of PLcc formulas:

1. For every rule r ∈ P we include in Comp(P) a PLcc formula

[bd(r)]∧ → hd(r)

(as before, for a set of convex constraints L, L∧ denotes the conjunction of the constraints in
L)

2. For every atom x ∈ At(P), we include in Comp(P) a PLcc formula

x→
∨
{[bd(r)]∧ : r ∈ P, x ∈ hset(r)}

(again, we note that when the set of rules in P is infinite, the disjunction may be infinitary).

One can now show the following theorem.

Theorem 8. Let P be a convex-constraint program and let M ⊆ At(P). Then M is a supported
model of P if and only if M is a model of Comp(P).

Proof. (Sketch) By the definition, M is a supported model of P if and only if M is a supported
model of mc(P). It is a matter of routine checking that Comp(mc(P)) and Comp(P) have the
same models. Thus the assertion follows from Theorem 4.

Next, we restrict attention to finitary convex-constraint programs, that is, programs with finite
set of atoms, and extend to this class of programs the notions of the positive dependency graph and
loops. To this end, we exploit its representation as a monotone-constraint program mc(P). That is,
we define the positive dependency graph, loops and loop formulas for P as the positive dependency
graph, loops and loop formulas of mc(P), respectively. In particular, L is a loop of P if and only if

320

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

L is a loop of mc(P) and the loop formula for L, with respect to a convex-constraint program P ,
is defined as the loop formula LP (L) with respect to the program mc(P)4. We note that since loop
formulas for monotone-constraint programs only modify non-negated literals in the bodies of rules
and leave negated literals intact, there seems to be no simple way to extend the notion of a loop
formula to the case of a convex-constraint program P without making references to mc(P).

We now define a loop completion of a finitary convex-constraint program P as the PLcc theory

LComp(P) = Comp(P) ∪ {LP (L) : L is a loop of P}.

We have the following theorem that provides a necessary and sufficient condition for a set of
atoms to be a stable model of a convex-constraint program.

Theorem 9. Let P be a finitary convex-constraint program. A set M ⊆ At(P) is a stable model of
P if and only if M is a model of LComp(P).

Proof. (Sketch) Since M is a stable model of P if and only of M is a stable model of mc(P), Theo-
rem 6 implies that M is a stable model of P if and only if M is a stable model of LComp(mc(P)).
It is a matter of routine checking that LComp(mc(P)) and LComp(P) have the same models.
Thus, the result follows.

In a similar way, Theorem 7 implies the following result for convex-constraint programs.

Theorem 10. Let P be a finitary convex-constraint program and M a model of Comp(P). If M−

is not empty, then M violates the loop formula of every terminating loop of GP [M−].

We emphasize that one could simply use LComp(mc(P)) as a definition of the loop completion
for a convex-constraint logic program. However, our definition of the completion component of the
loop completion retains the structure of constraints in a program P , which is important when using
loop completion for computation of stable models, the topic we address in the next section of the
paper.

8. Applications

In this section, we will use theoretical results on the program completion, loop formulas and loop
completion of programs with convex constraints to design and implement a new method for com-
puting stable models of lparse programs (Simons et al., 2002).

8.1 Lparse Programs

Simons et al. (2002) introduced and studied an extension of normal logic programming with weight
atoms. Formally, a weight atom is an expression

A = l[a1 = w1, . . . , ak = wk]u,

where ai, 1 ≤ i ≤ k are propositional atoms, and l, u and wi, 1 ≤ i ≤ k are non-negative integers.
If all weights wi are equal to 1, A is a cardinality atom, written as l{a1, . . . , ak}u.

4. There is one minor simplification one might employ. For a monotone constraint A, ¬A and A are equivalent and
A is antimonotone and so, convex. Thus, we can eliminate the operator ¬ from loop formulas of convex-constraint
programs by writing A instead of ¬A.

321

LIU & TRUSZCZYŃSKI

An lparse rule is an expression of the form

A← A1, . . . , An

where A, A1, . . . , An are weight atoms. We refer to sets of lparse rules as lparse programs. Simons
et al. (2002) defined for lparse programs the semantics of stable models.

A set M of atoms is a model of (or satisfies) a weight atom l[a1 = w1, . . . , ak = wk]u if

l ≤
k∑

i=1

{wi : ai ∈M} ≤ u.

With this semantics a weight atom l[a1 = w1, . . . , ak = wk]u can be identified with a constraint
(X, C), where X = {a1, . . . , ak} and

C = {Y ⊆ X : l ≤
k∑

i=1

{wi : ai ∈ Y } ≤ u}.

We notice that all weights in a weight atom W are non-negative. Therefore, if M ⊆M ′ ⊆M ′′

and both M and M ′′ are models of W , then M ′ is also a model of W . It follows that the constraint
(X, C) we define above is convex.

Since (X, C) is convex, weight atoms represent a class of convex constraints and lparse pro-
grams syntactically are a class of programs with convex constraints. This relationship extends to
the stable-model semantics. Namely, Marek and Truszczyński (2004) and Marek et al. (2004, 2006)
showed that lparse programs can be encoded as programs with monotone constraints so that the
concept of a stable model is preserved. The transformation used there coincides with the encoding
mc described in the previous section, when we restrict the latter to lparse programs. Thus, we have
the following theorem.

Theorem 11. Let P be an lparse program. A set M ⊆ At is a stable model of P according to the
definition by Simons et al. (2002) if and only if M is a stable model of P according to the definition
given in the previous section (when P is viewed as a convex-constraint program).

It follows that to compute stable models of lparse programs we can use the results obtained
earlier in the paper, specifically the results on program completion and loop formulas for convex-
constraint programs.
Remark. To be precise, the syntax of lparse programs is more general. It allows both atoms and
negated atoms to appear within weight atoms. It also allows weights to be negative. However,
negative weights in lparse programs are treated just as a notational convenience. Specifically, an
expression of the form a = w within a weight atom (where w < 0) represents the expression
not(a) = −w (eliminating negative weights in this way from a weight atom requires modifica-
tions of the bounds associated with this weight atom). Moreover, by introducing new propositional
variables one can remove occurrences of negative literals from programs. These transformations pre-
serve stable models (modulo new atoms). Marek and Truszczyński (2004) and Marek et al. (2004,
2006) provide a detailed discussion of this transformation.

In addition to weight atoms, the bodies of lparse rules may contain propositional literals (atoms
and negated atoms) as conjuncts. We can replace these propositional literals with weight atoms

322

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

as follows: an atom a can be replaced with the cardinality atom 1{a}, and a literal not(a) —
with the cardinality atom {a}0. This transformation preserves stable models, too. Moreover, the
size of the resulting program does not increase more than by a constant factor. Thus, through the
transformations discussed here, monotone- and convex-constraint programs capture arbitrary lparse
programs. 2

8.2 Computing Stable Models of Lparse Programs

In this section we present an algorithm for computing stable models of lparse programs. Our method
uses the results we obtained in Section 7 to reduce the problem to that of computing models of the
loop completion of an lparse program. The loop completion is a formula in the logic PLcc , in
which the class of convex constraints is restricted to weight constraints, as defined in the previous
subsection. We will denote the fragment of the logic PLcc consisting of such formulas by PLwa .

To make the method practical, we need programs to compute models of theories in the logic
PLwa . We will now show a general way to adapt to this task off-the-shelf pseudo-boolean constraint
solvers (Eén & Sörensson, 2003; Aloul et al., 2002; Walser, 1997; Manquinho & Roussel, 2005; Liu
& Truszczyński, 2003).

Pseudo-boolean constraints (PB for short) are integer programming constraints in which vari-
ables have 0-1 domains. We will write them as inequalities

w1 × x1 + . . . + wk × xk comp w, (3)

where comp stands for one of the relations ≤, ≥, < and >, wi’s and w are integer coefficients
(not necessarily non-negative), and xi’s are integers taking value 0 or 1. A set of pseudo-boolean
constraints is a pseudo-boolean theory.

Pseudo-boolean constraints can be viewed as constraints. The basic idea is to treat each 0-1 vari-
able x as a propositional atom (which we will denote by the same letter). Under this correspondence,
a pseudo-boolean constraint (3) is equivalent to the constraint (X, C), where X = {x1, . . . , xk} and

C = {Y ⊆ X :
k∑

i=1

{wi : xi ∈ Y } comp w}

in the sense that solutions to (3) correspond to models of (X, C) (xi = 1 in a solution if and only if
xi is true in the corresponding model). In particular, if all coefficients wi and the bound w in (3) are
non-negative, and if comp = ‘≥’, then the constraint (3) is equivalent to a monotone lower-bound
weight atom w[x1 = w1, . . . , xn = wn].

It follows that an arbitrary weight atom can be represented by one or two pseudo-boolean con-
straints. More generally, an arbitrary PLwa formula F can be encoded as a set of PB constraints.
We will describe the translation as a two-step process.

The first step consists of converting F to a clausal form τcl (F)5. To control the size of the
translation, we introduce auxiliary propositional atoms. Below, we describe the translation F 7→
τcl (F) under the assumption that F is a formula of the loop completion of an lparse program P .
Our main motivation is to compute stable models of logic programs and to this end algorithms for
computing models of loop completions are sufficient.

5. A PL
wa clause is any formula B1 ∧ . . . ∧ Bm → H1 ∨ . . . ∨ Hn, where Bi and Hj are weight atoms.

323

LIU & TRUSZCZYŃSKI

Let F be a formula in the loop completion of an lparse-program P . We define τcl (F) as follows
(in the transformation, we use a propositional atom x as a shorthand for the cardinality atom C(x) =
1{x}).
1. If F is of the form A1 ∧ . . . ∧An → A, then τcl (F) = F
2. If F is of the form x → ([bd(r1)]

∧) ∨ . . . ∨ ([bd(rl)]
∧), then we introduce new propositional

atoms br,1, . . . , br,l and set τcl (F) to consist of the following PLwa clauses:

x→ br,1 ∨ . . . ∨ br,l

[bd(ri)]
∧ → br,i, for every bd(ri)

br,i → Aj , for every bd(ri) and Aj ∈ bd(ri)

3. If F is of the form
∨

L→
∨

r{βL(r)}, where L is a set of atoms, and every βL(r) is a conjunc-
tion of weight atoms, then we introduce new propositional atoms bdfL,r for every βL(r) in F and
represent

∨
L as the weight atom WL = 1[li = 1 : li ∈ L]. We then define τcl (F) to consist of the

following clauses:
WL →

∨
bdfL,r

βL(r)→ bdfL,r, for every βL(r) ∈ F

bdfL,r → Aj , for every βL(r) ∈ F and Aj ∈ βL(r).

It is clear that the size τcl (F) is linear in the size of F .
The second step of the translation, converts a PLwa formula C in a clausal form into a set of

PB constraints, τpb(C). To define the translation C → τpb(C), let us consider a PLwa clause C of
the form

B1 ∧ . . . ∧Bm → H1 ∨ . . . ∨Hn, (4)

where Bi’s and Hi’s are weight atoms.
We introduce new propositional atoms b1, . . . , bm and h1, . . . , hn to represent each weight atom

in the clause. As noted earlier in the paper, we simply write x for a weight atoms of the form 1[x =
1]. With the new atoms, the clause (4) becomes a propositional clause b1∧ . . .∧bm → h1∨ . . .∨hn.
We represent it by the following PB constraint:

−b1 − . . .− bm + h1 + . . . + hn ≥ 1−m. (5)

Here and later in the paper, we use the same symbols to denote propositional variables and the cor-
responding 0-1 integer variables. The context will always imply the correct meaning of the symbols.
Under this convention, it is easy to see that a propositional clause b1 ∧ . . . ∧ bm → h1 ∨ . . . ∨ hn

and its PB constraint (5) have the same models.
We introduce next PB constraints that enforce the equivalence of the newly introduced atoms

bi (or hi) and the corresponding weight atoms Bi (or Hi).
Let B = l[a1 = w1, . . . , ak = wk]u be a weight atom and b a propositional atom. We split B

to B+ and B− and introduce two more atoms b+ and b−. To model B ≡ b, we model with pseudo-
boolean constraints the following three equivalences: b ≡ b+ ∧ b−, b+ ≡ B+, and b− ≡ B−.
1. The first equivalence can be captured with three propositional clauses. Hence the following three
PB constraints model that equivalence:

−b + b+ ≥ 0 (6)

324

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

−b + b− ≥ 0 (7)

−b+ − b− + b ≥ −1 (8)

2. The second equivalence, b+ ≡ B+, can be modeled by the following two PB constraints

(−l)× b+ +
k∑

i=1

(ai × wi) ≥ 0 (9)

−(

k∑

i=1

wi − l + 1)× b+ +

k∑

i=1

(ai × wi) ≤ l − 1 (10)

3. Similarly, the third equivalence, b− ≡ B−, can be modeled by the following two PB constraints

(
k∑

i=1

wi − u)× b− +
k∑

i=1

(ai × wi) ≤
k∑

i=1

wi (11)

(u + 1)× b− +
k∑

i=1

(ai × wi) ≥ u + 1 (12)

We define now τpb(C), for a PLwa clause C, as the set of all pseudo-boolean constraints (5) and
(6), (7), (8), (11), (12), (9), (10) constructed for every weight atom occurring in C. One can verify
that the size of τpb(C) is linear in the size of C. Therefore, τpb(τcl (F)) has size linear in the size of
F .

In the special case where all Bi’s and Hj’s are weight atoms of the form 1[bi = 1] and 1[hj = 1],
we do not need to introduce any new atoms and PB constraints (6), (7), (8), (11), (12), (9), (10).
Then τpb(C) consists of a single PB constraint (5).

We have the following theorem establishing the correctness of the transformation τ . The proof
of the theorem is straightforward.

Theorem 12. Let F be a loop completion formula in logic PLwa , and M a set of atoms, M ⊆
At(F). Then M is a model of F in PLwa logic if and only if M has a unique extension M ′ by
some of the new atoms in At(τpb(τcl (F))) such that M ′ is a model of the pseudo-boolean theory
τpb(τcl (F)).

We note that when we use solvers designed for PLwa theories, then translation τpb is no longer
needed. The benefit of using such solvers is that we do not need to split weight atoms in the PLwa

theories and do not need the auxiliary atoms introduced in τpb .

8.2.1 THE ALGORITHM

We follow the approach proposed by Lin and Zhao (2002). As in that paper, we first compute the
completion of a lparse program. Then, we iteratively compute models of the completion using a
PB solver. Whenever a model is found, we test it for stability. If the model is not a stable model of
the program, we extend the completion by loop formulas identified in Theorem 10. Often, adding a
single loop formula filters out several models of Comp(P) that are not stable models of P .

The results given in the previous section ensure that our algorithm is correct. We present it in
Figure 1. We note that it may happen that in the worst case exponentially many loop formulas are

325

LIU & TRUSZCZYŃSKI

Input: P — a lparse program;
A — a pseudo-boolean solver

BEGIN
compute the completion Comp(P) of P ;
T := τpb(τcl (Comp(P)));
do

if (solver A finds no models of T)
output “no stable models found” and terminate;

M := a model of T found by A;
if (M is stable) output M and terminate;
compute the reduct P M of P with respect to M ;
compute the greatest stable model M ′, contained in M , of P M ;
M− := M \M ′;
find all terminating loops in M−;
compute loop formulas and convert them into PB constraints using

τpb and τcl ;
add all PB constraints computed in the previous step to T ;

while (true);
END

Figure 1: Algorithm of pbmodels

needed before the first stable model is found or we determine that no stable models exist (Lin &
Zhao, 2002). However, that problem arises only rarely in practical situations6.

The implementation of pbmodels supports several PB solvers such as satzoo (Eén & Sörensson,
2003), pbs (Aloul et al., 2002), wsatoip (Walser, 1997). It also supports a program wsatcc (Liu &
Truszczyński, 2003) for computing models of PLwa theories. When this last program is used, the
transformation, from “clausal” PLwa theories to pseudo-boolean theories is not needed. The first
two of these four programs are complete PB solvers. The latter two are local-search solvers based
on wsat (Selman, Kautz, & Cohen, 1994).

We output the message “no stable model found” in the first line of the loop and not simply “no
stable models exist” since in the case when A is a local-search algorithm, failure to find a model
of the completion (extended with loop formulas in iteration two and the subsequent ones) does not
imply that no models exist.

8.3 Performance

In this section, we present experimental results concerning the performance of pbmodels . The ex-
periments compared pbmodels , combined with several PB solvers, to smodels (Simons et al., 2002)
and cmodels (Babovich & Lifschitz, 2002). We focused our experiments on problems whose state-

6. In fact, in many cases programs turn out to be tight with respect to their supported models. Therefore, supported
models are stable and no loop formulas are necessary at all.

326

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

ments explicitly involve pseudo-boolean constraints, as we designed pbmodels with such problems
in mind.

For most benchmark problems we tried cmodels did not perform well. Only in one case (vertex-
cover benchmark) the performance of cmodels was competitive, although even in this case it was
not the best performer. Therefore, we do not report here results we compiled for cmodels . For a
complete set of results we obtained in the experiments we refer to http://www.cs.uky.edu/
ai/pbmodels.

In the experiments we used instances of the following problems: traveling salesperson, weighted
n-queens, weighted Latin square, magic square, vertex cover, and Towers of Hanoi. The lparse
programs we used for the first four problems involve general pseudo-boolean constraints. Programs
modeling the last two problems contain cardinality constraints only.
Traveling salesperson problem (TSP). An instance consists of a weighted complete graph with n
vertices, and a bound w. All edge weights and w are non-negative integers. A solution to an instance
is a Hamiltonian cycle whose total weight (the sum of the weights of all its edges) is less than or
equal to w.

We randomly generated 50 weighted complete graphs with 20 vertices, To this end, in each case
we assign to every edge of a complete undirected graph an integer weight selected uniformly at
random from the range [1..19]. By setting w to 100 we obtained a set of “easy” instances, denoted
by TSP-e (the bound is high enough for every instance in the set to have a solution). From the same
collection of graphs, we also created a set of “hard” instances, denoted by TSP-h, by setting w to 62.
Since the requirement on the total weight is stronger, the instances in this set in general take more
time.
Weighted n-queens problem (WNQ). An instance to the problem consists of a weighted n × n
chess board and a bound w. All weights and the bound are non-negative integers. A solution to an
instance is a placement of n queens on the chess board so that no two queens attack each other and
the weight of the placement (the sum of the weights of the squares with queens) is not greater than
w.

We randomly generated 50 weighted chess boards of the size 20× 20, where each chess board
is represented by a set of n× n integer weights wi,j , 1 ≤ i, j ≤ n, all selected uniformly at random
from the range [1..19]. We then created two sets of instances, easy (denoted by wnq-e) and hard
(denoted by wnq-h), by setting the bound w to 70 and 50, respectively.
Weighted Latin square problem (WLSQ). An instance consists of an n×n array of weights wi,j ,
and a bound w. All weights wi,j and w are non-negative integers. A solution to an instance is an
n × n array L with all entries from {1, . . . , n} and such that each element in {1, . . . , n} occurs
exactly once in each row and in each column of L, and

∑n
i=1

∑n
j=1 L[i, j]× wi,j ≤ w.

We set n = 10 and we randomly generated 50 sets of integer weights, selecting them uniformly
at random from the range [1..9]. Again we created two families of instances, easy (wlsq-e) and hard
(wlsq-h), by setting w to 280 and 225, respectively.
Magic square problem. An instance consists of a positive integer n. The goal is to construct an
n × n array using each integer 1, . . . n2 as an entry in the array exactly once in such a way that
entries in each row, each column and in both main diagonals sum up to n(n2 + 1)/2. For the
experiments we used the magic square problem for n = 4, 5 and 6.
Vertex cover problem. An instance consists of graph with n vertices and m edges, and a non-
negative integer k — a bound. A solution to the instance is a subset of vertices of the graph with no
more than k vertices and such that at least one end vertex of every edge in the graph is in the subset.

327

LIU & TRUSZCZYŃSKI

We randomly generated 50 graphs, each with 80 vertices and 400 edges. For each graph, we set
k to be a smallest integer such that a vertex cover with that many elements still exists.

Towers of Hanoi problem. This is a slight generalization of the original problem. We considered
the case with six disks and three pegs. An instance consists of an initial configuration of disks that
satisfies the constraint of the problem (larger disk must not be on top of a smaller one) but does not
necessarily requires that all disks are on one peg. These initial configurations were selected so that
they were 31, 36, 41 and 63 steps away from the goal configuration (all disks from the largest to the
smallest on the third peg), respectively. We also considered a standard version of the problem with
seven disks, in which the initial configuration is 127 steps away from the goal.

We encoded each of these problems as a program in the general syntax of lparse, which allows
the use of relation symbols and variables (Syrjänen, 1999). The programs are available at http:
//www.cs.uky.edu/ai/pbmodels. We then used these programs in combination with ap-
propriate instances as inputs to lparse (Syrjänen, 1999). In this way, for each problem and each
set of instances we generated a family of ground (propositional) lparse programs so that stable
models of each of these programs represent solutions to the corresponding instances of the prob-
lem (if there are no stable models, there are no solutions). We used these families of lparse pro-
grams as inputs to solvers we were testing. All these ground programs are also available at http:
//www.cs.uky.edu/ai/pbmodels.

In the tests, we used pbmodels with the following four PB solvers: satzoo (Eén & Sörensson,
2003), pbs (Aloul et al., 2002), wsatcc (Liu & Truszczyński, 2003), and wsatoip (Walser, 1997). In
particular, wsatcc deals with PLwa theories directly.

All experiments were run on machines with 3.2GHz Pentium 4 CPU, 1GB memory, running
Linux with kernel version 2.6.11, gcc version 3.3.4. In all cases, we used 1000 seconds as the
timeout limit.

We first show the results for the magic square and towers of Hanoi problems. In Table 1, for
each solver and each instance, we report the corresponding running time in seconds. Local-search
solvers were unable to solve any of the instances in the two problems and so are not included in the
table.

Benchmark smodels pbmodels-satzoo pbmodels-pbs

magic square (4 × 4) 1.36 1.70 2.41

magic square (5 × 5) > 1000 28.13 0.31

magic square (6 × 6) > 1000 75.58 > 1000

towers of Hanoi (d = 6, t = 31) 16.19 18.47 1.44

towers of Hanoi (d = 6, t = 36) 32.21 31.72 1.54

towers of Hanoi (d = 6, t = 41) 296.32 49.90 3.12

towers of Hanoi (d = 6, t = 63) > 1000 > 1000 3.67

towers of Hanoi (d = 7, t = 127) > 1000 > 1000 22.83

Table 1: Magic square and towers of Hanoi problems

Both pbmodels-satzoo and pbmodels-pbs perform better than smodels on programs obtained
from the instances of both problems. We observe that pbmodels-pbs performs exceptionally well
in the tower of Hanoi problem. It is the only solver that can compute a plan for 7 disks, which
requires 127 steps. Magic square and Towers of Hanoi problems are highly regular. Such problems

328

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

of SAT instances # of UNSAT instances # of UNKNOWN instances

TSP-e 50 0 0

TSP-h 31 1 18

wnq-e 49 0 1

wnq-h 29 0 21

wlsq-e 45 4 1

wlsq-h 8 41 1

vtxcov 50 0 0

Table 2: Summary of Instances

smodels pbmodels-satzoo pbmodels-pbs

TSP-e 45/17 50/30 18/3

TSP-h 7/3 16/14 0/0

wnq-e 11/5 26/23 0/0

wnq-h 2/2 0/0 0/0

wlsq-e 21/1 49/29 46/19

wlsq-h 0/0 47/26 47/23

vtxcov 50/40 50/1 47/3

sum over all 136/68 238/123 158/48

Table 3: Summary on all instances

are often a challenge for local-search problems, which may explain a poor performance we observed
for pbmodels-wsatcc and pbmodels-wsatoip on these two benchmarks.

For the remaining four problems, we used 50-element families of instances, which we gen-
erated randomly in the way discussed above. We studied the performance of complete solvers
(smodels , pbmodels-satzoo and pbmodels-pbs) on all instances. We then included local-search
solvers (pbmodels-wsatcc and pbmodelswsatoip) in the comparisons but restricted attention only
to instances that were determined to be satisfiable (as local-search solvers are, by their design, un-
able to decide unsatisfiability). In Table 2, for each family we list how many of its instances are
satisfiable, unsatisfiable, and for how many of the instances none of the solvers we tried was able to
decide satisfiability.

In Table 3, for each of the seven families of instances and for each complete solver, we report
two values s/w, where s is the number of instances solved by the solver and w is the number of
times it was the fastest among the three.

The results in Table 3 show that overall pbmodels-satzoo solved more instances than pbmodels-
pbs, followed by smodels . When we look at the number of times a solver was the fastest one,
pbmodels-satzoo was a clear winner overall, followed by smodels and then by pbmodels-pbs .
Looking at the seven families of tests individually, we see that pbmodels-satzoo performed better
than the other two solvers on five of the families. On the other two smodels was the best performer
(although, it is a clear winner only on the vertex-cover benchmark; all solvers were essentially
ineffective on the wnq-h).

We also studied the performance of pbmodels combined with local-search solvers wsatcc (Liu
& Truszczyński, 2003) and wsatoip (Walser, 1997). For this study, we considered only those in-
stances in the seven families that we knew were satisfiable. Table 4 presents results for all solvers

329

LIU & TRUSZCZYŃSKI

smodels pbmd-satzoo pbmd-pbs pbmd-wsatcc pbmd-wsatoip

TSP-e 45/3 50/5 18/2 32/7 47/34

TSP-h 7/0 16/2 0/0 19/6 28/22

wnq-e 11/0 26/0 0/0 49/45 49/4

wnq-h 2/0 0/0 0/0 29/15 29/14

wlsq-e 21/0 45/0 44/0 45/33 45/14

wlsq-h 0/0 7/0 8/0 7/1 8/7

vtxcov 50/0 50/0 47/0 50/36 50/15

sum over all 136/3 194/7 117/2 231/143 256/110

Table 4: Summary on SAT instances

we studied (including the complete ones). As before, each entry provides a pair of numbers s/w,
where s is the number of solved instances and w is the number of times the solver performed better
than its competitors.

The results show superior performance of pbmodels combined with local-search solvers. They
solve more instances than complete solvers (including smodels). In addition, they are significantly
faster, winning much more frequently than complete solvers do (complete solvers were faster only
on 12 instances, while local-search solvers were faster on 253 instances).

Our results demonstrate that pbmodels with solvers of pseudo-boolean constraints outperforms
smodels on several types of search problems involving pseudo-boolean (weight) constraints).

We note that we also analyzed the run-time distributions for each of these families of instances.
A run-time distribution is regarded as a more accurate and detailed measure of the performance of
algorithms on randomly generated instances7. The results are consistent with the summary results
presented above and confirm our conclusions. As the discussion of run-time distributions requires
much space, we do not include this analysis here. They are available at the website http://www.
cs.uky.edu/ai/pbmodels.

9. Related work

Extensions of logic programming with means to model properties of sets (typically consisting of
ground terms) have been extensively studied. Usually, these extensions are referred to by the com-
mon term of logic programming with aggregates. The term comes from the fact that most properties
of sets of practical interest are defined through “aggregate” operations such as sum, count, maxi-
mum, minimum and average. We chose the term constraint to stress that we speak about abstract
properties that define constraints on truth assignments (which we view as sets of atoms).

Mumick, Pirahesh, and Ramakrishnan (1990), and Kemp and Stuckey (1991) were among the
first to study logic programs with aggregates. Recently, Niemelä et al. (1999) and Simons et al.
(2002) introduced the class of lparse programs. We discussed this formalism in detail earlier in this
paper.

Pelov (2004) and Pelov et al. (2006) studied a more general class of aggregates and devel-
oped a systematic theory of aggregates in logic programming based on the approximation theory
(Denecker, Marek, & Truszczyński, 2000). The resulting theory covers not only the stable models
semantics but also the supported-model semantics and extensions of 3-valued Kripke-Kleene and

7. Hoos and Stützle (2005) provide a detailed discussion of this matter in the context of local-search methods.

330

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

well-founded semantics. The formalism introduced and studied by Pelov (2004) and Pelov et al.
(2006) allows for arbitrary aggregates (not only monotone ones) to appear in the bodies of rules.
However, it does not allow for aggregates to appear in the heads of program clauses. Due to dif-
ferences in the syntax and the scope of semantics studied there is no simple way to relate Pelov’s
(2004) and Pelov et al.’s (2006) formalism to programs with monotone (convex) constraints. We
note though that programs with abstract monotone constraints with the heads of rules of the form
C(a) can be viewed almost literally as programs in the formalism by Pelov (2004) and Pelov et al.
(2006) and that they have the same stable models according to the definitions we used in this paper
and those by Pelov (2004) and Pelov et al. (2006).

Faber et al. (2004) developed the theory of disjunctive logic programs with aggregates. Similarly
as Pelov (2004) and Pelov et al. (2006), Faber et al. (2004) do not allow for aggregates to appear
in the heads of program clauses. This is one of the differences between that approach and programs
with monotone (convex) constraints we studied here. The other major difference is related to the
postulate of the minimality of stable models (called answer sets in the context of the formalism
considered by Faber et al., 2004). In keeping with the spirit of the original answer-set semantics
(Gelfond & Lifschitz, 1991), answer sets of disjunctive programs with aggregates, as defined by
Faber et al. (2004), are minimal models. Stable models of programs with abstract constraints do
not have this property. However, for the class of programs with abstract monotone constraints with
the heads of rules of the form C(a) the semantics of answer sets defined by Faber et al. (2004)
coincides with the semantics of stable models by Marek and Truszczyński (2004) and Marek et al.
(2004, 2006).

Yet another approach to aggregates in logic programming was presented by Son and Pontelli
(2006). That approach considered programs of the syntax similar to programs with monotone ab-
stract constraints. It allowed arbitrary constraints (not only monotone ones) but not under the scope
of not operator. A general principle behind the definition of the stable-model semantics by Son
and Pontelli (2006) is to view a program with constraints as a concise representation of a set of its
“instances”, each being a normal logic program. Stable models of the program with constraints are
defined as stable models of its instances and is quite different from the operator-based definition
by Marek and Truszczyński (2004) and Marek et al. (2004, 2006). However, for programs with
monotone constraint atoms which fall in the scope of the formalism of Son and Pontelli (2006) both
approaches coincide.

We also note that recently Son et al. (2006) presented a conservative extension of the syntax
proposed by Marek and Truszczyński (2004) Marek et al. (2006), in which clauses are built of
arbitrary constraint atoms.

Finally, we point out the work by Ferraris and Lifschitz (2004) and Ferraris (2005) which treats
aggregates as nested expressions. In particular, Ferraris (2005) introduces a propositional logic with
a certain nonclassical semantics, and shows that it extends several approaches to programs with
aggregates, including those by Simons et al. (2002) (restricted to core lparse programs) and Faber
et al. (2004). The nature of the relationship of the formalism by Ferraris (2005) and programs with
abstract constraints remains an open problem.

10. Conclusions

Our work shows that concepts, techniques and results from normal logic programming, concerning
strong and uniform equivalence, tightness and Fages lemma, program completion and loop formu-

331

LIU & TRUSZCZYŃSKI

las, generalize to the abstract setting of programs with monotone and convex constraints. These
general properties specialize to new results about lparse programs (with the exception of the char-
acterization strong equivalence of lparse programs, which was first obtained by Turner, 2003).

Given these results we implemented a new software pbmodels for computing stable models of
lparse programs. The approach reduces the problem to that of computing models of theories con-
sisting of pseudo-boolean constraints, for which several fast solvers exist (Manquinho & Roussel,
2005). Our experimental results show that pbmodels with PB solvers, especially local search PB

solvers, performs better than smodels on several types of search problems we tested. Moreover, as
new and more efficient solvers of pseudo-boolean constraints become available (the problem is re-
ceiving much attention in the satisfiability and integer programming communities), the performance
of pbmodels will improve accordingly.

Acknowledgments

We acknowledge the support of NSF grants IIS-0097278 and IIS-0325063. We are grateful to the
reviewers for their useful comments and suggestions.

This paper combines and extends results included in conference papers (Liu & Truszczyński,
2005b, 2005a).

References

Aloul, F., Ramani, A., Markov, I., & Sakallah, K. (2002). PBS: a backtrack-search pseudo-boolean solver
and optimizer. In Proceedings of the 5th International Symposium on Theory and Applications of
Satisfiability, pp. 346 – 353.

Babovich, Y., & Lifschitz, V. (2002). Cmodels package.. http://www.cs.utexas.edu/users/
tag/cmodels.html.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cambridge Univer-
sity Press.

Clark, K. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and data bases, pp. 293–322.
Plenum Press, New York-London.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., & Pfeifer, G. (2003). Aggregate functions in disjunctive logic
programming: semantics, complexity, and implementation in DLV. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2003), pp. 847–852. Morgan Kaufmann.

Denecker, M., Marek, V., & Truszczyński, M. (2000). Approximations, stable operators, well-founded fix-
points and applications in nonmonotonic reasoning. In Minker, J. (Ed.), Logic-Based Artificial Intelli-
gence, pp. 127–144. Kluwer Academic Publishers.

Eén, N., & Sörensson, N. (2003). An extensible SAT solver. In Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT-2003, Vol. 2919 of LNCS, pp. 502–518. Springer.

Eiter, T., & Fink, M. (2003). Uniform equivalence of logic programs under the stable model semantics. In
Proceedings of the 2003 International Conference on Logic Programming, Vol. 2916 of Lecture Notes
in Computer Science, pp. 224–238, Berlin. Springer.

Erdem, E., & Lifschitz, V. (2003). Tight logic programs. Theory and Practice of Logic Programming, 3(4-5),
499–518.

Faber, W., Leone, N., & Pfeifer, G. (2004). Recursive aggregates in disjunctive logic programs: Semantics
and complexity.. In Proceedings of the 9th European Conference on Artificial Intelligence (JELIA
2004), Vol. 3229 of LNAI, pp. 200 – 212. Springer.

332

PROPERTIES AND APPLICATIONS OF PROGRAMS WITH MONOTONE AND CONVEX CONSTRAINTS

Fages, F. (1994). Consistency of Clark’s completion and existence of stable models. Journal of Methods of
Logic in Computer Science, 1, 51–60.

Ferraris, P. (2005). Answer sets for propositional theories. In Logic Programming and Nonmonotonic Rea-
soning, 8th International Conference, LPNMR 2005, Vol. 3662 of LNAI, pp. 119–131. Springer.

Ferraris, P., & Lifschitz, V. (2004). Weight constraints ans nested expressions. Theory and Practice of Logic
Programming, 5, 45–74.

Gelfond, M., & Leone, N. (2002). Logic programming and knowledge representation – the A-prolog per-
spective. Artificial Intelligence, 138, 3–38.

Gelfond, M., & Lifschitz, V. (1988). The stable semantics for logic programs. In Proceedings of the 5th
International Conference on Logic Programming, pp. 1070–1080. MIT Press.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9, 365–385.

Hoos, H., & Stützle, T. (2005). Stochastic Local Search Algorithms — Foundations and Applications.
Morgan-Kaufmann.

Kemp, D., & Stuckey, P. (1991). Semantics of logic programs with aggregates. In Logic Programming,
Proceedings of the 1991 International Symposium, pp. 387–401. MIT Press.

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM Transactions on
Computational Logic, 2(4), 526–541.

Lin, F. (2002). Reducing strong equivalence of logic programs to entailment in classical propositional logic.
In Principles of Knowledge Representation and Reasoning, Proceedings of the 8th International Con-
ference (KR2002). Morgan Kaufmann Publishers.

Lin, F., & Zhao, Y. (2002). ASSAT: Computing answer sets of a logic program by SAT solvers. In Pro-
ceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002), pp. 112–117. AAAI
Press.

Liu, L., & Truszczyński, M. (2003). Local-search techniques in propositional logic extended with cardinality
atoms. In Rossi, F. (Ed.), Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming, CP-2003, Vol. 2833 of LNCS, pp. 495–509. Springer.

Liu, L., & Truszczyński, M. (2005a). Pbmodels - software to compute stable models by pseudoboolean
solvers. In Logic Programming and Nonmonotonic Reasoning, Proceedings of the 8th International
Conference (LPNMR-05), LNAI 3662, pp. 410–415. Springer.

Liu, L., & Truszczyński, M. (2005b). Properties of programs with monotone and convex constraints. In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05), pp. 701–706. AAAI
Press.

Manquinho, V., & Roussel, O. (2005). Pseudo boolean evaluation 2005.. http://www.cril.
univ-artois.fr/PB05/.

Marek, V., Niemelä, I., & Truszczyński, M. (2004). Characterizing stable models of logic programs with
cardinality constraints. In Proceedings of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning, Vol. 2923 of Lecture Notes in Artificial Intelligence, pp. 154–166.
Springer.

Marek, V., Niemelä, I., & Truszczyński, M. (2006). Logic programs with monotone abstract constraint atoms.
Theory and Practice of Logic Programming. Submitted.

Marek, V., & Truszczyński, M. (2004). Logic programs with abstract constraint atoms. In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI-04), pp. 86–91. AAAI Press.

Mumick, I., Pirahesh, H., & Ramakrishnan, R. (1990). The magic of duplicates and aggregates. In Pro-
ceedings of the 16th International Conference on Very Large Data Bases, VLDB 1990, pp. 264–277.
Morgan Kaufmann.

333

LIU & TRUSZCZYŃSKI

Niemelä, I., Simons, P., & Soininen, T. (1999). Stable model semantics of weight constraint rules. In Pro-
ceedings of LPNMR-1999, Vol. 1730 of LNAI, pp. 317–331. Springer.

Pelov, N. (2004). Semantics of logic programs with aggregates. PhD Thesis. Department of Computer
Science, K.U.Leuven, Leuven, Belgium.

Pelov, N., Denecker, M., & Bruynooghe, M. (2004). Partial stable models for logic programs with aggregates.
In Lifschitz, V., & Niemelä, I. (Eds.), Logic programming and Nonmonotonic Reasoning, Proceedings
of the 7th International Conference, Vol. 2923, pp. 207–219. Springer.

Pelov, N., Denecker, M., & Bruynooghe, M. (2006). Well-founded and stable semantics of logic programs
with aggregates. Theory and Practice of Logic Programming. Accepted (available at http://www.
cs.kuleuven.ac.be/˜dtai/projects/ALP/TPLP/).

Selman, B., Kautz, H., & Cohen, B. (1994). Noise strategies for improving local search. In Proceedings
of the 12th National Conference on Artificial Intelligence (AAAI-1994), pp. 337–343, Seattle, USA.
AAAI Press.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model semantics.
Artificial Intelligence, 138, 181–234.

Son, T., & Pontelli, E. (2006). A constructive semantic characterization of aggregates in anser set program-
ming. Theory and Practice of Logic Programming. Accepted (available at http://arxiv.org/
abs/cs.AI/0601051).

Son, T., Pontelli, E., & Tu, P. (2006). Answer sets for logic programs with arbitrary abstract constraint atoms.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06). AAAI Press.

Syrjänen, T. (1999). lparse, a procedure for grounding domain restricted logic programs. http://www.
tcs.hut.fi/Software/smodels/lparse/.

Turner, H. (2003). Strong equivalence made easy: Nested expressions and weight constraints. Theory and
Practice of Logic Programming, 3, (4&5), 609–622.

Walser, J. (1997). Solving linear pseudo-boolean constraints with local search. In Proceedings of the 14th
National Conference on Artificial Intelligence (AAAI-97), pp. 269–274. AAAI Press.

334

