Journal of Artificial Intelligence Research 27 (B)®51-575 Sutbed 03/06; published 12/06

Causes of Ineradicable Spurious Predictions in Qudétive Simulation

Ozgiir Yilmaz YILMOZGU @BOUN.EDU.TR
A. C. Cem Say SAY@BOUN.EDU.TR
Department of Computer Engineering

Bogazici University

Bebek 34342stanbul, Turkey

Abstract

It was recently proved that a sound and complatditative simulator does not exist, that is,
as long as the input-output vocabulary of the stétihe-art QSIM algorithm is used, there will
always be input models which cause any simulatd w&icoverage guarantee to make spurious
predictions in its output. In this paper, we exaemivhether a meaningfully expressive restriction
of this vocabulary is possible so that one candbailsimulator with both the soundness and
completeness properties. We prove several negagiselts: All sound qualitative simulators,
employing subsets of the QSIM representation whethin the operating region transition feature,
and support at least the addition and constancgtnts, are shown to be inherently incomplete.
Even when the simulations are restricted to runairsingle operating region, a constraint
vocabulary containing just the addition, constarusrivative, and multiplication relations makes
the construction of sound and complete qualitagivaulators impossible.

1. Introduction

It was recently proved (Say & Akin, 2003) that a sound and conedédative simulator does
not exist, that is, as long as the input-output vocabulary of the-aftthe-art QSIM algorithm
(Kuipers, 1994) is used, there will always be input models whaelsec any simulator with a
coverage guarantee to make spurious predictions in its output. |paghes, we examine whether
a meaningfully expressive restriction of this vocabulanpadssible so that one can build a
simulator which will always output all and only the consistenutgmis of its input model. We
prove several negative results: All sound qualitative sitous, employing subsets of the QSIM
representation which retain the operating region transition featung support at least the
addition and constancy constraints, are shown to be inherentlyptetemThe problem persists
when all variables are forced to change continuously duringmrdgansitions if a slightly larger
set of constraint types is allowed. Even when the simulationsestricted to run in a single
operating region, a constraint vocabulary containing just the addionstancy, derivative, and
multiplication relations makes the construction of sound and comgqleiktative simulators
impossible. Our findings may be helpful for researchers isiieglein constructing qualitative
simulators with improved theoretical coverage guarantees using mepkesentations.

2. Background

We start with a brief overview of qualitative simulation, concentratindnemepresentations used
in the input-output vocabularies of qualitative simulators. Sulise@i2 summarizes previous
work on the two theoretical properties of qualitative simulatuas interest us. Subsection 2.3 is
a short “requirements specification” for a hypothetical sound and canplatitative simulator.

©2006 Al Access Foundation. All rights reserved.

YILMAZ & SAY

2.1 Qualitative Simulation

In many domains, scientists and engineers have only an incenaphetunt of information about
the model governing the dynamic system under consideration, whichrgeiodmulating an
exact ordinary differential equation (ODE) impossible. Inconghetspecified differential
equations may also appear in contexts where the aim is to firettoal proofs for behavioral
properties of an infinite set of systems sharing most, but lhatfahe structure of the ODEs
describing them. To proceed with the reasoning task in such cases, mathleioais embodying
methods making the most use of the available information tirobt (hopefully small) set of
possible solutions matching the model are nee@adlitative reasoning(QR) researchers
develop Al programs which use “weak” representations (likevaterather than point values for
guantities, and general shape descriptions rather than exaciderfor functional relationships)
in their vocabularies to perform various reasoning tasks abatersy with incomplete
specifications. In the following, we use the notation and teslogy of QSIM (Kuipers, 1994),
which is a state-of-the art qualitative simulation methodology, althoubbuld be noted that the
incompleteness results that we will be proving are valid foregsoners whose input-output
vocabularies are rich enough to support the representatiohaigees that will be used in our
proofs.

A qualitative simulator takes as inpugaalitative differential equatiomodel of a system in
terms of constraints representing relations between thensgswariables. In addition to this
model, the qualitative values of the variables at the timet ia@m which the simulation should
start are also given. The algorithm produces a list of thahpedature behaviors that may be
exhibited by systems whose ordinary differential equations match the input mode

Thevariablesof a system modeled in QSIM are continuously differentiabletioms of time.
The limits of each variable and their first derivatiessst as they approach the endpoints of their
domains. Each variable hagjaantity spacga totally ordered collection of symbolarfdmark$
representing important values that it can take. Zero is aathrddndmark common to all
variables. Quantity spaces are allowed to have the landmagssde at their ends, so functional
relationships with asymptotic shapes can be explicitlyested. When appropriate, a quantity
space can be declared to span only a proper subset of the extemslefdréastance, it makes
sense to bound the quantity space for a variable which t@irdgrnonnegative (like pressure)
with O at the left. If necessary, the user can specify orthr bounds of a quantity space to be
unreachable; for example, will be an unreachable value for all variables in all the rsotebe
discussed in this paper. The (reachable) points and inténviddsquantity space make up the set
of possiblequalitative magnitudesf a variable. Theualitative directionof a variable is defined
to be the sign of its derivative; therefore its possibleesareinc (+), dec (-) andstd (0). A
variable’s qualitative valueis the pair consisting of its qualitative magnitude and quiaktat
direction. The collection of the qualitative values of its variablakes up thetateof a system.

The “laws” according to which the system operates are septed byconstraintsdescribing
time-independent relations between the variables. At eachfstiep simulation, QSIM uses a set
of transition rules to implicitly generate all possible Xtievalues of the variables. The
combinations of these values are filtered so that only thbsehveonstitute complete states, in
which every constraint is still satisfied by the new values of iiabkes, remain.

There are seven “basic” types of constraints in QSIM. e 1.) Each type of constraint
imposes a different kind of relation on its arguments. For exgnifpive have the constraint
A(t) =-B(t), any combination of variable values in which variabfesind B have the same
(nonzero) sign in their magnitudes or directions will be #iterout. Sometimes, additional
knowledge about the constraints allows further filtering. Inaibeve example, if we know that
andB had the landmark values andb; at the same moment at some time in the past, we can

552

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

eliminate all value combinations in whi¢ghandB have magnitudes both less (or both greater)
than these landmarks; and b; are calledcorresponding value®f that constraint, and the
equationa; = —-b; is acorrespondenceEach constraint in a model (except those oftdrivative
type) can have such correspondence equations. A “sign algebra” @Suigér) is employed to

implement the arithmetic relations using qualitative magnituslete that, since eadkl * (M ™)

relationship corresponds to an infinite number of possible “qutawtafunctions having the
monotonicity property, a single QSIM model containing such congtraian correspond to
infinitely many ODEs.

CONSTRAINT NAME NOTATION EXPLANATION
add Xt) + Y(t) = Z(1)
constant Xt) = a landmark %X(t) =0
derivative d/dgx.Y) dﬂx(t) =Y(t)
t
_ + [T such thai(t) = f(Y(t)), where f' >0
+ X(t) =f(Y(t)), fOM :
M) =1(v®) overf’s domain
M- X(t) = f(Y(D)), fOIM - [such thaiX(t) = f(Y(t)), vyheref <0
overf’s domain
minus X(t) =-Y(1)
mult X(t) x Y(t) = Z(t)

Table 1: The Qualitative Constraint Types

The QSIM input vocabulary enables the user to describe moreicategdlmodels in terms of
several different constraint sets representing diffecgrtrating regionsof the system under
consideration. The user specifies the boundaries of the applicabitiges of the operating
regions in terms of conditions which indicate that the simulatouldheffect a transition to
another operating region when they are obtained.

For each operating region from which such a transition canorpoone has to specify the
following for each possible transition:

» Boolean expressions composed of primitives of the foviariableName QualitativeValug,
which will trigger this transition when they are satisfied,

» The name of the target operating region,

» The names of variables which will inherit their qualitatimagnitudes and/or directions in the
first state after the transition from the last state befogdransition,

» Value assignments for any variables which will have explisitigcified values in the first state
after the transition.

When provided with a qualitative system model, the name ohitiied operating region, and a
description of the qualitative values of all variablesha initial state, QSIM starts simulation,
and generates a tree of system states to represent thi@rsolof the qualitative differential
equation composed of the constraints in its input. The root of this tree mpthenitial state with
the time-point label,, representing the numerical value of the initial instemery path from the

553

YILMAZ & SAY

root to a leaf is a predictdaehavior of the system. Being in the qualitative format, each such
behavior usually corresponds to an infinite set of trajectasieing the same qualitative
structure in phase space. Time-point and interval statesraglpgaately in behaviors as long as
the same operating region is valid. Operating region transitiensefiected in behaviors as two
time-point states following each other.

2.2 Related Work on Soundness and Incompleteness

A very important property of qualitative simulators is tHeioverage guarantee”: A qualitative
simulation algorithm isoundif it is guaranteed that, for any ODE and initial state thatches
the simulator’s input, there will be a behavior in its outpbiclwv matches the ODE’s solution.
Kuipers (1986) proved that there exists a qualitative simul@amely, QSIM) that has the
soundness property. This guarantee makes qualitative simulatadnable design and diagnosis
method (Kuipers, 1994): In design, if the set of simulation predistof our model does not
contain a catastrophic failure, this igpm@of that our modeled system will not exhibit that failure
(Shults & Kuipers, 1997). In diagnosis, if none of the behaviorfienstmulation output of a
model is being exhibited by a particular system, we can be 100% sure that#ieystem inot
governed by that model.

Another property that one would wish one’s qualitative simulatgolssess isompleteness
that is, a guarantee that every behavior in its output corresporte solution of at least one
ODE matching its input. In the early days of QR reseatahas conjectured (de Kleer & Brown,
1984) that qualitative simulators employing local constraint faatisn methods (Weld & de
Kleer, 1990) were complete. However, in the same paper whiclaigedtthe guaranteed
coverage theorem, Kuipers (1986) also showed that the version of @Sidfibed there, and,
indeed, all qualitative simulators of the day, weéneomplete by demonstrating that the
simulation of a frictionless mass-spring oscillator predighrealizable spurioug behaviors,
where the amplitude decreases in some periods and increasbsrin The lack of a guarantee
that all the predicted behaviors are real has a negativetirapagotential applications: In design,
if the set of simulation predictions of our modelescontain a catastrophic failure, this does not
necessarily point to an error in our mechanism; maybe the predintignestion was just a
spurious behavior. A similar problem occurs in diagnosis applications.

Several other types of spurious qualitative simulation ptiedis were discovered in the
following years: Struss (1990) pointed out that, whenever ablarappeared more than once in
an arithmetic constraint, spurious states could pass the flor instance, the filters of tlaeld
constraint are unable to delete states involving nonzero valudisef variableZ in the equation
A(t) + Z(t) = A(t) when A is nonzero. Clearly, any sound and complete qualitative simulator
would have to possess the algebraic manipulation capabilities that enabtonsltole thaZ =0
in this case. Say and Kuru (1993) discovered a class of sppriedistions caused by a rigidity
in the internal representation of correspondences, and an unniégcegsak implementation of
subtraction. Say (1998) showed that some other spurious behawiataeato a lack of explicit
enforcement of I'HOpital’s rule in the original algorithm. Yanother family of inconsistent
predictions was found out to be caused by weaknesses in the metbdds dsstinguish finite
and infinite time intervals in the behaviors (Say, 2001, alsdvissier, 1991). Kénik and Say
(2003) proved that some model and behavior descriptions could “encodehatifin about the
relative (finite) lengths of the intervals that they contand failure to check the overall
consistency of these pieces of information yields another ofasgurious predictions. Finally,
Say (2003) showed that a similar encoding could occur aboek#wt numerical values of some
landmarks, so that a sound and complete qualitative simulator wowdddaupport a capability

554

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

of comparing the magnitudes of any two elements of a verystibset of the real numbers to
avoid a particular set of spurious predictions.

Interestingly, all these discoveries were actually good newsthfe users of qualitative
simulators: In order to be able to say that a particular predicted belssprrious, and therefore
suitable for elimination from the simulator output without f&isg the soundness property, one
first proves that that behavior is mathematically inconsisteith the simulated model and
starting state. For instance, the aforementioned spurioudatisog of the frictionless mass-
spring system can be shown to violate a conservation constratntotiows directly from the
structure of the input equations. But this proof can itselédmn as the specification of a new
filter routine which would eliminate exactly the set of behessithat violate the “law” that it
establishes. The kinetic energy constraint (Fouché & Kuipers, 1992¥ilter which has been
developed in this fashion to eliminate the class of spunoedictions exemplified by the ones
about the mass-spring system (Kuipers 1994). So all the sppriedistion classes mentioned in
the previous paragraph had, in fact, been discovered simultaneously witlcuhes:”

The question of whether there exists a sound and complete dualgimhulator was finally
settled by Say and Akin (2003). They proved that, for any sound gjuelisgmulator using the
input-output representation and task specification of the QSIkhadelogy, there exist input
models and initial states whose simulation output will contain spuriouspoedi. (Note that this
does not just say that the present QSIM algorithm can not be augmentecdeiitarsrto make it
both sound and complete; it refutes the existence of any prograreoeteat that can perform
this job.)

The proof by Say and Akin (2003) shows that a sound and completeatiwelgimulator
employing the vocabulary mentioned above, if it existed, could be wsedhte any given
instance of Hilbert’s Tenth Problem, which is famously undecid@btiyasevich, 1993). The
procedure involves building a QSIM model representing the givelnlem, simulating it several
times starting from carefully constructed initial statepresenting candidate solutions, and
examining the output to read out the solution. The model is set uptircan inconsistency if
and only if the answer to the considered problem is “no,” so theesstence of one or more
behaviors in the output means “yes.” Since it is impossibieake this decision correctly in the
general case, it follows that there would be input modelsgivise to behavior predictions
whose consistency status can not be determined by the simulbtise West course of action
would be to include them in the output, to keep the soundness guarantee intact. In twbeases
the correct answer is “no,” this would result in the predictiospmfrious behaviors. Note that
these aréneradicablespurious predictions, unlike the ones discussed earlier.

It is important to note that this proof does not necessarignrtigat all hope of constructing a
sound and complete qualitative simulator is lost. One may try &aKen” the input-output
representation so that it no longer possesses the problematic mdwetr enables one to
unambiguously encode instances of Hilbert's Tenth Problem intd @8del. (Of course, this
weakening must be kept at the minimum possible level for thétirgs program to be a useful
reasoner; for instance, removing the program’s ability téingisish between negative and
nonnegative numbers would possibly yield a sound and complete simblattine output of that
program would just state that “everything is possible” andighisot what we want from these
methods.) This is why one should examine the incompleteness prgo& (8kin, 2003) to see
exactly which features of the QSIM representation are uséuki construction of the reduction;
any future qualitative simulator supporting the same vocabslanget would be incorporating
the same problem from the start.

Here is a listing of the QSIM representational items usedhat proof: Only theM’,
derivative mult, and constant constraint types are utilized. (Note the absence of atth
constraint, which can be “implemented” using the others, in thig li@ualitative interval

555

YILMAZ & SAY

magnitudes like (0p), with what one might call “infinite uncertainty” about thetual value of
the represented number, are used for initializing severalblesiaand form an essential part of
the argument. QSIM’s ability to explicitly represent infinltsnits is utilized for equating a
landmark to the number, by stating that it is twice the limit of the functianctan xasx nears
infinity. Finally, the operating region transition feature is ukedvily, since it is thanks to this
characteristic that the sine function between two dependeiables can be represented in the
qualitative vocabulary.

In Section 3, we examine several different ways of weakahim@SIM vocabulary to try to
understand which combinations of these features are responsilthe foroblem of ineradicable
spurious predictions.

2.3 Desiderata for a Sound and Complete Qualitative Simulator

It is important at this point to clarify exactly what oweuld expect from a hypothetical sound
and complete qualitative simulator. If the input model yieldimige behavior tree of genuine
solutions, it is obvious that the program is supposed to gréntéscriptions of the behaviors
forming the branches of this tree, and nothing else, in fimite.tif the input model and initial
state are inconsistent, i.e., the “correct” output is the emggy the program should report this
inconsistency in finite time.

Finally, if the input yields a behavior tree with infinitetgany branches, the program is
supposed to run forever, adding a new state to its output every once in a whiddoivtally, for
every positivd, there has to be an integesuch that the program will have printed out the “first”
i states of the behavior tree (according to some ordering vitieneot, i.e. the initial state, is
state number 1, and no descendants of any particular staterded fnéfore that state itself) at
the end of thes" step in its execution. Note that these requirements mearatsatind and
complete simulator would have to be able to decide whether tied 8yistem state description
given to it is consistent with the input model or not within finite time. Tiesessity is used in the
proofs of incompleteness in Section 3.

3. New Incompleteness Results for Qualitative Simulators

In this section, we examine two different ways of restrgctihe qualitative vocabulary in the
hope of obtaining a representation which allows the constructiosoofd and complete
simulators. Subsection 3.1 considers the usage of several desketseof qualitative constraint
types, while retaining the operating region transition featWe. also examine a possible
restriction on the way variable values are handled during apgratgion transitions. Subsection
3.2 is an investigation of the capabilities of qualitative sinsutatvhich are restricted to input
models with a single operating region. Both variants are showexhibit the problem of

ineradicable spurious predictions when the soundness guarantee is present.

3.1 Reduced Constraint Sets

The results in this subsection are based on the undecidabilityrjpeepd abstract computational
devices called unlimited register machines (URMs). Wd firesent a brief introduction to
URMs, and then proceed with our proofs.

556

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

3.1.1UNLIMITED REGISTERMACHINES

The easiest way of thinking about a URM is to see it esngputer with infinite memory which
supports a particularly simple programming language. A URM I§Gdf 1980) program P
consists of a finite sequence of instructiondl ..., gy The instructions refer to the machine’s
registers R each of which can store an arbitrarily big natural numberu¥gethe notationrr,,
rs, ... for the register contents.

For our purposes, it will be sufficient to consider three types of URVUtfons:

sucgn): Increment the content of registeby one.
Ri«r+1

zerdn): Set the content of registerto zero.
R, 0

jump(m, n, q: Compare registers andn. If they are equal, continue with instructign
If rn=r, then jump td,

A URM program starts execution with the first instructionthié current instruction is not a
jump whose equality condition is satisfied, it is followed by thgtnestruction in the list. The
program ends if it attempts to continue beyond the last instnyair if ajumpto a nonexistent
address is attempted. We assume without loss of generality thathgllisys are to addresg|.

If P =1, ..., pis @ URM program, it computes a functiof PN — N. PY(a, ...,a) is
computed as follows:

- Initialization: Store @, ..., ain registers R ..., R, respectively, and set all other registers
referenced in the program to 0.

- lteration Starting with |, execute the instructions in the order described above.

- Output If the program ends, then the computed value of the functioheisxamber
contained in register RIf the program never stops, the‘f‘?(ﬁl, ..., @) is undefined.

Table 2 contains an example URM program which computes thedamgtjy) =x+y. Note
that the function is fron\?to N, where the input valuesandy are stored in registers,Bnd R,
and the output of the function is expected to be stored &t fRRe end of the program.

Il zerd?3)
l: jump2, 3, 6)
lx sucgl)
4 sucg3)
s jumpd, 1, 2)

Table 2: URM Program Computirfigs, y) =x +y

The program first setsz;Ro zero. It then checks to see if R R; (in the case thay = 0).
Otherwise, it increments both Rnd R. This continues untik has been incrementgdimes, and
the value in Ris returned.

The URM model of computation is equivalent to the numeroesnaltive models such as the
Turing machine model, the Godel-Kleene partial recursive ilumeimodel and Church’s lambda

557

YILMAZ & SAY

calculus, (Cutland, 1980; Shepherdson & Sturgis, 1963) in the sensthdhset of functions
computable by URMs is identical to the set of the functibas ¢an be computed by any of the
other models. This means that a device which can simulate &gy gRM is as powerful as a
Turing machine, since it can simulate any given Turing machimeour proofs of the
incompleteness of the QSIM vocabulary with reduced constraintwgetsvill make use of the
fact that the halting problem for URMs is undecidable (Cutland, 1980).

3.1.2 SUND AND COMPLETEQSIM WITH REDUCED CONSTRAINT SETS SOLVES THEHALTING
PROBLEM

All the incompleteness results about new subsets of the @8ddbulary that are presented in
this subsection are based on the following theorem, which showw®81M can simulate any
URM, and thereby has Turing-equivalent computational power.

Theorem 1: The execution of any URM program P with |P| instructions ongamgn input can
be represented by the simulation of a QSIM model with |P|+2 operating regions.

Proof: The proof will be by construction. Suppose we are given a URMramod® with
instructions {, ..., lp; Let R, ..., Ry be the registers mentioned in the instructions of P.

For each of the Rwe define a QSIM variablR which will represent it, and, in casehids a
nonzero initial value ;aa set of auxiliary QSIM variables for representingrable 3 describes
the idea behind this representation. We have four more variableedU, W, Z, andB. U
represents a “clock” which rises from 0 to 1 in every computatstealWV is the derivative ob.

Z is constant at zero in every operating regidis an additional auxiliary variable.

CONSTRAINTS INITIAL VALUES CONCLUSIONS
ONK1t) x ONKt) = ONK(}) ONKto) =onel] (0, x) ONEis constant at 1
ONK(1t) + ONKY) = TwWQt) TWOis constant at 2

ONK(1t) + TWQt) = THRERY) THREE:Is constant at 3

Table 3: QSIM Model Fragment Demonstrating the RepresenyatiilExact Integer Values

Our QSIM model will have |P|+2 operating regions: Each instrud; of P will have a
corresponding operating region nam€@pReg The two remaining regions ar®pReg,
corresponding to the “initialization” stage of P, @pReg,.;, corresponding to its end.

The specification of each operating region must contain the cionstthat are valid in that
region, the Boolean conditions (if any) composed of primitives ok tform
Variable = <qualitative magnitude, qualitative directionwhich would trigger transitions to
other operating regions when they are obtained, and lists thdtwdkizt variables inherit their
previous magnitudes and/or directions after such a transitionwlasio of them are initialized to
new values during that switch. Tables 4-9 describe how to prépese items for the operating
regions in our target model, based on the program P. There armdiffarent operating region
templates (or “types”) used in the construction; one for each Ui&ttuction type, one for
OpReg, and one foOpReg:1

The model ofOpReg is depicted in Table 4. This is where our simulation of Pstart. All
theNR variables are equated to their proper initial values Bpddy the “user” of P: The ones
initialized to zero are handled by “constant at 0” constrairts.dnes with positive initial values

558

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

are specified to be constant at those values wsildgconstraints to link them to the “number”
variables exemplified in Table 3; for instanceNiR, is to be initialized to three, we have the
constrainfTHREHRY) + Z(t) = NRy(t). Theadd constraint betweeB, U, andONE serves to express
the fact that the landmark namedein U's quantity space is also equal to 1. (Note that all the
add constraints mentioned in this paragraph exist oni@pReg, since they would disrupt the
intended behavior in the other operating regions.)

As seen in Tables 4-8, exactly which variables keep thkiesaluring a transition depends on
the type of the target operating region. Regions correspondingttiociicns of the typeerdn)
should not inherit the value of,om their predecessors, since they involve the replaceofient
that value by zero anyway. All other types of regions, incluthegucgn) type, inherit all the
register contents from their predecessors. (Although theevaf R, doeschange in asucc
instruction, the new value depends on the old one, unlike the caseqmi). The corresponding
QSIM variableNR, increases continuously during the simulation of a region ofgypén), and
a new region transition occurs exactly at the moment when it has increasedunyjtdne

Operating Region: OpReg
{Type: Initialization}
Constraint Set: d/dt(U, W)
B(t) + U(t) = ONK(t) with correspondence “0 6ne= on€
All the required “number representation” constraifgee Table 3)
addconstraints linking th&lR to the relevant “number” variables (see text)
All variables except andB are constant.
Possible Transition:
Trigger: (U = <one, in¢)
New operating region:OpReg
Variables inheriting magnitudes or directions:See Table 5, indexed by the typeQyReg

Variables with new asserted valuedJ — <0, inc>

Table 4: Model of the Operating RegiOpReg, Corresponding to the Initialization of the URM

TYPE OF TARGET VARIABLES INHERITING VARIABLES INHERITING
REGION QUALITATIVE MAGNITUDES QUALITATIVE DIRECTIONS
jump(m, n, 9 All variables except andB All variables except, B, and all theNR
sucgn) All variables except andB All variables except, B, and all theNR
zerqn) All variables except andNR, All variables except, B, and all theNR
End All variables except All variables excepU and all theNR

Table 5: Variables which should Inherit Magnitudes and/or Direcéaesrding to the Type of
the Target Operating Region

559

YILMAZ & SAY

The simulation of the given URM program proceeds as followsdéssribed in the previous
subsection, the URM starts with an initial configuration, whieeregisters R..., R, store the
nonnegative integers,a.., a which form the input of the program, respectively. The otheée N
registers are set to 0. Correspondingly, each ofN\tRevariables in our QSIM model has the
guantity space [0g). The NR variables with nonzero initial values start simulatiorthwi
gualitative values <(Q»), std>, whereas the other ones start with st@>. The quantity space of
the variableU is [0, ond, where the landmar&neis equated to 1, as mentioned abdyestarts
initially at qualitative value <Onc>. The derivative otJ, W, has as quantity space Epeed»),
wherespeedis also equated to 1. It starts at qualitative valspgegd std> and is constant in the
whole simulation. The variablB has the quantity spaceo(-0, «) and starts at <(®»), dec>.
When started iOpReg, QSIM will compute a single qualitative behavior segmentcivignds
with a transition t@pReg whenU reaches ane inc> at time-pointt;.

Operating Region: OpReg
{Type: zerdn)}
Constraint Set: d/dt(U, W)
NR,(t)=0
All variables except are constant.
Possible Transition:
Trigger: (U = <onginc>)
New operating region:OpReg,;
Variables inheriting magnitudes or directions: See Table 5, indexed by the typeQyReg.,

Variables with new asserted valuedJ — <0, inc>

Table 6: Model Template for Operating Regions Correspondingrtfn) Instructions

Operating Region: OpReg
{Type: sucdcn)}
Constraint Set: d/dt(U, W)
B(t) + U(t) = NRy(t)
All variables exceptl andNR, are constant.
Possible Transition:
Trigger: (U = <one, in¢)
New operating region:OpReg,;
Variables inheriting magnitudes or directions: See Table 5, indexed by the typeQyReg.,

Variables with new asserted valuedJ ~ <0, inc>

Table 7: Model Template for Operating Regions Correspondisgd®n) Instructions

560

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Note that there is zero uncertainty about the values ohaélkbles, even the ones with initial
magnitude (Og), at the start of the simulation.

Our model is so constrained that a sound and complete quelisitivlator is guaranteed to
produce exactly one behavior prediction for any initial state gporeding to a valid URM input.
To see this, it is sufficient to observe that, at any sittthe simulation, there is sufficient
information available to the simulator to compute the exact riocatefalue of every variable in
the model. (This just corresponds to “tracing” the URM programkaeg@ing note of the register
contents up to that step.) If the modeled URM halts on the particydat given in the initial
state, the QSIM behavior is supposed to be a finite one, endingtiveariableU attempts to
exceedone in OpReg.. If the URM computation does not halt, then the QSIM behavior is
supposed to be a single infinite sequence of states, which neveOyiREgp.. O

Operating Region: OpReg
{Type: jump(m, n, g}
Constraint Set: d/d{(U, W)
NRw(t) + B(t) = NRy(t)
All variables excepU are constant.
Possible Transition:
Trigger: (U = <one, inc) AND(B # <0, std>)
New operating region:OpReg,;
Variables inheriting magnitudes or directions: See Table 5, indexed by the typeOReg,,
Variables with new asserted valuesU ~ <0, inc>
Possible Transition:
Trigger: (U =<one, inc) AND(B = <0, std>)
New operating region:OpReg
Variables inheriting magnitudes or directions: See Table 5, indexed by the typeOpReg

Variables with new asserted valuesU ~ <0, inc>

Table 8: Model Template for Operating Regions Correspondijugrtgim, n, q Instructions

Operating Region: OpRegp).1
{Type: Enct
Constraint Set: d/d{U, W)
All variables excepU are constant.

Table 9: Model of the Operating RegiOpReg,.;, Corresponding to the End of the URM
Program

We are now ready to state a new version of the incompleteness theorem.

561

YILMAZ & SAY

Theorem 2: Even if the qualitative representation is narrowed so that thelgerivative add,
mult, andconstantconstraints can be used in QDE’s, and each variable is forctaittatsa finite
value with zero uncertainty in the initial state, it isl $tilpossible to build a sound and complete
gualitative simulator based on this input-output vocabulary.

Proof: Assume that such a sound and complete simulator exists. We nowhehote solve the
halting problem for URMs using that algorithm as a subroutine.

Construct the corresponding QSIM model as described in TheorenthlefolRM program P
whose halting status on a particular input is supposed to keede®ow define a new varialkfe
with quantity space [@ne «), where the landmarneis equated to the number3starts at the
value <one std> in the initial state. Add constraints indicating tf&is constant to all the
operating regions, and specify that the valu& isf inherited in all possible transitions. Insert the
new constraint§t)=0 in OpReg,.. Consider what the simulator is supposed to do when
checking the initial state for consistency. Note that we wdiade an inconsistency if the
simulation ever entei®pReg,.; since the new constraint that we inserted to that region says that
S is zero, which would contradict with the inherited valueooE So a simulator which is
supposed not to make any spurious predictions is expected to rejattidhestate at timd, as
inconsistent if the simulation is going to en@pReg., in other words, if the URM program
under consideration is going to halt. If this sound and complete sanulaes not reject the
initial state due to inconsistency, but goes on with the siioalathen we can conclude that the
program P will not halt. This forms a decision procedure forhdléing problem. Since the
halting problem is undecidable, we have obtained a contradiction, addid®nhat a sound and
complete simulator using this representation can not exist.

It is in fact possible to remove the derivative constr@irhich is only used in our proof to
ensure that the behavior tree has at most one branch) frorepitesentation as well, and the
incompleteness result shown above would still stand:

Theorem 3: Even if the qualitative representation is narrowed sodhbt theadd, mult,and
constantconstraints can be used in QDE’s, and each variable is farcgtdrt at a finite value
with zero uncertainty in the initial state, it is still impid¥s to build a sound and complete
gualitative simulator based on this input-output vocabulary.

Proof: We will make a minor modification to the proof of Theorem 2. dtserve that in the
construction of Theorem 1 always starts every operating region atig@> and the fact that its
derivative is a positive constant forces it to reach thees<oneg inc> in the next time point.
Then the transition to next operating region occurslhadain receives the value 40¢>. What
happens if we remove the variaMéand allderivativeconstraints from the model? In this case,
sinceU’s derivative is not fixed, there are three possible stigeU in the second time point
during the simulation of any operating regioons inc>, <one std>, and <(Q oné, std>. We fix
this problem by inserting another possible region transition $petddin to all of our regions,
exceptOpReg:. This transition will be triggered whe has one of the valueore std>, and
<(0, ong, std>, and its target will b©pReg, .. The variables from the proof of Theorem 2, as
well as all other variables, are inherited completely duttiig transition. So all the “unwanted”
behaviors which would be created due to the eliminatiod’efderivative end up i©OpReg).s,
and should therefore be eliminated as spurious in accordancéhevitigument of the previous
proof. Hence, once again, the simulator is supposed to accepttidlestaie as consistent if and
only if P does not halt, meaning that a sound and complete simulatiorpossible with this
representation as weth.

562

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Interestingly, one can even restrict the representatiathagoonly nonnegative numbers are
supported, and the incompleteness result we proved above still stands:

Theorem 4: Even if the qualitative representation is narrowed sodhbt theadd, mult,and
constantconstraints can be used in QDE'’s, each variable is forcedrtoas a finite value with
zero uncertainty in the initial state, and no variable is allowed to haveativeegplue at any time
during the simulation, it is still impossible to build a sound amthplete qualitative simulator
based on this input-output vocabulary.

Proof: In our previous proof, only variab® ever has the possibility of having a negative value,
and that can occur only injamp region. We replace the definition of thenp region template
with Table 10, and introduce the new varialiieandY. We insert constraints that say that these
variables are constant to all operating regidbsand Y start at zero, and are inherited by all
transitions, except when the target region is of jypg. As can be seen in Table Bgets the
value 1 if and only if the two compared register values gumle If they are unequaB has a
positive value different than 1. In this set@#»s quantity space is defined as fihe «), where
oneis equated to 1, and no variable ever has a negative valug thei simulationB now starts
simulation with the valuecene dec> to satisfy theadd constraint seen in Table 4. The rest of the
argument is identical to that of Theorenm3.

Operating Region: OpReg
{Type: jump(m, n, q}
Constraint Set: NR(t) + ONKt) = C(t)
NRy(t) + ONKt) = Y(t)
B(t) x C(t) = Y(t)
All variablesexceptU are constant.
Possible Transition:
Trigger: (U = <one, inc) AND(B # <one std>)
New operating region:OpReg.;
Variables inheriting magnitudes or directions: Depends on the type 8pReg,;, as before
Variables with new asserted valuesU ~ <0, inc>
Possible Transition:
Trigger: (U = <one, inc) AND(B = <one std>)
New operating region:OpReg
Variables inheriting magnitudes or directions:Depends on the type GpReg, as before

Variables with new asserted valuesU ~ <0, inc>

Table 10: Alternative Model Template for Operating Regions Qaoreting tgump(m, n, 9
Instructions which Avoids Negative Numbers

Alternatively, we can keep negative numbers and removemihié constraint from the
representation, if we drop the requirement that each variaiste simulation at a value with zero
uncertainty.

563

YILMAZ & SAY

Theorem 5 Even if the qualitative representation is narrowed sodhigttheadd and constant
constraints can be used in QDE'’s, it is still impossible to lugdund and complete qualitative
simulator based on this input-output vocabulary.

Proof: We used thenult constraint in the proofs of Theorems 1-3 only for equating variail
landmark values to unambiguous integers. Assume that we tieatault constraints from our
model of Theorem 3. The “number” variables of Table 3 areacegl with the setup shown in
Table 11. If Ris supposed to be initialized to the positive integén &, we equat®&lR to the
“a;xunit’ variable inOpReg using the method explained in the proof of Theorem 1. Note that we
only useconstantandadd constraints (and a lot of auxiliary variables) for this purpose.

CONSTRAINTS CONCLUSIONS
ONEUNITt) = unit
ONEUNIT(t) + ONEUNIT(t) = TWOUNIT$t) TWOUNITSs constant at>@unit
ONEUNIT(t) + TWOUNIT$t) = THREEUNIT®) THREEUNITSs constant at>init

Table 11: Sample Model Fragment for Equating Variables to IntegeipMslbf the Positive
Landmarkunit

The landmarks previously namede in other variables’ quantity spaces are now equated to
unit. In this new model, execution ofsaicgn) instruction incrementslR,'s value by oneaunit.
The jump instruction compares landmarks whose values eguahit and vxunit instead of
comparing two landmarks whose values equal the natural numbéidy. Thezeroinstruction
sets the target register to 0, as in the previous cotistiuGo the modeled machine does just
what the original URM does, since the multiplication of alliea by the coefficieninit does not
change the flow of the program, and, in particular, whetherti balits input or not. The rest of
the argument is identical to that of the proof of Theorem 3.

We observe that some of the variables change their quaitatagnitudes and directions
discontinuously during operating region transitions in the proothefprevious theorems. The
next theorem proves that maintaining soundness and completenefiargously is impossible
even if we do not allow any qualitative variable to perfonshsa change, and force each
variable’s magnitude and direction to be inherited to the next operatiogreqgi

Theorem 6 Even if the qualitative representation is narrowed so that onlyettieative addand

constantconstraints can be used in QDE’s, and no variable’s magnituderaotati are allowed
to perform discontinuous changes during operating region transitionsjlltimmdssible to build
a sound and complete qualitative simulator based on this input-output vocabulary.

Proof: Once again, we make some changes to the QSIM models ussithfdating the given
URM in the previous theorems. As always, we have a QSINablarNR for each of the N
registers Rappearing in the URM program. In addition to that, we definezain@blesD; for all

i,j O{1, ...,N such thati #j. Each of thessatisfies the equatioD; = NR—NR throughout the
simulation; that is, we keep track of the differencesIgbals of register values. This can clearly
be achieved by inserting seveaald constraints to all the operating regions in our model. These
difference variables will enable us to compare two regig&ies in operating regions of type
jump.

564

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Furthermore, we define auxiliary variableR for alli U {1, ..., N. All the TR are initialized
to the same values as the corresponbliRg using the same technique as for e

For each instruction type in the given URM program, we ddfwmeoperating regions. Our
clock variableU will increase in the first of these operating regionthtovalue anit, std>, and
decrease in the next one fromndt, std> to <0, std>, performing no discontinuous jump in the
program. In order to obtain a variable with such behavior, we msé&ef the simple harmonic
oscillator model given in Table 12, where the varia¥léenoting the displacement from the
“rest” position of the oscillating “object”) oscillates bet@n the valueanit/’2 and-unit/2, and
the variableU is equated tX + unit/2, oscillating between 0 anahit. The model template given
in Table 12 is added to every operating region. (That table comstaing variable names used in
the constructions of the previous proofs. All such variableseaged in the previously described
manner, unless this proof specifies otherwise.) The followgngna establishes the correctness
of this construction.

CONSTRAINTS CORRESPONDENCES | MEANING
HALFUNIT(D) + HALFUNIT(D) = ONEUNIT(D) S G = unit/ 2
HALFUNIT(D) + V(1) = E) G v, = 0 V1= —unit/ 2
dx
didi(X, X _y
X, V) o
didtV, A) d°X _
dt
2
X(1) + At) = Z(t) ddtx X =0
X(0) + HALFUNIT(D) = U(0) U = X+unit2

Table 12: Model Template to Obtain the Desired Behavior fovénmbleU as a Clock
Oscillating between Qualitative Values s> and <unit, std> (This Template is to be Inserted
to All Constructed Operating Regions.)

Lemma 7: For any number which can be represented by a QSIM landmark, a QSIM vanable
can be equated to the functiosin(t —ty) using onlyderivative addandconstantconstraints.

Proof of Lemma 7:;
As seen in Table 12, the equation

?j—jx(t)+x(t)=0

can be expressed using odlgrivative add andconstantconstraints. This equation has a general
solution of the form

X (t)=¢ sint +c,cost, (1)

565

YILMAZ & SAY

and hence its time derivati¥ehas the form
V(t)=c cost-c,sint.
Assume thaK andV are initialized as follows:
X(t,)=0
V(to)zr .
By substituting these values in the equations above, one obtains theregusatem
0=c;sint, + c, cost,
r = ¢, cost, — ¢, sint,,

whose solution (Yilmaz, 2005) yielads = r costyandc, = —r sin t,. Substitutingc; andc, into
Equation (1), we getX(t)=r x(cost, sint —sint, cost)=rsin(t —t,), thereby proving the
lemma.o

Proof of Theorem 6 (continued):

Therefore, if we equate the landmaglof V to —unit/2 as shown in Table 12, and initialiXeand
V to 0 andvy, respectively, we will ensure that

X(t)=-2sinft-to),

i.e., that the variabl¥ oscillates between the valuasit/2 and-unit/2, as desired.

To be consistent with Lemma 7, the oscillating variabfeBable 12 start simulation with the
gualitative values listed in Table 13. All other variablesceptB, which starts with the value
<(0,), inc>, are initialized as previously described.

VARIABLE QUANTITY SPACE INITIAL VALUE
U [0, unif] <(0, unit), dec>
E (00, 0,) <0, st>
X (00, 0,) <0,dec
V (-00, v1, 0,) <v,, sto>
A (00, 0,) <0, inc>

Table 13: The Quantity Spaces and Initial Values of the Oscillatamizables

We are going to denote the two operating regions correspondihg i instruction of the
URM program withOpReg; and OpReg,. All variables’ qualitative values are inherited in all
possible transitions, such that no variable ever undergoes @ntiiismus change. Looking
carefully at Tables 14-21, which correspond to the initiabratinstruction types, and ending of
the URM, we see that the simulation flows in a unique brandh thvé exception oferotype

566

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

operating regions, where there is the possibility that thalation branches into more than one
behavior, and the behaviors which do not correspond to the expectetotyajef the actual
URM are directed t@pReg,.1,: (Note that transitions to infinite landmarks do not need to be
considered, since we assume that all infinite landmarkspaefied as unreachable values for all
variables in our models.) The registers stay constant @p&eg,.,; Which is a single operating
region corresponding to the end of the URM program, is reachedrést of the proof is the
same as in Theorem 2. Our contradiction varigbknsures that only the behavior of a non-
halting URM leads to a consistent initial state, hence ahini@rg the consistency of the initial
state is equivalent to deciding the halting problem, leading to a conivadict

Operating Region: OpReg
{Type: Initialization}
Constraint Set: All the required “input value representation” consits (see Table 11)
B(t) + U(t) = ONEUNIT(t) with correspondence “0 unit = unit”
add constraints linking th&lR and theTR to the relevantrixunit” variables
addconstraints defining thB;; variables
the “clock” constraints (Table 12)
All variables excepB, U, X, V, E, andA are constant.
Possible Transition:
Trigger: (U = <0,std>)
New operating region:OpReg ;
Variables inheriting qualitative values: All variables

Table 14: Template for the Single Operating Region Corresponding totinbzation Stage

3.2 Simulation within a Single Operating Region

The incompleteness proofs in subsection 3.1 (as well as thayd 38kin, 2003) depend on the
capability of “turning the constraints on or off” when necegsahich is provided by the
operating region transition feature. Would the problem gieitiwe forsook that feature, and
focused on the simulation of qualitative models with a single tipgreegion? We now show
that the answer to this question is affirmative.

3.2.1HILBERT'STENTH PROBLEM

As the name suggests, Hilbert's Tenth Problem is the tehtB3 problems which were
announced in 1900 by the famous mathematician David Hilbert as &engelto the
mathematicians of the 20century. It asks for an algorithm for deciding whether a given
multivariate polynomial with integer coefficients has imtegolutions. It has been proven that no
such algorithm exists (Matiyasevich, 1993). This fact was biyeSay and Akin (2003) in their
original proof of the existence of ineradicable spurious prexdistin the outputs of all qualitative
simulators employing the operating region transition featureaaladger set of constraint types
than those we deal with in this paper.

567

YILMAZ & SAY

In the proof to be presented shortly, we use the undecidadfiléyslightly modified variant of
the setup described by Hilbert: We assume a guarantee that ntivee afriables in the given
polynomial are zero in the solution whose existence is in quedtisnclear that this modified
problem is unsolvable as well, by the following argument: Asstiraewe do have an algorithm
A which takes a multivariate polynomial with integer coeéfitgs as input, and announces
whether a solution where all the variables have nonzero miagiees exists or not in finite time.
We can use A as a subroutine in the construction of the &ligosbught in Hilbert's original
problem as follows: We systematically produéep@lynomials from the input polynomial with
variables, such that each of these new polynomials correspondslifterant subset of the
variables of the original polynomial replaced with zero. Wentrun A on each of these new
polynomials. It is easy to see that A will find that one orerof these polynomials have nonzero
integer solutions if and only if the original polynomial has integer solutions.

Operating Region: OpReg;
{Type: zerdn)}
Constraint Set: add constraints defining the; variables
the “clock” constraints (Table 12)
All variables except), X, V, E, A, NR,, andD; with n O {i,j} are constant.
Possible Transition:
Trigger: (U = <unit, std>) AND (NR, = <0, std>)
New operating region:OpReg,
Variables inheriting qualitative values: All variables
Possible Transition:
Trigger: ((U = <unit, st>) AND (NR, # <0, std>)) OR(NR, = <(0,»), std>) OR(NR, = <(-, 0), std>)
New operating region:OpReg.1, 1
Variables inheriting qualitative values: All variables

Table 15: Template for the First Operating Region Correspondirgyd) Instructions

3.2.2 SUND AND COMPLETEQSIM WITHIN A SINGLE OPERATINGREGION SOLVESHILBERT'S
TENTH PROBLEM

Theorem 8 Even if the qualitative representation is narrowed sodhit thederivative add,
mult andconstantconstraints can be used in QDE’s, and the simulation proceedmankingle
operating region, it is still impossible to build a sound and compgjealitative simulator based
on this input-output vocabulary.

We are going to start our proof with some preliminary lemmtta first of which is
reminiscent of Lemma 7 from the previous subsection:

Lemma 9 For any real constant equated to the QSIM variahlea QSIM variableY; can be
equated to the functiosin(X; x(t —t,)) using onlyderivative add mult, andconstaniconstraints.

Proof: The case foK; = 0 is trivial, and can be handled with a singtsmstantconstraint. For the
remaining case, we will consider the following equation set:

568

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Operating Region: OpReg;
{Type: zerdn)}
Constraint Set: add constraints defining thB; variables
the “clock” constraints (Table 12)
All variables except, X, V, E, A, andTR, are constant.
Possible Transition:
Trigger: (U =<0,std>) AND(TR, = <0, std>)
New operating region:OpReg; ;
Variables inheriting qualitative values: All variables
Possible Transition:
Trigger: ((U = <0,std>) AND (TR, # <0, std>)) OR(TR, = <(0,»), std>) OR(TR, = <(-», 0), std>)
New operating region:OpRegb).1, 1
Variables inheriting qualitative values: All variables

Table 16: Template for the Second Operating Region Correspondiagifa) Instructions

Operating Region: OpReg;
{Type: sucgn)}
Constraint Set: TR, (t)+ U(t)= NR,(t)
add constraints defining thB; variables
the “clock” constraints (Table 12)
All variables except), X, V, E, A, NR,, andD; with n O {i,j} are constant.
Possible Transition:
Trigger: (U = <unit, std>)
New operating region:OpReg,
Variables inheriting qualitative values: All variables

Table 17: Template for the First Operating Region Corresponalsuct{n) Instructions

2
S ()W)=0 @
— w2 _J X x>0
W = X2, so that\/VVi—{_ X, X, <0 (3)

with the initial values

569

YILMAZ & SAY

Operating Region: OpReg,
{Type: sucdcn)}
Constraint Set: TR,(t)+ U(t)= NRy(t)
addconstraints defining thB; variables
the “clock” constraints (Table 12)
All variables excepV, X, V, E, A, andTR, are constant.
Possible Transition:
Trigger: (U = <0,std>)
New operating region:OpReg.; 1

Variables inheriting qualitative values: All variables

Table 18: Template for the Second Operating Region Correspondingd¢n) Instructions

Operating Region: OpReg;
{Type: jump(m, n, g)}
Constraint Set: add constraints defining thB; variables
the “clock” constraints (Table 12)
All variables except), X, V, E, andA are constant.
Possible Transition:
Trigger: (U = <unit, std>)
New operating region:OpReg,
Variables inheriting qualitative values: All variables

Table 19: Template for the First Operating Region Corresponaijngp(m, n, g) Instructions

Vi(to)= X,

whereV,(t) is the time derivative of;(t).
The general solution of Equation (2) is:

Yi(t)zclsin(\/V_ViXI)+ c, coi\/VViXt).

Substituting the\/Vvi from Equation (3) and the initial values in the equations/fandV;, and
solving these equation systems results in the following (Yilmaz, 2005):

ForX;> 0, c;=cosxty) andc,=-sin(Xxty).

ForX;< 0, c;=-cosxty) andc,=-sin(X;xtp).

When we substitute these in the formula¥gt), we obtain:

Y, (t) = coX; xt,)sin(X; xt)-sin(X; xt,)cod X, xt) =sin(X; x(t - t,)), X >0,

570

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Operating Region: OpReg,
{Type: jump(m, n, ¢}
Constraint Set: add constraints defining thB; variables
the “clock” constraints (Table 12)
All variables except), X, V, E, andA are constant.
Possible Transition:
Trigger: (Dyn= <0,std>) AND (U =<0, std>)
New operating region:OpReg;
Variables inheriting qualitative values: All variables
Possible Transition:
Trigger: (Dmn# <0,std>) AND (U = <0, std>)
New operating region:OpReg.; 1
Variables inheriting qualitative values: All variables

Table 20: Template for the Second Operating Region Correspondurgdan, n, g) Instructions

Operating Region: OpRegh1, 1
{Type: Enct
Constraint Set: St) =0
All variables except, X, V, E, andA are constant.

Table 21: Model of the Operating Region Corresponding to the End of the URjvaRr

Y, (t) = —cogX; xt,)sin((~ X,)xt)=sin(X, xt,)cod(- X;)xt) =sin(X, x(t -t,)), X <0.

Hence, we hav¥(t) = sin(X; x(t -t,)) for all X, # 0.

Table 22 shows that Equations (2) and (3) and the initial vgiues above are representable
using thederivative add, mult, andconstantconstraints. Note tha¢ has to be kept constant and
initialized to either (0x) or (-, 0), depending on the intended sign for that number, and¥Ypoth
andC;, must start at zero, to be consistent with the construction above.

Lemma 1Q Starting atto, the functionY = sint-ty) reaches the value 0 for the first time at time
point te = ty + L Moreover the functiorY; = sin(Xx(t-tp)) reaches 0 at the same time painif
and only ifX; is an integer.

Proof: The equation sii{ty) = 0 impliest-t, = n1t, n 0 Z, and since we are interested in the first
time point afterty where it becomes 0, we giet=ty + Tt For the “only if” part of the second
statement, assume that the functih = sinXix(t-tp)) reaches 0 atg = t, + T Then
sin(X; x (t, + 77—t,))=sin(X, x 77)= 0 implies thatx; is an integer. For the “if" part, we use the
knowledge thak; is an integer to conclude thgftg) = sin(X;x(to + TT—tg)) = sin(X;x1) = 0. O

571

YILMAZ & SAY

CONSTRAINTS MEANING
Z=0
Xi(t) + Gi(t) = Vi(t) Vi(to)) =X
dy, _
d/d(Y;, Vi) =)
d?Y, _
d/dt(V;, A) —=A0
Xi(t) X Xi(t) = Wi(t) W, = X2
V(1) x Yi(t) = Li(t) Li(t) =W x¥; (t)
A(t) +Li(t) = Z(1) ddf +W xY,(t)=0

Table 22: Model Fragment Used to Obtain the Redahip Y, =sin(X, x(t - t,))

Proof of Theorem 8 As already mentioned, the proof relies on a calitteon, namely that a
sound and complete simulator, if it existed, cdoédused to construct an algorithm for solving
Hilbert's Tenth Problem, as follows:

Assume that we are given a polynonigk, X,, Xs, ..., X,) with integer coefficients. We start
by constructing a QSIM model fragment that “saysitP(x,, X2, X3, ..., X,) =0: We have already
seen in Section 3.1 how to equate any desiredantega QSIM variable. Represent all integers
appearing as coefficients in the polynomial in timainner. Introduce a QSIM variabfefor each
of thex;, declare all thes¥; to be constant, and uadd andmult constraints to equate the sum of
products that i®(Xy, Xo, X3, ..., %) to @ QSIM variabld®, which will be initialized to 0. Note that
this is tantamount to saying that the present wabfgheX; form a solution for the polynomial.
All this can clearly be done in a single operatiagion, with constraints of the typesult add
andconstant

We then extend this model with the necessary caing$ and auxiliary variables to equate a
new variableY to the function sintty). (Either Lemma 7 or Lemma 9 can be used for this
purpose.) We specify's quantity space as [&), so that the simulation is guaranteed to finish a
t =tz = to+ 1L For eachX;, we define associated auxiliary variabl€3 L;, W, V;, A andY;, and
add the template in Table 22 to our model to expties relationshify; = sinXjx(t-tp)). We also

n

equate a variabl¥ Swith the sum of the squares of thgi.e. YS=ZYi2 . Note that ifYS=0,
i=1

then all they; are 0.

Finally, we need make sure that the only considiehaviors are the ones in which tKeare
integers (that is, relying on Lemma 10, the behavio which the variablé Sbecomes 0 at).
To serve this aim, we add the constr&i(t) x Y(t) = YSt) to our model.

We will simulate this model"2imes, each run corresponding to a different wainitifalizing
the X to magnitudes selected from the set {&), (-, 0)}. A sound and complete simulator

572

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

would accept all and only the initial states with tho§ewhose values do not cause any
inconsistency with our model. But tho3g correspond exactly to the integer solutions of the
given polynomial, by the following reasoning about the vari&ble

Note thatF is defined to b&' SY by theF(t) x Y(t) = YSt) constraint. We know thaf, Y;, and
henceYSare all initially 0, meaning that one has to use I'Hopitalile to find out the initial
value ofF. This is important, since F's initial magnitude or derivative are infinite, QSIlgl mot
even supposed to consider successors for the initial 8fdgedeclare the infinite landmarks as
unreachable values for all variables, as mentioned earlien EF’s magnitude is finite and just
its derivative is infinite, simulation is not supposed to o, because the continuity
requirement would be violated.) Fortunately,

gsw(xix«—to»

sin(t—t,)

F(t)=
does have finite magnitude and derivative:aft t = to, we use I'Hopital’s rule to find

jizxignbﬂXGdﬂo»COiXiXGo-%»
Flto)=5 =" codt, —t.) =0.

As for F's qualitative direction;

G - 2l roleodrnion) sl rouleodi)

dt sin(t -t,) sin?(t —t,)

i=1

and it turns out, after several applications of I'Hépital’s rule, that
dF o
—(t,) = E X,
dt (0) — I

which is clearly a finite positive number, aR® initial qualitative value is therefore <0¢c>.

Obviously,F = YSY is guaranteed to be finite untf, whenY reaches 0. If the variab¥Sis
nonzero (implying that at least one of tjés nonzero, and by Lemma 10 that the corresponding
X; is not an integer) dg, F(tg) has to equabk, which is impossible since infinity was declared to
be unreachable, so such states would be eliminated as spurioushi, athdr handy Stg) = 0,
then, we see by I'Hépital’s rule, and the knowledge that alKtlage integers, that

n n

> 2X;sin(X; x(te ~to))cod X, x(te ~t)) D" 2X; sin(X; x 77)cod X, x 77)

i=1 —_i=1 :0,

0 codte —t,) coq7)

and behaviors ending with such states are supposed to be inclubdedsimulation output. So if
our supposedly complete and sound simulator rejects the iridisdssof our model due to
inconsistency in all the"2runs, we reason that all the behavior predictions considered by the
simulator ended witl(tg) =0, and this inconsistency propagated back to the initial statéed

to its rejection in all cases. We conclude that the polynohaal no integer solutions. On the
other hand, if even one of the simulations prints out the initiaé stad goes on with its
successors, we conclude that a solution exists. This formdettision procedure required in

573

YILMAZ & SAY

Hilbert's Tenth Problem, leading to a contradiction. Therefore, sanddcomplete simulation is
impossible even if one restricts oneself to a single operatigign and the limited constraint
vocabulary mentioned in the statement of the theorem.

4. Conclusion

In this paper, we considered several alternative subsetseofualitative representation, and
showed that the ineradicable spurious prediction problem tseesien when only thadd and
constantconstraints are allowed. If one allows timeilt constraint as well, then any resulting
gualitative simulator is inherently incomplete even when épeesentation of negative humbers
is forbidden and every variable is forced to be specifigd wero uncertainty (i.e. as a single
unambiguous real number) in the initial state. Our final proof shbaseven the ability of
handling models with multiple operating regions can be removedtfremrepresentation, and the
incompleteness problem would still persist, provided ddd, constant derivative and mult
constraints are allowed in the vocabulary. Note that none oé thesabularies include the
monotonic function constraint, which is the only relation type ifeatto the qualitative
representation.

Although the results in this paper are demonstrated using $ié @ presentation for input
and output, they are valid for all qualitative simulators whose input and outpliNadas are as
expressive as the specified subsets of those of QSIM. (Alse that our proofs apply
automatically to semi-quantitative simulators, whose reprasens are an extension of that of
pure QSIM.) We believe that these results are importatttersense that they provide deeper
insight to the causes of spurious predictions, and they cdmlpful for researchers aiming to
construct provably sound and complete simulators using weaker representations

Finally, we wish to stress that our findings here do not amowas bad a piece of news about
the usefulness of qualitative simulators in the practicalailesrthat they are usually utilized as it
may seem to the uninitiated eye. When one’s model is specifit devel of precision that is
involved in the models in this paper, one does not emplgyatitative reasoner anyway. What
really annoys the users of qualitative simulators is theasional prediction oferadicable
spurious behaviors, and the strengthening of the algorithms daliticmal filters of increasing
mathematical sophistication to get rid of more of these contitmdse an important line of
research.

References

Cutland, N. J. (1980 Computability: An Introduction to Recursive Function The@gmbridge,
UK: Cambridge University Press.

de Kleer, J., & Brown, J. S. (1984). A qualitative physics basedonfiuences.Artificial
Intelligence, 247-83.

Fouché, P., & Kuipers, B. J. (1992). Reasoning about energy in qualisthulation.|EEE
Transactions on Systems, Man, and Cybernet,17-63.

Konik, T., & Say, A. C. C. (2003). Duration consistency filterirog fualitative simulation.
Annals of Mathematics and Artificial Intelligen@8, 269-309.

Kuipers, B. J., (1986). Qualitative simulatigtificial Intelligence,29, 289-338.

574

CAUSES OFINERADICABLE SPURIOUSPREDICTIONS INQUALITATIVE SIMULATION

Kuipers, B. J. (1994)Qualitative Reasoning: Modeling and Simulation with Incomplete
KnowledgeCambridge, MA: MIT Press.

Matiyasevich, Y. (1993Hilbert's Tenth ProblemCambridge, MA: MIT Press.

Missier, A. (1991) Mathematical structures for qualitative calculus, a contributiorqualitative
simulation (In French) Ph.D. thesis, Institut National des Sciences Appliquées tiri3®u

Say, A. C. C. (1998). L'Hépital's filter for QSIMEEE Transactions on Pattern Analysis and
Machine Intelligencez0, 1-8.

Say, A. C. C. (2001). Improved reasoning about infinity using quaktaimulationComputing
and Informatics, 20487-507.

Say, A. C. C. (2003). Sound and complete qualitative simulation esdlguantitative” filtering.
Annals of Mathematics and Artificial Intelligen@8, 257-267.

Say, A. C. C,, & Akin, H. L. (2003). Sound and complete qualitagiseulation is impossible.
Artificial Intelligence, 149251-266.

Say, A. C. C., & Kuru, S. (1993). Improved filtering for the QSIMoaidhm. IEEE Transactions
on Pattern Analysis and Machine Intelligent8, 967-971.

Shepherdson, J. C., & Sturgis, H. E. (1963). Computability of reeufsictions.Journal of the
ACM, 10,217-255.

Shults, B., & Kuipers, B. (1997). Proving properties of continuous sgstepualitative
simulation and temporal logidrtificial Intelligence 92,91-129.

Struss, P. (1990). Problems of interval-based qualitative reasdmiiéeld, D. S., & de Kleer, J.
(Eds.)Readings in Qualitative Reasoning about Physical SysteamsMateo, CA: Morgan
Kaufmann, 288-305.

Weld, D. S., & de Kleer, J. (Eds.) (199Readings in Qualitative Reasoning about Physical
SystemsSan Mateo, CA: Morgan Kaufmann.

Yilmaz, O. (2005). Computability-theoretic limitations of qualitative simulatidd. S. Thesis,

Bogazici University,istanbul, Turkey.
(http://www.cmpe.boun.edu.tr/graduate/allthesis/m_3.pdf)

575

