
Journal of Artificial Intelligence Research 27 (2006) 551-575 Submitted 03/06; published 12/06

©2006 AI Access Foundation. All rights reserved.

Causes of Ineradicable Spurious Predictions in Qualitative Simulation

Özgür Yılmaz YILMOZGU@BOUN.EDU.TR
A. C. Cem Say SAY@BOUN.EDU.TR
Department of Computer Engineering
Boğaziçi University
Bebek 34342 Đstanbul, Turkey

Abstract
 It was recently proved that a sound and complete qualitative simulator does not exist, that is,
as long as the input-output vocabulary of the state-of-the-art QSIM algorithm is used, there will
always be input models which cause any simulator with a coverage guarantee to make spurious
predictions in its output. In this paper, we examine whether a meaningfully expressive restriction
of this vocabulary is possible so that one can build a simulator with both the soundness and
completeness properties. We prove several negative results: All sound qualitative simulators,
employing subsets of the QSIM representation which retain the operating region transition feature,
and support at least the addition and constancy constraints, are shown to be inherently incomplete.
Even when the simulations are restricted to run in a single operating region, a constraint
vocabulary containing just the addition, constancy, derivative, and multiplication relations makes
the construction of sound and complete qualitative simulators impossible.

1. Introduction

It was recently proved (Say & Akın, 2003) that a sound and complete qualitative simulator does
not exist, that is, as long as the input-output vocabulary of the state-of-the-art QSIM algorithm
(Kuipers, 1994) is used, there will always be input models which cause any simulator with a
coverage guarantee to make spurious predictions in its output. In this paper, we examine whether
a meaningfully expressive restriction of this vocabulary is possible so that one can build a
simulator which will always output all and only the consistent solutions of its input model. We
prove several negative results: All sound qualitative simulators, employing subsets of the QSIM
representation which retain the operating region transition feature, and support at least the
addition and constancy constraints, are shown to be inherently incomplete. The problem persists
when all variables are forced to change continuously during region transitions if a slightly larger
set of constraint types is allowed. Even when the simulations are restricted to run in a single
operating region, a constraint vocabulary containing just the addition, constancy, derivative, and
multiplication relations makes the construction of sound and complete qualitative simulators
impossible. Our findings may be helpful for researchers interested in constructing qualitative
simulators with improved theoretical coverage guarantees using weaker representations.

2. Background

We start with a brief overview of qualitative simulation, concentrating on the representations used
in the input-output vocabularies of qualitative simulators. Subsection 2.2 summarizes previous
work on the two theoretical properties of qualitative simulators that interest us. Subsection 2.3 is
a short “requirements specification” for a hypothetical sound and complete qualitative simulator.

 YILMAZ & SAY

552

2.1 Qualitative Simulation

In many domains, scientists and engineers have only an incomplete amount of information about
the model governing the dynamic system under consideration, which renders formulating an
exact ordinary differential equation (ODE) impossible. Incompletely specified differential
equations may also appear in contexts where the aim is to find collective proofs for behavioral
properties of an infinite set of systems sharing most, but not all, of the structure of the ODEs
describing them. To proceed with the reasoning task in such cases, mathematical tools embodying
methods making the most use of the available information to obtain a (hopefully small) set of
possible solutions matching the model are needed. Qualitative reasoning (QR) researchers
develop AI programs which use “weak” representations (like intervals rather than point values for
quantities, and general shape descriptions rather than exact formulae for functional relationships)
in their vocabularies to perform various reasoning tasks about systems with incomplete
specifications. In the following, we use the notation and terminology of QSIM (Kuipers, 1994),
which is a state-of-the art qualitative simulation methodology, although it should be noted that the
incompleteness results that we will be proving are valid for all reasoners whose input-output
vocabularies are rich enough to support the representational techniques that will be used in our
proofs.
 A qualitative simulator takes as input a qualitative differential equation model of a system in
terms of constraints representing relations between the system’s variables. In addition to this
model, the qualitative values of the variables at the time point from which the simulation should
start are also given. The algorithm produces a list of the possible future behaviors that may be
exhibited by systems whose ordinary differential equations match the input model.
 The variables of a system modeled in QSIM are continuously differentiable functions of time.
The limits of each variable and their first derivatives exist as they approach the endpoints of their
domains. Each variable has a quantity space; a totally ordered collection of symbols (landmarks)
representing important values that it can take. Zero is a standard landmark common to all
variables. Quantity spaces are allowed to have the landmarks -∞ and ∞ at their ends, so functional
relationships with asymptotic shapes can be explicitly represented. When appropriate, a quantity
space can be declared to span only a proper subset of the extended reals; for instance, it makes
sense to bound the quantity space for a variable which is certainly nonnegative (like pressure)
with 0 at the left. If necessary, the user can specify one or both bounds of a quantity space to be
unreachable; for example, ∞ will be an unreachable value for all variables in all the models to be
discussed in this paper. The (reachable) points and intervals in its quantity space make up the set
of possible qualitative magnitudes of a variable. The qualitative direction of a variable is defined
to be the sign of its derivative; therefore its possible values are: inc (+), dec (−) and std (0). A
variable’s qualitative value is the pair consisting of its qualitative magnitude and qualitative
direction. The collection of the qualitative values of its variables makes up the state of a system.
 The “laws” according to which the system operates are represented by constraints describing
time-independent relations between the variables. At each step of the simulation, QSIM uses a set
of transition rules to implicitly generate all possible “next” values of the variables. The
combinations of these values are filtered so that only those which constitute complete states, in
which every constraint is still satisfied by the new values of its variables, remain.
 There are seven “basic” types of constraints in QSIM. (See Table 1.) Each type of constraint
imposes a different kind of relation on its arguments. For example, if we have the constraint
A(t) = −B(t), any combination of variable values in which variables A and B have the same
(nonzero) sign in their magnitudes or directions will be filtered out. Sometimes, additional
knowledge about the constraints allows further filtering. In the above example, if we know that A
and B had the landmark values a1 and b1 at the same moment at some time in the past, we can

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

553

eliminate all value combinations in which A and B have magnitudes both less (or both greater)
than these landmarks. a1 and b1 are called corresponding values of that constraint, and the
equation a1 = −b1 is a correspondence. Each constraint in a model (except those of the derivative
type) can have such correspondence equations. A “sign algebra” (Kuipers, 1994) is employed to
implement the arithmetic relations using qualitative magnitudes. Note that, since each +M (−M)

relationship corresponds to an infinite number of possible “quantitative” functions having the
monotonicity property, a single QSIM model containing such constraints can correspond to
infinitely many ODEs.

CONSTRAINT NAME NOTATION EXPLANATION
add X(t) + Y(t) = Z(t)

constant X(t) = a landmark
dt

d
X(t) = 0

derivative d/dt(X,Y)
dt

d
X(t) = Y(t)

+M X(t) = f(Y(t)), f ∈ +M
∃f such that X(t) = f(Y(t)), where 0>′f

over f ’s domain

−M X(t) = f(Y(t)), f ∈ −M
∃f such that X(t) = f(Y(t)), where 0<′f

over f ’s domain
minus X(t) = −Y(t)
mult X(t) × Y(t) = Z(t)

Table 1: The Qualitative Constraint Types

 The QSIM input vocabulary enables the user to describe more complicated models in terms of
several different constraint sets representing different operating regions of the system under
consideration. The user specifies the boundaries of the applicability ranges of the operating
regions in terms of conditions which indicate that the simulator should effect a transition to
another operating region when they are obtained.
 For each operating region from which such a transition can occur, one has to specify the
following for each possible transition:
• Boolean expressions composed of primitives of the form “VariableName=QualitativeValue”,

which will trigger this transition when they are satisfied,
• The name of the target operating region,
• The names of variables which will inherit their qualitative magnitudes and/or directions in the

first state after the transition from the last state before the transition,
• Value assignments for any variables which will have explicitly specified values in the first state

after the transition.

 When provided with a qualitative system model, the name of the initial operating region, and a
description of the qualitative values of all variables in the initial state, QSIM starts simulation,
and generates a tree of system states to represent the solutions of the qualitative differential
equation composed of the constraints in its input. The root of this tree is the input initial state with
the time-point label t0, representing the numerical value of the initial instant. Every path from the

 YILMAZ & SAY

554

root to a leaf is a predicted behavior of the system. Being in the qualitative format, each such
behavior usually corresponds to an infinite set of trajectories sharing the same qualitative
structure in phase space. Time-point and interval states appear alternately in behaviors as long as
the same operating region is valid. Operating region transitions are reflected in behaviors as two
time-point states following each other.

2.2 Related Work on Soundness and Incompleteness

A very important property of qualitative simulators is their “coverage guarantee”: A qualitative
simulation algorithm is sound if it is guaranteed that, for any ODE and initial state that matches
the simulator’s input, there will be a behavior in its output which matches the ODE’s solution.
Kuipers (1986) proved that there exists a qualitative simulator (namely, QSIM) that has the
soundness property. This guarantee makes qualitative simulation a valuable design and diagnosis
method (Kuipers, 1994): In design, if the set of simulation predictions of our model does not
contain a catastrophic failure, this is a proof that our modeled system will not exhibit that failure
(Shults & Kuipers, 1997). In diagnosis, if none of the behaviors in the simulation output of a
model is being exhibited by a particular system, we can be 100% sure that the actual system is not
governed by that model.
 Another property that one would wish one’s qualitative simulator to possess is completeness;
that is, a guarantee that every behavior in its output corresponds to the solution of at least one
ODE matching its input. In the early days of QR research, it was conjectured (de Kleer & Brown,
1984) that qualitative simulators employing local constraint satisfaction methods (Weld & de
Kleer, 1990) were complete. However, in the same paper which contained the guaranteed
coverage theorem, Kuipers (1986) also showed that the version of QSIM described there, and,
indeed, all qualitative simulators of the day, were incomplete, by demonstrating that the
simulation of a frictionless mass-spring oscillator predicts unrealizable (spurious) behaviors,
where the amplitude decreases in some periods and increases in others. The lack of a guarantee
that all the predicted behaviors are real has a negative impact on potential applications: In design,
if the set of simulation predictions of our model does contain a catastrophic failure, this does not
necessarily point to an error in our mechanism; maybe the prediction in question was just a
spurious behavior. A similar problem occurs in diagnosis applications.
 Several other types of spurious qualitative simulation predictions were discovered in the
following years: Struss (1990) pointed out that, whenever a variable appeared more than once in
an arithmetic constraint, spurious states could pass the filter. For instance, the filters of the add
constraint are unable to delete states involving nonzero values for the variable Z in the equation
A(t) + Z(t) = A(t) when A is nonzero. Clearly, any sound and complete qualitative simulator
would have to possess the algebraic manipulation capabilities that enable us to conclude that Z= 0
in this case. Say and Kuru (1993) discovered a class of spurious predictions caused by a rigidity
in the internal representation of correspondences, and an unnecessarily weak implementation of
subtraction. Say (1998) showed that some other spurious behaviors are due to a lack of explicit
enforcement of l’Hôpital’s rule in the original algorithm. Yet another family of inconsistent
predictions was found out to be caused by weaknesses in the methods used to distinguish finite
and infinite time intervals in the behaviors (Say, 2001, also see Missier, 1991). Könik and Say
(2003) proved that some model and behavior descriptions could “encode” information about the
relative (finite) lengths of the intervals that they contain, and failure to check the overall
consistency of these pieces of information yields another class of spurious predictions. Finally,
Say (2003) showed that a similar encoding could occur about the exact numerical values of some
landmarks, so that a sound and complete qualitative simulator would have to support a capability

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

555

of comparing the magnitudes of any two elements of a very rich subset of the real numbers to
avoid a particular set of spurious predictions.
 Interestingly, all these discoveries were actually good news for the users of qualitative
simulators: In order to be able to say that a particular predicted behavior is spurious, and therefore
suitable for elimination from the simulator output without forsaking the soundness property, one
first proves that that behavior is mathematically inconsistent with the simulated model and
starting state. For instance, the aforementioned spurious oscillations of the frictionless mass-
spring system can be shown to violate a conservation constraint that follows directly from the
structure of the input equations. But this proof can itself be seen as the specification of a new
filter routine which would eliminate exactly the set of behaviors that violate the “law” that it
establishes. The kinetic energy constraint (Fouché & Kuipers, 1992) is a filter which has been
developed in this fashion to eliminate the class of spurious predictions exemplified by the ones
about the mass-spring system (Kuipers 1994). So all the spurious prediction classes mentioned in
the previous paragraph had, in fact, been discovered simultaneously with their “cures.”
 The question of whether there exists a sound and complete qualitative simulator was finally
settled by Say and Akın (2003). They proved that, for any sound qualitative simulator using the
input-output representation and task specification of the QSIM methodology, there exist input
models and initial states whose simulation output will contain spurious predictions. (Note that this
does not just say that the present QSIM algorithm can not be augmented by more filters to make it
both sound and complete; it refutes the existence of any program whatsoever that can perform
this job.)
 The proof by Say and Akın (2003) shows that a sound and complete qualitative simulator
employing the vocabulary mentioned above, if it existed, could be used to solve any given
instance of Hilbert’s Tenth Problem, which is famously undecidable (Matiyasevich, 1993). The
procedure involves building a QSIM model representing the given problem, simulating it several
times starting from carefully constructed initial states representing candidate solutions, and
examining the output to read out the solution. The model is set up to contain an inconsistency if
and only if the answer to the considered problem is “no,” so the very existence of one or more
behaviors in the output means “yes.” Since it is impossible to make this decision correctly in the
general case, it follows that there would be input models giving rise to behavior predictions
whose consistency status can not be determined by the simulator, whose best course of action
would be to include them in the output, to keep the soundness guarantee intact. In the cases where
the correct answer is “no,” this would result in the prediction of spurious behaviors. Note that
these are ineradicable spurious predictions, unlike the ones discussed earlier.
 It is important to note that this proof does not necessarily mean that all hope of constructing a
sound and complete qualitative simulator is lost. One may try to “weaken” the input-output
representation so that it no longer possesses the problematic power which enables one to
unambiguously encode instances of Hilbert’s Tenth Problem into a QSIM model. (Of course, this
weakening must be kept at the minimum possible level for the resulting program to be a useful
reasoner; for instance, removing the program’s ability to distinguish between negative and
nonnegative numbers would possibly yield a sound and complete simulator, but the output of that
program would just state that “everything is possible” and this is not what we want from these
methods.) This is why one should examine the incompleteness proof (Say & Akın, 2003) to see
exactly which features of the QSIM representation are used in the construction of the reduction;
any future qualitative simulator supporting the same vocabulary subset would be incorporating
the same problem from the start.
 Here is a listing of the QSIM representational items used in that proof: Only the M+,
derivative, mult, and constant constraint types are utilized. (Note the absence of the add
constraint, which can be “implemented” using the others, in this list.) Qualitative interval

 YILMAZ & SAY

556

magnitudes like (0, ∞), with what one might call “infinite uncertainty” about the actual value of
the represented number, are used for initializing several variables, and form an essential part of
the argument. QSIM’s ability to explicitly represent infinite limits is utilized for equating a
landmark to the number π, by stating that it is twice the limit of the function arctan x as x nears
infinity. Finally, the operating region transition feature is used heavily, since it is thanks to this
characteristic that the sine function between two dependent variables can be represented in the
qualitative vocabulary.
 In Section 3, we examine several different ways of weakening the QSIM vocabulary to try to
understand which combinations of these features are responsible for the problem of ineradicable
spurious predictions.

2.3 Desiderata for a Sound and Complete Qualitative Simulator

It is important at this point to clarify exactly what one would expect from a hypothetical sound
and complete qualitative simulator. If the input model yields a finite behavior tree of genuine
solutions, it is obvious that the program is supposed to print the descriptions of the behaviors
forming the branches of this tree, and nothing else, in finite time. If the input model and initial
state are inconsistent, i.e., the “correct” output is the empty tree, the program should report this
inconsistency in finite time.
 Finally, if the input yields a behavior tree with infinitely many branches, the program is
supposed to run forever, adding a new state to its output every once in a while. More formally, for
every positive i, there has to be an integer s such that the program will have printed out the “first”
i states of the behavior tree (according to some ordering where the root, i.e. the initial state, is
state number 1, and no descendants of any particular state are printed before that state itself) at
the end of the sth step in its execution. Note that these requirements mean that a sound and
complete simulator would have to be able to decide whether the initial system state description
given to it is consistent with the input model or not within finite time. This necessity is used in the
proofs of incompleteness in Section 3.

3. New Incompleteness Results for Qualitative Simulators

In this section, we examine two different ways of restricting the qualitative vocabulary in the
hope of obtaining a representation which allows the construction of sound and complete
simulators. Subsection 3.1 considers the usage of several reduced sets of qualitative constraint
types, while retaining the operating region transition feature. We also examine a possible
restriction on the way variable values are handled during operating region transitions. Subsection
3.2 is an investigation of the capabilities of qualitative simulators which are restricted to input
models with a single operating region. Both variants are shown to exhibit the problem of
ineradicable spurious predictions when the soundness guarantee is present.

3.1 Reduced Constraint Sets

The results in this subsection are based on the undecidability properties of abstract computational
devices called unlimited register machines (URMs). We first present a brief introduction to
URMs, and then proceed with our proofs.

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

557

3.1.1 UNLIMITED REGISTER MACHINES

The easiest way of thinking about a URM is to see it as a computer with infinite memory which
supports a particularly simple programming language. A URM (Cutland, 1980) program P
consists of a finite sequence of instructions I1, I2, ..., I|P|. The instructions refer to the machine’s
registers Ri, each of which can store an arbitrarily big natural number. We use the notation r1, r2,
r3, ... for the register contents.

For our purposes, it will be sufficient to consider three types of URM instructions:

succ(n): Increment the content of register n by one.
 Rn ← rn + 1
zero(n): Set the content of register n to zero.
 Rn ← 0
jump(m, n, q): Compare registers m and n. If they are equal, continue with instruction q.
 If rm = rn then jump to Iq

A URM program starts execution with the first instruction. If the current instruction is not a
jump whose equality condition is satisfied, it is followed by the next instruction in the list. The
program ends if it attempts to continue beyond the last instruction, or if a jump to a nonexistent
address is attempted. We assume without loss of generality that all such jumps are to address I|P|+1.

If P = I1, ..., I|P| is a URM program, it computes a function P(k) : Nk → N. P(k)(a1, ..., ak) is
computed as follows:

- Initialization: Store a1, ..., ak in registers R1, ..., Rk, respectively, and set all other registers
referenced in the program to 0.

- Iteration: Starting with I1, execute the instructions in the order described above.
- Output: If the program ends, then the computed value of the function is the number r1
contained in register R1. If the program never stops, then P(k)(a1, ..., ak) is undefined.

Table 2 contains an example URM program which computes the function f(x, y) = x+ y. Note
that the function is from N2 to N, where the input values x and y are stored in registers R1 and R2,
and the output of the function is expected to be stored in R1 at the end of the program.

I1: zero(3)

I2: jump(2, 3, 6)

I3: succ(1)

I4: succ(3)

I5: jump(1, 1, 2)

Table 2: URM Program Computing f(x, y) = x + y

 The program first sets R3 to zero. It then checks to see if R2 = R3 (in the case that y = 0).
Otherwise, it increments both R1 and R3. This continues until x has been incremented y times, and
the value in R1 is returned.
 The URM model of computation is equivalent to the numerous alternative models such as the
Turing machine model, the Gödel-Kleene partial recursive functions model and Church’s lambda

 YILMAZ & SAY

558

calculus, (Cutland, 1980; Shepherdson & Sturgis, 1963) in the sense that the set of functions
computable by URMs is identical to the set of the functions that can be computed by any of the
other models. This means that a device which can simulate any given URM is as powerful as a
Turing machine, since it can simulate any given Turing machine. In our proofs of the
incompleteness of the QSIM vocabulary with reduced constraint sets, we will make use of the
fact that the halting problem for URMs is undecidable (Cutland, 1980).

3.1.2 SOUND AND COMPLETE QSIM WITH REDUCED CONSTRAINT SETS SOLVES THE HALTING

PROBLEM

All the incompleteness results about new subsets of the QSIM vocabulary that are presented in
this subsection are based on the following theorem, which shows that QSIM can simulate any
URM, and thereby has Turing-equivalent computational power.

Theorem 1: The execution of any URM program P with |P| instructions on any given input can
be represented by the simulation of a QSIM model with |P|+2 operating regions.

Proof: The proof will be by construction. Suppose we are given a URM program P with
instructions I1, ..., I|P|. Let R1, ..., RN be the registers mentioned in the instructions of P.
 For each of the Ri, we define a QSIM variable NRi which will represent it, and, in case Ri has a
nonzero initial value ai, a set of auxiliary QSIM variables for representing ai. Table 3 describes
the idea behind this representation. We have four more variables named U, W, Z, and B. U
represents a “clock” which rises from 0 to 1 in every computational step. W is the derivative of U.
Z is constant at zero in every operating region. B is an additional auxiliary variable.

CONSTRAINTS INITIAL VALUES CONCLUSIONS

ONE(t) × ONE(t) = ONE(t) ONE(t0) = one ∈ (0, ∞) ONE is constant at 1
ONE(t) + ONE(t) = TWO(t) TWO is constant at 2

ONE(t) + TWO(t) = THREE(t) THREE is constant at 3

Table 3: QSIM Model Fragment Demonstrating the Representability of Exact Integer Values

 Our QSIM model will have |P|+2 operating regions: Each instruction Ii of P will have a
corresponding operating region named OpRegi. The two remaining regions are OpReg0,
corresponding to the “initialization” stage of P, and OpReg|P|+1, corresponding to its end.
 The specification of each operating region must contain the constraints that are valid in that
region, the Boolean conditions (if any) composed of primitives of the form
Variable = <qualitative magnitude, qualitative direction> which would trigger transitions to
other operating regions when they are obtained, and lists that detail which variables inherit their
previous magnitudes and/or directions after such a transition, and which of them are initialized to
new values during that switch. Tables 4-9 describe how to prepare these items for the operating
regions in our target model, based on the program P. There are five different operating region
templates (or “types”) used in the construction; one for each URM instruction type, one for
OpReg0, and one for OpReg|P|+1.
 The model of OpReg0 is depicted in Table 4. This is where our simulation of P will start. All
the NRi variables are equated to their proper initial values specified by the “user” of P: The ones
initialized to zero are handled by “constant at 0” constraints. The ones with positive initial values

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

559

are specified to be constant at those values using add constraints to link them to the “number”
variables exemplified in Table 3; for instance, if NR2 is to be initialized to three, we have the
constraint THREE(t) + Z(t) = NR2(t). The add constraint between B, U, and ONE serves to express
the fact that the landmark named one in U’s quantity space is also equal to 1. (Note that all the
add constraints mentioned in this paragraph exist only in OpReg0, since they would disrupt the
intended behavior in the other operating regions.)
 As seen in Tables 4-8, exactly which variables keep their values during a transition depends on
the type of the target operating region. Regions corresponding to instructions of the type zero(n)
should not inherit the value of Rn from their predecessors, since they involve the replacement of
that value by zero anyway. All other types of regions, including the succ(n) type, inherit all the
register contents from their predecessors. (Although the value of Rn does change in a succ
instruction, the new value depends on the old one, unlike the case of zero(n). The corresponding
QSIM variable NRn increases continuously during the simulation of a region of type succ(n), and
a new region transition occurs exactly at the moment when it has increased by one unit.)

Operating Region: OpReg0

{Type: Initialization}

Constraint Set: d/dt(U, W)

 B(t) + U(t) = ONE(t) with correspondence “0 + one = one”

 All the required “number representation” constraints (see Table 3)

 add constraints linking the NRi to the relevant “number” variables (see text)

 All variables except U and B are constant.

Possible Transition:

 Trigger: (U = <one, inc>)

 New operating region: OpReg1

 Variables inheriting magnitudes or directions: See Table 5, indexed by the type of OpReg1

 Variables with new asserted values: U ← <0, inc>

Table 4: Model of the Operating Region OpReg0, Corresponding to the Initialization of the URM

TYPE OF TARGET
REGION

VARIABLES INHERITING
QUALITATIVE MAGNITUDES

VARIABLES INHERITING
QUALITATIVE DIRECTIONS

jump(m, n, q) All variables except U and B All variables except U, B, and all the NRi

succ(n) All variables except U and B All variables except U, B, and all the NRi

zero(n) All variables except U and NRn All variables except U, B, and all the NRi

End All variables except U All variables except U and all the NRi

Table 5: Variables which should Inherit Magnitudes and/or Directions According to the Type of
the Target Operating Region

 YILMAZ & SAY

560

 The simulation of the given URM program proceeds as follows: As described in the previous
subsection, the URM starts with an initial configuration, where the registers R1, ..., Rk store the
nonnegative integers a1, ..., ak, which form the input of the program, respectively. The other N−k
registers are set to 0. Correspondingly, each of the NRi variables in our QSIM model has the
quantity space [0, ∞). The NRi variables with nonzero initial values start simulation with
qualitative values <(0, ∞), std>, whereas the other ones start with <0, std>. The quantity space of
the variable U is [0, one], where the landmark one is equated to 1, as mentioned above. U starts
initially at qualitative value <0,inc>. The derivative of U, W, has as quantity space [0, speed, ∞),
where speed is also equated to 1. It starts at qualitative value <speed, std> and is constant in the
whole simulation. The variable B has the quantity space (-∞, 0, ∞) and starts at <(0, ∞), dec>.
When started in OpReg0, QSIM will compute a single qualitative behavior segment, which ends
with a transition to OpReg1 when U reaches <one, inc> at time-point t1.

Operating Region: OpRegi

{Type: zero(n)}

Constraint Set: d/dt(U, W)

 NRn(t) = 0

 All variables except U are constant.

Possible Transition:

 Trigger: (U = <one, inc>)

 New operating region: OpRegi+1

 Variables inheriting magnitudes or directions: See Table 5, indexed by the type of OpRegi+1

 Variables with new asserted values: U ← <0, inc>

Table 6: Model Template for Operating Regions Corresponding to zero(n) Instructions

Operating Region: OpRegi

{Type: succ(n)}

Constraint Set: d/dt(U, W)

 B(t) + U(t) = NRn(t)

 All variables except U and NRn are constant.

Possible Transition:

 Trigger: (U = <one, inc>)

 New operating region: OpRegi+1

Variables inheriting magnitudes or directions: See Table 5, indexed by the type of OpRegi+1

 Variables with new asserted values: U ← <0, inc>

Table 7: Model Template for Operating Regions Corresponding to succ(n) Instructions

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

561

 Note that there is zero uncertainty about the values of all variables, even the ones with initial
magnitude (0, ∞), at the start of the simulation.
 Our model is so constrained that a sound and complete qualitative simulator is guaranteed to
produce exactly one behavior prediction for any initial state corresponding to a valid URM input.
To see this, it is sufficient to observe that, at any step of the simulation, there is sufficient
information available to the simulator to compute the exact numerical value of every variable in
the model. (This just corresponds to “tracing” the URM program and keeping note of the register
contents up to that step.) If the modeled URM halts on the particular input given in the initial
state, the QSIM behavior is supposed to be a finite one, ending when the variable U attempts to
exceed one in OpReg|P|+1. If the URM computation does not halt, then the QSIM behavior is
supposed to be a single infinite sequence of states, which never visits OpReg|P|+1. □

Operating Region: OpRegi

{Type: jump(m, n, q)}

Constraint Set: d/dt(U, W)

 NRm(t) + B(t) = NRn(t)

 All variables except U are constant.

Possible Transition:

 Trigger: (U = <one, inc>) AND (B ≠ <0, std>)

 New operating region: OpRegi+1

 Variables inheriting magnitudes or directions: See Table 5, indexed by the type of OpRegi+1

 Variables with new asserted values: U ← <0, inc>

Possible Transition:

 Trigger: (U = <one, inc>) AND (B = <0, std>)

 New operating region: OpRegq

 Variables inheriting magnitudes or directions: See Table 5, indexed by the type of OpRegq

 Variables with new asserted values: U ← <0, inc>

Table 8: Model Template for Operating Regions Corresponding to jump(m, n, q) Instructions

Operating Region: OpReg|P|+1

{Type: End}

Constraint Set: d/dt(U, W)

 All variables except U are constant.

Table 9: Model of the Operating Region OpReg|P|+1, Corresponding to the End of the URM
Program

 We are now ready to state a new version of the incompleteness theorem.

 YILMAZ & SAY

562

Theorem 2: Even if the qualitative representation is narrowed so that only the derivative, add,
mult, and constant constraints can be used in QDE’s, and each variable is forced to start at a finite
value with zero uncertainty in the initial state, it is still impossible to build a sound and complete
qualitative simulator based on this input-output vocabulary.

Proof: Assume that such a sound and complete simulator exists. We now show how to solve the
halting problem for URMs using that algorithm as a subroutine.
 Construct the corresponding QSIM model as described in Theorem 1 for the URM program P
whose halting status on a particular input is supposed to be decided. Now define a new variable S
with quantity space [0, one, ∞), where the landmark one is equated to the number 1. S starts at the
value <one, std> in the initial state. Add constraints indicating that S is constant to all the
operating regions, and specify that the value of S is inherited in all possible transitions. Insert the
new constraint S(t) = 0 in OpReg|P|+1. Consider what the simulator is supposed to do when
checking the initial state for consistency. Note that we would have an inconsistency if the
simulation ever enters OpReg|P|+1, since the new constraint that we inserted to that region says that
S is zero, which would contradict with the inherited value of one. So a simulator which is
supposed not to make any spurious predictions is expected to reject the initial state at time t0 as
inconsistent if the simulation is going to enter OpReg|P|+1, in other words, if the URM program
under consideration is going to halt. If this sound and complete simulator does not reject the
initial state due to inconsistency, but goes on with the simulation, then we can conclude that the
program P will not halt. This forms a decision procedure for the halting problem. Since the
halting problem is undecidable, we have obtained a contradiction, and conclude that a sound and
complete simulator using this representation can not exist. □

 It is in fact possible to remove the derivative constraint (which is only used in our proof to
ensure that the behavior tree has at most one branch) from the representation as well, and the
incompleteness result shown above would still stand:

Theorem 3: Even if the qualitative representation is narrowed so that only the add, mult, and
constant constraints can be used in QDE’s, and each variable is forced to start at a finite value
with zero uncertainty in the initial state, it is still impossible to build a sound and complete
qualitative simulator based on this input-output vocabulary.

Proof: We will make a minor modification to the proof of Theorem 2. We observe that in the
construction of Theorem 1, U always starts every operating region at <0, inc> and the fact that its
derivative is a positive constant forces it to reach the value <one, inc> in the next time point.
Then the transition to next operating region occurs, and U again receives the value <0, inc>. What
happens if we remove the variable W and all derivative constraints from the model? In this case,
since U’s derivative is not fixed, there are three possible states for U in the second time point
during the simulation of any operating region: <one, inc>, <one, std>, and <(0, one), std>. We fix
this problem by inserting another possible region transition specification to all of our regions,
except OpReg|P|+1. This transition will be triggered when U has one of the values <one, std>, and
<(0, one), std>, and its target will be OpReg|P|+1. The variable S from the proof of Theorem 2, as
well as all other variables, are inherited completely during this transition. So all the “unwanted”
behaviors which would be created due to the elimination of U’s derivative end up in OpReg|P|+1,
and should therefore be eliminated as spurious in accordance with the argument of the previous
proof. Hence, once again, the simulator is supposed to accept the initial state as consistent if and
only if P does not halt, meaning that a sound and complete simulation is impossible with this
representation as well. □

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

563

 Interestingly, one can even restrict the representation so that only nonnegative numbers are
supported, and the incompleteness result we proved above still stands:

Theorem 4: Even if the qualitative representation is narrowed so that only the add, mult, and
constant constraints can be used in QDE’s, each variable is forced to start at a finite value with
zero uncertainty in the initial state, and no variable is allowed to have a negative value at any time
during the simulation, it is still impossible to build a sound and complete qualitative simulator
based on this input-output vocabulary.

Proof: In our previous proof, only variable B ever has the possibility of having a negative value,
and that can occur only in a jump region. We replace the definition of the jump region template
with Table 10, and introduce the new variables C and Y. We insert constraints that say that these
variables are constant to all operating regions. C and Y start at zero, and are inherited by all
transitions, except when the target region is of type jump. As can be seen in Table 10, B gets the
value 1 if and only if the two compared register values are equal. If they are unequal, B has a
positive value different than 1. In this setup, B’s quantity space is defined as [0, one, ∞), where
one is equated to 1, and no variable ever has a negative value during the simulation. B now starts
simulation with the value <one, dec> to satisfy the add constraint seen in Table 4. The rest of the
argument is identical to that of Theorem 3. □

Operating Region: OpRegi

{Type: jump(m, n, q)}

Constraint Set: NRm(t) + ONE(t) = C(t)

 NRn(t) + ONE(t) = Y(t)

 B(t) × C(t) = Y(t)

 All variables except U are constant.

Possible Transition:

 Trigger: (U = <one, inc>) AND (B ≠ <one, std>)

 New operating region: OpRegi+1

 Variables inheriting magnitudes or directions: Depends on the type of OpRegi+1, as before

 Variables with new asserted values: U ← <0, inc>

Possible Transition:

 Trigger: (U = <one, inc>) AND (B = <one, std>)

 New operating region: OpRegq

 Variables inheriting magnitudes or directions: Depends on the type of OpRegq, as before

 Variables with new asserted values: U ← <0, inc>

Table 10: Alternative Model Template for Operating Regions Corresponding to jump(m, n, q)
Instructions which Avoids Negative Numbers

 Alternatively, we can keep negative numbers and remove the mult constraint from the
representation, if we drop the requirement that each variable starts simulation at a value with zero
uncertainty.

 YILMAZ & SAY

564

Theorem 5: Even if the qualitative representation is narrowed so that only the add and constant
constraints can be used in QDE’s, it is still impossible to build a sound and complete qualitative
simulator based on this input-output vocabulary.

Proof: We used the mult constraint in the proofs of Theorems 1-3 only for equating variable and
landmark values to unambiguous integers. Assume that we delete the mult constraints from our
model of Theorem 3. The “number” variables of Table 3 are replaced with the setup shown in
Table 11. If Ri is supposed to be initialized to the positive integer ai in P, we equate NRi to the
“ai×unit” variable in OpReg0 using the method explained in the proof of Theorem 1. Note that we
only use constant and add constraints (and a lot of auxiliary variables) for this purpose.

CONSTRAINTS CONCLUSIONS

ONEUNIT(t) = unit
ONEUNIT(t) + ONEUNIT(t) = TWOUNITS(t) TWOUNITS is constant at 2×unit

ONEUNIT(t) + TWOUNITS(t) = THREEUNITS(t) THREEUNITS is constant at 3×unit

Table 11: Sample Model Fragment for Equating Variables to Integer Multiples of the Positive
Landmark unit

 The landmarks previously named one in other variables’ quantity spaces are now equated to
unit. In this new model, execution of a succ(n) instruction increments NRn’s value by one unit.
The jump instruction compares landmarks whose values equal u×unit and v×unit instead of
comparing two landmarks whose values equal the natural numbers u and v. The zero instruction
sets the target register to 0, as in the previous construction. So the modeled machine does just
what the original URM does, since the multiplication of all values by the coefficient unit does not
change the flow of the program, and, in particular, whether it halts on its input or not. The rest of
the argument is identical to that of the proof of Theorem 3. □

 We observe that some of the variables change their qualitative magnitudes and directions
discontinuously during operating region transitions in the proofs of the previous theorems. The
next theorem proves that maintaining soundness and completeness simultaneously is impossible
even if we do not allow any qualitative variable to perform such a change, and force each
variable’s magnitude and direction to be inherited to the next operating region.

Theorem 6: Even if the qualitative representation is narrowed so that only the derivative, add and
constant constraints can be used in QDE’s, and no variable’s magnitude and direction are allowed
to perform discontinuous changes during operating region transitions, it is still impossible to build
a sound and complete qualitative simulator based on this input-output vocabulary.

Proof: Once again, we make some changes to the QSIM models used for simulating the given
URM in the previous theorems. As always, we have a QSIM variable NRi for each of the N
registers Ri appearing in the URM program. In addition to that, we define the variables Dij for all
i, j ∈ {1 , ...,N} such that i ≠ j. Each of these satisfies the equation Dij = NRi – NRj throughout the
simulation; that is, we keep track of the differences of all pairs of register values. This can clearly
be achieved by inserting several add constraints to all the operating regions in our model. These
difference variables will enable us to compare two register values in operating regions of type
jump.

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

565

 Furthermore, we define auxiliary variables TRi for all i ∈ {1 , ..., N}. All the TRi are initialized
to the same values as the corresponding NRi, using the same technique as for the NRi.
 For each instruction type in the given URM program, we define two operating regions. Our
clock variable U will increase in the first of these operating regions to the value <unit, std>, and
decrease in the next one from <unit, std> to <0, std>, performing no discontinuous jump in the
program. In order to obtain a variable with such behavior, we make use of the simple harmonic
oscillator model given in Table 12, where the variable X (denoting the displacement from the
“rest” position of the oscillating “object”) oscillates between the values unit/2 and −unit/2, and
the variable U is equated to X + unit/2, oscillating between 0 and unit. The model template given
in Table 12 is added to every operating region. (That table contains some variable names used in
the constructions of the previous proofs. All such variables are treated in the previously described
manner, unless this proof specifies otherwise.) The following lemma establishes the correctness
of this construction.

CONSTRAINTS CORRESPONDENCES MEANING

HALFUNIT(t) + HALFUNIT(t) = ONEUNIT(t) c1 + c1 = unit c1 = unit / 2

HALFUNIT(t) + V(t) = E(t) c1 + v1 = 0 v1 = −unit / 2

d/dt(X, V) V
dt

dX =

d/dt(V, A) A
dt

Xd =
2

X(t) + A(t) = Z(t) 0
2

=+ X
dt

Xd

X(t) + HALFUNIT(t) = U(t) U = X+unit/2

Table 12: Model Template to Obtain the Desired Behavior for the Variable U as a Clock
Oscillating between Qualitative Values <0, std> and <unit, std> (This Template is to be Inserted

to All Constructed Operating Regions.)

Lemma 7: For any number r which can be represented by a QSIM landmark, a QSIM variable X
can be equated to the function r sin(t − t0) using only derivative, add and constant constraints.

Proof of Lemma 7:
As seen in Table 12, the equation

 () () 0
2

=+ tXtX
dt

d

can be expressed using only derivative, add and constant constraints. This equation has a general
solution of the form

 () tctctX cossin 21 += , (1)

 YILMAZ & SAY

566

and hence its time derivative V has the form

() tctctV sincos 21 −= .

Assume that X and V are initialized as follows:

() 00 =tX

() rtV =0 .

By substituting these values in the equations above, one obtains the equation system

0201 cossin0 tctc +=

0201 sincos tctcr −= ,

whose solution (Yılmaz, 2005) yields c1 = r cos t0 and c2 = −r sin t0. Substituting c1 and c2 into
Equation (1), we get () () ()000 sincossinsincos ttrttttrtX −=−×= , thereby proving the
lemma. □

Proof of Theorem 6 (continued):
Therefore, if we equate the landmark v1 of V to −unit/2 as shown in Table 12, and initialize X and
V to 0 and v1, respectively, we will ensure that

() ()0sin
2

tt
unit

tX −−= ,

i.e., that the variable X oscillates between the values unit/2 and −unit/2, as desired.
 To be consistent with Lemma 7, the oscillating variables of Table 12 start simulation with the
qualitative values listed in Table 13. All other variables, except B, which starts with the value
<(0,∞), inc>, are initialized as previously described.

VARIABLE QUANTITY SPACE INITIAL VALUE

U [0, unit] <(0, unit), dec>

E (-∞, 0, ∞) <0, std>

X (-∞, 0, ∞) <0, dec>

V (-∞, v1, 0, ∞) <v1, std>

A (-∞, 0, ∞) <0, inc>

Table 13: The Quantity Spaces and Initial Values of the Oscillating Variables

 We are going to denote the two operating regions corresponding to the i th instruction of the
URM program with OpRegi,1 and OpRegi,2. All variables’ qualitative values are inherited in all
possible transitions, such that no variable ever undergoes a discontinuous change. Looking
carefully at Tables 14-21, which correspond to the initialization, instruction types, and ending of
the URM, we see that the simulation flows in a unique branch with the exception of zero type

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

567

operating regions, where there is the possibility that the simulation branches into more than one
behavior, and the behaviors which do not correspond to the expected trajectory of the actual
URM are directed to OpReg|P|+1,1. (Note that transitions to infinite landmarks do not need to be
considered, since we assume that all infinite landmarks are specified as unreachable values for all
variables in our models.) The registers stay constant when OpReg|P|+1,1, which is a single operating
region corresponding to the end of the URM program, is reached. The rest of the proof is the
same as in Theorem 2. Our contradiction variable S ensures that only the behavior of a non-
halting URM leads to a consistent initial state, hence determining the consistency of the initial
state is equivalent to deciding the halting problem, leading to a contradiction. □

Operating Region: OpReg0

{Type: Initialization}

Constraint Set: All the required “input value representation” constraints (see Table 11)

 B(t) + U(t) = ONEUNIT(t) with correspondence “0 + unit = unit”

 add constraints linking the NRi and the TRi to the relevant “n×unit” variables

 add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except B, U, X, V, E, and A are constant.

Possible Transition:

 Trigger: (U = <0, std>)

 New operating region: OpReg1,1

 Variables inheriting qualitative values: All variables

Table 14: Template for the Single Operating Region Corresponding to the Initialization Stage

3.2 Simulation within a Single Operating Region

The incompleteness proofs in subsection 3.1 (as well as that of Say & Akın, 2003) depend on the
capability of “turning the constraints on or off” when necessary, which is provided by the
operating region transition feature. Would the problem persist if we forsook that feature, and
focused on the simulation of qualitative models with a single operating region? We now show
that the answer to this question is affirmative.

3.2.1 HILBERT’S TENTH PROBLEM

As the name suggests, Hilbert’s Tenth Problem is the tenth of 23 problems which were
announced in 1900 by the famous mathematician David Hilbert as a challenge to the
mathematicians of the 20th century. It asks for an algorithm for deciding whether a given
multivariate polynomial with integer coefficients has integer solutions. It has been proven that no
such algorithm exists (Matiyasevich, 1993). This fact was used by Say and Akın (2003) in their
original proof of the existence of ineradicable spurious predictions in the outputs of all qualitative
simulators employing the operating region transition feature and a larger set of constraint types
than those we deal with in this paper.

 YILMAZ & SAY

568

 In the proof to be presented shortly, we use the undecidability of a slightly modified variant of
the setup described by Hilbert: We assume a guarantee that none of the variables in the given
polynomial are zero in the solution whose existence is in question. It is clear that this modified
problem is unsolvable as well, by the following argument: Assume that we do have an algorithm
A which takes a multivariate polynomial with integer coefficients as input, and announces
whether a solution where all the variables have nonzero integer values exists or not in finite time.
We can use A as a subroutine in the construction of the algorithm sought in Hilbert’s original
problem as follows: We systematically produce 2n polynomials from the input polynomial with n
variables, such that each of these new polynomials corresponds to a different subset of the
variables of the original polynomial replaced with zero. We then run A on each of these new
polynomials. It is easy to see that A will find that one or more of these polynomials have nonzero
integer solutions if and only if the original polynomial has integer solutions.

Operating Region: OpRegi,1

{Type: zero(n)}

Constraint Set: add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, A, NRn, and Dij with n ∈ { i,j} are constant.

Possible Transition:

 Trigger: (U = <unit, std>) AND (NRn = <0, std>)

 New operating region: OpRegi,2

 Variables inheriting qualitative values: All variables

Possible Transition:

 Trigger: ((U = <unit, std>) AND (NRn ≠ <0, std>)) OR (NRn = <(0, ∞), std>) OR (NRn = <(-∞, 0), std>)

 New operating region: OpReg|P|+1, 1

 Variables inheriting qualitative values: All variables

Table 15: Template for the First Operating Region Corresponding to zero(n) Instructions

3.2.2 SOUND AND COMPLETE QSIM WITHIN A SINGLE OPERATING REGION SOLVES HILBERT’S

TENTH PROBLEM

Theorem 8: Even if the qualitative representation is narrowed so that only the derivative, add,
mult and constant constraints can be used in QDE’s, and the simulation proceeds only in a single
operating region, it is still impossible to build a sound and complete qualitative simulator based
on this input-output vocabulary.

 We are going to start our proof with some preliminary lemmata, the first of which is
reminiscent of Lemma 7 from the previous subsection:

Lemma 9: For any real constant equated to the QSIM variable Xi, a QSIM variable Yi can be
equated to the function ()()0sin ttX i −× using only derivative, add, mult, and constant constraints.

Proof: The case for Xi = 0 is trivial, and can be handled with a single constant constraint. For the
remaining case, we will consider the following equation set:

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

569

Operating Region: OpRegi,2

{Type: zero(n)}

Constraint Set: add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, A, and TRn are constant.

Possible Transition:

 Trigger: (U = <0, std>) AND (TRn = <0, std>)

 New operating region: OpRegi+1,1

 Variables inheriting qualitative values: All variables

Possible Transition:

 Trigger: ((U = <0, std>) AND (TRn ≠ <0, std>)) OR (TRn = <(0, ∞), std>) OR (TRn = <(-∞, 0), std>)

 New operating region: OpReg|P|+1, 1

 Variables inheriting qualitative values: All variables

Table 16: Template for the Second Operating Region Corresponding to zero(n) Instructions

Operating Region: OpRegi,1

{Type: succ(n)}

Constraint Set: TRn(t)+ U(t)= NRn(t)

 add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, A, NRn, and Dij with n ∈ { i,j} are constant.

Possible Transition:

 Trigger: (U = <unit, std>)

 New operating region: OpRegi,2

 Variables inheriting qualitative values: All variables

Table 17: Template for the First Operating Region Corresponding to succ(n) Instructions

 () () 0
2

=×+ tYWtY
dt

d
iii (2)

 2
ii XW = , so that





<−
>

=
.0 ,

0 ,

ii

ii
i XX

XX
W (3)

with the initial values

 () 00 =tYi

 YILMAZ & SAY

570

Operating Region: OpRegi,2

{Type: succ(n)}

Constraint Set: TRn(t)+ U(t)= NRn(t)

 add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, A, and TRn are constant.

Possible Transition:

 Trigger: (U = <0, std>)

 New operating region: OpRegi+1,1

 Variables inheriting qualitative values: All variables

Table 18: Template for the Second Operating Region Corresponding to succ(n) Instructions

Operating Region: OpRegi,1

{Type: jump(m, n, q)}

Constraint Set: add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, and A are constant.

Possible Transition:

 Trigger: (U = <unit, std>)

 New operating region: OpRegi,2

 Variables inheriting qualitative values: All variables

Table 19: Template for the First Operating Region Corresponding to jump(m, n, q) Instructions

 () ii XtV =0 ,

where Vi(t) is the time derivative of Yi(t).
 The general solution of Equation (2) is:

() () ()tWctWctY iii ×+×= cossin 21 .

Substituting the iW from Equation (3) and the initial values in the equations for Yi and Vi, and

solving these equation systems results in the following (Yılmaz, 2005):

For Xi > 0, c1 = cos(Xi×t0) and c2 = −sin(Xi×t0).

For Xi < 0, c1 = −cos(Xi×t0) and c2 = −sin(Xi×t0).

When we substitute these in the formula for Yi(t), we obtain:

() () () () () ()()000 sincossinsincos ttXtXtXtXtXtY iiiiii −×=××−××= , Xi > 0,

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

571

Operating Region: OpRegi,2

{Type: jump(m, n, q)}

Constraint Set: add constraints defining the Dij variables

 the “clock” constraints (Table 12)

 All variables except U, X, V, E, and A are constant.

Possible Transition:

 Trigger: (Dmn = <0, std>) AND (U = <0, std>)

 New operating region: OpRegq,1

 Variables inheriting qualitative values: All variables

Possible Transition:

 Trigger: (Dmn ≠ <0, std>) AND (U = <0, std>)

 New operating region: OpRegi+1,1

 Variables inheriting qualitative values: All variables

Table 20: Template for the Second Operating Region Corresponding to jump(m, n, q) Instructions

Operating Region: OpReg|P|+1, 1

{Type: End}

Constraint Set: S(t) = 0

 All variables except U, X, V, E, and A are constant.

Table 21: Model of the Operating Region Corresponding to the End of the URM Program

() () ()() () ()() ()()000 sincossinsincos ttXtXtXtXtXtY iiiiii −×=×−×−×−×−= , Xi < 0.

Hence, we have Yi(t) = ()()0sin ttX i −× for all Xi ≠ 0.
 Table 22 shows that Equations (2) and (3) and the initial values given above are representable
using the derivative, add, mult, and constant constraints. Note that Xi has to be kept constant and
initialized to either (0, ∞) or (−∞, 0), depending on the intended sign for that number, and both Yi
and Ci must start at zero, to be consistent with the construction above. □

Lemma 10: Starting at t0, the function Y = sin(t−t0) reaches the value 0 for the first time at time
point tE = t0 + π. Moreover the function Yi = sin(Xi×(t−t0)) reaches 0 at the same time point tE if
and only if Xi is an integer.

Proof: The equation sin(t−t0) = 0 implies t−t0 = nπ, n ∈ Ζ, and since we are interested in the first
time point after t0 where it becomes 0, we get tE = t0 + π. For the “only if” part of the second
statement, assume that the function Yi = sin(Xi×(t−t0)) reaches 0 at tE = t0 + π. Then

()() () 0sinsin 00 =×=−+× ππ ii XttX implies that Xi is an integer. For the “if” part, we use the

knowledge that Xi is an integer to conclude that Yi(tE) = sin(Xi×(t0 + π − t0)) = sin(Xi×π) = 0.

 YILMAZ & SAY

572

CONSTRAINTS MEANING

Z = 0

Xi(t) + Ci(t) = Vi(t) Vi(t0) = Xi

d/dt(Yi, Vi) ()tV
dt

dY
i

i =

d/dt(Vi, Ai) ()tA
dt

Yd
i

i =
2

Xi(t) × Xi(t) = Wi(t)
2
ii XW =

Wi(t) × Yi(t) = Li(t) () ()tYWtL iii ×=

Ai(t) + Li(t) = Z(t) () 0
2

=×+ tYW
dt

Yd
ii

i

 Table 22: Model Fragment Used to Obtain the Relationship ()()0sin ttXY ii −×=

Proof of Theorem 8: As already mentioned, the proof relies on a contradiction, namely that a
sound and complete simulator, if it existed, could be used to construct an algorithm for solving
Hilbert’s Tenth Problem, as follows:
 Assume that we are given a polynomial P(x1, x2, x3, ..., xn) with integer coefficients. We start
by constructing a QSIM model fragment that “says” that P(x1, x2, x3, ...,xn) = 0: We have already
seen in Section 3.1 how to equate any desired integer to a QSIM variable. Represent all integers
appearing as coefficients in the polynomial in that manner. Introduce a QSIM variable Xi for each
of the xi, declare all these Xi to be constant, and use add and mult constraints to equate the sum of
products that is P(X1, X2, X3, ..., Xn) to a QSIM variable P, which will be initialized to 0. Note that
this is tantamount to saying that the present values of the Xi form a solution for the polynomial.
All this can clearly be done in a single operating region, with constraints of the types mult, add
and constant.
 We then extend this model with the necessary constraints and auxiliary variables to equate a
new variable Y to the function sin(t−t0). (Either Lemma 7 or Lemma 9 can be used for this
purpose.) We specify Y’s quantity space as [0, ∞), so that the simulation is guaranteed to finish at
t = tE = t0 + π. For each Xi, we define associated auxiliary variables Ci, Li, Wi, Vi, Ai and Yi, and
add the template in Table 22 to our model to express the relationship Yi = sin(Xi×(t−t0)). We also

equate a variable YS with the sum of the squares of the Yi, i.e. ∑
=

=
n

i
iYYS

1

2 . Note that if YS= 0,

then all the Yi are 0.
 Finally, we need make sure that the only consistent behaviors are the ones in which the Xi are
integers (that is, relying on Lemma 10, the behaviors in which the variable YS becomes 0 at tE).
To serve this aim, we add the constraint F(t) × Y(t) = YS(t) to our model.
 We will simulate this model 2n times, each run corresponding to a different way of initializing
the Xi to magnitudes selected from the set {(0, ∞), (−∞, 0)}. A sound and complete simulator

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

573

would accept all and only the initial states with those Xi whose values do not cause any
inconsistency with our model. But those Xi correspond exactly to the integer solutions of the
given polynomial, by the following reasoning about the variable F:
 Note that F is defined to be YS/Y by the F(t) × Y(t) = YS(t) constraint. We know that Y, Yi, and
hence YS are all initially 0, meaning that one has to use l’Hôpital’s rule to find out the initial
value of F. This is important, since if F’s initial magnitude or derivative are infinite, QSIM is not
even supposed to consider successors for the initial state. (We declare the infinite landmarks as
unreachable values for all variables, as mentioned earlier. Even if F’s magnitude is finite and just
its derivative is infinite, simulation is not supposed to continue, because the continuity
requirement would be violated.) Fortunately,

()
()()

()0

1
0

2

sin

sin

tt

ttX

tF

n

i
i

−

−×
=
∑

=

does have finite magnitude and derivative at t0: At t = t0, we use l’Hôpital’s rule to find

()
()() ()()

() 0
cos

cossin2

0
0

00

00
1

00

0 =
−

−×−×
==
∑

=

tt

ttXttXX

tF
i

n

i
ii

.

 As for F’s qualitative direction;

() ()() ()()
()

()() ()
()∑

=











−
−−×−

−
−×−×=

n

i

iiii

tt

ttttX

tt

ttXttXX
t

dt

dF

1 0
2

00
2

0

00

sin

cossin

sin

cossin2
,

and it turns out, after several applications of l’Hôpital’s rule, that

() ∑
=

=
n

i
iXt

dt

dF

1

2
0 ,

which is clearly a finite positive number, and F’s initial qualitative value is therefore <0,inc>.
 Obviously, F = YS/Y is guaranteed to be finite until tE, when Y reaches 0. If the variable YS is
nonzero (implying that at least one of the Yi is nonzero, and by Lemma 10 that the corresponding
Xi is not an integer) at tE, F(tE) has to equal ∞, which is impossible since infinity was declared to
be unreachable, so such states would be eliminated as spurious. If, on the other hand, YS(tE) = 0,
then, we see by l’Hôpital’s rule, and the knowledge that all the Xi are integers, that

()
()() ()()

()

() ()

() 0
cos

cossin2

cos

cossin2

0
0 1

0

0
1

0

=
××

=
−

−×−×
==

∑∑
==

π

ππ i

n

i
ii

E

Ei

n

i
Eii

E

XXX

tt

ttXttXX

tF ,

and behaviors ending with such states are supposed to be included in the simulation output. So if
our supposedly complete and sound simulator rejects the initial states of our model due to
inconsistency in all the 2n runs, we reason that all the behavior predictions considered by the
simulator ended with F(tE) =∞, and this inconsistency propagated back to the initial state and led
to its rejection in all cases. We conclude that the polynomial has no integer solutions. On the
other hand, if even one of the simulations prints out the initial state and goes on with its
successors, we conclude that a solution exists. This forms the decision procedure required in

 YILMAZ & SAY

574

Hilbert’s Tenth Problem, leading to a contradiction. Therefore, sound and complete simulation is
impossible even if one restricts oneself to a single operating region and the limited constraint
vocabulary mentioned in the statement of the theorem. □

4. Conclusion

In this paper, we considered several alternative subsets of the qualitative representation, and
showed that the ineradicable spurious prediction problem persists even when only the add and
constant constraints are allowed. If one allows the mult constraint as well, then any resulting
qualitative simulator is inherently incomplete even when the representation of negative numbers
is forbidden and every variable is forced to be specified with zero uncertainty (i.e. as a single
unambiguous real number) in the initial state. Our final proof shows that even the ability of
handling models with multiple operating regions can be removed from the representation, and the
incompleteness problem would still persist, provided the add, constant, derivative, and mult
constraints are allowed in the vocabulary. Note that none of these vocabularies include the
monotonic function constraint, which is the only relation type “native” to the qualitative
representation.
 Although the results in this paper are demonstrated using the QSIM representation for input
and output, they are valid for all qualitative simulators whose input and output vocabularies are as
expressive as the specified subsets of those of QSIM. (Also note that our proofs apply
automatically to semi-quantitative simulators, whose representations are an extension of that of
pure QSIM.) We believe that these results are important in the sense that they provide deeper
insight to the causes of spurious predictions, and they can be helpful for researchers aiming to
construct provably sound and complete simulators using weaker representations.
 Finally, we wish to stress that our findings here do not amount to as bad a piece of news about
the usefulness of qualitative simulators in the practical domains that they are usually utilized as it
may seem to the uninitiated eye. When one’s model is specified at the level of precision that is
involved in the models in this paper, one does not employ a qualitative reasoner anyway. What
really annoys the users of qualitative simulators is the occasional prediction of eradicable
spurious behaviors, and the strengthening of the algorithms with additional filters of increasing
mathematical sophistication to get rid of more of these continues to be an important line of
research.

References

Cutland, N. J. (1980). Computability: An Introduction to Recursive Function Theory. Cambridge,
UK: Cambridge University Press.

de Kleer, J., & Brown, J. S. (1984). A qualitative physics based on confluences. Artificial
Intelligence, 24, 7-83.

Fouché, P., & Kuipers, B. J. (1992). Reasoning about energy in qualitative simulation. IEEE
Transactions on Systems, Man, and Cybernetics, 22, 47-63.

Könik, T., & Say, A. C. C. (2003). Duration consistency filtering for qualitative simulation.
Annals of Mathematics and Artificial Intelligence, 38, 269-309.

Kuipers, B. J., (1986). Qualitative simulation. Artificial Intelligence, 29, 289-338.

 CAUSES OF INERADICABLE SPURIOUS PREDICTIONS IN QUALITATIVE SIMULATION

575

Kuipers, B. J. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. Cambridge, MA: MIT Press.

Matiyasevich, Y. (1993). Hilbert’s Tenth Problem. Cambridge, MA: MIT Press.

Missier, A. (1991). Mathematical structures for qualitative calculus, a contribution to qualitative
simulation. (In French) Ph.D. thesis, Institut National des Sciences Appliquées de Toulouse.

Say, A. C. C. (1998). L’Hôpital’s filter for QSIM. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20, 1-8.

Say, A. C. C. (2001). Improved reasoning about infinity using qualitative simulation. Computing
and Informatics, 20, 487-507.

Say, A. C. C. (2003). Sound and complete qualitative simulation requires “quantitative” filtering.
Annals of Mathematics and Artificial Intelligence, 38, 257-267.

Say, A. C. C., & Akın, H. L. (2003). Sound and complete qualitative simulation is impossible.
Artificial Intelligence, 149, 251-266.

Say, A. C. C., & Kuru, S. (1993). Improved filtering for the QSIM algorithm. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15, 967-971.

Shepherdson, J. C., & Sturgis, H. E. (1963). Computability of recursive functions. Journal of the
ACM, 10, 217-255.

Shults, B., & Kuipers, B. (1997). Proving properties of continuous systems: Qualitative
simulation and temporal logic. Artificial Intelligence, 92, 91-129.

Struss, P. (1990). Problems of interval-based qualitative reasoning. In Weld, D. S., & de Kleer, J.
(Eds.) Readings in Qualitative Reasoning about Physical Systems. San Mateo, CA: Morgan
Kaufmann, 288-305.

Weld, D. S., & de Kleer, J. (Eds.) (1990). Readings in Qualitative Reasoning about Physical
Systems. San Mateo, CA: Morgan Kaufmann.

Yılmaz, Ö. (2005). Computability-theoretic limitations of qualitative simulation. M. S. Thesis,
Boğaziçi University, Đstanbul, Turkey.
(http://www.cmpe.boun.edu.tr/graduate/allthesis/m_3.pdf)

