
Journal of Artificial Intelligence Research 28 (2007) 107-118 Submitted 9/05; published 2/07

Generating Hard Satisfiable Formulas by Hiding

Solutions Deceptively

Haixia Jia hjia@cs.unm.edu

Computer Science Department

University of New Mexico

Cristopher Moore moore@santafe.edu

Computer Science Department

University of New Mexico

Doug Strain doug.strain@gmail.com

Computer Science Department

University of New Mexico

Abstract

To test incomplete search algorithms for constraint satisfaction problems such as 3-
SAT, we need a source of hard, but satisfiable, benchmark instances. A simple way to do
this is to choose a random truth assignment A, and then choose clauses randomly from
among those satisfied by A. However, this method tends to produce easy problems, since
the majority of literals point toward the “hidden” assignment A. Last year, Achlioptas,
Jia and Moore proposed a problem generator that cancels this effect by hiding both A
and its complement A (Achlioptas, Jia, & Moore, 2004). While the resulting formulas
appear to be just as hard for DPLL algorithms as random 3-SAT formulas with no hidden
assignment, they can be solved by WalkSAT in only polynomial time.

Here we propose a new method to cancel the attraction to A, by choosing a clause with
t > 0 literals satisfied by A with probability proportional to qt for some q < 1. By varying
q, we can generate formulas whose variables have no bias, i.e., which are equally likely to be
true or false; we can even cause the formula to “deceptively” point away from A. We present
theoretical and experimental results suggesting that these formulas are exponentially hard
both for DPLL algorithms and for incomplete algorithms such as WalkSAT.

1. Introduction

To evaluate search algorithms for constraint satisfaction problems, we need good sources
of benchmark instances. Real-world problems are the best benchmarks by definition, but
each such problem has structures specific to its application domain; in addition, if we
wish to study how the running times of search algorithms scale, we need entire families of
benchmarks with varying size and density.

One way to fill this need is to generate random instances. For instance, for 3-SAT we
can generate instances with n variables and m clauses by choosing each clause uniformly
from among the 8

(n
3

)

possibilities. We can then vary these formulas according to their
size and their density r = m/n. While such formulas lack much of the structure of real-
world instances, they have been instrumental in the development and study of new search
methods such as simulated annealing (Johnson, Aragon, McGeoch, & Shevon, 1989), the

c©2007 AI Access Foundation. All rights reserved.



Jia, Moore, & Strain

breakout procedure (Morris, 1993), WalkSAT (Selman, Kautz, & Cohen, 1996), and Survey
Propagation (Mézard & Zecchina, 2002).

However, if we wish to test incomplete algorithms such as WalkSAT and Survey Propaga-
tion (SP), we need a source problems that are hard but satisfiable. In contrast, above a crit-
ical density r ≈ 4.27, the random formulas defined above are almost certainly unsatisfiable.
Random formulas at this threshold appear to be quite hard for complete solvers (Cheese-
man, Kanefsky, & Taylor, 1991; Mitchell, Selman, & Levesque, 1992; Hogg, Huberman, &
Williams, 1996); but for precisely this reason, it is not feasible to generate large problems
at the threshold and then filter out the unsatisfiable ones. While other classes of satisfiable
CSPs have been proposed, such as the quasigroup completion problem (Shaw, Stergiou, &
Walsh, 1998; Kautz, Ruan, Achlioptas, Gomes, Selman, & Stickel, 2001; Achlioptas, Gomes,
Kautz, & Selman, 2000), we would like to have problems generators that are “native” to
3-SAT.

A natural way to generate random satisfiable 3-SAT formulas is to choose a random
truth assignment A ∈ {0, 1}n, and then choose m clauses uniformly and independently from
among the 7

(n
3

)

clauses satisfied by A. The problem with this is that simply rejecting clauses
that conflict with A causes an unbalanced distribution of literals; in particular, on average
a literal will agree with its value in the hidden assignment 4/7 of the time. Thus, especially
when there are many clauses, a simple majority heuristic or local search will quickly find
A. More sophisticated versions of this “hidden assignment” scheme (Asahiro, Iwama, &
Miyano, 1996; Van Gelder, 1993) improve matters somewhat but still lead to biased samples.
Thus the question is how to avoid this “attraction” to the hidden assignment,

One approach (Achlioptas et al., 2004) is to choose clauses uniformly from among those
that are satisfied by both A and its complement A. This is inspired by recent work on
random k-SAT and Not-All-Equal SAT (Achlioptas & Moore, 2002b), in which symmetry
with respect to complementation reduces the variance of the number of solutions; the idea
is that A and A cancel each others’ attractions out, making either one hard to find. Indeed,
the resulting formulas appear to take DPLL solvers exponential time and, in general, to
be just as hard as random 3-SAT formulas with no hidden assignment. On the other
hand, WalkSAT solves these formulas in polynomial time, since after a few variables are set
in a way that agrees with one of the hidden assignments, neighboring variables develop
correlations consistent with these (Barthel, Hartmann, Leone, Ricci-Tersenghi, Weigt, &
Zecchina, 2002).

In this paper, we pursue an alternate approach, inspired by Achlioptas and Preres, who
reweighted the satisfying assignments in a natural way (Achlioptas & Peres, 2003). We hide
just one assignment, but we bias the distribution of clauses as follows:

1. Predefine a constant q < 1 and generate a random truth assignment A ∈ {0, 1}n

2. Do rn times: choose a random k-tuple of variables, and choose from among the clauses
in which t > 0 literals are satisfied by A with probability proportional to qt.

This penalizes the clauses which are “more satisfied” by A, and reduces the extent to which
variable occurrences are more likely to agree with A. (Note that the naive formulas discussed
above amount to the case q = 1.) As we will see below, by choosing q appropriately we can
rebalance the distribution of literals, so that each variable is as likely to appear positively

108



Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

as often as negatively and no longer points toward its value in A. By reducing q further,
we can even make it more likely that a variable occurrence disagrees with A, so that the
formula becomes “deceptive” and points away from the hidden assignment.

We call these formulas “q-hidden,” to distinguish them from the naive “1-hidden” formu-
las discussed above, the “2-hidden” formulas studied by Achlioptas, Jia and Moore (Achliop-
tas et al., 2004), and the “0-hidden” formulas consisting of random 3-SAT formulas with no
hidden assignment. Like these other families, our q-hidden formulas are readily amenable to
all the mathematical tools that have been developed for studying random k-SAT formulas,
including moment calculations and the method of differential equations. Below we calculate
the expected density of satisfying assignments as a function of their distance from A, and
analyze the behavior of the Unit Clause (UC) algorithm on q-hidden formulas. We then
present experiments on several complete and incomplete solvers. For certain values of q, we
find that our q-hidden formulas are just as hard or harder for DPLL algorithms as 0-hidden
formulas or 2-hidden formulas, and are much harder than naive 1-hidden formulas. In addi-
tion, we find that local search algorithms like WalkSAT find our formulas much harder than
any of these other families, taking exponential as opposed to polynomial time. Moreover,
the running time of WalkSAT increases sharply as our formulas become more deceptive.

2. The Expected Density of Solutions and the Bias of Local Search

For α ∈ [0, 1], let Xα be the number of satisfying truth assignments in a random q-hidden
k-SAT formula that agree on a fraction α of the variables with the hidden assignment A;
that is, their Hamming distance from A is (1 − α)n. We wish to calculate the expectation
E[Xα].

By symmetry, we can take A to be the all-true assignment. In that case, a clause with
t > 0 positive literals is chosen with probability qt/((1 + q)k − 1) (here we normalize the
probabilities by summing over the

(k
t

)

clauses for all t > 0). Let B be a truth assignment
where αn of the variables are true and (1−α)n are false. Then, analogous to the calculation
by Achlioptas, Jia and Moore (Achlioptas et al., 2004), we use linearity of expectation, inde-
pendence between clauses, the selection of the literals in each clause with replacement, and
Stirling’s approximation for the factorial to obtain (where ∼ suppresses terms polynomial
in n):

E[Xα] =

(

n

αn

)

Pr[B satisfies a random clause]m

=

(

n

αn

)

(

1 −
k
∑

t=1

(

k

t

)

qt(1 − α)tαk−t

(1 + q)k − 1

)m

∼ fk,r,q(α)n

where

f(α) =
1

αα(1 − α)1−α

(

1 − (q(1 − α) + α)k − αk

(1 + q)k − 1

)r

.

Looking at Figure 1, we see that the behavior of f near α = 1/2 changes dramatically
as we vary q. For q = 1 (i.e., naive 1-hidden formulas), f ′(1/2) is positive. On the other

109



Jia, Moore, & Strain

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Density of solutions with r=6

α

q=0.5

q=0.618 

q=1 

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

α

Density of solutions with q=0.5

r=3 

r=4 

r=5 

r=5.6 

r=6 

r=7 

Figure 1: The nth root f(α) of the expected number of solutions which agree with the
hidden assignment on a fraction α of the variables. Here k = 3. The left part of
the figure shows f(α) for q = 1, q = 0.618 and q = 0.5 at r = 6. The right part
shows f(α) for q = 0.5 and varying r. Note that at r = 5.6, we have f(α) < 1 for
all α ≤ 1/2.

hand, if q is the positive root q∗ of

1 − (1 − q)(1 + q)k−1 = 0 (1)

then f ′(1/2) = 0. We call the resulting q∗-hidden formulas balanced; for k = 3, q∗ is the
golden ratio (

√
5 − 1)/2 = 0.618...

This choice of q affects local search algorithms such as WalkSAT in the following way.
If we start with a random assignment B, a step of WalkSAT chooses a random unsatisfied
clause, and satisfies a literal ` chosen randomly from that clause. The expected change
in the Hamming distance d(A,B) is then the probability that ` agrees with A, minus the
probability that it doesn’t. Since all the clauses are equally likely to be unsatisfied by a
random assignment, this is the expectation of 2t/k − 1 in a random clause, namely

E[∆d(A,B)] =
k
∑

t=1

(

k

t

)

qt(2t/k − 1)

(1 + q)k − 1
=

1 − (1 − q)(1 + q)k−1

(1 + q)k − 1
.

Thus is zero when (1) holds, in which case WalkSAT is equally likely to move toward or away
from A. Thus, analogous to the calculation by Achlioptas and Peres (Achlioptas & Peres,
2003), when q = q∗ a given literal is equally likely to agree or disagree with A, and WalkSAT

has no information about in which direction the hidden assignment lies. (This argument
applies to the first o(n1/2) steps of WalkSAT, since until then it is unlikely to have seen any
variable twice).

110



Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

For smaller values of q such as q = 0.5 shown in Figure 1, f ′(1/2) becomes negative,
and we expect a local search algorithm starting at a random assignment to move away from
A. Indeed, f(α) has a local maximum at some α < 1/2, and for small r there are solutions
with α < 1/2. When r is sufficiently large, however, f(α) < 1 for all α < 1/2, and as
n → ∞ the probability any of these “alternate” solutions exist is exponentially small. We
conjecture that for each q ≤ q∗ there is a threshold rc(q) at which with high probability
the only solutions are those close to A. Setting max{f(α) | α ≤ 1/2} = 1 yields an upper
bound on rc(q), which we show in Figure 4 below. For instance, the dotted line in Figure 1
shows that rc(0.5) ≤ 5.6.

We call such formulas deceptive, since local search algorithms such as WalkSAT, DPLL
algorithms such as zChaff that use a majority heuristic in their splitting rule, and message-
passing algorithms such as SP will presumably search in the wrong direction, and take ex-
ponential time to cross the local minimum in f(α) to find the hidden assignment. Our
experiments below appear to confirm this intuition. In addition, all three types of algo-
rithms appear to encounter the most difficulty at roughly the same density rc(q), where we
conjecture the “alternate” solutions disappear.

3. Unit Clause Heuristic and DPLL Algorithms

Unit Clause (UC) is a linear-time heuristic which permanently sets one variable in each
step as follows: if there are any unit clauses, satisfy them; otherwise, pick a random literal
and satisfy it. For random 3-SAT formulas, UC succeeds with constant probability for
r < 8/3, and fails with high probability for r > 8/3 (Chao & Franco, 1986). UC can
be thought as the first branch of a simple DPLL algorithm S, whose splitting rule takes
a random unset variable and tries its truth values in random order; thus UC succeeds if S
succeeds without backtracking. On the other hand, it was showed that S’s expected running
time is exponential in n for any r > 8/3 (Cocco & Monasson, 2004; Cocco, Monasson,
Montanari, & Semerjian, 2005); also Achlioptas, Beame and Molloy used lower bounds
on resolution complexity to show that S takes exponential time with high probability if
r > 3.81 (Achlioptas, Beame, & Molloy, 2001). In general, it appears that simple DPLL
algorithms begin to take exponential time at exactly the density where the corresponding
linear-time heuristic fails.

In this section, we analyze the performance of UC on our q-hidden formulas. Specifically,
we show that in the balanced case where q = q∗, UC fails for r > 8/3 just as it does for
0-hidden formulas. Based on this, we conjecture that the running time of S, and other
simple DPLL algorithms, is exponentially large for our formulas at the same density as for
0-hidden ones.

We analyze the behavior of UC on arbitrary initial distributions of 3-SAT clauses using
the method of differential equations. For simplicity we assume that A is the all-true assign-
ment. A round of UC consists of a “free step,” in which we satisfy a random literal, and the
ensuing chain of unit-clause propagations. For 0 ≤ i ≤ 3 and 0 ≤ j ≤ i, let Si,j = si,jn be
the number of clauses of length i with j positive literals and i − j negative ones, and let
si =

∑

j si,j. Let X = xn be the number of variables set so far, and let mT and mF be the
expected number of variables set true and false in a round. Then we can model the discrete

111



Jia, Moore, & Strain

stochastic process of the Si,j with the following differential equations for the si,j:

ds3,j

dx
= − 3s3,j

1 − x
(2)

ds2,j

dx
= − 2s2,j

1 − x
+

mF (j + 1)s3,j+1 + mT (3 − j)s3,j

(mT + mF )(1 − x)

The unit clauses are governed by a two-type branching process, with transition matrix

M =
1

1 − x

(

s2,1 2s2,0

2s2,2 s2,1

)

.

As in the calculation by Achlioptas and Moore (Achlioptas & Moore, 2002a), as long as the
largest eigenvalue of M is less than 1, the branching process is subcritical, and summing
over the round gives

(

mF

mT

)

= (I − M)−1 ·
(

1/2
1/2

)

.

We then solve the equation (2) with the initial conditions s3,0 = 0 and

s3,j =

(

3

j

)

qj

(1 + q)3 − 1

for 0 < j ≤ 3. In the balanced case q = q∗, we find that UC succeeds on q-hidden formulas
with constant probability if and only if r < 8/3, just as for 0-hidden formulas. The reason
is that, as for 2-hidden formulas, the expected number of positive and negative literals are
the same throughout the process. This symmetry causes UC to behave just as it would on
random 3-SAT formulas without a hidden assignment.

We note that for q < q∗, UC succeeds at slightly higher densities, at which it can find
one of the “alternate” solutions with α < 1/2. At higher densities where these alternate
solutions disappear, our experimental results below show that these “deceptive” formulas
take DPLL algorithms exponential time, and for r > rc(q) they are harder than 0-hidden
formulas of the same density.

4. Experimental Results

4.1 DPLL

In this section we discuss the behavior of DPLL solvers on our q-hidden formulas. We focus
on zChaff (Zhang, 2002); the behavior of OKsolver (Kullmann, 2002) is similar. Figure 2
shows zChaff’s running time on 0-hidden, 1-hidden, 2-hidden, and q-hidden formulas for
various values of q.

Balanced formulas, i.e. with q = q∗ = 0.618..., appear to be about as hard as 0-hidden
ones, including above the satisfiability threshold r ≈ 4.27 where 0-hidden formulas become
unsatisfiable. Like 0-hidden formulas, these q∗-hidden formulas appear to peak in complex-
ity near the satisfiability threshold. This is consistent with the picture given in the previous
two sections: namely, that these “balanced” formulas make it impossible for algorithms to
feel the attraction of the hidden assignment. In contrast, naive 1-hidden formulas are far
easier, since the attraction to the hidden assignment is strong.

112



Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

4 4.5 5 5.5 6 6.5 7 7.5 8
10

1

10
2

10
3

10
4

10
5

zChaff performance with n=200

M
ed

ia
n 

nu
m

be
r 

of
 D

ec
is

io
ns

 o
ve

r 
49

 tr
ia

ls

r

q=0.2
q=0.3
q=0.4
q=0.5
q=0.618
1−hidden
2−hidden
0−hidden

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

10
6

zChaff performance with r=5.5

N

M
ed

ia
n 

nu
m

be
r 

of
 D

ec
is

io
ns

 o
ve

r 
49

 tr
ia

ls

q=0.3
0−hidden
 q=0.618
 2−hidden
1−hidden

Figure 2: The left part of the figure shows zChaff’s median running time over 49 trials on
0-hidden, 1-hidden, 2-hidden and q-hidden formulas with n = 200 and r ranging
from 4.0 to 8.0. The right part shows the median running time with r = 5.5
and n ranging from 50 to 300. Note that 0-hidden formulas are almost always
unsatisfiable for r > 4.27.

Deceptive formulas, i.e. with q < q∗, appear to have two phases. At low density they
are relatively easy, and their hardness peaks at a density rc(q). Above rc(q) they take
exponential time; as for 0-hidden formulas, as r increases further the coefficient of the
exponential decreases as the clauses generate contradictions more quickly.

We believe that this peak rc(q) is the same threshold density defined earlier (see Figure 4
below) above which the only solutions are those close to the hidden assignment. The
situation seems to be the following: below rc(q), there are “alternate” solutions with α <
1/2, and zChaff is led to these by its splitting rule. Above rc(q), these alternate solutions
disappear, and zChaff takes exponential time to find the vicinity of the hidden assignment,
since the formula deceptively points in the other direction. Moreover, for a fixed r above
rc(q) these formulas become harder as q decreases and they become more deceptive.

To illustrate this further, the right part of Figure 2 shows zChaff’s median running
time on 0-hidden formulas, 1-hidden formulas, 2-hidden formulas, and q-hidden formulas
for q = q∗ (balanced) and q = 0.3 (deceptive). We fix r = 5.5, which appears to be above
rc(q) for both these values of q. At this density, the 0-hidden, 2-hidden, and balanced
q-hidden formulas are all comparable in difficulty, while 1-hidden formulas are much easier
and the deceptive formulas appear to be somewhat harder.

4.2 SP

Survey Propagation or SP (Mézard & Zecchina, 2002) is a recently introduced incomplete
solver based on insights from the replica method of statistical physics and a generalization of
belief propagation. We tested SP on 0-hidden formulas and q-hidden formulas for different
values of q, using n = 104 and varying r. For 0-hidden formulas, SP succeeds up to r = 4.25,

113



Jia, Moore, & Strain

quite close to the satisfiability threshold. For q-hidden formulas with q = q∗, SP fails at
4.25 just as it does for 0-hidden formulas, suggesting that it finds these formulas exactly as
hard as 0-hidden ones even though they are guaranteed to be satisfiable. For naive 1-hidden
formulas, SP succeeds at a significantly higher density, up to r = 5.6.

Presumably the naive 1-hidden formulas are easier for SP since the “messages” from
clauses to variables, like the majority heuristic, tend to push the algorithm towards the
hidden assignment. In the balanced case q = q∗, this attraction is successfully suppressed,
causing SP to fail at essentially the same density as for 0-hidden formulas, close to the satis-
fiability threshold, even though our q-hidden formulas continue to be satisfiable at all densi-
ties. In contrast, the 2-hidden formulas proposed by Achlioptas, Jia and Moore (Achlioptas
et al., 2004) are solved by SP up to a somewhat higher density r ≈ 4.8. Thus it seems that
the reweighting approach of q-hidden formulas does a better job of confusing SP than hiding
two complementary assignments does.

For q < q∗, SP succeeds up to somewhat higher densities, each of which matches quite
closely the value rc(q) at which zChaff’s running time peaks (see Figure 4 below). Building
on our conjecture that this is the density above which the only solutions are those close
to the hidden assignment, we guess that SP succeeds for r < rc(q) precisely because the
local gradient in the density of solutions pushes it towards the “alternate” solutions with
α < 1/2. Above rc(q), these solutions no longer exist, and SP fails because the clauses send
deceptive messages, demanding that variables be set opposite to the hidden assignment.

4.3 WalkSAT

We conclude with a local search algorithm, WalkSAT. For each formula, we did up to 104

restarts, with 104 steps per attempt, where each step does a random or greedy flip with
equal probability. In the left part of Figure 3 we measure WalkSAT’s performance on 1-
hidden, 2-hidden, and q-hidden formulas with various values of q. We use n = 200 and r
range from 4 to 8. Even for these relatively small formulas, we see that for the three most
deceptive values of q, there is a density at which the median running time jumps to 108

flips. For instance, q-hidden formulas with q = 0.4 appear to be unfeasible for WalkSAT for,
say, r > 5.

We believe that, consistent with the discussion above, local search algorithms like
WalkSAT greedily follow the gradient in the density of solutions f(α). For q < q∗, this
gradient is deceptive, and lures WalkSAT away from the hidden assignment. At densities
below rc(q), there are many alternate solutions with α < 1/2 and WalkSAT finds one of
them very easily; but for densities above rc(q), the only solutions are those near the hidden
assignment, and WalkSAT’s greed causes it to wander for an exponentially long time in the
wrong region. This picture is supported by the fact that, as Figure 4 shows below, the den-
sity at which WalkSAT’s running time jumps upward closely matches the thresholds rc(q)
that we observed for zChaff and SP.

The right part of Figure 3 looks at WalkSAT’s median running time at a fixed density
as a function of n. We compare 1-hidden and 2-hidden formulas with q-hidden ones with
q = q∗ and two deceptive values, 0.5 and 0.3. We choose r = 5.5, which is above rc(q)
for all three values of q. The running time of 1-hidden and 2-hidden formulas is only
polynomial (Achlioptas et al., 2004; Barthel et al., 2002). In contrast, even in the balanced

114



Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

case q = q∗, the running time is exponential, and the slope of this exponential increases
dramatically as we decrease q and make the formulas more deceptive. We note that it
might be possible to develop a heuristic analysis of WalkSAT’s running time in the deceptive
case (Semerjian & Monasson, 2003; Cocco et al., 2005).

4 4.5 5 5.5 6 6.5 7 7.5 8
10

2

10
3

10
4

10
5

10
6

10
7

10
8

WalkSAT performance with n=200

r

M
ed

ia
n 

nu
m

be
r 

of
 fl

ip
s 

ov
er

 4
9 

tr
ia

ls

q=0.2
q=0.3
q=0.4
q=0.5
q=0.618
1−hidden
2−hidden

50 100 150 200 250 300 350 400 450 500 550 600
10

2

10
3

10
4

10
5

10
6

10
7

10
8

WalkSAT performance with r=5.5

M
ed

ia
n 

nu
m

be
r 

of
 fl

ip
s 

ov
er

 4
9 

tr
ia

ls

q=0.3
q=0.5
q=0.618
2−hidden
1−hidden

N

Figure 3: The left part of the figure shows WalkSAT’s median running time over 49 trials
with n = 200 and r ranging from 4 to 8; the right part shows the median running
time with r = 5.5 and n ranging from 50 to 600.

5. The Threshold Density

As we have seen, there appears to be a characteristic density rc(q) for each value of q ≤ q∗ at
which the running time of DPLL algorithms like zChaff peaks, at which WalkSAT’s running
time becomes exponential, and at which SP ceases to work. We conjecture that in all three
cases, the key phenomenon at this density is that the solutions with α < 1/2 disappear,
leaving only those close to the hidden assignment. Figure 4 shows our measured values of
rc(q), and indeed they are quite close for the three algorithms. We also show the analytic
upper bound on rc(q) resulting from setting max{f(α) | α ≤ 1/2} = 1, above which the
expected number of solutions with α ≤ 1/2 is exponentially small.

6. Conclusions

We have introduced a simple new way to hide solutions in 3-SAT problems that produces
instances that are both hard and satisfiable. Unlike the 2-hidden formulas proposed by
Achlioptas, Jia and Moore (Achlioptas et al., 2004) where the attraction of the hidden
assignment is cancelled by also hiding its complement, here we eliminate this attraction
by reweighting the distribution of clauses as proposed by Achlioptas and Peres (Achlioptas
& Peres, 2003). Indeed, by going beyond the value of the parameter q that makes our
q-hidden formulas balanced, we can create deceptive formulas that lead algorithms in the
wrong direction. Experimentally, our formulas are as hard or harder for DPLL algorithms

115



Jia, Moore, & Strain

0.2 0.3 0.4 0.5 0.6
4

5

6

7

8

9

10

11

12

r c(q
)

q

Upper bound
zChaff
SP
WalkSAT

Figure 4: The density rc(q) at which the running time of zChaff peaks, WalkSAT peaks or
exceeds 108 flips, and SP stops working. We conjecture all of these events occur
because at this density the alternate solutions with α < 1/2 disappear, leaving
only those close to the hidden assignment. Shown also is the analytic upper
bound described in the text.

as 0-hidden formulas, i.e., random 3-SAT formulas without a hidden assignment; for local
search algorithms like WalkSAT, they are much harder than 0-hidden or 2-hidden formulas,
taking exponential rather than polynomial time. Our formulas are also amenable to all the
mathematical tools developed for the study of random 3-SAT; here we have calculated their
expected density of solutions as a function of distance from the hidden assignment, and
used the method of differential equations to show that UC fails for them at the same density
as it does for 0-hidden formulas.

We close with several exciting directions for future work:

1. Confirm that there is a single threshold density rc(q) at which a) the alternate solutions
far from the hidden assignment disappear, b) the running time of DPLL algorithms
is maximized, c) SP stops working, and d) the running time of WalkSAT becomes
exponential;

2. Prove that simple DPLL algorithms take exponential time for r > rc(q), in expectation
or with high probability;

3. Calculate the variance of the number of solutions as a function of α, and giving
improved upper and lower bounds on the distribution of solutions and rc(q).

Acknowledgments

H.J. is supported by an NSF Graduate Fellowship. C.M. and D.S. are supported by NSF
grants CCR-0220070, EIA-0218563, and PHY-0200909. C.M. thanks Tracy Conrad and
Rosemary Moore for their support.

116



Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

References

Achlioptas, D., Beame, P., & Molloy, M. (2001). A sharp threshold in proof complexity. In
Proc. STOC, pp. 337–346.

Achlioptas, D., Gomes, C., Kautz, H., & Selman, B. (2000). Generating satisfiable problem
instances. In Proc. AAAI, pp. 256–261.

Achlioptas, D., Jia, H., & Moore, C. (2004). Hiding satisfying assignments: two are better
than one. In Proc. AAAI, pp. 131–136.

Achlioptas, D., & Moore, C. (2002a). Almost all graphs with average degree 4 are 3-
colorable. In Proc. STOC, pp. 199–208.

Achlioptas, D., & Moore, C. (2002b). The asymptotic order of the random k-SAT threshold.
In Proc. FOCS, pp. 779–788.

Achlioptas, D., & Peres, Y. (2003). The threshold for random k-SAT is 2k(ln 2 − o(k)). In
Proc. STOC, pp. 223–231.

Asahiro, Y., Iwama, K., & Miyano, E. (1996). Random generation of test instances with
controlled attributes. DIMACS Series in Disc. Math. and Theor. Comp. Sci., 26.

Barthel, W., Hartmann, A., Leone, M., Ricci-Tersenghi, F., Weigt, M., & Zecchina, R.
(2002). Hiding solutions in random satisfiability problems: A statistical mechanics
approach. Phys. Rev. Lett., 88 (188701).

Chao, M., & Franco, J. (1986). Probabilistic analysis of two heuristics for the 3-satisfiability
problem. SIAM J. Comput., 15 (4), 1106–1118.

Cheeseman, P., Kanefsky, R., & Taylor, W. (1991). Where the really hard problems are. In
Proc. IJCAI, pp. 163–169.

Cocco, S., & Monasson, R. (2004). Heuristic average-case analysis of the backtrack resolu-
tion of random 3-satisfiability instances. Theor. Comp. Sci., 320, 345–372.

Cocco, S., Monasson, R., Montanari, A., & Semerjian, G. (2005). Approximate analysis of
search algorithms with “physical” methods. In Percus, A., Istrate, G., & Moore, C.
(Eds.), Computational Complexity and Statistical Physics. Oxford University Press.

Hogg, T., Huberman, B., & Williams, C. (1996). Phase transitions and complexity. Artificial

Intelligence, 81.

Johnson, D., Aragon, C., McGeoch, L., & Shevon, C. (1989). Optimization by simulated
annealing: an experimental evaluation. Operations Research, 37 (6), 865–892.

Kautz, H., Ruan, Y., Achlioptas, D., Gomes, C., Selman, B., & Stickel, . (2001). Balance
and filtering in structured satisfiable problems. In Proc. IJCAI, pp. 351–358.

Kullmann, O. (2002). Investigating the behaviour of a SAT solver on random formulas.
Tech. rep. CSR 23-2002, University of Wales Swansea.

Mézard, M., & Zecchina, R. (2002). Random k-satisfiability: from an analytic solution to a
new efficient algorithm. Phys. Rev. E, 66, 056126.

Mitchell, D., Selman, B., & Levesque, H. (1992). Hard and easy distributions of SAT
problems. In Proc. AAAI, pp. 459–465.

117



Jia, Moore, & Strain

Morris, P. (1993). The breakout method for escaping from local minima. In Proc. AAAI,
pp. 40–45.

Selman, B., Kautz, H., & Cohen, B. (1996). Local search strategies for satisfiability testing.
In Proc. 2nd DIMACS Challange on Cliques, Coloring, and Satisfiability.

Semerjian, G., & Monasson, R. (2003). A study of pure random walk on random satisfiability
problems with “physical” methods. LNCS, 2919, 120–134.

Shaw, P., Stergiou, K., & Walsh, T. (1998). Arc consistency and quasigroup completion. In
Proc. ECAI, workshop on binary constraints.

Van Gelder, A. (1993). Problem generator mkcnf.c. In Proc. DIMACS. Challenge archive.

Zhang, L. (2002). zChaff.. ee.princeton.edu/˜chaff/zchaff.php.

118


