
Journal of Artificial Intelligence Research 28 (2007) 119–156 Submitted 04/06; published 02/07

Marvin: A Heuristic Search Planner with
Online Macro-Action Learning

Andrew Coles ANDREW.COLES@CIS.STRATH.AC.UK

Amanda Smith AMANDA .SMITH@CIS.STRATH.AC.UK

Department of Computer and Information Sciences,
University of Strathclyde,
26 Richmond Street, Glasgow, G1 1XH, UK

Abstract

This paper describes Marvin, a planner that competed in the Fourth International Planning
Competition (IPC 4). Marvin uses action-sequence-memoisation techniques to generate macro-
actions, which are then used during search for a solution plan. We provide an overview of its
architecture and search behaviour, detailing the algorithms used. We also empirically demonstrate
the effectiveness of its features in various planning domains; in particular, the effects on perfor-
mance due to the use of macro-actions, the novel features of its search behaviour, and the native
support of ADL and Derived Predicates.

1. Introduction

One of the currently most successful approaches to domain-independent planning is forward-
chaining heuristic search through the problem state space. Search is guided by a heuristic function
based on an appropriate relaxation of the planning problem. Different relaxations have been ex-
plored (Bonet & Geffner, 2000; McDermott, 1996; Hoffmann & Nebel, 2001; Helmert, 2004) and
have been shown to result in more or less informative heuristic functions. Acommon relaxation
is to ignore the delete lists of actions in the problem domain, resulting in an abstracted problem
domain comprised ofrelaxed actions. A given state can then be evaluated by counting the number
of relaxed actions needed to reach the goal state from the given state. Hoffmann and Nebel (2001)
present a search strategy called Enforced Hill-Climbing (EHC) which, coupled with a relaxation of
this kind, has been proven empirically to be an effective strategy in many planning domains. Their
planner, FF, performed with great success in the Second and Third International Planning Compe-
titions (Bacchus, 2001; Long & Fox, 2003). In this paper we present our planner, Marvin, which
builds upon this search approach.

The EHC search strategy performs gradient-descent local search, using breadth-first search to
find action sequences leading to strictly-better states should no single-actionstep be able to reach
one. This embedded exhaustive-search step is one of the bottlenecks in planning with this approach.
We present an approach that, through memoising the plateau-escaping action sequences discovered
during search, can form macro-actions which can be applied later when plateaux are once-again
encountered. In doing so, the planner can escape from similar plateaux encountered later, without
expensive exhaustive search. The resulting planner is called Marvin.

We begin this paper with a brief review of FF’s search behaviour to provide the background for
our approach. We then introduce the main features of Marvin, explaining how its search behaviour
differs from that of FF. We describe the three main contributions made by Marvin, detailing the

c©2007 AI Access Foundation. All rights reserved.

COLES & SMITH

key algorithms and their effects on performance. Marvin can plan in STRIPS and ADL domains,
and it can also handle the derived predicates of PDDL2.2. We describe the way in which domains
containing derived predicates and ADL are handled without first being reduced to STRIPS domains.
Finally, we discuss the results obtained by Marvin in the Fourth InternationalPlanning Competition
(IPC 4) (Hoffmann & Edelkamp, 2005), and provide additional ablation studies to assess the impact
of its various features on planning performance across a selection of domains.

2. Background

In this section, we give an overview of the background for this work. First, forward-chaining heuris-
tic planning is defined, and existing work in this area described; with particular attention paid to the
planner FF. This is followed by an introduction to macro-actions.

2.1 Forward-Chaining Planning

Formally, forward-chaining planning can be described as search through a landscape where each
node is defined by a tuple< S, P >. S is a world state comprised of predicate facts andP is the
plan (a series of ordered actions) used to reachS from the initial state. Search begins from the initial
problem state, corresponding to a tuple< S0, {} >.

Edges between pairs of nodes in the search landscape correspond to applying actions to lead
from one state to another. When an actionA is applied to a search space node< S, P > the node
< S′, P ′ > is reached, whereS′ is the result of applying the actionA in the stateS andP ′ is
determined by appending the actionA to P . Forward-chaining search through this landscape is
restricted to only considering moves in a forwards direction: transitions areonly ever made from a
node with planP to nodes with a planP ′ whereP ′ can be determined by adding (or ‘chaining’)
actions to the end ofP .

As unguided search in this manner is prohibitively expensive in all but the smallest problems,
heuristics are used to guide search. Commonly, a heuristic value is used to provide a goal distance
estimate from a node< S, P > to a node< S′, P ′ > in whichS′ is a goal state.

2.2 Heuristics for Forward-Chaining Planning

Many of the heuristics used to guide forward-chaining planners are based around solving an abstrac-
tion of the original, hard, planning problem with which the planner is presented. The most widely
used abstraction involves planning using ‘relaxed actions’, where the delete effects of the original
actions are ignored. FF, HSP (Bonet & Geffner, 2000) and UnPOP (McDermott, 1996) use relaxed
actions as the basis for their heuristic estimates, although FF was the first to count the number of
relaxed actions in a relaxed plan connecting the goal to the initial state. Although ignoring delete
lists turns out to be a powerful relaxation, at least for a class of planningdomains, other relaxations
are possible. More recently, work has been done using an abstraction based on causal graph analysis
(Helmert, 2004).

The initial approaches for calculating goal distance estimates, taken by planners such as HSP,
calculated the cost of reaching the goal state from the state to be evaluated by doing a forwards
reachability analysis from the state until the given goal appears. Two heuristics can be derived from
this information: either the maximum of the steps-to-goal values—an admissible heuristic; or the
sum of the steps-to-goal values—an inadmissible heuristic, which in practiceis more informative.

120

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

1: Procedure: EHCSearch
2: openlist = [initial state];
3: bestheuristic = heuristic value of initialstate;
4: while openlist not emptydo
5: currentstate = pop state from head of openlist;
6: successors = the list of states visible from currentstate;
7: while successors is not emptydo
8: next state = remove a state from successors;
9: h = heuristic value of nextstate;

10: if next state is a goal statethen
11: return nextstate;
12: end if
13: if h better than bestheuristicthen
14: clear successors;
15: clear openlist;
16: bestheuristic = h;
17: end if
18: place nextstate at back of openlist;
19: end while
20: end while

Figure 1: Enforced Hill-Climbing Search

The disadvantage of the latter of these approaches is that it ignores any positive interactions (shared
actions) between the action sequences for each goal: it is this problem which was addressed by the
heuristic used in FF. In FF, a planning graph (Blum & Furst, 1995) is built forward from the current
state using relaxed actions—this is known as a relaxed planning-graph (RPG). A relaxed plan (one
using relaxed actions) to achieve the goal state can be extracted from the RPG in polynomial time;
the number of actions in this plan can be used to provide the heuristic value. AsGraphplan does not
provide a guarantee that the plan found will contain the optimum number of sequentialised actions
(only that it will have the optimum makespan) the heuristic returned is inadmissible, but in practice
the heuristic is more informative than any of those used previously.

2.3 Enforced Hill Climbing Search

Along with a heuristic based on relaxed planning graphs, FF introduced theEnforced Hill Climbing
(EHC) algorithm, illustrated in Figure 1. EHC is based on the commonly used hill-climbing algo-
rithm for local search, but differs in that breadth-first search forwards from the global optimum is
used to find a sequence of actions leading to a heuristically better successor if none is present in the
immediate neighbourhood.

The key bottleneck in using EHC is where the search heuristic cannot provide sufficient guid-
ance to escape a plateau1 in a single action step, and breadth-first search is used until a suitable
action sequence is found. Characteristically, EHC search consists of prolonged periods of exhaus-
tive search, bridged by relatively quick periods of heuristic descent.

1. In this work, a plateau is defined to be a region in the search space where the heuristic values of all successors is
greater than or equal to the best seen so far.

121

COLES & SMITH

In practice, EHC guided by the RPG heuristic is an effective search strategy in a number of
domains. Work has been done (Hoffmann, 2005) on analysing the topology of the local-search
landscape to investigate why it is an effective heuristic, as well as identifying situations in which it
is weak.

2.4 Exploiting the Structure of a Relaxed Plan

The actions in the relaxed plan to the goal from a given state can be used to provide further search
advice. YAHSP (Vidal, 2004), a planner that produced interesting results in the Fourth International
Planning Competition (IPC 4), makes use of the actions of the relaxed plan to suggest actions to add
to the current plan to reach the goal. In FF, the notion of ‘helpful actions’is defined—those that add
a fact added by an action chosen at the first time unit in the relaxed plan. Ineach state encountered
during search, a number of actions are applicable, some of which are irrelevant; i.e. they make no
progress towards the goal. By only considering the helpful actions whendetermining the successors
to each state, when performing EHC, the number of successor states to be evaluated will be reduced.

Restricting the choice of actions to apply only to those that are ‘helpful’ further reduces the
completeness of EHC, beyond what would be the case if all applicable actions were considered. In
practice it is observed, however, that the cases where EHC using only helpful actions is unable to
find a plan correlate with the cases where EHC with all the applicable actions would be unable to
find a plan.

2.5 Guaranteeing Completeness in FF

FF first attempts to search for a solution plan by performing Enforced Hill-Climbing (EHC) search
from the initial state towards the goal state. As discussed earlier, EHC useshill-climbing local
search guided by the RPG heuristic while a strictly-better successor can befound. As soon as no
strictly better successor can be found, FF has entered a plateau, and breadth-first search is used
until an improving state is found. In directed search spaces, EHC can leadthe search process in the
wrong direction and to dead-ends; i.e. the open list is empty, but no goal state has been found. In
these cases FF resorts to best-first search from the initial state, therebypreserving completeness.

2.6 Macro-Actions in Planning

A macro-action, as used in planning, is a meta-action built from a sequence ofaction steps. In
forward-chaining planning, applying a macro-action to a state produces asuccessor correspond-
ing to the application of a series of actions. In this way, the use of macro-actions can be thought
of as extending the neighbourhood of successors visible from each state to selectively introduce
states which hitherto would only have been visible after the application of several steps. If the addi-
tional states introduced are chosen effectively, an increase in plannerperformance can be realised;
whereas if the additional states are chosen poorly, the performance of the planner decreases due to
the increased branching factor.

The use of macro-actions in planning has been widely explored. Most techniques use an off-line
learning approach to generate and filter macro-actions before using themin search. Early work on
macro-actions began with a version of the STRIPS planner—known as ABSTRIPS (Fikes & Nils-
son, 1971)—which used previous solution plans (and segments thereof)as macro-actions in solving
subsequent problems. MORRIS (Minton, 1985) later extended this approach by adding some filter-

122

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

ing heuristics to prune the generated set of macro-actions. Two distinct types of macro-actions were
identified in this approach: S-macros—those that occur frequently duringsearch—and T-macros—
those that occur less often but model some weakness in the heuristic. Mintonobserved that the
T-macros, although used less frequently, offered a greater improvement in search performance. The
REFLECT system (Dawson & Siklossy, 1977) took the alternative approach of forming macro-
actions based on preprocessing of the domain. All sound pairwise combinations of actions were
considered as macro-actions and filtered through some basic pruning rules. Due to the small size of
the domains with which the planner was reasoning, the number of macro-actions remaining follow-
ing this process was sufficiently small to use in planning.

More recent work on macro-actions includes that on Macro-FF (Botea,Enzenberger, Muller,
& Schaeffer, 2005). Macro-actions are extracted in two ways: from solution plans; and by the
identification of statically connected abstract components. An offline filteringtechnique is used
to prune the list of macro-actions. Another recent approach to macro-action generation (Newton,
Levine, & Fox, 2005) uses a genetic algorithm to generate a collection of macro-actions, and then
filters this collection through an offline filtering technique similar to that used by Macro-FF.

3. Marvin’s Search Behaviour

Marvin’s underlying search algorithm is based on that used by FF: forward-chaining heuristic search
using the RPG heuristic. However, Marvin includes some important modifications to the basic FF
algorithm. These are: aleast-bad-firstsearch strategy for exploring plateaux, agreedy best-first
strategy for searching when EHC fails and the development and use ofplateau-escaping macro-
actions.

As in FF the first approach to finding a solution plan is to perform EHC search using only helpful
actions. The first successor with a heuristic strictly better than the best so far is taken, should one be
found. If one is not found, then a plateau has been encountered, anda form of best-first search using
helpful actions is used (instead of the breadth-first search of FF) to tryto find an action sequence to
escape from it. Because the states on a plateau can never improve on the heuristic value of the node
at the root of the plateau, we call thisleast-bad-firstsearch.

If the EHC approach is unable to find a plan, Marvin resorts to amodifiedform of best-first
search using all the actions applicable in each state. This expands the firststrictly better successor
whilst keeping the current state for further expansion later if necessary. We call this strategygreedy
best-first search. As can be seen in the graphs in Section 6.2, in some of the IPC 4 domains our
modifications enable the solution of problems that are unsolvable for best-first search.

During the EHC search strategy, Marvin usesplateau-escaping macro-actionslearned from
previous searches of similar plateaux. These can be applied in the same wayas atomic actions to
traverse plateaux in a single step. Plateau-escaping macro-actions are learned online and the planner
must decide which ones are likely to be applicable at which points during search. In Section 6.5
we show that plateau-escaping actions can yield performance benefits. Their power depends on the
structure of the search space and the ability of the planner to learn re-usable macro-actions.

Least-bad-first search on plateaux, greedy best-first search andplateau-escaping macro-actions
are the three main features of Marvin distinguishing its basic search strategyfrom that of other
forward heuristic search-based planners. We now discuss these three features in more detail be-
fore going on to describe how they can be exploited in the context of ADL domains and domains
involving derived predicates.

123

COLES & SMITH

5

6

5

65

4

3

6

4
4

4

4

5

5

5

Figure 2: Least-bad-first search versus breadth-first search ona plateau. Black nodes are those
expanded by breadth-first search. Dotted blue/grey nodes are thoseexpanded by both
breadth-first and least-bad-first search. Solid blue/grey nodes arethose expanded by only
least-bad-first search. It can be seen that least-bad-first searchleads to a better exit node
than does breadth-first search.

3.1 Least-Bad-First Search on Plateaux

A plateau is encountered when all of the successor nodes of a given current node have a heuristic
value that is the same as, or worse than, that of the current node. The notion of bestin this context
relates to the successor with the heuristic value closest to that of the parentstate. This is called
least-bad-first search because no chosen successor can make heuristic progress, but some choices
are less negative than others. The successor chosen in least-bad-first search will have least negative
impact on the current state and therefore is more likely to be on the best path tothe goal. When
breadth-first search is used, the exit state that is reached might be further from the goal than the exit
state reached when the state with the least negative impact is always expanded next.

In Figure 2 we show the order in which states are explored using least-bad-first search relative
to breadth-first search. It can be observed that, using least-bad-first search, the exit state reached
has a better heuristic value than that reached using the breadth-first search in FF. It can be expected
that this sometimes leads to better quality plans being found. Our results in Section6.3 show that,
indeed, using least-bad-first search we sometimes find shorter plans thanFF finds using its standard
breadth-first strategy on plateaux.

3.2 Greedy Best-First Search when EHC Fails

As in FF, Marvin resorts to best-first search if EHC proves unable to finda solution. This approach
maintains the completeness of the planner in the cases where the use of EHC withhelpful actions
would otherwise render the search incomplete. Two other planners in IPC 4used variations on
the best-first search algorithm, YAHSP (Vidal, 2004) and Fast-Downward (Helmert, 2006). Unlike
Marvin, however, in these two planners there is no incomplete search step (such as EHC) before
using a modified best-first search algorithm. In YAHSP, conventional WA*search is used but within
the search queue, states reached by applying a helpful action in their parent state are ordered before
those which were not. In Fast-Downward, a ‘deferred heuristic evaluation’ strategy is used, where

124

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

states are inserted into the search queue with the heuristic value of their parent state; the actual
heuristic cost of the state is then only calculated when the state is expanded.

In Marvin the best-first strategy is modified by greedily expanding the firstsuccessor found with
a better heuristic than its parent state, but retaining the parent so that its remaining children can be
evaluated later if necessary. The effect of this is similar to the approach taken in Fast-Downward,
and would lead to the nodes in the search space being visited in the same order. The approach taken
in Marvin, however, allows a smaller search queue to be maintained, as nodes are not necessarily
inserted into the search queue for each successor node reachable from a state.

Whenever a successor state is generated and evaluated (by calculating itsheuristic value), one
of two things happens:

• If the successor has a heuristic better than its parent, the successor is placed at the front of
the search queue, with its parent state behind it (along with a counter variable, noting how
many successors have already been evaluated); and the search loop isthen restarted from the
successor state.

• If the successor has a heuristic no better than its parent, the successor isinserted into the
search queue in its appropriate place (stable priority-queue insertion, ordered by heuristic
value). The process then carries on evaluating the successors of the parent state.

The pseudo-code for this can be seen in Figure 3. The approach is inspired by the idea of taking
the first strictly-better successor when performing EHC search, with the benefit that the number of
heuristic evaluations to be performed is potentially reduced by considering fewer successors to each
state. It differs from EHC in that, to maintain completeness, the parent state is not discarded—it is
placed back in the queue to have its other successors evaluated later if necessary. Theoretically, if
EHC search on a given problem does not encounter any plateaux, andany pruning from selecting
only the helpful actions is ignored, then using greedy best-first searchon that problem would visit
the same number of nodes and evaluate the same number of successors. Ifa plateau was encoun-
tered, however, the search behaviour would differ as EHC would only consider states reachable
from the state at the start of the plateau.

Another effect of the greedy best-first search is that the search focusses on exploring in a given
direction. As has been described, as soon as a successor node is found with a heuristic value better
than that of its parent, then the further expansion of the parent node is postponed and the successor
node is expanded. The practical consequence of this is that as the search queue does not contain
the other equally good successors, any search forward from a successor state will not be sidetracked
by also having to search forward from its sibling states. The parent nodewill be re-visited, and
the other sibling nodes added, but only if it proves heuristically wise to do so—that is, if searching
forward from the successor node is not making heuristic progress.

3.3 Plateau-Escaping Macro-Actions

Due to the nature of the relaxed problem used to generate the RPG heuristic there are aspects of
the original problem that are not captured. Thus, when the RPG heuristicis used to perform EHC,
plateaux are often encountered. On plateaux, the RPG heuristic value of all successor states is
the same as, or worse than, the heuristic value of the current state. The nature of the plateaux
encountered, and whether EHC is able to find a path to escape from them, is influenced by the
properties of the planning domain (Hoffmann, 2001).

125

COLES & SMITH

1: Procedure: GreedyBFS
2: insert (state=initialstate, h=initialheuristic, counter=0) into searchqueue;
3:
4: while searchqueue not emptydo
5: currentqueueentry = pop item from front of searchqueue;
6: currentstate = state from currentqueueentry;
7: currentheuristic = heuristic from currentqueueentry;
8: startingcounter = counter from currentqueueentry;
9: applicableactions = array of actions applicable in currentstate;

10:
11: for all index ?i in applicableactions≥ startingcounterdo
12: currentaction = applicableactions[?i];
13: successorstate = currentstate.apply(currentaction);
14:
15: if successorstate is goalthen
16: return plan and exit;
17: end if
18: successorheuristic = heuristic value of successorstate;
19:
20: if successorheuristic< currentheuristicthen
21: insert (currentstate, currentheuristic, ?i + 1) at front of searchqueue;
22: insert (successorstate, successorheuristic, 0) at front of searchqueue;
23: break for;
24:
25: else
26: insert (successorstate, successorheuristic, 0) into searchqueue;
27: end if
28: end for
29: end while
30: exit - no plan found;

Figure 3: Pseudo-code for greedy best-first search

126

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Ignoring the delete effects of thepickup action in the Gripper domain creates a problem in
which, in a given state, it is possible to pick up many balls using one gripper, so long as the gripper
is initially available: the delete effect of the action, marking the gripper as no longer available, is
removed. The relaxed plan in the initial problem state ispickup all the balls with one gripper,
move to the next room, thendrop them all. The length of this plan, the heuristic value of the
initial state, isn+1+n, that is2n+1 (wheren is the number of balls). If, in the initial state, a ball
is picked up using one of the grippers, the relaxed plan for the resulting state will be topickup the
remaining balls in the other gripper,move to the second room and thendrop them all; this has a
length of(n− 1) + 1 + n, that is2n, which is less than the heuristic value of the initial state so this
action will be chosen as the one to apply.

The next state, however, is at the start of a plateau. The actions applicable (those for which
all the preconditions are satisfied) are either todrop the ball that has been picked up,pickup
another ball ormove to the next room. The ‘correct’ action would be topickup another ball: the
relaxed plan to the goal state for the resulting state would be todrop one of the balls,pickup
all the remaining balls in the newly-freed gripper,move to the next room, anddrop all the balls.
However, the heuristic value of this state would be1 + (n − 2) + 1 + n, or 2n, the same value
as the state in which the action is applied. Moving to the next room would produce a state with
the heuristic value of2n (move to the initial room,pickup remaining(n − 1) balls,drop all
balls in the final room—nomove action is required to move back to any room the robot has already
visited). Dropping one of the balls would also produce a state with a heuristic value of2n (pickup
all remaining(n − 1) balls in newly-freed gripper,move to next room,drop all balls). As all
successor states have the same RPG heuristic value as their parent state, the heuristic is unable to
provide useful guidance as to which action to apply.

With some exhaustive search forward from this point, an improvement in heuristic value can
be made in two ways: eithermove to the next room thendrop a ball, orpickup a ball then
move to the next room—both of these lead to heuristic values of(2n − 1). The plateau will,
however, be encountered each time the robot is in the first room, holding one ball, and the action
choices are either topickup another ball ormove to the next room (ordrop a ball). Each time
the plateau is encountered, the action sequence to escape the plateau is identical—move-drop or
pickup-move (in EHC the actual sequence chosen will depend on the order in which the actions
are considered by the planner). Having to discover one of these action sequences by exhaustive
search each time the plateau is encountered is a considerable bottleneck in thesearch process: this
is true in general for many domains.

In order to address the overhead caused by recurrent plateaux in thesearch space, Marvin mem-
oises the action sequences used to escape the previously encountered plateaux; these action se-
quences are used to form what are called ‘Plateau-Escaping Macro-Actions’. A macro-action is
generated from the action sequence using the code presented in Figure 4. Each step of the action
sequence is considered in turn, and an abstract action step is made for it by replacing the entities
given as parameters to the action with placeholder identifiers—one for eachdistinct entity. These
placeholder identifiers then form the parameter list of the macro-action; andthe recorded abstract
action steps dictate the component actions from which the macro-action is built.

Returning to thepickup-move action sequence, the action sequence:

0: pickup robot1 ball2 room1
1: move robot1 room1 room2

127

COLES & SMITH

would form a macro-action:

pickup-move (?a - robot) (?b - ball) (?c - room) (?d - room)
0: pickup ?a ?b ?c
1: move ?a ?c ?d

This macro-action can then be instantiated by specifying the parameters ?a to ?d, resulting in a
sequence of actions. For example, (pickup-move robot1 ball3 room1 room2) would give
an action sequence:

0: pickup robot1 ball3 room1
1: move robot1 room1 room2

In Marvin, the preconditions of the steps within the macro-action are not collected to give a
single precondition formula for the macro-action. Instead, an instantiated macro-action is said to
be applicable in a given state if the first component action of the macro-actionis applicable, and
subsequent actions are applicable in the relevant resulting states.

Having now built macro-actions from the plateau-escaping action sequences, when the search is
later attempting to escape a plateau, these macro-actions are available for application. If the plateau
arose due to the same weakness in the heuristic that led to an earlier plateau, then a macro-actions
will be able to lead the search to a strictly better state by skipping over the intermediate states. The
plateau-escaping macro-actions are only used when the search is attemptingto escape a plateaux—
this avoids slowing down search when the RPG heuristic is able to provide effective guidance using
only single-step actions.

To reduce the number of macro-actions considered, and the blow-up in thesize of the explored
search space that would otherwise occur, the only macro-actions considered are those containing
actions at the first time step that are helpful actions in the current state.

3.4 Macro-Actions in Use

The structure and reusability of macro-actions depends on the underlyingtopology of the problem
space under the given heuristic function. When a problem space contains many similar occurrences
of the same plateaux (which happens when a problem contains much repeating structure) the effort
involved in learning macro-actions to escape these plateaux efficiently can be richly rewarded. In
principle, the most benefit is obtained when the problem space features large, frequently recurring
plateaux, since large plateaux are the most time-consuming to explore and the effort would need
to be repeated on every similar occurrence. Short macro-actions (of twoor three actions) indicate
that the problem space contains small plateaux (although these might arise frequently enough for
learned macro-actions to still be beneficial).

Problems with repeating structure include: transportation problems, where the same basic se-
quences of actions have to be repeated to move groups of objects from their sources to their destina-
tions; construction problems, in which many similar components need to be built and then combined
into a finished artifact; and configuration problems, in which multiple componentsof an architecture
need to go through very similar processes to complete their functions, etc. The Dining Philosophers
and Towers of Hanoi problems are good examples of problems with repeating structure.

Although using macro-actions during search has advantages—they can offer search guidance
and allow many actions to be planned in one step—considering them during the expansion of each

128

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

1: Procedure: BuildMacro
2: parameters = [];
3: parametertypes = [];
4: abstractsteps = [];
5: parametercount = 0;
6:
7: for all action ?a in the action sequence used to escape a plateaudo
8: abstractparameters = [];
9:

10: for all parameter ?p of ?ado
11:
12: if ?p∈ parametersthen
13: index = parameter index of ?p in parameters;
14: append (index) to abstractparameters;
15:
16: else
17: parameters[parametercount] = ?p;
18: parametertypes[parametercount] = type of ?p;
19: append (parametercount) to abstractparameters;
20: increment parametercount;
21: end if
22: end for
23: append (action type of ?a, abstractparameters) to abstractsteps;
24: end for
25: return parametertypes and abstractsteps as a macro-action

Figure 4: Pseudo-code for building macro-actions from plan segments

129

COLES & SMITH

state increases the branching factor. Thus, if a large number of unproductive macro-actions are
generated the search space will become larger, making the problem harder, not easier, to solve.
Whilst many of the plateau-escaping sequences are helpful in planning, some are specific to the
situation in which they were derived, a situation which might not occur again inthe plan. As macro-
actions are learnt during the planning process—and there is no human intuition, or large test suite,
to allow reusable macro-actions to be identified—care must be taken when deciding the points at
which to consider their use in the planning process.

Plateau-escaping macro-actions are generated from situations in which theheuristic has broken
down; therefore, the heuristic can be used as an indicator of when they are likely to be useful again
during planning. As areas of repeating structure within the solution plan involve the application
of similar (or identical) sequences of actions, they are likely to have similar heuristic profiles. In
the case of plateau-escaping action sequences, the heuristic profile of the search landscape at their
application is an initial increase (or no-change) of heuristic value, eventually followed by a fall to
below the initial level—the profile occurring at a local minimum. If the plateau-escaping macro-
actions are to be reusable, it is likely that the re-use will occur when the planning process is in a
similar situation. As such, they are only considered for application in the exhaustive search step
used to escape plateaux (both at the start or at any other point on a plateau).

Situations may arise where the use of macro-actions increases the makespanof the resulting
plan due to redundant action sequences. For example, if in a simple game domain—with actions
to move up, down, left or right— a macro-action is formed for ‘left, left, left, left’ and the optimal
action sequence to escape a given plateau is ‘left, left, left’ then ‘{left, left, left, left}, right’ may be
chosen if the state reached by moving left four times is heuristically better than the one reached by
applying a single-step ‘left’ action. Thus, macro-actions can have an adverse effect on plan quality.

Within the problem domains presented in IPC 4 (Hoffmann & Edelkamp, 2005) was the encod-
ing of the Dining Philosophers problem, translated from Promela into a PDDL encoding. When
solving this problem, two important macro-actions are formed: an eleven-stepmacro-action upon
completion of the first period of exhaustive search; and a three-step macro-action upon completion
of the second. The solution plan requires these macro-actions to be repeated many times, some-
thing which now—as a result of the macro-actions—involves simply applying a single action that
results in a strictly better state. Without the macro-actions, the planning process consists of repeated
episodes of exhaustive search to find the same two sequences of actionseach time.

This behaviour can be seen in Figure 5 depicting the heuristic values of states generated with
and without macro-actions, across the solution plan for the IPC 4 Dining Philosophers problem
involving 14 philosophers. Initially, no macro-actions have been learnt sothe search done by both
approaches is identical. For the first 14 action choices the value of the heuristic, shown by the line
in the graph, moves monotonically downwards as the planner is able to find actions to apply that
lead to strictly better states.

After time step 14, the heuristic value begins to oscillate, at this point the plannerhas reached a
plateau: there is no state with a strictly better heuristic value that can be reached by the application
of just one action. As this is the first plateau reached, no macro-actions have been generated so
the heuristic profiles are identical for both configurations. At time step 25 a state is reached that
has a better heuristic value than that at time step 14. It is at this time that the plateau-escaping
macro-action will be generated, memoising a lifted version of the sequence ofactions that was used
to escape the plateau. A brief period of search in which a strictly better state can be found at each
choice point follows before the planner again hits a plateau.

130

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

H
eu

ris
tic

Plan Time Step

Without Macro-Actions
With Macro-Actions

Figure 5: Heuristic landscape over makespan, with and without macro-actions.

The subsequent six plateaux consist of applying the same sequence of actions to six further
pairs of philosophers; it can be seen that the heuristic fingerprints of theplateaux are identical.
The version of Marvin in which macro-actions have been disabled repeatsthe expensive exhaustive
search at each plateau: the heuristic value again goes through the process of increasing and then
decreasing again before reaching a strictly-better state. The version using the plateau-escaping
macro-actions, however, now has a single action to apply that achieves a strictly better state and
search continues, stepping over the subsequent plateaux through the selection of macro-actions that
yield strictly-better states.

When all of the larger plateaux have been overcome, a series of smaller plateaux are encoun-
tered. Again, it can be seen that for the first of these, both versions must complete a stage of
exhaustive search; however, after the first of the smaller plateaux hasbeen completed, the macro-
action formed allows the subsequent plateaux to be bypassed. Finally, the plan finishes with a short
previously unseen sequence of actions, where both versions must do exhaustive search.

4. Handling ADL

PDDL (McDermott, 2000) (the Planning Domain Definition Language) was first defined for use in
the First International Planning Competition (IPC 1) at AIPS-98. Over the subsequent competitions,
modifications have been made to the language as planning technology has evolved.

In the first three competitions, domains were available in which only STRIPS (Fikes & Nilsson,
1971) actions were used. STRIPS actions have conjunctive predicate preconditions, add effects, and
delete effects defined in terms of action schema parameters and constant entities. To determine the
preconditions and effects of a given ground action instance (an action whose parameters have been
bound to specific entities) the action’s parameters are substituted into the schema. For the action to
be applicable in a given state, all of the precondition predicates must hold in that state; if the action
is applied, a new state is generated from the previous state by removing all thepredicates present in
the delete effect list and adding those in the add effect list..

131

COLES & SMITH

ADL action schemata (Pednault, 1989) extend the syntax of STRIPS action schemata. In ADL
domains the language used to describe the preconditions of an action is extended to allow disjunc-
tive, quantified and negative preconditions as well as the conjunctive preconditions that can be used
in STRIPS domains. The syntax for describing the effects of actions is alsoextended to allow
conditional effects—effects which are applied whenever a given condition holds.

The extended syntax provided by ADL not only increases the convenience with which a domain
can be encoded, but can also reduce the size of the domain descriptions needed. For example, if
an action schema has, as a precondition (or A B C) then, without ADL, threecopies of the action
schema would need to be made: one with a precondition (A), one with a precondition (B) and one
with a precondition (C). If one is willing to tolerate such increases in domain-description size, and
the number of objects in the domain is finite, it is possible to compile a given ADL domain and
problem-instance pair into a domain-problem pair containing only STRIPS actions: in general, this
compilation must be done once for each problem instance, not just once for each ADL domain. The
ability to compile ADL domains into STRIPS domains was first demonstrated by the compilation
procedure devised by Gazen and Knoblock (1997). Using these techniques in a preprocessing stage,
FF is able to handle domains containing ADL actions whilst only reasoning about STRIPS actions
internally. The output from FF’s preprocessor stage was made availablein IPC 4 to allow planners
which could not handle ADL directly to solve compiled STRIPS formulations of the problems
by loading a compiled domain-problem pair for each of the original problem instances in a given
domain.

Whereas in previous competitions the ADL domains were simplified or manually reformulated
to produce STRIPS domains, the STRIPS domains in IPC 4 were compiled automatically from
ADL. The compilation used, based on the preprocessor of FF, results in acompiled domain-problem
pair for each original problem instance. This compilation explicitly grounds many of the original
actions, producing one compiled action schema (with preconditions and effects whose parameters
refer to PDDL constants) per ground action that could arise in the originalADL problem. Whilst
these compilations produce STRIPS domains that allow planning to be performed, they replace
general action schemata with sets of specific action instances.

To allow the new features in Marvin to be used in the competition, Marvin was extended to
include native support for ADL. By reasoning with the original ADL domainit is able to effectively
abstract macro-actions from action sequences.

4.1 The Preconditions of ADL Actions

The preconditions of STRIPS actions consist of one structural feature- an ‘and’ clause, allowing
conjunctive preconditions and predicates with constant or parameterisedbindings. ADL actions
have a far greater range of structural features in their preconditions.They allow ‘or’, ‘imply’,
‘not’, ‘forall’ and ‘exists’, which can be combined in any well-formed manner. In Marvin, the ADL
preconditions are processed using two steps. First, all quantified preconditions are fully enumerated.
Second, the resulting precondition formula is translated into Negation Normal Form (NNF) using
the standard procedure: by replacing(a ⇒ b) with (¬a ∨ b), and using De Morgan’s laws to
eliminate negations of clauses. Further reductions are then applied to eliminate redundancy, such as
replacing (and A (and B C)) with (and A B C), and (or A (or B C)) with (or AB C).

Internally, within Marvin, the NNF precondition formula forms the basis of a ‘satisfaction tree’,
the nodes of which are the ‘and’ and ‘or’ elements of formula and the literals(negated and non-

132

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

negated) form the leaves. The structure of the satisfaction tree for a given action schema is fixed,
although the propositions at the leaves vary between groundings.

To determine which ground ADL action instances are applicable in a given state based on their
preconditions, the algorithm shown by the pseudo-code fragment in Figure 6 is used. Initially, the
satisfaction counters associated with each ground action’s satisfaction tree nodes are reset using the
following rules:

• Each ‘and’ nodes has its counter set to denote the number of children it has.

• Each ‘or’ node has its counter set to 1.

• Negative preconditions are assumed to be true, and the satisfaction counters of their parents
decremented accordingly.

As these values are state-independent, for reasons of efficiency the values used to reset the satisfac-
tion counters are computed once and cached for later use.

Having reset the satisfaction counters, each proposition in the current state is considered, and
the satisfaction trees updated accordingly:

• The satisfaction counters of parent nodes that have the current proposition as a negative pre-
condition are incremented.

• The satisfaction counters of parent nodes that have the current proposition as a positive pre-
condition are decremented.

Then, by propagating the effects of truth value changes upwards through the tree, any action
whose root node has sufficiently many children satisfied is applicable.

4.2 The Effects of ADL Actions

ADL extends the action definitions of STRIPS actions by allowing quantified and conditional ef-
fects. As in preconditions, the former are dealt with by enumeration; the latterare dealt with de-
pending on their conditions.

If a conditional effect is dependentonly on static predicates it is possible to determine when
grounding an action whether or not it applies for that instance: the static information does not
change from state to state. If the effect depends on dynamic predicates,it is necessary to consider,
in each state, whether the effect applies. To achieve this, the effect andits conditions are used
to form a sub-action. The sub-action has the conditional effect’s condition as its preconditions,
and the conditional effect itself as its effects. As conditional effects canbe nested in the original
operator schemata, the sub-actions themselves may also have conditional effects; in which case the
sub-action-creation step is applied recursively, creating nested sub-actions as necessary.

The applicability of ground sub-actions in a given state is performed in the same manner as
normal actions. When an action is applied, any sub-actions that are also applicable are applied
alongside it, thereby preserving the conditional effects of the original operator.

4.3 Modifying the Relaxed Planning Graph

It is necessary to modify the Relaxed Planning Graph expansion and plan-extraction phases to make
it possible to apply the heuristic when the domain contains ADL actions. Work has been done on

133

COLES & SMITH

1: Procedure: test-action-applicability
2: resetsatisfactioncounters();
3:
4: for all predicate ?p in the statedo
5:
6: for all (ground action ?a, tree node ?c) pair having ?p as a negative precondition child nodedo
7: treenodeto update = ?c;
8:
9: while treenodeto update is still validdo

10: old value = value in treenodeto update;
11: value in treenodeto update = oldvalue + 1;
12:
13: if value in treenodeto update> 0 && old value = 0then
14: treenodeto update = parent of treenodeto update;
15:
16: else
17: treenodeto update = invalid;
18: end if
19: end while
20: end for
21:
22: for all (ground action ?a, tree node ?c) pair having ?p as a positive precondition child nodedo
23: treenodeto update = ?c;
24:
25: while treenodeto update is still validdo
26: old value = value in treenodeto update;
27: value in treenodeto update = oldvalue -1;
28:
29: if value in treenodeto update = 0 && oldvalue> 0 then
30: treenodeto update = parent of treenodeto update;
31:
32: else
33: treenodeto update = invalid;
34: end if
35: end while
36: end for
37: end for
38: applicableactions =∅;
39:
40: for all ground action ?ado
41:
42: if root tree node is satisfiedthen
43: add ?a to applicableactions;
44: end if
45: end for

Figure 6: Pseudo-code for action applicability testing

134

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

extending full graphplan planning graphs to reason with a subset of ADLactions (Koehler, Nebel,
Hoffmann, & Dimopoulos, 1997); the approach taken in Marvin extends therelaxed planning graph
structure to handle all of the available ADL constructs. The effect of the modifications is that the
same heuristic estimate is obtained as if a precompiled STRIPS domain formulation was used.

When building a conventional relaxed planning graph the assumption is made that, in the first
fact layer, all the facts present in the state to be evaluated are true and allother facts are, implicitly,
false. Facts are then gradually accumulated by the application of actions, add effects adding facts to
the spike (Long & Fox, 1999). Actions become applicable when their preconditions are all present;
i.e. they have all been accumulated. The STRIPS actions used to build a conventional relaxed
planning graph necessarily have no negative preconditions, so it is sufficient to consider when facts
have a positive truth value and determine action applicability from this. ADL actions, however, can
also have negative preconditions, corresponding to facts which must befalse. Within a conventional
relaxed planning graph, no record is made of whether it is possible for a given fact to have a negative
truth value.

To handle negative facts within the relaxed planning graph used in Marvin,a second spike is
added. As with the positive-fact spike, all the facts present in the state to be evaluated are true and
all other facts are, implicitly, false. However, unlike the positive-fact spike, facts are then gradually
erodedby the applications of actions; with their delete effects marking the fact in the negative-
fact spike as having been deleted. The inherent relaxation on which the relaxed planning graph
is founded is still preserved, though: delete effects have no effect onthe positive-fact spike; and,
similarly, add effects have no effect on the negative-fact spike.

If a precompiled STRIPS domain formulation was used, additional complimentarypropositions
are added to denote when each proposition is not true. These accumulate alongside the original
domain propositions, and in this way are able to satisfy negative preconditions. The negative fact
spike, as discussed, has the same effect, although rather than recording which propositions are
available in a negated form at each layer, it records which propositions are not available in a negated
form.

As discussed, ADL action preconditions are preprocessed such that negation is only applied
to the leaves of the satisfaction tree; i.e. only applied to unit facts forming partof the actions’
precondition structures. Within the relaxed planning graph a given fact leaf can now be marked as
satisfied if either one of the following holds:

• It is a positive fact leaf, and the fact contained therein has been addedto the positive-fact
spike.

• It is a negative fact leaf, and the fact contained therein has either never been in the negative-
fact spike or has since been marked as deleted.

Plan graph construction proceeds in a manner similar to that used to build a conventional relaxed
planning graph. Each of the newly present or newly deleted facts are considered in turn, and their
effects on the applicability of all available actions noted. Should the updating of the satisfaction tree
of an action lead to it becoming applicable:

• The action is added to the action spike, available at the next fact layer.

• Previously unseen add effects are added to the positive-fact spike, available at the next fact
layer.

135

COLES & SMITH

• Delete effects deleting a fact still present in the negative-fact spike markthe fact as being
deleted and available to satisfy negative preconditions from the next factlayer.

For efficiency, the first action to achieve each fact is stored when it is added to the positive-fact
spike, along with the earliest layer at which that action is applicable. Similarly, the first action
that deletes each fact that has ever been in the negative-fact spike is noted. Relaxed plan extraction
consists of regressing through the layers of the relaxed planning graph, selecting actions that achieve
the goals that are to be achieved at each layer. Initially, each proposition inthe goal state is added to
the layer of goals for the layer in which it first appears (or disappears,in the case of negative goals).
To extract a plan, the next goal is repeatedly taken from the deepest action layer with outstanding
goals. Its first achieving action is added to the plan and its preconditions, taken from its satisfaction
tree, are added to the goals for the first layer in which they appear. The process finishes when there
are no more outstanding goals at any layer. If a sub-action (that is, an action created to represent
the conditional effect of an ADL action, see Section 4.2) is chosen to achieve a given proposition,
the preconditions of its parent action(s) are also added to the goals for thefirst layer in which they
appear.

When considering adding the preconditions of an achieving action to the layer in which they
appear, a collection of disjunctive preconditions may arise. In this situation,the first satisfied pre-
condition or negative precondition in the disjunction is added as a subgoal inan earlier layer. This
avoids adding many redundant actions to satisfy each of a the disjunctive preconditions, where only
one needs to be satisfied. The precondition chosen to be satisfied from each collection of disjunc-
tive preconditions is the first for which an achiever was found when building the relaxed planning
graph, thus providing the same heuristic estimate as if the compiled STRIPS domainformulation
was used. In the compiled STRIPS domain formulation, the disjunctive precondition would give
rise to several action instantiations; the first applicable of these would be chosen as the achiever for
the desired fact.

At the start of the planning process, a relaxed planning graph is constructed forward from the
initial state. However, rather than stopping when the goal literals appear, graph construction stops
when no more ground actions become applicable. The actions and propositions appearing in this
relaxed planning graph are a superset of all the actions and propositions appearing in later relaxed
planning graphs: these actions and propositions discovered are then used to form a cache detailing
the proposition–action dependencies. Using this cached information, the code shown in Figure 6
can be used to determine the actions applicable in a given state, and the relaxed planning graphs
used to calculate heuristic values can be extracted more efficiently.

5. Handling Derived Predicates

In IPC 4, PDDL was further extended with the addition ofDerived Predicates(Hoffmann &
Edelkamp, 2005). Derived Predicates, used in three of the competition domains, allow higher-
level concepts to be recursively derived from other propositions. These derived predicates can then
be present in the preconditions of actions, and allow higher-level concepts in the domain to be rea-
soned with. For example, in the BlocksWorld domain, the derivation rule for the ‘above’ predicate
is as follows:

(:derived (above ?x ?y)
(or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y)))))

136

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Should a planner not include native support for derived predicates,it is possible to compile
domains containing derived predicates into “flattened” domains that do not. However, it is not pos-
sible to do this without a super-polynomial increase in the size of the domain andthe solution plan
(Nebel, Hoffmann, & Thiebaux, 2003). At IPC 4, compiled versions of the domains that contained
derived predicates were made available for competitors who could not support derived predicates.
However, the sizes of the problems that could be compiled were restricted bythe concomitant sizes
of the PDDL files produced by the compilation process and the computational effort necessary to
solve the compiled problems.

IPC 4 was the first planning competition to make use of derived predicates in itsdomains. As
it has been shown that derived predicates cannot be reasoned about efficiently through compilation
(Nebel et al., 2003) steps were taken to provide native support for them in Marvin.

It is also possible to compile derived predicates appearing in domains by adding actions to
instantiate the derived predicates on an as-needed basis (Gazen & Knoblock, 1997). Using this
compilation, the ‘above’ derivation rule from the blocksworld problem described above would be
compiled to the following action:

confirm above ?x ?y
pre: (or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?y ?z))))
add: (above ?x ?y)

If this is to be used as a domain compilation, each of the original actions in the domain must be
extended to delete all of the ‘above’ propositions, forcing theconfirm aboveactions to be used to
re-achieve the ‘above’ preconditions for any action that requires them.In this case, each action is
given the additional effect:

(forall (?x ?y) (not (above ?x ?y)))

Although effective in STRIPS domains, it is not possible to use such a compilation for domains
making use of negative preconditions as the re-derivation of derived predicates occurring as negative
preconditions of actions is not enforced. For example, an action could beapplied that modifies the
‘on’ propositions, leading to a state from which a number of additional ‘above’ properties could
be derived. Deleting the ‘above’ propositions is a necessary step, as the confirm actions should
re-assert any derived predicate for any action that needs it. However, when (above ?x ?y) is deleted,
(not (above ?x ?y)) is true, and can be used as an action precondition.To deal with this issue it is
necessary to prevent any non-confirm actions from being applied untilall possible derived predicates
have been re-asserted; this prevents actions from being applied when agiven ‘not above’ is only
temporarily true, i.e. whilst it has not yet been re-derived. To force there-derivation of derived
predicates, further dummy predicates and actions must be added to the domain. The necessary
compilation results in a large increase in the size of the search space explored, and the additional
dummy actions affect the usefulness of the relaxed-planning-graph heuristic.

The problems with using the Gazen & Knoblock compilation arise solely because, in its original
form, it does not force all applicable confirm actions to be applied after each original action is
applied. As such, if a planner generates the confirm actions internally andthen deals with them
appropriately, the compilation can still form the basis of an effective means for handling derived
predicates.

137

COLES & SMITH

To this end, when presented with a domain containing derived predicates, Marvin machine-
generates the confirm actions and extends each (original) action to delete the derived predicates, as
described. After each action is applied, all propositions that can be directly or recursively derived
from the resulting state are instantiated by applying all applicable confirm actions. Along with
avoiding an unwieldy compilation in domains with negative preconditions, handling the confirm
actions internally in this manner provides performance improvements for two further reasons:

• As the confirm actions are automatically applied when appropriate, Marvin does not have to
do search and perform heuristic evaluation to discover that the next action required will be a
confirm action.

• Confirm actions are included alongside normal actions in the relaxed planning graph built for
each state, but if used in the relaxed plan they do not contribute towards theheuristic value
taken from its length, eliminating any noise they would otherwise add.

6. Results

The planning competition offers a great opportunity for assessing the relative performance of various
techniques used in planning over a wide range of problems. Inevitably there will, however, be
features that are not tested by the set of domains used in the competition. There will also be some
domains in which many of the features of a planner collaborate to produce good results, rather than
the results being directly attributable to one individual feature. Here we discuss the results from the
competition and present further results to clarify which of the features of Marvin contribute to the
performance in each particular case.

It is important to note that when we refer to macro-actions generated and used by Marvin these
are all generated during the planning process for that specific problem.No additional learning time
or knowledge gained from solving other problems was used by Marvin in thecompetition, or in
producing the additional results presented in this paper. Although some planners can use additional
‘learning time’ when solving a series of problems, a satisfactory way to incorporate this extra time
into the time taken to solve each problem, as measured in the planning competition, has yet to
be found. In the planning competition the planners are compared based on their performance on
isolated problem instances, which is still an interesting comparison to make.

The results presented were produced on two machines: a machine at the University of Strath-
clyde (with a 3.4GHz Pentium 4 processor) and the IPC 4 competition machine (with a 3GHz Xeon
processor). In both cases, the planner was subjected to a 30 minute time limit and a 1Gb memory
usage limit. All results that are directly compared against each other (i.e. appear on the same graph)
are produced on the same machine. The domains used for evaluation are taken from IPC 3 and IPC
4, and are described in detail in the papers giving an overview of each of the two competitions (Long
& Fox, 2003; Hoffmann & Edelkamp, 2005).

6.1 Plateau-Escaping Macro-Actions

To assess the effect of plateau-escaping macro-actions on planner performance, tests were run across
a range of planning domains with macro-actions enabled and disabled. The results of these tests are
shown in Figures 7 and 8, illustrating the time taken to find a solution plan and the makespan of the
plan found respectively.

138

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Airport
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
.)

Problem Instance

Philosophers
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20

T
im

e
(s

ec
.)

Problem Instance

Depots
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

Problem Instance

Driverlog
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Pipes Tankage Non-Temporal
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35

T
im

e
(s

ec
.)

Problem Instance

Satellite
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

Problem Instance

FreeCell
With Macro-Actions

No Macro-Actions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Pipes No-Tankage Non-Temporal
With Macro-Actions

No Macro-Actions

Figure 7: CPU time showing the results of planning with and without plateau-escaping macro-
actions on a range of domains (from left to right: Airport, Philosophers, Depots, Driver-
log, Pipestankage-nontemporal, Satellite, FreeCell, Pipesnotankage-nontemporal).

139

COLES & SMITH

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Airport
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35 40 45

M
ak

es
pa

n

Problem Instance

Philosophers
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 5 10 15 20

M
ak

es
pa

n

Problem Instance

Depots
With Macro-Actions

No Macro-Actions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10 12 14 16 18 20

M
ak

es
pa

n

Problem Instance

Driverlog
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Pipes Tankage Non-Temporal
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35

M
ak

es
pa

n

Problem Instance

Satellite
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16 18 20

M
ak

es
pa

n

Problem Instance

FreeCell
With Macro-Actions

No Macro-Actions

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Pipes No-Tankage Non-Temporal
With Macro-Actions

No Macro-Actions

Figure 8: Makespan of the solution plans found when planning with and without plateau-escaping
macro-actions on a range of domains (from left to right: Airport, Philosophers, Depots,
Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, Pipesnotankage-nontemporal).

140

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

In the Airport domain the time taken to find plans and the makespans of the plans found were
almost identical. A strictly better successor can usually be found to each statewhen using EHC,
and it is clear in this domain that the addition of macro-actions from the occasional plateau has
not degraded the performance of the planner. The performance of thetwo configurations deviates
at problem 47, where planning with macro-actions was able to find a solution plan but planning
without macro-actions was not. Closer inspection of the output from the planner reveals that in this
case, some way into EHC search, a plateau is encountered and escaped;in the configuration using
macro-actions, this leads to the formation of a macro-action. Later in search,another plateau is
encountered. At this point, the earlier macro-action can be used to lead to a strictly better state,
from which a solution plan can ultimately be found using EHC. If the macro-action is not available,
however, the sequence of actions found to escape the plateau leads to a different exit point, from
which a solution plan cannot be found using EHC.

In the Philosophers domain neither the makespans of the plans found nor thecoverage differs be-
tween the two configurations tested. Using macro-actions, however, leadsconsistently to improved
performance as the plateaux encountered during search require the application of the same action
sequence. Consistently, across the problems, searching with macro-actions is faster by a factor of
two; and furthermore, the factor is increasing with problem size, suggesting it has better scalability.

In the Depots domain, using macro-actions improves coverage, allowing 18 problems to be
solved within the time limit rather than 15. Further, in many cases, the time taken to finda plan is
reduced. In one case, problem file 6, planning without macro-actions is able to find a plan where
planning with macro-actions cannot. Here, planning without macro-actions isunable to find an exit
point from one of the plateaux encountered later in search, and resortsto best-first search. Planning
with macro-actions, however, is able to reach a greater number of successor states from the nodes
on the plateau and is unable to exhaust the reachable possibilities and terminateEHC search within
the 30-minute time limit.

In the Driverlog domain, using macro-actions generally increases the time taken to find plans
and has an adverse effect on the makespan. In this domain, macro-actions containing varying-length
action sequences consisting of repeatedwalk or drive actions are inferred. In practice, these are
detrimental in two ways: they have a large number of instantiations and dramatically increase the
branching factor, reducing performance; and they are only usefully reusable in situations where
the prescribed number ofwalk or drive actions are needed. Despite this, planning with macro-
actions is able to find solution plans in 18 of the problems, whereas planning without the macro-
actions is only able to solve 17 of the problems. In the problem in question, problem 17, the
increased number of successor states visible from the nodes on plateauxdue to the presence of
macro-actions allows EHC to find a solution plan rather than resorting to best-first search, which
would ultimately fail within the time limit set.

In the Pipestankage-nontemporal domain, it is not clear at first whether macro-actions are bene-
ficial or not. The number of problems solved by both configurations is the same, 34, and the impact
on makespan appears to be insignificant, improving it in some cases but makingit worse in others.
However, looking at the harder problems from problem 25 upwards, planning with macro-actions
is able to solve 13 rather than 11 problems, suggesting it is able to scale better tolarger problems
compared to searching without macro-actions.

In the Satellite domain both configurations exhibit similar performance, in terms ofboth the
time taken to find a solution plan and the makespan of the plan found, as the relaxed planning graph
heuristic is generally able to provide good search guidance. The exception is problem 36: here,

141

COLES & SMITH

the inference of a macro-action allows search to be completed using EHC rather than resorting to
best-first search, reducing the time taken to find a plan.

In the FreeCell domain, macro-actions appear to lead to improved makespansand have negli-
gible impact on the time taken to find solution plans. Intuitively, however, in a strongly directed
search space (such as that in FreeCell, where it is possible to move a cardfrom one location to
another but often not to move it back) using a non-backtracking searchstrategy such as EHC should
reduce the effectiveness of macro-actions, as the introduction of redundant action steps as part of a
macro-action instantiations can lead search towards unpredicted dead-ends. The illustrated results,
contradicting this intuition, can be ascribed to the nature of the FreeCell problems used in IPC 3.
The problem files all have the four suits of cards, and from problem file 7upwards have four free
cells. The number of cards in each suit and the number of columns are gradually increased from 2
to 13 and 4 to 8 respectively. The effect of this, however, is that all butthe hardest problems have a
favourable free cells to cards ratio. When macro-actions are used, the impact of needlessly moving
a card into a free cell is not significant as there is a generous allocation offree cells compared to the
number of cards that might need to be stored there.

To provide a more reasonable test of whether macro-actions are beneficial in the FreeCell do-
main, twenty full-sized problem instances were generated and tests run to compare the performance
of Marvin with and without macro-actions on these problems. The results of these tests can be seen
in Figure 9 - clearly, the number of problems solvable within the 30 minute time limit and,generally,
the time taken to find a solution plan is improved when macro-actions are not used.

In the Pipesnotankage-nontemporal domain the results obtained do not show a significant ad-
vantage or disadvantage to using macro-actions: the planner is faster on some of the problems when
using macro-actions, but is slower on others; similarly, the planner produces plans with shorter
makespans on some problems when using macro-actions, but longer makespans on others. Two
results are obtained when macro-actions are not used that are very close to the 30-minute cut-off.
The first of these is solved in around 10 seconds when macro-actions are used; the second can be
solved using macro-actions if an extra 5 minutes of CPU time are allowed, or if a slightly faster
computer is used.

Overall, it can be seen that the effect of plateau-escaping macro-actions on the execution time
of the planner varies depending on the domain in question:

• In the Philosophers, Depots, Driverlog and Pipestankage-nontemporal domains, the use of
macro-actions improves the performance of the planner, either in terms of coverage or a
general reduction in the time taken to find solution plans.

• In the FreeCell domain, worse performance is observed when macro-actions are used.

• In the Airport, Pipesnotankage-nontemporal and Satellite domains the difference in perfor-
mance is minimal.

Furthermore, with the exception of the Driverlog and FreeCell domains (where the makespan of
solution plans is generally increased when using macro-actions) the use ofmacro-actions does not
significantly affect the makespan.

6.2 Greedy Best-First Search versus Best-First Search

To assess how the performance of greedy best-first search compares to conventional best-first search,
we ran tests across a range of planning domains with EHC and macro-actionsdisabled to isolate the

142

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20

T
im

e
(s

ec
.)

Problem Instance

FreeCell
With Macro-Actions

No Macro-Actions

Figure 9: Time taken to solve twenty full-sized problems in the FreeCell domain, with and without
plateau-escaping macro-actions.

effect of the greedy best-first search approach. Overall, when analysing the results, it was observed
that the choice of best-first search algorithm had little impact on the performance of the planner.

6.3 Least-Bad-First Search versus Breadth-First Search

To assess the effect of using least-bad-first search rather than breadth-first search to escape plateaux
in EHC search, we ran tests across a range of planning domains using each of the two search
algorithms. The results of these tests are shown in Figures 10 and 11, illustrating the time taken to
find a solution plan, and the makespan of the plan found.

In the Airport domain, plateaux arise in one of two cases:

• An unforeseen deadend has been reached; as no backtracking is made over action choices
exhaustively searching the plateau is inexpensive, and EHC terminates rapidly.

• A short plateau has been reached, requiring two actions to be applied to reach a state with a
strictly better heuristic value—here, the two actions found by both least-bad-first and breadth-
first search were identical.

As can be seen from the planning time and makespan graphs, using least-bad-first search rather
than breadth-first search has no impact on planning time or solution plan quality in the Airport
domain: the time spent searching plateaux is negligible, and the escape paths found are identical
under the two plateau-search approaches.

143

COLES & SMITH

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Airport
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
.)

Problem Instance

Philosophers
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20

T
im

e
(s

ec
.)

Problem Instance

Depots
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

Problem Instance

Driverlog
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Pipes Tankage Non-Temporal
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

T
im

e
(s

ec
.)

Problem Instance

Satellite
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

Problem Instance

FreeCell
Least-Bad-First Search

Breadth-First Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Problem Instance

Pipes No-Tankage Non-Temporal
Least-Bad-First Search

Breadth-First Search

Figure 10: CPU time showing a comparison between using breadth-first andleast-bad-first search
on plateau search on a range of domains (from left to right: Airport, Philosophers,
Depots, Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, Pipesnotankage-
nontemporal). These results were generated without using macro-actions.

144

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Airport
Least-Bad-First Search

Breadth-First Search

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35 40 45

M
ak

es
pa

n

Problem Instance

Philosophers
Least-Bad-First Search

Breadth-First Search

 0

 50

 100

 150

 200

 250

 5 10 15 20

M
ak

es
pa

n

Problem Instance

Depots
Least-Bad-First Search

Breadth-First Search

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 6 8 10 12 14 16 18 20

M
ak

es
pa

n

Problem Instance

Driverlog
Least-Bad-First Search

Breadth-First Search

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Pipes Tankage Non-Temporal
Least-Bad-First Search

Breadth-First Search

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35

M
ak

es
pa

n

Problem Instance

Satellite
Least-Bad-First Search

Breadth-First Search

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16 18 20

M
ak

es
pa

n

Problem Instance

FreeCell
Least-Bad-First Search

Breadth-First Search

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35 40 45 50

M
ak

es
pa

n

Problem Instance

Pipes No-Tankage Non-Temporal
Least-Bad-First Search

Breadth-First Search

Figure 11: Makespan of plans produced using breadth-first and least-bad-first search during
plateau search on a range of domains (from left to right: Airport, Philosophers,
Depots, Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, Pipesnotankage-
nontemporal). These results were generated without using macro-actions.

145

COLES & SMITH

In the Philosophers domain, search time is dramatically reduced by using least-bad-first search
rather than breadth-first search on plateaux. Using least-bad-first search, all 48 problems are solved;
using breadth-first search, only the first 14 are solved. The plans found in the first 14 have identical
makespans, although the actions occur in differing orders in the two plans.

The search landscape provides some insights into why least-bad-first search is suited to this
problem domain. At the start of the largest plateaux encountered, each action leads to a state with
a strictly worse heuristic value; each of these corresponds to applying theaction ‘queue-write’ to a
philosopher. From each of these, a state with a less-bad heuristic is visible.When using least-bad-
first search, this less-bad state is considered before the others in the queue, avoiding the redundant
search that would otherwise be performed by breadth-first search. Adding more philosophers to the
problem causes a dramatic increase in the amount of redundant search performed when breadth-first
search is used, leading to the observed performance improvement when aleast-bad-first approach
is taken.

In the Depots domain, we can observe the effect of differing exit points toplateaux when using
least-bad-first and breadth-first search. When solving problem 18,least-bad-first search is able to
solve the problem in substantially less time: EHC search is able to escape all the plateau encoun-
tered, and find a solution plan. Breadth-first search, however, leadsto the termination of EHC, and
exhaustive best-first search being used. On problem 15, however,breadth-first search is able to find
a solution plan where least-bad-first search cannot; also, problem 5 is solved in much less time. In
these two cases, it is not the success of breadth-first search on plateaux which leads to the improved
performance, but its failure; EHC search terminates and resorts to best-first search in less time when
breadth-first search is used than when least-bad-first search is used.

In the Driverlog domain, one additional problem, number 18, can be solvedwhen least-bad-
first search is used instead of breadth-first search. EHC using breadth-first search leads to a plateau
which cannot be escaped, and EHC aborts without a solution plan; the resulting exhaustive best-first
search cannot be completed within the allowed 30 minutes. The makespans of the plans found by
the two approaches do not differ significantly.

In the Pipestankage-nontemporal domain, it can be seen that the use of least-bad-first search
generally reduces the time taken to find solution plans. 34 problems are solvedwhen using least-
bad-first search compared to 30 when using breadth-first search and, in the majority of cases, the
time taken to find a solution plan is reduced. The makespans of the resulting solution plans are
generally increased when least-bad-first search is used, though, asthe suboptimal exit paths found
in this domain are often longer than the (optimal-length) paths found when breadth-first search is
used.

In the Satellite domain using least-bad-first search leads to a reduction in planning time and, in
many cases, a reduction of the makespan. In particular, the performanceon problems 19 and 20 is
substantially improved. The makespans on problems from 28 to 30 inclusive are also improved.

On the twenty standard benchmark FreeCell problems using least-bad-first search allows one
additional problem to be solved within the 30 minute time limit. As with the results obtained when
assessing the impact of macro-actions on planner performance, we obtained a more interesting and
useful set of data. Figure 12 shows the results of these experiments: it can be seen that although
least-bad-first search often improves the time taken to solve problems, the coverage overall is re-
duced, and no additional problems are solved where they previously were not.

In the Pipesnotankage-nontemporal domain, one additional problem can be solved using
breadth-first search rather than least-bad-first search. Also, in many cases, the use of least-bad-

146

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20

T
im

e
(s

ec
.)

Problem Instance

FreeCell
Least-Bad-First Search

Breadth-First Search

Figure 12: Time taken to solve twenty full-sized problems in the FreeCell domain,with least-bad-
first and breadth-first search on plateaux (without macro-actions).

first search increases the makespan of the solution plan found. Overall,although time reductions
can occur when solving some problems when using least-bad-first search, the use of breadth-first
search provides better overall performance both in terms of planning time and makespan.

Overall, it can be seen across the evaluation domains that the performanceof the planner when
using least-bad- or breadth-first search varies, in terms of planner execution time and plan quality:

• In the Philosophers domain, the use of least-bad-first search providesa substantial improve-
ment in planner performance.

• In the Satellite, Driverlog and Pipestankage-nontemporal domains, the execution time of the
planner is generally improved by the use of least-bad-first search (with some reduction in plan
quality in the latter of these).

• In the Airport and Depots domain, the impact on performance is minimal, either in terms of
execution time or solution plan quality.

• In the FreeCell and Pipesnotankage-nontemporal domains, performance of the planner is de-
graded, both in terms of execution time and plan quality.

6.4 Handling Derived Predicates

It is possible to reason with domains involving derived predicates by precompiling the domain,
adding additional actions to support the derived predicates, and then planning in the usual manner

147

COLES & SMITH

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40 50

T
im

e
(s

ec
.)

Problem Instance

PSR
Original Domain: ADL with Derived Predicates

Compiled Domain: ADL

Figure 13: Time taken to solve problems in the PSR domain with and without Derived Predicates.

(see Section 5). The necessary compilation, however, causes a large increase in the size of the
domain. If the planner performs the compilation itself, generating the confirm actions and segregat-
ing them from the normal actions internally, it can avoid the search overhead the compiled domain
would incur.

Three IPC 4 domains make use of derived predicates: PSR (Power SupplyRestoration), Philoso-
phers and Optical Telegraph. To assess the impact the native support of derived predicates was
having on planner performance, tests were run in these domains using the original domains con-
taining derived predicates, and using the compiled domains. The results of these tests are shown in
Figures 13, 14 and 15.

In the PSR domain, the support of derived predicates substantially reduces the time taken to
find solution plans. This improvement in efficiency allows 23 rather than 12 problems to be solved
within the 30 minute time limit.

Marvin is only able to solve a few of the problems in the promela/optical-telegraphdomain. On
the smaller problems, the performance is better without derived predicates;nonetheless, two of the
larger problems (problems 8 and 9) can be solved when working with the original domain where
previously they could not, and overall one additional problem is solved withderived predicates.

In the Philosophers domain, supporting derived predicates natively yields substantial reductions
in planning time. Using the compiled ADL domain formulation, only the first nine problems can be
solved. With native derived predicate support, all 48 problems can be solved.

148

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10

T
im

e
(s

ec
.)

Problem Instance

Optical Telegraph
Original Domain: ADL with Derived Predicates

Compiled Domain: ADL

Figure 14: Time taken to solve problems in the Optical Telegraph domain with and without Derived
Predicates.

6.5 Native ADL Support

The native support of ADL in Marvin provides two benefits, arising fromthe ability to use non-
compiled domain formulations:

• Potentially improved efficiency, due to a more-efficient representation.

• The ability to infer reusable, parameterised macro-action sequences fromthe original ADL
actions, whose parameters are lost as a side-effect of the process used to compile ADL to
STRIPS domains.

6.5.1 THE EFFECTS OFUSING A NON-COMPILED DOMAIN

To assess the effect of native support for ADL constructs on the performance of Marvin, we ran
a series of tests comparing the planner’s performance when given both the STRIPS and ADL do-
main encodings. Macro-actions were disabled in both cases to isolate the effect the encoding itself
was having on performance. In IPC 4, ADL was used to encode four ofthe domains: Airport,
Philosophers, Optical Telegraph and PSR. STRIPS compilations were madeavailable for each of
these domains, in which each ground action that could arise when using the original ADL domain
was made into a fixed-parameter STRIPS action. In the Philosophers, Optical Telegraph and PSR
domains, the domain formulations making use of Derived Predicates were used.

149

COLES & SMITH

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
.)

Problem Instance

Philosophers
Original Domain: ADL with Derived Predicates

Compiled Domain: ADL

Figure 15: Time taken to solve problems in the Philosophers Domain with and without Derived
Predicates.

In the Airport, Optical Telegraph and PSR domains, the performance of Marvin (with macro-
actions disabled) was unaffected by the use of either the ADL or STRIPS domain encoding. The
ADL domain encodings did not give rise to inefficient compiled STRIPS encodings.

In the Philosophers domain, the use of the ADL domain encoding resulted in a reduction in
planning time when compared to the use of the compiled STRIPS encoding. As canbe seen in
Figure 17, more problems can be solved within the 30 minute time-limit if the ADL encoding rather
than the STRIPS encoding is used, even disregarding the improvements in performance provided
by the use of macro-actions.

6.5.2 THE EFFECTS OFINFERRINGMACRO-ACTIONS

Supporting ADL natively in Marvin allows lifted macro-action schemata to be inferred during
search: in the compiled STRIPS domain formulations presented in IPC 4, the actions in the plateau-
escaping action sequences have few or no parameters, removing the opportunity to infer param-
eterised action sequences to use as the basis for macro-actions. Reusable macro-actions can be
inferred in STRIPS domains, as in many of the domains discussed in Section 6.1; but the compila-
tion from ADL to STRIPS produces a domain in which the macro-actions cannot, in practice, ever
be reused.

To assess the effects of plateau-escaping macro-actions when using theADL domain formula-
tion, tests were run in the Philosophers, Optical Telegraph and PSR domainsusing the ADL domain
formulation with macro-actions enabled and disabled. Results for the Airport domain are presented
in Section 6.1, and results in the other domains will now be discussed.

150

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

0: (activate-trans philosopher-1 philosopher forks–pid-wfork state-1 state-6) [1]
1: (activate-trans philosopher-2 philosopher forks–pid-wfork state-1 state-6) [1]
2: (activate-trans philosopher-3 philosopher forks–pid-wfork state-1 state-6) [1]
3: (activate-trans philosopher-4 philosopher forks–pid-wfork state-1 state-6) [1]
4: (activate-trans philosopher-0 philosopher forks–pid-wfork state-1 state-6) [1]

5: Macro-Action A Derived Here, using philosopher-4, philosopher-3, forks-4 and forks-3

16: (activate-trans philosopher-3 philosopher forks–pid-rfork state-6 state-3) [1]

17: Macro-Action A, using philosopher-2, philosopher-1, forks-2- and forks-1

28: (activate-trans philosopher-1 philosopher forks–pid-rfork state-6 state-3) [1]

29: Macro-Action B Derived Here, using philosopher-3 and -forks-3-

32: (activate-trans philosopher-3 philosopher forks--pidp1 11 -rfork state-3 state-4) [1]

33: Macro-Action B, using philosopher-1 and -forks-1-

36: (activate-trans philosopher-1 philosopher forks--pidp1 11 -rfork state-3 state-4) [1]

37: (queue-write philosopher-0 forks–pid-wfork forks-0-fork) [1]
38: (advance-empty-queue-tail forks-0- queue-1 qs-0 qs-0fork empty zero one) [1]
39: (perform-trans philosopher-0 philosopher forks–pid-wfork state-1 state-6) [1]
40: (activate-trans philosopher-0 philosopher forks–pid-rfork state-6 state-3) [1]

41: Macro-Action B, using philosopher-0 and -forks-0-

44: (activate-trans philosopher-0 philosopher forks--pidp1 5 -rfork state-3 state-4) [1]

Figure 16: Plan for the Philosophers problem before macro-action expansion.

The plan shown in Figure 16 was produced by Marvin for problem four inthe Philosophers
domain (before the translation of the macro-actions back into sequences ofsingle-step actions).
The first five steps are found easily through guidance from the heuristic; the following eleven are
found during a period of exhaustive search which are, upon exiting theplateau, used to form a
macro-action, macro-action A. Macro-action B is formed in a similar manner laterin the planning
process, and is subsequently used to avoid further exhaustive search. In solution plans for problems
involving more philosophers, the two macro-actions are used several times:macro-action A is used
once for each consecutive pair of philosophers, and macro-action B once for each odd-numbered
philosopher (and once for philosopher-0). The graph in Figure 17 shows the performance of Marvin
when the macro-actions are not inferred during search compared to thatwhen the macro-actions are
inferred; both configurations produce identical solution plans. It can be seen that the performance
is consistently improved when the macro-actions are used, as exhaustive plateau search is avoided.

As can be seen in Figure 18, using macro-actions provides improved performance in the PSR
domain: 23 rather than 15 problems can be solved, and in the majority of the cases solved by the
two configurations, a solution can be found in less time when macro-actions are used.

151

COLES & SMITH

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
.)

Problem Instance

Philosophers
ADL Domain, Macro-Actions Enabled
ADL Domain, Macro-Actions Disabled

STRIPS Domain

Figure 17: Time taken to find a solution plan in the Philosophers domain with the STRIPS domain
encoding and the ADL domain encoding, with and without macro-actions.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40 50

T
im

e
(s

ec
.)

Problem Instance

PSR
ADL Domain, Macro-Actions Enabled
ADL Domain, Macro-Actions Disabled

Figure 18: Time taken to solve problems in the PSR domain with and without macro-actions.

152

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10

T
im

e
(s

ec
.)

Problem Instance

Optical Telegraph
ADL Domain, Macro-Actions Enabled
ADL Domain, Macro-Actions Disabled

Figure 19: Time taken to solve problems in the Optical Telegraph domain with and without macro-
actions.

As shown in Figure 19, Marvin is only able to solve a few of the first 10 problems in the
promela/optical-telegraph domain. Nonetheless, when macro-actions are enabled, a net of two ad-
ditional problems can be solved.

7. Future Work

The macro-action strategy adopted by Marvin in IPC 4 was to generate its macro-actions on aper-
problembasis. It is possible, however, to build libraries of macro-actions on aper-domainbasis;
this approach was taken by Macro-FF (Botea et al., 2005). Marvin’s macro-actions could also be
cached for use when solving all the problem instances in a given domain. If this were done, then the
knowledge encapsulated in the plateau-escaping macro-actions that allowsheuristic imperfections
in the search landscape to be bypassed could be made available across allthe problems in a given
domain without needing exhaustive search to re-discover this knowledgeon each problem instance.
In contrast to existing systems that use off-line learning to generate and test macro-actions, caching
Marvin’s plateau-escaping macro-actions across solving a problem suitein this manner would allow
for online learning to take place. Further work is being undertaken in this area, to investigate
effective caching strategies and to manage the large number of macro-actions found.

The idea of using plateau-escaping macro-actions is not restricted to search under the relaxed
planning graph heuristic. Currently, the effect of using the macro-actions in search under other
heuristics is being investigated, including the causal-graph heuristic (Helmert, 2004) used by Fast-
Downward .

153

COLES & SMITH

At present, the macro-actions used in Marvin are restricted to those used toescape plateaux.
Work is currently in progress exploring ways of extending the macro-learning capabilities of Marvin
to include more general macro-action structures of the kind being exploredby Botea and Schaeffer
(Botea et al., 2005).

8. Conclusions

We have presented a forward search heuristic planner called Marvin, which introduces several mod-
ifications to the search strategy of FF. These are:

• The use of learned macro-actions for escaping plateaux.

• A least-bad-first search strategy for search on plateaux.

• A greedy best-first search strategy when EHC fails.

• The addition of native support for both ADL and derived predicates, without relying on a
domain preprocessor.

Results presented indicate that the effects of these modifications varies depending on the domain
with which the planner is presented, but can be summarised as:

• The inference and use of plateau-escaping macro-actions:

– Provides improved performance in the Philosophers, Depots, Driverlogand
Pipestankage-nontemporal domains, in terms of planner execution time.

– Although performance did not improve in the other domains, it did not significantly
degrade, with the exception of FreeCell.

– The makespan of the plans found in the majority of domains was not degradedby the
use of macro-actions.

• The use of least-bad-first search:

– Provides substantial improvements in planner performance in the Philosophers domain.

– Reduces planner execution time in the Satellite, Driverlog and Pipestankage-
nontemporal domains, sometimes at the expense of increased solution plan makespans.

– Provides worse performance in the FreeCell and Pipesnotankage-nontemporal domains.

• Greedy best-first search does not perform significantly differently from best-first search in the
evaluation domains considered.

• Other than in the Airport domain, where no difference in performance is observed, the native
support for derived predicates and ADL improves the performance ofthe planner; either by
allowing a more-compact higher-level domain formulation to be used, or by improving the
effectiveness of the macro-actions inferred.

154

MARVIN : A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Acknowledgments

We would like to thank the anonymous referees for their comments, and Maria Fox for her help in
revising this manuscript. We also thank Derek Long for supporting us in entering Marvin into IPC
4 and J̈org Hoffmann and Stefan Edelkamp for their hard work in organising the competition.

References

Bacchus, F. (2001). The aips ’00 planning competition..AI Magazine, 22(3), 47–56.

Blum, A., & Furst, M. (1995). Fast planning through planning graph analysis. InProceedings of
the Fourteenth International Joint Conference on Artificial Inteligence (IJCAI-95), pp. 1636–
1642.

Bonet, B., & Geffner, H. (2000). HSP: Heuristic search planner.AI Magazine, 21(2).

Botea, A., Enzenberger, M., Muller, M., & Schaeffer, J. (2005). Macro-FF: Improving AI planning
with automatically learned macro-operators.Journal of Artificial Intelligence Research, 24,
581–621.

Dawson, C., & Siklossy, L. (1977). The role of preprocessing in problem solving systems. In
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, (IJCAI-77),
pp. 465–471.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving
to problem solving. InProceedings of the 2nd International Joint Conference on Artificial
Intelligence (IJCAI-71), pp. 608–620.

Gazen, B., & Knoblock, C. (1997). Combining the expressivity of UCPOPwith the efficiency of
Graphplan. InProceedings of the Fourth European Conference on Planning (ECP-97), pp.
221–233.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-04),
pp. 161–170.

Helmert, M. (2006). The fast downward planning system.Journal of Artificial Intelligence Re-
search, 26, 191–246.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: Anoverview. Journal of
Artificial Intelligence Research, 24, 519–579.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search.Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J. (2001). Local search topology in planning benchmarks:An empirical analysis. InPro-
ceedings of the Seventeenth International Joint Conference on ArtificialIntelligence (IJCAI-
01), pp. 453–458.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local search topology in planning bench-
marks.Journal of Artificial Intelligence Research, 24, 685–758.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extendingplanning graphs to an
ADL sub-set. InProceedings of the Fourth European Conference on Planning (ECP-97), pp.
275–287.

155

COLES & SMITH

Long, D., & Fox, M. (2003). The 3rd International Planning Competition: Results and Analysis.
Journal of Artificial Intelligence Research, 20, 1–59.

Long, D., & Fox, M. (1999). Efficient implementation of the plan graph in STAN. Journal of
Artificial Intelligence Research, 10, 87–115.

Long, D., & Fox, M. (2003). The third international planning competition: Results and analysis.
Journal of Artificial Intelligence Research, 20, 1–59.

McDermott, D. (1996). A heuristic estimator for means ends analysis in planning. In Drabble, B.
(Ed.),Proceedings of the Third International Conference on Artificial Intelligence Planning
Systems (AIPS-96), pp. 142–149. AAAI Press.

McDermott, D. (2000). The 1998 AI planning systems competition.AI Magazine, 21(2), 35–55.

Minton, S. (1985). Selectively generalizing plans for problem-solving. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (IJCAI-85).

Nebel, B., Hoffmann, J., & Thiebaux, S. (2003). In defense of PDDL axioms. InProceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), pp. 961–966.

Newton, M., Levine, J., & Fox, M. (2005). Genetically evolved macro-actions in A.I. planning
problems. In Tuson, A. (Ed.),Proceedings of the 24th UK Planning and Scheduling SIG, pp.
163–172.

Pednault, E. (1989). ADL: Exploring the middle ground between STRIPS and the situation calculus.
In Proceedings of the First International Conference on Principles of Knowledge Represen-
tation and Reasoning, pp. 324–332.

Vidal, V. (2004). A lookahead strategy for heuristic search planning. In Proceedings of the Four-
teenth International Conference on Automated Planning and Scheduling (ICAPS-04), pp.
150–160.

156

