Journal of Atrtificial Intelligence Research 28 (2007) 1196-1 Submitted 04/06; published 02/07

Marvin: A Heuristic Search Planner with
Online Macro-Action Learning

Andrew Coles ANDREW.COLES@CIS.STRATH.AC.UK
Amanda Smith AMANDA .SMITH@CIS.STRATH.AC.UK
Department of Computer and Information Sciences,

University of Strathclyde,

26 Richmond Street, Glasgow, G1 1XH, UK

Abstract

This paper describes Marvin, a planner that competed in thetl International Planning
Competition (IPC 4). Marvin uses action-sequence-mertioisdechniques to generate macro-
actions, which are then used during search for a solution. pl&/e provide an overview of its
architecture and search behaviour, detailing the algostbsed. We also empirically demonstrate
the effectiveness of its features in various planning dosiain particular, the effects on perfor-
mance due to the use of macro-actions, the novel featureés séarch behaviour, and the native
support of ADL and Derived Predicates.

1. Introduction

One of the currently most successful approaches to domain-indegepl@aning is forward-
chaining heuristic search through the problem state space. Searchesd gpyia heuristic function
based on an appropriate relaxation of the planning problem. Differeaxattions have been ex-
plored (Bonet & Geffner, 2000; McDermott, 1996; Hoffmann & Neb&lQ2; Helmert, 2004) and
have been shown to result in more or less informative heuristic functionsor#mon relaxation
is to ignore the delete lists of actions in the problem domain, resulting in an destiawblem
domain comprised aklaxed actionsA given state can then be evaluated by counting the number
of relaxed actions needed to reach the goal state from the given stdfmado and Nebel (2001)
present a search strategy called Enforced Hill-Climbing (EHC) which,ledugith a relaxation of
this kind, has been proven empirically to be an effective strategy in mangiptadomains. Their
planner, FF, performed with great success in the Second and Thirddtitanal Planning Compe-
titions (Bacchus, 2001; Long & Fox, 2003). In this paper we presanptanner, Marvin, which
builds upon this search approach.

The EHC search strategy performs gradient-descent local seaiol, hreadth-first search to
find action sequences leading to strictly-better states should no single-sietiphe able to reach
one. This embedded exhaustive-search step is one of the bottlenetksrimg with this approach.
We present an approach that, through memoising the plateau-escapimgsactirences discovered
during search, can form macro-actions which can be applied later wheFapx are once-again
encountered. In doing so, the planner can escape from similar plateeoxrégered later, without
expensive exhaustive search. The resulting planner is called Marvin.

We begin this paper with a brief review of FF’s search behaviour to pea¥id background for
our approach. We then introduce the main features of Marvin, explaimwgts search behaviour
differs from that of FF. We describe the three main contributions made hbyiMaletailing the

©?2007 Al Access Foundation. All rights reserved.

COLES & SMITH

key algorithms and their effects on performance. Marvin can plan in SSRIR ADL domains,
and it can also handle the derived predicates of PDDL2.2. We descelveathin which domains
containing derived predicates and ADL are handled without first beidgaed to STRIPS domains.
Finally, we discuss the results obtained by Marvin in the Fourth Internatiiaahing Competition
(IPC 4) (Hoffmann & Edelkamp, 2005), and provide additional ablatiodistito assess the impact
of its various features on planning performance across a selectiomids.

2. Background

In this section, we give an overview of the background for this workstFiorward-chaining heuris-
tic planning is defined, and existing work in this area described; with pantiatitntion paid to the
planner FF. This is followed by an introduction to macro-actions.

2.1 Forward-Chaining Planning

Formally, forward-chaining planning can be described as searchghralandscape where each
node is defined by a tuple S, P >. S is a world state comprised of predicate facts &ht the
plan (a series of ordered actions) used to reéafilom the initial state. Search begins from the initial
problem state, corresponding to a tuglesy, {} >.

Edges between pairs of nodes in the search landscape correspgyiogactions to lead
from one state to another. When an actidtis applied to a search space nedeS, P > the node
< S, P" > is reached, wheré&’ is the result of applying the actioA in the stateS and P’ is
determined by appending the actignto P. Forward-chaining search through this landscape is
restricted to only considering moves in a forwards direction: transitionsrdyeever made from a
node with planP to nodes with a plar®’ where P’ can be determined by adding (or ‘chaining’)
actions to the end aP.

As unguided search in this manner is prohibitively expensive in all butrttedlest problems,
heuristics are used to guide search. Commonly, a heuristic value is usexvimepa goal distance
estimate from a node S, P > to a node< S’, P’ > in which S’ is a goal state.

2.2 Heuristics for Forward-Chaining Planning

Many of the heuristics used to guide forward-chaining planners asglzasund solving an abstrac-
tion of the original, hard, planning problem with which the planner is prederithe most widely
used abstraction involves planning using ‘relaxed actions’, where tle¢edeffects of the original
actions are ignored. FF, HSP (Bonet & Geffner, 2000) and UnPQiD@vimott, 1996) use relaxed
actions as the basis for their heuristic estimates, although FF was the firstribtke number of
relaxed actions in a relaxed plan connecting the goal to the initial state. Ahhigangring delete
lists turns out to be a powerful relaxation, at least for a class of plarduntains, other relaxations
are possible. More recently, work has been done using an abstraatied bn causal graph analysis
(Helmert, 2004).

The initial approaches for calculating goal distance estimates, taken hyeptasuch as HSP,
calculated the cost of reaching the goal state from the state to be evalyatiihly a forwards
reachability analysis from the state until the given goal appears. Twiskies can be derived from
this information: either the maximum of the steps-to-goal values—an admissibistieglor the
sum of the steps-to-goal values—an inadmissible heuristic, which in pragticere informative.

120

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

1: Procedure: EHCSearch

2: openlist = [initial _state];

3: bestheuristic = heuristic value of initiadtate;

4: while openlist not emptydo

5. currentstate = pop state from head of oplest;

6: successors = the list of states visible from currstate;
7: while successors is not emptp

8: next.state = remove a state from successors;

9 h = heuristic value of nexstate;

10: if nextstate is a goal stathen
11 return nextstate;

12: end if

13: if h better than begteuristicthen
14: clear successors;

15: clear openlist;

16: bestheuristic = h;

17: end if

18: place nexistate at back of opelist;
19: end while

20: end while

Figure 1: Enforced Hill-Climbing Search

The disadvantage of the latter of these approaches is that it ignoressitiyginteractions (shared
actions) between the action sequences for each goal: it is this problern whscaddressed by the
heuristic used in FF. In FF, a planning graph (Blum & Furst, 1995) is baérd from the current
state using relaxed actions—this is known as a relaxed planning-gra@)(RPelaxed plan (one
using relaxed actions) to achieve the goal state can be extracted frorR@éRpolynomial time;
the number of actions in this plan can be used to provide the heuristic vali&afsplan does not
provide a guarantee that the plan found will contain the optimum number oéaéglised actions
(only that it will have the optimum makespan) the heuristic returned is inadmisbikilen practice
the heuristic is more informative than any of those used previously.

2.3 Enforced Hill Climbing Search

Along with a heuristic based on relaxed planning graphs, FF introducedghtioeced Hill Climbing
(EHC) algorithm, illustrated in Figure 1. EHC is based on the commonly used hill-tigrddgo-
rithm for local search, but differs in that breadth-first search &ds from the global optimum is
used to find a sequence of actions leading to a heuristically better sucifess® is present in the
immediate neighbourhood.

The key bottleneck in using EHC is where the search heuristic cannatpreufficient guid-
ance to escape a platéan a single action step, and breadth-first search is used until a suitable
action sequence is found. Characteristically, EHC search consistelohged periods of exhaus-
tive search, bridged by relatively quick periods of heuristic descent.

1. In this work, a plateau is defined to be a region in the search space wieeheuristic values of all successors is
greater than or equal to the best seen so far.

121

COLES & SMITH

In practice, EHC guided by the RPG heuristic is an effective search gratea number of
domains. Work has been done (Hoffmann, 2005) on analysing the tgpofoipe local-search
landscape to investigate why it is an effective heuristic, as well as iderigjinations in which it
is weak.

2.4 Exploiting the Structure of a Relaxed Plan

The actions in the relaxed plan to the goal from a given state can be usem/tdepfurther search
advice. YAHSP (Vidal, 2004), a planner that produced interestingtsasithe Fourth International
Planning Competition (IPC 4), makes use of the actions of the relaxed plagdesiactions to add
to the current plan to reach the goal. In FF, the notion of *helpful actisrdgfined—those that add
a fact added by an action chosen at the first time unit in the relaxed plaachstate encountered
during search, a number of actions are applicable, some of which deyamnég i.e. they make no
progress towards the goal. By only considering the helpful actions détemmining the successors
to each state, when performing EHC, the number of successor states/adumed will be reduced.

Restricting the choice of actions to apply only to those that are ‘helpful’ éurthduces the
completeness of EHC, beyond what would be the case if all applicable setenre considered. In
practice it is observed, however, that the cases where EHC using elpluhactions is unable to
find a plan correlate with the cases where EHC with all the applicable actiomisl Wwe unable to
find a plan.

2.5 Guaranteeing Completeness in FF

FF first attempts to search for a solution plan by performing Enforced Hill-GhghEHC) search
from the initial state towards the goal state. As discussed earlier, EHChilsembing local
search guided by the RPG heuristic while a strictly-better successor dantd As soon as no
strictly better successor can be found, FF has entered a plateau, eattihsfirst search is used
until an improving state is found. In directed search spaces, EHC cathleaearch process in the
wrong direction and to dead-ends; i.e. the open list is empty, but no gtalhsta been found. In
these cases FF resorts to best-first search from the initial state, theesgyving completeness.

2.6 Macro-Actions in Planning

A macro-action, as used in planning, is a meta-action built from a sequeradiof steps. In
forward-chaining planning, applying a macro-action to a state produsegsa@essor correspond-
ing to the application of a series of actions. In this way, the use of macraaaatem be thought
of as extending the neighbourhood of successors visible from eaehtstaelectively introduce
states which hitherto would only have been visible after the application ofadesteps. If the addi-
tional states introduced are chosen effectively, an increase in plparfermance can be realised,;
whereas if the additional states are chosen poorly, the performance piattner decreases due to
the increased branching factor.

The use of macro-actions in planning has been widely explored. Mostitpes use an off-line
learning approach to generate and filter macro-actions before usingrtearch. Early work on
macro-actions began with a version of the STRIPS planner—known a3 RBS (Fikes & Nils-
son, 1971)—which used previous solution plans (and segments thasaoBcro-actions in solving
subsequent problems. MORRIS (Minton, 1985) later extended this agiply adding some filter-

122

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

ing heuristics to prune the generated set of macro-actions. Two distims ofpnacro-actions were
identified in this approach: S-macros—those that occur frequently dseiaggh—and T-macros—
those that occur less often but model some weakness in the heuristic. Mintenved that the
T-macros, although used less frequently, offered a greater improvémsagarch performance. The
REFLECT system (Dawson & Siklossy, 1977) took the alternative appro& forming macro-
actions based on preprocessing of the domain. All sound pairwise cambmaf actions were
considered as macro-actions and filtered through some basic pruniagDuie to the small size of
the domains with which the planner was reasoning, the number of macrosaioaining follow-
ing this process was sufficiently small to use in planning.

More recent work on macro-actions includes that on Macro-FF (B&eaenberger, Muller,
& Schaeffer, 2005). Macro-actions are extracted in two ways: frohati®n plans; and by the
identification of statically connected abstract components. An offline filteégognique is used
to prune the list of macro-actions. Another recent approach to matmzaeneration (Newton,
Levine, & Fox, 2005) uses a genetic algorithm to generate a collection abraations, and then
filters this collection through an offline filtering technique similar to that used bgngtFF.

3. Marvin's Search Behaviour

Marvin’s underlying search algorithm is based on that used by FFafiehwhaining heuristic search
using the RPG heuristic. However, Marvin includes some important modifisatiothe basic FF
algorithm. These are: ast-bad-firstsearch strategy for exploring plateauxg@edy best-first
strategy for searching when EHC fails and the development and yslatehu-escaping macro-
actions

As in FF the first approach to finding a solution plan is to perform EHC sasing only helpful
actions. The first successor with a heuristic strictly better than the besmtisadken, should one be
found. If one is not found, then a plateau has been encountered,far of best-first search using
helpful actions is used (instead of the breadth-first search of FF) to fiyd an action sequence to
escape from it. Because the states on a plateau can never improve oarieédwalue of the node
at the root of the plateau, we call thesast-bad-firssearch.

If the EHC approach is unable to find a plan, Marvin resorts maglifiedform of best-first
search using all the actions applicable in each state. This expands tisriiitht better successor
whilst keeping the current state for further expansion later if necgsaér call this strateggreedy
best-first search As can be seen in the graphs in Section 6.2, in some of the IPC 4 domains our
modifications enable the solution of problems that are unsolvable for betssdarch.

During the EHC search strategy, Marvin ugdateau-escaping macro-actiosarned from
previous searches of similar plateaux. These can be applied in the sanas \@ymic actions to
traverse plateaux in a single step. Plateau-escaping macro-actiongiaee lealine and the planner
must decide which ones are likely to be applicable at which points duringlselr Section 6.5
we show that plateau-escaping actions can yield performance benbgis pdwer depends on the
structure of the search space and the ability of the planner to learnle usacro-actions.

Least-bad-first search on plateaux, greedy best-first seargplaiedu-escaping macro-actions
are the three main features of Marvin distinguishing its basic search strfategythat of other
forward heuristic search-based planners. We now discuss thegefélateres in more detail be-
fore going on to describe how they can be exploited in the context of ADhailas and domains
involving derived predicates.

123

COLES & SMITH

Figure 2: Least-bad-first search versus breadth-first search mateau. Black nodes are those
expanded by breadth-first search. Dotted blue/grey nodes are ékpaaded by both
breadth-first and least-bad-first search. Solid blue/grey nodesase expanded by only
least-bad-first search. It can be seen that least-bad-first deadsto a better exit node
than does breadth-first search.

3.1 Least-Bad-First Search on Plateaux

A plateau is encountered when all of the successor nodes of a gimemtnode have a heuristic
value that is the same as, or worse than, that of the current node. Tibe abbestin this context
relates to the successor with the heuristic value closest to that of the ggtnt This is called
least-bad-first search because no chosen successor can mekgderogress, but some choices
are less negative than others. The successor chosen in leastsbaddich will have least negative
impact on the current state and therefore is more likely to be on the best pdith goal. When
breadth-first search is used, the exit state that is reached might berfinaim the goal than the exit
state reached when the state with the least negative impact is always ectpeaxd.

In Figure 2 we show the order in which states are explored using leadtrbasgiearch relative
to breadth-first search. It can be observed that, using least-lsaddarch, the exit state reached
has a better heuristic value than that reached using the breadth-ficdt ge&F. It can be expected
that this sometimes leads to better quality plans being found. Our results in S&&ishow that,
indeed, using least-bad-first search we sometimes find shorter plarisRHiguas using its standard
breadth-first strategy on plateaux.

3.2 Greedy Best-First Search when EHC Fails

As in FF, Marvin resorts to best-first search if EHC proves unable todfisolution. This approach
maintains the completeness of the planner in the cases where the use of EH@Ipfith actions
would otherwise render the search incomplete. Two other planners in l&s&d}variations on
the best-first search algorithm, YAHSP (Vidal, 2004) and Fast-Dowdhgtaelmert, 2006). Unlike
Marvin, however, in these two planners there is no incomplete searchsstelp 4s EHC) before
using a modified best-first search algorithm. In YAHSP, conventional ¥é&strch is used but within
the search queue, states reached by applying a helpful action in thexit gtate are ordered before
those which were not. In Fast-Downward, a ‘deferred heuristic etrahistrategy is used, where

124

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

states are inserted into the search queue with the heuristic value of theit pae; the actual
heuristic cost of the state is then only calculated when the state is expanded.

In Marvin the best-first strategy is modified by greedily expanding thedfirstessor found with
a better heuristic than its parent state, but retaining the parent so that iisirepchildren can be
evaluated later if necessary. The effect of this is similar to the approaeh takFast-Downward,
and would lead to the nodes in the search space being visited in the saméltelapproach taken
in Marvin, however, allows a smaller search queue to be maintained, as amglaot necessarily
inserted into the search queue for each successor node reacbabke state.

Whenever a successor state is generated and evaluated (by calculdtimgrigsic value), one
of two things happens:

¢ If the successor has a heuristic better than its parent, the successareid atahe front of
the search queue, with its parent state behind it (along with a counter leaniting how
many successors have already been evaluated); and the searchtleoprisstarted from the
successor state.

e If the successor has a heuristic no better than its parent, the success®ried into the
search queue in its appropriate place (stable priority-queue insertidereor by heuristic
value). The process then carries on evaluating the successors airém gtate.

The pseudo-code for this can be seen in Figure 3. The approachirethbp the idea of taking
the first strictly-better successor when performing EHC search, withehefib that the number of
heuristic evaluations to be performed is potentially reduced by considesvey Successors to each
state. It differs from EHC in that, to maintain completeness, the parent statedssnarded—it is
placed back in the queue to have its other successors evaluated laterssagc Theoretically, if
EHC search on a given problem does not encounter any plateauangnuruning from selecting
only the helpful actions is ignored, then using greedy best-first s@arthat problem would visit
the same number of nodes and evaluate the same number of succesa@katdhiu was encoun-
tered, however, the search behaviour would differ as EHC would amgider states reachable
from the state at the start of the plateau.

Another effect of the greedy best-first search is that the searcisges on exploring in a given
direction. As has been described, as soon as a successor nodadisvittua heuristic value better
than that of its parent, then the further expansion of the parent nodstjsoped and the successor
node is expanded. The practical consequence of this is that as tloh ge@ue does not contain
the other equally good successors, any search forward from essacstate will not be sidetracked
by also having to search forward from its sibling states. The parent waddbe re-visited, and
the other sibling nodes added, but only if it proves heuristically wise to detlsat is, if searching
forward from the successor node is not making heuristic progress.

3.3 Plateau-Escaping Macro-Actions

Due to the nature of the relaxed problem used to generate the RPG heugstiath aspects of
the original problem that are not captured. Thus, when the RPG heusistéed to perform EHC,
plateaux are often encountered. On plateaux, the RPG heuristic valllesateessor states is
the same as, or worse than, the heuristic value of the current state. ftlme nhthe plateaux

encountered, and whether EHC is able to find a path to escape from therfluénaed by the

properties of the planning domain (Hoffmann, 2001).

125

COLES & SMITH

1: Procedure: GreedyBFS

2

. insert (state=initiaktate, h=initialheuristic, counter=0) into searcjueue;
3:

4: while searchqueue not emptgo

5. currentqueueentry = pop item from front of searcjueue;
6: currentstate = state from curremfueueentry;
7: currentheuristic = heuristic from curremueueentry;
8: startingcounter = counter from curremueueentry;
9: applicableactions = array of actions applicable in currsitate;
10:
11: for all index ?iin applicableactions> startingcounterdo
12: currentaction = applicableactions[?i];
13: successastate = currenstate.apply(currenaction);
14:
15: if successastate is goathen
16: return plan and exit;
17: end if
18: successaheuristic = heuristic value of successiate;
19:
20: if successaheuristic< currentheuristicthen
21: insert (currentstate, currenheuristic, ?i + 1) at front of searaueue;
22: insert (successastate, successdreuristic, 0) at front of searchueue;
23: break for;
24:
25: else
26: insert (successastate, successdreuristic, 0) into searchjueue;
27: end if
28: end for
29: end while

30: exit - no plan found;

Figure 3: Pseudo-code for greedy best-first search

126

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Ignoring the delete effects of th@ ckup action in the Gripper domain creates a problem in
which, in a given state, it is possible to pick up many balls using one grippérng as the gripper
is initially available: the delete effect of the action, marking the gripper as rgeloavailable, is
removed. The relaxed plan in the initial problem statpii€kup all the balls with one gripper,
nove to the next room, thedr op them all. The length of this plan, the heuristic value of the
initial state, isn + 1 +n, thatis2n + 1 (wheren is the number of balls). If, in the initial state, a ball
is picked up using one of the grippers, the relaxed plan for the resultitegveiidbe topi ckup the
remaining balls in the other gripparpve to the second room and thein op them all; this has a
length of(n — 1) 4+ 1 4 n, that is2n, which is less than the heuristic value of the initial state so this
action will be chosen as the one to apply.

The next state, however, is at the start of a plateau. The actions appl{tadse for which
all the preconditions are satisfied) are eithedtmp the ball that has been picked up, ckup
another ball onove to the next room. The ‘correct’ action would begockup another ball: the
relaxed plan to the goal state for the resulting state would tol tip one of the ballspi ckup
all the remaining balls in the newly-freed grippengve to the next room, andr op all the balls.
However, the heuristic value of this state wouldbe (n — 2) + 1 + n, or 2n, the same value
as the state in which the action is applied. Moving to the next room would peoawstate with
the heuristic value o2n (nove to the initial room,pi ckup remaining(n — 1) balls, dr op all
balls in the final room—naove action is required to move back to any room the robot has already
visited). Dropping one of the balls would also produce a state with a heuratie vf2n (pi ckup
all remaining(n — 1) balls in newly-freed grippemrove to next room,dr op all balls). As all
successor states have the same RPG heuristic value as their parent stageiristic is unable to
provide useful guidance as to which action to apply.

With some exhaustive search forward from this point, an improvement iristiewalue can
be made in two ways: eitherove to the next room themr op a ball, orpi ckup a ball then
nove to the next room—nboth of these lead to heuristic value$2af — 1). The plateau will,
however, be encountered each time the robot is in the first room, holdmgaih and the action
choices are either tpi ckup another ball ompve to the next room (odr op a ball). Each time
the plateau is encountered, the action sequence to escape the plateaticialidenve- dr op or
pi ckup- nove (in EHC the actual sequence chosen will depend on the order in whicletibas
are considered by the planner). Having to discover one of these aetipreisces by exhaustive
search each time the plateau is encountered is a considerable bottlenecgaarttteprocess: this
is true in general for many domains.

In order to address the overhead caused by recurrent plateauxsieatah space, Marvin mem-
oises the action sequences used to escape the previously encoutdéradxp these action se-
guences are used to form what are called ‘Plateau-Escaping Mationg&. A macro-action is
generated from the action sequence using the code presented in Figaaehlstep of the action
sequence is considered in turn, and an abstract action step is madeyfaoefilécing the entities
given as parameters to the action with placeholder identifiers—one fordestatct entity. These
placeholder identifiers then form the parameter list of the macro-actionthene:corded abstract
action steps dictate the component actions from which the macro-action is built.

Returning to thepi ckup- nove action sequence, the action sequence:

0: pickup robotl ball2 roontl
1: nove robotl roonl roon?

127

COLES & SMITH

would form a macro-action:

pickup-move (?a - robot) (?b - ball) (?c - roon) (?d - roon)
0: pickup ?a ?b ?c
1: nove ?a ?c 2d

This macro-action can then be instantiated by specifying the parametersd®adsitting in a
sequence of actions. For examplackup-move robot 1 bal | 3 rooml roon) would give
an action sequence:

0: pickup robotl ball3 roontl
1: nove robotl roonl roon?

In Marvin, the preconditions of the steps within the macro-action are notctetie¢o give a
single precondition formula for the macro-action. Instead, an instantiatetbraation is said to
be applicable in a given state if the first component action of the macro-astagplicable, and
subsequent actions are applicable in the relevant resulting states.

Having now built macro-actions from the plateau-escaping action segsjemeen the search is
later attempting to escape a plateau, these macro-actions are availabldit@tiapp If the plateau
arose due to the same weakness in the heuristic that led to an earlier plageaa nlacro-actions
will be able to lead the search to a strictly better state by skipping over the intetmsthtes. The
plateau-escaping macro-actions are only used when the search is atteimpBiogpe a plateaux—
this avoids slowing down search when the RPG heuristic is able to provetdief guidance using
only single-step actions.

To reduce the number of macro-actions considered, and the blow-upsizthef the explored
search space that would otherwise occur, the only macro-actions ewetsidre those containing
actions at the first time step that are helpful actions in the current state.

3.4 Macro-Actions in Use

The structure and reusability of macro-actions depends on the undetdyiotpgy of the problem
space under the given heuristic function. When a problem space contaimy similar occurrences
of the same plateaux (which happens when a problem contains much rgpaiciure) the effort
involved in learning macro-actions to escape these plateaux efficientlyeceohy rewarded. In
principle, the most benefit is obtained when the problem space featuges fiquently recurring
plateaux, since large plateaux are the most time-consuming to explore antbtheveuld need
to be repeated on every similar occurrence. Short macro-actions (afrtitoee actions) indicate
that the problem space contains small plateaux (although these might agseritly enough for
learned macro-actions to still be beneficial).

Problems with repeating structure include: transportation problems, whesathe basic se-
guences of actions have to be repeated to move groups of objects friosoilrees to their destina-
tions; construction problems, in which many similar components need to be tith@m combined
into a finished artifact; and configuration problems, in which multiple componéatsarchitecture
need to go through very similar processes to complete their functions, et®ifiing Philosophers
and Towers of Hanoi problems are good examples of problems with repeatircture.

Although using macro-actions during search has advantages—theyffeasearch guidance
and allow many actions to be planned in one step—considering them duringpiieseon of each

128

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

1. Procedure: BuildMacro
2: parameters = [J;
3: parametetypes = [];
4: abstractsteps = [];
5: parameteicount = 0;
6:
7: for all action ?a in the action sequence used to escape a pliteau
8: abstractparameters =];
9:
10: for all parameter ?p of o
11:
12: if ?pe parameterghen
13: index = parameter index of ?p in parameters;
14: append (index) to abstraparameters;
15:
16: else
17: parameters[parameteount] = ?p;
18: parametettypes[parametecount] = type of ?p;
19: append (parametarount) to abstracparameters;
20: increment parametegount;
21: end if
22: end for
23: append (action type of ?a, abstrgetrameters) to abstrasteps;
24: end for

25: return parametetypes and abstracteps as a macro-action

Figure 4: Pseudo-code for building macro-actions from plan segments

129

COLES & SMITH

state increases the branching factor. Thus, if a large number of wgihasl macro-actions are
generated the search space will become larger, making the problent, reotleasier, to solve.
Whilst many of the plateau-escaping sequences are helpful in planmimg are specific to the
situation in which they were derived, a situation which might not occur agdireiplan. As macro-
actions are learnt during the planning process—and there is no human mtoiti@rge test suite,
to allow reusable macro-actions to be identified—care must be taken whigliindethe points at
which to consider their use in the planning process.

Plateau-escaping macro-actions are generated from situations in whinkuthstic has broken
down; therefore, the heuristic can be used as an indicator of whenrhékely to be useful again
during planning. As areas of repeating structure within the solution plarvimthe application
of similar (or identical) sequences of actions, they are likely to have similaigtieyprofiles. In
the case of plateau-escaping action sequences, the heuristic profilesafaitth landscape at their
application is an initial increase (or no-change) of heuristic value, eatiyfiollowed by a fall to
below the initial level—the profile occurring at a local minimum. If the plateaweisy macro-
actions are to be reusabile, it is likely that the re-use will occur when thaiplguprocess is in a
similar situation. As such, they are only considered for application in theustiia search step
used to escape plateaux (both at the start or at any other point on aiplatea

Situations may arise where the use of macro-actions increases the makéspamesulting
plan due to redundant action sequences. For example, if in a simple gama€demitn actions
to move up, down, left or right— a macro-action is formed for ‘left, left, lefft’land the optimal
action sequence to escape a given plateau is ‘left, left, left’ thieft, left, left, left}, right’ may be
chosen if the state reached by moving left four times is heuristically better thamthreached by
applying a single-step ‘left’ action. Thus, macro-actions can have agrseleffect on plan quality.

Within the problem domains presented in IPC 4 (Hoffmann & Edelkamp, 2085)tkae encod-
ing of the Dining Philosophers problem, translated from Promela into a PDDbbadémg. When
solving this problem, two important macro-actions are formed: an elevenysep-action upon
completion of the first period of exhaustive search; and a three-steqaeatton upon completion
of the second. The solution plan requires these macro-actions to beéegpeany times, some-
thing which now—as a result of the macro-actions—involves simply applyinggesaction that
results in a strictly better state. Without the macro-actions, the planning proassists of repeated
episodes of exhaustive search to find the same two sequences of aeiitrtame.

This behaviour can be seen in Figure 5 depicting the heuristic values o geterated with
and without macro-actions, across the solution plan for the IPC 4 Dining deipit@rs problem
involving 14 philosophers. Initially, no macro-actions have been leartitessearch done by both
approaches is identical. For the first 14 action choices the value of thistimishown by the line
in the graph, moves monotonically downwards as the planner is able to findstti@pply that
lead to strictly better states.

After time step 14, the heuristic value begins to oscillate, at this point the plaaseeached a
plateau: there is no state with a strictly better heuristic value that can be ddaglttee application
of just one action. As this is the first plateau reached, no macro-actimesheen generated so
the heuristic profiles are identical for both configurations. At time step 2&ta & reached that
has a better heuristic value than that at time step 14. It is at this time that the piatzsing
macro-action will be generated, memoising a lifted version of the sequerctiafs that was used
to escape the plateau. A brief period of search in which a strictly better stateecfound at each
choice point follows before the planner again hits a plateau.

130

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

35 B

30 | B

25 |- B

Heuristic

20 B

15 b

10 B

With Ma‘cro-Act\ons ——

L L L
0 20 40 60 80 100 120
Plan Time Step

Figure 5: Heuristic landscape over makespan, with and without macraisctio

The subsequent six plateaux consist of applying the same sequenctoatdo six further
pairs of philosophers; it can be seen that the heuristic fingerprints gfltheaux are identical.
The version of Marvin in which macro-actions have been disabled refieatxpensive exhaustive
search at each plateau: the heuristic value again goes through thegpoddacreasing and then
decreasing again before reaching a strictly-better state. The verdiog the plateau-escaping
macro-actions, however, now has a single action to apply that achievdstly ®etter state and
search continues, stepping over the subsequent plateaux througteitteos of macro-actions that
yield strictly-better states.

When all of the larger plateaux have been overcome, a series of smatksmplaare encoun-
tered. Again, it can be seen that for the first of these, both versions coogplete a stage of
exhaustive search; however, after the first of the smaller plateaure®mscompleted, the macro-
action formed allows the subsequent plateaux to be bypassed. Finaljathi@shes with a short
previously unseen sequence of actions, where both versions mustaioséive search.

4. Handling ADL

PDDL (McDermott, 2000) (the Planning Domain Definition Language) wasdifined for use in
the First International Planning Competition (IPC 1) at AIPS-98. Overubsegquent competitions,
modifications have been made to the language as planning technology haslevo

In the first three competitions, domains were available in which only STRIR8Y®: Nilsson,
1971) actions were used. STRIPS actions have conjunctive predieatnglitions, add effects, and
delete effects defined in terms of action schema parameters and consit#d.€fo determine the
preconditions and effects of a given ground action instance (an actiosexparameters have been
bound to specific entities) the action’s parameters are substituted into theasdher the action to
be applicable in a given state, all of the precondition predicates must holdtisttte; if the action
is applied, a new state is generated from the previous state by removing @étlieates present in
the delete effect list and adding those in the add effect list..

131

COLES & SMITH

ADL action schemata (Pednault, 1989) extend the syntax of STRIPS actiemata. In ADL
domains the language used to describe the preconditions of an action idezkterallow disjunc-
tive, quantified and negative preconditions as well as the conjunceéempditions that can be used
in STRIPS domains. The syntax for describing the effects of actions iseatemded to allow
conditional effects—effects which are applied whenever a givenitiondholds.

The extended syntax provided by ADL not only increases the convemigith which a domain
can be encoded, but can also reduce the size of the domain descripedexdn For example, if
an action schema has, as a precondition (or A B C) then, without ADL, ttlopies of the action
schema would need to be made: one with a precondition (A), one with a glidoonB) and one
with a precondition (C). If one is willing to tolerate such increases in domaserg®ion size, and
the number of objects in the domain is finite, it is possible to compile a given ADL uloaral
problem-instance pair into a domain-problem pair containing only STRIPactio general, this
compilation must be done once for each problem instance, not just oneadio ADL domain. The
ability to compile ADL domains into STRIPS domains was first demonstrated by theitadion
procedure devised by Gazen and Knoblock (1997). Using thesddeesrin a preprocessing stage,
FF is able to handle domains containing ADL actions whilst only reasoningt &¥RIPS actions
internally. The output from FF’s preprocessor stage was made avaitali€ 4 to allow planners
which could not handle ADL directly to solve compiled STRIPS formulations ef globlems
by loading a compiled domain-problem pair for each of the original probletaniass in a given
domain.

Whereas in previous competitions the ADL domains were simplified or manuadisrmefated
to produce STRIPS domains, the STRIPS domains in IPC 4 were compiled aictdipdrom
ADL. The compilation used, based on the preprocessor of FF, result®mpiled domain-problem
pair for each original problem instance. This compilation explicitly groundsyneérhe original
actions, producing one compiled action schema (with preconditions aradsefibose parameters
refer to PDDL constants) per ground action that could arise in the origibal problem. Whilst
these compilations produce STRIPS domains that allow planning to be pediothey replace
general action schemata with sets of specific action instances.

To allow the new features in Marvin to be used in the competition, Marvin waseeteto
include native support for ADL. By reasoning with the original ADL domiais able to effectively
abstract macro-actions from action sequences.

4.1 The Preconditions of ADL Actions

The preconditions of STRIPS actions consist of one structural featameand’ clause, allowing
conjunctive preconditions and predicates with constant or parametdiisgithgs. ADL actions
have a far greater range of structural features in their preconditidhgy allow ‘or’, ‘imply’,
‘not’, ‘forall’ and ‘exists’, which can be combined in any well-formed mannn Marvin, the ADL
preconditions are processed using two steps. First, all quantifiedatidons are fully enumerated.
Second, the resulting precondition formula is translated into Negation Noronal E&NNF) using
the standard procedure: by replacifig = b) with (—a Vv b), and using De Morgan’s laws to
eliminate negations of clauses. Further reductions are then applied to elinédatelancy, such as
replacing (and A (and B C)) with (and A B C), and (or A (or B C)) with (oBAC).

Internally, within Marvin, the NNF precondition formula forms the basis ofaisaction tree’,
the nodes of which are the ‘and’ and ‘or’ elements of formula and the lit¢nsigated and non-

132

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

negated) form the leaves. The structure of the satisfaction tree foea gition schema is fixed,
although the propositions at the leaves vary between groundings.

To determine which ground ADL action instances are applicable in a givenlsiged on their
preconditions, the algorithm shown by the pseudo-code fragment iné=@isrused. Initially, the
satisfaction counters associated with each ground action’s satisfacgamoules are reset using the
following rules:

e Each ‘and’ nodes has its counter set to denote the number of childres it ha
e Each ‘or’ node has its counter set to 1.

¢ Negative preconditions are assumed to be true, and the satisfactionreafrtteeir parents
decremented accordingly.

As these values are state-independent, for reasons of efficiencgltieswsed to reset the satisfac-
tion counters are computed once and cached for later use.

Having reset the satisfaction counters, each proposition in the cutedatis considered, and
the satisfaction trees updated accordingly:

e The satisfaction counters of parent nodes that have the currerdgitiop as a negative pre-
condition are incremented.

e The satisfaction counters of parent nodes that have the currerdgitiop as a positive pre-
condition are decremented.

Then, by propagating the effects of truth value changes upwardsgthtbe tree, any action
whose root node has sufficiently many children satisfied is applicable.

4.2 The Effects of ADL Actions

ADL extends the action definitions of STRIPS actions by allowing quantifiedcamditional ef-
fects. As in preconditions, the former are dealt with by enumeration; the fttedealt with de-
pending on their conditions.

If a conditional effect is dependently on static predicates it is possible to determine when
grounding an action whether or not it applies for that instance: the statcmation does not
change from state to state. If the effect depends on dynamic preditasasecessary to consider,
in each state, whether the effect applies. To achieve this, the effedtsandnditions are used
to form a sub-action. The sub-action has the conditional effect’s conditsoits preconditions,
and the conditional effect itself as its effects. As conditional effectsbeanested in the original
operator schemata, the sub-actions themselves may also have condifiectal @f which case the
sub-action-creation step is applied recursively, creating nestedctionsaas necessary.

The applicability of ground sub-actions in a given state is performed in tie saanner as
normal actions. When an action is applied, any sub-actions that are giBoabte are applied
alongside it, thereby preserving the conditional effects of the originedatpr.

4.3 Modifying the Relaxed Planning Graph

Itis necessary to modify the Relaxed Planning Graph expansion an@éxtieattion phases to make
it possible to apply the heuristic when the domain contains ADL actions. Walbéan done on

133

COLES & SMITH

1: Procedure: test-action-applicability
2: resetsatisfactioncounters();
3:
4: for all predicate ?p in the statk
5:
6: for all (ground action ?a, tree node ?c) pair having ?p as a negaéeenuition child nodelo
7: treenodeto_update = ?c;
8:
9: while treenodeto_update is still validdo
10: old_value = value in tresnodeto_update;
11 value in treenodeto_update = oldvalue + 1;
12:
13: if value in treenodeto_update> 0 && old _value = Othen
14: tree.nodeto_update = parent of treeodeto_update;
15:
16: else
17: treenodeto_update = invalid,;
18: end if
19: end while
20: end for
21:
22: for all (ground action ?a, tree node ?c) pair having ?p as a posiégopdition child nodelo
23: tree nodeto_update = ?c;
24:
25: while treenodeto_update is still validdo
26: old_value = value in tresnodeto_update;
27: value in treenodeto_update = oldvalue -1;
28:
29: if value in treenodeto_update = 0 && oldvalue> 0 then
30: treenodeto_update = parent of treeodeto_update;
31:
32: else
33: tree nodeto_update = invalid,;
34: end if
35: end while
36: end for
37: end for
38: applicableactions ={);
39:
40: for all ground action ?do
41:
42: if root tree node is satisfigen
43: add ?a to applicablactions;
44: endif
45: end for

Figure 6: Pseudo-code for action applicability testing

134

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

extending full graphplan planning graphs to reason with a subset of &dlibns (Koehler, Nebel,
Hoffmann, & Dimopoulos, 1997); the approach taken in Marvin extendsslaged planning graph
structure to handle all of the available ADL constructs. The effect of thdifications is that the
same heuristic estimate is obtained as if a precompiled STRIPS domain formulatused

When building a conventional relaxed planning graph the assumption is matgéntthe first
fact layer, all the facts present in the state to be evaluated are true antkealfacts are, implicitly,
false. Facts are then gradually accumulated by the application of actiahsffadts adding facts to
the spike (Long & Fox, 1999). Actions become applicable when their pgittons are all present;
i.e. they have all been accumulated. The STRIPS actions used to build entomal relaxed
planning graph necessarily have no negative preconditions, so ificenifto consider when facts
have a positive truth value and determine action applicability from this. ADL r&tivowever, can
also have negative preconditions, corresponding to facts which méeske Within a conventional
relaxed planning graph, no record is made of whether it is possible feen fact to have a negative
truth value.

To handle negative facts within the relaxed planning graph used in Masecond spike is
added. As with the positive-fact spike, all the facts present in the state évdduated are true and
all other facts are, implicitly, false. However, unlike the positive-fact spificts are then gradually
erodedby the applications of actions; with their delete effects marking the fact in thative-
fact spike as having been deleted. The inherent relaxation on whicleldeeed planning graph
is founded is still preserved, though: delete effects have no effetiepositive-fact spike; and,
similarly, add effects have no effect on the negative-fact spike.

If a precompiled STRIPS domain formulation was used, additional complimeptappsitions
are added to denote when each proposition is not true. These accuniofaiside the original
domain propositions, and in this way are able to satisfy negative precorgditidre negative fact
spike, as discussed, has the same effect, although rather than rgoetdeh propositions are
available in a negated form at each layer, it records which propositiensoaavailable in a negated
form.

As discussed, ADL action preconditions are preprocessed sucheddation is only applied
to the leaves of the satisfaction tree; i.e. only applied to unit facts formingopdhte actions’
precondition structures. Within the relaxed planning graph a given fattén now be marked as
satisfied if either one of the following holds:

e It is a positive fact leaf, and the fact contained therein has been addbeé positive-fact
spike.

e Itis a negative fact leaf, and the fact contained therein has either bege in the negative-
fact spike or has since been marked as deleted.

Plan graph construction proceeds in a manner similar to that used to buildentional relaxed
planning graph. Each of the newly present or newly deleted facts asedsved in turn, and their
effects on the applicability of all available actions noted. Should the updaitihg satisfaction tree
of an action lead to it becoming applicable:

e The action is added to the action spike, available at the next fact layer.

e Previously unseen add effects are added to the positive-fact spiitglde at the next fact
layer.

135

COLES & SMITH

e Delete effects deleting a fact still present in the negative-fact spike tharkact as being
deleted and available to satisfy negative preconditions from the nextjest

For efficiency, the first action to achieve each fact is stored when itdedtb the positive-fact
spike, along with the earliest layer at which that action is applicable. Similadyfitst action
that deletes each fact that has ever been in the negative-fact spikeds Relaxed plan extraction
consists of regressing through the layers of the relaxed planning,gr@lplsting actions that achieve
the goals that are to be achieved at each layer. Initially, each propositioa goal state is added to
the layer of goals for the layer in which it first appears (or disappé@atke case of negative goals).
To extract a plan, the next goal is repeatedly taken from the deepesi &yer with outstanding
goals. lts first achieving action is added to the plan and its preconditiors fekm its satisfaction
tree, are added to the goals for the first layer in which they appear. robegs finishes when there
are no more outstanding goals at any layer. If a sub-action (that is,timm aceated to represent
the conditional effect of an ADL action, see Section 4.2) is chosen to\achigiven proposition,
the preconditions of its parent action(s) are also added to the goals fiirstHayer in which they
appear.

When considering adding the preconditions of an achieving action to theitayehich they
appear, a collection of disjunctive preconditions may arise. In this situdtierfjrst satisfied pre-
condition or negative precondition in the disjunction is added as a subgaalearlier layer. This
avoids adding many redundant actions to satisfy each of a the disjunctisenlitions, where only
one needs to be satisfied. The precondition chosen to be satisfied fcoroakection of disjunc-
tive preconditions is the first for which an achiever was found when ingjlthe relaxed planning
graph, thus providing the same heuristic estimate as if the compiled STRIPS dmmmatriation
was used. In the compiled STRIPS domain formulation, the disjunctive pd@gmmwould give
rise to several action instantiations; the first applicable of these woulddseclas the achiever for
the desired fact.

At the start of the planning process, a relaxed planning graph is cotedrforward from the
initial state. However, rather than stopping when the goal literals appeat gonstruction stops
when no more ground actions become applicable. The actions and promositipearing in this
relaxed planning graph are a superset of all the actions and propesifipearing in later relaxed
planning graphs: these actions and propositions discovered are #biousrm a cache detailing
the proposition—action dependencies. Using this cached information, deesbown in Figure 6
can be used to determine the actions applicable in a given state, and thel i@iaxeing graphs
used to calculate heuristic values can be extracted more efficiently.

5. Handling Derived Predicates

In IPC 4, PDDL was further extended with the addition érived PredicateqHoffmann &
Edelkamp, 2005). Derived Predicates, used in three of the competitionirdgnadlow higher-
level concepts to be recursively derived from other propositiones@&lerived predicates can then
be present in the preconditions of actions, and allow higher-level ptsaethe domain to be rea-
soned with. For example, in the BlocksWorld domain, the derivation rule &fathove’ predicate
is as follows:

(:derived (above ?x ?y)
(or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y)))))

136

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Should a planner not include native support for derived predicités possible to compile
domains containing derived predicates into “flattened” domains that do wetevér, it is not pos-
sible to do this without a super-polynomial increase in the size of the domaitharsblution plan
(Nebel, Hoffmann, & Thiebaux, 2003). At IPC 4, compiled versions efdomains that contained
derived predicates were made available for competitors who could nposugerived predicates.
However, the sizes of the problems that could be compiled were restrictbe lopncomitant sizes
of the PDDL files produced by the compilation process and the computatifiodl reecessary to
solve the compiled problems.

IPC 4 was the first planning competition to make use of derived predicatesdariiains. As
it has been shown that derived predicates cannot be reasonedeéfimently through compilation
(Nebel et al., 2003) steps were taken to provide native support for itn@larvin.

It is also possible to compile derived predicates appearing in domains lygadctions to
instantiate the derived predicates on an as-needed basis (Gazen &&naP97). Using this
compilation, the ‘above’ derivation rule from the blocksworld problemcdbgd above would be
compiled to the following action:

confirm_above ?x ?y
pre: (or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?y ?z))))
add: (above ?x ?y)

If this is to be used as a domain compilation, each of the original actions in thamomat be
extended to delete all of the ‘above’ propositions, forcingdbefirm _aboveactions to be used to
re-achieve the ‘above’ preconditions for any action that requires therthis case, each action is
given the additional effect:

(forall (?x ?y) (not (above ?x ?y)))

Although effective in STRIPS domains, it is not possible to use such a cdiopifar domains
making use of negative preconditions as the re-derivation of deriegtiqates occurring as negative
preconditions of actions is not enforced. For example, an action cowdgied that modifies the
‘on’ propositions, leading to a state from which a number of additionalvabproperties could
be derived. Deleting the ‘above’ propositions is a necessary stepegattiirm actions should
re-assert any derived predicate for any action that needs it. Howelven (above ?x ?y) is deleted,
(not (above ?x ?y)) is true, and can be used as an action preconditiateal with this issue it is
necessary to prevent any non-confirm actions from being appliedallqtdssible derived predicates
have been re-asserted; this prevents actions from being applied wdieenanot above’ is only
temporarily true, i.e. whilst it has not yet been re-derived. To forceréhderivation of derived
predicates, further dummy predicates and actions must be added to the dorhaimecessary
compilation results in a large increase in the size of the search space éxplndethe additional
dummy actions affect the usefulness of the relaxed-planning-graptstieu

The problems with using the Gazen & Knoblock compilation arise solely beciaLisgoriginal
form, it does not force all applicable confirm actions to be applied aftelh eaiginal action is
applied. As such, if a planner generates the confirm actions internallyh@nddeals with them
appropriately, the compilation can still form the basis of an effective meanisaindling derived
predicates.

137

COLES & SMITH

To this end, when presented with a domain containing derived predicatsjnivimachine-
generates the confirm actions and extends each (original) action to deleterived predicates, as
described. After each action is applied, all propositions that can betlgimmaecursively derived
from the resulting state are instantiated by applying all applicable confirmnactiélong with
avoiding an unwieldy compilation in domains with negative preconditions, hanthi@ confirm
actions internally in this manner provides performance improvements for tiefueasons:

e As the confirm actions are automatically applied when appropriate, Margs ot have to
do search and perform heuristic evaluation to discover that the nexhaetioired will be a
confirm action.

e Confirm actions are included alongside normal actions in the relaxed ptagraph built for
each state, but if used in the relaxed plan they do not contribute towaréiethistic value
taken from its length, eliminating any noise they would otherwise add.

6. Results

The planning competition offers a great opportunity for assessing thegt@rformance of various
techniques used in planning over a wide range of problems. Inevitablg thidr however, be

features that are not tested by the set of domains used in the competitior. Wikalso be some
domains in which many of the features of a planner collaborate to prodwckrgsults, rather than
the results being directly attributable to one individual feature. Here weskdbe results from the
competition and present further results to clarify which of the featuresas¥iM contribute to the
performance in each particular case.

It is important to note that when we refer to macro-actions generated addydMarvin these
are all generated during the planning process for that specific probleradditional learning time
or knowledge gained from solving other problems was used by Marvin icdhgpetition, or in
producing the additional results presented in this paper. Although someegptacan use additional
‘learning time’ when solving a series of problems, a satisfactory way to jiocate this extra time
into the time taken to solve each problem, as measured in the planning competisoyetta
be found. In the planning competition the planners are compared basediopdtformance on
isolated problem instances, which is still an interesting comparison to make.

The results presented were produced on two machines: a machine ativeesityof Strath-
clyde (with a 3.4GHz Pentium 4 processor) and the IPC 4 competition machithea(@GHz Xeon
processor). In both cases, the planner was subjected to a 30 minute time tinaitl&b memory
usage limit. All results that are directly compared against each other (i.eaapp the same graph)
are produced on the same machine. The domains used for evaluationearértek IPC 3 and IPC
4, and are described in detail in the papers giving an overview of dalsh two competitions (Long
& Fox, 2003; Hoffmann & Edelkamp, 2005).

6.1 Plateau-Escaping Macro-Actions

To assess the effect of plateau-escaping macro-actions on planfeen@ence, tests were run across
a range of planning domains with macro-actions enabled and disablededuitsof these tests are
shown in Figures 7 and 8, illustrating the time taken to find a solution plan and thespekof the
plan found respectively.

138

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Airport

Philosophers

1000 T T T T T 1000 T T T
‘With Macro-Acf{ pns With Macro-Actions s
No M: No Macro-Actions
100 | 1 100
- | - 10 i |
S 3 1
g H I I
& e I <
P © | i
£ £ | | | |
£ £ AN e
] oL . | |
4 01} i I g iy DB 0 R
30 50 5 15
Problem Instance Problem Instance
Depots Driverlog
10000 T T T 1000 T T T T T T
With Macro-Actions ‘With Macro-Actions s
No Macro-Actions No Macro-Actions E=—3
1000 N N 4
100 E|
I n
8 8
; 10 4 \ﬂ.;
£ £
= =
1
0.1 ﬂ
0.01 LI - A .
10 15 10 12
Problem Instance Problem Instance
Pipes Tankage Non-Temporal Satellite
10000 T T T T T T T T T T 1000 T T T T T T 3
‘With Macro-Actions ‘With Macro-Actions fif |
No Macro-Actions No M: ifl
1000 E|
100
100 Bl il
10 |
o o
8 8
by 10 4 by L
£ £ - |
F = 180§ a IR
1r _ ARy
1 4 L Ml BB
01t VO 0 O - BB
01 1 ﬂ i B[S
001 il L L 0.01 H g i EUE S i
25 30 40 45 50 5 10 15 20 25
Problem Instance Problem Instance
FreeCell Pipes No-Tankage Non-Temporal
10000 T T T T T T T T T T 10000 T T T T T T T T T T
With Macro-Actions s ‘With Macro-Actions s
lo Macro-Actions lo Macro-Actions
1000 1000
100 100
3 3
8 8
b 10 b 10
£ £
= =
1 1
0.1 0.1
0.01

2 4 6 8 10 12 14 16 18
Problem Instance

Problem Instance

Figure 7: CPU time showing the results of planning with and without plateaapess macro-
actions on a range of domains (from left to right: Airport, Philosopheepds, Driver-
log, Pipestankage-nontemporal, Satellite, FreeCell, Pipesnotankagevypamal).

139

Makespan

Makespan

Makespan

Makespan

COLES & SMITH

Airport

Philosophers

500 T T T T T 450 T T T
With Macro-Actions s With Macro-Actions N
No Macro-Actions No Macro-Actions g1
450 7 400 -
400 | — 350 |
350 1
300
300 | —
§ 250 |
g
1 g
&
2 200
5 10 20 25 30 50 5 10 15 20 25 30 35 40 45
Problem Instance Problem Instance
Depots Driverlog
250 T T 200 T T T T T T
With Macro-Actions s ‘With Macro-Actions
No Macro-Actions E=—3 No Macro-Actions E_=3
<
g
g
g
&
)
-3
10
Problem Instance Problem Instance
Pipes Tankage Non-Temporal Satellite
250 T T T T T T T T T T 450 T T T T T T T
‘With Macro-Actions ‘With Macro-Actions s
No Macro-Actions No Macro-Actions
400 |-
200 | b
150 —
<
g
g
8
g
&
=
100 —
50 [1
"
o .illll! I
5 10 35 40 45 50
Problem Instance Problem Instance
FreeCell Pipes No-Tankage Non-Temporal
250 T T T T T T T 250 T T T T T T T T T T
‘With Macro-Actions s ‘With Macro-Actions Emmse
lo Macro-Actions o Macro-Actions £=—{
200 1
i |
g
&
g
]
=
BInRIE - JE. B i il , i .
2 4 8 10 12 14 16 18 20 5 10 15 20 25 30 35 40 45 50

Problem Instance

Problem Instance

Figure 8: Makespan of the solution plans found when planning with and withlateau-escaping
macro-actions on a range of domains (from left to right: Airport, PhilosogphDepots,
Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, Pipesngiamcantemporal).

140

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

In the Airport domain the time taken to find plans and the makespans of the plamd fvere
almost identical. A strictly better successor can usually be found to eachngdtateusing EHC,
and it is clear in this domain that the addition of macro-actions from the ocedgitateau has
not degraded the performance of the planner. The performance tféheonfigurations deviates
at problem 47, where planning with macro-actions was able to find a solu@onbpit planning
without macro-actions was not. Closer inspection of the output from the@tasveals that in this
case, some way into EHC search, a plateau is encountered and esndped;onfiguration using
macro-actions, this leads to the formation of a macro-action. Later in semrother plateau is
encountered. At this point, the earlier macro-action can be used to leadrotly better state,
from which a solution plan can ultimately be found using EHC. If the macro+actioot available,
however, the sequence of actions found to escape the plateau leaddféneaidexit point, from
which a solution plan cannot be found using EHC.

In the Philosophers domain neither the makespans of the plans found wowérage differs be-
tween the two configurations tested. Using macro-actions, however,deadsstently to improved
performance as the plateaux encountered during search requireplietpn of the same action
sequence. Consistently, across the problems, searching with macnosdstfaster by a factor of
two; and furthermore, the factor is increasing with problem size, suggeastias better scalability.

In the Depots domain, using macro-actions improves coverage, allowingobems to be
solved within the time limit rather than 15. Further, in many cases, the time taken ta filzah is
reduced. In one case, problem file 6, planning without macro-actiorigeg@find a plan where
planning with macro-actions cannot. Here, planning without macro-actiamsisle to find an exit
point from one of the plateaux encountered later in search, and résbest-first search. Planning
with macro-actions, however, is able to reach a greater number of socatates from the nodes
on the plateau and is unable to exhaust the reachable possibilities and tefBhitaszarch within
the 30-minute time limit.

In the Driverlog domain, using macro-actions generally increases the tirap takind plans
and has an adverse effect on the makespan. In this domain, macrcsadidaining varying-length
action sequences consisting of repeatatik ordr i ve actions are inferred. In practice, these are
detrimental in two ways: they have a large number of instantiations and draliyaticaease the
branching factor, reducing performance; and they are only usefeligable in situations where
the prescribed number @fal k or dri ve actions are needed. Despite this, planning with macro-
actions is able to find solution plans in 18 of the problems, whereas planninguivite macro-
actions is only able to solve 17 of the problems. In the problem in questioblepnol?7, the
increased number of successor states visible from the nodes on plaeaus the presence of
macro-actions allows EHC to find a solution plan rather than resorting to b&issdiarch, which
would ultimately fail within the time limit set.

In the Pipestankage-nontemporal domain, it is not clear at first whett@oraations are bene-
ficial or not. The number of problems solved by both configurations is time sa4, and the impact
on makespan appears to be insignificant, improving it in some cases but nitakorge in others.
However, looking at the harder problems from problem 25 upwardanjlg with macro-actions
is able to solve 13 rather than 11 problems, suggesting it is able to scale bé#gyetoproblems
compared to searching without macro-actions.

In the Satellite domain both configurations exhibit similar performance, in terrhbstbf the
time taken to find a solution plan and the makespan of the plan found, as thedrelaxning graph
heuristic is generally able to provide good search guidance. The exteptmoblem 36: here,

141

COLES & SMITH

the inference of a macro-action allows search to be completed using EH& tlaéim resorting to
best-first search, reducing the time taken to find a plan.

In the FreeCell domain, macro-actions appear to lead to improved makeapdhsive negli-
gible impact on the time taken to find solution plans. Intuitively, however, in aglyadirected
search space (such as that in FreeCell, where it is possible to move &arardne location to
another but often not to move it back) using a non-backtracking ssetmatiegy such as EHC should
reduce the effectiveness of macro-actions, as the introduction afideduaction steps as part of a
macro-action instantiations can lead search towards unpredicted dégsd¥éme illustrated results,
contradicting this intuition, can be ascribed to the nature of the FreeCellepnstused in IPC 3.
The problem files all have the four suits of cards, and from problem filpwards have four free
cells. The number of cards in each suit and the number of columns angaffsaidicreased from 2
to 13 and 4 to 8 respectively. The effect of this, however, is that alih®ibardest problems have a
favourable free cells to cards ratio. When macro-actions are used, thetiofmeedlessly moving
a card into a free cell is not significant as there is a generous allocatfoeeatells compared to the
number of cards that might need to be stored there.

To provide a more reasonable test of whether macro-actions are ligniefite FreeCell do-
main, twenty full-sized problem instances were generated and tests rumpaothe performance
of Marvin with and without macro-actions on these problems. The resultgséttests can be seen
in Figure 9 - clearly, the number of problems solvable within the 30 minute time limitgercrally,
the time taken to find a solution plan is improved when macro-actions are not used

In the Pipesnotankage-nontemporal domain the results obtained do moassignificant ad-
vantage or disadvantage to using macro-actions: the planner is fastanero§the problems when
using macro-actions, but is slower on others; similarly, the planner pesdplans with shorter
makespans on some problems when using macro-actions, but longer avakespothers. Two
results are obtained when macro-actions are not used that are vesytelite 30-minute cut-off.
The first of these is solved in around 10 seconds when macro-actiensed; the second can be
solved using macro-actions if an extra 5 minutes of CPU time are allowed, ofighdly faster
computer is used.

Overall, it can be seen that the effect of plateau-escaping macro-sctiothe execution time
of the planner varies depending on the domain in question:

¢ In the Philosophers, Depots, Driverlog and Pipestankage-nontehgmrains, the use of
macro-actions improves the performance of the planner, either in termsvefage or a
general reduction in the time taken to find solution plans.

¢ In the FreeCell domain, worse performance is observed when mationsaare used.

¢ In the Airport, Pipesnotankage-nontemporal and Satellite domains theediielin perfor-
mance is minimal.

Furthermore, with the exception of the Driverlog and FreeCell domainer@vhe makespan of
solution plans is generally increased when using macro-actions) the os#cob-actions does not
significantly affect the makespan.

6.2 Greedy Best-First Search versus Best-First Search

To assess how the performance of greedy best-first search cathpaomventional best-first search,
we ran tests across a range of planning domains with EHC and macro-atifahked to isolate the

142

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

FreeCell
10000 [T

T T 4
With Macro-Actions === |
No Macro-Actions

1000 |

100

Time (sec.)

Problem Instance

Figure 9: Time taken to solve twenty full-sized problems in the FreeCell doméimawd without
plateau-escaping macro-actions.

effect of the greedy best-first search approach. Overall, whalysing the results, it was observed
that the choice of best-first search algorithm had little impact on the perfaerat the planner.

6.3 Least-Bad-First Search versus Breadth-First Search

To assess the effect of using least-bad-first search rather theditliirst search to escape plateaux
in EHC search, we ran tests across a range of planning domains usimgfetie two search
algorithms. The results of these tests are shown in Figures 10 and 11, ihgsthee time taken to
find a solution plan, and the makespan of the plan found.

In the Airport domain, plateaux arise in one of two cases:

e An unforeseen deadend has been reached; as no backtrackingesomscdaction choices
exhaustively searching the plateau is inexpensive, and EHC terminpiely.ra

e A short plateau has been reached, requiring two actions to be applieacto aestate with a
strictly better heuristic value—here, the two actions found by both leasfisadnd breadth-
first search were identical.

As can be seen from the planning time and makespan graphs, using lédssbsearch rather
than breadth-first search has no impact on planning time or solution pldityguahe Airport
domain: the time spent searching plateaux is negligible, and the escapeqattisafe identical
under the two plateau-search approaches.

143

COLES & SMITH

Airport Philosophers
1000 T T T T T T T ~ T T 10000 T T T T T T T — T
Least-Bad-First Sef ych s Least-Bad-First Search s
Breadth-First Sgi rch Breadth-First Search
1000 E|
100 1
H F
2 2 [
o Y I
£ £
[[I ‘
i L L n Ll l
5 10 15 20 25 30 50 15 20 25 30 35 40 45
Problem Instance Problem Instance
Depots Driverlog
10000 T T T - T 1000 T T T T T T T T T
Least-Bad-First Search mmmmm Least-Bad-First Search mmmmm
Breadth-First Search Breadth-First Search E=—3
1000 B H B
B < 100 |- 4
10 | 1
5 o
& &
o E o
£ £
= =
2L]
01 1
] 001 Bl E : g
10 2 6 8 10 12 14 16 18 20
Problem Instance Problem Instance
Pipes Tankage Non-Temporal Satellite
10000 T T T T T T T T T T 10000 T T T T T — T
Least-Bad-First Search Least-Bad-First Search mmmmm
Breadth-First Search Breadth-First Search
1000 1000 § 4
100 100 10| N b
3 3
8 8
b 10 b 10 1
£ £
= =
1 1 E|
0.1 0.1 E|
0.01 L 0.01 L L | RILE LI BIHAISEIN 1,
25 45 50 5 10 15 20 25 30 35
Problem Instance Problem Instance
FreeCell Pipes No-Tankage Non-Temporal
10000 T T T T T T T T T T 10000 T T T T T T T T T T
Least-Bad-First Search Least-Bad-First Search
Breadth-First Search E=——=2 Breadth-First Search E—3
1000 1000 b
100 100 [
n 3
8 8
b 10 5 10
£ £
= =
1 1
0.1 01
0.01 0.01 = .

Problem Instance

Figure 10: CPU time showing a comparison between using breadth-firs¢astebad-first search
on plateau search on a range of domains (from left to right: Airport, Riplosrs,
Depots, Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, ridietkage-

15 20 25 30 35 40 45 50
Problem Instance

nontemporal). These results were generated without using macro-actions

144

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Airport Philosophers

Makespan

Makespan

Makespan

Makespan

350 T T T T T T T r T 450 T T T T T — T
Least-Bad-First Search s Least-Bad-First Search g
Breadth-First Search Breadth-First Search =
400 |-
300 [—
350
300
§ 250
g
&
£
S 200} ‘
5 10 15 20 25 30 20 25 30 35 40 45
Problem Instance Problem Instance
Depots Driverlog
250 T T T - T 180 T T T T T T T — T T
Least-Bad-First Search mmmmm Least-Bad-First Search mmmmm
Breadth-First Search Breadth-First Search E—=3
c
g
g
g
£
3
=
5 10 15 20
Problem Instance Problem Instance
Pipes Tankage Non-Temporal Satellite
250 : : ! : . . : : : 300 : : . : . — :
Least-Bad-First Search Least-Bad-First Search
Breadth-First Search Breadth-First Search =13
250 i 4
200 —
200 b
150
c
g
g _
8§ 150 Nl g
£
g |
= |
100 MR 1
50 |- I H ﬂ il B
| 1 :!Igiiilll ﬂlm Bl | .
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 35
Problem Instance Problem Instance
FreeCell Pipes No-Tankage Non-Temporal
250 T T T T T T T T T T 140 T T T T T T T T T T
Least-Bad-First Search Least-Bad-First Search
Breadth-First Search E=——=2 Breadth-First Search E—=
120 1
100 —
s 80 [1
g
£
3
= 60 |
2 4 6 8 10 12 14 16 18 20 20 25 30 35 40 45 50
Problem Instance Problem Instance

Figure 11: Makespan of plans produced using breadth-first and-Hedsfirst search during
plateau search on a range of domains (from left to right: Airport, Philosicy
Depots, Driverlog, Pipestankage-nontemporal, Satellite, FreeCell, ridietkage-
nontemporal). These results were generated without using macro-actions

145

COLES & SMITH

In the Philosophers domain, search time is dramatically reduced by usindpbehfitst search
rather than breadth-first search on plateaux. Using least-badefinstts all 48 problems are solved;
using breadth-first search, only the first 14 are solved. The plamsifim the first 14 have identical
makespans, although the actions occur in differing orders in the two plans.

The search landscape provides some insights into why least-bad-&rshde suited to this
problem domain. At the start of the largest plateaux encountered, etich Beads to a state with
a strictly worse heuristic value; each of these corresponds to applyiregtioa ‘queue-write’ to a
philosopher. From each of these, a state with a less-bad heuristic is visibkn using least-bad-
first search, this less-bad state is considered before the others inethe, @voiding the redundant
search that would otherwise be performed by breadth-first seaddtind more philosophers to the
problem causes a dramatic increase in the amount of redundant segmrimegd when breadth-first
search is used, leading to the observed performance improvement idest-bad-first approach
is taken.

In the Depots domain, we can observe the effect of differing exit poirptateaux when using
least-bad-first and breadth-first search. When solving problerte&st-bad-first search is able to
solve the problem in substantially less time: EHC search is able to escape dhtissupencoun-
tered, and find a solution plan. Breadth-first search, however, tedtle termination of EHC, and
exhaustive best-first search being used. On problem 15, hovieeadth-first search is able to find
a solution plan where least-bad-first search cannot; also, problenobvézisn much less time. In
these two cases, it is hot the success of breadth-first search oruglateizh leads to the improved
performance, but its failure; EHC search terminates and resorts to ts¢siefirch in less time when
breadth-first search is used than when least-bad-first searcldis use

In the Driverlog domain, one additional problem, number 18, can be solwh least-bad-
first search is used instead of breadth-first search. EHC usindthréiest search leads to a plateau
which cannot be escaped, and EHC aborts without a solution plan; thigrrgexhaustive best-first
search cannot be completed within the allowed 30 minutes. The makespaespidris found by
the two approaches do not differ significantly.

In the Pipestankage-nontemporal domain, it can be seen that the usestdfddafirst search
generally reduces the time taken to find solution plans. 34 problems are sdhegdusing least-
bad-first search compared to 30 when using breadth-first seadchnathe majority of cases, the
time taken to find a solution plan is reduced. The makespans of the resultinpisglans are
generally increased when least-bad-first search is used, thoutjte sisboptimal exit paths found
in this domain are often longer than the (optimal-length) paths found whedthréest search is
used.

In the Satellite domain using least-bad-first search leads to a reduction mrgame and, in
many cases, a reduction of the makespan. In particular, the performamreblems 19 and 20 is
substantially improved. The makespans on problems from 28 to 30 inclusiwsa improved.

On the twenty standard benchmark FreeCell problems using least-iaskfirsh allows one
additional problem to be solved within the 30 minute time limit. As with the results obtaihed w
assessing the impact of macro-actions on planner performance, we daaimare interesting and
useful set of data. Figure 12 shows the results of these experiments litecseen that although
least-bad-first search often improves the time taken to solve problems,wbkage overall is re-
duced, and no additional problems are solved where they previoustyneéer

In the Pipesnotankage-nontemporal domain, one additional problem easvlbed using
breadth-first search rather than least-bad-first search. Also, iy pases, the use of least-bad-

146

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

FreeCell
10000 [T T

Least-Bad-First Search mmmsa
Breadth-First Search

1000 | § e

100

AN R 7
SOOI

Time (sec.)

A AN RV /
SESOENOEDS

5 10
Problem Instance

Figure 12: Time taken to solve twenty full-sized problems in the FreeCell donvim|east-bad-
first and breadth-first search on plateaux (without macro-actions).

first search increases the makespan of the solution plan found. Owdtfadiigh time reductions
can occur when solving some problems when using least-bad-firshsélaecuse of breadth-first
search provides better overall performance both in terms of planning tichenakespan.

Overall, it can be seen across the evaluation domains that the perforofaheeplanner when
using least-bad- or breadth-first search varies, in terms of planeeutan time and plan quality:

¢ In the Philosophers domain, the use of least-bad-first search pravilgsstantial improve-
ment in planner performance.

¢ In the Satellite, Driverlog and Pipestankage-nontemporal domains, tbatexetime of the
planner is generally improved by the use of least-bad-first search (@vitk seduction in plan
quality in the latter of these).

¢ In the Airport and Depots domain, the impact on performance is minimal, eithemirs tef
execution time or solution plan quality.

¢ In the FreeCell and Pipesnotankage-nontemporal domains, perfaerofitie planner is de-
graded, both in terms of execution time and plan quality.

6.4 Handling Derived Predicates

It is possible to reason with domains involving derived predicates by prpitiog the domain,
adding additional actions to support the derived predicates, and theminman the usual manner

147

COLES & SMITH

PSR

Original Domain: ADL with Derived Predicates mmmm |
Compiled Domain: ADL E=—3

10000 f .
1000 |
100 |

10 |

Time (sec.)

0.1

1 1 1 1
20 30 40 50
Problem Instance

Figure 13: Time taken to solve problems in the PSR domain with and without DePrexlicates.

(see Section 5). The necessary compilation, however, causes a largasm in the size of the
domain. If the planner performs the compilation itself, generating the confitions and segregat-
ing them from the normal actions internally, it can avoid the search ovéitheacompiled domain
would incur.

Three IPC 4 domains make use of derived predicates: PSR (Power Regxtbyration), Philoso-
phers and Optical Telegraph. To assess the impact the native suppenived predicates was
having on planner performance, tests were run in these domains usinggimalodomains con-
taining derived predicates, and using the compiled domains. The resultssefttsts are shown in
Figures 13, 14 and 15.

In the PSR domain, the support of derived predicates substantiallyegedie time taken to
find solution plans. This improvement in efficiency allows 23 rather than @Blgms to be solved
within the 30 minute time limit.

Marvin is only able to solve a few of the problems in the promela/optical-telegtaptain. On
the smaller problems, the performance is better without derived predicatestheless, two of the
larger problems (problems 8 and 9) can be solved when working with thmalridomain where
previously they could not, and overall one additional problem is solveddeitived predicates.

In the Philosophers domain, supporting derived predicates nativelysygaluktantial reductions
in planning time. Using the compiled ADL domain formulation, only the first nine jgmols can be
solved. With native derived predicate support, all 48 problems canlbedso

148

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Optical Telegraph

Original Domain: ADL with Derived Predicates
Compiled Domain: ADL

10000 [.

1000

100

Time (sec.)

6
Problem Instance

Figure 14: Time taken to solve problems in the Optical Telegraph domain with iimouvDerived
Predicates.

6.5 Native ADL Support

The native support of ADL in Marvin provides two benefits, arising fritra ability to use non-
compiled domain formulations:

e Potentially improved efficiency, due to a more-efficient representation.

e The ability to infer reusable, parameterised macro-action sequencesheoaniginal ADL
actions, whose parameters are lost as a side-effect of the proasssousompile ADL to
STRIPS domains.

6.5.1 THE EFFECTS OFUSING A NON-COMPILED DOMAIN

To assess the effect of native support for ADL constructs on thienpeance of Marvin, we ran
a series of tests comparing the planner’s performance when given leo8THRIPS and ADL do-
main encodings. Macro-actions were disabled in both cases to isolatedghete& encoding itself
was having on performance. In IPC 4, ADL was used to encode fotlmeoflomains: Airport,
Philosophers, Optical Telegraph and PSR. STRIPS compilations were avaitigble for each of
these domains, in which each ground action that could arise when usingghabADL domain
was made into a fixed-parameter STRIPS action. In the Philosophers, IOpfiegraph and PSR
domains, the domain formulations making use of Derived Predicates weate use

149

COLES & SMITH

Philosophers

I OriginaIIDomain: ADL with Derived Predicates mmmm
Compiled Domain: ADL

10000 f ; : .

1000

100 |

10 |

Time (sec.)

0.1 |

5 10 15 20 25 30 35 40 45
Problem Instance

Figure 15: Time taken to solve problems in the Philosophers Domain with and wiblerived
Predicates.

In the Airport, Optical Telegraph and PSR domains, the performance ofiMévith macro-
actions disabled) was unaffected by the use of either the ADL or STRbR&id encoding. The
ADL domain encodings did not give rise to inefficient compiled STRIPS dimgs.

In the Philosophers domain, the use of the ADL domain encoding resultededugtion in
planning time when compared to the use of the compiled STRIPS encoding. Amcsgen in
Figure 17, more problems can be solved within the 30 minute time-limit if the ADL engoédther
than the STRIPS encoding is used, even disregarding the improvementsamyaace provided
by the use of macro-actions.

6.5.2 THE EFFECTS OFINFERRING MACRO-ACTIONS

Supporting ADL natively in Marvin allows lifted macro-action schemata to beriate during
search: in the compiled STRIPS domain formulations presented in IPC 4 tibesia the plateau-
escaping action sequences have few or no parameters, removing thréuofp to infer param-
eterised action sequences to use as the basis for macro-actions. IRengatn-actions can be
inferred in STRIPS domains, as in many of the domains discussed in Sectjdutthe compila-
tion from ADL to STRIPS produces a domain in which the macro-actions ¢ampractice, ever
be reused.

To assess the effects of plateau-escaping macro-actions when usipltteomain formula-
tion, tests were run in the Philosophers, Optical Telegraph and PSR damsaiggshe ADL domain
formulation with macro-actions enabled and disabled. Results for the Airporaith are presented
in Section 6.1, and results in the other domains will now be discussed.

150

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

. (activate-trans philosopher-1 philosopher forks—yfdrk state-1 state-6) [1]
. (activate-trans philosopher-2 philosopher forks—pfdrk state-1 state-6) [1]
. (activate-trans philosopher-3 philosopher forks—pfdrk state-1 state-6) [1]
. (activate-trans philosopher-4 philosopher forks—yfdrk state-1 state-6) [1]
. (activate-trans philosopher-0 philosopher forks—ypfdrk state-1 state-6) [1]

A WDNPEFLO

5: Macro-Action A Derived Here, using philosopher-4, philo®pher-3, forks-4 and forks-3
16: (activate-trans philosopher-3 philosopher forks-itk state-6 state-3) [1]

17: Macro-Action A, using philosopher-2, philosopher-1, foks-2- and forks-1

28: (activate-trans philosopher-1 philosopher forks-fadk state-6 state-3) [1]

29: Macro-Action B Derived Here, using philosopher-3 and -foks-3-

32: (activate-trans philosopher-3 philosopher forkpidpl 11 -rfork state-3 state-4) [1]
33: Macro-Action B, using philosopher-1 and -forks-1-

36: (activate-trans philosopher-1 philosopher forkpidpl 11 -rfork state-3 state-4) [1]

37: (queue-write philosopher-0 forks—pid-wfork forksfork) [1]

38: (advance-empty-queue-tail forks-0- queue-1 gs-0 fgsiO0empty zero one) [1]
39: (perform-trans philosopher-0 philosopher forks—pfdrk state-1 state-6) [1]
40: (activate-trans philosopher-0 philosopher forks—fidk state-6 state-3) [1]

41: Macro-Action B, using philosopher-0 and -forks-0-

44: (activate-trans philosopher-0 philosopher forkgidpl _5_-rfork state-3 state-4) [1]

Figure 16: Plan for the Philosophers problem before macro-actiomsipa

The plan shown in Figure 16 was produced by Marvin for problem fouhé&Philosophers
domain (before the translation of the macro-actions back into sequensasgtd-step actions).
The first five steps are found easily through guidance from the heutisédollowing eleven are
found during a period of exhaustive search which are, upon exitingltéteau, used to form a
macro-action, macro-action A. Macro-action B is formed in a similar manneritatee planning
process, and is subsequently used to avoid further exhaustivé skasolution plans for problems
involving more philosophers, the two macro-actions are used several tinaeso-action A is used
once for each consecutive pair of philosophers, and macro-actiorc® for each odd-numbered
philosopher (and once for philosopher-0). The graph in Figure @&®skthe performance of Marvin
when the macro-actions are not inferred during search compared tgtthatthe macro-actions are
inferred; both configurations produce identical solution plans. It easden that the performance
is consistently improved when the macro-actions are used, as exhausteeusearch is avoided.

As can be seen in Figure 18, using macro-actions provides improveatparice in the PSR
domain: 23 rather than 15 problems can be solved, and in the majority of tbe salsed by the
two configurations, a solution can be found in less time when macro-actiensed.

151

COLES & SMITH

Philosophers

ADL Domain, Macro-Actions Enabled === |

ADL Domain, Macro-Actions Disabled A

£
[}
£
o
a
0
a
o
=
n

10000

1000 |

100 |

10 |
1t
0.1

(-08s) awi

25 30 35 40 45
Problem Instance

20

10

Figure 17: Time taken to find a solution plan in the Philosophers domain with théPSTdbmain

encoding and the ADL domain encoding, with and without macro-actions.

ADL Domain, Macro-Actions Enabled s

PSR

ADL Domain, Macro-Actions Disabled A

10000

(-08s) awi

30 40 50

Problem Instance

20

Figure 18: Time taken to solve problems in the PSR domain with and without metons

152

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Optical Telegraph

ADL Domain, Macro-Actions Enabled mmmm
ADL Domain, Macro-Actions Disabled

10000 r T
1000 | — B

100 |

10 |

Time (sec.)

0.1 |

4 6 8 10
Problem Instance

Figure 19: Time taken to solve problems in the Optical Telegraph domain with gimoluvmacro-
actions.

As shown in Figure 19, Marvin is only able to solve a few of the first 10 |gmois in the
promela/optical-telegraph domain. Nonetheless, when macro-actionsanledra net of two ad-
ditional problems can be solved.

7. Future Work

The macro-action strategy adopted by Marvin in IPC 4 was to generate ite+acions on ger-
problembasis. It is possible, however, to build libraries of macro-actions paradomainbasis;
this approach was taken by Macro-FF (Botea et al., 2005). Marvin'soveations could also be
cached for use when solving all the problem instances in a given dorm#iis Were done, then the
knowledge encapsulated in the plateau-escaping macro-actions that ladlovistic imperfections
in the search landscape to be bypassed could be made available actosgpatblems in a given
domain without needing exhaustive search to re-discover this knowtedgach problem instance.
In contrast to existing systems that use off-line learning to generate anddem-actions, caching
Marvin's plateau-escaping macro-actions across solving a problemirsthis manner would allow
for online learning to take place. Further work is being undertaken in tieig, do investigate
effective caching strategies and to manage the large number of macrosdotimd.

The idea of using plateau-escaping macro-actions is not restricted thseater the relaxed
planning graph heuristic. Currently, the effect of using the macro-afiorsearch under other
heuristics is being investigated, including the causal-graph heuristic (He20&®) used by Fast-
Downward .

153

COLES & SMITH

At present, the macro-actions used in Marvin are restricted to those ussdape plateaux.
Work is currently in progress exploring ways of extending the macratiegicapabilities of Marvin
to include more general macro-action structures of the kind being expghgrBotea and Schaeffer
(Botea et al., 2005).

8. Conclusions

We have presented a forward search heuristic planner called Marvich wtroduces several mod-
ifications to the search strategy of FF. These are:

e The use of learned macro-actions for escaping plateaux.
¢ A least-bad-first search strategy for search on plateaux.
e A greedy best-first search strategy when EHC fails.

e The addition of native support for both ADL and derived predicatatout relying on a
domain preprocessor.

Results presented indicate that the effects of these modifications varersdilegpon the domain
with which the planner is presented, but can be summarised as:

e The inference and use of plateau-escaping macro-actions:
— Provides improved performance in the Philosophers, Depots, Drivedod

Pipestankage-nontemporal domains, in terms of planner execution time.

— Although performance did not improve in the other domains, it did not significa
degrade, with the exception of FreeCell.

— The makespan of the plans found in the majority of domains was not degogdbe
use of macro-actions.

e The use of least-bad-first search:

— Provides substantial improvements in planner performance in the Philosafdmain.

— Reduces planner execution time in the Satellite, Driverlog and Pipestankage-
nontemporal domains, sometimes at the expense of increased solution plsparak

— Provides worse performance in the FreeCell and Pipesnotankatgmmmral domains.

e Greedy best-first search does not perform significantly differergiy best-first search in the
evaluation domains considered.

e Other than in the Airport domain, where no difference in performance isreed, the native
support for derived predicates and ADL improves the performanteeoplanner; either by
allowing a more-compact higher-level domain formulation to be used, or byowirng the
effectiveness of the macro-actions inferred.

154

MARVIN: A HEURISTIC SEARCH PLANNER WITH ONLINE MACRO-ACTION LEARNING

Acknowledgments

We would like to thank the anonymous referees for their comments, and MatitoFher help in
revising this manuscript. We also thank Derek Long for supporting us imiegt®larvin into IPC
4 and &rg Hoffmann and Stefan Edelkamp for their hard work in organising thepedtition.

References

Bacchus, F. (2001). The aips '00 planning competitiéd.Magazine 22(3), 47-56.

Blum, A., & Furst, M. (1995). Fast planning through planning graph aialyln Proceedings of
the Fourteenth International Joint Conference on Artificial Inteligenc€QB95), pp. 1636—
1642.

Bonet, B., & Geffner, H. (2000). HSP: Heuristic search planA¢iMagazine 21(2).

Botea, A., Enzenberger, M., Muller, M., & Schaeffer, J. (2005). MdeF: Improving Al planning
with automatically learned macro-operatodgurnal of Artificial Intelligence ResearcB4,
581-621.

Dawson, C., & Siklossy, L. (1977). The role of preprocessing in lembsolving systems. In
Proceedings of the Fifth International Joint Conference on Artificial Intelige, (IJCAI-77)
pp. 465-471.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the applicaifdcheorem proving
to problem solving. IrfProceedings of the 2nd International Joint Conference on Artificial
Intelligence (IJCAI-71)pp. 608-620.

Gazen, B., & Knoblock, C. (1997). Combining the expressivity of UCR@HR the efficiency of
Graphplan. InProceedings of the Fourth European Conference on Planning (EGPp@7
221-233.

Helmert, M. (2004). A planning heuristic based on causal graph analysiBroceedings of the
Fourteenth International Conference on Automated Planning and SthgdiiCAPS-04)
pp. 161-170.

Helmert, M. (2006). The fast downward planning systedournal of Artificial Intelligence Re-
search 26, 191-246.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4.00@rview. Journal of
Artificial Intelligence Researgt24, 519-579.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plaergéon through heuristic
search.Journal of Artificial Intelligence Research4, 253—302.

Hoffmann, J. (2001). Local search topology in planning benchmamkgmpirical analysis. IfPro-
ceedings of the Seventeenth International Joint Conference on Artlfibédligence (IJCAI-
01), pp. 453-458.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local shdopology in planning bench-
marks.Journal of Artificial Intelligence ResearcB4, 685—-758.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extengitamining graphs to an
ADL sub-set. InProceedings of the Fourth European Conference on Planning (EQPp97
275-287.

155

COLES & SMITH

Long, D., & Fox, M. (2003). The 3rd International Planning Competitionsufes and Analysis.
Journal of Artificial Intelligence ResearcB0, 1-59.

Long, D., & Fox, M. (1999). Efficient implementation of the plan graph in 8SlTAJournal of
Artificial Intelligence Researcii0, 87-115.

Long, D., & Fox, M. (2003). The third international planning competitionsits and analysis.
Journal of Artificial Intelligence ResearcB0, 1-59.

McDermott, D. (1996). A heuristic estimator for means ends analysis in planiinDrabble, B.
(Ed.), Proceedings of the Third International Conference on Atrtificial IntelliggeR®lanning
Systems (AIPS-98)p. 142—-149. AAAI Press.

McDermott, D. (2000). The 1998 Al planning systems competitdhMagazine 21(2), 35-55.

Minton, S. (1985). Selectively generalizing plans for problem-solving2rbceedings of the Ninth
International Joint Conference on Atrtificial Intelligence (IJJCAI-85)

Nebel, B., Hoffmann, J., & Thiebaux, S. (2003). In defense of PDKibras. InProceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (1303), pp. 961-966.

Newton, M., Levine, J., & Fox, M. (2005). Genetically evolved macro-astion A.l. planning
problems. In Tuson, A. (Ed.Rroceedings of the 24th UK Planning and Scheduling, &
163-172.

Pednault, E. (1989). ADL: Exploring the middle ground between STRifStze situation calculus.
In Proceedings of the First International Conference on Principles ofidadge Represen-
tation and Reasoningp. 324-332.

Vidal, V. (2004). A lookahead strategy for heuristic search planningPrbceedings of the Four-
teenth International Conference on Automated Planning and SchedultaP&-04) pp.
150-160.

156

