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Abstract

In this paper we apply computer-aided theorem discovery technique to discover theo-
rems about strongly equivalent logic programs under the answer set semantics. Our dis-
covered theorems capture new classes of strongly equivalent logic programs that can lead
to new program simplification rules that preserve strong equivalence. Specifically, with
the help of computers, we discovered exact conditions that capture the strong equivalence
between a rule and the empty set, between two rules, between two rules and one of the two
rules, between two rules and another rule, and between three rules and two of the three
rules.

1. Introduction

In this paper we apply computer-aided theorem discovery technique to discover theorems
about strongly equivalent logic programs under the answer set semantics. Our discovered
theorems capture new classes of strongly equivalent logic programs that can lead to new
program simplification rules that preserve strong equivalence.

Theorem discovery is a highly creative human process. Generally speaking, we can
divide it into two steps: (i) conjecture formulation, and (ii) conjecture verification, and
computers can help in both of these two steps. For instance, machine learning tools can
be used in the first step, i.e. in coming up with reasonable conjectures, and automated
deduction tools can be used in the second step, i.e. in verifying the correctness of these
conjectures.

While theorem discovery may make use of learning, these two tasks are fundamen-
tally different. Theorem discovery starts with a theory, and aims at finding interesting
consequences of the theory, while learning is mostly about induction, i.e. it starts with
examples/consequences, and aims at finding a theory that would explain the given exam-
ples/consequences.

Using computers to discover theorems is an old aspiration. There have been some
success stories. For instance, AM (Lenat, 1979) was reported to be able to come up with
some interesting concepts and theorems in number theory, and the remarkable systems
described by Petkovsek, Wilf, and Zeilberger (1996) can discover many identities, especially
hypergeometric identities involving sums of binomial coefficients that are important for the
analyses of algorithms. Yet another example where “interesting” theorems can be discovered
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almost fully automatically is a recent work by Lin (2004) on discovering state invariants in
planning domains. Lin showed that there are ways to classify many state constraints that
are useful in planning according to their syntactic properties, and enumerate them easily
for many domains. Furthermore, for many of these constraints whether they are invariants
can be checked automatically. As a result, the system described by Lin (2004) can discover
many common constraints in planning domains, and for the logistics domain, it could even
discover a set of “complete” state invariants.

Following this line of research, in this paper, we consider the problem of discovering
classes of strongly equivalent sets of logic program rules under answer set semantics. As
noted by Lifschitz, Pearce, and Valverde (2001), if two sets of rules are strongly equivalent,
then we can replace one by the other in any logic program without changing the semantics
of the program. Thus identifying strongly equivalent sets of logic program rules is a useful
exercise that may have applications in program simplification.

This paper is organized as follows. In the next section, we briefly review the basic
concepts of logic programming under answer set semantics. Then in section 3 we state in
more precise terms the type of theorems that we want to discover. In section 4 we prove
some general theorems that will help us prove these theorems, and in section 5, we describe
some of the theorems that we discovered. We then discuss an application to logic program
simplification in section 6, and finally we conclude this paper in section 7.

2. Answer Set Programming

Traditional logic programming systems like Prolog solve problems by query answering. The
user encodes knowledge about a domain by a set of rules, and solves a problem by issuing
queries to the set of rules. In contrast, Answer Set Programming (ASP) (Niemelä, 1999;
Lifschitz, 1999; Marek & Truszczynski, 1999) is a constraint-based programming paradigm.
It is based on logic programming with answer set semantics (Gelfond & Lifschitz, 1988,
1991). To solve a problem, the user encodes the domain knowledge as a logic program in
such a way that the answer sets of the program will correspond to the solutions to the original
problem. Compared to other constraint-based programming paradigms, ASP allows natural
encodings of recursive relations, and has built-in facilities for default reasoning. Several ASP
solvers have been developed (Niemelä, Simons, & Syrjänen, 2000; Leone, Pfeifer, Faber,
Eiter, Gottlob, Perri, & Scarcello, 2006; Lin & Zhao, 2004; Lierler & Maratea, 2004). To
date, ASP has been used in space shuttle planning (Nogueira, Balduccini, Gelfond, Watson,
& Barry, 2001), evolutional linguistics (Erdem, Lifschitz, Nakhleh, & Ringe, 2003), and
others. In the following, we briefly review some basic notions in ASP.

Let L be a propositional language, i.e. a set of atoms. In this paper we shall consider
logic programs with rules of the following form:

h1; · · · ;hk ← p1, · · · , pm, not pm+1, · · · , not pn (1)

where hi’s and pi’s are atoms in L. So a logic program here can have default negation (not ),
constraints (when k = 0), and disjunctions in the head of its rules. In the following, if r is a
rule of the above form, we write Hdr to denote the set {h1, ..., hk}, Psr the set {p1, ..., pm},
and Ngr the set {pm+1, ..., pn}. Thus a rule r can also be written as Hdr ← Psr, not Ngr.
The semantics of these programs are given by answer sets (Gelfond & Lifschitz, 1991), which
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are defined by a fixed-point operator through what has been known as Gelfond-Lifschitz
transformation. Let X be a subset of L, and P a logic program. The Gelfond-Lifschitz
transformation of P on X, written PX , is the set of rules obtained from P according to the
following two rules:

1. If a rule of the form (1) is in P , and pi ∈ X for some m + 1 ≤ i ≤ n, then delete this
rule.

2. Delete all literals of the form not pi in the bodies of the remaining rules.

For instance, if P is the set of following rules:

a; b←
c← not a

then P {a} is {a; b←}, and P {b} is {(a; b←), (c←)}.
Clearly, for any X and P , PX is a set of rules which do not have the “not ” operator.

Now a set X is an answer set of P if X is a minimal set of atoms that satisfies every rule
in PX , where X satisfies a rule of the form

h1; · · · ;hk ← p1, · · · , pm

if for some 1 ≤ i ≤ k, hi ∈ X whenever {p1, ..., pm} ⊆ X. For instance, for the above
program, both {a} and {b, c} are answer sets, and they are the only answer sets of the
program.

Two logic programs P1 and P2 are said to be equivalent if they have the same answer sets,
and strongly equivalent (Lifschitz et al., 2001) (under the language L), written P1 'se P2,
if for any logic program P in L, P ∪P1 and P ∪P2 are equivalent (thus we write P1 6'se P2

when P1 and P2 are not strongly equivalent). For example, {a ← b} and {a ← c} are
equivalent, but not strongly equivalent. It can be shown that {a ← not a} 'se {← not a}.
As in the abstract, we also say that a rule r is strongly equivalent to another rule r′, written
r 'se r′, if {r} 'se {r′}, and two rules r1 and r2 are strongly equivalent to a rule r, written
{r1, r2} 'se r, if {r1, r2} 'se {r}, and so on.

The notion of strong equivalence is important for ASP for several reasons. First of all, it
helps us understand the answer set semantics. For instance, Turner (2003) showed that the
disjunctive rule (a; b←) is not strongly equivalent to any set of normal rules. This implies
that there cannot be a modular translation from disjunctive logic programs to normal logic
programs. However,

{(a; b←), (← a, b)}

is strongly equivalent to

{(a← not b), (b← not a), (← a, b)}.

This means that under the constraint (← a, b), the disjunctive rule (a; b←) can be replaced
by two rules without disjunction. Secondly, as we mentioned in the introduction, if P1 and
P2 are strongly equivalent, then they are interchangeable regardless of where they occur.
Thus if we have a large repertoire of pairs of strongly equivalent logic programs, we could
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use them to transform a given program into one that is most suitable to the need in hand.
In particular, it could help us simplify a program for the purpose of computing its answer
sets. As we shall see, our discovered theorems will contribute significantly to this repertoire.

Lifschitz et al. (2001) showed that checking for strong equivalence between two logic
programs can be done in the logic of here-and-there, a three-valued non-classical logic
somewhere between classical logic and intuitionistic logic. Lin (2002) provided a mapping
from logic programs to propositional theories and showed that two logic programs are
strongly equivalent iff their corresponding theories in propositional logic are equivalent.
This result will be used here both for generating example pairs of strongly equivalent logic
programs, and for verifying a conjecture. We repeat it here.

Let P1 and P2 be two finite logic programs, and L the set of atoms in them.

Theorem 1 (Lin, 2002) P1 'se P2 iff in propositional logic, the following sentence is valid:

(
∧
p∈L

p ⊃ p′) ⊃ [
∧

r∈P1

δ(r) ≡
∧

r∈P2

δ(r)], (2)

where for each p ∈ L, p′ is a new atom, and for each rule r of the form (1), δ(r) is the
conjunction of the following two sentences:

p1 ∧ · · · ∧ pm ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h1 ∨ · · · ∨ hk, (3)
p′1 ∧ · · · ∧ p′m ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h′1 ∨ · · · ∨ h′k. (4)

Notice that if m = n = 0, then the left sides of the implications in (3) and (4) are considered
to be true, and if k = 0, then the right sides of the implications in (3) and (4) are considered
to be false.

In general checking if two sets of rules are strongly equivalent is coNP-complete (c.f.
Turner, 2001; Pearce, Tompits, & Woltran, 2001; Lin, 2002).

3. The Problem

As we mentioned above, one possible use of the notion of strongly equivalent logic programs
is in program simplification. For instance, given a logic program, for each rule r in it,
we may ask whether it can be deleted without knowing what other rules are in P , i.e.
whether {r} is strongly equivalent to the empty set. Or we may ask whether a rule r in
P can be deleted if one knows that another rule r′ is already in P , i.e. whether {r, r′}
is strongly equivalent to {r′}. In general, we may ask the following k-m-n question: Is
{r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn}? Thus our theorem discovery task is to come
up, for a given k-m-n problem, a computationally effective condition that holds if and only
if the answer to the k-m-n question is positive.

Now suppose we have such a condition C, and suppose that when

{r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn},

it is better to replace {u1, ..., um} by {v1, ..., vn} in the presence of r1, ..., rk for the purpose
of, say computing the answer sets of a program. One way to use this result to simplify a
given program P is to first choose k rules in P , and for any other m rules in it, try to find
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n rules so that the condition C holds, and then replace the m rules in P by the simpler n
rules.

However, even if checking whether C holds would take a negligible constant time, using
the above procedure to simplify a given logic program will be practical only when k, m, n
are all very small or when k is almost the same as the number of the rules in the given
program, and m and n are very small. Thus it seems to us that it is worthwhile to solve
the k-m-n problem only when k, m, n are small. In particular, in this paper, we shall
concentrate on the 0-1-0 problem (whether a rule can always be deleted), the 0-1-1 problem
(whether a rule can always be replaced by another one), the 1-1-0 problem (in the presence
of a rule, whether another rule can be deleted), the 2-1-0 problem (in the presence of two
rules, whether a rule can always be deleted), and the 0-2-1 problem (if a pair of rules can
be replaced by a single rule).

An example of theorems that we want to discover about these problems is as follows:

For any rule r, r 'se ∅ iff (Hdr ∪Ngr) ∩ Psr 6= ∅. (5)

4. Some General Theorems

In this section, we prove some general theorems that will help us verify whether an assertion
like (5) above is true.

Let L be a propositional language, i.e. a set of atoms. From L, construct a first-order
language FL with equality, two unary predicates H1 and H2, three unary predicates Hdr,
Psr, and Ngr for each logic program rule r in L (we assume that each rule in L has a unique
name), and three unary predicates Xi, Yi, and Zi for each positive number i.

Notice that we have used Hdr, Psr, and Ngr to denote sets of atoms previously, but
now we overload them as unary predicates. Naturally, the intended interpretations of these
unary predicates are their respective sets.

Definition 1 Given a set L of atoms, an intended model of FL is one whose domain is L,
and for each rule r in L, the unary predicates Psr, Hdr, and Ngr are interpreted by their
corresponding sets of atoms, Psr, Hdr, and Ngr, respectively.

Conditions on rules in L, such as Psr ∩Ngr 6= ∅, will be expressed by special sentences
called properties in FL.

Definition 2 A sentence of FL is a property about n rules if it is constructed from equality
and predicates Xi, Yi, and Zi, 1 ≤ i ≤ n. A property Φ about n rules is true (holds) on a
sequence P = [r1, ..., rn] of n rules if Φ[P ] is true in an intended model of FL, where Φ[P ]
is obtained from Φ by replacing each Xi by Hdri, Yi by Psri, and Zi by Ngri.

Notice that since Φ[P ] does not mention predicates Xi, Yi, Zi, H1, and H2, if it is true in
one intended model, then it is true in all intended models.

As we have mentioned above, we are interested in capturing the strong equivalence
between two programs by a computationally effective condition. More specifically, for some
small k, m, and n, we are interested in finding a property Φ about k + m + n rules such
that for any sequence of k + m + n rules, P = [r1, ..., rk, u1, ..., um, v1, ..., vn],

{r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn} iff Φ is true on P . (6)
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We shall now prove some general theorems that can help us verify the above assertion
for a class of formulas Φ.

First of all, Theorem 1 can be reformulated in FL as follows by reading H1(p) as “p
holds”, and H2(p) as “p′ holds”:

Theorem 2 P1 'se P2 in L iff the following sentence

∀x(H1(x) ⊃ H2(x)) ⊃ [
∧

r∈P1

γ(r) ≡
∧

r∈P2

γ(r)] (7)

is true in all intended models of FL, where γ(r) is the conjunction of the following two
sentences:

[∀x(Psr(x) ⊃ H1(x)) ∧ ∀x(Ngr(x) ⊃ ¬H2(x))] ⊃ ∃x(Hdr(x) ∧H1(x)), (8)
[∀x(Psr(x) ⊃ H2(x)) ∧ ∀x(Ngr(x) ⊃ ¬H2(x))] ⊃ ∃x(Hdr(x) ∧H2(x)). (9)

In first order logic, if a prenex formula of the form ∃~x∀~yB is satisfiable, then it is
satisfiable in a structure with n elements, where B is a formula that contains no quantifiers,
constants, or function symbols, and n is the length of ~x if it is non-empty, and 1 when ~x
is empty. We can prove a similar result for our first-order languages and their intended
models here.

Definition 3 A sentence of FL is an extended property about n rules if it is constructed
from equality and predicates Xi, Yi, and Zi, 1 ≤ i ≤ n, and H1 and H2. An extended
property Φ about n rules is true (holds) on a sequence P = [r1, ..., rn] of n rules in a model
M if Φ[P ] is true in M , where Φ[P ] is obtained from Φ by replacing each Xi by Hdri, Yi by
Psri, and Zi by Ngri.

Definition 4 In the following, if P = [r1, ..., rn] is a tuple of rules in L, and L′ is a subset
of L, then we define the restriction of P on L′ to be [r′1, ..., r

′
n], where r′i is

Hdri ∩ L′ ← Psri ∩ L′, not (Ngri ∩ L′).

Lemma 1 Let Φ be an extended property in FL about n rules, and of the form ∃~x∀~yQ,
where ~x is a tuple of w variables, and Q a formula that does not have any quantifiers. If
Φ holds on a sequence P of n rules in an intended model M of FL, then there is a subset
L′ of L such that L′ has at most w atoms (or one atom when w = 0), and Φ holds on the
restriction of P on L′ in an intended model of FL′.

Proof: Suppose M is an intended model of FL such that M |= Φ[P ]. Thus there is a tuple
~p of w (or one when w = 0) atoms in L such that M |= ∀~yQ[P ](~x/~p). Now let L′ be the set
of atoms in ~p, and M ′ defined as follows:

• Each of the predicates H1, H2, Xi, Yi, and Zi, i ≥ 1, is interpreted as the restriction
of its interpretation in M on L′.

• For each rule r in L′, the predicates Hdr, Psr, and Ngr are interpreted the same as
they are in M . This is well-defined as r is also a rule in L,
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Then M ′ is an intended model of FL′ . Let P ′ be the restriction of P on L′. Then P ′ is a
tuple of rules in L′. Since Q has no quantifiers (and the language has no function symbols),
for any instantiation ~u of ~y in L′, M |= Q[P ](~x/~p)(~y/~u) iff M ′ |= Q[P ′](~x/~p)(~y/~u). Since
M |= ∀~yQ[P ](~x/~p), we have M ′ |= ∀~yQ[P ′](~x/~p), Thus M ′ |= ∃~x∀~yQ[P ′]. �

Using Theorem 2 and this lemma, we can show the following theorem which will enable
us to automate the verification of the “if” part of (6) when the property Φ is in the prenex
format.

Theorem 3 Without loss of generality, suppose m ≥ n. If Φ is a property about k+m+n
rules of the form ∃~x∀~yQ, where ~x is a tuple of w variables, and Q a formula that does not
have any quantifiers, then the following two assertions are equivalent:

(a) For any sequence of k + m + n rules, P = [r1, ..., rk, u1, ..., um, v1, ..., vn], if Φ is true
on P , then {r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn}.

(b)(b.1) If n > 0, then for any sequence P = [r1, ..., rk, u1, ..., um, v1, ..., vn] of rules with
at most w + 2(k + m) atoms, if Φ is true on P , then

{r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn}.

(b.2) If n = 0, then for any sequence P = [r1, ..., rk, u1, ..., um] of rules with at most
K atoms, if Φ is true on P , then

{r1, ..., rk, u1, ..., um} 'se {r1, ..., rk},

where K is w + 2k if w + 2k > 0, and K = 1 otherwise.

Proof: If (a) then (b) is obvious. We assume that (b) is true, and show that (a) holds as
well. Suppose first that n > 0. Suppose P = [r1, ..., rk, u1, ..., um, v1, ..., vn] is a sequence of
k + m + n rules in a language L such that Φ is true on P , and

{r1, ..., rk, u1, ..., um} 6'se {r1, ..., rk, v1, ..., vn}.

Thus there is an intended model of FL that satisfies Φ[P ], and an intended model M of FL

that satisfies the following sentence:

(∀x)H1(x) ⊃ H2(x) ∧ ¬[
∧

r∈P1

γ(r) ≡
∧

r∈P2

γ(r)],

where P1 = {r1, ..., rk, u1, ..., um}, and P2 = {r1, ..., rk, v1, ..., vn}. As we noted after Defini-
tion 2, M will also satisfy Φ[P ]. Thus M satisfies the following sentence

Φ[P ] ∧ (∀x)H1(x) ⊃ H2(x) ∧ {[
∧

r∈P1

γ(r) ∧ ¬
∧

r∈P3

γ(r)] ∨ [
∧

r∈P2

γ(r) ∧ ¬
∧

r∈P4

γ(r)]}, (10)

where P3 = {v1, ..., vn}, and P4 = {u1, ..., um}.
Now for any rule r, there is an extended property ϕ(x, y) of one rule that does not

mention any quantifiers such that γ(r) is equivalent to ∃x, y.ϕ[r]. Thus for any tuple Q of t
rules, there is an extended property ϕ of t rules that does not mention any quantifiers such
that

∧
r∈Q γ(r) is equivalent to ∃~y.ϕ[Q], where ~y is a tuple of 2t variables.

Thus there is
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• a tuple ~z1 of 2(k + m) variables, a tuple ~z2 of variables, an extended property ϕ1 of
k + m + n rules that does not have any quantifiers, and whose free variables are in ~z1

and ~z2; and

• a tuple ~z3 of 2(k + n) variables, a tuple ~v4 of variables, and an extended property ϕ2

of k + m + n rules that does not have any quantifiers, and whose free variables are in
~z3 and ~z4

such that ~v1, ~v2, ~v3, ~v4 do not have common variables in them, and (10) is equivalent to the
following sentence:

{Φ ∧ ∀x(H1(x) ⊃ H2(x)) ∧ (∃~z1∀~z2ϕ1 ∨ ∃~z3∀~z4ϕ2)}[P ].

Since we have assumed that m ≥ n, thus there is an extended property ϕ3 about k +m+n
rules that does not mention any quantifiers and function symbols, and whose free variables
are among ~z1, ~z2, and ~z4 such that the above sentence is equivalent to the following sentence:

(Φ ∧ ∀x(H1(x) ⊃ H2(x)) ∧ ∃~z1(∀~z2, ~z4)ϕ3)[P ].

Now given the form of Φ assumed in the theorem, there is a tuple ~z5 of w + 2(k + m)
variables, a tuple ~z6 of variables, and an extended property Ψ of k + m + n rules that does
not mention any quantifiers, and whose free variables are among ~z5, and ~z6 such that the
above sentence is equivalent to (∃~z5)(∀~z6)Ψ[P ].

By Lemma 1, there is a subset L′ of L that has at most w + 2(k + m) atoms such that
(∃~z5)(∀~z6)Ψ holds on P ′, where P ′ is the restriction of P on L′. If

P ′ = [r′1, ..., r
′
k, u

′
1, ..., u

′
m, v′1, ..., v

′
n],

then this will mean that Φ is true on P ′, and {r′1, ..., r′k, u′1, ..., u′m} 6'se {r′1, ..., r′k, v′1, ..., v′n}.
This shows that if (b.1), then (a).

The proof that if (b.2) then (a) is exactly the same except now that

[
∧

r∈P1

γ(r) ≡
∧

r∈P2

γ(r)]

is equivalent to
[
∧

r∈P2

γ(r) ⊃
∧

r∈P1

γ(r)].

�
The “only if” part of (6) can often be proved with the help of the following theorem.

Theorem 4 Let L1 and L2 be two languages, and f a function from L1 to L2. If P1 and P2

are two programs in L1 that are strongly equivalent, then f(P1) and f(P2) are two programs
in L2 that are also strongly equivalent. Here f(P ) is obtained from P by replacing each
atom p in it by f(p).

Proof: By Theorem 1 and the fact that in propositional logic, if ϕ is a tautology, and f a
function from L1 to L2, then f(ϕ) is also a tautology, where f(ϕ) is the formula obtained
from ϕ by replacing each atom p in it by f(p). �

For an example of using the theorems in this section for proving assertions of the form
(6), see Section 5.1.
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5. Computer-Aided Theorem Discovery

Given a k-m-n problem, our strategy for discovering theorems about it is as follows:

1. Choose a small language L;

2. Generate all possible triples

({r1, ..., rk}, {u1, ..., um}, {v1, ..., vn}) (11)

of sets of rules in L such that {r1, ..., rk, u1, ..., um} 'se {r1, ..., rk, v1, ..., vn} in L;

3. Formulate a conjecture on the k-m-n problem that holds in the language L, i.e. a
condition that is true for a triple of the form (11) iff it is generated in Step 2;

4. Verify the correctness of this conjecture in the general case.

This process may have to be iterated. For instance, a conjecture formulated in Step 3 may
fail to generalize in Step 4, so we either need to formulate a new conjecture or start all over
again in step 1 using a larger language.

Ideally, we would like this process to be automatic. However, it is difficult to automate
Steps 3 and 4 - the number of possible patterns that we need to examine in order to come
up with a good conjecture in Step 3 is huge, and we do not have a general theorem that
enables us to automate the verification part in Step 4. While Theorem 3 enables us to
automate the proof of the sufficient part of the assertion (6) for a class of formulas Φ, we
do not have a similar result for the necessary part - as we shall see below, Theorem 4 helps
a lot here, but it does not provide an automated procedure. Nonetheless, computers play
a crucial role in all steps, and in the following we report some of the theorems discovered
using the above procedure.

5.1 The 0-1-0 Problem

This problem asks if a given rule is strongly equivalent to the empty set, thus can always
be deleted from any program. We have the following experimental result:

Lemma 2 If a rule r mentions at most three distinct atoms, then r 'se ∅ iff

(Hdr ∪Ngr) ∩ Psr 6= ∅.

Using Theorem 4, we can show the following result:

Lemma 3 If there is a rule r of the form (1) such that r 'se ∅ and (Hdr ∪Ngr) ∩ Psr 6= ∅
is not true, then there is such a rule that mentions at most three atoms.

Proof: Suppose r 'se ∅, Hdr ∩ Psr = ∅, and Psr ∩Ngr = ∅. Suppose L is the set of atoms
in r, and a, b, c are three new atoms. Let

f(p) =


a p ∈ Hdr

b p ∈ Psr

c otherwise
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By Theorem 4, we also have f(r) 'se ∅. By the construction of f , we also have
Hdf(r) ∩ Psf(r) = ∅, and Psf(r) ∩Ngf(r) = ∅, and that f(r) mentions at most three distinct
atoms. �

Theorem 5 (The 0-1-0 problem) Lemma 2 holds in the general case, i.e. without any
restriction on the number of atoms in r.

Proof: We notice that the condition in Lemma 2, (Hdr ∪Ngr) ∩ Psr 6= ∅, is equivalent to
the following property

∃x.(X1(x) ∨ Z1(x)) ∧ Y1(x)

being true on [r]. Thus the “if” part follows from Theorem 3 and Lemma 2. The “only if”
part follows from Lemma 2 and Lemma 3. �

The “if” part of the theorem is already well-known, first proved by Osorio et. al. (2001).
The “only if” part has also been proved recently by Inoue and Sakama (2004). While we
did not discover anything new in this case, it is reassuring that the methodology works.

We notice here that there is no need to consider the 0-n-0 problem for n > 1, because
for any n, {r1, ..., rn} is strongly equivalent to ∅ iff for each 1 ≤ i ≤ n, {ri} is strongly
equivalent to ∅.

5.2 The 1-1-0 and the 0-1-1 Problems

The 1-1-0 problem asks if a rule can always be deleted in the presence of another rule, and
the 0-1-1 problem asks if a rule can always be replaced by another one. We first solve the
1-1-0 problem, and the solution to the 0-1-1 problem will come as a corollary.

We have the following experimental result for the 1-1-0 problem:

Lemma 4 For any two rules r1 and r2 that mentions at most three atoms, {r1, r2} and
{r1} are strongly equivalent iff one of the following two conditions is true:

1. r2 'se ∅.

2. Psr1 ⊆ Psr2, Ngr1 ⊆ Ngr2, and Hdr1 ⊆ Hdr2 ∪Ngr2.

Lemma 5 If there are two rules r1 and r2 such that {r1, r2} 'se {r2}, but none of the
two conditions in Lemma 4 hold, then there are two such rules that mention at most three
atoms.

Proof: Suppose there are two rules r1, r2 such that {r1, r2} 'se {r2}, and none of the two
conditions in Lemma 4 hold. Let L be the set of atoms in r1, r2.

Without loss of generality, suppose a1 is an atom that makes the condition (2) in
Lemma 4 false. If Psr2 \ {a1} is not empty, let a2 be an atom in it. Let L′ = {a1, a2, a3},
where a3 is a new atom, and f be a function from L to L′ as following:

f(a) =


a1 a = a1

a2 a ∈ Psr2 \ {a1}
a3 otherwise
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clearly, f(r1) and f(r2) mention at most three distinct atoms, and by Theorem 4,

{f(r1), f(r2)} 'se f(r1).

We show that none of the two conditions in Lemma 4 hold for f(r1) and f(r2) either.
We show first that f(r2) 6'se ∅. By Theorem 5, we need to show that

S = Psf(r2) ∩ (Hdf(r2) ∪Ngf(r2))

is empty. If a1 ∈ S, then by the construction of f , a1 ∈ Psr2 ∩ (Hdr2 ∪Ngr2), a contradiction
with the assumption that r2 is not strongly equivalent to ∅. Similarly, if a2 ∈ S, then by
the construction of f , a2 ∈ Psr2 ∩ (Hdr2 ∪Ngr2), a contradiction with the assumption that
r2 is not strongly equivalent to ∅. But then a3 cannot be in S as a3 cannot be in Psf(r2).
Thus S must be empty.

We now show that it is not the case that Psf(r1) ⊆ Psf(r2), Ngf(r1) ⊆ Ngf(r2), and
Hdf(r1) ⊆ Hdf(r2)∪Ngf(r2). By our assumption, a1 is an atom that makes either Psr1 ⊆ Psr2 ,
Ngr1 ⊆ Ngr2 , or Hdr1 ⊆ Hdr2 ∪ Ngr2 false. There are three cases here. Suppose a1 makes
Psr1 ⊆ Psr2 false, i.e. a1 ∈ Psr1 but a1 6∈ Psr2 . Then by our construction of f , we also have
that a1 ∈ Psf(r1) but a1 6∈ Psf(r2). The other two cases are similar. �

Theorem 6 (The 1-1-0 problem) Lemma 4 holds in the general case, without any re-
striction on the number of atoms in r1 and r2.

Proof: The condition in Lemma 4 is equivalent to the following property

[∃x.(X2(x) ∨ Z2(x)) ∧ Y2(x)] ∨
{[∀x.Y1(x) ⊃ Y2(x)] ∧ [∀x.Z1(x) ⊃ Z2(x)] ∧ [∀x.X1(x) ⊃ (X2(x) ∨ Z2(x))]}

being true on [r1, r2]. Thus the “if” part follows from Theorem 3 and Lemma 4, by noticing
that the above property can be written as ∃x∀~y.Q as required by Theorem 3. The “only
if” part follows from Lemma 4 and Lemma 5. �

Thus if a rule r2 cannot be deleted on its own but can be deleted in the presence of
another rule r1, then it must be the case that r2 is redundant given r1: if the body of r2 is
satisfied, then the body of r1 is satisfied as well; furthermore, r2 can entail no more than
what can be entailed by r1 (Hdr1 ⊆ Hdr2 ∪Ngr2).

Osorio et al. (2001) proved that {r1, r2} 'se r1 if either Psr1∪Ngr1 = ∅ and Hdr1 ⊆ Ngr2

or Psr1 ⊆ Psr2 , Ngr1 ⊆ Ngr2 , and Hdr1 ⊆ Hdr2 . More recently, Eiter et al. (2004) showed
that {r1, r2} 'se r1 if r1 s-implies r2 (Wang & Zhou, 2005), i.e. if there exists a set
A ⊆ Ngr2 such that Hdr1 ⊆ Hdr2 ∪A, Ngr1 ⊆ Ngr2 \A, and Psr1 ⊆ Psr2 .

As one can see, these are all special cases of the “if” part of Theorem 6. Our result is
actually more general. For instance, these special cases do not apply to

{(c← b, not c), (← b, not c)}

and
{c← b, not c},

but one can easily show that these two sets are strongly equivalent using our theorem.
¿From our solution to the 1-1-0 problem, we can derive a solution to the 0-1-1 problem.
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Theorem 7 (The 0-1-1 problem) For any two rules r1 and r2, r1 'se r2 iff one of the
following two conditions is true:

1. r1 'se r2 'se ∅.

2. Psr1 = Psr2, Ngr1 = Ngr2, and Hdr1 ∪Ngr1 = Hdr2 ∪Ngr2.

Proof: By Theorem 1, it is easy to see that r1 'se r2 iff {r1, r2} 'se r1 and {r1, r2} 'se r2.
�

Thus two rules r1 and r2 can always be interchanged if either both of them can be
deleted (strongly equivalent to the empty set) or they have the same body, and the same
consequences when the body is true. For instance, we have {a← B,not a} 'se {← B,not a}
no matter what B is, because the two rules have the same body, and when the body is true,
the same consequence - a contradiction. As another example, we have

{a; b← not a} 'se {b← not a},

because the two rules have the same body, and, when the body is true, the same consequence,
b.

5.3 The 2-1-0, 0-2-1, and 0-2-2 Problems

The 2-1-0 problem asks if a rule can be deleted in the presence of another two rules, the
0-2-1 problem asks if two rules can be replaced by a single rule, and the 0-2-2 problem asks
if two rules can be replaced by another two rules. Similar to the previous subsection, the
solution to the 0-2-1 and 0-2-2 problems will follow from a solution to the 2-1-0 problem.

The experiment on the 2-1-0 problem was more difficult because as it turned out, we
have to consider a language with six atoms in this case. In principle, given a language L,
every subset of L can be the Hd, Ps, or Ng of a rule. Thus when the size of L is six, there
are in principle (26)3 − 1 = 262, 143 possible rules, and 262, 1433 triples of them. However,
we can cut down the numbers significantly with the results that we already have proved.

First, we only have to consider rules that do not have common elements in any of the
two sets in {Hd, Ps,Ng}: if either Hd and Ps or Ps and Ng have a common element, then by
Theorem 5, this rule can be deleted; if Hd and Ng have common elements, then according
to Theorem 7, we obtain a strongly equivalent rule by deleting the common elements in Hd.
In the following, we call such rules canonical, that is, a rule r is canonical if

Hdr ∩ Psr = Hdr ∩Ngr = Psr ∩Ngr = ∅.

Secondly, we do not have to consider isomorphic rules: if there is a one-to-one onto
function from L to L that maps {r1, r2, r3} to {r′1, r′2, r′3}, then these two sets of rules are
essentially the same except for the names of atoms in them.

Thus by considering only canonical rules and using a certain normal form for triples of
rules that avoids isomorphic rules, we ended up with roughly 120 million triples of rules to
consider for verifying the following result, which took about 10 hours on a Solaris server
consisting of 8 Sun Ultra-SPARC III 900Mhz CPUs with 8GB RAM.

For more details on the experiment on 2-1-0 problem, please refer to (Chen, Lin, & Li,
2005).
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Lemma 6 For any three canonical rules r1, r2 and r3 that mention at most six atoms,
{r1, r2, r3} 'se {r1, r2} iff one of the following three conditions is true:

1. {r1, r3} 'se r1.

2. {r2, r3} 'se r2.

3. There is an atom p such that:

3.1 p ∈ (Psr1 ∪ Psr2) ∩ (Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2)

3.2 Hdri \ {p} ⊆ Hdr3 ∪ Ngr3 and Psri \ {p} ⊆ Psr3 and Ngri \ {p} ⊆ Ngr3, where
i = 1, 2

3.3 If p ∈ Psr1 ∩Ngr2, then Hdr1 ∩Hdr3 = ∅
3.4 If p ∈ Psr2 ∩Ngr1, then Hdr2 ∩Hdr3 = ∅

The following lemma is the reason why we need to consider a language with six atoms
for this problem.

Lemma 7 If there are three canonical rules r1,r2 and r3 such that {r1, r2, r3} 'se {r1, r2},
but none of the three conditions in Lemma 6 hold, then there are three such rules that
mention at most six atoms.

Proof: The proof of this lemma is tedious as we have to consider several cases. Consider
the following statements about any three canonical rules r1, r2, r3:

(I) {r1, r2, r3} 'se {r1, r2}.

(II) {r1, r3} 6'se {r1}, i.e. Psr1 6⊆ Psr3 or Ngr1 6⊆ Ngr3 or Hdr1 ∪Ngr1 6⊆ Hdr3 ∪Ngr3

(III) {r2, r3} 6'se {r2}, i.e. Psr2 6⊆ Psr3 or Ngr2 6⊆ Ngr3 or Hdr2 ∪Ngr2 6⊆ Hdr3 ∪Ngr3

(IV) (Psr1 ∪ Psr2) ∩ (Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2) = ∅

(V) There is an atom p in the set (Psr1 ∪Psr2)∩ (Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2), and another
different atom q such that one of the following three conditions is true:

1. q ∈ Hdr1 ∪Ngr1 and q 6∈ Hdr3 ∪Ngr3 .

2. q ∈ Psr1 and q 6∈ Psr3 .

3. q ∈ Ngr1 and q 6∈ Ngr3 .

Notice that this is the negation of condition (3.2) in Lemma 6.

(VI) Hdr1 ∩ Hdr3 6⊆ Ngr3 , and there is an atom p ∈ Psr1 ∩ Ngr2 such that for i = 1, 2,
Hdri \ {p} ⊆ Hdr3 ∪Ngr3 , Psri \ {p} ⊆ Psr3 , and Ngri \ {p} ⊆ Ngr3 .

Since r1 and r2 are symmetric in the conditions in Lemma 6, to prove this lemma, we need
only to prove the following three assertions:

(a) If there are three canonical rules r1, r2, r3 which satisfy (I)-(IV), then there are three
canonical rules r′1, r

′
2, r

′
3 which mention at most six atoms, and satisfy (I)-(IV) as well.
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(b) If there are three canonical rules r1, r2, r3 which satisfy (I)-(III)(V), then there are
three canonical rules r′1, r

′
2, r

′
3 which mention at most six atoms, and satisfy (I)-(III)(V)

as well.

(c) If there are three canonical rules r1, r2, r3 which satisfy (I)-(III)(VI), then there are
three canonical rules r′1, r

′
2, r

′
3 which mention at most six atoms, and satisfy (I)-

(III)(VI) as well.

We now prove the above three assertions one by one.

(a) Let a1, a2 be two atoms that make (II) and (III) true. If (Psr3∩(Psr1∪Psr2))\{a1, a2}
is not empty, let a3 be an atom in it. If Psr3 \(Psr1∪Psr2∪{a1, a2}) is not empty, let a4

be an atom in it. If (Psr1∪Psr2)\(Psr3∪{a1, a2}) is not empty, let a5 be an atom in it.
Finally let a6 be a new atom different from a1 to a5, and L′ = {a1, a2, a3, a4, a5, a6}.
Let f be a function from L to L′ defined as following:

f(a) =



a1 a = a1

a2 a = a2

a3 a ∈ (Psr3 ∩ (Psr1 ∪ Psr2)) \ {a1, a2}
a4 a ∈ Psr3 \ (Psr1 ∪ Psr2 ∪ {a1, a2})
a5 a ∈ (Psr1 ∪ Psr2) \ (Psr3 ∪ {a1, a2})
a6 otherwise

For each 1 ≤ i ≤ 3, let r′i be as follows:

Psr′
i
= Psf(ri), Ngr′

i
= Ngf(ri),Hdr′

i
= Hdf(ri) \Ngf(ri). (12)

We have that

– For each 1 ≤ i ≤ 3, r′i is a canonical rule, and r′i 'se f(ri). For this, we only
need to show f(ri) 6'se ∅ for each 1 ≤ i ≤ 3. To see this, notice that from
the definition of f , atoms other than a1 and a2 in Psr3 are mapped to {a3, a4},
and atoms other than a1 and a2 in Hdr3 ∪ Ngr3 are mapped to {a5, a6}. Thus
Psf(r3) ∩ (Hdf(r3) ∪Ngf(r3)) = ∅. By Theorem 5, f(r3) 6'se ∅. Now f(r1) 6'se ∅
and f(r2) 6'se ∅, because (II) and (III) hold for f(r1), f(r2), f(r3) by definition
of f .

– (I) holds for r′1, r
′
2, r

′
3. This is because by Theorem 4,

{f(r1), f(r2), f(r3)} 6'se {f(r1), f(r2)},

and for each 1 ≤ i ≤ 3, r′i 'se f(ri).

– (II) and (III) hold for r′1, r
′
2, r

′
3. As we mentioned, from the definition of f , (II)

and (III) hold for f(r1), f(r2), f(r3).

– (IV) holds for r′1, r
′
2, r

′
3. Again, we need only to show that (IV) holds for

f(r1), f(r2), f(r3). To see this, notice that atoms other than a1 and a2 in
Psr1 ∪ Psr2 are mapped to {a3, a5}, and atoms other than a1 and a2 in
Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2 are mapped to {a4, a6}.

444



Discovering Classes of Strongly Equivalent Logic Programs

(b) Again let a1, a2 be two atoms that make (II) and (III) true. Let p, q be the two witness
atoms in (V). If Pos(r3) \ {a1, a2, p, q} is not empty, let a3 be an atom in it. Let a4

be a new atom, and L′ = {a1, a2, a3, a4, p, q}. Define f as follows:

f(a) =



a1 a = a1

a2 a = a2

p a = p
q a = q
a3 a ∈ Psr3 \ {a1, a2, p, q}
a4 otherwise

Define r′i by (12) as well for each 1 ≤ i ≤ 3.

– For each 1 ≤ i ≤ 3, r′i is a canonical rule, and r′i 'se f(ri). This can be seen in
the same way as for (a) above.

– By Theorem 4, {f(r1), f(r2), f(r3)} 'se {f(r1), f(r2)}, and thus

{r′1, r′2, r′3} 'se {r′1, r′2}.

So (I) holds for r′1, r
′
2, r

′
3.

– From definition of f , (II) and (III) hold for f(r1), f(r2), f(r3), and thus they hold
for r′1, r

′
2, r

′
3 as well.

– Again from the definition of f , (V) holds for f(r1), f(r2), f(r3): there is an atom
p in the set (Psf(r1)∪Psf(r2))∩(Hdf(r1)∪Hdf(r2)∪Ngf(r1)∪Ngf(r2)), and another
different atom q such that one of the following three conditions is true:

1. q ∈ Hdf(r1) ∪Ngf(r1) and q 6∈ Hdf(r3) ∪Ngf(r3).
2. q ∈ Psf(r1) and q 6∈ Psf(r3).
3. q ∈ Ngf(r1) and q 6∈ Ngf(r3).

(V) holds for r′1, r
′
2, r

′
3 as well because for each 1 ≤ i ≤ 3,

Psr′
i
= Psf(ri), Ngr′

i
= Ngf(ri),Hdr′

i
∪Ngr′

i
= Hdf(ri) ∪Ngf(ri).

(c) Let a1, a2 be two atoms that make (II) and (III) true. Let p be the witness atom in
(VI), and let q ∈ Hdr1 ∩Hdr3 but q 6∈ Ngr3 . If Pos(r3) \ {a1, a2, p, q} is not empty, let
a3 be an atom in it. Let a4 is a new atom, and Let L′ = {a1, a2, a3, a4, p, q}, Define f
as follows:

f(a) =



a1 a = a1

a2 a = a2

p a = p
q a = q
a3 a ∈ Psr3 \ {a1, a2, p, q}
a4 otherwise

Again define r′i by (12) as well for each 1 ≤ i ≤ 3.

– For each 1 ≤ i ≤ 3, r′i is a canonical rule, and r′i 'se f(ri). This can be seen in
the same way as for (a) above.
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– Again by Theorem 4, {f(r1), f(r2), f(r3)} 'se {f(r1), f(r2)}, and thus

{r′1, r′2, r′3} 'se {r′1, r′2}.

So (I) holds for r′1, r
′
2, r

′
3.

– Again from definition of f , (II) and (III) hold for f(r1), f(r2), f(r3), thus they
hold for r′1, r

′
2, r

′
3 as well.

– By the definition of f , (VI) holds for f(r1), f(r2), f(r3): Hdf(r1) ∩ Hdf(r3) 6⊆
Ngf(r3), and there is an atom p ∈ Psf(r1)∩Ngf(r2) such that for i = 1, 2, Hdf(ri) \
{p} ⊆ Hdf(r3) ∪Ngf(r3), Psf(ri) \ {p} ⊆ Psf(r3), and Ngf(ri) \ {p} ⊆ Ngf(r3). (VI)
holds for r′1, r

′
2, r

′
3 as well because

Psr′
i
= Psf(ri), Ngr′

i
= Ngf(ri),Hdr′

i
⊆ Hdf(ri).

�

Theorem 8 (The 2-1-0 problem) Lemma 6 holds in the general case, without any re-
striction on the number of atoms in r1, r2, r3.

Proof: The assertion that r1, r2, and r3 are canonical rules and satisfy one of the three
conditions in Lemma 6 is equivalent to the following property

[∀x.((¬(X1(x) ∧ Y1(x))) ∧ (¬(X1(x) ∧ Z1(x))) ∧ (¬(Y1(x) ∧ Z1(x))))] ∧
[∀x.((¬(X2(x) ∧ Y2(x))) ∧ (¬(X2(x) ∧ Z2(x))) ∧ (¬(Y2(x) ∧ Z2(x))))] ∧
[∀x.((¬(X3(x) ∧ Y3(x))) ∧ (¬(X3(x) ∧ Z3(x))) ∧ (¬(Y3(x) ∧ Z3(x))))] ∧
{[(∀x.Y1(x) ⊃ Y3(x)) ∧ (∀x.Z1(x) ⊃ Z3(x)) ∧ (∀x.X1(x) ⊃ (X3(x) ∨ Z3(x)))] ∨

[(∀x.Y2(x) ⊃ Y3(x)) ∧ (∀x.Z2(x) ⊃ Z3(x)) ∧ (∀x.X2(x) ⊃ (X3(x) ∨ Z3(x)))] ∨
[∃x.CON1(x) ∧ CON2(x) ∧ CON3(x) ∧ CON4(x)]}

being true on [r1, r2, r3], where CON1(x) stands for

(Y1(x) ∨ Y2(x)) ∧ (X1(x) ∨X2(x) ∨ Z1(x) ∨ Z2(x))

CON2(x) for

∀y.(x 6= y) ⊃ [(X1(y) ⊃ (X3(y) ∨ Z3(y))) ∧ (Y1(y) ⊃ Y3(y)) ∧ (Z1(y) ⊃ Z3(y)) ∧
(X2(y) ⊃ (X3(y) ∨ Z3(y))) ∧ (Y2(y) ⊃ Y3(y)) ∧ (Z2(y) ⊃ Z3(y))]

CON3(x) for
Y1(x) ∧ Z2(x) ⊃ ∀y.(¬(X1(y) ∧X3(y))),

and CON4(x) for
Y2(x) ∧ Z1(x) ⊃ ∀y.(¬(X2(y) ∧X3(y))).

Thus the “if” part follows from Theorem 3 and Lemma 6, by noticing that the above
property can be written as ∃x∀~y.Q as required by Theorem 3. The “only if” part follows
from Lemma 6 and Lemma 7. �
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The conditions in Lemma 6 (Theorem 8) are rather complex, and the reason why it
is difficult to automate Step 3 of the procedure at the beginning of the section. These
conditions capture all possible cases when r3 is “subsumed” by r1 and r2, and are difficult
to describe concisely by words. We give some examples.

Consider the following three rules:

r1 : (a2 ← a1)
r2 : (a3 ← not a1)
r3 : (a3 ← not a2).

We have that {r1, r2, r3} 'se {r1, r2} because the condition (4) in Lemma 6 holds.
However, if we change r3 into r′3 : a2 ← not a3, then P1 = {r1, r2, r

′
3} and P2 = {r1, r2}

are not strongly equivalent: one could check that condition (4.3) in Lemma 6 does not hold,
and indeed, while P2 ∪ {a1 ← a2} has a unique answer set {a3}, P1 ∪ {a1 ← a2} has two
answer sets {a3} and {a1, a2}.

It is also easy to show by Theorem 8 that a3 ← not a2 is “subsumed” by

{(a1; a2; a3 ←), (a2; a3 ← a1)},

and a2; a3 ← is “subsumed” by

{(a2 ← a1), (a3 ← not a1)}.

With the results that we have, the following theorem will yield a solution to the 0-2-1
problem.

Theorem 9 (the 0-2-1 problem) For any three rules r1, r2 and r3, {r1, r2} and {r3} are
strongly equivalent iff the following three conditions are true:

1. {r1, r2, r3} 'se {r1, r2}.

2. {r1, r3} 'se {r3}.

3. {r2, r3} 'se {r3}.

For example, We have

{(a2 ← a1, not a3), (a1; a2 ← not a3)} 'se {a2 ← not a3}.

While we have
{(← a2, a3), (← a3, not a2)} 'se {← a3},

we have
{(a1 ← a2, a3), (a1 ← a3, not a2)} 6'se {a1 ← a3}.

Similarly, we have the following theorem

Theorem 10 (the 0-2-2 problem) For any four rules r1, r2, r3, r4, {r1, r2} and {r3, r4}
are strongly equivalent iff the following four conditions are true:
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1. {r1, r2, r3} 'se {r1, r2}.

2. {r1, r2, r4} 'se {r1, r2}.

3. {r3, r4, r1} 'se {r3, r4}.

4. {r3, r4, r2} 'se {r3, r4}.

6. Program Simplification

We have mentioned that one possible use of the notion of strongly equivalent logic programs
is in simplifying logic programs: if P 'se Q, and that Q is “simpler” than P , we can then
replace P in any program that contains it by Q.

Most answer set programming systems perform some program simplifications. However,
only Smodels (Niemelä et al., 2000) has a stand-alone front-end called lparse that can be
used to ground and simplify a given logic program. It seems that lparse simplifies a grounded
logic program by computing first its well-founded model. It does not, however, perform any
program simplification using the notion of strong equivalence. For instance, lparse-1.0.13,
the current version of lparse, did nothing to the following set of rules:
{(a ← not b), (b ← not a), (a ← a)}. Nor does it replace the first rule in the following
program {(a← not a), (a← not b), (b← not a)} by the constraint ← not a.

It is unlikely that anyone would be intentionally writing rules like a← a or b← a, not a.
But these type of rules can arise as a result of grounding some rules with variables. For
instance, the following is a typical recursive rule used in logic programming encoding of the
Hamiltonian Circuit problem (Niemelä, 1999; Marek & Truszczynski, 1999):

reached(X)← arc(Y, X), hc(Y, X), reached(Y ).

When instantiated on a graph with cyclic arcs like arc(a, a), this rule generates cyclic rules
of the form reached(X)← hc(X, X), reached(X). Unless deleted explicitly, these rules will
slow down many systems, especially those based on SAT. For instance, none of the graphs
tested using ASSAT have self-cycles consisting of an arc from a node to itself (Lin & Zhao,
2004). If these cycles are included, ASSAT would run significantly longer.

It is thus useful to consider using the results that we have here for program simplification.
Indeed, transformation rules such as deleting those that contain common elements in their
heads and positive bodies have been proposed (Brass & Dix, 1999), and studied from the
perspective of strong equivalence (Osorio et al., 2001; Eiter et al., 2004). Our results
add new such transformation rules. For instance, by Theorem 7, we can delete those
elements in the head of a rule that also appear in the negation-as-failure part of the rule.
Theorems 6, 8, and 9 can also be used to define some new transformation rules.

7. Concluding Remarks and Future Work

Donald Knuth, in his Forward to (Petkovsek et al., 1996), said

“Science is what we understand well enough to explain to a computer. Art is
everything else we do. ...Science advances whenever an Art becomes a Science.
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And the state of the Art advances too, because people always leap into new
territory once they have understood more about the old.”

We hope that with this work, we are one step closer to making discovering classes of strongly
equivalent logic programs a Science.

We have mentioned that the methodology used in this paper is similar to that in (Lin,
2004). In both cases, plausible conjectures are generated by testing them in domains of
small sizes, and general theorems are proved to aid the verification of these conjectures
in the general case. However, while plausible conjectures are generated automatically in
(Lin, 2004), they are done manually here. While the verifications of most conjectures in
(Lin, 2004) are done automatically as well, they are done only semi-automatically here.
Overcoming these two weaknesses is the focus of our future work. Specifically, we would
like to make Step 3 of the procedure in Section 5 automatic, and prove a theorem similar
to Theorem 3 to automate the proofs of the “only if” parts of theorems like Theorems 5 -
8, in the same way that Theorem 3 makes the proofs of the “if” parts of these theorems
automatic. This way, we would be able to discover more interesting theorems in this area,
and more easily!
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