
Journal of Artificial Intelligence Research 30 (2007) 501-523 Submitted 06/07; published 12/07

On the Semantics of Logic Programs with Preferences

Sergio Greco greco@deis.unical.it
DEIS, Università della Calabria
via P. Bucci, 87030 Rende - Italy

Irina Trubitsyna irina@deis.unical.it
DEIS, Università della Calabria
via P. Bucci, 87030 Rende - Italy

Ester Zumpano zumpano@deis.unical.it

DEIS, Università della Calabria
via P. Bucci, 87030 Rende - Italy

Abstract

This work is a contribution to prioritized reasoning in logic programming in the presence
of preference relations involving atoms. The technique, providing a new interpretation for
prioritized logic programs, is inspired by the semantics of Prioritized Logic Programming
and enriched with the use of structural information of preference of Answer Set Optimi-
zation Programming. Specifically, the analysis of the logic program is carried out together
with the analysis of preferences in order to determine the choice order and the sets of
comparable models. The new semantics is compared with other approaches known in the
literature and complexity analysis is also performed, showing that, with respect to other
similar approaches previously proposed, the complexity of computing preferred stable mo-
dels does not increase.

1. Introduction

The increased interest in preferences is witnessed by an extensive number of proposals and
systems for preference handling (Grell, Konczak, & Schaub, 2005; Van Nieuwenborgh &
Vermeir, 2003; Wakaki, Inoue, Sakama, & Nitta, 2003, 2004). The literature distinguishes
static from dynamic preferences. Static preferences are fixed at the time a theory is spec-
ified, i.e. they are “external” to the logic program, whereas dynamic preferences appear
within the logic program and are determined “on the fly”. The most common form of
preference consists in specifying preference conditions among rules (Brewka, 1996; Brewka
& Eiter, 1999, 2000; Delgrande, Schaub, & Tompits, 2000a, 2000b, 2003; Gelfond & Son,
1997; Schauba & Wang, 2001; Van Nieuwenborgh & Vermeir, 2002, 2004; Wang, Zhou, &
Lin, 2000; Zhang & Foo, 1997), whereas, some recent proposals admit the expression of
preference relations among atoms (Brewka, Niemela, & Truszczynski, 2003; Brewka, 2004;
Sakama & Inoue, 2000; Wakaki et al., 2003). More sophisticated forms of preferences also
allow the specification of priorities between conjunctions (disjunctions) of literals (Brewka
et al., 2003; Delgrande et al., 2000a; Sakama & Inoue, 2000) and numerical penalties for
suboptimal options (Brewka, 2004).

This work is a contribution to prioritized reasoning in logic programming in the presence
of preference conditions involving atoms. In particular, priorities are applied by following
the natural ordering defined by dependencies, as proposed in the Answer Set Optimiza-

c©2007 AI Access Foundation. All rights reserved.

Greco, Trubitsyna, & Zumpano

tion (ASO) semantics (Brewka et al., 2003), and the comparison strategy, proposed in the
Preferred Stable Model (PSM) semantics (Sakama & Inoue, 2000), is reviewed by also in-
troducing the concept of comparable models. The next example describes the intuition at
the basis of the proposed approach.

Example 1 The following prioritized program 〈P1, Φ1〉, inspired by a program presented
by Brewka et al. (2003), describes different menus and the preferences among drinks and
desserts:

P1 : fish⊕ beef← Φ1 : %1 : white > red← fish
red⊕ white← %2 : red > white← beef
pie⊕ ice-cream← %3 : pie > ice-cream← red
← fish, white
← beef, pie
← fish, ice-cream

The symbol ⊕ denotes exclusive disjunction, i.e. if the body of the rule is true exactly
one atom in the head is true, whereas a rule with empty head defines a constraint, i.e. a
rule which is satisfied only if the body is false. The first three rules of P1 select the main
dish, the drink and the dessert; the last three rules are constraints and state that a feasible
solution cannot contain i) fish and white or ii) beef and pie or iii) fish and ice-cream.
Prioritized rules in Φ1 introduce preferences among drinks (%1, %2) and desserts (%3).

The program P1 has three stable models: M1 = {fish, red, pie}, M2 = {beef, white,
ice-cream} and M3 = {beef, red, ice-cream}. The PSM returns M1 as the unique pre-
ferred model; whereas the ASO technique, following the natural ordering of preference rules
(%1 and %2 precede %3), derives that M3 is the unique solution. Thus, the two approaches
provide different results. 2

The structure of preference rules in the above example suggests that i) fish and beef are
alternative options for the main dish and ii) the choice of drink depends on the selected main
dish and precedes the choice of dessert. The second conclusion is based on the observation
that %1 and %2 provide opposite valuations of the choice of drink and they define two different
classes of models (menus), which should be considered separately. In other words, the model
M1 (associated with the menu containing fish) should not be compared with the models
M2 and M3 (associated with the menus containing beef). Consequently, both M1 and M3

should be preferred.
Observe that in the above example the PSM semantics derives that M1 is the preferred

model as M1 is preferable to M3 (due to the presence of rule %3), M3 is preferable to M2

(due to the presence of rule %2) and, transitively, that M1 is also preferable to M2. It is
worth noting that the use of the transitive closure makes the comparison of models much
more complex as two models cannot be compared directly. On the other hand the ASO
semantics is sensitive to syntactic changes of programs. This fact is illustrated by means of
the following example.

Example 2 Consider the prioritized program 〈P2, Φ2〉, an extension of the prioritized pro-
gram defined in Example 1:

502

On the Semantics of Logic Programs with Preferences

P2 : fish⊕ beef← Φ2 : %̂1 : beer > white > red← fish
red⊕ white⊕ beer← %̂2 : beer > red > white← beef
pie⊕ ice-cream← %̂3 : pie > ice-cream← red
← fish, white
← beef, pie
← fish, ice-cream
← beer

This program is equivalent to the one reported in Example 1 as, even if it contains an ad-
ditional choice (beer), this option is not feasible, for the presence of the constraint ← beer.
The set of stable models associated with the program P2, coincides with those reported
for the program P1 in Example 1, and consists of: M1 = {fish, red, pie}, M2 = {beef,
white, ice-cream} and M3 = {beef, red, ice-cream}. Considering the set of preference
rules, note that both preferences regarding the choice of drink have beer as the best option,
but there is no stable model containing it. Intuitively, as the two problems 〈P1, Φ1〉 in Ex-
ample 1 and 〈P2, Φ2〉 are equivalent they must have the same preferred models. The ASO
semantics is sensitive to the program change and gives M1 and M3 as a solution, whereas,
for the equivalent program in Example 1, the returned preferred model is M3 only. No
change occurs in the set of preferred models for the PSM semantics. 2

Thus, in this paper we present a new semantics, inspired by the PSM and ASO seman-
tics, which seems to better capture the intuitive meaning of programs and avoids the above
mentioned problems.

1.1 Contribution

The paper provides a new semantics for prioritized logic programs enriching the one pro-
posed by Sakama and Inoue (2000) with additional information gained from the structure
of preference rules as proposed by Brewka et al. (2003). In particular, the new semantics
uses different preference relations among stable models and introduces a natural ordering
among preferences that fixes the order of choices, on the basis of the stratification of the
preference program. Each decision is determined by the set of choices belonging to the
corresponding level and provides the subset of models given in input as solution. Once a
decision is made, this output subset becomes the input set of the following decision and so
on. The proposed semantics drives the decision making process taking into account catching
additional information regarding non comparable sets of models so partitioning the set of
models of the program by looking at their alternative decisions. To this end the concept of
incomparability, not taken into account by previous approaches, is introduced.

The paper presents a detailed comparison of the approaches dealing with preference
relations among atoms. Particular attention is devoted to the PSM and the ASO semantics.
The analysis of the complexity of computing preferred answer sets is also performed, showing
that, w.r.t. previous proposals, such as the PSM and the ASO semantics, the complexity
of computing preferred stable models does not increase.

503

Greco, Trubitsyna, & Zumpano

1.2 Plan Of The Paper

The rest of the paper is organized as follows: in Section 2 preliminaries on Disjunctive
and Abductive Logic Programs, Prioritized Logic Programs and Answer Set Optimization
semantics are given; in Section 3 a new interpretation for prioritized logic programs is
presented; in Section 4 complexity results are provided; in Section 5 a comparison of the
presented semantics with the PSM and ASO semantics is performed, and other approaches,
known in the literature, are briefly described; finally, Section 6 outlines our conclusions.

2. Preliminaries

We assume familiarity with relational database theory, disjunctive logic programs, disjun-
ctive deductive databases, (disjunctive) stable model semantics and computational comple-
xity (Eiter, Gottlob, & Mannila, 1997b; Gelfond & Lifschitz, 1988, 1991; Papadimitriou,
1994).

2.1 Background

A (disjunctive) logic program is a finite set of rules r of the form a1 ∨ · · · ∨ ak ← b1, ..., bm,
not c1, ..., not cn with k + m + n > 0, where a1, ..., ak, b1, ..., bm, c1, ..., cn are atoms. The
disjunction a1 ∨ · · · ∨ ak, denoted by head(r), is called head of r, while the conjunction
b1, ..., bm, not c1, ..., not cn, denoted by body(r), is called body of r.

The Herbrand Universe UP of a program P is the set of all constants appearing in P1,
and its Herbrand Base BP is the set of all ground atoms constructed from the predicates
appearing in P and the constants from UP . A term (resp. an atom, a rule or a program) is
ground if no variables occur in it. A rule r′ is a ground instance of a rule r, if r′ is obtained
from r by replacing every variable in r with some constant in UP ; ground(P) denotes the
set of all ground instances of the rules in P.

The intuitive meaning of the previous disjunctive rule is that if body(r) is true, i.e.
b1, ..., bm are true and c1, ..., cn are false, then head(r) must be true, i.e at least one of
a1, ..., ak has to be true (otherwise r is not satisfied). Rules with empty head, called denials
or constraints, will be used to define constraints and are satisfied only if the body is false. In
this paper exclusive disjunction, denoted by ⊕, is used in the head; the statement head(r) =
a1 ⊕ ... ⊕ ak is true, if exactly one of a1, ..., ak is true, i.e. a disjunctive rule of the form
a1 ⊕ · · · ⊕ ak ← body is a shorthand for the rule a1 ∨ · · · ∨ ak ← body and (k × (k − 1)/2)
constraints of the form ← ai, aj , body with 1 ≤ i < j ≤ k. The solution of a logic program P
is given in terms of stable model (answer set) semantics (Gelfond & Lifschitz, 1988, 1991).

An interpretation M for P is a model of P if M satisfies all rules in ground(P). The
minimal model semantics, defined for positive P, assigns to P the set of its minimal models
MM(P), where a model M for P is minimal, if no proper subset of M is a model for P
(Minker, 1982). The more general disjunctive stable model semantics also applies to pro-
grams with (unstratified) negation (Gelfond & Lifschitz, 1991). Disjunctive stable model
semantics generalizes stable model semantics, previously defined for normal programs (Gel-
fond & Lifschitz, 1988). For any interpretation M , denote with PM the ground positive
program derived from ground(P) by i) removing all rules that contain a negated atom

1. We are considering function free programs.

504

On the Semantics of Logic Programs with Preferences

not a in the body and a ∈ M , and ii) removing all negated atoms from the remaining rules.
An interpretation M is a (disjunctive) stable model of P if and only if M ∈ MM(PM).
For general P, the stable model semantics assigns to P the set SM(P) of its stable mo-
dels. It is well known that stable models are minimal models (i.e. SM(P) ⊆ MM(P))
and that for negation free programs, minimal and stable model semantics coincide (i.e.
SM(P) = MM(P)).

2.2 Extended And Abductive Programs

Given an atom p(t), a literal is either p(t) or its strong negation ¬p(t). An extended
program is a program where atoms are replaced by literals. The semantics of extended
disjunctive programs can also be given in terms of stable models by considering p and ¬p as
different predicate symbols and considering the implicit constraint← p(X),¬p(X) (Gelfond
& Lifschitz, 1991).

Abductive logic programming is an extension of logic programming to perform abductive
reasoning (Kakas, Kowalski, & Toni, 1992; Inoue & Sakama, 1998). An abductive program
(ALP) is a pair 〈P,A〉, where P is an extended program and A is a set of literals called
abducibles. 〈P,A〉 can be represented by means of an extended program Γ = P ∪ {g(t) ∨
g′(t) ← | g(t) ∈ A} ∪ {g′(t) ← not g(t) | g(t) ∈ A}.

Let Γ be an ALP and G a ground atom denoting an observation. Then, a set S ⊆ A is an
explanation of G iff there is a stable model M of Γ such that S = M∩A and G ∈ M ; a stable
model M is A-minimal if there is no stable model N such that N ∩A ⊂M∩A. Moreover,
S is a minimal explanation (i.e. there is no explanation S′ ⊂ S) of G iff Γ∪{← not G} has
a consistent A-minimal stable model M such that S = M ∩ A (Inoue & Sakama, 1998).

It has been shown that given an ALP P and a ground atom G denoting an observation,
deciding whether there exists a A-minimal explanation S for G is Σp

3-complete (Eiter,
Gottlob, & Leone, 1997a).

The rest of this section will briefly review the two main approaches for prioritizing rea-
soning we refer to, i.e. Prioritized Logic Programs and Answer Set Optimization, proposed,
respectively, by Sakama and Inoue (2000) and Brewka et al. (2003).

2.3 Prioritized Logic Programs

A (partial) preference relation º among atoms is defined as follows: given two atoms e1

and e2, the statement e1 º e2 (called priority) means that e1 has higher priority than e2.
Moreover, if e1 º e2 and e2 º e3, then e1 º e3. A priority statement e1 º e2 states that for
each a1 instance of e1 and for each a2 instance of e2 the preference relation a1 º a2 holds.
A prioritized logic program (PLP) is a pair 〈P, Φ〉 where P is a disjunctive program and Φ
is a set of priorities. Φ∗ denotes the set of priorities which can be reflexively or transitively
derived from Φ.

The statement e1 Â e2 stands for e1 º e2 and e2 6º e1. Clearly, if e1 Â e2, the sets of
ground instantiations of e1 and e2 have an empty intersection.

Definition 1 Given a prioritized logic program 〈P,Φ〉, the relation w is defined over the
stable models of P as follows. For any stable models M1, M2 and M3 of P:

505

Greco, Trubitsyna, & Zumpano

1. M1 w M1,

2. M1 w M2 if ∃e1 ∈ M1 − M2, ∃e2 ∈ M2 −M1 such that (e1 º e2) ∈ Φ∗ and 6 ∃e3 ∈
M2 −M1 such that (e3 Â e1) ∈ Φ∗,

3. if M1 w M2 and M2 w M3, then M1 w M3.

If M1 w M2 then M1 is preferable to M2. Moreover, if M1 w M2 and M2 6w M1 then
M1 = M2. 2

An interpretation M is a preferred stable model of 〈P, Φ〉 if M is a stable model of P and
N w M implies M w N for any stable model N (equivalently, if there is no interpretation N
which is a stable model of P and N = M). The set of preferred stable models of 〈P,Φ〉 will
be denoted by PSM(〈P, Φ〉). Note that the relation Φ1 ⊆ Φ2 between two PLPs 〈P, Φ1〉
and 〈P,Φ2〉 does not imply PSM(〈P, Φ2〉) ⊆ PSM(〈P, Φ1〉).

In PLP priority relations are used to express priorities over atoms, whereas priorities over
more general forms of knowledge (conjunctive, disjunctive knowledge, rules, preconditions)
can be expressed by a simple rewriting of the preference program. For instance, a preference
rule with precondition of the form (e1 º e2) ← B is expressed in PLP as e′1 º e′2, where
e′1 ← e1, B and e′2 ← e2, B.

The semantics of prioritized programs proposed by Sakama and Inoue (2000) will be
denoted by PSM semantics. A sound and complete procedure that allows preferred answer
sets for a PLP program to be computed using a generate and test algorithm has been
proposed by Wakaki et al. (2003). This algorithm translates a PLP program 〈P, Φ〉 and
any answer set S of the program P into a single logic program T [P,Φ, S], such that its
answer sets are answer sets of P preferable to S. More details can be found in works
presenting the semantics and the implementation (Sakama & Inoue, 2000; Wakaki et al.,
2004).

The complexity of answering queries over PLP programs is at least one level above
the complexity of answering queries over standard programs (without preferences). In
particular, let 〈P,Φ〉 be a prioritized logic program, then i) deciding the existence of a
preferred stable model is Σp

2-hard; ii) deciding whether an atom is true in some (resp. all)
preferable stable model of 〈P,Φ〉 is Σp

3-hard (resp. Πp
3-hard). It is worth noting that in the

original work (Sakama & Inoue, 2000) it has been claimed that the complexity is exactly one
level above the complexity of standard programs, but the proof does not take into account
the transitivity property of the preference relation.

2.4 Answer Set Optimization

An answer set optimization program, denoted as ASO program, is a pair 〈P, Φ〉, where P is
a disjunctive program, called Generating Program, and Φ is a Preference Program consisting
of a finite set of rules of the form: a1 > · · · > ak ← b1, ..., bm, not c1, ..., not cn where bis and cjs
are literals and ais are boolean combinations2 of literals; here a literal is either an atom L or
its (strong) negation ¬L. Φ determines a preference ordering on the answer sets described
by the generating program P.

2. A boolean combination is a formula built of atoms by means of disjunctions, conjunctions, and default
negation.

506

On the Semantics of Logic Programs with Preferences

Definition 2 Let 〈P, Φ〉 be an ASO program where Φ = {%1, ..., %n} and S be an answer
set of P, then S induces a satisfaction vector VS = (vS (%1), ..., vS (%n)) where:

• vS (%j) = I, if %j is Irrelevant to S, i.e. i) the body of %j is not satisfied in S or ii) the
body of %j is satisfied, but none of the atoms in the head of %j is satisfied in S.

• vS (%j) = min{i | S |= ai∧%j = a1 > · · ·>ak ← b1, .., bm, not c1, .., not cn}, otherwise. 2

In the comparison of models it is assumed that I is equal to 1 (i.e., vS (%j) = I is
equivalent to vS (%j) = 1).

Definition 3 Let S1 and S2 be two answer sets, then i) VS1 ≤ VS2 if vS1(%i) ≤ vS2(%i) for
every i ∈ [1..n]; ii) VS1 < VS2 if VS1 ≤ VS2 and for some i ∈ [1..n] vS1(%i) < vS2(%i). In these
cases S1 w S2 and S1 = S2

3, respectively.
A set of literals S is an optimal model of an ASO program 〈P, Φ〉 if S is an answer set

of P and there is no answer set S′ of P such that S′ = S. 2

The complexity of ASO programs depends on the class of generating programs. For
disjunctive programs the complexity of answering queries over ASO programs is exactly
one level above the complexity of answering queries over standard programs (without prefe-
rences), i.e. i) deciding the existence of a preferred stable model is Σp

2-complete; ii) deciding
whether a literal is true in some (resp. all) preferable stable model of 〈P,Φ〉 is Σp

3-complete
(resp. Πp

3-complete).
The strategy is further extended by introducing meta-preferences among preference

rules: a ranked ASO program is a sequence 〈P,Φ1, ...,Φn〉 consisting of a generating program
P and a sequence of pairwise disjoint preference programs Φi. The rank of a rule % ∈
Φ1 ∪ · · · ∪Φn, denoted rank(%), is the unique integer i for which % ∈ Φi. Given two answer
sets S1 and S2, S1 wrank S2 if for every preference rule %′ such that vS1(%

′) ≤ vS2(%
′) does

not hold, there is a rule %′′ such that rank(%′′) < rank(%′) and vS1(%
′′) < vS2(%

′′).
Moreover, a procedure deriving the natural ordering of the preference rules is introduced.

Firstly, given a preference program Φ, its dependency graph G(Φ) is defined. The atoms
appearing in Φ form the vertex set of G(Φ). There is a directed edge from a vertex b to a
vertex a in G(Φ) if there is a rule % in Φ such that a appears in the head of r and b appears
in the body of r. If the graph G(Φ) is acyclic, there is a natural ranking of its atoms which
can be defined recursively as follows: rank(a) = 0 for every atom a that has no predecessors
in G(Φ); otherwise rank(a) is the maximum of the ranks of all predecessors of a in G(Φ)
incremented by 1. The rank of a preference rule % is then defined as the maximum rank of
atoms in its head.

The standard semantics of ASO programs, where priorities are examined all together,
will be denoted as ASO semantics. The alternative semantics, where priorities are divided
into strata following the natural order, will be denoted by RASO (ranked ASO) semantics.

3. In the original work (Brewka et al., 2003) the symbols ≥ and > are used instead of w and =.

507

Greco, Trubitsyna, & Zumpano

3. Preferred Answer Sets

In this paper a syntax similar to the one proposed by Brewka et al. (2003) is used. Given
two atoms a1 and a2, the statement a2 > a1 means that a2 has higher priority than a1. A
(partial) preference relation > among atoms is defined as follows.

Definition 4 A prioritized program Π is a pair 〈P, Φ〉 where P is a disjunctive program
and Φ is set of preference rules of the form:

a1 > a2 > · · · > ak ← b1, ..., bm, not c1, ..., not cn (1)

where k > 1 and a1, ..., ak, b1, ..., bm, c1, ..., cn are atoms. 2

In the following the head and body of a preference rule % will be denoted by head(%)
and body(%), respectively. A ground prioritized program, denoted by ground(〈P, Φ〉) =
〈ground(P), ground(Φ)〉 is a prioritized program, where each rule r ∈ (P ∪Φ) with variables
is replaced with the set of its ground instances, i.e the set of rules obtained by replacing
variables with constants.

Intuitively, a preference rule % of the form (1) describes the choice among a1, ..., ak

(choice options) under the condition specified by the body of %. The head of % introduces
the preference order among atoms: ai is preferred to aj for 1 ≤ i < j ≤ k. As % can be
applied only if body(%) is true, the body of % specifies the decisions which have to precede
this choice. For instance, a > c ← b states that if b is true, then a is preferred to c. A
preference rule with exactly two atoms in the head will be called binary preference rule,
whereas preference rules with empty bodies will be called preference facts. A prioritized
program is said to be in binary form if all its preference rules are binary.

The following example, presenting a classical program proposed by Brewka et al. (2003),
will be used as running example.

Example 3 Consider the prioritized program 〈P3, Φ3〉 whose stable models define the
menus of a restaurant:

P3: fish⊕ beef← Φ3 : %1 : white > red > beer← fish
red⊕ white⊕ beer← %2 : red > white← beef
pie⊕ ice-cream← %3 : beer > white← beef
← beef, pie %4 : pie > ice-cream← beer
← fish, ice-cream

The first three rules of P3 select the main dish, the drink and the dessert; the constraints
state that a feasible solution cannot contain both beef and pie or both fish and ice-cream;
while the rules in Φ3 introduce preferences among drinks and desserts.

The program P3 has six stable models:

M1 = {fish, white, pie} M4 = {beef, white, ice-cream}
M2 = {fish, red, pie} M5 = {beef, red, ice-cream}
M3 = {fish, beer, pie} M6 = {beef, beer, ice-cream}

Both techniques proposed by Sakama and Inoue (2000) and Brewka et al. (2003) select
the stable models M1 and M5 as preferred ones, but the motivation is different. Indeed,
the PSM semantics states that M1 w M2 w M3 w M6 w M4 and M5 w M4, whereas the

508

On the Semantics of Logic Programs with Preferences

(R)ASO semantics states that Mi w M2 w M3, Mi w M6 and Mi w M4 for i ∈ {1, 5}, i.e. in
the (R)ASO semantics the models M1 and M6 are compared directly, whereas in the PSM
semantics the models M1 and M6 are compared transitively. 2

Before presenting the formal semantics of programs, some preliminary definitions are
needed. A preference rule of the form a1 > a2 > · · · > ak ← body is shorthand for the k− 1
binary rules of the form ai > ai+1 ← body, with i ∈ [1..k − 1] and the set of preferences
established by Φ is given by its transitive closure Φ∗ defined as follows:

Definition 5 Given a prioritized program 〈P, Φ〉, the (ground) transitive closure of Φ is
Φ∗ = Φ′ ∪ {a > c ← body1, body2 | a > b ← body1 ∈ Φ∗ ∧ b > c ← body2 ∈ Φ∗ ∧ a 6= c},
where Φ′ is the set of binary preference rules derived from ground(Φ). 2

Thus, Φ∗ is defined as the set of rules explicitly representing the preference relations
among choice options. In Section 4 we will show that any ground prioritized program
Π = 〈P, Φ〉 can be rewritten into an ‘equivalent’ program Π̂ = 〈P̂, Φ̂〉 such that Φ̂∗ contains
a number of rules which is polynomial in the size of Π.

The structure of prioritized programs can be examined in order to establish the prece-
dence relation among choices made. For instance, the presence of the preference rule
a > c ← b suggests that the selection of b precedes the choice between a and c and thus
establishes the precedence relation between {b} and {a, c}. This idea was used by Brewka
et al. (2003) for determining the natural ordering among preference rules. In more detail,
the relational order among atoms appearing in Φ was captured by means of the correspond-
ing dependency graph G(Φ); and the stratification of preference rules was established by
considering their head atoms.

Unfortunately, the natural ordering among the preference rules can be established only if
the corresponding dependency graph is acyclic. Thus, the presence of two rules coffee >
tea ← pie and pie > ice-cream ← coffee in Φ does not admit the stratification of Φ,
as they introduce two “mutually dependent” choices.

The stratification algorithm proposed in this paper overcomes this problem by introduc-
ing the concept of “collapsed graph”, which maps to the same node the options of “mutually
dependent” choices.

Given a (ground) prioritized program Π = 〈P, Φ〉, GΠ = (V, E) denotes the dependency
graph whose set of nodes consists of all atoms in P ∪Φ whereas there is an arc from b to a
labeled φ (resp. p) if there is a rule in Φ (resp. P) containing a in the head and b in the
body (resp. b in either the head or the body). As the body of (preference) facts is empty,
we assume that their bodies contain the built-in atom true, so that every fact a ← can be
considered as a rule a ← true. G

C

Π
denotes the (acyclic) collapsed dependency graph derived

from GΠ by replacing maximal sets of mutual dependent nodes (i.e. nodes belonging to the
same cycle) with a unique node. Clearly, each node in G

C

Π
is associated with a set of nodes

in GΠ .

To each node in G
C

Π
it is possible to assign a level as follows:

• For each node A in G
C

Π
with input degree zero, level(A) = 0;

509

Greco, Trubitsyna, & Zumpano

• For each node A in G
C

Π
with input degree greater than zero,

level(A)=max{max{level(B)+1|∃(B, Z, φ) in G
C

Π
},max{level(B)|∃(B,Z, p) in G

C

Π
}}.

Observe that the function level assigns to each node the maximum distance from some
node with input degree zero. The following definition introduces the concept of stratification
for preference rules.

Definition 6 Stratification. Given a (ground) prioritized program Π = 〈P,Φ〉, Φ∗ can be
partitioned into 〈Φ∗[0], Φ∗[1], ...,Φ∗[n]〉 subprograms (called strata) such that

• For each atom a in Π, level(a)= level(A), where A is the node of G
C

Π
associated with a;

• For each rule % in Φ∗, level(%) = max{ level(a) | a ∈ Body(%) };
• Φ∗[i] = { % | % ∈ Φ∗ ∧ level(%) = i } consists of all ground preference rules associated

with the level i. 2

The partition of Φ∗ into 〈Φ∗[0],Φ∗[1], ...,Φ∗[n]〉 is called stratification.

The above definition of stratification of preference rules establishes the order in which
preferences are applied by considering both P and Φ. Moreover, the assignment of the level
to each rule differs from the one proposed by Brewka et al. (2003) in two main aspects:
the level of atoms is defined by analyzing the collapsed dependency graph and the level
of rules is established by considering body atoms instead of head atoms. A more detailed
comparison of the two approaches will be presented in Section 5.

Example 4 Consider the prioritized program 〈P3, Φ3〉 of Example 3. The transitive closure
Φ∗3 consists of the binary preference rules %1,1 : white > red ← fish, %1,2 : red > beer ←
fish and %1,3 : white > beer← fish, derived from %1, and the rules %2, %3 and %4. Φ∗3 can
be stratified into the two strata Φ∗3[1] = {%1,1, %1,2, %1,3, %2, %3} and Φ∗3[2] = {%4}. 2

The structural analysis performed in our approach goes beyond the stratification process
and tries to understand the comparability of models. To this end the concepts of conflicting
preferences and comparable models are introduced.

Two ground (binary) preferences of the form a > b ← body1 and b > a ← body2

are said to be conflicting. For instance, the preferences %1 : white > red ← fish and
%2 : red > white ← beef of Example 1 are conflicting, whereas the preferences %1 and
%′2 : red > water ← beef are not. A set of preferences Φ is said to be conflicting if Φ∗

contains two conflicting preference rules.
The intuition on the basis of our approach is clarified in this example. Suppose there

are two conflicting preferences %1 : a > b ← c and %2 : b > a ← d. The two conflicting
preferences %1 and %2 specify the preference between a and b in two different sets of models,
having a or b, characterized by the presence of c and d, respectively. Thus, c and d, (and
atoms on which c and d depend) define the alternative decisions. Once a decision has been
made, the associated solutions (models) are no longer comparable.

A preference rule % is said to be relevant for a stable model M , if % can be used
to compare M with other stable models, that is if M |= body(ρ) and some of its head

510

On the Semantics of Logic Programs with Preferences

atoms belongs to M . Given a prioritized program 〈P, Φ〉 and a (ground) preference rule
% : a > b ← body ∈ Φ∗, the set of stable models, for which % is relevant, is SM(P, %) =
{M | M ∈ SM(P) ∧M |= body ∧ (a ∨ b)}.

Definition 7 Comparable models. Let 〈P,Φ〉 be a prioritized program, M1 and M2 two
stable models for P and 〈Φ∗[0], ...,Φ∗[n]〉 be a stratification of Φ∗, then

1. M1 and M2 are comparable on Φ∗[0];

2. M1 and M2 are comparable on Φ∗[i + 1] for i ∈ [1..n], if

(a) they are comparable on Φ∗[i], and

(b) there do not exist two conflicting preference rules %1, %2 ∈ Φ∗[i] such that
M1 ∈ SM(P, ρ1)− SM(P, ρ2) and M2 ∈ SM(P, ρ2)− SM(P, ρ1). 2

Observe that, the second condition in the previous definition of comparable models
states that the presence of two conflicting preference rules in a given level i identifies two
sets of models, for which only one of the two conflicting rules is relevant. Two models,
appearing in the different sets have to be considered separately in the next levels. In other
words, two stable models M1 and M2, having as relevant preferences the conflicting rules
%1 : a > b ← body1 and %2 : b > a ← body2 in a given level i, are not comparable at levels
greater than i, if M1 ∈ SM(P, ρ1)− SM(P, ρ2) and M2 ∈ SM(P, ρ2)− SM(P, ρ1), that is
M1 |= body1 ∧ (a ∨ b) ∧ not body2 and M2 |= body2 ∧ (a ∨ b) ∧ not body1.

Example 5 Consider the stable models M3 = {fish, beer, pie}, M6 = {beef, beer,
ice-cream}, and the set of preference rules Φ∗3 of Example 4. The stable models M3

and M6 are comparable on Φ∗3[0] by definition, while they are not comparable on Φ∗3[1],
because %1,3 is relevant only for M3 (as M3 |= fish ∧ (white ∨ beer) ∧ not beef), %3 is
relevant only for M6 (as M6 |= beef ∧ (white ∨ beer) ∧ not fish), and these conflicting
preferences belong to Φ∗3[0]. 2

Fact 1 Let 〈P, Φ〉 be a prioritized program without conflicting preferences and 〈Φ∗[0],
Φ∗[1], ...,Φ∗[n]〉 be the stratification of Φ∗. Then, any two models M1 and M2 are comparable
on Φ∗[i], i ∈ [0..n]. 2

Proof. The proof of the above fact follows directly from Definition 7. 2

On the basis of Definition 7 the declarative semantics of prioritized logic programs can
now be provided. This new semantics, denoted with PAS (Preferred Answer Sets), is given
by preferred stable models as follows:

Definition 8 Preference between Answer Sets. Given a prioritized program 〈P, Φ〉, the
relation w is defined over the stable models of P as follows. For any pair of stable models
M1 and M2 of P, being 〈Φ∗[0], Φ∗[1], ...,Φ∗[n]〉 be the stratification of Φ∗, M1 w M2 if

1. ∃%1 : (e1 > e2) ← body1 ∈ Φ∗[i] such that e1 ∈ M1 −M2, e2 ∈ M2 −M1, such that
M1 and M2 are comparable on Φ∗[i], and %1 is relevant for M1 and M2, and

511

Greco, Trubitsyna, & Zumpano

2. 6 ∃%2 : (e3 > e4) ← body2 ∈ Φ∗[j], such that j < i, e3 ∈ M2 −M1, e4 ∈ M1 −M2 and
%2 is relevant for M1 and M2.

Moreover, M1 is strictly preferable to M2 (M1 = M2) if M1 w M2 and M2 6w M1. 2

Note also that the relation = could be defined directly by replacing the condition j < i
with j ≤ i in Item 2 of the above definition.

Definition 9 Preferred Answer Sets. An interpretation M is a preferred stable model for
a prioritized program 〈P, Φ〉 if M is a stable model of P and there does not exist a stable
model N such that N = M . The set of preferred stable models for 〈P, Φ〉 will be denoted
by PAS(〈P, Φ〉). 2

Note that Definition 8 introduces preferences between pairs of models by also considering
additional information gained from the structure of preference rules.

Example 6 Consider the prioritized program 〈P3, Φ3〉 of Example 3 and the stratification
〈Φ∗3[0],Φ∗3[1]〉 presented in Example 4. We have that

• all models are comparable on Φ∗[0] by definition and

– owing to %1,1, %1,2, %1,3, M1 = M2 = M3;

– owing to %2, %3, M5 = M4 and M6 = M4;

• as %1,3 and %3 are conflicting, models M1 and M3, for which %1,3 is relevant, cannot
be compared in Φ∗[1] with models M4 and M6, for which %3 is relevant.

Therefore, as discussed in Example 5, M3 and M6 are not comparable on Φ∗3[1] and,
consequently, the preferred models are: M1, M5 and M6. 2

In the previous example the stable model M6 is considered as good as M5 because both
have beef as main dish, the best choice of drink (red wine and beer, respectively) and the
same dessert (ice-cream). Observe that both ASO and PSM semantics discard M6. As
already stated, the ASO semantics deduces that M1 and M5 are preferable to M6 owing to
%3, while the PSM semantics states that M1 is preferable to M3 and M3 is preferable to
M6, owing to %1, %3.

Example 7 Let 〈P3,Φ3〉 be the program of Example 3, consider the program 〈P3, Φ̂3〉
where Φ̂3 is derived from Φ3 by replacing %4 with

%′4 : pie > ice-cream←

The new ground preference program has the unique level Φ̂∗3[0] = {%1,1, %1,2, %1,3, %2, %3, %
′
4},

where %1,1, %1,2 and %1,3 are derived from %1, as shown in Example 4. Due to %′4, the fol-
lowing relations also hold: Mi = Mj for i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. Therefore, M1 is the
unique preferred model. The same result is obtained by both PSM and ASO semantics. 2

512

On the Semantics of Logic Programs with Preferences

4. Complexity

This section provides some results concerning the computational complexity of computing
preferred stable models and answering queries under PAS semantics. We consider here data
complexity where the input domain UP consists of the Herbrand universe (we assume that
all constants occurring in Φ also occur in P). Clearly, the size of the Herbrand base BP as
well as the sizes of ground(P) and ground(Φ) are polynomial in the size of UP .

The following results demonstrate that allowing preferences among atoms in the seman-
tics proposed here increases the complexity and expressivity of the language by one level
in the polynomial hierarchy. Thus the use of additional information does not increase the
computational complexity of the proposed approach with respect to the above mentioned
techniques (Brewka et al., 2003; Sakama & Inoue, 2000).

Proposition 1 Let Π = 〈P, Φ〉 be a prioritized program, then there exists a program Π̂ =
〈P̂, Φ̂〉 equivalent to 〈ground(P),Φ∗〉 such that i) the stratification of Φ̂ can be computed in
polynomial time, and ii) 〈P̂, Φ̂〉 can be derived from 〈ground(P), Φ∗〉 in polynomial time.

Proof. We start by considering the program Π′ = 〈ground(P), Φ′〉, where Φ′ is the binary
ground version of Φ. The size of the graphs GΠ′ and G

C

Π′ is polynomial in the size of Π′

and can be computed in polynomial time. As the assignment of levels to nodes in G
C

Π′ can
be done in polynomial time, the assignment of levels to atoms and rules in Φ′ can also be
done in polynomial time.

Let 〈Φ′[0], ...,Φ′[n]〉 be the stratification of Φ′. We generate a new ground prioritized
program 〈P̂, Φ̂〉 which is equivalent to 〈ground(P), Φ∗〉 and such that the size of Φ̂ is poly-
nomial in the size of Φ′.

Initially, assign to each ground atom ai appearing in the head of a preference rule in Φ′

a unique index i. Let a1, ..., ap be the (indexed) atoms appearing in the head of rules in Φ′,
P̂ denotes the program ground(P) ∪ PΦ where

PΦ = {b(i, j, l) ← bodyi,j | ai > aj ← bodyi,j ∈ Φ′[l] } ∪
{b(i, j, l) ← b(i, k, l1), b(k, j, l2), l = max(l1, l2) | i, j, k ∈ [1..p], l1, l2 ∈ [1..n]}

and b is a new predicate symbol. Then, Φ̂ denotes the new set of ground preference rules
defined as follows:

Φ̂ = {ai > aj ← b(i, j, l) | i, j ∈ [1..p] ∧ l ∈ [0..n] }

The stratification of Φ̂ is obtained by associating to each stratum l the preference rules
whose body atom has the value of the level attribute equal to l, that is Φ̂[l] = {ai > aj ←
b(i, j, l) | ai > aj ← b(i, j, l) ∈ Φ̂}.

In order to show the equivalence between 〈ground(P), Φ∗〉 and 〈P̂, Φ̂〉, observe that the
set of stable models of ground(P) and P̂ are ‘equivalent’, i.e. for each M ∈ SM(P̂) there
is a stable model N ∈ SM(ground(P)) such that N = M − {b(i, j, l) | b(i, j, l) ∈ M}
and for each N ∈ SM(ground(P)) there is a stable model M ∈ SM(P̂) such that N =
M − {b(i, j, l) | b(i, j, l) ∈ M}, as the rules in ground(P) do not contain atoms of the form
b(i, j, l) in their bodies.

513

Greco, Trubitsyna, & Zumpano

Moreover, let N be a stable model of ground(P) and M be the corresponding stable
model of P̂ (N ⊆ M), for each ground preference rule ai > aj ← bodyi,j in Φ∗[l] whose
body is true in N , there is a ground rule ai > aj ← b(i, j, l) in Φ̂[l] whose body is also true
in M and vice versa. Therefore the two sets Φ̂[l] and Φ∗[l] are equivalent, for all l ∈ [1..n].

Clearly, the program 〈P̂, Φ̂〉 is derived from 〈ground(P), Φ∗〉 in polynomial time. 2

In the following, for the sake of simplicity of presentation, we continue to refer to the
program 〈P, Φ〉 and to the stratification of Φ∗.

Proposition 2 Let 〈P,Φ〉 be a prioritized program, M1 and M2 two stable models for P,
and 〈Φ∗[0],Φ∗[1], ..., Φ∗[n]〉 a stratification of Φ∗. The problem of checking whether, for a
given k ≤ n, M1 and M2 are comparable on Φ∗[0], ...,Φ∗[k] can be solved in polynomial time.

Proof. Obviously M1 and M2 are comparable in Φ∗[0]. Assuming that M1 and M2 are
comparable for a given level j < k, M1 and M2 are comparable for the level j + 1 if there
are no two conflicting preference rules ρ1 = a > b ← body1 and ρ2 = b > a ← body2 in Φ∗[j]
such that M1 |= body1∧ (a∨ b)∧not body2 and M2 |= body2∧ (a∨ b)∧not body1. This check
can be done in polynomial time as the number of rules in Φ∗[j] is polynomial in the size of
UP . Moreover, as the maximum value of k is bounded by the size of Φ∗ (which is bounded
by the set of atoms in BP), the global complexity is also polynomial. 2

Corollary 1 Let 〈P,Φ〉 be a prioritized program, M1 and M2 two interpretations for P.
The problem of checking whether M1 = M2 can be solved in polynomial time.

Proof. Straightforward from Definition 8 and Proposition 2. 2

Lemma 1 Let 〈P, Φ〉 be a prioritized program and M an interpretation for P. The problem
of deciding whether M is a preferred stable model for 〈P, Φ〉 is in Πp

2.

Proof. Consider the complementary problem of deciding whether M is not a preferred
stable model for 〈P,Φ〉. In such a case it is sufficient to first check if M is a stable model.
If M is a stable model it is sufficient to guess an interpretation N and to check that i) N
is a stable model for P and ii) N = M . The check on part i) (as well as the check that
M is a stable model) can be done by means of a NP oracle as the problem of deciding
whether an interpretation is a stable model for a disjunctive program is coNP-complete,
whereas the check on part ii) can be done in polynomial time (see Corollary 1). Therefore,
the complexity of the complementary problem is NPNP and, consequently, the complexity
of the original problem is coNPNP . 2

Theorem 1 Let 〈P,Φ〉 be a prioritized program. Then

1. Deciding whether a ground atom G is true in some preferred stable models of 〈P, Φ〉
is Σp

3-complete;

2. Deciding whether a ground atom G is true in all preferred stable models of 〈P,Φ〉 is
Πp

3-complete.

514

On the Semantics of Logic Programs with Preferences

Proof. Membership: We first demonstrate that deciding whether G is true in some
preferred stable model of 〈P, Φ〉 is in Σp

3. This result suffices to prove that the comple-
mentary problem, consisting in deciding whether A is true in all preferred stable models, is
Πp

3-complete.
To show the membership it is sufficient to guess an interpretation M containing G and

to check whether M is a preferred stable model. From Lemma 1 the problem of deciding
whether M is a preferred stable model is in Πp

2 and can be solved by means of a Σp
2

oracle. Therefore, deciding whether there exists a preferred stable model containing G is in
NPΣp

2 = Σp
3.

Hardness: Given an abductive logic program consisting of a disjunctive program P and a
set of abducibles (positive) atoms A, the ground abductive logic program derived prom P
and A is

Γ = ground(P) ∪ { g′(t) ← not g(t) | g(t) ∈ ground(A) }
∪ { g′(t)⊕ g(t) ← | g(t) ∈ ground(A) }

Let
Φ = { g′(t) > g(t) ← | g(t) ∈ ground(A) }

〈Γ, Φ〉 denotes the prioritized program derived from P and A.
For any two stable models M, N ∈ SM(Γ), M w N with respect to Φ means that

a preference p′(u) > p(u) ← ∈ Φ such that p′(u) ∈ M and p(u) ∈ N exists and no
preference q′(v) > q(v) ← ∈ Φ such that q′(v) ∈ N and q(v) ∈ M exists. This implies
that M ∩ ground(A) ⊆ N ∩ ground(A) and, consequently, that preferred stable models are
A-minimal.

Therefore, the problem of deciding whether 〈Γ,Φ〉 has an A-minimal explanation for a
goal G is equivalent to deciding whether 〈Γ, Φ〉 has a preferred stable model containing G.
Consequently, as the problem of deciding whether a A-minimal explanation S for G exists
is Σp

3-complete, the problem of deciding whether a preferred stable model M for 〈Γ, Φ〉
containing G exits is also Σp

3-hard, whereas the problem of deciding whether all preferred
stable models of 〈P, Φ〉 contain G is Πp

3-hard. 2

Corollary 2 Let 〈P,Φ〉 be a disjunction-free, prioritized program. Then deciding
whether a ground atom is true in some (all) preferred stable models of 〈P, Φ〉 is Σp

2-complete
(Πp

2-complete).

Proof. The complexity is one level lower as the problem of deciding whether an interpre-
tation M is a stable model for a disjunction-free program is polynomial. 2

5. Analysis And Comparison

This section compares the semantics introduced here with the PSM and (R)ASO semantics
and briefly discusses other recently proposed semantics.

The PSM semantics is very elegant and compares pairs of models on the basis of their
common preferences and not on the basis of their degree of satisfaction. It does not con-
sider the natural ordering between preference rules and, in some cases, as in Example 1
and 3, compares (and consequently discards) models which in the PAS approach are not

515

Greco, Trubitsyna, & Zumpano

comparable. An interesting feature of the PSM technique is the application of transitive
property in order to derive additional preference relations among problem solutions so that
new, not immediately visible, preference relations are captured. However, as the test of the
transitive property cannot be performed by a direct comparison of two models, this lies in
a more complex implementation.

The (R)ASO technique is a very powerful tool as it determines the preferred models
by evaluating the degree of satisfaction of all preference rules. Thus, it compares two
models even in the absence of common preferences; and the preference relation between
the two models can be established directly. In more detail, the RASO technique considers
the structure of preference rules by associating a degree of satisfaction to choice options
and introduces a natural ordering among preferences. As in the case of PSM semantics,
the (R)ASO semantics also compares and, consequently, discards models which are not
comparable using the PAS technique. For instance, for the program 〈P1,Φ1〉, presented in
the Introduction, RASO discards M1, having the second best option of drink, even if this is
the unique possible choice in the presence of fish.

More specifically, the preference relation w used in the PSM approach is a preorder
relation as it is reflexive and transitive; it determines equivalent answer set classes and
establishes the partial preference order among the above mentioned classes. Consequently
the preferred answer sets are those appearing in the preferred classes. It should be noted
that PSM semantics requires the use of the transitive property in order to derive, on the
basis of relations obtained by the direct comparison of pairs of models, new preference
relations. On the contrary, the (R)ASO semantics uses a strict preference relation which
is just asymmetric and it does not require the application of the transitive property to
compare solutions.

The PAS semantics, proposed here, compares two solutions on the basis of their com-
mon preferences by introducing the concept of comparable models and by considering a
refinement of the natural order among preference choices. Thus, it can be seen as an exten-
sion of PSM semantics that also uses additional information derived from the structure of
preference rules, but which instead of comparing models transitively, compares models by
considering the transitive closure of the (ground) preference rules.

A novelty of PAS semantics is the consideration of the structural information of prefe-
rence rules. It introduces the concept of comparable models in order to avoid comparing
models which (in our opinion) should not be compared as they are associated with alterna-
tive decisions. Moreover, it proposes a refinement of the natural order among preferences in
order to define the order of choices. RASO semantics establishes the relational order among
atoms appearing in Φ by means of the corresponding dependency graph G(Φ) and cannot
treat the case of “mutually dependent” choices. The stratification algorithm, proposed in
this paper, overcomes this problem by considering the collapsed graph G

C

Π
, which is acyclic

by construction and is not sensitive to “syntactic” changes. Moreover, in RASO semantics
the stratification of preference rules is established by considering their head atoms; whereas
in PAS semantics levels are assigned to rules on the basis of the body atoms, following the
intuition that they describe the contexts of choices. Thus, the stratification proposed here
always assigns preference facts to the first level because the level of a rule is fixed by looking
at the level of body atoms.

Some of the advantages of the adopted approach are clarified by the following example.

516

On the Semantics of Logic Programs with Preferences

Example 8 The problem defined by means of the prioritized program 〈P8, Φ8〉 consists in
selecting the colors of the trousers and the shirt, having only black or blue trousers (r1)
and white, yellow or red shirts (r2) available. The fashion consultant suggests that blue
trousers are better than black ones (%1); a white shirt is better than a yellow shirt (%2);
and in the case of black trousers a white shirt is preferred to a red one (%3). Moreover,
blue trousers do not go with a white shirt (c1) and a red shirt does not go with blue
trousers (c2).

P8 : r1 : black⊕ blue← Φ8 : %1 : blue > black←
r2 : white⊕ yellow⊕ red← %2 : white > yellow←
c1 : ← blue, white %3 : white > red← black
c2 : ← red, blue

The program P8 has four stable models: M1 = {black, white}, M2 = {black, yellow},
M3 = {blue, yellow} and M4 = {black, red}. In order to define the stratification of
preference rules, both RASO and PAS semantics firstly assign the level to atoms: first level
to blue, black and yellow and second level to white and red. In the second step the
RASO approach, by considering the maximum level of head atoms, assigns %1 to the first
level and %2 and %3 to the second level, whereas PAS defines the level of preferences on the
basis of body atoms and assigns %1 and %2 to the first level and %3 to the second level. Note
that in this case the order of %2 is relevant for determining the preferred models. In fact,
RASO gives only M3, while PAS returns M1 and M3 as preferred models. 2

A formal comparison of the three semantics can be carried out only for the class of
programs where the specific definition of stratification is not significant. Moreover, as
the PSM semantics is defined only for prioritized programs 〈P,Φ〉 where Φ consists only
of binary facts (preference rules are rewritten into preference facts), in the following the
comparison is carried out by considering programs whose preference rules consist of only
facts. For such a class of programs the closure Φ∗ used in the PSM and PAS semantics
coincide.

Given a prioritized program 〈P,Φ〉 we denote with GSEM = (V, ESEM) a preference
graph on the stable models of P, where V = SM(P) denotes the set of stable models
of P and ESEM denotes the preference relation = defined by the semantics SEM ∈
{PSM,ASO,PAS}. In particular, ESEM consists of the arcs (Mi,Mj) such that Mi = Mj

holds in the SEM semantics. Therefore, the comparison of the different semantics can be
performed by analyzing the corresponding preference graphs. A stable model Mi is preferred
under the SEM semantics if there is no arc (Mj ,Mi) in GSEM.

The following example shows the relation between the PSM and PAS semantics.

Example 9 Consider the prioritized program 〈P9,Φ9〉 below

P9 : fish⊕ beef⊕ pork⊕ chicken← Φ9 : fish > beef←
white← fish chicken > pork←
red← beef red > white←
beer← pork red > water←
water← chicken beer > water←

517

Greco, Trubitsyna, & Zumpano

The program has four stable models: M1 = {fish, white}, M2 = {beef, red}, M3 =
{pork, beer} and M4 = {chicken, water}, whereas the direct preference relations, for the
PSM semantics, are as follows: M1 w M2, M2 w M1, M3 w M4, M4 w M3 and M2 w M4.

Consequently, we have that the graph GPSM consists of four nodes (M1,M2,M3 and
M4) and four arcs: M1 = M3, M1 = M4, M2 = M3 and M2 = M4. Therefore, the preferred
models are M1 and M2.

Regarding the PAS semantics, we have that only the relation M2 = M4 holds and, thus,
there are three preferred stable models, namely M1 and M2 and M3. 2

Theorem 2 For any prioritized program 〈P, Φ〉 such that Φ consists in preference facts,
PSM(〈P,Φ〉) ⊆ PAS(〈P, Φ〉).
Proof. Consider the graphs GPSM = (V, EPSM) and GPAS = (V,EPAS). Both graphs are
acyclic and EPAS ⊆ EPSM. As the two graphs are acyclic, by adding edges which do not
create cycles, the number of nodes without incoming edges decreases. Therefore, the set of
nodes without incoming edges in GPAS contains all nodes without incoming edges in GPSM
and, consequently, PSM(〈P, Φ〉) ⊆ PAS(〈P, Φ〉). 2

We now analyze the relation between ASO and PAS semantics. First of all note that,
as observed in the Introduction, the ASO semantics is sensitive to syntax changes. For
instance, the prioritized program

a⊕ b⊕ c← ρ1 = a > b > c←
ρ2 = b > a←

has two preferred stable models: M1 = {a} and M2 = {b}. However, for the program below

a⊕ b⊕ c← ρ′1 = a > b←
ρ′′1 = b > c←
ρ2 = b > a←

derived from the rewriting of the rule ρ1, M3 = {c} is also a preferred model.

Thus, we consider a special class of constraints which is not sensitive to “syntactic”
changes. Since every (ground) prioritized program Π = 〈P,Φ〉, such that Φ∗ can be par-
titioned into n strata, with n > 1, can be rewritten into a program Π̂ = 〈P̂, Φ̂〉, such that
Π̂ and Π are equivalent under the PAS semantics (as shown in the proof of Proposition
1), and may not be equivalent under the RASO semantics (as all rules in Φ̂ belong to the
unique stratum 0), we continue to consider programs Π = 〈P,Φ〉 where Φ∗ consists of a
single stratum and, in particular, of facts.

Given a prioritized program 〈P, Φ〉 such that Φ consists only of facts, we denote with

Φ+ = {a1 > · · · > an ← | ai > ai+1 ← ∈ Φ∗ for i ∈ [1..n-1] ∧ n is maximum }
the set of preference rules which can be obtained from the “merging” of ground prefe-

rence facts.

Lemma 2 Let 〈P, Φ〉 be a prioritized program such that Φ consists only of preference facts
and ground(Φ) = Φ+. Then, ASO(〈P,Φ〉) ⊆ PAS(〈P, Φ〉).

518

On the Semantics of Logic Programs with Preferences

Proof. Consider the two graphs GASO = (V, EASO) and GPAS = (V,EPAS). (M1, M2) ∈
EPAS means that M1 = M2, i.e. that

i) there is a ground rule %1 : e1 > e2 ← ∈ Φ∗ such that e1 ∈ M1−M2, e2 ∈ M2−M1, and

ii) there is no ground rule %2 : e3 > e4 ← ∈ Φ∗, such that e3 ∈ M2−M1 and e4 ∈ M1−M2.

This implies that if ground(Φ) = Φ+

i) there must be a ground rule σ1 : · · · > e1 > · · · > e2 > · · · ← ∈ Φ+ such that
e1 ∈ M1 −M2, e2 ∈ M2 −M1, and

ii) there must not be ground rule σ2 : · · · > e3 > · · · > e4 > · · · ← ∈ Φ+, such that
e3 ∈ M2 −M1 and e4 ∈ M1 −M2.

Therefore, M1 = M2 also with respect to the ASO semantics, and the graph GASO con-
tains an arc (M1,M2). Consequently, as EPAS ⊆ EASO, ASO(〈P,Φ+〉) ⊆ PAS(〈P,Φ+〉). 2

To find a tight relation between the two semantics, we consider a further restriction of
Φ+ which is obtained by deleting atoms which do not appear in any model from the ground
preference rules:

Φ̂
+

= {a1 > · · · > an ← | ai > ai+1 ← ∈ Φ∗ for i ∈ [1..n-1] ∧ n is maximum ∧
∃M ∈ SM(P) s.t. ai, ai+1 ∈ M}

Theorem 3 Let 〈P,Φ〉 be a prioritized program such that Φ consists only of preference
facts and ground(Φ) = Φ̂+. Then, ASO(〈P, Φ〉) = PAS(〈P, Φ〉).

Proof. ASO(〈P, Φ〉) ⊆ PAS(〈P, Φ〉) derives from Lemma 2, as Φ̂+ is derived from Φ+ by
deleting nodes which do not appear in any model and do not influence the relation = in the
ASO semantics.

To show that ASO(〈P, Φ〉) ⊇ PAS(〈P, Φ〉) consider the relation in the ASO semantics.
M1 = M2 means that

1. there is a ground rule σ1 : · · · > e1 > · · · > e2 > · · · ← ∈ Φ̂+ such that e1 ∈ M1−M2,
e2 ∈ M2 −M1, and

2. there is no ground rule σ2 : · · · > e3 > · · · > e4 > · · · ← ∈ Φ+, such that
e3 ∈ M2 −M1 and e4 ∈ M1 −M2.

This implies that if ground(Φ) = Φ̂+

1. there must be a ground rule %1 : e1 > e2 ← ∈ Φ∗ such that e1 ∈ M1 − M2, e2 ∈
M2 −M1, and

2. there is no ground rule %2 : e3 > e4 ← ∈ Φ∗, such that e3 ∈ M2−M1 and e4 ∈ M1−M2.

519

Greco, Trubitsyna, & Zumpano

Therefore, M1 = M2 also holds with respect to the PAS semantics. Consequently,
as EASO ⊆ RPAS , ASO(〈P,Φ+〉) ⊇ PAS(〈P,Φ+〉). 2

An extension of the ASO semantics has been proposed by Brewka (2004) and Brewka,
Niemela, and Truszczynski (2005). In more detail, Brewka (2004) provided a preference
description language, allowing to express complex preferences by combining qualitative and
quantitative penalty based preferences, whereas Brewka et al. (2005) proposed a frame-
work to specify problem solutions (outcomes) and preferences among them. The latter
proposal combines ideas from answer-set programming, answer-set optimization and CP-
nets (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004). The semantics that we have
proposed in this paper is different from both those proposed by Brewka (2004) and Brewka
et al. (2005), as in some cases it returns different results (see Examples 2 and 4).

6. Other Approaches

Besides the approaches managing preferences among atoms, some other works proposed in
the literature specify preferences among rules.

Early proposals expressing preferences on rules focus on Default Logic (Brewka & Eiter,
2000; Delgrande et al., 2000b; Rintanen, 1998), whereas more recently the emphasis has
been given to logic programs. In this regard, different proposals have been developed for
representing and reasoning about user preferences such as ordered logic programs (Del-
grande et al., 2000a; Van Nieuwenborgh & Vermeir, 2002, 2004) and preferred answer sets
of extended logic programs (Brewka & Eiter, 1999). Most of the approaches propose an
extension of Gelfond and Lifschitz’s extended logic programming by adding preference in-
formation (Delgrande et al., 2003; Wang et al., 2000; Zhang & Foo, 1997). Other proposals
attempt to extend the well founded semantics to logic programs with preferences (Brewka,
1996; Schauba & Wang, 2001), and an extension of van-Gelder’s alternating fixpoint theory
for logic programs with priorities has been proposed by Wang et al. (2000).

Gelfond and Son (1997) have proposed a methodology of reasoning with prioritized
default in the language of logic programming under answer set semantics. This approach
enables the specification of preferences among rules and allows the definition of a set of
default rules which must be satisfied as well as a second set of default rules which could be
ignored.

Ordered logic programs have been introduced by Delgrande et al. (2000a) as extended
logic programs whose rules are subject to a strict partial order with both static and dynamic
preferences. This approach is fully prescriptive as it enforces the ordering information during
the construction of the answer set. The original program is transformed into a second
extended logic program in which preferences are taken into account in the sense that the
answer sets obtained by evaluating the transformed theory correspond to the preferred
answer sets of the original theory.

Another methodology in which logic programs containing preferences on the set of rules
can be translated into logic programs under stable model semantics has been proposed by
Delgrande et al. (2003).

520

On the Semantics of Logic Programs with Preferences

7. Conclusions

In this paper the case of preferences involving atoms in logic programming has been studied.
In particular, the behavior of the technique proposed by Sakama and Inoue (2000) and
Brewka et al. (2003) has been analyzed and a semantics, interpreting each preference rule as
a tool for representing a choice over alternative options, has been proposed. Specifically, the
proposed approach extends the PSM semantics by considering a refinement of the natural
order among preferences and introduces the concept of comparable models. Preferences and
logic programs are examined together in order to determine the choice order and the sets
of models which can be compared.

The new semantics has been compared with the PSM and the ASO semantics. Com-
plexity analysis has also been performed showing that the use of additional information,
regarding the preference order and the sets of non comparable models, does not increase the
complexity of computing preferred stable models. Although the semantics presented here
has the same complexity as other approaches proposed in the literature, the advantage lies
in the fact that it seems to better capture the intuitive meaning of prioritized programs by
also considering the structural information of preference rules.

Prioritized reasoning in logic programming under the PAS semantics can be easily
implemented on the top of deductive systems based on stable model semantics such as
DeRes, DLV, Smodels (Cholewinski, Marek, & Truszczynski, 1996; Leone, Pfeifer, Faber,
Calimeri, & Dell’Armi, 2002; Syrjanen & Niemela, 2001). An architecture and a system
prototype implementing prioritized reasoning (with different semantics) on the top of the
DLV system has been presented by Caroprese, Trubitsyna, and Zumpano (2007).

Acknowledgments

A preliminary version of the papers has been presented by Greco, Trubitsyna, and Zumpano
(2006). The authors would like to thank the anonymous referees for their useful suggestions
and Filippo Furfaro for his comments.

References

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D. (2004). CP-nets: A tool
for representing and reasoning with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21, 135-191.

Brewka, G. (1996). Well-Founded Semantics for Extended Logic Programs with Dynamic
Preferences. Journal of Artificial Intelligence Research, 4, 19-36.

Brewka, G., Eiter, T. (1999). Preferred Answer Sets for Extended Logic Programs. Artificial
Intelligence, 109(1-2), 297-356.

Brewka, G., Eiter, T. (2000). Prioritizing Default Logic. Intellectics and Computational
Logic, Kluwer, 27-45.

Brewka, G. (2002). Logic programming with ordered disjunction. Proceedings 18th National
Conference on Artificial Intelligence (AAAI/IAAI), 100-105.

521

Greco, Trubitsyna, & Zumpano

Brewka, G., Niemela, I., Truszczynski, M. (2003). Answer Set Optimization. Proceedings
18th International Joint Conference on Artificial Intelligence (IJCAI), 867-872.

Brewka, G. (2004). Complex Preferences for Answer Set Optimization, Proceedings 9th
International Conference on Principles of Knowledge Representation and Reasoning
(KR), 213-223.

Brewka, G., Niemela, I., Truszczynski, M. (2005). Prioritized Component Systems. Proceed-
ings 20th National Conference on Artificial Intelligence (AAAI), 596-601.

Caroprese, L., Trubitsyna, I., Zumpano, E. (2007). Implementing Prioritized Reasoning in
Logic Programming. Proceedings International Conference on Enterprice Information
Systems (ICEIS), 94-100.

Cholewinski, P., Marek, V. W., Truszczynski, M. (1996). Default Reasoning System DeReS.
Proceedings 5th International Conference on Principles of Knowledge Representation
and Reasoning (KR), 518-528.

Delgrande, J., P., Schaub, T., Tompits, H. (2000). Logic Programs with Compiled Preferen-
ces. Proceedings 14th European Conference on Artificial Intelligence (ECAI), 464-468.

Delgrande, J., P., Schaub, T., Tompits, H. (2000). A Compilation of Brewka and Eiter’s
Approach to Prioritization. Proceedings European Workshop on Logics in Artificial
Intelligence (JELIA), 376-390.

Delgrande, J., P., Schaub, T., Tompits, H. (2003). A Framework for Compiling Preferences
in Logic Programs. Theory and Practice of Logic Programming, 3(2), 129-187.

Eiter, T., Gottlob, G., Leone, N. (1997). Abduction from Logic Programs: Semantics and
Complexity. Theoretical Computer Science 189(1-2), 129–177.

Eiter, T., Gottlob, G., Mannila, H. (1997). Disjunctive Datalog. ACM Transaction On
Database Systems, 22(3), 364–418, 1997.

Gelfond, M., Lifschitz, V. (1988). The Stable Model Semantics for Logic Programming,
Proceedings International Conference on Logic Programming (ICLP), 1070–1080.

Gelfond, M., Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing, 9, 365–385.

Gelfond, M., Son, T.C. (1997). Reasoning with prioritized defaults. Proc. 3rd International
Workshop on Logic Programming and Knowledge Representation (LPKR), 164-223.

Greco, S., Trubitsyna, I., Zumpano, E. (2006). On the Semantics of Logic Programs with
Preferences. Proceedings 10th European Conference on Logics in Artificial Intelligence
(JELIA), 203-215.

Grell, S., Konczak, K., Schaub, T. (2005). nomore<: A System for Computing Preferred
Answer Sets. Proceedings 8th International. Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), 394-398.

Janhunen, T., Niemela, I., Simons, P., You, J.-H. (2000). Unfolding partiality and disjunc-
tions in stable model semantics, Proceedings 7th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), 411-419.

522

On the Semantics of Logic Programs with Preferences

Inoue, K., Sakama, S. (1998). Negation as Failure in the Head. Journal of Logic Program-
ming, 35(1), 39-78.

Kakas, A. C., Kowalski, R. A., Toni, F. (1992). Abductive Logic Programming. Journal of
Logic anc Computation, 2(6), 719-770.

Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob, G., Ianni,
G., Ielpa, G., Koch, K., Perri, S., Polleres, A. (2002). The DLV System. Proceedings
8th European Conference on Logics in Artificial Intelligence (JELIA), 537-540, 2002.

Minker, J. (1982). On Indefinite Data Bases and the Closed World Assumption, Proc. 6-th
Conf. on Automated Deduction, 292-308, 1982.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Rintanen J. (1998). Complexity of Prioritized Default Logics, Journal of Artificial Intelli-
gence Research, 9, 423-461.

Sakama, C., Inoue, K. (2000). Priorized logic programming and its application to common-
sense reasoning. Artificial Intelligence, 123, 185-222.

Schaub, T., Wang , K. (2001). A Comparative Study of Logic Programs with Preference.
Proceedings 17th International Joint Conference on Artificial Intelligence (IJCAI),
597-602.

Syrjanen, T., and Niemela, I. (2001). The Smodels System. Proceedings International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR), 434-438.

Van Nieuwenborgh, D., Vermeir, D. (2002). Preferred Answer Sets for Ordered Logic
Programs. Proceedings 10th European Conference on Logics in Artificial Intelligence
(JELIA), 432-443.

Van Nieuwenborgh, D., Vermeir, D. (2002). Ordered Diagnosis, Proceedings 10th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), 244-258.

Van Nieuwenborgh, D., Heymans, S., Vermeir, D. (2004). On Programs with Linearly Or-
dered Multiple Preferences. Proceedings International Conference on Logic Program-
ming (ICLP), 180-194.

Wakaki, T., Inoue, K., Sakama, C., Nitta, K. (2003). Computing Preferred Answer Sets
in Answer Set Programming. Proceedings 10th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), 259-273.

Wakaki, T., Inoue, K., Sakama, C., Nitta, K. (2004). The PLP System. Proceedings 9th
European Conference on Logics in Artificial Intelligence (JELIA), 706-709.

Wang, K., Zhou, L., Lin, F. (2000). Alternating Fixpoint Theory for Logic Programs with
Priority. Proceedings First International Conference on Computational Logic, 164-178.

Zhang, Y., Foo, N. (1997). Answer sets for prioritized logic programs. Proceedings Interna-
tional Logic Programming Symposium (ILPS), 69-83.

523

