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Axiomati Foundations for Ranking SystemsAlon Altman epsalon�stanford.eduDepartment of Computer SieneStanford UniversityStanford, CA 94305-9020 USAMoshe Tennenholtz moshet�ie.tehnion.a.ilFaulty of Industrial Engineering and ManagementTehnion � Israel Institute of TehnologyHaifa 32000, Israel AbstratReasoning about agent preferenes on a set of alternatives, and the aggregation of suhpreferenes into some soial ranking is a fundamental issue in reasoning about multi-agentsystems. When the set of agents and the set of alternatives oinide, we get the rankingsystems setting. A famous type of ranking systems are page ranking systems in the ontextof searh engines. In this paper we present an extensive axiomati study of ranking systems.In partiular, we onsider two fundamental axioms: Transitivity, and Ranked Independeneof Irrelevant Alternatives. Surprisingly, we �nd that there is no general soial ranking rulethat satis�es both requirements. Furthermore, we show that our impossibility result holdsunder various restritions on the lass of ranking problems onsidered. However, whentransitivity is weakened, an interesting possibility result is obtained. In addition, we showa omplete axiomatization of approval voting using ranked IIA.1. IntrodutionThe ranking of agents based on other agents' input is fundamental to multi-agent systems(see e.g. Resnik, Zekhauser, Friedman, & Kuwabara, 2000). Moreover, it has beome aentral ingredient of a variety of Internet sites, where perhaps the most famous examplesare Google's PageRank algorithm (Page, Brin, Motwani, & Winograd, 1998) and eBay'sreputation system (Resnik & Zekhauser, 2001).This basi problem introdues a new soial hoie model. In the lassial theory ofsoial hoie, as manifested by Arrow (1963), a set of agents/voters is alled to rank a set ofalternatives. Given the agents' input, i.e. the agents' individual rankings, a soial rankingof the alternatives is generated. The theory studies desired properties of the aggregationof agents' rankings into a soial ranking. In partiular, Arrow's elebrated impossibilitytheorem (Arrow, 1963) shows that there is no aggregation rule that satis�es some minimalrequirements, while by relaxing any of these requirements appropriate soial aggregationrules an be de�ned. The novel feature of the ranking systems setting is that the set ofagents and the set of alternatives oinide. Therefore, in suh setting one may need toonsider the transitive e�ets of voting. For example, if agent a reports on the importaneof (i.e. votes for) agent b then this may in�uene the redibility of a report by b on theimportane of agent c; these indiret e�ets should be onsidered when we wish to aggregatethe information provided by the agents into a soial ranking.©2008 AI Aess Foundation. All rights reserved.



Altman & TennenholtzNotie that a natural interpretation/appliation of this setting is the ranking of Internetpages. In this ase, the set of agents represents the set of Internet pages, and the links froma page p to a set of pages Q an be viewed as a two-level ranking where agents in Q arepreferred by agent (page) p to the agents (pages) whih are not in Q. The problem of �ndingan appropriate soial ranking in this ase is in fat the problem of (global) page ranking.Partiular approahes for obtaining a useful page ranking have been implemented by searhengines suh as Google (Page et al., 1998).The theory of soial hoie onsists of two omplementary axiomati perspetives:
• The desriptive perspetive: given a partiular rule r for the aggregation of individualrankings into a soial ranking, �nd a set of axioms that are sound and omplete for r.That is, �nd a set of requirements that r satis�es; moreover, every soial aggregationrule that satis�es these requirements should oinide with r. A result showing suh anaxiomatization is termed a representation theorem and it aptures the exat esseneof (and assumptions behind) the use of the partiular rule.
• The normative perspetive: devise a set of requirements that a soial aggregation ruleshould satisfy, and try to �nd whether there is a soial aggregation rule that satis�esthese requirements.Muh e�ort has been invested in the desriptive approah in the framework of the lassialtheory of soial hoie. In that setting, representation theorems have been presented tomajor voting rules suh as the majority rule (May, 1952; see Moulin, 1991 for an overview).In the ranking systems setting, we have suessfully applied the desriptive perspetiveby providing a representation theorem (Altman & Tennenholtz, 2005b) for the well-knownPageRank algorithm (Page et al., 1998), whih is the basis of Google's searh tehnology(Brin & Page, 1998).An exellent example for the normative perspetive is Arrow's impossibility theoremmentioned above. Tennenholtz (2004) has presented some preliminary results for rankingsystems where the set of voters and the set of alternatives oinide. However, the axiomspresented in that work onsist of several very strong requirements whih naturally lead to animpossibility result. Still in the normative approah to ranking systems, we have takled theissue of inentives (Altman & Tennenholtz, 2006b, 2006), with both positive and negativeresults. Reently, we have onsidered a variation of ranking systems, where a personalizedranking is generated for every partiipant in the system (Altman & Tennenholtz, 2006a),with surprisingly di�erent results.In this paper we provide an extensive study of ranking systems. We introdue twofundamental axioms. One of these axioms aptures the transitive e�ets of voting in rank-ing systems, and the other adapts Arrow's well-known independene of irrelevant alterna-tives (IIA) axiom to the ontext of ranking systems. Surprisingly, we �nd that no generalranking system an simultaneously satisfy these two axioms! This result means that if wewould like to fully apture transitive e�ets, ranking deisions must be made globally, or bebased on numeri alulations. We further show that our impossibility result holds undervarious restritions on the lass of ranking problems onsidered.On the other hand, we show a positive result for the ase when the transitivity axiom isrelaxed. This new ranking system is pratial and useful and an algorithm is provided for474



Axiomati Foundations for Ranking Systemsits omputation. Finally, we use our IIA axiom to present a positive result in the form ofa representation theorem for the well-known approval voting ranking system, whih ranksthe agents based on the number of votes reeived. This axiomatization shows that whenignoring transitive e�ets, there is only one ranking system that satis�es our IIA axiom.This paper is strutured as follows: Setion 2 formally de�nes our setting and the notionof ranking systems. Setions 3 and 4 introdue our axioms of Transitivity and Ranked Inde-pendene of Irrelevant Alternatives respetively. Our main impossibility result is presentedin Setion 5, and further strengthened in Setion 6. Our main positive result, in the formof a ranking system satisfying a weaker version of transitivity is given in Setion 7, while anaxiomatization for the Approval Voting ranking system is presented in Setion 8. Finally,some onluding remarks are given in Setion 9.2. Ranking SystemsBefore desribing our results regarding ranking systems, we must �rst formally de�ne whatwe mean by the words �ranking system� in terms of graphs and linear orderings:De�nition 2.1. Let A be some set. A relation R ⊆ A ×A is alled an ordering on A if itis re�exive, transitive, and omplete. Let L(A) denote the set of orderings on A.Notation 2.2. Let � be an ordering, then ≃ is the equality prediate of �, and ≺ is thestrit order indued by �. Formally, a ≃ b if and only if a � b and b � a; and a ≺ b if andonly if a � b but not b � a.Given the above we an de�ne what a ranking system is:De�nition 2.3. Let GV be the set of all direted graphs with vertex set V . A rankingsystem F is a funtional that for every �nite vertex set V maps graphs G ∈ GV to anordering �F
G∈ L(V ). If F is a partial funtion then it is alled a partial ranking system,otherwise it is alled a general ranking system.One an view this setting as a variation/extension of the lassial theory of soial hoieas modeled by Arrow (1963). The ranking systems setting di�ers in two main properties.First, in this setting we assume that the set of voters and the set of alternatives oinide,and seond, we allow agents only two levels of preferene over the alternatives, as opposedto Arrow's setting where agents ould rank alternatives arbitrarily.The two-level limitation is important in order to avoid Arrow-style impossibility results.Indeed, in the dihotomous (i.e. two level) setting suh results do not apply (Bogomolnaia,Moulin, & Stong, 2005). Had we allowed general rankings as the input of the system, wewould have reahed impossibility results as a diret result of Arrow-style impossibility. Byadding the dihotomous limitation, we ensure that our results will be a onsequene of theo-inidene of the voters and alternatives and the related transitive e�ets.2.1 Examples of Ranking SystemsIn order to make the abstrat de�nition of ranking systems above more onrete, we shallnow give some examples of several well-known ranking systems. In order to de�ne thesesystems, and throughout this paper, we shall use the following notation:475



Altman & Tennenholtz
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b Figure 1: Example graph for ranking systems.Notation 2.4. Let G = (V,E) be some graph and v ∈ V be some vertex. Let PG(v) ,

{u|(u, v) ∈ E} and SG(v) , {u|(v, u) ∈ E} denote the predeessor and suessor sets of vin G respetively. When G is understood from ontext, we will sloppily use P (v) and S(v).Approval Voting is a very simple ranking system that ranks the agents aording to thenumber of votes (i.e. inoming edges) they have. Formally,De�nition 2.5. The approval voting ranking system AV is the ranking system de�ned by:
v1 �

AV
G v2 ⇔ |PG(v1)| ≤ |PG(v2)|Consider the graph in Figure 1. The AV ranking system would rank this graph a ≃ b ≺

f ≺ c ≃ d ≃ e based on the fat that the verties in {a, b}, {f}, and {c, d, e} have 0, 1, and2 predeessors respetively. A full axiomatization of the approval voting ranking system isgiven in setion 8.One major appliation of Ranking Systems is in the ontext of Internet pages. In thatontext, we represent the Internet as a direted graph, where the verties are websites, andthe edges are links between these websites. A prominent ranking system in this settingis PageRank (Page et al., 1998), whih is based on a random walk of the Internet graph.Namely, in this proess we start in a random page, and iteratively move to one of the pagesthat are linked to by the urrent page, assigning equal probabilities to eah suh page. Wede�ne the PageRank matrix whih aptures the random walk reated by the PageRankproedure:De�nition 2.6. Let G = (V,E) be a graph, and assume V = {v1, v2, . . . , vn}. The PageR-ank Matrix AG (of dimension n× n) is de�ned as:
[AG]i,j =

{
1/|SG(vj)| (vj , vi) ∈ E
0 Otherwise.The PageRank proedure will rank pages aording to the stationary probability distri-bution obtained in the limit of the above random walk; this is formally de�ned as follows:De�nition 2.7. Let G = (V,E) be some graph, and assume V = {v1, v2, . . . , vn}. Let

0 ≤ d < 1 be a damping fator. Let r be the unique solution of the system (1 − d) · AG ·
r + d · ( 1 1 · · · 1 )T = r where ∑

ri = n. If there is no unique solution, then theranking is not de�ned. Otherwise, the PageRank PRG(vi) of a vertex vi ∈ V is de�ned as
PRG(vi) = ri. The PageRank ranking system is a ranking system that for the vertex set
V maps G to �PR

G , where �PR
G is de�ned as: for all vi, vj ∈ V : vi �

PR
G vj if and only if

PRG(vi) ≤ PRG(vj). 476



Axiomati Foundations for Ranking Systems
a

b

cdFigure 2: Example of TransitivityIt an be shown that for d > 0, there is indeed a unique solution and thus the rankingsystem is a general one. However, when d = 0 this ranking system beomes a partial rankingsystem, as it is not always well de�ned.In the graph in Figure 1, for d = 0.2 the PageRank values assigned for a . . . f are
(0.2, 0.2, 0.52, 1.7, 1.77, 1.61) giving the ranking a ≃ b ≺ c ≺ f ≺ d ≺ e. Note that thisranking di�ers from the one assigned by approval voting, that neither of the rankings isa re�nement of the other. This example shows that PageRank and Approval Voting aredistint ranking systems, and that the two may disagree on the ranking of two verties. Wewill soon see that these systems satisfy two mutually exlusive properties of ranking systems.3. TransitivityA basi property one would assume of ranking systems is that if an agent a's voters areranked higher than those of agent b, then agent a should be ranked higher than agent b.This notion is formally aptured below:De�nition 3.1. Let F be a ranking system. We say that F satis�es strong transitivity iffor all graphs G = (V,E) and for all verties v1, v2 ∈ V : Assume there is a 1-1 mapping (butnot neessarily onto) f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v). Then, v1 � v2.Further assume that either f is not onto or for some v ∈ P (v1): v ≺ f(v). Then, v1 ≺ v2.To explain how the formal de�nition aptures the intuition, onsider the simple graph

a→ b→ cOur intuition tells us that c who is at the end of the vote hain should be more trusted,and thus ranked higher than b, this is beause of the fat that b is more trusted than a, dueto b having a vote ompared to a having none. This intuition is orretly aptured by thede�nition above: a must be ranked stritly below b beause any funtion mapping P (a) = ∅to P (b) = {a} is not onto, and b must be ranked stritly below c beause the trivial mappingfrom P (b) = {a} to P (c) = {b} satis�es a ≺ b, and thus we get b ≺ c, as expeted.For a more involved example, onsider the graph G in Figure 2 and any ranking system
F that satis�es strong transitivity. F must rank vertex d below all other verties, as it has nopredeessors, unlike all other verties. If we assume that a �F

G b, then by strong transitivitywe must onlude that b �F
G c as well. But then we must onlude that b ≺F

G a (as b'spredeessor a is ranked lower than a's predeessor c, and a has an additional predeessor d),whih leads to a ontradition. Given b ≺F
G a, again by transitivity, we must onlude that

c ≺F
G b, so the only ranking for the graph G that satis�es strong transitivity is d ≺F

G c ≺F
G

b ≺F
G a. 477



Altman & TennenholtzTennenholtz (2004) has suggested an algorithm that de�nes a ranking system that sat-is�es strong transitivity by iteratively re�ning an ordering of the verties starting from theranking suggested by approval voting.Note that the PageRank ranking system does not satisfy strong transitivity. This is dueto the fat that PageRank redues the weight of links (or votes) from nodes whih have ahigher out-degree. Thus, assuming Yahoo! and Mirosoft are equally ranked, a link fromYahoo! means less than a link from Mirosoft, beause Yahoo! links to more external pagesthan does Mirosoft. Noting this fat, we an weaken the de�nition of transitivity to requirethat the predeessors of the ompared agents have an equal out-degree:De�nition 3.2. Let F be a ranking system. We say that F satis�es weak transitivity iffor all graphs G = (V,E) and for all verties v1, v2 ∈ V : Assume there is a 1-1 mapping
f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v) and |S(v)| = |S(f(v))|. Then, v1 � v2.Further assume that either f is not onto or for some v ∈ P (v1): v ≺ f(v). Then, v1 ≺ v2.For an example of weak transitivity, one an reonsider the strong transitivity exampleabove, as it still applies to weak transitivity.The PageRank ranking system satis�es this weakened version of transitivity. This is dueto the fat that:

PR(v1) =
∑

v∈P (v1)

PR(v)

|S(v)|
≤

∑

v∈P (v1)

PR(f(v))

|S(f(v))|
≤

∑

v∈P (v2)

PR(v)

|S(v)|
= PR(v2).In the ase where v ≺ f(v) for some v ∈ P (v1) the �rst inequality is strit, and if f is notonto the seond inequality is strit.4. Ranked Independene of Irrelevant AlternativesA standard assumption in soial hoie settings is that an agent's relative rank should onlydepend on (some property of) the agents who have voted for them. Suh axioms are usuallyalled independene of irrelevant alternatives (IIA) axioms. In our setting, suh IIA axiomsmean that an agent's rank must only depend on a property of its immediate predeessors.In our setting, we require the relative ranking of two agents must only depend on thepairwise omparisons of the ranks of their predeessors, and not on their identity or ardinalvalue. Our IIA axiom, alled ranked IIA, di�ers from the one suggested by Arrow (1963) inthe fat that we do not onsider the identity of the voters, but rather their relative rank.For example, onsider the graph in Figure 3. Furthermore, assume a ranking system Fhas ranked the verties of this graph as following: a ≃ b ≺ c ≃ d ≺ e ≃ f . Now look atthe omparison between c and d. c's predeessors, a and b, are both ranked equally, andboth ranked lower than d's predeessor f . This is also true when onsidering e and f � e'spredeessors c and d are both ranked equally, and both ranked lower than f 's predeessor

e. Therefore, if we agree with ranked IIA, the relation between c and d, and the relationbetween e and f must be the same, whih indeed it is � both c ≃ d and e ≃ f . However,this same situation also ours when omparing c and f (c's predeessors a and b are equallyranked and ranked lower than f 's predeessor e), but in this ase c ≺ f . All three asesinvolve omparing two verties, one with two weaker predeessors and one with one stronger478
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Figure 3: An example of RIIA.
a

b

Figure 4: Graph for pro�le 〈(1, 1), (2)〉.predeessor, but the outome of these omparisons in not onsistent. Therefore, we anonlude that the ranking system F whih produed these rankings does not satisfy rankedIIA.To formally de�ne this ondition, one must onsider all possibilities of omparing twonodes in a graph based only on ordinal omparisons of their predeessors. We all thesepossibilities omparison pro�les:De�nition 4.1. A omparison pro�le is a pair 〈a,b〉 where a = (a1, . . . , an), b = (b1, . . . , bm),
a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an, and b1 ≤ b2 ≤ · · · ≤ bm. Let P be the set ofall suh pro�les.A ranking system F , a graph G = (V,E), and a pair of verties v1, v2 ∈ V are said tosatisfy suh a omparison pro�le 〈a,b〉 if there exist 1-1 mappings f1 : P (v1) 7→ {1 . . . n}and f2 : P (v2) 7→ {1 . . . m} suh that given f : ({1} × P (v1)) ∪ ({2} × P (v2)) 7→ N de�nedas:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y)⇔ x �F
G y for all (i, x), (j, y) ∈ ({1} × P (v1)) ∪ ({2} × P (v2)).Consider the pro�le 〈(1, 1), (2)〉. This omparison pro�le illustrates the basi question ofomparing an agent who got two low-rank votes with one who got one high-rank vote. Thisquestion is undeided by transitivity alone, and if we do assume transitivity this omparisonpro�le is satis�ed by the pair (a, b) in the graph in Figure 4. The f funtion above simplymaps the predeessors of a and b to 1 and 2 respetively.We now require that for every suh pro�le the ranking system ranks the nodes onsis-tently: 479



Altman & TennenholtzDe�nition 4.2. Let F be a ranking system. We say that F satis�es ranked independene ofirrelevant alternatives (RIIA) if there exists a mapping f : P 7→ {0, 1} suh that for everygraph G = (V,E) and for every pair of verties v1, v2 ∈ V and for every omparison pro�le
p ∈ P that v1 and v2 satisfy, v1 �

F
G v2 ⇔ f(p) = 1.Notation 4.3. When the funtion f from the de�nition above is understood from ontext,we will use the notation a � b to mean f〈a,b〉 = 1, a ≺ b to mean f〈b,a〉 = 0, and a ≃ bto mean a � b and b � a.For example, in the example onsidered above, all of the pairs (c, d), (c, f), and (e, f)satisfy the omparison pro�le 〈(1, 1), (2)〉. As we have seen above, the pairs (c, d) and (e, f)entail that (1, 1) ≃ (2), while (c, f) entails that (1, 1) ≺ (2). These results ontradit eahother, and therefore we onlude that the ranking system that produed this ranking doesnot satisfy RIIA.The de�nition of RIIA formalizes the requirement of onsisteny in the omparisonssuh as the one we have seen above. It means that any ranking system satisfying RIIA mustdeide on the relative ranking of a and b in Figure 4, and (assuming transitivity) rank thesame in all other ourrenes of two weak vs. one strong predeessor.As RIIA is an independene property, the ranking system F=, that ranks all agentsequally, satis�es RIIA.The approval voting ranking system AV also satis�es RIIA. This is due to the fat thatfor any omparison pro�le 〈(a1, . . . , an), (b1, . . . bm)〉, the f funtion for AV ranks a � b i�

n ≤ m. We will use this fat in the axiomatization of approval voting we present in Setion8.5. ImpossibilityOur main result illustrates the impossibility of satisfying (weak) transitivity and RIIA si-multaneously.Theorem 5.1. There is no general ranking system that satis�es weak transitivity and RIIA.Proof. Assume for ontradition that there exists a ranking system F that satis�es weaktransitivity and RIIA. Consider �rst the graph G1 in Figure 5(a). Note that all vertiesin this graph have an out-degree of 2 or 0, and thus the out-degree requirement of weaktransitivity is trivially ful�lled. Now note that a1 and a2 must satisfy some omparisonpro�le pa = ((x, y), (x, y)) beause they have idential predeessors. Thus, by RIIA, a1 �
F
G1

a2 ⇔ a2 �
F
G1

a1, and therefore a1 ≃
F
G1

a2. By weak transitivity, it is easy to see that
c ≺F

G1
a1 and c ≺F

G1
b. If we assume b �F

G1
a1, then by weak transitivity, a1 ≺

F
G1

b whihontradits our assumption. So we onlude that c ≺F
G1

a1 ≺
F
G1

b.Now onsider the graph G2 in Figure 5(b). Again, the out-degree requirement of weaktransitivity is trivially satis�ed, and again by RIIA, a1 ≃
F
G2

a2. By weak transitivity, it iseasy to see that a1 ≺
F
G2

c and b ≺F
G2

c. If we assume a1 �
F
G2

b, then by weak transitivity,
b ≺F

G2
a1 whih ontradits our assumption. So we onlude that b ≺F

G2
a1 ≺

F
G2

c.Consider the omparison pro�le p = ((1, 3), (2, 2)). Given F , a1 and b satisfy p in G1(beause c ≺F
G1

a1 ≃
F
G1

a2 ≺
F
G1

b) and in G2 (beause b ≺F
G2

a1 ≃
F
G2

a2 ≺
F
G2

c). Thus,480



Axiomati Foundations for Ranking Systems
a1 b d

a2 (a) Graph G1

 a1

a2

db(b) Graph G2Figure 5: Graphs for the proof of Theorem 5.1by RIIA, a1 �
F
G1

b ⇔ a1 �
F
G2

b, whih is a ontradition to the fat that a1 ≺
F
G1

b but
b ≺F

G2
a1.This result is quite a surprise. Intuitively, we would like a ranking proedure to besensitive to the relative ranking of eah agent's voters (transitivity) and not to be in�uenedby any other seemingly irrelevant information (RIIA). Although these requirements mayseem omplementary, this impossibility theorem shows that these requirements are in fatontraditory.If we onsider transitivity as a basi requirement, we learn that any axiomatization ofa transitive ranking system annot be restrited to loal ordinal properties. That is, whendesigning a ranking system where transitivity is required, one must hoose whether to basethe system on some numeri omputation, or on ordinal axioms that operate on a globalsale.For example, the standard formalism for the PageRank ranking system in De�nition 2.7and an axiomatization of a similar system suggested by Palaios-Huerta and Volij (2004)are based on numerial omputation, while our suggested axiomatization (Altman & Ten-nenholtz, 2005b) uses ordinal axioms on a global sale. These axioms refer to invariants inrelations between ranking of di�erent graphs, rather than between pairs of verties in thesame graph.The PageRank example demonstrates that some ranking systems may be de�ned usingeither of these approahes. We feel that the numeri approah is more suitable for de�n-ing and exeuting ranking systems, while the global ordinal approah is more suitable foraxiomati lassi�ation.6. Relaxing GeneralityA hidden assumption in our impossibility result is the fat that we onsidered only generalranking systems. In this setion we analyze several speial lasses of graphs that relate toommon ranking senarios. 481



Altman & Tennenholtz6.1 Small GraphsA natural limitation on a preferene graph is a ap on the number of verties (agents) thatpartiipate in the ranking. Indeed, when there are three or less agents involved in the rank-ing, strong transitivity and RIIA an be simultaneously satis�ed. An appropriate rankingalgorithm for this ase is the one we suggested by Tennenholtz (2004). That algorithmsimply starts with ranking by in-degree and re�nes the ranking as required by strong transi-tivity until it is satis�ed. It is easy to see that the deisions for omparison pro�les possiblein a 3-vertex graph are ditated by either in-degree or transitivity. Spei�ally, the pro�le
〈(1, 3), (2, 2)〉 used in the proof above is impossible in suh graphs.When there are four or more agents, strong transitivity and RIIA annot be simulta-neously satis�ed (the proof is similar to that of Theorem 5.1, but with vertex d removedin both graphs). When �ve or more agents are involved, even weak transitivity and RIIAannot be simultaneously satis�ed, as implied by the proof of Theorem 5.1.6.2 Single Vote SettingAnother natural limitation on the domain of graphs that we might be interested in is therestrition of eah agent (vertex) to exatly one vote (suessor). For example, in the votingparadigm this ould be viewed as a setting where every agent votes for exatly one agent.The following proposition shows that even in this simple setting weak transitivity and RIIAannot be simultaneously satis�ed.Proposition 6.1. Let G1 be the set of all graphs G = (V,E) suh that |S(v)| = 1 for all
v ∈ V . There is no partial ranking system over G1 that satis�es weak transitivity and RIIA.Proof. Assume for ontradition that there is a partial ranking system F over G1 thatsatis�es weak transitivity and RIIA. Let f : P 7→ {0, 1} be the mapping from the de�nitionof RIIA for F .Let G1 ∈ G1 be the graph in Figure 6a. By weak transitivity, x1 ≃

F
G1

x2 ≺
F
G1

b ≺F
G1

a.
(a, b) satis�es the omparison pro�le 〈(1, 1, 2), (3)〉, so we must have (3) ≺ (1, 1, 2). Now let
G2 ∈ G1 be the graph in Figure 6b. By weak transitivity x1 ≃

F
G2

x2 ≺
F
G2

y ≺F
G2

a ≺F
G2

b.
(b, a) satis�es the omparison pro�le 〈(2, 3), (1, 4)〉, so we must have (1, 4) ≺ (2, 3).Let G3 ∈ G1 be the graph in Figure 6. By weak transitivity it is easy to see that
x1 ≃

F
G3
· · · ≃F

G3
x7 ≺

F
G3

y1 ≃
F
G3

y2 ≺
F
G3

c ≺F
G3

d. Furthermore, by weak transitivity weonlude that a ≺F
G3

b and a′ ≺F
G3

b′ from c ≺F
G3

d; and y1 ≺
F
G3

b from x3 ≺
F
G3

d. Nowonsider the vertex pair (c, b′). We have shown that x1 ≃
F
G3

x2 ≺
F
G3

y1 ≺
F
G3

b. So, (c, b′)satis�es the omparison pro�le 〈(1, 1, 2), (3)〉, thus by RIIA b′ ≺F
G3

c. Now onsider thevertex pair (b, a). We have already shown that a′ ≺F
G3

b′ ≺F
G3

c ≺F
G3

d. So, (a, b) satis�es theomparison pro�le 〈(2, 3), (1, 4)〉, thus by RIIA b ≺F
G3

a. However, we have already shownthat a ≺F
G3

b � a ontradition. Thus, the ranking system F annot exist.6.3 Bipartite SettingIn the world of reputation systems (Resnik et al., 2000), we frequently observe a distintionbetween two types of agents suh that eah type of agent only ranks agents of the other482
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x2 (a) Graph G1

a bx1

x2 y(b) Graph G2

a' b b' a
x1 
x2

x3 y1

x4 y2 dx5

x6

x7

() Graph G3Figure 6: Graphs from the proof of proposition 6.1type. For example buyers only interat with sellers and vie versa. This type of limitationis aptured by requiring the preferene graphs to be bipartite, as de�ned below.De�nition 6.2. A graph G = (V,E) is alled bipartite if there exist V1, V2 suh that
V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ (V1 × V2)∪ (V2 × V1). Let GB be the set of all bipartitegraphs.Our impossibility result extends to the limited domain of bipartite graphs.Proposition 6.3. There is no partial ranking system over GB ∩ G1 that satis�es weaktransitivity and RIIA.Proof. The proof is exatly the same as for G1, onsidering that all graphs in Figure 6 arebipartite.6.4 Strongly Conneted GraphsThe well-known PageRank ranking system is (ideally) de�ned on the set of strongly on-neted graphs. That is, the set of graphs where there exists a direted path between anytwo verties.Let us denote the set of all strongly onneted graphs GSC . The following propositionextends our impossibility result to strongly onneted graphs.Proposition 6.4. There is no partial ranking system over GSC that satis�es weak transi-tivity and RIIA. 483



Altman & TennenholtzProof. The proof is similar to the proof of Theorem 5.1, but with an additional vertex e inboth graphs that has edges to and from all other verties.7. Relaxing TransitivityOur impossibility result beomes a possibility result when we relax the transitivity require-ment. Instead of omparing only verties with similar out-degree as in the weak transitivityaxiom above, we weaken the requirement for strit preferene to hold only in the ase wherethe mathing predeessors of one agent are preferred to the all predeessors of the other.De�nition 7.1. Let F be a ranking system. We say that F satis�es strong quasi-transitivityif for all graphs G = (V,E) and for all verties v1, v2 ∈ V : Assume there is a 1-1 (but notneessarily onto) mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v). Then,
v1 � v2. And, if P (v1) 6= ∅ and for all v ∈ P (v1): v ≺ f(v), then v1 ≺ v2.Strong quasi transitivity a signi�antly weaker property than strong transitivity, as itallows for muh more indi�erene in the resulting ranking. Spei�ally, the ranking system
F= that always ranks all verties equally satis�es strong quasi transitivity. More generally,any ranking system where the value of a vertex is proportional to a sum of the values of somesubset of its predeessors satis�es strong quasi transitivity. We shall see more examples ofquasi-transitive ranking systems below.When we only require strong quasi-transitivity and RIIA, we �nd an interesting family ofranking systems that rank the agents aording to their in-degree, breaking ties by omparingthe ranks of the strongest predeessors. These reursive in-degree systems work by assigninga rational value for every vertex, that is based on the following idea: rank �rst based onthe in-degree. If there is a tie, rank based on the strongest predeessor's value, and so on.Loops are ranked as periodial rational numbers in base (n + 1) with a period the length ofthe loop, in the ase that ontinuing on the loop is the maximally ranked option.The reursive in-degree systems di�er in the way di�erent in-degrees are ompared. Anymonotone inreasing mapping of the in-degrees ould be used for the initial ranking. Toshow these systems are well-de�ned and that the values an be alulated we de�ne thesesystems algorithmially as follows:De�nition 7.2. Let r : N 7→ N be a monotone nondereasing funtion suh that r(i) ≤ i forall i ∈ N. The reursive in-degree ranking system with rank funtion r is de�ned as follows:Given a graph G = (V,E), let n = |V |. The relative ranking of two verties is based on anumeri alulation:

v1 �
RIDr

G v2 ⇔ valuer(v1) ≤ valuer(v2),where valuer(v) is de�ned by maximizing a valuation funtion vpr(·) on all paths that leadto v: valuer(v) = max
a∈Path(v)

vpr(a) (1)To ensure the de�nition is sound, we eliminate loops, and de�ne the path in reverse order:Path(v) = { (v = a1, a2, . . . , am)|m ∈ N,

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple}484
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Figure 7: Values assigned by the reursive in-degree algorithmThe path valuation funtion vp : V ∗ 7→ Q de�nes the value to onform to a lexiographiorder on in-degrees along the path:vpr(a1, a2, . . . , am) =
1

n + 1







r(|P (a1)|)+





0 m = 1vpr(a2, . . . , am, a2) a1 = am ∧m > 1vpr(a2, . . . , am) Otherwise. 





(2)Note that vpr(a1, a2, . . . , am) is in�nitely reursive in the ase when the path ontains aloop (.f. a1 = am ∧m > 1). For omputation sake we an rede�ne this ase �nitely as:vpr(a1, . . . , am, a1) =

∞∑

i=0

1

(n + 1)mi

m∑

j=1

r(|P (aj)|)

(n + 1)j
=

=
(n + 1)m

(n + 1)m − 1
vpr(a1, . . . , am). (3)Example 7.3. An example of the values assigned for a partiular graph when r is theidentity funtion is given in Figure 7. As n = 9, and the de�nition in (2) is based onreursive division by n+1, these values are simply deimals whih onsist of a onatenationof in-degrees along the maximal path.The value of zero is assigned to a via the �rst ase in (2), as the only path leading to aonsists of a itself. The value for b is arises from the path (b, a) and the third ase in (2),the reursive all gives the value of the path (a) whih we have seen to be equal 0. This isadded to r(|P (b)|) = 1 and divided by 10, giving the result 0.1. The values of c, d, e, and iarise from a loop onsisting of these verties. Applying the seond ase in (2), we have theequations valuer(i) = vpr(i, e, d, c, i) =

1

10
[3 + vpr(e, d, c, i, e)]valuer(e) = vpr(e, d, c, i, e) =

1

10
[2 + vpr(d, c, i, e, d)]valuer(d) = vpr(d, c, i, e, d) =

1

10
[1 + vpr(c, i, e, d, c)]valuer(c) = vpr(c, i, e, d, c) =

1

10
[2 + vpr(i, e, d, c, i)]485



Altman & TennenholtzBy using (3), we get the periodi deimals seen in Figure 7. The values for verties f , g,and h are again assigned using the third ase in (2). Note that the omplete maximal pathsto these verties ontain the loop (e, d, c, i, e) and thus all of these verties' values inlude aperiodi deimal part, as an be seen in Figure 7.The reursive in-degree system satis�es an interesting �xed point property that an beused to failitate its e�ient omputation:Proposition 7.4. Let r : N 7→ N be a monotone nondereasing funtion suh that r(i) ≤ ifor all i ∈ N and de�ne r(0) = 0. The value funtion for the reursive in-degree rankingsystem satis�es:valuer(v) =

{ 1
n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

]
P (v) 6= ∅

0 Otherwise (4)Proof. Denote Path′(p, v) as the set of almost-simple direted paths to p whih do not passthrough v unless immediately looping bak to p:Path′(p, v) = { (p = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple ∧
∀i ∈ {1, . . . ,m− 2,m} : ai 6= v ∧

am−1 = v ⇔ am = p}.Let v ∈ V be some vertex. Then,valuer(v) = max
a∈Path(v)

vpr(a) =

=
1

n + 1





r(|P (v)|) + max(v=a1,...,am)∈Path(v){ vpr(a2, . . . , am, a2) a1 = am ∧m > 1vpr(a2, . . . , am) Otherwise. 

 = (5)
=

1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path′

(p,v)

vpr(a)

]

= (6)
=

1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path(p)

vpr(a)

]

=

=
1

n + 1

[

r(|P (v)|) + max
p∈P (v)

valuer(p)

]

.Note that (5) is equal to zero 0 if P (v) = ∅, as required. To show that the equality (6)holds, assume for ontradition that there exists p ∈ P (v) and a ∈ Path(p) suh thatvpr(a) > max
p′∈P (v)

max
a
′∈Path′

(p′,v)

vpr(a
′). (7)From a ∈ Path(p) \ Path′(p, v), we know that ai = v for some i ∈ {1, . . . ,m}. Assumewlog that i is minimal. Let b denote the path (p = a1, a2, . . . , ai, p) and let c denote thepath (p′ = ai+1, . . . , am, aj+1, . . . , ai+1) if am = aj for some j < i or (p′ = ai+1, . . . , am)486
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v x

p’

p

a = (p, x, v, p′, x)

b = (p, x, v, p)

c = (p′, x, v, p′)Figure 8: Example of paths from the proof of Proposition 7.5.otherwise. An example of suh paths is given in Figure 8. Note that b ∈ Path′(p, v) and
c ∈ Path′(p′, v), where p, p′ ∈ P (v). Now, note thatvpr(a) =

(n + 1)j − 1

(n + 1)j
vpr(b) +

1

(n + 1)j
vpr(c),and thus vpr(a) must be between vpr(b) and vpr(c), in ontradition to assumption (7).Note that although it might look ompelling to use this �xed point property as a def-inition of reursive-indegree, it is not well de�ned, as loops indue in an in�nite series ofmaximizations the we must prove onverges. This is the essene of the proof above. This�xed point property is the basis for the e�ient algorithm for reursive-indegree providedbelow.We shall now show this ranking system does in fat satisfy RIIA and our weakenedversion of transitivity.Proposition 7.5. Let r : N 7→ N be a monotone nondereasing funtion suh that r(i) ≤ ifor all i ∈ N and de�ne r(0) = 0. The reursive in-degree ranking system with rank funtion

r satis�es strong quasi-transitivity and RIIA.Proof. The �xed point result in Proposition 7.4 further implies 0 ≤ valuer(v) < 1, and thusverties are ordered �rst by r(|P (v)|) and then by maxp∈P (v) valuer(p). Therefore, everyomparison pro�le 〈a,b〉 where a = (a1, . . . , ak), b = (b1, . . . , bl) is ranked as follows:
f〈a,b〉 = 1 ⇔ (k = 0) ∨ (r(k) < r(l)) ∨ [(r(k) = r(l)) ∧ (ak ≤ bl)] .This ranking of pro�les trivially yields strong quasi-transitivity as required.We have previously presented a preliminary version of the personalized variant of reur-sive in-degree (Altman & Tennenholtz, 2006a). The algorithm presented there is based onan equivalent reursive de�nition for value:valuer(v) = vpr(pvr((), v)) (8)pvr(a, v) =







(v) P (v) = ∅
(
v,maxp∈P (v) pvr(a, v, p)

)
v /∈ a

(ak, . . . , am, v) a = (a1, . . . , ak = v, . . . , am),
(9)where the maximum on the paths is taken over vpr(pvr(a, v, p)).487



Altman & TennenholtzAlgorithm 1 E�ient algorithm for reursive in-degree1. Initialize valuer(v)← 1
n+1r(|P (v)|) for all v ∈ V , where r(0) is assumed to be 0.2. Let V ′ be the set of verties with inoming edges.3. Iterate |V | times:(a) For every vertex v ∈ V ′:i. Update valuer(v)← 1

n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

].4. Sort V ′ by valuer(·).5. Output all verties in V \ V ′ as weakest, followed by the verties in V ′ sorted byvaluer(·) in asending order.The �xed point property in (4) satis�es the lassial Bellman priniple of optimality(Stokey & Luas, 1989), that is
v(xt) = max [F (xt, xt+1) + βv(xt+1)] .Thus, we an apply a dynami programming algorithm to e�iently ompute these values,as seen in Algorithm 1. Note that due to the limits of the size of the graph we an limit thenumber of iterations and still ensure an exat result in O(|V | · |E|) time. A simple heuristifor improving the e�ieny of the algorithm for pratial purposes is to redue the numberof iterations, like in other �xed point algorithms suh as PageRank (Page et al., 1998). Weshall now prove the orretness and omplexity of this algorithm.Proposition 7.6. Algorithm 1 outputs verties in V in the order of �RID as de�ned inDe�nition 7.2 and works in O(|V | · |E|) time.Proof. Let us �rst denotevp′r(a1, a2, . . . , am, . . .) =

1

n + 1
[r(|P (a1)|+ vp′r(a2, . . . , am, . . .)]vp′r() = 0.Note that for all v ∈ V and for all a1, . . . , am ∈ Path(v): If a1, . . . , am is simple, vp′r(a1, . . . , am) =vpr(a1, . . . , am). Otherwise if an = ai, then vpr(a1 . . . , am) = vp′r(a1, . . . am, ai+1, . . . , am, . . .).Let P(v) be the set of all reverse paths to v in G, simple or otherwise. We then have for all

v ∈ V : valuer(v) = max
p∈Path(v)

vpr(p) = max
p∈P(v)

vp′r(p),beause the �rst loop in p ∈ P(v) an be replaed with the one maximizing vpr(·), thusinreasing value. 488



Axiomati Foundations for Ranking SystemsThe iteration in step 3 of the algorithm alulates for all v:
1

n + 1

[

r0 + max
p1∈P (v)

[

· · ·
1

n + 1

[

r|V |−1 + max
p|V |∈P (p|V |−1)

1

n + 1
r|V |

]

· · ·

]]

,where ri = r(|P (pi)|) and p0 = v. This value is equal to
max

p1∈P (v)
max

p2∈P (p1)
· · · max

p|V |∈P (p|V |−1)

|V |
∑

i=0

ri

(n + 1)i+1
=

= max
(p1,...,p|V |+1)∈P|V |(v)

|V |+1
∑

i=1

ri

(n + 1)i
=

= max
p∈P|V |+1(v)

vp′r(v), (10)where Pm(v) is the set of all reverse paths of length ≤ m to v, simple or otherwise.Asthere are only |V | verties, any two verties that di�er in the value assigned by the valuefuntion from (1) must also di�er the value (10) alulated by the algorithm and in the samediretion.We shall now prove the time omplexity of the algorithm, by traing eah step. Steps 1and 2 take O(|V |) time. The iteration in step 3 is repeated |V | times, and for every vertexin V ′ performs O(|P (v)|) alulations, so eah iteration takes O(|E|) time and thus the totaltime is O(|V | · |E|). Step 4 takes O(|V ′| log |V ′|) ≤ O(|V | log |E|) ≤ O(|V | · |E|). Finally,the output step 5 takes O(|V |) time. As every step takes no more than O(|V | · |E|) time, sodoes the entire algorithm.8. Axiomatization of Approval VotingIn Setions 5 and 6 we have seen mostly negative results whih arise when trying to aom-modate (weak) transitivity and RIIA. We have shown that although eah of the axioms anbe satis�ed separately, there exists no general ranking system that satis�es both axioms.Tennenholtz (2004) has previously shown a non-trivial ranking system that satis�es(weak) transitivity, and in the previous setion we have seen suh a system for RIIA. How-ever, we have not provided a representation theorem for our new system.In this setion we provide a representation theorem for a ranking system that satis�esRIIA but not weak transitivity � the approval voting ranking system (see De�nition 2.5).The axiomatization we provide in this setion shows the power of RIIA, as it shows that thereexists only one (interesting) ranking system that satis�es it without introduing transitivee�ets.Fishburn (1978) has axiomatized the Approval Voting ranking system in the ontext ofsoial hoie, where the output of the algorithm is not a ranking, but rather a set of winners.These two distint settings are very similar, and thus Fishburn's axiomatization of approvalvoting is of great relevane to our work. We shall ompare these two axiomatizations laterin this setion.In order to speify our axiomatization, reall the following lassial de�nitions from thetheory of soial hoie: 489



Altman & TennenholtzThe positive response axiom (sometimes referred to as positive responsiveness) essentiallymeans that if an agent reeives additional votes, its rank must improve:De�nition 8.1. Let F be a ranking system. F satis�es positive response if for all graphs
G = (V,E) and for all (v1, v2) ∈ (V × V ) \ E, v1 6= v2, and for all v3 ∈ V : Let G′ =
(V,E ∪ (v1, v2)). If v3 �

F
G v2, then v3 ≺

F
G′ v2.The anonymity and neutrality axioms mean that the names of the voters and alternativesrespetively do not matter for the ranking:De�nition 8.2. A ranking system F satis�es anonymity if for all G = (V,E), for allpermutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ = {(π(v1), v2)|(v1, v2) ∈ E}. Then,

v1 �
F
(V,E) v2 ⇔ v1 �

F
(V,E′) v2.De�nition 8.3. A ranking system F satis�es neutrality if for all G = (V,E), for all per-mutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ = {(v1, π(v2))|(v1, v2) ∈ E}. Then,

v1 �
F
(V,E) v2 ⇔ π(v1) �

F
(V,E′) π(v2).Arrow's lassial Independene of Irrelevant Alternatives axiom requires that the relativerank of two agents be dependant only on the set of agents that preferred one over the other.De�nition 8.4. A ranking system F satis�es Arrow's Independene of Irrelevant Alter-natives (AIIA) if for all G = (V,E), for all G′ = (V,E′), and for all v1, v2 ∈ V : Let

PG(v1) \ PG(v2) = PG′(v1) \ PG′(v2) and PG(v2) \ PG(v1) = PG′(v2) \ PG′(v1). Then,
v1 �

F
G v2 ⇔ v1 �

F
G′ v2.Our representation theorem states that together with positive response and RIIA, anyone of the three independene onditions above (anonymity, neutrality, and AIIA) are es-sential and su�ient for a ranking system being AV . In addition, we show that as in thelassial soial hoie setting when only onsidering two-level preferenes, positive response,anonymity, neutrality, and AIIA are an essential and su�ient representation of approvalvoting. This result extends the well known axiomatization of the majority rule due to May(1952):Proposition 8.5. (May's Theorem) A soial welfare funtional over two alternatives is amajority soial welfare funtional if and only if it satis�es anonymity, neutrality, and positiveresponse.We an now formally state our theorem:Theorem 8.6. Let F be a general ranking system. Then, the following statements areequivalent:1. F is the approval voting ranking system (F = AV )2. F satis�es positive response, anonymity, neutrality, and AIIA3. F satis�es positive response, RIIA, and either one of anonymity, neutrality, and AIIA490
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x

v

uFigure 9: Example of graph G for the pro�le 〈(1, 3, 3), (2, 4)〉Proof. It is easy to see that AV satis�es positive response, RIIA, anonymity, neutrality, andAIIA. It remains to show that (2) and (3) entail (1) above.To prove (2) entails (1), assume that F satis�es positive response, anonymity, neutrality,and AIIA. Let G = (V,E) be some graph and let v1, v2 ∈ V be some agents. By AIIA,the relative ranking of v1 and v2 depends only on the sets PG(v1) \ PG(v2) and PG(v2) \
PG(v1). We have now narrowed our onsideration to a set of agents with preferenes overtwo alternatives, so we an apply Proposition 8.5 to omplete our proof.To prove (3) entails (1), assume that F satis�es positive response, RIIA and eitheranonymity or neutrality or AIIA. As F satis�es RIIA we an limit our disussion to om-parison pro�les. Let f : P 7→ {0, 1} be the funtion from the de�nition of RIIA.By the de�nition of RIIA, it is easy to see that a ≃ a for all a. By positive response it isalso easy to see that (1, 1, . . . , 1

︸ ︷︷ ︸

n

) � (1, 1, . . . , 1
︸ ︷︷ ︸

m

) i� n ≤ m. Let P = 〈(a1, . . . , an), (b1, . . . , bm)〉be a omparison pro�le. Let G = (V,E) be the following graph (an example of suh graphfor the pro�le 〈(1, 3, 3), (2, 4)〉 is in Figure 9):
V = {x1, . . . , xmax{an,bm}} ∪

∪{v1, . . . , vn, v′1, . . . , v
′
n, v} ∪

∪{u1, . . . , um, u′
1, . . . , u

′
m, u}

E = {(xi, vj)|i ≤ aj} ∪ {(xi, uj)|i ≤ bj} ∪

∪{(vi, v)|i = 1, . . . , n} ∪ {(ui, u)|i = 1, . . . ,m}.491



Altman & TennenholtzIt is easy to see that in the graph G, v and u satisfy the pro�le P . Let π be the followingpermutation:
π(x) =







v′i x = vi

vi x = v′i
u′

i x = ui

ui x = u′
i

x Otherwise.The remainder of the proof depends on whih additional axiom F satis�es:
• If F satis�es anonymity, let E′ = {(π(x), y)|(x, y) ∈ E}. Note that in the graph (V,E′)

v and u satisfy the pro�le 〈(1, 1, . . . , 1
︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thus v �F
(V,E′) u ⇔ n ≤ m.By anonymity, u �F

(V,E) v ⇔ u �F
(V,E′) v, thus proving that f(P ) = 1⇔ n ≤ m for anarbitrary omparison pro�le P , and thus F = AV .

• If F satis�es neutrality, let E′ = {(x, π(y))|(x, y) ∈ E}. Note that in the graph (V,E′)
v and u satisfy the pro�le 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thus v �F
(V,E′) u ⇔ n ≤ m.By neutrality, u �F

(V,E) v ⇔ u �F
(V,E′) v, again showing that f(P ) = 1 ⇔ n ≤ m foran arbitrary omparison pro�le P , and thus F = AV .

• If F satis�es AIIA, let E′ = {(x, π(y))|(x, y) ∈ E} as before. So, also v �F
(V,E′)

u ⇔ n ≤ m. Note that PG(v) = P(V,E′)(v) and PG(u) = P(V,E′)(u), so by AIIA,
u �F

(V,E) v ⇔ u �F
(V,E′) v, and thus as before, F = AV .Our axiomatization of approval voting, and spei�ally the one in (2) above is relatedto the previous axiomatization by Fishburn (1978). Both axiomatizations share the require-ments of Anonymity1 and Neutrality, but di�er in the additional assumptions: Fishburn'srequirements refer to relations between the results on di�erent voter sets, whih annot beeasily used in the ranking systems setting, as these voters are also alternatives, while ourrequirements relate to hanges in the preferenes of a single agent and their ability (positiveresponse) or inability (AIIA) to in�uene the �nal result. Our requirements may be mappedto Fishburn's setting and would probably lead to a distint axiomatization of approval votingin that setting.9. Conluding RemarksReasoning about preferenes and preferene aggregation is a fundamental task in reasoningabout multi-agent systems (see e.g. Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004;Conitzer & Sandholm, 2002; LaMura & Shoham, 1998). A typial instane of prefereneaggregation is the setting of ranking systems. Ranking systems are fundamental ingredientsof some of the most famous tools/tehniques in the Internet (e.g. Google's PageRank andeBay's reputation systems, among many others).1. Fishburn does not onsider Anonymity as an axiom, but rather de�nes his soial hoie model to allowonly for anonymous funtions. 492
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