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tReasoning about agent preferen
es on a set of alternatives, and the aggregation of su
hpreferen
es into some so
ial ranking is a fundamental issue in reasoning about multi-agentsystems. When the set of agents and the set of alternatives 
oin
ide, we get the rankingsystems setting. A famous type of ranking systems are page ranking systems in the 
ontextof sear
h engines. In this paper we present an extensive axiomati
 study of ranking systems.In parti
ular, we 
onsider two fundamental axioms: Transitivity, and Ranked Independen
eof Irrelevant Alternatives. Surprisingly, we �nd that there is no general so
ial ranking rulethat satis�es both requirements. Furthermore, we show that our impossibility result holdsunder various restri
tions on the 
lass of ranking problems 
onsidered. However, whentransitivity is weakened, an interesting possibility result is obtained. In addition, we showa 
omplete axiomatization of approval voting using ranked IIA.1. Introdu
tionThe ranking of agents based on other agents' input is fundamental to multi-agent systems(see e.g. Resni
k, Ze
khauser, Friedman, & Kuwabara, 2000). Moreover, it has be
ome a
entral ingredient of a variety of Internet sites, where perhaps the most famous examplesare Google's PageRank algorithm (Page, Brin, Motwani, & Winograd, 1998) and eBay'sreputation system (Resni
k & Ze
khauser, 2001).This basi
 problem introdu
es a new so
ial 
hoi
e model. In the 
lassi
al theory ofso
ial 
hoi
e, as manifested by Arrow (1963), a set of agents/voters is 
alled to rank a set ofalternatives. Given the agents' input, i.e. the agents' individual rankings, a so
ial rankingof the alternatives is generated. The theory studies desired properties of the aggregationof agents' rankings into a so
ial ranking. In parti
ular, Arrow's 
elebrated impossibilitytheorem (Arrow, 1963) shows that there is no aggregation rule that satis�es some minimalrequirements, while by relaxing any of these requirements appropriate so
ial aggregationrules 
an be de�ned. The novel feature of the ranking systems setting is that the set ofagents and the set of alternatives 
oin
ide. Therefore, in su
h setting one may need to
onsider the transitive e�e
ts of voting. For example, if agent a reports on the importan
eof (i.e. votes for) agent b then this may in�uen
e the 
redibility of a report by b on theimportan
e of agent c; these indire
t e�e
ts should be 
onsidered when we wish to aggregatethe information provided by the agents into a so
ial ranking.
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Altman & TennenholtzNoti
e that a natural interpretation/appli
ation of this setting is the ranking of Internetpages. In this 
ase, the set of agents represents the set of Internet pages, and the links froma page p to a set of pages Q 
an be viewed as a two-level ranking where agents in Q arepreferred by agent (page) p to the agents (pages) whi
h are not in Q. The problem of �ndingan appropriate so
ial ranking in this 
ase is in fa
t the problem of (global) page ranking.Parti
ular approa
hes for obtaining a useful page ranking have been implemented by sear
hengines su
h as Google (Page et al., 1998).The theory of so
ial 
hoi
e 
onsists of two 
omplementary axiomati
 perspe
tives:
• The des
riptive perspe
tive: given a parti
ular rule r for the aggregation of individualrankings into a so
ial ranking, �nd a set of axioms that are sound and 
omplete for r.That is, �nd a set of requirements that r satis�es; moreover, every so
ial aggregationrule that satis�es these requirements should 
oin
ide with r. A result showing su
h anaxiomatization is termed a representation theorem and it 
aptures the exa
t essen
eof (and assumptions behind) the use of the parti
ular rule.
• The normative perspe
tive: devise a set of requirements that a so
ial aggregation ruleshould satisfy, and try to �nd whether there is a so
ial aggregation rule that satis�esthese requirements.Mu
h e�ort has been invested in the des
riptive approa
h in the framework of the 
lassi
altheory of so
ial 
hoi
e. In that setting, representation theorems have been presented tomajor voting rules su
h as the majority rule (May, 1952; see Moulin, 1991 for an overview).In the ranking systems setting, we have su

essfully applied the des
riptive perspe
tiveby providing a representation theorem (Altman & Tennenholtz, 2005b) for the well-knownPageRank algorithm (Page et al., 1998), whi
h is the basis of Google's sear
h te
hnology(Brin & Page, 1998).An ex
ellent example for the normative perspe
tive is Arrow's impossibility theoremmentioned above. Tennenholtz (2004) has presented some preliminary results for rankingsystems where the set of voters and the set of alternatives 
oin
ide. However, the axiomspresented in that work 
onsist of several very strong requirements whi
h naturally lead to animpossibility result. Still in the normative approa
h to ranking systems, we have ta
kled theissue of in
entives (Altman & Tennenholtz, 2006b, 2006
), with both positive and negativeresults. Re
ently, we have 
onsidered a variation of ranking systems, where a personalizedranking is generated for every parti
ipant in the system (Altman & Tennenholtz, 2006a),with surprisingly di�erent results.In this paper we provide an extensive study of ranking systems. We introdu
e twofundamental axioms. One of these axioms 
aptures the transitive e�e
ts of voting in rank-ing systems, and the other adapts Arrow's well-known independen
e of irrelevant alterna-tives (IIA) axiom to the 
ontext of ranking systems. Surprisingly, we �nd that no generalranking system 
an simultaneously satisfy these two axioms! This result means that if wewould like to fully 
apture transitive e�e
ts, ranking de
isions must be made globally, or bebased on numeri
 
al
ulations. We further show that our impossibility result holds undervarious restri
tions on the 
lass of ranking problems 
onsidered.On the other hand, we show a positive result for the 
ase when the transitivity axiom isrelaxed. This new ranking system is pra
ti
al and useful and an algorithm is provided for474
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omputation. Finally, we use our IIA axiom to present a positive result in the form ofa representation theorem for the well-known approval voting ranking system, whi
h ranksthe agents based on the number of votes re
eived. This axiomatization shows that whenignoring transitive e�e
ts, there is only one ranking system that satis�es our IIA axiom.This paper is stru
tured as follows: Se
tion 2 formally de�nes our setting and the notionof ranking systems. Se
tions 3 and 4 introdu
e our axioms of Transitivity and Ranked Inde-penden
e of Irrelevant Alternatives respe
tively. Our main impossibility result is presentedin Se
tion 5, and further strengthened in Se
tion 6. Our main positive result, in the formof a ranking system satisfying a weaker version of transitivity is given in Se
tion 7, while anaxiomatization for the Approval Voting ranking system is presented in Se
tion 8. Finally,some 
on
luding remarks are given in Se
tion 9.2. Ranking SystemsBefore des
ribing our results regarding ranking systems, we must �rst formally de�ne whatwe mean by the words �ranking system� in terms of graphs and linear orderings:De�nition 2.1. Let A be some set. A relation R ⊆ A ×A is 
alled an ordering on A if itis re�exive, transitive, and 
omplete. Let L(A) denote the set of orderings on A.Notation 2.2. Let � be an ordering, then ≃ is the equality predi
ate of �, and ≺ is thestri
t order indu
ed by �. Formally, a ≃ b if and only if a � b and b � a; and a ≺ b if andonly if a � b but not b � a.Given the above we 
an de�ne what a ranking system is:De�nition 2.3. Let GV be the set of all dire
ted graphs with vertex set V . A rankingsystem F is a fun
tional that for every �nite vertex set V maps graphs G ∈ GV to anordering �F
G∈ L(V ). If F is a partial fun
tion then it is 
alled a partial ranking system,otherwise it is 
alled a general ranking system.One 
an view this setting as a variation/extension of the 
lassi
al theory of so
ial 
hoi
eas modeled by Arrow (1963). The ranking systems setting di�ers in two main properties.First, in this setting we assume that the set of voters and the set of alternatives 
oin
ide,and se
ond, we allow agents only two levels of preferen
e over the alternatives, as opposedto Arrow's setting where agents 
ould rank alternatives arbitrarily.The two-level limitation is important in order to avoid Arrow-style impossibility results.Indeed, in the di
hotomous (i.e. two level) setting su
h results do not apply (Bogomolnaia,Moulin, & Stong, 2005). Had we allowed general rankings as the input of the system, wewould have rea
hed impossibility results as a dire
t result of Arrow-style impossibility. Byadding the di
hotomous limitation, we ensure that our results will be a 
onsequen
e of the
o-in
iden
e of the voters and alternatives and the related transitive e�e
ts.2.1 Examples of Ranking SystemsIn order to make the abstra
t de�nition of ranking systems above more 
on
rete, we shallnow give some examples of several well-known ranking systems. In order to de�ne thesesystems, and throughout this paper, we shall use the following notation:475
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d

ea

c f

b Figure 1: Example graph for ranking systems.Notation 2.4. Let G = (V,E) be some graph and v ∈ V be some vertex. Let PG(v) ,

{u|(u, v) ∈ E} and SG(v) , {u|(v, u) ∈ E} denote the prede
essor and su

essor sets of vin G respe
tively. When G is understood from 
ontext, we will sloppily use P (v) and S(v).Approval Voting is a very simple ranking system that ranks the agents a

ording to thenumber of votes (i.e. in
oming edges) they have. Formally,De�nition 2.5. The approval voting ranking system AV is the ranking system de�ned by:
v1 �

AV
G v2 ⇔ |PG(v1)| ≤ |PG(v2)|Consider the graph in Figure 1. The AV ranking system would rank this graph a ≃ b ≺

f ≺ c ≃ d ≃ e based on the fa
t that the verti
es in {a, b}, {f}, and {c, d, e} have 0, 1, and2 prede
essors respe
tively. A full axiomatization of the approval voting ranking system isgiven in se
tion 8.One major appli
ation of Ranking Systems is in the 
ontext of Internet pages. In that
ontext, we represent the Internet as a dire
ted graph, where the verti
es are websites, andthe edges are links between these websites. A prominent ranking system in this settingis PageRank (Page et al., 1998), whi
h is based on a random walk of the Internet graph.Namely, in this pro
ess we start in a random page, and iteratively move to one of the pagesthat are linked to by the 
urrent page, assigning equal probabilities to ea
h su
h page. Wede�ne the PageRank matrix whi
h 
aptures the random walk 
reated by the PageRankpro
edure:De�nition 2.6. Let G = (V,E) be a graph, and assume V = {v1, v2, . . . , vn}. The PageR-ank Matrix AG (of dimension n× n) is de�ned as:
[AG]i,j =

{
1/|SG(vj)| (vj , vi) ∈ E
0 Otherwise.The PageRank pro
edure will rank pages a

ording to the stationary probability distri-bution obtained in the limit of the above random walk; this is formally de�ned as follows:De�nition 2.7. Let G = (V,E) be some graph, and assume V = {v1, v2, . . . , vn}. Let

0 ≤ d < 1 be a damping fa
tor. Let r be the unique solution of the system (1 − d) · AG ·
r + d · ( 1 1 · · · 1 )T = r where ∑

ri = n. If there is no unique solution, then theranking is not de�ned. Otherwise, the PageRank PRG(vi) of a vertex vi ∈ V is de�ned as
PRG(vi) = ri. The PageRank ranking system is a ranking system that for the vertex set
V maps G to �PR

G , where �PR
G is de�ned as: for all vi, vj ∈ V : vi �

PR
G vj if and only if

PRG(vi) ≤ PRG(vj). 476
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a

b

cdFigure 2: Example of TransitivityIt 
an be shown that for d > 0, there is indeed a unique solution and thus the rankingsystem is a general one. However, when d = 0 this ranking system be
omes a partial rankingsystem, as it is not always well de�ned.In the graph in Figure 1, for d = 0.2 the PageRank values assigned for a . . . f are
(0.2, 0.2, 0.52, 1.7, 1.77, 1.61) giving the ranking a ≃ b ≺ c ≺ f ≺ d ≺ e. Note that thisranking di�ers from the one assigned by approval voting, that neither of the rankings isa re�nement of the other. This example shows that PageRank and Approval Voting aredistin
t ranking systems, and that the two may disagree on the ranking of two verti
es. Wewill soon see that these systems satisfy two mutually ex
lusive properties of ranking systems.3. TransitivityA basi
 property one would assume of ranking systems is that if an agent a's voters areranked higher than those of agent b, then agent a should be ranked higher than agent b.This notion is formally 
aptured below:De�nition 3.1. Let F be a ranking system. We say that F satis�es strong transitivity iffor all graphs G = (V,E) and for all verti
es v1, v2 ∈ V : Assume there is a 1-1 mapping (butnot ne
essarily onto) f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v). Then, v1 � v2.Further assume that either f is not onto or for some v ∈ P (v1): v ≺ f(v). Then, v1 ≺ v2.To explain how the formal de�nition 
aptures the intuition, 
onsider the simple graph

a→ b→ cOur intuition tells us that c who is at the end of the vote 
hain should be more trusted,and thus ranked higher than b, this is be
ause of the fa
t that b is more trusted than a, dueto b having a vote 
ompared to a having none. This intuition is 
orre
tly 
aptured by thede�nition above: a must be ranked stri
tly below b be
ause any fun
tion mapping P (a) = ∅to P (b) = {a} is not onto, and b must be ranked stri
tly below c be
ause the trivial mappingfrom P (b) = {a} to P (c) = {b} satis�es a ≺ b, and thus we get b ≺ c, as expe
ted.For a more involved example, 
onsider the graph G in Figure 2 and any ranking system
F that satis�es strong transitivity. F must rank vertex d below all other verti
es, as it has noprede
essors, unlike all other verti
es. If we assume that a �F

G b, then by strong transitivitywe must 
on
lude that b �F
G c as well. But then we must 
on
lude that b ≺F

G a (as b'sprede
essor a is ranked lower than a's prede
essor c, and a has an additional prede
essor d),whi
h leads to a 
ontradi
tion. Given b ≺F
G a, again by transitivity, we must 
on
lude that

c ≺F
G b, so the only ranking for the graph G that satis�es strong transitivity is d ≺F

G c ≺F
G

b ≺F
G a. 477



Altman & TennenholtzTennenholtz (2004) has suggested an algorithm that de�nes a ranking system that sat-is�es strong transitivity by iteratively re�ning an ordering of the verti
es starting from theranking suggested by approval voting.Note that the PageRank ranking system does not satisfy strong transitivity. This is dueto the fa
t that PageRank redu
es the weight of links (or votes) from nodes whi
h have ahigher out-degree. Thus, assuming Yahoo! and Mi
rosoft are equally ranked, a link fromYahoo! means less than a link from Mi
rosoft, be
ause Yahoo! links to more external pagesthan does Mi
rosoft. Noting this fa
t, we 
an weaken the de�nition of transitivity to requirethat the prede
essors of the 
ompared agents have an equal out-degree:De�nition 3.2. Let F be a ranking system. We say that F satis�es weak transitivity iffor all graphs G = (V,E) and for all verti
es v1, v2 ∈ V : Assume there is a 1-1 mapping
f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v) and |S(v)| = |S(f(v))|. Then, v1 � v2.Further assume that either f is not onto or for some v ∈ P (v1): v ≺ f(v). Then, v1 ≺ v2.For an example of weak transitivity, one 
an re
onsider the strong transitivity exampleabove, as it still applies to weak transitivity.The PageRank ranking system satis�es this weakened version of transitivity. This is dueto the fa
t that:

PR(v1) =
∑

v∈P (v1)

PR(v)

|S(v)|
≤

∑

v∈P (v1)

PR(f(v))

|S(f(v))|
≤

∑

v∈P (v2)

PR(v)

|S(v)|
= PR(v2).In the 
ase where v ≺ f(v) for some v ∈ P (v1) the �rst inequality is stri
t, and if f is notonto the se
ond inequality is stri
t.4. Ranked Independen
e of Irrelevant AlternativesA standard assumption in so
ial 
hoi
e settings is that an agent's relative rank should onlydepend on (some property of) the agents who have voted for them. Su
h axioms are usually
alled independen
e of irrelevant alternatives (IIA) axioms. In our setting, su
h IIA axiomsmean that an agent's rank must only depend on a property of its immediate prede
essors.In our setting, we require the relative ranking of two agents must only depend on thepairwise 
omparisons of the ranks of their prede
essors, and not on their identity or 
ardinalvalue. Our IIA axiom, 
alled ranked IIA, di�ers from the one suggested by Arrow (1963) inthe fa
t that we do not 
onsider the identity of the voters, but rather their relative rank.For example, 
onsider the graph in Figure 3. Furthermore, assume a ranking system Fhas ranked the verti
es of this graph as following: a ≃ b ≺ c ≃ d ≺ e ≃ f . Now look atthe 
omparison between c and d. c's prede
essors, a and b, are both ranked equally, andboth ranked lower than d's prede
essor f . This is also true when 
onsidering e and f � e'sprede
essors c and d are both ranked equally, and both ranked lower than f 's prede
essor

e. Therefore, if we agree with ranked IIA, the relation between c and d, and the relationbetween e and f must be the same, whi
h indeed it is � both c ≃ d and e ≃ f . However,this same situation also o

urs when 
omparing c and f (c's prede
essors a and b are equallyranked and ranked lower than f 's prede
essor e), but in this 
ase c ≺ f . All three 
asesinvolve 
omparing two verti
es, one with two weaker prede
essors and one with one stronger478
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Figure 3: An example of RIIA.
a

b

Figure 4: Graph for pro�le 〈(1, 1), (2)〉.prede
essor, but the out
ome of these 
omparisons in not 
onsistent. Therefore, we 
an
on
lude that the ranking system F whi
h produ
ed these rankings does not satisfy rankedIIA.To formally de�ne this 
ondition, one must 
onsider all possibilities of 
omparing twonodes in a graph based only on ordinal 
omparisons of their prede
essors. We 
all thesepossibilities 
omparison pro�les:De�nition 4.1. A 
omparison pro�le is a pair 〈a,b〉 where a = (a1, . . . , an), b = (b1, . . . , bm),
a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an, and b1 ≤ b2 ≤ · · · ≤ bm. Let P be the set ofall su
h pro�les.A ranking system F , a graph G = (V,E), and a pair of verti
es v1, v2 ∈ V are said tosatisfy su
h a 
omparison pro�le 〈a,b〉 if there exist 1-1 mappings f1 : P (v1) 7→ {1 . . . n}and f2 : P (v2) 7→ {1 . . . m} su
h that given f : ({1} × P (v1)) ∪ ({2} × P (v2)) 7→ N de�nedas:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y)⇔ x �F
G y for all (i, x), (j, y) ∈ ({1} × P (v1)) ∪ ({2} × P (v2)).Consider the pro�le 〈(1, 1), (2)〉. This 
omparison pro�le illustrates the basi
 question of
omparing an agent who got two low-rank votes with one who got one high-rank vote. Thisquestion is unde
ided by transitivity alone, and if we do assume transitivity this 
omparisonpro�le is satis�ed by the pair (a, b) in the graph in Figure 4. The f fun
tion above simplymaps the prede
essors of a and b to 1 and 2 respe
tively.We now require that for every su
h pro�le the ranking system ranks the nodes 
onsis-tently: 479



Altman & TennenholtzDe�nition 4.2. Let F be a ranking system. We say that F satis�es ranked independen
e ofirrelevant alternatives (RIIA) if there exists a mapping f : P 7→ {0, 1} su
h that for everygraph G = (V,E) and for every pair of verti
es v1, v2 ∈ V and for every 
omparison pro�le
p ∈ P that v1 and v2 satisfy, v1 �

F
G v2 ⇔ f(p) = 1.Notation 4.3. When the fun
tion f from the de�nition above is understood from 
ontext,we will use the notation a � b to mean f〈a,b〉 = 1, a ≺ b to mean f〈b,a〉 = 0, and a ≃ bto mean a � b and b � a.For example, in the example 
onsidered above, all of the pairs (c, d), (c, f), and (e, f)satisfy the 
omparison pro�le 〈(1, 1), (2)〉. As we have seen above, the pairs (c, d) and (e, f)entail that (1, 1) ≃ (2), while (c, f) entails that (1, 1) ≺ (2). These results 
ontradi
t ea
hother, and therefore we 
on
lude that the ranking system that produ
ed this ranking doesnot satisfy RIIA.The de�nition of RIIA formalizes the requirement of 
onsisten
y in the 
omparisonssu
h as the one we have seen above. It means that any ranking system satisfying RIIA mustde
ide on the relative ranking of a and b in Figure 4, and (assuming transitivity) rank thesame in all other o

urren
es of two weak vs. one strong prede
essor.As RIIA is an independen
e property, the ranking system F=, that ranks all agentsequally, satis�es RIIA.The approval voting ranking system AV also satis�es RIIA. This is due to the fa
t thatfor any 
omparison pro�le 〈(a1, . . . , an), (b1, . . . bm)〉, the f fun
tion for AV ranks a � b i�

n ≤ m. We will use this fa
t in the axiomatization of approval voting we present in Se
tion8.5. ImpossibilityOur main result illustrates the impossibility of satisfying (weak) transitivity and RIIA si-multaneously.Theorem 5.1. There is no general ranking system that satis�es weak transitivity and RIIA.Proof. Assume for 
ontradi
tion that there exists a ranking system F that satis�es weaktransitivity and RIIA. Consider �rst the graph G1 in Figure 5(a). Note that all verti
esin this graph have an out-degree of 2 or 0, and thus the out-degree requirement of weaktransitivity is trivially ful�lled. Now note that a1 and a2 must satisfy some 
omparisonpro�le pa = ((x, y), (x, y)) be
ause they have identi
al prede
essors. Thus, by RIIA, a1 �
F
G1

a2 ⇔ a2 �
F
G1

a1, and therefore a1 ≃
F
G1

a2. By weak transitivity, it is easy to see that
c ≺F

G1
a1 and c ≺F

G1
b. If we assume b �F

G1
a1, then by weak transitivity, a1 ≺

F
G1

b whi
h
ontradi
ts our assumption. So we 
on
lude that c ≺F
G1

a1 ≺
F
G1

b.Now 
onsider the graph G2 in Figure 5(b). Again, the out-degree requirement of weaktransitivity is trivially satis�ed, and again by RIIA, a1 ≃
F
G2

a2. By weak transitivity, it iseasy to see that a1 ≺
F
G2

c and b ≺F
G2

c. If we assume a1 �
F
G2

b, then by weak transitivity,
b ≺F

G2
a1 whi
h 
ontradi
ts our assumption. So we 
on
lude that b ≺F

G2
a1 ≺

F
G2

c.Consider the 
omparison pro�le p = ((1, 3), (2, 2)). Given F , a1 and b satisfy p in G1(be
ause c ≺F
G1

a1 ≃
F
G1

a2 ≺
F
G1

b) and in G2 (be
ause b ≺F
G2

a1 ≃
F
G2

a2 ≺
F
G2

c). Thus,480
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a1 b d

a2
 (a) Graph G1


 a1

a2

db(b) Graph G2Figure 5: Graphs for the proof of Theorem 5.1by RIIA, a1 �
F
G1

b ⇔ a1 �
F
G2

b, whi
h is a 
ontradi
tion to the fa
t that a1 ≺
F
G1

b but
b ≺F

G2
a1.This result is quite a surprise. Intuitively, we would like a ranking pro
edure to besensitive to the relative ranking of ea
h agent's voters (transitivity) and not to be in�uen
edby any other seemingly irrelevant information (RIIA). Although these requirements mayseem 
omplementary, this impossibility theorem shows that these requirements are in fa
t
ontradi
tory.If we 
onsider transitivity as a basi
 requirement, we learn that any axiomatization ofa transitive ranking system 
annot be restri
ted to lo
al ordinal properties. That is, whendesigning a ranking system where transitivity is required, one must 
hoose whether to basethe system on some numeri
 
omputation, or on ordinal axioms that operate on a globals
ale.For example, the standard formalism for the PageRank ranking system in De�nition 2.7and an axiomatization of a similar system suggested by Pala
ios-Huerta and Volij (2004)are based on numeri
al 
omputation, while our suggested axiomatization (Altman & Ten-nenholtz, 2005b) uses ordinal axioms on a global s
ale. These axioms refer to invariants inrelations between ranking of di�erent graphs, rather than between pairs of verti
es in thesame graph.The PageRank example demonstrates that some ranking systems may be de�ned usingeither of these approa
hes. We feel that the numeri
 approa
h is more suitable for de�n-ing and exe
uting ranking systems, while the global ordinal approa
h is more suitable foraxiomati
 
lassi�
ation.6. Relaxing GeneralityA hidden assumption in our impossibility result is the fa
t that we 
onsidered only generalranking systems. In this se
tion we analyze several spe
ial 
lasses of graphs that relate to
ommon ranking s
enarios. 481



Altman & Tennenholtz6.1 Small GraphsA natural limitation on a preferen
e graph is a 
ap on the number of verti
es (agents) thatparti
ipate in the ranking. Indeed, when there are three or less agents involved in the rank-ing, strong transitivity and RIIA 
an be simultaneously satis�ed. An appropriate rankingalgorithm for this 
ase is the one we suggested by Tennenholtz (2004). That algorithmsimply starts with ranking by in-degree and re�nes the ranking as required by strong transi-tivity until it is satis�ed. It is easy to see that the de
isions for 
omparison pro�les possiblein a 3-vertex graph are di
tated by either in-degree or transitivity. Spe
i�
ally, the pro�le
〈(1, 3), (2, 2)〉 used in the proof above is impossible in su
h graphs.When there are four or more agents, strong transitivity and RIIA 
annot be simulta-neously satis�ed (the proof is similar to that of Theorem 5.1, but with vertex d removedin both graphs). When �ve or more agents are involved, even weak transitivity and RIIA
annot be simultaneously satis�ed, as implied by the proof of Theorem 5.1.6.2 Single Vote SettingAnother natural limitation on the domain of graphs that we might be interested in is therestri
tion of ea
h agent (vertex) to exa
tly one vote (su

essor). For example, in the votingparadigm this 
ould be viewed as a setting where every agent votes for exa
tly one agent.The following proposition shows that even in this simple setting weak transitivity and RIIA
annot be simultaneously satis�ed.Proposition 6.1. Let G1 be the set of all graphs G = (V,E) su
h that |S(v)| = 1 for all
v ∈ V . There is no partial ranking system over G1 that satis�es weak transitivity and RIIA.Proof. Assume for 
ontradi
tion that there is a partial ranking system F over G1 thatsatis�es weak transitivity and RIIA. Let f : P 7→ {0, 1} be the mapping from the de�nitionof RIIA for F .Let G1 ∈ G1 be the graph in Figure 6a. By weak transitivity, x1 ≃

F
G1

x2 ≺
F
G1

b ≺F
G1

a.
(a, b) satis�es the 
omparison pro�le 〈(1, 1, 2), (3)〉, so we must have (3) ≺ (1, 1, 2). Now let
G2 ∈ G1 be the graph in Figure 6b. By weak transitivity x1 ≃

F
G2

x2 ≺
F
G2

y ≺F
G2

a ≺F
G2

b.
(b, a) satis�es the 
omparison pro�le 〈(2, 3), (1, 4)〉, so we must have (1, 4) ≺ (2, 3).Let G3 ∈ G1 be the graph in Figure 6
. By weak transitivity it is easy to see that
x1 ≃

F
G3
· · · ≃F

G3
x7 ≺

F
G3

y1 ≃
F
G3

y2 ≺
F
G3

c ≺F
G3

d. Furthermore, by weak transitivity we
on
lude that a ≺F
G3

b and a′ ≺F
G3

b′ from c ≺F
G3

d; and y1 ≺
F
G3

b from x3 ≺
F
G3

d. Now
onsider the vertex pair (c, b′). We have shown that x1 ≃
F
G3

x2 ≺
F
G3

y1 ≺
F
G3

b. So, (c, b′)satis�es the 
omparison pro�le 〈(1, 1, 2), (3)〉, thus by RIIA b′ ≺F
G3

c. Now 
onsider thevertex pair (b, a). We have already shown that a′ ≺F
G3

b′ ≺F
G3

c ≺F
G3

d. So, (a, b) satis�es the
omparison pro�le 〈(2, 3), (1, 4)〉, thus by RIIA b ≺F
G3

a. However, we have already shownthat a ≺F
G3

b � a 
ontradi
tion. Thus, the ranking system F 
annot exist.6.3 Bipartite SettingIn the world of reputation systems (Resni
k et al., 2000), we frequently observe a distin
tionbetween two types of agents su
h that ea
h type of agent only ranks agents of the other482
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x1 

x2

x3 y1

x4 y2 dx5

x6

x7

(
) Graph G3Figure 6: Graphs from the proof of proposition 6.1type. For example buyers only intera
t with sellers and vi
e versa. This type of limitationis 
aptured by requiring the preferen
e graphs to be bipartite, as de�ned below.De�nition 6.2. A graph G = (V,E) is 
alled bipartite if there exist V1, V2 su
h that
V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ (V1 × V2)∪ (V2 × V1). Let GB be the set of all bipartitegraphs.Our impossibility result extends to the limited domain of bipartite graphs.Proposition 6.3. There is no partial ranking system over GB ∩ G1 that satis�es weaktransitivity and RIIA.Proof. The proof is exa
tly the same as for G1, 
onsidering that all graphs in Figure 6 arebipartite.6.4 Strongly Conne
ted GraphsThe well-known PageRank ranking system is (ideally) de�ned on the set of strongly 
on-ne
ted graphs. That is, the set of graphs where there exists a dire
ted path between anytwo verti
es.Let us denote the set of all strongly 
onne
ted graphs GSC . The following propositionextends our impossibility result to strongly 
onne
ted graphs.Proposition 6.4. There is no partial ranking system over GSC that satis�es weak transi-tivity and RIIA. 483



Altman & TennenholtzProof. The proof is similar to the proof of Theorem 5.1, but with an additional vertex e inboth graphs that has edges to and from all other verti
es.7. Relaxing TransitivityOur impossibility result be
omes a possibility result when we relax the transitivity require-ment. Instead of 
omparing only verti
es with similar out-degree as in the weak transitivityaxiom above, we weaken the requirement for stri
t preferen
e to hold only in the 
ase wherethe mat
hing prede
essors of one agent are preferred to the all prede
essors of the other.De�nition 7.1. Let F be a ranking system. We say that F satis�es strong quasi-transitivityif for all graphs G = (V,E) and for all verti
es v1, v2 ∈ V : Assume there is a 1-1 (but notne
essarily onto) mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v). Then,
v1 � v2. And, if P (v1) 6= ∅ and for all v ∈ P (v1): v ≺ f(v), then v1 ≺ v2.Strong quasi transitivity a signi�
antly weaker property than strong transitivity, as itallows for mu
h more indi�eren
e in the resulting ranking. Spe
i�
ally, the ranking system
F= that always ranks all verti
es equally satis�es strong quasi transitivity. More generally,any ranking system where the value of a vertex is proportional to a sum of the values of somesubset of its prede
essors satis�es strong quasi transitivity. We shall see more examples ofquasi-transitive ranking systems below.When we only require strong quasi-transitivity and RIIA, we �nd an interesting family ofranking systems that rank the agents a

ording to their in-degree, breaking ties by 
omparingthe ranks of the strongest prede
essors. These re
ursive in-degree systems work by assigninga rational value for every vertex, that is based on the following idea: rank �rst based onthe in-degree. If there is a tie, rank based on the strongest prede
essor's value, and so on.Loops are ranked as periodi
al rational numbers in base (n + 1) with a period the length ofthe loop, in the 
ase that 
ontinuing on the loop is the maximally ranked option.The re
ursive in-degree systems di�er in the way di�erent in-degrees are 
ompared. Anymonotone in
reasing mapping of the in-degrees 
ould be used for the initial ranking. Toshow these systems are well-de�ned and that the values 
an be 
al
ulated we de�ne thesesystems algorithmi
ally as follows:De�nition 7.2. Let r : N 7→ N be a monotone nonde
reasing fun
tion su
h that r(i) ≤ i forall i ∈ N. The re
ursive in-degree ranking system with rank fun
tion r is de�ned as follows:Given a graph G = (V,E), let n = |V |. The relative ranking of two verti
es is based on anumeri
 
al
ulation:

v1 �
RIDr

G v2 ⇔ valuer(v1) ≤ valuer(v2),where valuer(v) is de�ned by maximizing a valuation fun
tion vpr(·) on all paths that leadto v: valuer(v) = max
a∈Path(v)

vpr(a) (1)To ensure the de�nition is sound, we eliminate loops, and de�ne the path in reverse order:Path(v) = { (v = a1, a2, . . . , am)|m ∈ N,

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple}484
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Figure 7: Values assigned by the re
ursive in-degree algorithmThe path valuation fun
tion vp : V ∗ 7→ Q de�nes the value to 
onform to a lexi
ographi
order on in-degrees along the path:vpr(a1, a2, . . . , am) =
1

n + 1







r(|P (a1)|)+





0 m = 1vpr(a2, . . . , am, a2) a1 = am ∧m > 1vpr(a2, . . . , am) Otherwise. 





(2)Note that vpr(a1, a2, . . . , am) is in�nitely re
ursive in the 
ase when the path 
ontains aloop (
.f. a1 = am ∧m > 1). For 
omputation sake we 
an rede�ne this 
ase �nitely as:vpr(a1, . . . , am, a1) =

∞∑

i=0

1

(n + 1)mi

m∑

j=1

r(|P (aj)|)

(n + 1)j
=

=
(n + 1)m

(n + 1)m − 1
vpr(a1, . . . , am). (3)Example 7.3. An example of the values assigned for a parti
ular graph when r is theidentity fun
tion is given in Figure 7. As n = 9, and the de�nition in (2) is based onre
ursive division by n+1, these values are simply de
imals whi
h 
onsist of a 
on
atenationof in-degrees along the maximal path.The value of zero is assigned to a via the �rst 
ase in (2), as the only path leading to a
onsists of a itself. The value for b is arises from the path (b, a) and the third 
ase in (2),the re
ursive 
all gives the value of the path (a) whi
h we have seen to be equal 0. This isadded to r(|P (b)|) = 1 and divided by 10, giving the result 0.1. The values of c, d, e, and iarise from a loop 
onsisting of these verti
es. Applying the se
ond 
ase in (2), we have theequations valuer(i) = vpr(i, e, d, c, i) =

1

10
[3 + vpr(e, d, c, i, e)]valuer(e) = vpr(e, d, c, i, e) =

1

10
[2 + vpr(d, c, i, e, d)]valuer(d) = vpr(d, c, i, e, d) =

1

10
[1 + vpr(c, i, e, d, c)]valuer(c) = vpr(c, i, e, d, c) =

1

10
[2 + vpr(i, e, d, c, i)]485



Altman & TennenholtzBy using (3), we get the periodi
 de
imals seen in Figure 7. The values for verti
es f , g,and h are again assigned using the third 
ase in (2). Note that the 
omplete maximal pathsto these verti
es 
ontain the loop (e, d, c, i, e) and thus all of these verti
es' values in
lude aperiodi
 de
imal part, as 
an be seen in Figure 7.The re
ursive in-degree system satis�es an interesting �xed point property that 
an beused to fa
ilitate its e�
ient 
omputation:Proposition 7.4. Let r : N 7→ N be a monotone nonde
reasing fun
tion su
h that r(i) ≤ ifor all i ∈ N and de�ne r(0) = 0. The value fun
tion for the re
ursive in-degree rankingsystem satis�es:valuer(v) =

{ 1
n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

]
P (v) 6= ∅

0 Otherwise (4)Proof. Denote Path′(p, v) as the set of almost-simple dire
ted paths to p whi
h do not passthrough v unless immediately looping ba
k to p:Path′(p, v) = { (p = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple ∧
∀i ∈ {1, . . . ,m− 2,m} : ai 6= v ∧

am−1 = v ⇔ am = p}.Let v ∈ V be some vertex. Then,valuer(v) = max
a∈Path(v)

vpr(a) =

=
1

n + 1





r(|P (v)|) + max(v=a1,...,am)∈Path(v){ vpr(a2, . . . , am, a2) a1 = am ∧m > 1vpr(a2, . . . , am) Otherwise. 

 = (5)
=

1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path′

(p,v)

vpr(a)

]

= (6)
=

1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path(p)

vpr(a)

]

=

=
1

n + 1

[

r(|P (v)|) + max
p∈P (v)

valuer(p)

]

.Note that (5) is equal to zero 0 if P (v) = ∅, as required. To show that the equality (6)holds, assume for 
ontradi
tion that there exists p ∈ P (v) and a ∈ Path(p) su
h thatvpr(a) > max
p′∈P (v)

max
a
′∈Path′

(p′,v)

vpr(a
′). (7)From a ∈ Path(p) \ Path′(p, v), we know that ai = v for some i ∈ {1, . . . ,m}. Assumewlog that i is minimal. Let b denote the path (p = a1, a2, . . . , ai, p) and let c denote thepath (p′ = ai+1, . . . , am, aj+1, . . . , ai+1) if am = aj for some j < i or (p′ = ai+1, . . . , am)486
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v x

p’

p

a = (p, x, v, p′, x)

b = (p, x, v, p)

c = (p′, x, v, p′)Figure 8: Example of paths from the proof of Proposition 7.5.otherwise. An example of su
h paths is given in Figure 8. Note that b ∈ Path′(p, v) and
c ∈ Path′(p′, v), where p, p′ ∈ P (v). Now, note thatvpr(a) =

(n + 1)j − 1

(n + 1)j
vpr(b) +

1

(n + 1)j
vpr(c),and thus vpr(a) must be between vpr(b) and vpr(c), in 
ontradi
tion to assumption (7).Note that although it might look 
ompelling to use this �xed point property as a def-inition of re
ursive-indegree, it is not well de�ned, as loops indu
e in an in�nite series ofmaximizations the we must prove 
onverges. This is the essen
e of the proof above. This�xed point property is the basis for the e�
ient algorithm for re
ursive-indegree providedbelow.We shall now show this ranking system does in fa
t satisfy RIIA and our weakenedversion of transitivity.Proposition 7.5. Let r : N 7→ N be a monotone nonde
reasing fun
tion su
h that r(i) ≤ ifor all i ∈ N and de�ne r(0) = 0. The re
ursive in-degree ranking system with rank fun
tion

r satis�es strong quasi-transitivity and RIIA.Proof. The �xed point result in Proposition 7.4 further implies 0 ≤ valuer(v) < 1, and thusverti
es are ordered �rst by r(|P (v)|) and then by maxp∈P (v) valuer(p). Therefore, every
omparison pro�le 〈a,b〉 where a = (a1, . . . , ak), b = (b1, . . . , bl) is ranked as follows:
f〈a,b〉 = 1 ⇔ (k = 0) ∨ (r(k) < r(l)) ∨ [(r(k) = r(l)) ∧ (ak ≤ bl)] .This ranking of pro�les trivially yields strong quasi-transitivity as required.We have previously presented a preliminary version of the personalized variant of re
ur-sive in-degree (Altman & Tennenholtz, 2006a). The algorithm presented there is based onan equivalent re
ursive de�nition for value:valuer(v) = vpr(pvr((), v)) (8)pvr(a, v) =







(v) P (v) = ∅
(
v,maxp∈P (v) pvr(a, v, p)

)
v /∈ a

(ak, . . . , am, v) a = (a1, . . . , ak = v, . . . , am),
(9)where the maximum on the paths is taken over vpr(pvr(a, v, p)).487



Altman & TennenholtzAlgorithm 1 E�
ient algorithm for re
ursive in-degree1. Initialize valuer(v)← 1
n+1r(|P (v)|) for all v ∈ V , where r(0) is assumed to be 0.2. Let V ′ be the set of verti
es with in
oming edges.3. Iterate |V | times:(a) For every vertex v ∈ V ′:i. Update valuer(v)← 1

n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

].4. Sort V ′ by valuer(·).5. Output all verti
es in V \ V ′ as weakest, followed by the verti
es in V ′ sorted byvaluer(·) in as
ending order.The �xed point property in (4) satis�es the 
lassi
al Bellman prin
iple of optimality(Stokey & Lu
as, 1989), that is
v(xt) = max [F (xt, xt+1) + βv(xt+1)] .Thus, we 
an apply a dynami
 programming algorithm to e�
iently 
ompute these values,as seen in Algorithm 1. Note that due to the limits of the size of the graph we 
an limit thenumber of iterations and still ensure an exa
t result in O(|V | · |E|) time. A simple heuristi
for improving the e�
ien
y of the algorithm for pra
ti
al purposes is to redu
e the numberof iterations, like in other �xed point algorithms su
h as PageRank (Page et al., 1998). Weshall now prove the 
orre
tness and 
omplexity of this algorithm.Proposition 7.6. Algorithm 1 outputs verti
es in V in the order of �RID as de�ned inDe�nition 7.2 and works in O(|V | · |E|) time.Proof. Let us �rst denotevp′r(a1, a2, . . . , am, . . .) =

1

n + 1
[r(|P (a1)|+ vp′r(a2, . . . , am, . . .)]vp′r() = 0.Note that for all v ∈ V and for all a1, . . . , am ∈ Path(v): If a1, . . . , am is simple, vp′r(a1, . . . , am) =vpr(a1, . . . , am). Otherwise if an = ai, then vpr(a1 . . . , am) = vp′r(a1, . . . am, ai+1, . . . , am, . . .).Let P(v) be the set of all reverse paths to v in G, simple or otherwise. We then have for all

v ∈ V : valuer(v) = max
p∈Path(v)

vpr(p) = max
p∈P(v)

vp′r(p),be
ause the �rst loop in p ∈ P(v) 
an be repla
ed with the one maximizing vpr(·), thusin
reasing value. 488



Axiomati
 Foundations for Ranking SystemsThe iteration in step 3 of the algorithm 
al
ulates for all v:
1

n + 1

[

r0 + max
p1∈P (v)

[

· · ·
1

n + 1

[

r|V |−1 + max
p|V |∈P (p|V |−1)

1

n + 1
r|V |

]

· · ·

]]

,where ri = r(|P (pi)|) and p0 = v. This value is equal to
max

p1∈P (v)
max

p2∈P (p1)
· · · max

p|V |∈P (p|V |−1)

|V |
∑

i=0

ri

(n + 1)i+1
=

= max
(p1,...,p|V |+1)∈P|V |(v)

|V |+1
∑

i=1

ri

(n + 1)i
=

= max
p∈P|V |+1(v)

vp′r(v), (10)where Pm(v) is the set of all reverse paths of length ≤ m to v, simple or otherwise.Asthere are only |V | verti
es, any two verti
es that di�er in the value assigned by the valuefun
tion from (1) must also di�er the value (10) 
al
ulated by the algorithm and in the samedire
tion.We shall now prove the time 
omplexity of the algorithm, by tra
ing ea
h step. Steps 1and 2 take O(|V |) time. The iteration in step 3 is repeated |V | times, and for every vertexin V ′ performs O(|P (v)|) 
al
ulations, so ea
h iteration takes O(|E|) time and thus the totaltime is O(|V | · |E|). Step 4 takes O(|V ′| log |V ′|) ≤ O(|V | log |E|) ≤ O(|V | · |E|). Finally,the output step 5 takes O(|V |) time. As every step takes no more than O(|V | · |E|) time, sodoes the entire algorithm.8. Axiomatization of Approval VotingIn Se
tions 5 and 6 we have seen mostly negative results whi
h arise when trying to a

om-modate (weak) transitivity and RIIA. We have shown that although ea
h of the axioms 
anbe satis�ed separately, there exists no general ranking system that satis�es both axioms.Tennenholtz (2004) has previously shown a non-trivial ranking system that satis�es(weak) transitivity, and in the previous se
tion we have seen su
h a system for RIIA. How-ever, we have not provided a representation theorem for our new system.In this se
tion we provide a representation theorem for a ranking system that satis�esRIIA but not weak transitivity � the approval voting ranking system (see De�nition 2.5).The axiomatization we provide in this se
tion shows the power of RIIA, as it shows that thereexists only one (interesting) ranking system that satis�es it without introdu
ing transitivee�e
ts.Fishburn (1978) has axiomatized the Approval Voting ranking system in the 
ontext ofso
ial 
hoi
e, where the output of the algorithm is not a ranking, but rather a set of winners.These two distin
t settings are very similar, and thus Fishburn's axiomatization of approvalvoting is of great relevan
e to our work. We shall 
ompare these two axiomatizations laterin this se
tion.In order to spe
ify our axiomatization, re
all the following 
lassi
al de�nitions from thetheory of so
ial 
hoi
e: 489



Altman & TennenholtzThe positive response axiom (sometimes referred to as positive responsiveness) essentiallymeans that if an agent re
eives additional votes, its rank must improve:De�nition 8.1. Let F be a ranking system. F satis�es positive response if for all graphs
G = (V,E) and for all (v1, v2) ∈ (V × V ) \ E, v1 6= v2, and for all v3 ∈ V : Let G′ =
(V,E ∪ (v1, v2)). If v3 �

F
G v2, then v3 ≺

F
G′ v2.The anonymity and neutrality axioms mean that the names of the voters and alternativesrespe
tively do not matter for the ranking:De�nition 8.2. A ranking system F satis�es anonymity if for all G = (V,E), for allpermutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ = {(π(v1), v2)|(v1, v2) ∈ E}. Then,

v1 �
F
(V,E) v2 ⇔ v1 �

F
(V,E′) v2.De�nition 8.3. A ranking system F satis�es neutrality if for all G = (V,E), for all per-mutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ = {(v1, π(v2))|(v1, v2) ∈ E}. Then,

v1 �
F
(V,E) v2 ⇔ π(v1) �

F
(V,E′) π(v2).Arrow's 
lassi
al Independen
e of Irrelevant Alternatives axiom requires that the relativerank of two agents be dependant only on the set of agents that preferred one over the other.De�nition 8.4. A ranking system F satis�es Arrow's Independen
e of Irrelevant Alter-natives (AIIA) if for all G = (V,E), for all G′ = (V,E′), and for all v1, v2 ∈ V : Let

PG(v1) \ PG(v2) = PG′(v1) \ PG′(v2) and PG(v2) \ PG(v1) = PG′(v2) \ PG′(v1). Then,
v1 �

F
G v2 ⇔ v1 �

F
G′ v2.Our representation theorem states that together with positive response and RIIA, anyone of the three independen
e 
onditions above (anonymity, neutrality, and AIIA) are es-sential and su�
ient for a ranking system being AV . In addition, we show that as in the
lassi
al so
ial 
hoi
e setting when only 
onsidering two-level preferen
es, positive response,anonymity, neutrality, and AIIA are an essential and su�
ient representation of approvalvoting. This result extends the well known axiomatization of the majority rule due to May(1952):Proposition 8.5. (May's Theorem) A so
ial welfare fun
tional over two alternatives is amajority so
ial welfare fun
tional if and only if it satis�es anonymity, neutrality, and positiveresponse.We 
an now formally state our theorem:Theorem 8.6. Let F be a general ranking system. Then, the following statements areequivalent:1. F is the approval voting ranking system (F = AV )2. F satis�es positive response, anonymity, neutrality, and AIIA3. F satis�es positive response, RIIA, and either one of anonymity, neutrality, and AIIA490
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x

v

uFigure 9: Example of graph G for the pro�le 〈(1, 3, 3), (2, 4)〉Proof. It is easy to see that AV satis�es positive response, RIIA, anonymity, neutrality, andAIIA. It remains to show that (2) and (3) entail (1) above.To prove (2) entails (1), assume that F satis�es positive response, anonymity, neutrality,and AIIA. Let G = (V,E) be some graph and let v1, v2 ∈ V be some agents. By AIIA,the relative ranking of v1 and v2 depends only on the sets PG(v1) \ PG(v2) and PG(v2) \
PG(v1). We have now narrowed our 
onsideration to a set of agents with preferen
es overtwo alternatives, so we 
an apply Proposition 8.5 to 
omplete our proof.To prove (3) entails (1), assume that F satis�es positive response, RIIA and eitheranonymity or neutrality or AIIA. As F satis�es RIIA we 
an limit our dis
ussion to 
om-parison pro�les. Let f : P 7→ {0, 1} be the fun
tion from the de�nition of RIIA.By the de�nition of RIIA, it is easy to see that a ≃ a for all a. By positive response it isalso easy to see that (1, 1, . . . , 1

︸ ︷︷ ︸

n

) � (1, 1, . . . , 1
︸ ︷︷ ︸

m

) i� n ≤ m. Let P = 〈(a1, . . . , an), (b1, . . . , bm)〉be a 
omparison pro�le. Let G = (V,E) be the following graph (an example of su
h graphfor the pro�le 〈(1, 3, 3), (2, 4)〉 is in Figure 9):
V = {x1, . . . , xmax{an,bm}} ∪

∪{v1, . . . , vn, v′1, . . . , v
′
n, v} ∪

∪{u1, . . . , um, u′
1, . . . , u

′
m, u}

E = {(xi, vj)|i ≤ aj} ∪ {(xi, uj)|i ≤ bj} ∪

∪{(vi, v)|i = 1, . . . , n} ∪ {(ui, u)|i = 1, . . . ,m}.491



Altman & TennenholtzIt is easy to see that in the graph G, v and u satisfy the pro�le P . Let π be the followingpermutation:
π(x) =







v′i x = vi

vi x = v′i
u′

i x = ui

ui x = u′
i

x Otherwise.The remainder of the proof depends on whi
h additional axiom F satis�es:
• If F satis�es anonymity, let E′ = {(π(x), y)|(x, y) ∈ E}. Note that in the graph (V,E′)

v and u satisfy the pro�le 〈(1, 1, . . . , 1
︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thus v �F
(V,E′) u ⇔ n ≤ m.By anonymity, u �F

(V,E) v ⇔ u �F
(V,E′) v, thus proving that f(P ) = 1⇔ n ≤ m for anarbitrary 
omparison pro�le P , and thus F = AV .

• If F satis�es neutrality, let E′ = {(x, π(y))|(x, y) ∈ E}. Note that in the graph (V,E′)
v and u satisfy the pro�le 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and thus v �F
(V,E′) u ⇔ n ≤ m.By neutrality, u �F

(V,E) v ⇔ u �F
(V,E′) v, again showing that f(P ) = 1 ⇔ n ≤ m foran arbitrary 
omparison pro�le P , and thus F = AV .

• If F satis�es AIIA, let E′ = {(x, π(y))|(x, y) ∈ E} as before. So, also v �F
(V,E′)

u ⇔ n ≤ m. Note that PG(v) = P(V,E′)(v) and PG(u) = P(V,E′)(u), so by AIIA,
u �F

(V,E) v ⇔ u �F
(V,E′) v, and thus as before, F = AV .Our axiomatization of approval voting, and spe
i�
ally the one in (2) above is relatedto the previous axiomatization by Fishburn (1978). Both axiomatizations share the require-ments of Anonymity1 and Neutrality, but di�er in the additional assumptions: Fishburn'srequirements refer to relations between the results on di�erent voter sets, whi
h 
annot beeasily used in the ranking systems setting, as these voters are also alternatives, while ourrequirements relate to 
hanges in the preferen
es of a single agent and their ability (positiveresponse) or inability (AIIA) to in�uen
e the �nal result. Our requirements may be mappedto Fishburn's setting and would probably lead to a distin
t axiomatization of approval votingin that setting.9. Con
luding RemarksReasoning about preferen
es and preferen
e aggregation is a fundamental task in reasoningabout multi-agent systems (see e.g. Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004;Conitzer & Sandholm, 2002; LaMura & Shoham, 1998). A typi
al instan
e of preferen
eaggregation is the setting of ranking systems. Ranking systems are fundamental ingredientsof some of the most famous tools/te
hniques in the Internet (e.g. Google's PageRank andeBay's reputation systems, among many others).1. Fishburn does not 
onsider Anonymity as an axiom, but rather de�nes his so
ial 
hoi
e model to allowonly for anonymous fun
tions. 492



Axiomati
 Foundations for Ranking SystemsMoreover, the task of building su

essful and e�e
tive on-line trading environments hasbe
ome a 
entral 
hallenge to the AI 
ommunity (Boutilier, Shoham, & Wellman, 1997;Monderer, Tennenholtz, & Varian, 2000; Sandholm, 2003). Ranking systems are believedto be fundamental for the establishment of su
h environments. Although reputation hasalways been a major issue in e
onomi
s (see e.g. Kreps & Wilson, 1982; Milgrom & Roberts,1982), reputation systems have be
ome so 
entral re
ently due to the fa
t that some of themost in�uential and powerful Internet sites and 
ompanies have put reputation systems inthe 
ore of their business.Our aim in this paper was to treat ranking systems from an axiomati
 perspe
tive.The 
lassi
al theory of so
ial 
hoi
e lay the foundations to a large part of the rigorouswork on multi-agent systems. Indeed, the most 
lassi
al results in the theory of me
hanismdesign, su
h as the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975) areappli
ations of the theory of so
ial 
hoi
e. Moreover, previous work in AI has employed thetheory of so
ial 
hoi
e for obtaining foundations for reasoning tasks (Doyle &Wellman, 1989)and multi-agent 
oordination (K�r-Dahav & Tennenholtz, 1996). It is however interestingto note that ranking systems suggest a novel and new type of theory of so
ial 
hoi
e. Wesee this point as espe
ially attra
tive, and as a main reason for 
on
entrating on the studyof the axiomati
 foundations of ranking systems.In this paper we identi�ed two fundamental axioms for ranking systems, and 
ondu
teda basi
 axiomati
 study of su
h systems. In parti
ular, we presented surprising impossibilityresults, 
omplemented by a new ranking algorithm, and a representation theorem for thewell-known approval voting s
heme.A
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