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Abstract

Reasoning about agent preferences on a set, of alternatives, and the aggregation of such
preferences into some social ranking is a fundamental issue in reasoning about multi-agent
systems. When the set of agents and the set of alternatives coincide, we get the ranking
systems setting. A famous type of ranking systems are page ranking systems in the context
of search engines. In this paper we present an extensive axiomatic study of ranking systems.
In particular, we consider two fundamental axioms: Transitivity, and Ranked Independence
of Irrelevant Alternatives. Surprisingly, we find that there is no general social ranking rule
that satisfies both requirements. Furthermore, we show that our impossibility result holds
under various restrictions on the class of ranking problems considered. However, when
transitivity is weakened, an interesting possibility result is obtained. In addition, we show
a complete axiomatization of approval voting using ranked ITA.

1. Introduction

The ranking of agents based on other agents’ input is fundamental to multi-agent systems
(see e.g. Resnick, Zeckhauser, Friedman, & Kuwabara, 2000). Moreover, it has become a
central ingredient of a variety of Internet sites, where perhaps the most famous examples
are Google’s PageRank algorithm (Page, Brin, Motwani, & Winograd, 1998) and eBay’s
reputation system (Resnick & Zeckhauser, 2001).

This basic problem introduces a new social choice model. In the classical theory of
social choice, as manifested by Arrow (1963), a set of agents/voters is called to rank a set of
alternatives. Given the agents’ input, i.e. the agents’ individual rankings, a social ranking
of the alternatives is generated. The theory studies desired properties of the aggregation
of agents’ rankings into a social ranking. In particular, Arrow’s celebrated impossibility
theorem (Arrow, 1963) shows that there is no aggregation rule that satisfies some minimal
requirements, while by relaxing any of these requirements appropriate social aggregation
rules can be defined. The novel feature of the ranking systems setting is that the set of
agents and the set of alternatives coincide. Therefore, in such setting one may need to
consider the transitive effects of voting. For example, if agent a reports on the importance
of (i.e. votes for) agent b then this may influence the credibility of a report by b on the
importance of agent ¢; these indirect effects should be considered when we wish to aggregate
the information provided by the agents into a social ranking.
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Notice that a natural interpretation/application of this setting is the ranking of Internet
pages. In this case, the set of agents represents the set of Internet pages, and the links from
a page p to a set of pages () can be viewed as a two-level ranking where agents in ) are
preferred by agent (page) p to the agents (pages) which are not in (). The problem of finding
an appropriate social ranking in this case is in fact the problem of (global) page ranking.
Particular approaches for obtaining a useful page ranking have been implemented by search
engines such as Google (Page et al., 1998).

The theory of social choice consists of two complementary axiomatic perspectives:

e The descriptive perspective: given a particular rule r for the aggregation of individual
rankings into a social ranking, find a set of axioms that are sound and complete for 7.
That is, find a set of requirements that r satisfies; moreover, every social aggregation
rule that satisfies these requirements should coincide with r. A result showing such an
axiomatization is termed a representation theorem and it captures the exact essence
of (and assumptions behind) the use of the particular rule.

e The normative perspective: devise a set of requirements that a social aggregation rule
should satisfy, and try to find whether there is a social aggregation rule that satisfies
these requirements.

Much effort has been invested in the descriptive approach in the framework of the classical
theory of social choice. In that setting, representation theorems have been presented to
major voting rules such as the majority rule (May, 1952; see Moulin, 1991 for an overview).
In the ranking systems setting, we have successfully applied the descriptive perspective
by providing a representation theorem (Altman & Tennenholtz, 2005b) for the well-known
PageRank algorithm (Page et al., 1998), which is the basis of Google’s search technology
(Brin & Page, 1998).

An excellent example for the normative perspective is Arrow’s impossibility theorem
mentioned above. Tennenholtz (2004) has presented some preliminary results for ranking
systems where the set of voters and the set of alternatives coincide. However, the axioms
presented in that work consist of several very strong requirements which naturally lead to an
impossibility result. Still in the normative approach to ranking systems, we have tackled the
issue of incentives (Altman & Tennenholtz, 2006b, 2006¢), with both positive and negative
results. Recently, we have considered a variation of ranking systems, where a personalized
ranking is generated for every participant in the system (Altman & Tennenholtz, 2006a),
with surprisingly different results.

In this paper we provide an extensive study of ranking systems. We introduce two
fundamental axioms. One of these axioms captures the transitive effects of voting in rank-
ing systems, and the other adapts Arrow’s well-known independence of irrelevant alterna-
tives (ITA) axiom to the context of ranking systems. Surprisingly, we find that no general
ranking system can simultaneously satisfy these two axioms! This result means that if we
would like to fully capture transitive effects, ranking decisions must be made globally, or be
based on numeric calculations. We further show that our impossibility result holds under
various restrictions on the class of ranking problems considered.

On the other hand, we show a positive result for the case when the transitivity axiom is
relaxed. This new ranking system is practical and useful and an algorithm is provided for
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its computation. Finally, we use our ITA axiom to present a positive result in the form of
a representation theorem for the well-known approval voting ranking system, which ranks
the agents based on the number of votes received. This axiomatization shows that when
ignoring transitive effects, there is only one ranking system that satisfies our IIA axiom.

This paper is structured as follows: Section 2 formally defines our setting and the notion
of ranking systems. Sections 3 and 4 introduce our axioms of Transitivity and Ranked Inde-
pendence of Irrelevant Alternatives respectively. Our main impossibility result is presented
in Section 5, and further strengthened in Section 6. Our main positive result, in the form
of a ranking system satisfying a weaker version of transitivity is given in Section 7, while an
axiomatization for the Approval Voting ranking system is presented in Section 8. Finally,
some concluding remarks are given in Section 9.

2. Ranking Systems

Before describing our results regarding ranking systems, we must first formally define what
we mean by the words “ranking system” in terms of graphs and linear orderings:

Definition 2.1. Let A be some set. A relation R C A x A is called an ordering on A if it
is reflexive, transitive, and complete. Let L(A) denote the set of orderings on A.

Notation 2.2. Let =< be an ordering, then =~ is the equality predicate of <, and < is the
strict order induced by <. Formally, a ~ b if and only if ¢ < b and b < a; and a < b if and
only if @ < b but not b <X a.

Given the above we can define what a ranking system is:

Definition 2.3. Let Gy be the set of all directed graphs with vertex set V. A ranking
system F' is a functional that for every finite vertex set V maps graphs G € Gy to an
ordering jge L(V). If F is a partial function then it is called a partial ranking system,
otherwise it is called a general ranking system.

One can view this setting as a variation/extension of the classical theory of social choice
as modeled by Arrow (1963). The ranking systems setting differs in two main properties.
First, in this setting we assume that the set of voters and the set of alternatives coincide,
and second, we allow agents only two levels of preference over the alternatives, as opposed
to Arrow’s setting where agents could rank alternatives arbitrarily.

The two-level limitation is important in order to avoid Arrow-style impossibility results.
Indeed, in the dichotomous (i.e. two level) setting such results do not apply (Bogomolnaia,
Moulin, & Stong, 2005). Had we allowed general rankings as the input of the system, we
would have reached impossibility results as a direct result of Arrow-style impossibility. By
adding the dichotomous limitation, we ensure that our results will be a consequence of the
co-incidence of the voters and alternatives and the related transitive effects.

2.1 Examples of Ranking Systems

In order to make the abstract definition of ranking systems above more concrete, we shall
now give some examples of several well-known ranking systems. In order to define these
systems, and throughout this paper, we shall use the following notation:
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Figure 1: Example graph for ranking systems.

Notation 2.4. Let G = (V,E) be some graph and v € V be some vertex. Let Pg(v) =
{u|(u,v) € E} and Sg(v) = {u|(v,u) € E} denote the predecessor and successor sets of v
in G respectively. When G is understood from context, we will sloppily use P(v) and S(v).

Approval Voting is a very simple ranking system that ranks the agents according to the
number of votes (i.e. incoming edges) they have. Formally,

Definition 2.5. The approval voting ranking system AV is the ranking system defined by:
v 26" v2 & |Pg(u1)] < |Pa(vs)]

Consider the graph in Figure 1. The AV ranking system would rank this graph a ~ b <
f < ¢~d~ e based on the fact that the vertices in {a,b}, {f}, and {c,d, e} have 0, 1, and
2 predecessors respectively. A full axiomatization of the approval voting ranking system is
given in section 8.

One major application of Ranking Systems is in the context of Internet pages. In that
context, we represent the Internet as a directed graph, where the vertices are websites, and
the edges are links between these websites. A prominent ranking system in this setting
is PageRank (Page et al., 1998), which is based on a random walk of the Internet graph.
Namely, in this process we start in a random page, and iteratively move to one of the pages
that are linked to by the current page, assigning equal probabilities to each such page. We
define the PageRank matrix which captures the random walk created by the PageRank

procedure:

Definition 2.6. Let G = (V| E) be a graph, and assume V = {vy,v9,...,v,}. The PageR-
ank Matriz Ag (of dimension n x n) is defined as:

_J YISe(j)| (vj,v) € E
[Acli; = { 0 Otherwise.

The PageRank procedure will rank pages according to the stationary probability distri-
bution obtained in the limit of the above random walk; this is formally defined as follows:

Definition 2.7. Let G = (V, E) be some graph, and assume V = {vj,v9,...,v,}. Let
0 < d < 1 be a damping factor. Let r be the unique solution of the system (1 —d) - Ag -
r+d-(1 1 -+ 1) =r where Y.r; = n. If there is no unique solution, then the
ranking is not defined. Otherwise, the PageRank PRg(v;) of a vertex v; € V' is defined as
PRg(v;) = r;. The PageRank ranking system is a ranking system that for the vertex set
V maps G to ng, where ng is defined as: for all v;,v; € Vi v; ng v; if and only if
PRg(vi) < PRg(Uj).
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Figure 2: Example of Transitivity

It can be shown that for d > 0, there is indeed a unique solution and thus the ranking
system is a general one. However, when d = 0 this ranking system becomes a partial ranking
system, as it is not always well defined.

In the graph in Figure 1, for d = 0.2 the PageRank values assigned for a...f are
(0.2,0.2,0.52,1.7,1.77,1.61) giving the ranking a ~ b < ¢ < f < d < e. Note that this
ranking differs from the one assigned by approval voting, that neither of the rankings is
a refinement of the other. This example shows that PageRank and Approval Voting are
distinct ranking systems, and that the two may disagree on the ranking of two vertices. We
will soon see that these systems satisfy two mutually exclusive properties of ranking systems.

3. Transitivity

A basic property one would assume of ranking systems is that if an agent a’s voters are
ranked higher than those of agent b, then agent a should be ranked higher than agent b.
This notion is formally captured below:

Definition 3.1. Let F' be a ranking system. We say that F' satisfies strong transitivity if
for all graphs G = (V, E') and for all vertices vy, vy € V: Assume there is a 1-1 mapping (but
not necessarily onto) f : P(vy) — P(vy) s.t. for all v € P(vy): v 2 f(v). Then, v; = va.
Further assume that either f is not onto or for some v € P(v1): v < f(v). Then, v; < vo.

To explain how the formal definition captures the intuition, consider the simple graph
a—b—c

Our intuition tells us that ¢ who is at the end of the vote chain should be more trusted,
and thus ranked higher than b, this is because of the fact that b is more trusted than a, due
to b having a vote compared to a having none. This intuition is correctly captured by the
definition above: a must be ranked strictly below b because any function mapping P(a) = ()
to P(b) = {a} is not onto, and b must be ranked strictly below ¢ because the trivial mapping
from P(b) = {a} to P(c) = {b} satisfies a < b, and thus we get b < ¢, as expected.

For a more involved example, consider the graph G in Figure 2 and any ranking system
I that satisfies strong transitivity. F' must rank vertex d below all other vertices, as it has no
predecessors, unlike all other vertices. If we assume that a jg b, then by strong transitivity
we must conclude that b <% ¢ as well. But then we must conclude that b <% a (as b’s
predecessor a is ranked lower than a’s predecessor ¢, and a has an additional predecessor d),
which leads to a contradiction. Given b <g a, again by transitivity, we must conclude that
Z <§ b, so the only ranking for the graph G that satisfies strong transitivity is d <g & <g

=g a.
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Tennenholtz (2004) has suggested an algorithm that defines a ranking system that sat-
isfies strong transitivity by iteratively refining an ordering of the vertices starting from the
ranking suggested by approval voting.

Note that the PageRank ranking system does not satisfy strong transitivity. This is due
to the fact that PageRank reduces the weight of links (or votes) from nodes which have a
higher out-degree. Thus, assuming Yahoo! and Microsoft are equally ranked, a link from
Yahoo! means less than a link from Microsoft, because Yahoo! links to more external pages
than does Microsoft. Noting this fact, we can weaken the definition of transitivity to require
that the predecessors of the compared agents have an equal out-degree:

Definition 3.2. Let F' be a ranking system. We say that F' satisfies weak transitivity if
for all graphs G = (V, E) and for all vertices v1,vy € V: Assume there is a 1-1 mapping
f: P(vi) — P(ve) s.t. forall v € P(v): v < f(v) and |[S(v)| = [S(f(v))|. Then, v; < va.
Further assume that either f is not onto or for some v € P(v1): v < f(v). Then, v; < vo.

For an example of weak transitivity, one can reconsider the strong transitivity example
above, as it still applies to weak transitivity.

The PageRank ranking system satisfies this weakened version of transitivity. This is due
to the fact that:

B PR(v) PR(f(v)) PR(v) _ y
PROV= 2 5] < 2 T <, 2 Tl )

veEP(v1

In the case where v < f(v) for some v € P(vy) the first inequality is strict, and if f is not
onto the second inequality is strict.

4. Ranked Independence of Irrelevant Alternatives

A standard assumption in social choice settings is that an agent’s relative rank should only
depend on (some property of) the agents who have voted for them. Such axioms are usually
called independence of irrelevant alternatives (ITA) axioms. In our setting, such ITA axioms
mean that an agent’s rank must only depend on a property of its immediate predecessors.
In our setting, we require the relative ranking of two agents must only depend on the
pairwise comparisons of the ranks of their predecessors, and not on their identity or cardinal
value. Our ITA axiom, called ranked ITA, differs from the one suggested by Arrow (1963) in
the fact that we do not consider the identity of the voters, but rather their relative rank.
For example, consider the graph in Figure 3. Furthermore, assume a ranking system F'
has ranked the vertices of this graph as following: a ~ b < ¢~ d < e ~ f. Now look at
the comparison between ¢ and d. c¢’s predecessors, a and b, are both ranked equally, and
both ranked lower than d’s predecessor f. This is also true when considering e and f e’s
predecessors ¢ and d are both ranked equally, and both ranked lower than f’s predecessor
e. Therefore, if we agree with ranked ITA, the relation between ¢ and d, and the relation
between e and f must be the same, which indeed it is both ¢ ~ d and e ~ f. However,
this same situation also occurs when comparing ¢ and f (¢’s predecessors a and b are equally
ranked and ranked lower than f’s predecessor e), but in this case ¢ < f. All three cases
involve comparing two vertices, one with two weaker predecessors and one with one stronger
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Figure 3: An example of RIIA.
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Figure 4: Graph for profile ((1,1), (2)).

predecessor, but the outcome of these comparisons in not consistent. Therefore, we can
conclude that the ranking system F' which produced these rankings does not satisfy ranked
ITA.

To formally define this condition, one must consider all possibilities of comparing two
nodes in a graph based only on ordinal comparisons of their predecessors. We call these
possibilities comparison profiles:

Definition 4.1. A comparison profile is a pair (a,b) where a = (ay,...,a,), b = (b1,...,bn),
al,...,ap,b1,....0p €N, a1 <as <---<ay,,and by < by < --- < by,. Let P be the set of
all such profiles.

A ranking system F', a graph G = (V, E), and a pair of vertices v1,vy € V are said to
satisfy such a comparison profile (a,b) if there exist 1-1 mappings f1 : P(v1) — {1...n}
and fo : P(ve) — {1...m} such that given f : ({1} x P(v1)) U ({2} x P(v3)) — N defined

as:

f(l,’U) = af(v)
f(27u) = bfg(u)7

fli,x) < f(5,y) & x 25y for all (4,2), (j,y) € ({1} x P(v1)) U ({2} x P(v2)).

Consider the profile ((1,1),(2)). This comparison profile illustrates the basic question of
comparing an agent who got two low-rank votes with one who got one high-rank vote. This
question is undecided by transitivity alone, and if we do assume transitivity this comparison
profile is satisfied by the pair (a,b) in the graph in Figure 4. The f function above simply
maps the predecessors of a and b to 1 and 2 respectively.

We now require that for every such profile the ranking system ranks the nodes consis-
tently:
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Definition 4.2. Let F' be a ranking system. We say that F satisfies ranked independence of
irrelevant alternatives (RIIA) if there exists a mapping f : P +— {0,1} such that for every
graph G = (V, E) and for every pair of vertices v1,v9 € V and for every comparison profile
p € P that vy and vs satisfy, vq jg vy & f(p) = 1.

Notation 4.3. When the function f from the definition above is understood from context,
we will use the notation a < b to mean f(a,b) =1, a < b to mean f(b,a) =0, and a~b
to mean a < b and b < a.

For example, in the example considered above, all of the pairs (¢, d), (¢, f), and (e, f)
satisfy the comparison profile ((1,1),(2)). As we have seen above, the pairs (¢, d) and (e, f)
entail that (1,1) ~ (2), while (¢, f) entails that (1,1) < (2). These results contradict each
other, and therefore we conclude that the ranking system that produced this ranking does
not satisfy RITA.

The definition of RITA formalizes the requirement of consistency in the comparisons
such as the one we have seen above. It means that any ranking system satisfying RITA must
decide on the relative ranking of a and b in Figure 4, and (assuming transitivity) rank the
same in all other occurrences of two weak vs. one strong predecessor.

As RIIA is an independence property, the ranking system F_, that ranks all agents
equally, satisfies RITA.

The approval voting ranking system AV also satisfies RITA. This is due to the fact that
for any comparison profile ((a1,...,a,), (b1,...bn)), the f function for AV ranks a < b iff
n < m. We will use this fact in the axiomatization of approval voting we present in Section
8.

5. Impossibility

Our main result illustrates the impossibility of satisfying (weak) transitivity and RITA si-
multaneously.

Theorem 5.1. There is no general ranking system that satisfies weak transitivity and RIIA.

Proof. Assume for contradiction that there exists a ranking system I’ that satisfies weak
transitivity and RITA. Consider first the graph G7 in Figure 5(a). Note that all vertices
in this graph have an out-degree of 2 or 0, and thus the out-degree requirement of weak
transitivity is trivially fulfilled. Now note that a; and as must satisfy some comparison
profile p, = ((z,y), (x,y)) because they have identical predecessors. Thus, by RITA, a; jgl
az < a jgl a1, and therefore aq zFl as. By weak transitivity, it is easy to see that
c 451 a1 and ¢ %51 b. If we assume b jgl a1, then by weak transitivity, aq 451 b which
contradicts our assumption. So we conclude that ¢ 451 ai <51 b.

Now consider the graph G5 in Figure 5(b). Again, the out-degree requirement of weak
transitivity is trivially satisfied, and again by RITA, aq :gz as. By weak transitivity, it is
easy to see that ag <52 cand b <gz c. If we assume ag jgz b, then by weak transitivity,
b 452 a1 which contradicts our assumption. So we conclude that b 452 ay 452 c.

Consider the comparison profile p = ((1,3),(2,2)). Given F, a; and b satisfy p in Gy
(because ¢ %51 ay :gl as 451 b) and in Go (because b %52 ay 252 as 452 ¢). Thus,

480



AX10MATIC FOUNDATIONS FOR RANKING SYSTEMS

(a) Graph G

<.
aAe >

(b) Graph G2
Figure 5: Graphs for the proof of Theorem 5.1

by RIIA, aq jgl b a jgz b, which is a contradiction to the fact that aq <gl b but
b -<g2 ai. Ol

This result is quite a surprise. Intuitively, we would like a ranking procedure to be
sensitive to the relative ranking of each agent’s voters (transitivity) and not to be influenced
by any other seemingly irrelevant information (RITA). Although these requirements may
seem complementary, this impossibility theorem shows that these requirements are in fact
contradictory.

If we consider transitivity as a basic requirement, we learn that any axiomatization of
a transitive ranking system cannot be restricted to local ordinal properties. That is, when
designing a ranking system where transitivity is required, one must choose whether to base
the system on some numeric computation, or on ordinal axioms that operate on a global
scale.

For example, the standard formalism for the PageRank ranking system in Definition 2.7
and an axiomatization of a similar system suggested by Palacios-Huerta and Volij (2004)
are based on numerical computation, while our suggested axiomatization (Altman & Ten-
nenholtz, 2005b) uses ordinal axioms on a global scale. These axioms refer to invariants in
relations between ranking of different graphs, rather than between pairs of vertices in the
same graph.

The PageRank example demonstrates that some ranking systems may be defined using
either of these approaches. We feel that the numeric approach is more suitable for defin-
ing and executing ranking systems, while the global ordinal approach is more suitable for
axiomatic classification.

6. Relaxing Generality

A hidden assumption in our impossibility result is the fact that we considered only general
ranking systems. In this section we analyze several special classes of graphs that relate to
common ranking scenarios.
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6.1 Small Graphs

A natural limitation on a preference graph is a cap on the number of vertices (agents) that
participate in the ranking. Indeed, when there are three or less agents involved in the rank-
ing, strong transitivity and RITA can be simultaneously satisfied. An appropriate ranking
algorithm for this case is the one we suggested by Tennenholtz (2004). That algorithm
simply starts with ranking by in-degree and refines the ranking as required by strong transi-
tivity until it is satisfied. It is easy to see that the decisions for comparison profiles possible
in a 3-vertex graph are dictated by either in-degree or transitivity. Specifically, the profile
((1,3),(2,2)) used in the proof above is impossible in such graphs.

When there are four or more agents, strong transitivity and RITA cannot be simulta-
neously satisfied (the proof is similar to that of Theorem 5.1, but with vertex d removed
in both graphs). When five or more agents are involved, even weak transitivity and RITA
cannot be simultaneously satisfied, as implied by the proof of Theorem 5.1.

6.2 Single Vote Setting

Another natural limitation on the domain of graphs that we might be interested in is the
restriction of each agent (vertex) to exactly one vote (successor). For example, in the voting
paradigm this could be viewed as a setting where every agent votes for exactly one agent.
The following proposition shows that even in this simple setting weak transitivity and RITA
cannot be simultaneously satisfied.

Proposition 6.1. Let Gy be the set of all graphs G = (V, E) such that |S(v)| = 1 for all
v € V. There is no partial ranking system over Gy that satisfies weak transitivity and RIIA.

Proof. Assume for contradiction that there is a partial ranking system F' over Gj that
satisfies weak transitivity and RITA. Let f : P+ {0,1} be the mapping from the definition
of RITA for F.

Let Gy € Gy be the graph in Figure 6a. By weak transitivity, x; :gl o 451 b %51 a.
(a,b) satisfies the comparison profile ((1,1,2),(3)), so we must have (3) < (1,1,2). Now let
G9 € G be the graph in Figure 6b. By weak transitivity z; 252 o <52 Y <52 a <52 b.
(b, a) satisfies the comparison profile ((2,3),(1,4)), so we must have (1,4) < (2, 3).

Let G35 € Gy be the graph in Figure 6¢. By weak transitivity it is easy to see that
1 253 :gs T 453 Y1 253 Y2 453 c 453 d. Furthermore, by weak transitivity we
conclude that a 453 b and o <53 b from c <g3 d; and 3, <53 b from x3 <53 d. Now
consider the vertex pair (c,b’). We have shown that z; ~f, o <&, 1 <&, b So, (¢,V)
satisfies the comparison profile ((1,1,2),(3)), thus by RITA ¥/ <53 c. Now consider the
vertex pair (b, a). We have already shown that o’ <§, b/ <§, ¢ <f, d. So, (a,b) satisfies the
comparison profile ((2,3),(1,4)), thus by RITA b 453 a. However, we have already shown

that a <53 b a contradiction. Thus, the ranking system F' cannot exist. O

6.3 Bipartite Setting

In the world of reputation systems (Resnick et al., 2000), we frequently observe a distinction
between two types of agents such that each type of agent only ranks agents of the other
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Figure 6: Graphs from the proof of proposition 6.1

type. For example buyers only interact with sellers and vice versa. This type of limitation
is captured by requiring the preference graphs to be bipartite, as defined below.

Definition 6.2. A graph G = (V,E) is called bipartite if there exist Vi,V such that
V=WNuW, ViNnVy,=0,and E C (V; x Vo) U (Vo x V}). Let Gg be the set of all bipartite
graphs.

Our impossibility result extends to the limited domain of bipartite graphs.

Proposition 6.3. There is no partial ranking system over Gp N Gy that satisfies weak
transitivity and RIIA.

Proof. The proof is exactly the same as for Gy, considering that all graphs in Figure 6 are
bipartite. O

6.4 Strongly Connected Graphs

The well-known PageRank ranking system is (ideally) defined on the set of strongly con-
nected graphs. That is, the set of graphs where there exists a directed path between any
two vertices.

Let us denote the set of all strongly connected graphs Ggc. The following proposition
extends our impossibility result to strongly connected graphs.

Proposition 6.4. There is no partial ranking system over Ggc that satisfies weak transi-
tivity and RIIA.
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Proof. The proof is similar to the proof of Theorem 5.1, but with an additional vertex e in
both graphs that has edges to and from all other vertices. O

7. Relaxing Transitivity

Our impossibility result becomes a possibility result when we relax the transitivity require-
ment. Instead of comparing only vertices with similar out-degree as in the weak transitivity
axiom above, we weaken the requirement for strict preference to hold only in the case where
the matching predecessors of one agent are preferred to the all predecessors of the other.

Definition 7.1. Let F' be a ranking system. We say that F' satisfies strong quasi-transitivity
if for all graphs G = (V, E) and for all vertices vy,v2 € V: Assume there is a 1-1 (but not
necessarily onto) mapping f : P(v1) — P(v2) s.t. for all v € P(vy): v < f(v). Then,
v1 X vy, And, if P(v1) # 0 and for all v € P(v1): v < f(v), then v1 < ve.

Strong quasi transitivity a significantly weaker property than strong transitivity, as it
allows for much more indifference in the resulting ranking. Specifically, the ranking system
F_ that always ranks all vertices equally satisfies strong quasi transitivity. More generally,
any ranking system where the value of a vertex is proportional to a sum of the values of some
subset of its predecessors satisfies strong quasi transitivity. We shall see more examples of
quasi-transitive ranking systems below.

When we only require strong quasi-transitivity and RITA, we find an interesting family of
ranking systems that rank the agents according to their in-degree, breaking ties by comparing
the ranks of the strongest predecessors. These recursive in-degree systems work by assigning
a rational value for every vertex, that is based on the following idea: rank first based on
the in-degree. If there is a tie, rank based on the strongest predecessor’s value, and so on.
Loops are ranked as periodical rational numbers in base (n + 1) with a period the length of
the loop, in the case that continuing on the loop is the maximally ranked option.

The recursive in-degree systems differ in the way different in-degrees are compared. Any
monotone increasing mapping of the in-degrees could be used for the initial ranking. To
show these systems are well-defined and that the values can be calculated we define these
systems algorithmically as follows:

Definition 7.2. Let 7 : N — N be a monotone nondecreasing function such that (i) < for
all ¢ € N. The recursive in-degree ranking system with rank function r is defined as follows:
Given a graph G = (V, E), let n = |V|. The relative ranking of two vertices is based on a
numeric calculation:

1 ngDT vy & value,(v1) < value,(v),

where value,(v) is defined by maximizing a valuation function vp,(-) on all paths that lead
to v:

value,(v) = efl};%}ﬁ()va(a) (1)

To ensure the definition is sound, we eliminate loops, and define the path in reverse order:

Path(v) ={ (v=ay,a2,...,an)meN,
(@, ... a1) is a path in G A (am—1,...,a1) is simple}
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G 2

Figure 7: Values assigned by the recursive in-degree algorithm

The path valuation function vp : V* +— Q defines the value to conform to a lexicographic
order on in-degrees along the path:

r([P(a1))+
1 0 m=1
e = 2
VpT(a17a27 ,am) n+1 Vpr(GQ,...,am,GQ) aq :am/\m>1 ( )
vp,(ag, ..., am) Otherwise.
Note that vp,.(a1, a9, ..., ay) is infinitely recursive in the case when the path contains a

loop (c.f. a1 = a;, A m > 1). For computation sake we can redefine this case finitely as:

vp,(a1,...,am,a1) = Z 1 Z T(|P(aj)!) _

= (e, ®

Example 7.3. An example of the values assigned for a particular graph when r is the
identity function is given in Figure 7. As n = 9, and the definition in (2) is based on
recursive division by n-+ 1, these values are simply decimals which consist of a concatenation
of in-degrees along the maximal path.

The value of zero is assigned to a via the first case in (2), as the only path leading to a
consists of a itself. The value for b is arises from the path (b,a) and the third case in (2),
the recursive call gives the value of the path (a) which we have seen to be equal 0. This is
added to r(|P(b)|) = 1 and divided by 10, giving the result 0.1. The values of ¢, d, e, and i
arise from a loop consisting of these vertices. Applying the second case in (2), we have the
equations

. . . 1
value,(i) = vp,(i,e,d,c,i) = 0 [

1
value.(e) = vp,(e,d,c,i,e) = 10 2+ vp,(d,c,i,e,d)]

3+ vp,(e,d,c i e)]

1
value,(d) = vp,(d,c,i,e,d) = 1 [1+vp,(c,i,e,d,c)]

1
value,(¢) = vp,(ci,e,d,c) = 1 24+ vp,(i,e,d, c,i)]
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By using (3), we get the periodic decimals seen in Figure 7. The values for vertices f, g,
and h are again assigned using the third case in (2). Note that the complete maximal paths
to these vertices contain the loop (e, d, c,,e) and thus all of these vertices’ values include a
periodic decimal part, as can be seen in Figure 7.

The recursive in-degree system satisfies an interesting fixed point property that can be
used to facilitate its efficient computation:

Proposition 7.4. Let r: N — N be a monotone nondecreasing function such that r(i) <1
for all i € N and define r(0) = 0. The value function for the recursive in-degree ranking
system satisfies:

value,(v) =

{ n+_1 [r(IP(v)]) + MaxX,e p(y) value,(p)]  P(v) # 0 N
0 Otherwise

Proof. Denote Path’(p,v) as the set of almost-simple directed paths to p which do not pass
through v unless immediately looping back to p:

Path'(p,v) ={ (p=a1,az,...,an)]
(amy--.,a1) is a path in G A (ap—1,...,a1) is simple A
Vie{l,...,m—2,m}:a; #vA

Um—1 =V & Q= P}

Let v € V' be some vertex. Then,

value,(v) = e]g:;}ﬁ( )va(a) =
a v
1 [ 7"(|P('U)|) + maX(v:a17__,7am)€Path(U)
= vp,(ag, ... am,a2) ay=apAm>1 | = (5)
n+1 .
vp,(ag,...,am) Otherwise.
T
= r(|P(v)|) + max max  vp.(a)| = (6)
n+1 L pEP(v) acPath’ (p,v) "
L Lrgpw + (a)
= r(|P(v max max vp.(a)| =
n+1 I PEP(v) acPath(p) Pr
1
= P 1 .
[P+ vave, )]

Note that (5) is equal to zero 0 if P(v) = (), as required. To show that the equality (6)
holds, assume for contradiction that there exists p € P(v) and a € Path(p) such that

vp,(a) > max max  vp,(a). (7)
p'eP(v) a’ePath/(p’,U)

From a € Path(p) \ Path/(p,v), we know that a; = v for some i € {1,...,m}. Assume
wlog that ¢ is minimal. Let b denote the path (p = aj,as,...,a;,p) and let ¢ denote the
path (p = @it1,...,am,aj41,...,0i41) if apy = a; for some j < i or (p = ait1,...,an)
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TG = s
e D b = (p.z0p)

c = (p,2,0p)
Figure 8: Example of paths from the proof of Proposition 7.5.

otherwise. An example of such paths is given in Figure 8. Note that b € Path’(p,v) and
c € Path/(p/,v), where p,p’ € P(v). Now, note that

(n+1)7 -1 1

vp.(a) = %Vpr(b)er

CEEY vp,(c),

and thus vp, (a) must be between vp,(b) and vp,(c), in contradiction to assumption (7). O

Note that although it might look compelling to use this fixed point property as a def-
inition of recursive-indegree, it is not well defined, as loops induce in an infinite series of
maximizations the we must prove converges. This is the essence of the proof above. This
fixed point property is the basis for the efficient algorithm for recursive-indegree provided
below.

We shall now show this ranking system does in fact satisfy RITA and our weakened
version of transitivity.

Proposition 7.5. Let r: N— N be a monotone nondecreasing function such that r(i) <1
for all i € N and define r(0) = 0. The recursive in-degree ranking system with rank function
r satisfies strong quasi-transitivity and RIIA.

Proof. The fixed point result in Proposition 7.4 further implies 0 < value,(v) < 1, and thus
vertices are ordered first by r(|P(v)[) and then by max,cp(, value,(p). Therefore, every
comparison profile (a,b) where a = (a1,...,ar), b = (b1,...,b;) is ranked as follows:

flab)=1 & (k=0)V(r(k) <r@)V[(rk)=r)A(ax < b))
This ranking of profiles trivially yields strong quasi-transitivity as required. U

We have previously presented a preliminary version of the personalized variant of recur-
sive in-degree (Altman & Tennenholtz, 2006a). The algorithm presented there is based on
an equivalent recursive definition for value:

value,(v) = vp,(pv,((),v)) ®)
(v) Pv)=10

er(aa 'U) = (’U, MaXpe p(v) pvr(a7 v,p)) v ¢ a (9)
(ak7 amy'U) a:(a].?"'?ak:v?””am)’

where the maximum on the paths is taken over vp,.(pv,(a,v,p)).
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Algorithm 1 Efficient algorithm for recursive in-degree

1. Initialize value,(v) « %HT(‘P(U)D for all v € V, where 7(0) is assumed to be 0.
2. Let V' be the set of vertices with incoming edges.
3. Tterate |V| times:
(a) For every vertex v e V'
i. Update value,(v) « %H [7(IP(v)]) + max,e p(y) value,(p)].
4. Sort V' by value,(-).

5. Output all vertices in V' \ V' as weakest, followed by the vertices in V' sorted by
value,(-) in ascending order.

The fixed point property in (4) satisfies the classical Bellman principle of optimality
(Stokey & Lucas, 1989), that is

v(zy) = max [F(xy, Te41) + Bo(ze4)] -

Thus, we can apply a dynamic programming algorithm to efficiently compute these values,
as seen in Algorithm 1. Note that due to the limits of the size of the graph we can limit the
number of iterations and still ensure an exact result in O(|V|-|E|) time. A simple heuristic
for improving the efficiency of the algorithm for practical purposes is to reduce the number
of iterations, like in other fixed point algorithms such as PageRank (Page et al., 1998). We
shall now prove the correctness and complexity of this algorithm.

Proposition 7.6. Algorithm 1 outputs vertices in V in the order of <FIP as defined in
Definition 7.2 and works in O(|V| - |E|) time.

Proof. Let us first denote

1
vpr(ay,ag, ... am,...) = n+1[r(|P(a1)|+vp;(a2,...,am,...)]

vpr() = 0.

Note that for all v € V and for all ay, ..., a,, € Path(v): If ay, ..., ap, issimple, vpl.(a1,...,ay) =
vp,(ai,...,an). Otherwiseif a,, = a;, then vp,(ay ... ,am) = vpl(ai,...am,Giz1,. .. aQm,...).
Let P(v) be the set of all reverse paths to v in G, simple or otherwise. We then have for all
veV:

value, (v) = max vp,(p) = max VP/ p),
(©) pePath(v) (p) peP(v) (?)

because the first loop in p € P(v) can be replaced with the one maximizing vp,(-), thus
increasing value.
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The iteration in step 3 of the algorithm calculates for all v:

) ro + max

p1E€P(v)

1

1
Tv|—1 + max T el
vi-1 piviEP(pv—1) N+ 1 IVI] ]]

where r; = r(|P(p;)|) and pg = v. This value is equal to

Vi
T
max max --- max ey =
p1EPW) p2eP(p1)  pviEP(PV|—1) ;0 (n+ 1)t
[V]+1 .
1
= max — =
(P1,--Pv|+1)EP V| (V) ; (n+1)
= max  vpl(v), (10)

PEP |y 41 (v)

where P, (v) is the set of all reverse paths of length < m to v, simple or otherwise.As
there are only |V/| vertices, any two vertices that differ in the value assigned by the value
function from (1) must also differ the value (10) calculated by the algorithm and in the same
direction.

We shall now prove the time complexity of the algorithm, by tracing each step. Steps 1
and 2 take O(]V|) time. The iteration in step 3 is repeated |V| times, and for every vertex
in V' performs O(]P(v)|) calculations, so each iteration takes O(|E|) time and thus the total
time is O(|V| - |E|). Step 4 takes O(|V'|1og|V']) < O(|V|log |E|) < O(|V] - |E|). Finally,
the output step 5 takes O(|V|) time. As every step takes no more than O(|V|-|E|) time, so
does the entire algorithm. O

8. Axiomatization of Approval Voting

In Sections 5 and 6 we have seen mostly negative results which arise when trying to accom-
modate (weak) transitivity and RITA. We have shown that although each of the axioms can
be satisfied separately, there exists no general ranking system that satisfies both axioms.

Tennenholtz (2004) has previously shown a non-trivial ranking system that satisfies
(weak) transitivity, and in the previous section we have seen such a system for RITA. How-
ever, we have not provided a representation theorem for our new system.

In this section we provide a representation theorem for a ranking system that satisfies
RITA but not weak transitivity =~ the approval voting ranking system (see Definition 2.5).
The axiomatization we provide in this section shows the power of RIIA, as it shows that there
exists only one (interesting) ranking system that satisfies it without introducing transitive
effects.

Fishburn (1978) has axiomatized the Approval Voting ranking system in the context of
social choice, where the output of the algorithm is not a ranking, but rather a set of winners.
These two distinct settings are very similar, and thus Fishburn’s axiomatization of approval
voting is of great relevance to our work. We shall compare these two axiomatizations later
in this section.

In order to specify our axiomatization, recall the following classical definitions from the
theory of social choice:
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The positive response axiom (sometimes referred to as positive responsiveness) essentially
means that if an agent receives additional votes, its rank must improve:

Definition 8.1. Let F' be a ranking system. F' satisfies positive response if for all graphs
G = (V,E) and for all (vi,v3) € (V x V) \ E, v; # vg, and for all v3 € V: Let G' =
(V. EU (v1,v2)). If vg <L v, then vg <&, vo.

The anonymity and neutrality axioms mean that the names of the voters and alternatives
respectively do not matter for the ranking:

Definition 8.2. A ranking system F' satisfies anonymity if for all G = (V, E), for all
permutations 7 : V +— V, and for all v;,ve € V: Let E' = {(mw(v1),v2)|(v1,v2) € E}. Then,
U1 j&E) vg = V1 j&E/) V2.

Definition 8.3. A ranking system F' satisfies neutrality if for all G = (V| E), for all per-
mutations 7 : V — V, and for all v;,vy € V: Let E' = {(v1,7(v2))|(v1,v2) € E}. Then,
V1 j&E) ve & m(vy) j&E,) 7(v2).

Arrow’s classical Independence of Irrelevant Alternatives axiom requires that the relative
rank of two agents be dependant only on the set of agents that preferred one over the other.

Definition 8.4. A ranking system F' satisfies Arrow’s Independence of Irrelevant Alter-
natives (AITA) if for all G = (V, E), for all G’ = (V,FE’), and for all vi,v9 € V: Let
Pa(v1) \ Pa(v2) = Per(v1) \ Por(v2) and Pg(vz) \ Pg(vi) = Per(v2) \ Per(vi). Then,
U1 jg Vg & U1 jg, V3.

Our representation theorem states that together with positive response and RITA, any
one of the three independence conditions above (anonymity, neutrality, and AITA) are es-
sential and sufficient for a ranking system being AV. In addition, we show that as in the
classical social choice setting when only considering two-level preferences, positive response,
anonymity, neutrality, and AIIA are an essential and sufficient representation of approval
voting. This result extends the well known axiomatization of the majority rule due to May
(1952):

Proposition 8.5. (May’s Theorem) A social welfare functional over two alternatives is a
majority social welfare functional if and only if it satisfies anonymaity, neutrality, and positive
response.

We can now formally state our theorem:

Theorem 8.6. Let F' be a general ranking system. Then, the following statements are
equivalent:

1. F is the approval voting ranking system (F = AV')
2. F satisfies positive response, anonymity, neutrality, and AIIA

3. F satisfies positive response, RIIA, and either one of anonymity, neutrality, and AIIA
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OO0 000
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Figure 9: Example of graph G for the profile ((1,3,3), (2,4))

Proof. 1t is easy to see that AV satisfies positive response, RITA, anonymity, neutrality, and
ATITA. It remains to show that (2) and (3) entail (1) above.

To prove (2) entails (1), assume that F' satisfies positive response, anonymity, neutrality,
and AITA. Let G = (V, E) be some graph and let v;,v9 € V be some agents. By AIIA,
the relative ranking of v; and ve depends only on the sets Pg(v1) \ Pg(vz2) and Pg(v2) \
Pg(v1). We have now narrowed our consideration to a set of agents with preferences over
two alternatives, so we can apply Proposition 8.5 to complete our proof.

To prove (3) entails (1), assume that F' satisfies positive response, RITA and either
anonymity or neutrality or AITA. As F' satisfies RITA we can limit our discussion to com-
parison profiles. Let f: P+ {0,1} be the function from the definition of RITA.

By the definition of RIIA, it is easy to see that a ~ a for all a. By positive response it is
also easy to see that (1,1,...,1) < (1,1,...,1)iffn <m. Let P = ((a1,...,an), (b1,...,bm))

N—— N——
n m
be a comparison profile. Let G = (V| E) be the following graph (an example of such graph
for the profile ((1,3,3),(2,4)) is in Figure 9):

Vo= {71, Tmax{an,bm} } YU
U{vr, ..., 0n, V1,0, 00, v} U
UL PR TR VR Ve )
E = {(wu)li < a5} U{(su)li < b} U

U{(vi,v)li =1,...,n} U {(us,u)|i =1,...,m}.
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It is easy to see that in the graph G, v and w satisfy the profile P. Let 7 be the following
permutation:

/ _
vl ox =y
v x =,
() =< u, =y
u x=u

xz  Otherwise.

The remainder of the proof depends on which additional axiom F' satisfies:

e If F satisfies anonymity, let B/ = {(7(x),y)|(z,y) € E}. Note that in the graph (V, E’)
v and u satisfy the profile ((1,1,...,1),(1,1,...,1)), and thus v <(VE,) usn<m.

'I’L m

By anonymity, u —<(VE) vEe U -<( Ve U thus proving that f(P) =1< n <m for an
arbitrary comparison profile P, and thus F = AV

e If F satisfies neutrality, let £’ = {(z,7(y))|(z,y) € E}. Note that in the graph (V, E’)
v and wu satisfy the profile ((1,1,...,1),(1,1,...,1)), and thus v —<(VE') u<sn<m.

n m
By neutrality, u jFV,E) v E U j{V’E,) v, again showing that f(P) =1 < n < m for
an arbitrary comparison profile P, and thus F = AV

o If F satisfies AIIA, let B/ = {(z,7(y))|(z,y) € E} as before. So, also v j{V,E')
u < n < m. Note that Pg(v) = Py gy (v) and Pg(u) = Py gy (u), so by AIIA,
U —<(VE) vE U j{VE') v, and thus as before, F' = AV.

O

Our axiomatization of approval voting, and specifically the one in (2) above is related
to the previous axiomatization by Fishburn (1978). Both axiomatizations share the require-
ments of Anonymity! and Neutrality, but differ in the additional assumptions: Fishburn’s
requirements refer to relations between the results on different voter sets, which cannot be
easily used in the ranking systems setting, as these voters are also alternatives, while our
requirements relate to changes in the preferences of a single agent and their ability (positive
response) or inability (AITA) to influence the final result. Our requirements may be mapped
to Fishburn’s setting and would probably lead to a distinct axiomatization of approval voting
in that setting.

9. Concluding Remarks

Reasoning about preferences and preference aggregation is a fundamental task in reasoning
about multi-agent systems (see e.g. Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004;
Conitzer & Sandholm, 2002; LaMura & Shoham, 1998). A typical instance of preference
aggregation is the setting of ranking systems. Ranking systems are fundamental ingredients
of some of the most famous tools/techniques in the Internet (e.g. Google’s PageRank and
eBay’s reputation systems, among many others).

1. Fishburn does not consider Anonymity as an axiom, but rather defines his social choice model to allow
only for anonymous functions.
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Moreover, the task of building successful and effective on-line trading environments has
become a central challenge to the AI community (Boutilier, Shoham, & Wellman, 1997;
Monderer, Tennenholtz, & Varian, 2000; Sandholm, 2003). Ranking systems are believed
to be fundamental for the establishment of such environments. Although reputation has
always been a major issue in economics (see e.g. Kreps & Wilson, 1982; Milgrom & Roberts,
1982), reputation systems have become so central recently due to the fact that some of the
most influential and powerful Internet sites and companies have put reputation systems in
the core of their business.

Our aim in this paper was to treat ranking systems from an axiomatic perspective.
The classical theory of social choice lay the foundations to a large part of the rigorous
work on multi-agent systems. Indeed, the most classical results in the theory of mechanism
design, such as the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975) are
applications of the theory of social choice. Moreover, previous work in Al has employed the
theory of social choice for obtaining foundations for reasoning tasks (Doyle & Wellman, 1989)
and multi-agent coordination (Kfir-Dahav & Tennenholtz, 1996). It is however interesting
to note that ranking systems suggest a novel and new type of theory of social choice. We
see this point as especially attractive, and as a main reason for concentrating on the study
of the axiomatic foundations of ranking systems.

In this paper we identified two fundamental axioms for ranking systems, and conducted
a basic axiomatic study of such systems. In particular, we presented surprising impossibility
results, complemented by a new ranking algorithm, and a representation theorem for the
well-known approval voting scheme.
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