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Abstract

In this paper, we show that a continuous spectrum of randomisation exists, in which most ex-
isting tree randomisations are only operating around the two ends of the spectrum. That leaves a
huge part of the spectrum largely unexplored. We propose a base learner VR-Tree which generates
trees with variable-randomness. VR-Trees are able to span from the conventional deterministic
trees to the complete-random trees using a probabilistic parameter. Using VR-Trees as the base
models, we explore the entire spectrum of randomised ensembles, together with Bagging and Ran-
dom Subspace. We discover that the two halves of the spectrumhave their distinct characteristics;
and the understanding of which allows us to propose a new approach in building better decision
tree ensembles. We name this approach Coalescence, which coalesces a number of points in the
random-half of the spectrum. Coalescence acts as a committee of “experts” to cater for unforesee-
able conditions presented in training data. Coalescence isfound to perform better than any single
operating point in the spectrum, without the need to tune to aspecific level of randomness. In
our empirical study, Coalescence ranks top among the benchmarking ensemble methods including
Random Forests, Random Subspace and C5 Boosting; and only Coalescence is significantly better
than Bagging and Max-Diverse Ensemble among all the methodsin the comparison. Although
Coalescence is not significantly better than Random Forests, we have identified conditions under
which one will perform better than the other.

1. Introduction

When building ensemble-classifiers, randomisation plays an important role in forming diverse mod-
els that are generated from deterministic algorithms. Through the use of ensemble methods, diverse
models are aggregated to improve the generalisation capability of the resulting classifiers.

Traditionally, ensemble methods are based on deterministic algorithms with randomisations in-
jected to produce diverse variants. Representatives of these are Bagging (Breiman, 1996a), Random
Forests (Breiman, 2001), Randomised C4.5 (Dietterich, 2000) and Random Subspace (Ho, 1998).

Recently, a completely random approach (Fan, Wang, Yu, & Ma,2003; Fan, 2004; Liu, Ting,
& Fan, 2005) is proposed using trees that are generated without any deterministic heuristic; this
approach represents a departure from the traditional approaches. In this paper, we show that the
complete-random approach and some of the traditional approaches can be used as two extremes to
form a continuous spectrum of randomisation; and better predictive accuracy can often be found
within the spectrum.
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In this paper, we propose a novel algorithm which is capable of generating a range of models,
end-to-end continuously from completely random to purely deterministic. The most striking fact is
that though each tree-node is created either randomly or deterministically, the resulting randomness
can span from completely random to purely deterministic without any modification to the ensem-
ble method. This algorithm enables us to explore the whole spectrum between the two extremes
and we show that, this new algorithm can be easily incorporated into existing ensemble methods,
such as Bagging and Random Subspace. Together they generateensembles of different degrees of
randomness, which are largely unexplored until now.

We reveal that most of the existing random ensemble methods such as Bagging and Random
Subspace focus on the deterministic-end of the spectrum, and ignore a major part of the spectrum.
We show that Bagging, Random Subspace and the simple complete-random trees find their better
counterparts inside the spectrum.

As there is no known way to measure a priori the level of randomness required for any given
problem, we analyse the spectrum and discover that the two halves of the spectrum have their
distinctive characteristics. With this new understanding, a new ensemble approach is proposed
in this paper, which coalesces a number of points in the spectrum to form the final ensembles.
Empirically, we find that this new approach performs better than any single point in the spectrum
across a wide range of data sets. This new approach is an off-the-shelf solution, which provides a
high level of accuracy without the need of knowing or tuning to the level of randomness required.

This paper is presented as follows. A brief overview of existing decision tree randomisation
methods is provided in Section 2. It serves as a primer to decision tree randomisation. The al-
gorithm to generate variable-random-trees is presented inSection 3. In Section 4, the different
ensemble methods used in our experiment is introduced, followed by Section 5, which presents a
comprehensive empirical evaluation of the spectrum as wellas the proposed ensemble approach.
Section 6.1 details the key differences between the randomisation framework of Random Forests
and the proposed framework of variable-randomness. Other related work is provided in Section 6.2,
and we conclude in the last section.

2. Randomisation Methods for Decision Trees

Many randomisation methods have been proposed to produce diverse decision trees for ensemble-
classifiers. In this section, as a general introduction to decision tree randomisation, we give an
overview of the ways in which they are applied. The followinglist of decision tree randomisation is
not meant to be exhaustive, the purpose of this list is to demonstrate the mechanism and side effects
of randomisation methods, which guides us in designing better approaches.

For any conventional decision tree algorithm, one deterministic model is produced for any given
training set. Randomisation helps to produce multiple variants of this deterministic model to fulfil
the requirement of ensemble learning. A common characteristic of popular methods is that the
same heuristic is used in every tree node, which often restricts the possible range of randomness
and reduces their impact on performance.

In the literature, most of the proposed randomisation methods can be grouped into three cate-
gories, depending on the dimension in which they are applied. The first category is to randomise
the instance dimension. This includes (i) Bagging (Breiman, 1996a) and Wagging (Bauer & Ko-
havi, 1999), which generate different sets of training examples through random sampling or as-
signing randomly generated probability distributions on the given training set; (ii) Output flipping
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(Breiman, 2000) in which the classes of the training examples are flipped randomly according to
a ratio; and (iii) Adding random examples (Melville & Mooney, 2003) in which diverse classifiers
are constructed using additional artificial training examples. A conventional decision tree algorithm
is used to generate a model for each random sample of trainingexamples. For type (i), a user has
no control over the degree of randomisation applied; for types (ii) and (iii), randomness is at the
expense of data integrity.

The second category is to randomise thefeature dimensionby randomly selecting a subset
of features before generating each model. A representativeof this method is Random Subspace
(Ho, 1998) of which 50% of the features are randomly selectedto produce models of an ensemble.
Random Subspace is not designed to adjust the level of randomness, the default setting as mentioned
is commonly used.

The third category is to randomise thetest-selectionat each decision node during the tree grow-
ing process. Since it is meant to produce variants of the deterministic model, the randomisation
is usually applied in a small degree at each node while maintaining the key deterministic charac-
teristic. Examples of this category are Randomised C4.5 (Dietterich, 2000) and Random Forests
(Breiman, 2001). As reported by Breiman, the performance ofRandom Forests is not significantly
impacted by the different values of the parameter used.

For all the methods mentioned above, deterministic models are their common starting point.
Randomisations are then injected to produce diverse variants from these deterministic models. On
the contrary, a totally different approach is to start with complete-random models, for example,
Random Decision Trees (Fan et al., 2003) and Max-Diverse Ensemble (Liu et al., 2005). The
distinction between the two starting points is the inclusion of a deterministic heuristic. For any
method that uses any deterministic or a weakened heuristic in each node, their starting point is
deterministic models. These two starting points seem to be mutually exclusive, however, we provide
a way to connect them in order to maximize the possible range of randomness and, in turn, predictive
performance gain.

In this paper, we show that a largely unexplored set of randomised models can be found between
the extremes of both deterministic and complete-random models. While Random Forests provides a
mean to adjust its randomness, the degrees of randomness areconstrained by the number of features
and the mandatory use of deterministic heuristic at each node. Details of this limitation will be
discussed in Section 6.

In the next section, we propose a new algorithm that constructs trees with a controllable ran-
domisation in test-selection. It allows us to explore the whole spectrum of variable-random trees.

3. Trees with Variable Randomness

We name a tree VR-Tree when it is generated using random test-selection in some of its nodes.
In this section, we first describe the process of random test-selection and then the mechanism that
induces trees with a controllable mix of random and deterministic test-selections.

In the framework of conventional tree building algorithms,random test-selection can be used
as a direct replacement of deterministic test-selection. This is depicted in Algorithm 1. First, ran-
dom test-selection randomly picks a feature from the list ofavailable features to form a decision
node. Then, a nominal feature ofm possible values will formm branches or a continuous-valued
feature with a random cut-point will form 2 branches. The random split-point selection procedure
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is described in Algorithm 2. This random test-selection becomes an alternative to the deterministic
test-selection in the mechanism to create variable-randomness.

Algorithm 1 : VR-Tree(Dt, Q, α) - Building a Variable-Random Tree
Input : Dt - Training set,Q - Feature set,α - probability of using deterministic test-selection
Output : node - tree node
if all classes ∈ Dt are the same orQ is empty or|Dt| < nmin then /* nmin is the
minimum number of instances required before a split is
allowed. */

return a leaf with class frequency
else

let r be a randomly generated value, where0 < r ≤ 1
if r ≤ α then /* Deterministic Test-Selection. */

node← DeterministicTestSelection(Dt, Q)
else /* Random Test-Selection. */

randomly select anν ∈ Q
construct anode with test labelν
if ν is a continuous-valued featurethen /* Handling a
continuous-valued feature. */

node.splitpoint← RandomSplit(ν,Dt)
D1 ← filter(Dt, ν > node.splitpoint)
D2 ← filter(Dt, ν ≤ node.splitpoint)
node.branch(1)← VR-Tree(D1, Q, α)
node.branch(2)← VR-Tree(D2, Q, α)

else /* Handling a discrete feature. */
let {v1...vm} be possible values ofν
for i ∈ m do /* m-ary split. */

Di ← filter(Dt, ν == vi)
node.branch(i)← VR-Tree(Di, Q− ν, α)

return node

Algorithm 2 : RandomSplit(ν,Dt) - Random split point selection
Input : ν - a continuous-valued feature,Dt - training data
Output : a split point
r1 ← randomly select a value ofν in Dt

r2 ← randomly select a value ofν in Dt

while r1 == r2 do
r2 ← randomly select a value ofν

return the mid point betweenr1 andr2

To generate variable-randomness, the test-selection process is split into two stages at each node.
The first stage decides which test-selection to use, eitherrandomor deterministictest-selection.
The second stage proceeds with the selected test-selectionto produce the actual test for the node.
An α parameter is provided to control the probability of choosing deterministic test-selection over
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the random one, where0 ≤ α ≤ 1. α also approximates the percentage of deterministic nodes
generated in trees. Note that by settingα = 1, this procedure generates trees which are identical to
conventional decision trees; and by settingα = 0, it generates complete-random trees. The procedure
of the above mechanism can be found in Algorithm 1.

In the next section, we introduced the three ensemble methods used in our experiment based on
VR-Trees.

4. Ensemble Methods

Using VR-Tree as the base learner, we explore three ensemblemethods that are employed in this
investigation. They are listed as follows:

• Aggregating, in which trees are generated from the same training data using the full set of
features.

• Subspacing, in which trees are generated with subsets of randomly selected features.γ pa-
rameter is used to determine the percentage of features to beused.

• Bagging, in which trees are generated from a bootstrap sample using the full set of features.

The details of these ensemble methods are shown in Algorithms 3, 4 and 5.

Algorithm 3 : Agg.VR-Trees(Dt, Q,N, α)

Input : Dt - Training set,Q - Feature set,N - Number of trees,α - probability of using
deterministic test-selection

Output : E - a collection of trees
for i ∈ N do

E ← E ∪ VR-Tree(Dt, Q, α)

return E

Algorithm 4 : Subspace.VR-Trees(Dt, Q,N, α, γ)

Input : Dt - Training set,Q - Feature set,N - Number of trees,α - probability of using
deterministic test-selection,γ - the percentage of features used, where0 < γ ≤ 1

Output : E - a collection of trees
for i ∈ N do

Qs ← randomly generate a set percentageγ of features fromQ
E ← E ∪ VR-Tree(Dt, Qs, α)

return E

While none of these ensemble methods are new, the incorporation of VR-Tree as the base learner
help to unleash the potentials of these methods. The predictive performance gain is shown in Section
5. Note that Subspacing is equivalent to the Random Subspacemethod (Ho, 1998) whenγ=50%.
Sinceγ=50% provides the maximum number of distinct subspaces, which is an important factor
to increase diversity, we will useγ=50% as the default setting for Subspacing. Also, notice that
Bag.VR-Trees withα = 1 is equivalent to the conventional Bagging method (Breiman, 1996a).
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Algorithm 5 : Bag.VR-Trees(Dt, Q,N, α)

Input : Dt - Training set,Q - Feature set,N - Number of trees,α - probability of using
deterministic test-selection

Output : E - a collection of trees
for i ∈ N do

Db ← generate a bootstrap sample fromDt

E ← E ∪ VR-Tree(Db, Q, α)

return E

We use probability averaging to combine the outputs from individual models of an ensemble.
In order to predict a class given a test case, the predicted class is obtained by:

arg max
y

(
N∑

i=1

ni,y

ni
), y ∈ Y (1)

whereN is the number of trees in an ensemble,ni,y is the number of classy training instances and
ni is the total number of training instances at a leaf of a treei in which the test case falls into.

5. Empirical Study of The Spectrum

We design our experiment in four parts. The first part investigates the predictive performance spec-
trum of Aggregating, Bagging and Subspacing using VR-Trees. We then use the result to charac-
terize the two-halves of the spectrum. The second part examines the diversity of base learners gen-
erated by these ensembles using the strength and correlation curves as defined by Breiman (2001).
This part highlights the range of randomness one can achieveby using VR-Trees. The third part
explores an alternative to using only a singleα value to produce models in an ensemble. This al-
ternative combines a number of points in the spectrum, whichis our proposed ensemble method in
this paper. The fourth part investigates the strengths and weaknesses of the proposed method.

Forty-five data sets from the UCI repository (Asuncion & Newman, 2007) are used in this paper.
The characteristics of all these data sets are provided in Appendix A. Ten-fold cross-validation is
conducted for each data set and the average error rate is reported. 100 trees are used for each
ensemble. Random Forests and C5 Boosting (www.rulequest.com) are used as benchmarks, in
addition to Bagging, Subspacing and Aggregating of VR-Trees. We use the Friedman test with the
Bonferroni test as the post-hoc test at 95% confidence level to compare classifiers (Demšar, 2006).

For the Random Forests implementation used in this paper, the default settings ofmtry =
floor(sqrt(q)) andnodesize=1 is used, wheremtry is the number of features randomly
sampled before each split,q is the number of features andnodesize is the minimum size of
terminal nodes. The implementation is taken from R (www.r-project.org).

Our implementation including of VR-Trees is based on C4.5 (Quinlan, 1993). The default
C4.5’s stop-splitting rules are applied: (i) the minimum number of training samplesnmin = 4 are
required before splitting is considered, and (ii) the deterministic test-selection stops splitting when
all possible splits report negative scores.Gain ratio is used as the test-selection criterion. Probability
averaging is implemented with curtailment (Zadrozny & Elkan, 2001), where the minimum leaf size
for probability estimation is always greater than one. These default settings are used for VR-Trees
in this paper.
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5.1 The Predictive Performance Spectrum of Aggregating, Bagging and Subspacing

Figure 1: The spectrum of predictive performance for Aggregating, Bagging and Subspacing, as
well as Bagging plus Subspacing: error rates againstα, average over forty-five data sets.
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Figure 1 shows the spectrum of performance1 for four ensemble methods using VR-Trees as
the base models. Note that the conventional Bagging and Random Subspace are two points on the
deterministic-end (α = 1) of the spectrum for Bag.VR-Trees and Subspace.VR-Trees; and Max-
Diverse ensemble is at the complete-random-end (α = 0) of the Aggregating spectrum. Figure 2
shows the results of Friedman tests for each of Aggregating,Bagging and Subspacing and we have
the following observations.

i From Figure 2, it is interesting to note that the best operating region for Agg.VR-Trees is having
α values between 0.1 and 0.6. This shows that Max-Diverse ensemble which operating atα =
0 can improve its performance by moving further into the middle of the spectrum. The best
operating region for Bag.VR-Trees is between 0.1 and 0.6, which is mainly in the first half of
the spectrum. This is significantly different from what the conventional Bagging is normally
applied at, namelyα = 1. The best operating region for Subspace.VR-Trees is between 0.4 and
0.8. This is also different from what Random Subspace is normally applied atα = 1.

ii A balanced mix of random and deterministic heuristics, i.e.,α = 0.5, produces the best ensemble
or no significantly difference to the best ensemble for any one of the three ensemble methods.

iii Out of the four curves shown in Figure 1, Agg.VR-Trees have the largest swing in performance,
followed by Bag.VR-Trees and Subspace.VR-Trees. This is expected as the two end-points in
the Agg.VR-Trees’ curve represents a single deterministicmodel and an ensemble of complete-
random models. Asα decreases from 1 to 0.5, a substantial improvement in predictive per-
formance for Agg.VR-Trees, takes effect due to the increased diversity in the ensemble, which
reduces the average error rate from 20.6% to 16.0%.

iv Although both Bag.VR-Trees and Agg.VR-Trees perform best in the region of0 ≤ α ≤ 0.5,
the result in Figure 1 indicates that they have no significantdifference in terms of predictive

1. Averaged over forty-five data sets.
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accuracy. Because of additional computational requirement to generate bootstrap samples for
Bagging, Aggregating becomes the preferred method in the first half of the spectrum. Bagging
and Subspacing are preferred to Aggregating in the second half of the spectrum because the
latter is uncompetitive in that region.

v The use of both Bagging and Subspacing in a single ensemble is not recommended, as shown
by the result in Figure 1 that Bag-Subspace.VR-Trees alwaysperforms worse than its parents,
Bag.VR-Trees and Subspace.VR-Trees.

Figure 2: Friedman test results for classifiers produced by (a) Aggregating, (b) Bagging, (c) Sub-
spacing of VR-Trees, from elevenα values in the spectrum over forty-five data sets. We use Bon-
ferroni test as the post-hoc test andα = 0 as the control condition for each comparison. The vertical
axis indicates theα values, and the horizontal axis indicates the rank values. The circle is the av-
erage rank for eachα value and the bar indicates the critical values for a two-tailed test at 95%
significance level. When two classifiers having no overlapping bars, it indicates that they are signif-
icantly different. Significantly worse results are presented in dotted bars (coloured in red) located
on the right-hand-side of the diagram. The best results are presented in solid bars (coloured in blue)
or the left-most bar in each diagram.
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We summarise the characteristics of the two halves of the spectrum in Table 1. In the next sub-
section, we continue our analysis over the various points ofthe spectrum in relation to generalisation
error.

Table 1: Characteristics of the two halves of the spectrum.

Complete-Random-end,α ∈ [0, 0.5] Deterministic-end,α ∈ (0.5, 1]

• Models at this extreme end are
generated in a completely random
fashion.

• Models are variants of a deter-
ministic model.

•Candidate models are all possible
trees of larger sizes.

• Candidate models are models of
smaller sizes (because each model
reaches pure leaves early).

•Models have a higher diversity. • Maintaining high predictive ac-
curacy while providing some de-
gree of diversity.

• Aggregating is preferred in this
region.

• Subspacing and Bagging are pre-
ferred in this region.

5.2 Strength-Correlation Analysis

In this section, we examine the strength and correlation profiles produced by Aggregating, Bagging
and Subspacing. Firstly, we illustrate the relationship between generalisation error, strength and
correlation using a map. Secondly, we plot the strength-correlation curves for the actual data sets to
characterise their behaviours. Thirdly, we continue the analysis from Section 5.1 to further explore
the two halves of the spectrum in light of the strength-correlation analysis.

Breiman’s (2001) inequality,PE ≥ ρ(1 − s2)/s2 is useful for discerning the relationship be-
tween generalisation errorPE, strengths and correlationρ. Briefly, the strength of an ensemble
measures the expected margin function of the ensemble. A margin function is the probability of
correct classification minus the maximum probability of incorrect classification of an instance. Cor-
relation of an ensemble is a measure on how similar the predictions are among individual trees. A
high reading of correlation indicates that individual trees are making similar predictions. We use
the strength and correlation estimation procedures of Buttrey and Kobayashi (2003) as they are the
corrected version of Breiman (2001). To make this paper self-contained, the estimation procedures
are given in Appendix C.

Figure 3 shows a map of strength-correlation profiles with grey scale indicating the generalisa-
tion error. We can see that the error rate is lower at the high-strength and low-correlation corner
(at the bottom-right), where the error rate is lower with darker grey level. As for all the ensemble
classifiers in general, their goal is to get themselves to a region where the estimated error rate can
be as low as possible. Aggregating with different values ofα typically spans in the fashion of either
curve (a) or curve (b) as shown in Figure 3, where each curve starts fromα = 0 (at the bottom-left)
to α = 1 (at the top-right). For (a), the lowest error rate can be found atα = 0. For (b), lower error
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rates can be found with a larger value ofα. However, error rates also increase whenα approaches
1. In this case, a search would be necessary to determine the optimal α.

Figure 3: Ensemble generalisation error distribution using Breiman’s inequality on strength and
correlation. Curves (a) and (b) represent two typical spansof Agg.VR-Trees with0 ≤ α ≤ 1.

α = 0

α = 1

(a)

(b)

Figure 4 shows that the three different ensemble methods provide different ranges of strength
and correlation profile. The most effective way to use VR-Trees is Aggregating. This is because
it consistently produces the longest span of strength-correlation curve in each of the data sets we
used. Bagging usually has the second longest span, followedby Subspacing. Note that Aggregating
usually spans in both strength and correlation dimensions;whereas Bagging and Subspacing have
significantly smaller span, especially in the correlation dimension. Table 2 shows the range between
the minimum and the maximum values of strength as well as correlation, averaged over forty-five
data sets. The result shows that Aggregating produces the largest range of trees in comparison with
Bagging and Subspacing. Most interestingly, the best of Aggregating is usually located in a lower
or similar error region to those of Bagging and Subspacing.

Table 2: Average ranges of strength and correlation over theforty-five data sets.
Strength Correlation

Agg.VR-Trees(α ∈ [0, 1]) 0.135 0.696
Bag.VR-Trees(α ∈ [0, 1]) 0.136 0.160
Subspace.VR-Trees(α ∈ [0, 1]) 0.069 0.088

It is also interesting to note thatα=0.5 is always close to or at the changing corner between
strength-varying leg and correlation-varying leg in all the examples shown in Figure 4. This means
thatα = 0.5 is either close to or at the lowest generalisation errorregion, if the ensemble exhibits
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Figure 4: Strength-Correlation distribution of Aggregating, Bagging and Subspacing for different
values ofα. The solid-filled marks representα=0.5. For Aggregating, the first half of theα range
(α ∈ [0, 0.5]) is characterised by lower correlation and lower strength,and it is located at the bottom-
left corner of the diagrams. The second half (α ∈ [0.5, 1]) is characterised by higher correlation and
higher strength, and it is located at the top-right corner ofthe diagrams.
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curve (b) like behaviour as in Figure 3. Thus,α = 0.5 often serves as an upper limit in a range ofα
values that performs well.

Combining the above result with the analysis on the two halves of the spectrum from Section
5.1, we find that Aggregating exhibits the following characteristics in most of the data sets in Figure
4:

• At the first-half of the spectrum, strength increases rapidly from α = 0 and slows down at
aboutα = 0.5; however, correlation only varies in a small degree or not vary at all.

• At the second-half of the spectrum, correlation increases rapidly fromα = 0.5 and peaks atα
= 1. In this range, both strength and correlation are very high, error rates are not optimal.

In summary,α for better performing Aggregating models can be found in therange between 0
and 0.5. Most single operating pointsα ∈ [0, 0.5] have been shown to work well in Section 5.1.

In the next section, we show an alternative approach that achieves even better result by using
the range ofα ∈ [0, 0.5] that we have identified thus far.

5.3 Coalescence of Different Operating Points

In this section, we show that combining single models from multiple points in the spectrum will
achieve similar or better performance as compared to using any single point in the spectrum. We
coalesce VR-Trees withα sampled at a fixed interval. For example, to form a 100-model ensemble,
we construct trees withα = {0, 0.005, 0.01, ..., 0.495}. We call this approachCoalescence.

The Coalescence approach is appealing because we do not needto know whichα value produces
the most accurate ensemble for any given data. By introducing members of different “talents” from
the random-half of the spectrum; Coalescence forms a committee of different members. In this
committee, as far as we know, some members are good at approximating non-axis-parallel boundary
and some members are good at avoiding over-fitting. The make-up of this committee helps to handle
unforeseeable conditions that arise in training sample.

As a result, Coalescence provides a comparable predictive performance to a search-for-the-best-
α approach (Liu & Ting, 2006) without the cost of searching forthe optimalα value. In Figure 5,
Coalescence is shown to be better than any single operating point in the first-half of the spectrum
using the Friedman test, over forty-five data sets.

An additional comparison is also conducted with some other well known tree ensemble classi-
fiers. The complete result for Coalescence, Aggregating VR-Trees (α=0) (i.e. Max-Diverse Ensem-
ble), Bagging, Subspacing (α=1) (i.e. Random Subspace), C5 Boosting and Random Forests are
presented in Table 3. The average error rates over forty-fivedata sets are provided in the last row of
the table. Figure 6 shows the result of the Friedman test and we have the following observations:

• Coalescence ranks the highest among the five benchmarking ensembles in the Friedman test.

• The second highest ranking ensembles: Random Forests and C5Boosting have almost identical
ranking in the Friedman test, and similar average error rates.

• The third highest ranking ensemble is Random Subspace; and the lowest ranking ensembles are
Bagging and Aggregating VR-Trees (α = 0). Both ensemble methods have similar average
error rates.
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Figure 5: Friedman test result for comparing Coalescence with five operating points of Agg.VR-
Trees in the first-half of the spectrum. Horizontal axis indicates the rank values. Coalescence ranks
top as compared to different points in the first-half of the spectrum.
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Table 3: Experimental results: Average error rate of ten-fold cross-validation.

data sets Coalescence

Agg.
VR-Trees

(α=0)

Bag.
VR-Trees

(α=1)

Subspace.
VR-Trees

(α=1)
C5

Boost
Random
Forests

abalone 30.0 30.2 30.7 30.0 31.1 30.9
anneal 1.5 1.4 3.5 3.2 5.0 9.7
audiology 17.2 17.7 16.2 20.3 15.0 20.8
autos 18.1 22.5 19.5 14.7 15.6 15.2
balance 14.4 12.3 18.1 11.4 18.9 16.3
breastw 3.0 2.4 3.4 3.0 3.1 3.4
breasty 28.7 25.9 27.3 25.1 26.9 29.7
chess 0.7 1.6 2.3 1.8 0.3 1.1
cleveland 42.9 41.6 44.2 41.9 41.6 41.9
coding 16.4 16.8 24.2 16.7 15.4 17.5
credit-a 12.3 13.0 12.8 13.0 14.3 13.0
credit-g 23.1 25.7 22.7 24.8 22.4 23.2
dna 5.3 26.5 6.0 3.7 4.8 3.4
echo 33.5 34.2 29.0 32.0 37.4 32.0
flare 18.6 19.2 17.7 17.1 17.5 18.5
glass 21.0 22.9 21.5 21.5 21.4 21.0
hayes 18.1 21.9 17.5 17.5 16.9 16.9
hepatitis 18.0 15.5 20.0 18.6 14.1 17.3
horse 13.3 17.9 15.2 16.0 22.5 14.1
hypo 0.8 1.7 0.8 1.3 0.8 1.0
ionosphere 5.7 8.5 5.4 5.4 5.4 6.5
iris 4.7 4.7 4.0 6.0 4.0 3.3
labor 7.0 3.3 10.7 12.0 15.7 5.0
led24 27.9 30.3 28.1 29.1 28.1 28.5
led7 26.7 26.9 26.3 27.5 27.8 26.3
liver 27.0 27.9 27.3 31.9 29.6 26.1
lymph 14.9 14.3 20.4 15.6 19.1 16.9
nursery 0.9 2.2 3.7 5.9 0.9 2.3
pima 23.4 24.6 24.0 23.2 25.0 23.2
post 40.0 36.7 37.8 32.2 30.0 32.2
primary 55.2 57.2 56.6 51.9 56.9 56.9
satimage 8.8 10.4 9.0 8.3 8.1 8.1
segment 2.1 3.1 2.4 2.3 1.8 2.1
sick 2.1 5.7 2.2 4.3 2.2 2.1
solar 29.4 30.3 27.2 27.8 25.7 27.2
sonar 15.9 15.9 24.0 18.7 15.9 13.9
soybean 5.4 6.0 6.6 5.3 6.2 5.7
threeOf9 0.0 0.6 1.4 10.0 0.0 0.8
tic-tac-toe 3.0 9.7 14.3 22.3 1.2 1.3
vehicle 24.5 27.1 24.9 25.4 23.3 26.1
vote 4.1 5.3 4.6 4.6 4.8 4.1
waveform21 14.5 14.7 16.1 14.7 15.6 14.7
waveform40 15.7 17.0 16.5 15.3 15.1 14.9
wine 3.4 1.1 3.4 2.3 5.6 2.3
zoo 1.0 2.0 3.0 4.0 3.0 5.0
mean 15.6 16.8 16.7 16.4 15.9 15.6
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• Of all the ensembles, only Coalescence is shown to be significantly better than Aggregating
VR-Trees (α = 0) and Bagging in the Friedman test.

It is interesting to note that when employing an oracle to findthe bestα, the optimal error rate
is 14.6%2 (Liu & Ting, 2006). Thus, the Coalescence approach comes close to this optimal result
without using any oracle.

Figure 7 shows the predictive performance of Coalescence inrelation to Aggregating in eight
data sets. Coalescence sometimes outperforms its ‘parents’ (α ∈ [0, 0.5]), and often comes close to
the best performing Aggregating.

5.4 Strengths and Weaknesses

This section will examine the strengths and weaknesses of VR-Tree. Although Coalescence is not
significantly better than Random Forests in the Friedman test, Table 3 clearly shows that Coales-
cence is better than Random Forests in some data sets but worse in others. This section will also
examine some of the conditions under which Coalescence performs better than Random Forests and
vice versa.

We find that the ensembles of complete-random-trees have thefollowing strengths: 1) capable
of approximating non-axis-parallel boundary, and 2) they are highly stable learners in terms of
Pointwise Hypothesis Stability(Bousquet & Elisseeff, 2002). An analysis that is based onPointwise
Hypothesis Stabilitycan be found in Appendix B. To verify the complete-random-trees’ ability to
approximate non-axis-parallel boundary, in Figure 8, we provide a visualization example using a
Gaussian mixture data set (Hastie, Tibshirani, & Friedman,2001). Figure 8 shows that an ensem-
ble of complete-random-trees (using 100 trees) is able to better approximate the non-axis-parallel
boundary as compared to a single deterministic tree.

Moreover, as described in the analysis in Appendix B, one of the strengths of complete-random
trees is also one of their weaknesses: complete-random trees trend toover-fit; and this problem
stems mainly from the ability to approximate non-axis-parallel boundary. We also find that the
overfitting problem is aggravated by irrelevant attributes, class noise and small training size as
shown in the following empirical examination.

We denoteX as the input space andY as the output space. A learning algorithm outputs a
function that approximates the underlying true functionf by inspecting the training set. A training
setS = {zi}

m
i=1, wherezi = (xi, yi) andyi = f(xi), containsm i.i.d. examples inZ = X × Y

that are drawn from uniform distribution in the instance space. We define the input space with two
variables,xi = 〈νi,a, νi,b〉 and the output space with two possible classesY = {+1,−1}. In this
case, the instance space is a square from point(νa = 1, νb = 1) to point(νa = −1, νb = −1).

We define the two concepts as follows:

ConceptA: fA(xi) = yi =

{
+1 if (νi,a > νi,b)

−1 else
, xi = 〈νi,a, νi,b〉

ConceptB: fB(xi) = yi =

{
+1 if (νi,a > 0)

−1 else
, xi = 〈νi,a, νi,b〉

2. Averaged over the same forty-five data sets used in this paper.
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Figure 7: Detail results comparing Coalescence with Aggregating in eight data sets.
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Figure 8: Visualisation of a non-axis-parallel decision boundary on Gaussian mixture data using an
ensemble of complete-random-trees as compared to a single deterministic tree (C4.5).

Error 11.3%

(a) Complete-random trees

Error 14.2%

(b) Single deterministic tree

positive class
negative class

(c) Training sample (d) Actual decision boundary

ConceptA is useful for illustrating the ability to approximate non-axis-parallel boundary. Concept
B is an axis-parallel concept, which is used as a control condition in this experiment. We conduct
four experiments using (a) a training sample ofk = 1024 instances, (b) a training sample with
irrelevant attributes, (c) a training sample with class noise and (d) a size-reduced training sample of
k = 64. We train ensemble models using Coalescence, VR-Trees (α = 0, α = 0.5) and Random
Forests. We use 100 trees for each ensemble. Finally, we evaluate the models by10000 lattice
samples from the instance space, and the average error rate over 10 runs is reported.

Table 4 shows that:

• VR-Trees (α = 0) is the best performer in approximating non-axis-parallelboundary in concept
A, even with small training size ofk = 64. However, it is the worst performer in axis-parallel
conceptB in bothk = 1024 andk = 64.

• VR-Trees (α = 0.5) performs the best under class noise and irrelevant attribute conditions in
both conceptsA andB. When irrelevant attributes are added, the error rate of VR-Trees (α =
0) increases at a faster rate as compare to VR-Trees (α = 0.5). Similarly, class noise affects
the complete-random-end (α = 0) of the spectrum more severely than the middle point of the
spectrum (α = 0.5).
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Table 4: Averaged error rates of VR-Trees (α = 0, α = 0.5), Coalescence and Random Forests on
ConceptsA andB. The default number of training samples isk = 1024, unless otherwise specified.
The best error rate in each row is bold faced.

VR-Trees
(α = 0) Coalescence

VR-Trees
(α = 0.5) Random Forests

A 1.4% 1.6% 2.0% 1.9%
A, 8 irr. att. 7.6% 3.4% 3.0% 3.2%
A, 40% class noise 30% 21.9% 14.7% 33.4%
A, k = 64 6.7% 8.9% 10.4% 7.3%
B 0.3% 0% 0% 0%
B, 8 irr. att. 5.2% 0% 0% 0%
B, 40% class noise 30.7% 4.2% 2.6% 32.5%
B, k = 64 2.4% 1.1% 1.1% 0.8%

• Between Coalescence and Random Forests, Coalescence performs better under class noise con-
dition; but Random Forests is a better performer under smalltraining size in both conceptsA
andB.

The above empirical results show that, while complete-random trees, i.e. VR-Trees (α = 0) are
good at approximating non-axis-parallel boundary, they are easily over-fitted to irrelevant attributes,
class noise and small training sample. Although it is the case, we find that Coalescence is a way
to manage these propensities without a search for a specificα value. In Table 4, we find that
Coalescence tends to have performance closer to the better performing learner of either VR-Trees
(α = 0) or VR-Trees (α = 0.5); the only exception is when learning the non-axis-parallel conceptA
with a small training sample.

As to further our understanding on how irrelevant attributes affect Coalescence, we perform
a simple check on the eighteen data sets in which Random Forests performs better (ignoring two
artificial data sets:led andwaveformin which we have already known the results with and without
irrelevant attributes).

We remove the less-important half of all attributes according to Random Forest’s variable-
importance (Breiman, 2001). We then evaluate these eighteen data sets again using Coalescence
and Random Forests under the same 10-fold cross validation.The result in Table 5 shows that Co-
alescence performs better in ten out of the eighteen data sets; and Random Forests performs better
only in four data sets. This result indicates the influence ofirrelevant attributes on Coalescence is
greater than that on Random Forests. Among the eighteen datasets, Coalescence’s error rates are
reduced by more than half inlabor, hayesandtic-tac-toedata sets. The result indicates that further
management of irrelevant attributes can indeed improve theperformance of Coalescence.

6. Related Work

In this section, we first highlight the differences between VR-Trees and Random Forests in their
capability to vary the degree of randomness, so to distinguish VR-Trees from others. Then, in order
to better position VR-Trees, we discuss various different decision tree ensembles that are related to
VR-Trees.
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Table 5: Evaluation of Coalescence and Random Forests with respect to the condition of irrele-
vant attribute: eighteen data sets are listed with the less-important half of all attributes removed.
Boldfaced indicates improvement in error rate using the reduced number of attributes

Coalescence Random Forests
data sets Full att. Half att. Full att. Half att.

autos 18.1 13.6 15.2 14.6
cleveland 42.9 45.2 41.9 43.9

dna 5.3 3.9 3.4 3.2
echo 33.5 39.0 32.0 42.8
flare 18.6 19.0 18.5 18.9

hayes 40.6 18.1 41.3 16.9
hepatitis 18.0 16.7 17.3 17.4

iris 4.7 4.0 3.3 3.3
labor 7.0 3.3 5.0 5.0
liver 27.0 33.6 26.1 33.1
pima 23.4 24.5 23.2 24.5
post 40.0 37.8 32.2 36.7

satimage 8.8 9.4 8.1 9.3
solar 29.4 30.3 27.2 28.7
sonar 15.9 13.0 13.9 16.4

tic-tac-toe 18.8 3.0 18.3 1.3
vote 4.1 4.4 4.1 4.4
wine 3.4 1.7 2.3 2.8

6.1 Relationship with Random Forests

It is interesting to note that Breiman (2001) found that Random Forests’ accuracy is not overly
sensitive to the value ofF , which is the parameter intended to vary the degree of randomness. The
F parameter corresponds to theα parameter in VR-Tree. Yet, our experiments in section 5.1 clearly
shows that varying the degree of randomness (usingα) has a significant impact on the predictive
performance of the resulting ensembles. It is thus important to identify the differences between the
two ensembles that cause the different behaviours. We will do so in the following paragraphs.

Algorithm 6 : The random feature selection framework of Random Forests
Input : Dt - Training set,F - number of features
Output : node: tree node
randomly selectF features from all available features
D′ = a subset ofDt according to theF features
node = DeterministicTestSelection(D′ )
return node

On the surface, Random Forests is very similar to Agg.VR-Trees because both of them use the
deterministic and random test-selections in the tree induction process. However, they differ in the
way in which the test-selection is applied in each decision node. The randomisation framework of
Random Forests is described in Algorithm 6.
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In applying test-selection, Random Forests applies both random feature selection and deter-
ministic test-selection in each node; however VR-Tree onlyapplies either random or deterministic
test-selection in each node.α controls the probability of whether deterministic or random test-
selection is applied in each node; whereas the mixed application of the two selection processes in
each node constrains the ‘amount’ of randomness that can be introduced to Random Forests. In
case of Random Forests,F only controls the number of features to be randomly selected. Once se-
lected, the deterministic test-selection chooses the bestfeature. Thus, if the ‘best’ feature is readily
selected in the first place, then no matter what theF is, the ‘best’ feature will always be chosen
by the deterministic test-selection. This agrees with Breiman’s observation that the error rate is not
overly sensitive to the different values ofF in Random Forests.

The accessibility to the different degrees of randomness directly affects the diversity of models
that are produced, Figure 9 shows the strength-correlationcurves for Random Forests (using all the
availableF values, 19 forsegmentdata and 21 forwaveform21data), in comparison with Agg.VR-
Trees using elevenα values sampled with an equal interval. We find that Random Forests produces
ensembles which are highly correlated to each other and manyof which have similar strength. The
same result is also reported by Breiman (2001). Note that thefitted curves for Random Forests are
visual aids which do not mean to represent accessibility between points. In contrast, Agg.VR-Trees
produces ensembles which are accessible along the curve andspread along a wider range.

In a nutshell, the randomisation framework used in Random Forests significantly limits its abil-
ity to scale to the different levels of randomness when the total number of features is small. On the
other hand, VR-Trees is able to scale to different levels of randomness regardless of the number of
features.

6.2 Other Related Work

An approach to search for the bestα value is proposed (Liu & Ting, 2006). This approach searches
the optimalα value based on average progressive training errors. An estimated optimal̂α for a task
is generated as follows:

α̂ = arg min
0≤α≤0.5

[
1

N

N∑

i=1

err(α, i,Dt)] (2)

whereN is the total number of trees in an ensemble,err() returns the training error rate of an
ensemble of sizei, while Agg.VR-Trees is set atα with training setDt. After obtainingα̂, i.e., the
best performingα, the ensemble employs the model withα̂ for actual predictive tasks. Note that
each unpruned tree in the ensemble stops growing if the number of training examples in the node is
four or less (the default setting as in C4.5.) This avoids generating zero training error trees. Though
the method has comparable prediction performance to that ofthe Coalescence approach, it requires
a substantial computational overhead where the ensembles of all α values in the search must be
produced.

In contrary to common belief, Fan et al (2003) first propose the use of complete-random trees
to produce accurate predictive models. Fan (2004) explainsthe reason why the combination of
complete-random trees and probability averaging producesaccurate models. Using complete-
random trees, Liu et al. (2005) show that their ensembles perform comparably to Bagging and
Random Forests.

Cutler and Zhao (2001) propose PERT (Perfect Random Tree Ensembles) which randomises
the test-selection for continuous-valued features to achieve higher randomisation. At each potential
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Figure 9: Strength-Correlation plots for Random Forests and Aggregating VR-Trees at different
F andα values. Aggregating VR-Trees has a wider range of correlation as compared to Random
Forests.
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split, PERT first randomly selects two examples of differentclasses from the local training set. A
feature is then selected randomly. A cut point on the featureis randomly selected between the values
of that two samples. A leaf is formed if two examples of different classes cannot be found after ten
trials. PERT is also shown to be competitive to Bagging and Random Forests. We believe that this
method is likely to be close to the complete-random-end of the spectrum. However, it is unclear on
how the different degrees of randomisation can be introduced to the PERT framework.

Extra-Trees (Geurts, Ernst, & Wehenkel, 2006) relies on thesame framework as in Algorithm
6. However, a random split-selection is used instead of the deterministic split-selection. Different
from PERT, Extra-Trees’ cut points are randomly selected between the maximum and the minimum
values of the given samples. As compared to PERT, Extra-Trees requires an additional data-scan
at every node of a tree to find the maximum and minimum values, which can be a disadvantage
in terms of computational complexity. For categorical features, a random subset split is used in
Extra-Trees. This method is also shown to be competitive to Random Forests.

Robnik-̌Sikonja (2004) reports an improved version of Random Forests by using five different
deterministic test-selection criteria instead of one. This achieves the effect of increased diversity by
producing different variants of deterministic models — thesame starting point as Random Forests,
Bagging and Random Subspace.

MultiBoosting (Webb, 2000; Webb & Zheng, 2004) is another approach that combines more
than one type of ensembles. MultiBoosting is a tightly-coupled method that incorporates bagging
(random sample weight assignment) into the main Boosting procedure (the incremental sample
weight modifier) in order to increase model diversity. Like Bagging and Random Forests, it is
focusing on increasing diversity at the deterministic-endof the spectrum.

There are many algorithms reported in the literature, otherthan those listed in this paper, sug-
gesting different ways to combine models generated from onealgorithm or different algorithms,
(e.g., see Breiman, 1996b; Ting & Witten, 1999; Perrone & Cooper, 1993) . All of these require
some kind of learning or estimation in order to either selectively choose some available models
or build a meta-model to combine them. The Coalescence approach is more simple than these
approaches because it does not require to learn a meta-modelor/and some kind of estimation.

7. Conclusions

In this paper, we make the following contributions:

• Propose a new algorithm, which generates a spectrum of VR-Trees that span between complete-
random trees and deterministic trees. We show that different points in the spectrum can be
significantly different in terms of predictive accuracy. This opens up new opportunities for
decision tree ensembles.

• Show that existing ensemble methods such as Bagging, RandomSubspace, and Max-Diverse
Ensemble are only at either end of the spectrum. The performance of these ensembles can
be improved by moving towards the middle of the spectrum and the improvements can be
significant.

• Discover that the two halves of the spectrum have their distinctive characteristics, separated by
a critical point ofα=0.5. This point has two interesting characteristics. First, it produces an
equal percentage of random and deterministic decision nodes in VR-Trees. Second, it often
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lies on the lowest generalisation error region (or close to it) in a typical strength-correlation
curve. Ensembles generated fromα ∈ [0.0, 0.5] often out-perform those generated from
α ∈ [0.5, 1.0].

• Propose a new approach in building better performing ensembles. The Coalescence approach
coalesces a number of points in the first-half of the spectrum. We show that it ranks better
than any single operating point in the whole spectrum.

• Identify the key differences between ensembles constructed under the frameworks of Random
Forests and VR-Tree and explain why the predictive accuracyis sensitive to a parameter in
the VR-Tree framework, but not in the Random Forests framework.

In our empirical evaluation, Coalescence is compared with five benchmarking ensemble meth-
ods: Max-Diverse Ensemble, Bagging, Random Forests, Random Subspace and C5 Boosting. The
study reveals that Coalescence ranks top and it is the only ensemble method that is significantly
better than Bagging and Max-Diverse Ensemble using the Friedman test.

Although Coalescence is not significantly better than Random Forests, we have identified that:
while Random Forests performs better than Coalescence under the conditions of irrelevant attribute
and small training size, Coalescence performs better in learning non-axis-parallel concepts and
under class noise.
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Appendix A. Data characteristics of all data sets

Table 6: Data characteristics of all forty-five data sets used in the experiments. Data are taken from
the UCI repository (Asuncion & Newman, 2007).

data sets size #att. #class description
abalone 4177 1n, 7c 2 Abalone growth
anneal 898 13n, 6c, 19b 6 Steel annealing

audiology 226 8n, 61b 23 Standardised Audiology Database
auto 205 6n, 15c, 4b 7 1985 Auto Imports Database

balance 625 4c 3 Balance Scale weight and Distance Database
breast-w 699 10c 2 Winconsin breast cancer database
breast-y 286 6n, 3b 2 Ljubljana Breast cancer database

chess 3196 35n, 1b 2 Chess end games
cleveland 303 4n, 6c, 3b 5 Cleveland heart disease database

coding 20000 15n 2 Coding database
credit-a 690 4n, 6c, 4b 2 Australian Credit database
credit-g 1000 12c, 12b 2 German credit database

dna 3186 60n 3 Primate splice-junction gene sequences
echo 133 6c, 1b 2 Echocardiogram data
flare 1066 3n, 2c, 5b 2 Predicting solar flare
glass 214 9c 7 Glass identification database
hayes 160 4c 3 Hayes-Roth & Hayes-Roth database

hepatitis 155 6c, 13b 2 Hepatitis Domain
horse 368 13n, 7c, 2b 2 Horse colic database
hypo 3163 7c, 18b 2 Thyroid disease database

ionosphere 351 34c 2 Radar returns from the ionosphere
iris 150 4c 3 Iris plants database

labor 57 5n, 8c, 3b 2 Final settlements in labour negotiations
led24 3200 24b 10 LED display + 17 irrelevant attributes
led7 3200 7b 10 LED display with no irrelevant attribute
liver 345 6c 2 BUPA liver disorder

lymph 148 6n, 3c, 9b 4 Lymphography domain
nursery 12960 8n 5 Nursery database

pima 768 8c 2 Diabetes of female Pima Indians
post 90 7n, 1c 3 Postoperative patient data

primary 339 3n, 14b 22 Primary tumor domain
satimage 6435 36c 7 Satellite image data set from NASA
segment 2310 19c 7 Image segmentation data

sick 3163 7c, 18b 2 Sick-euthyroid data
solar 323 3n, 3c, 6b 6 Solar data set
sonar 208 60c 2 Classification of sonar signals

soybean 683 19n, 16b 19 Soy bean disease diagnosis
threeOf9 512 9b 2 The concept of three of nine

tic-tac-toe 958 9n 2 Tic-Tac-Toe board configurations
vehicle 846 18c 4 Vehicle silhouette data set

vote 435 16n 2 Votes for U.S. Congressmen
waveform21 5000 21c 3 Waveform data
waveform40 5000 40c 3 Waveform data with 19 noise attributes

wine 178 13c 3 Wine recognition data
zoo 101 1n, 15b 7 Zoo database

Attribute type is indicated byn: nominal,c: continuous, andb: binary.
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Appendix B. Theoretical Analysis of VR-Trees (α = 0)

The notations below are similar to those of Bousquet and Elisseeff (2002). DenoteX as the input
space andY as the output space. A learning algorithm is a functionT : Zk → F , whereF ∈ YX

is a function space. We denotef as an function inF . The learning algorithm outputs a function
that approximates the underlying true functionf∗ by inspecting the training set. A training set
S = {zi}

k
i=1, wherezi = (xi, yi) andyi = f∗(xi), containsk i.i.d. examples inZ = X × Y

drawn from an unknown distributionD. We consider the case thatX is a boundedReal space and
Y = {−1,+1}. Denote the training set afterremovingthei-th example as

S\i = {z1, . . . , zi−1, zi+1, . . . , zk}

Given a learning algorithmT trained onS, we denote itsgeneralisation erroras

R(T, S) = Ez=(x,y)[`(fT,S(x), y)] ,

and itsempirical erroras

Re(T, S) =
1

k

∑k

i=1
`(fT,S(xi), yi) ,

wherefT,S = T (S) and` : Y × Y → R is a loss function.

We study the generalisation ability from the viewpoint of the Pointwise Hypothesis Stability
(Bousquet & Elisseeff, 2002).

Definition 1 (Pointwise Hypothesis Stability) An algorithm T has pointwise hypothesis
stability β with respect to the loss functioǹif it holds for all i ∈ {1, . . . , k} that

ES∼D[|`(fT,S(xi), yi)− `(fT,S\i(xi), yi)|] ≤ β

Theorem 11 of Bousquet and Elisseeff (2002) reveals the relationship between thePointwise Hy-
pothesis Stabilityand thegeneralisation error. To be self-contained, we write the theorem as
Lemma 1.

Lemma 1 For any learning algorithm T with pointwise hypothesis stability β with respect to a loss
function` such that for someM , 0 ≤ `(·, ·) ≤M , we have with probability1− δ,

R(T, S) ≤ Re(T, S) +

√
M2 + 12Mkβ

2kδ

Assume that(i) there is only one attribute inX and the attribute hasReal values,(ii) every
training example has unique attribute values,(iii) each internal node has non-empty subsets,(iv)
the tree building process stops at nodes which contain only one example, and(v) the output of a
VR-Tree is+1 or −1 for an input instance in the case of binary classification. When building an
ensemble of VR-Trees, we run the VR-Tree algorithmN times to produce a set of trees{fi}

N
i=1.

Given a test instancez = (x, y), the output of the ensemble is:

fN (x) =
1

N

∑N

i=1
fi(x)
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whose range is[−1,+1]. In the following analysis, we letN approachinfinity.

In order to study the Pointwise Hypothesis Stability of VR-Trees (α = 0) ensembles, we need
to bound

ES∼D[|`(fT,S(xi), yi)− `(fT,S\i(xi), yi)|].

We specify the loss function as

`(y1, y2) =






1, |y1 − y2| > 1

0.5, |y1 − y2| = 1

0, |y1 − y2| < 1

.

Let µS denote the number ofclass transitions, which are example pairs(zj , zk) in S such that
yj 6= yk and there is no example betweenxj andxk. µS will be used to boundβ later.

Now, when a training instancez′ = (x′, y′) ∈ S is being held out as the test example and
leavingS\i, we want to know how a VR-Tree ensemble makes its predictionson z′. We find that
one of the following four events will happen when classifying z′, as illustrated in Figure 10.

Figure 10: Illustration of four possible places of a test instance. Circles of+1, −1 and? denote
positive, negative and test instances, respectively.
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a) z′ is a duplicate of a training examplezi = (xi, yi), as illustrated in Figure 10(a). We have
fn(x′) = yi, because every tree leaf is pure, which means the empirical error is always zero. Since
we assume that every instance has a unique location, we ignore this case forµS .
b) z′ is located between two training exampleszi = (xi, yi) andzj = (xj, yj) with yi = yj, as
illustrated in Figure 10(b). In this case,z′ will fall into a leaf node containingzi or zj. Therefore,
we havefn(x′) = yi = yj. Whenz′ is wrongly classified, that is,z′ has a different label fromyi

andyj, two counts are added toµS.
c) z′ is locatedoutside the training set andzi = (xi, yi) is the nearest training example, as
illustrated in Figure 10(c). In this casez′ will fall into a leaf node that must containzi, thus
fn(x′) = yi. Whenz′ is wrongly classified, one count is added toµS .
d) z′ is located between two training exampleszi = (xi, yi) andzj = (xj , yj) with yi 6= yj. When
z′ is wrongly classified, that is,z′ has a different label from eitheryi or yj, one count is added toµS.
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Therefore, given an examplezi = (xi, yi) ∈ S, we have`(fT,S(xi), yi) = 0, becauseyi is
included inS, which is the case of Figure 10(a). By the above analysis, we also have the number of
errors upper-bounded byµS. Then we have

β = ES∼D[|`(fT,S(xi), yi)− `(fT,S\i(xi), yi)|]

= ES∼D[`(fT,S\i(xi), yi)]

≤ ES∼D[µS ]/k .

Note thatµS varies on training sets, but it is upper bounded by the class transitions of the
underlying true functionf∗, that is, letµ∗ be

µ∗ =
∣∣{x ∈ X|∀σ > 0 ∃x′ : f∗(x)f∗(x′) < 0 ∧ ‖x− x′‖ < σ}

∣∣ ,

which is a constant. We then have
∀S ∼ D : µS ≤ µ∗,

andµS = µ∗ whenS is large enough. Therefore, we have

β ≤ µ∗/k .

Sinceµ∗ is a constant, the ensemble of VR-Trees (α = 0) is a stable learner, whose generalisation
error is bounded, with probability1− δ,

R(T, S) ≤

√
1 + 12µ∗

2kδ
.

It can be observed that features with largeµ∗ weaken the predictive performance.
Moreover, we find that irrelevant attributes, class noise and insufficient training sample can

cause a largeµ∗. For irrelevant attributes, they perform an almost random projection fromX to Y.
If f∗ is a random projection, i.e.P (f∗(x) = +1) = 0.5, the probability that there areµS class
transitions in training setS is

P (µS) ≤ (1/2)|S|/µS−1

by considering that theµS transitions divideS into equal segments. This implies that irrelevant
attributes weaken the predictive performance of VR-Trees (α = 0). For class noise and insufficiency
of training samples, it is not hard to see that they also increaseµ∗ and hence also weaken the
performance of VR-Trees (α = 0).
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Appendix C. Estimation of Strength and Correlation

To make this paper self contained, we provide the estimationof strength and correlation which is
defined by Breiman (2001) and corrected by Kobayashi (2002).Given an ensemble ofN trees
{f1, ..., fN}, a hold-out setDh = {(x1, y1), ..., (xk , yk)} andk is the number of test cases, we can
estimate the followings:

• Strength - it is estimated by the average of margin overDh.

• Correlation - it is estimated by taking the variance of margin over the standard deviation of
random vectors, which represent trees.

C.1 Estimation of Strength ŝ

The estimation of Strength is given by:

ŝ =
1

k

k∑

i=1

si (3)

The marginsi is given by:

si =
1

N

N∑

j=1

I(fj(xi) = yi)−
1

N

N∑

j=1

I(fj(xi) = c(i)) (4)

For each test casei, c(i) is the class label that receives the maximum votes amongN trees andc(i)
can be any class label other than the true labelyi. I(.) is the indicator function that returns1 when
it is true,0 otherwise.

C.2 Estimation of Correlation ˆ̄ρ

The estimation of Correlation is given by:

ˆ̄ρ =
var(s)

1
N

N∑
j=1

sd(j)

(5)

The variance of marginvar(s) is given by:

var(s) =
1

k

k∑

i=1

s2
i − ŝ2 (6)

The standard deviation of each random vectorsd(j) is given by:

sd(j) = [p1 + p2 − (p1 − p2)
2]1/2 (7)

p1 =
1

k

k∑

i=1

I(fj(xi) = yi) (8)

p2 =
1

k

k∑

i=1

I(fj(xi) = c(i)) (9)
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