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Abstract

In this paper, we show that a continuous spectrum of randiiisexists, in which most ex-
isting tree randomisations are only operating around tleeemds of the spectrum. That leaves a
huge part of the spectrum largely unexplored. We propossea learner VR-Tree which generates
trees with variable-randomness. VR-Trees are able to spam the conventional deterministic
trees to the complete-random trees using a probabilistianpeter. Using VR-Trees as the base
models, we explore the entire spectrum of randomised erlssnibgether with Bagging and Ran-
dom Subspace. We discover that the two halves of the spettaumtheir distinct characteristics;
and the understanding of which allows us to propose a newoapprin building better decision
tree ensembles. We name this approach Coalescence, whildsoes a number of points in the
random-half of the spectrum. Coalescence acts as a corarofttexperts” to cater for unforesee-
able conditions presented in training data. Coalescenfoeirgd to perform better than any single
operating point in the spectrum, without the need to tune $pexific level of randomness. In
our empirical study, Coalescence ranks top among the besdtimy ensemble methods including
Random Forests, Random Subspace and C5 Boosting; and oaligsCence is significantly better
than Bagging and Max-Diverse Ensemble among all the methottee comparison. Although
Coalescence is not significantly better than Random Foresthave identified conditions under
which one will perform better than the other.

1. Introduction

When building ensemble-classifiers, randomisation playis@ortant role in forming diverse mod-
els that are generated from deterministic algorithms. tiginadhe use of ensemble methods, diverse
models are aggregated to improve the generalisation dapabithe resulting classifiers.

Traditionally, ensemble methods are based on deternaurakjorithms with randomisations in-
jected to produce diverse variants. Representatives séthiee Bagging (Breiman, 1996a), Random
Forests (Breiman, 2001), Randomised C4.5 (DietterichDp@fd Random Subspace (Ho, 1998).

Recently, a completely random approach (Fan, Wang, Yu, & 2083; Fan, 2004; Liu, Ting,
& Fan, 2005) is proposed using trees that are generated wtitlny deterministic heuristic; this
approach represents a departure from the traditional appes. In this paper, we show that the
complete-random approach and some of the traditional appes can be used as two extremes to
form a continuous spectrum of randomisation; and bettedigtiee accuracy can often be found
within the spectrum.
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In this paper, we propose a novel algorithm which is capablgenerating a range of models,
end-to-end continuously from completely random to pur@tedninistic. The most striking fact is
that though each tree-node is created either randomly errdetistically, the resulting randomness
can span from completely random to purely deterministihaut any modification to the ensem-
ble method. This algorithm enables us to explore the whodetspm between the two extremes
and we show that, this new algorithm can be easily incorpdratto existing ensemble methods,
such as Bagging and Random Subspace. Together they geeesat@bles of different degrees of
randomness, which are largely unexplored until now.

We reveal that most of the existing random ensemble methaets & Bagging and Random
Subspace focus on the deterministic-end of the spectrudhigaiore a major part of the spectrum.
We show that Bagging, Random Subspace and the simple cawplaiom trees find their better
counterparts inside the spectrum.

As there is no known way to measure a priori the level of ranakesa required for any given
problem, we analyse the spectrum and discover that the tlvehaf the spectrum have their
distinctive characteristics. With this new understandiagnew ensemble approach is proposed
in this paper, which coalesces a number of points in the gpacto form the final ensembles.
Empirically, we find that this new approach performs bett@mtany single point in the spectrum
across a wide range of data sets. This new approach is ahesfielf solution, which provides a
high level of accuracy without the need of knowing or tuniadhe level of randomness required.

This paper is presented as follows. A brief overview of exgstdecision tree randomisation
methods is provided in Section 2. It serves as a primer tositgcitree randomisation. The al-
gorithm to generate variable-random-trees is presenteskction 3. In Section 4, the different
ensemble methods used in our experiment is introduceawetl by Section 5, which presents a
comprehensive empirical evaluation of the spectrum as agethe proposed ensemble approach.
Section 6.1 details the key differences between the rarghiimon framework of Random Forests
and the proposed framework of variable-randomness. Ogteted work is provided in Section 6.2,
and we conclude in the last section.

2. Randomisation Methods for Decision Trees

Many randomisation methods have been proposed to produeeseidecision trees for ensemble-
classifiers. In this section, as a general introduction ttisiten tree randomisation, we give an
overview of the ways in which they are applied. The followlisg of decision tree randomisation is
not meant to be exhaustive, the purpose of this list is to destnate the mechanism and side effects
of randomisation methods, which guides us in designingebatiproaches.

For any conventional decision tree algorithm, one detestinmodel is produced for any given
training set. Randomisation helps to produce multipleards of this deterministic model to fulfil
the requirement of ensemble learning. A common charatitea$ popular methods is that the
same heuristic is used in every tree node, which often ctstilne possible range of randomness
and reduces their impact on performance.

In the literature, most of the proposed randomisation nusthean be grouped into three cate-
gories, depending on the dimension in which they are applida first category is to randomise
theinstance dimension This includes (i) Bagging (Breiman, 1996a) and Waggingu@as Ko-
havi, 1999), which generate different sets of training eplas through random sampling or as-
signing randomly generated probability distributions ba given training set; (ii) Output flipping
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(Breiman, 2000) in which the classes of the training example flipped randomly according to
a ratio; and (iii) Adding random examples (Melville & Moone3003) in which diverse classifiers
are constructed using additional artificial training exéaspA conventional decision tree algorithm
is used to generate a model for each random sample of tragxiagnples. For type (i), a user has
no control over the degree of randomisation applied; foesyfi) and (iii), randomness is at the
expense of data integrity.

The second category is to randomise thature dimensionby randomly selecting a subset
of features before generating each model. A representafitieis method is Random Subspace
(Ho, 1998) of which 50% of the features are randomly seletdgatoduce models of an ensemble.
Random Subspace is not designed to adjust the level of rameksnthe default setting as mentioned
is commonly used.

The third category is to randomise ttesst-selectionat each decision node during the tree grow-
ing process. Since it is meant to produce variants of thermétéestic model, the randomisation
is usually applied in a small degree at each node while maintathe key deterministic charac-
teristic. Examples of this category are Randomised C4.8t{®ich, 2000) and Random Forests
(Breiman, 2001). As reported by Breiman, the performand@afdom Forests is not significantly
impacted by the different values of the parameter used.

For all the methods mentioned above, deterministic modelgheeir common starting point.
Randomisations are then injected to produce diverse \tarfesm these deterministic models. On
the contrary, a totally different approach is to start wittmplete-random models, for example,
Random Decision Trees (Fan et al., 2003) and Max-DiverseerBhke (Liu et al., 2005). The
distinction between the two starting points is the inclosad a deterministic heuristic. For any
method that uses any deterministic or a weakened heurstgach node, their starting point is
deterministic models. These two starting points seem tolteafly exclusive, however, we provide
away to connect them in order to maximize the possible rahggxdomness and, in turn, predictive
performance gain.

In this paper, we show that a largely unexplored set of ranskdmrmodels can be found between
the extremes of both deterministic and complete-randometsodiVhile Random Forests provides a
mean to adjust its randomness, the degrees of randomnesmateined by the number of features
and the mandatory use of deterministic heuristic at eacle.n@ktails of this limitation will be
discussed in Section 6.

In the next section, we propose a new algorithm that constrnees with a controllable ran-
domisation in test-selection. It allows us to explore thelgtspectrum of variable-random trees.

3. Trees with Variable Randomness

We name a tree VR-Tree when it is generated using randonseésttion in some of its nodes.
In this section, we first describe the process of randomsigststion and then the mechanism that
induces trees with a controllable mix of random and detestimtest-selections.

In the framework of conventional tree building algorithmandom test-selection can be used
as a direct replacement of deterministic test-selectidmis & depicted in Algorithm 1. First, ran-
dom test-selection randomly picks a feature from the lishw@ilable features to form a decision
node. Then, a nominal feature of possible values will formn branches or a continuous-valued
feature with a random cut-point will form 2 branches. Thed@n split-point selection procedure
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is described in Algorithm 2. This random test-selectiondmees an alternative to the deterministic
test-selection in the mechanism to create variable-randss

Algorithm 1: VR-Tree(D;, @, «) - Building a Variable-Random Tree
Input: D; - Training set() - Feature sety - probability of using deterministic test-selection
Output: node - tree node
if all classes € Dy are the same o) is empty o D;| < nin then [ * ng,;, is the
m ni mum nunber of instances required before a split is

al l oned. */
| return aleaf with class frequency

else
let » be a randomly generated value, whére r <1
if r < athen /* Determ nistic Test-Selection. =*/
| node < DeterministicT estSelection(Dy, Q)
else [+ Random Test - Sel ection. */

randomly select anm €

construct anode with test labely

if v is a continuous-valued featutben [+ Handling a

conti nuous-val ued feature. =/

node.splitpoint «— RandomSplitv, D;)

Dy « filter(Dy,v > node.splitpoint)

Dy — filter(Dy, v < node.splitpoint)

node.branch(1) «— VR-Tree(D1, Q, «)

node.branch(2) — VR-Tree(D2, Q, «)

else [+ Handling a discrete feature. =*/

let {v;...v,, } be possible values of

for i € m do [« mary split. «/
D; — filter(Dy,v == v;)

L node.branch(i) «— VR-Tree(D;,Q — v, «)

L return node

Algorithm 2: RandomSplitv, D;) - Random split point selection
Input: v - a continuous-valued featur®), - training data
Output: a split point
r1 < randomly select a value ofin D;
ro < randomly select a value ofin D;
while r{ == ry do

| re < randomly select a value of
return the mid point between; andr,

To generate variable-randomness, the test-selectior$sads split into two stages at each node.
The first stage decides which test-selection to use, efdreom or deterministictest-selection.
The second stage proceeds with the selected test-seléatipoduce the actual test for the node.
An « parameter is provided to control the probability of chogsileterministic test-selection over
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the random one, wher@ < o« < 1. « also approximates the percentage of deterministic nodes
generated in trees. Note that by setting 1, this procedure generates trees which are identical to
conventional decision trees; and by setting O, it generates complete-random trees. The procedure
of the above mechanism can be found in Algorithm 1.

In the next section, we introduced the three ensemble methaell in our experiment based on

VR-Trees.

4. Ensemble Methods

Using VR-Tree as the base learner, we explore three ensendileods that are employed in this
investigation. They are listed as follows:

e Aggregating in which trees are generated from the same training datm uke full set of
features.

e Subspacingin which trees are generated with subsets of randomly teeldeatures.y pa-
rameter is used to determine the percentage of featuresutsdoke

e Bagging in which trees are generated from a bootstrap sample usinfull set of features.

The details of these ensemble methods are shown in Algasithm and 5.

Algorithm 3: Agg.VR-Tree$D;, Q, N, o)

Input: Dy - Training set() - Feature set)N - Number of treesy - probability of using
deterministic test-selection
Output: E - a collection of trees
for i € N do
| E— EUVR-Treg D, Q, )
return £

Algorithm 4: Subspace.VR-Tre€B,, Q, N, o, 7)

Input: D; - Training set) - Feature set)V - Number of treesy - probability of using
deterministic test-selection, - the percentage of features used, whiere v < 1
Output: F - a collection of trees

for i € N do
L Qs < randomly generate a set percentggef features fron)

E — E UVR-Treg Dy, Qs, @)
return E

While none of these ensemble methods are new, the incoipoaitVR-Tree as the base learner
help to unleash the potentials of these methods. The pragifrformance gain is shown in Section
5. Note that Subspacing is equivalent to the Random Subspatteod (Ho, 1998) when=50%.
Sincey=50% provides the maximum number of distinct subspacesghnisi an important factor
to increase diversity, we will use=50% as the default setting for Subspacing. Also, noticé tha
Bag.VR-Trees withn = 1 is equivalent to the conventional Bagging method (Breini®96a).
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Algorithm 5: Bag.VR-Tree&D,, Q, N, «)
Input: Dy - Training set() - Feature set)N - Number of treesy - probability of using
deterministic test-selection
Output: E - a collection of trees

for i € N do
L D, < generate a bootstrap sample fr@m

E « E UVR-Treg Dy, Q, a)
return £

We use probability averaging to combine the outputs fronividdal models of an ensemble.
In order to predict a class given a test case, the predictsd @@ obtained by:

N
niy
’ Y 1
argmax(y | —),y € (1)

=1

whereN is the number of trees in an ensemblg, is the number of clasg training instances and
n; is the total number of training instances at a leaf of a ti@ewhich the test case falls into.

5. Empirical Study of The Spectrum

We design our experiment in four parts. The first part ingegés the predictive performance spec-
trum of Aggregating, Bagging and Subspacing using VR-Tr&és then use the result to charac-
terize the two-halves of the spectrum. The second part eemihe diversity of base learners gen-
erated by these ensembles using the strength and cometatives as defined by Breiman (2001).
This part highlights the range of randomness one can achivesing VR-Trees. The third part
explores an alternative to using only a singleralue to produce models in an ensemble. This al-
ternative combines a number of points in the spectrum, wisiclur proposed ensemble method in
this paper. The fourth part investigates the strengths arakmesses of the proposed method.

Forty-five data sets from the UCI repository (Asuncion & Neswm2007) are used in this paper.
The characteristics of all these data sets are provided peAgix A. Ten-fold cross-validation is
conducted for each data set and the average error rate ige@pal00 trees are used for each
ensemble. Random Forests and C5 Boosting (www.ruleqoest.are used as benchmarks, in
addition to Bagging, Subspacing and Aggregating of VR-3ré&#e use the Friedman test with the
Bonferroni test as the post-hoc test at 95% confidence levampare classifiers (DemsSar, 2006).

For the Random Forests implementation used in this paperdéifault settings ofrt ry =
floor(sqrt(q)) andnodesi ze=1is used, wherert r y is the number of features randomly
sampled before each spli, is the number of features ambdesi ze is the minimum size of
terminal nodes. The implementation is taken from R (wwwajgct.org).

Our implementation including of VR-Trees is based on C4.hif@n, 1993). The default
C4.5's stop-splitting rules are applied: (i) the minimunmrher of training samples,,;, = 4 are
required before splitting is considered, and (ii) the dutaistic test-selection stops splitting when
all possible splits report negative scor€ain ratiois used as the test-selection criterion. Probability
averaging is implemented with curtailment (Zadrozny & Elka001), where the minimum leaf size
for probability estimation is always greater than one. Ehdsfault settings are used for VR-Trees
in this paper.
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5.1 The Predictive Performance Spectrum of Aggregating, Bgging and Subspacing

Figure 1. The spectrum of predictive performance for Aggtew, Bagging and Subspacing, as
well as Bagging plus Subspacing: error rates againsiverage over forty-five data sets.
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Figure 1 shows the spectrum of performander four ensemble methods using VR-Trees as
the base models. Note that the conventional Bagging anddRa@libspace are two points on the
deterministic-endd = 1) of the spectrum for Bag.VR-Trees and Subspace.VR-Traes$ Max-
Diverse ensemble is at the complete-random-end Q) of the Aggregating spectrum. Figure 2
shows the results of Friedman tests for each of Aggregaiagging and Subspacing and we have
the following observations.

i From Figure 2, it is interesting to note that the best opegategion for Agg.VR-Trees is having
« values between 0.1 and 0.6. This shows that Max-Diversemreevhich operating at =
0 can improve its performance by moving further into the rtedaf the spectrum. The best
operating region for Bag.VR-Trees is between 0.1 and 0.6twis mainly in the first half of
the spectrum. This is significantly different from what th@neentional Bagging is normally
applied at, namelyw = 1. The best operating region for Subspace.VR-Trees isdat.4 and
0.8. This is also different from what Random Subspace is atyynapplied ain = 1.

i A balanced mix of random and deterministic heuristios,,ix = 0.5, produces the best ensemble
or no significantly difference to the best ensemble for any @fithe three ensemble methods.

iii Out of the four curves shown in Figure 1, Agg.VR-Trees édlve largest swing in performance,
followed by Bag.VR-Trees and Subspace.VR-Trees. Thispeebed as the two end-points in
the Agg.VR-Trees’ curve represents a single determinmtdel and an ensemble of complete-
random models. As decreases from 1 to 0.5, a substantial improvement in gresliper-
formance for Agg.VR-Trees, takes effect due to the increabeersity in the ensemble, which
reduces the average error rate from 20.6% to 16.0%.

iv Although both Bag.VR-Trees and Agg.VR-Trees performtideshe region ofd < o < 0.5,
the result in Figure 1 indicates that they have no significhifitrence in terms of predictive

1. Averaged over forty-five data sets.
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accuracy. Because of additional computational requirérteegenerate bootstrap samples for
Bagging, Aggregating becomes the preferred method in teiehalf of the spectrum. Bagging

and Subspacing are preferred to Aggregating in the secadfidfhtne spectrum because the
latter is uncompetitive in that region.

v The use of both Bagging and Subspacing in a single ensemblatirecommended, as shown
by the result in Figure 1 that Bag-Subspace.VR-Trees alwayf®rms worse than its parents,
Bag.VR-Trees and Subspace.VR-Trees.

Figure 2: Friedman test results for classifiers producedapyAggregating, (b) Bagging, (c) Sub-
spacing of VR-Trees, from elevenvalues in the spectrum over forty-five data sets. We use Bon-
ferroni test as the post-hoc test amet O as the control condition for each comparison. The vdrtica
axis indicates ther values, and the horizontal axis indicates the rank valués circle is the av-
erage rank for each value and the bar indicates the critical values for a twledaiest at 95%
significance level. When two classifiers having no overlagiars, it indicates that they are signif-
icantly different. Significantly worse results are presenin dotted bars (coloured in red) located
on the right-hand-side of the diagram. The best resultsrasepted in solid bars (coloured in blue)
or the left-most bar in each diagram.
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We summarise the characteristics of the two halves of thetispe in Table 1. In the next sub-
section, we continue our analysis over the various pointiseo§pectrum in relation to generalisation
error.

Table 1: Characteristics of the two halves of the spectrum.

Complete-Random-enda € [0,0.5] | Deterministic-end, a € (0.5, 1]

e Models at this extreme end are | ¢ Models are variants of a deter-
generated in a completely random | ministic model.

fashion.
e Candidate models are all possible| e Candidate models are models of
trees of larger sizes. smaller sizes (because each model

reaches pure leaves early).

e Models have a higher diversity. e Maintaining high predictive ac-
curacy while providing some de-
gree of diversity.

e Aggregating is preferred in this | e Subspacing and Bagging are pre-
region. ferred in this region.

5.2 Strength-Correlation Analysis

In this section, we examine the strength and correlatiofilesgproduced by Aggregating, Bagging
and Subspacing. Firstly, we illustrate the relationshipMeen generalisation error, strength and
correlation using a map. Secondly, we plot the strengthetaiion curves for the actual data sets to
characterise their behaviours. Thirdly, we continue thedyais from Section 5.1 to further explore
the two halves of the spectrum in light of the strength-datien analysis.

Breiman’s (2001) inequalityPE > p(1 — s2)/s? is useful for discerning the relationship be-
tween generalisation errd?E, strengths and correlatiorp. Briefly, the strength of an ensemble
measures the expected margin function of the ensemble. gimfmction is the probability of
correct classification minus the maximum probability ofarrect classification of an instance. Cor-
relation of an ensemble is a measure on how similar the predécare among individual trees. A
high reading of correlation indicates that individual 8ee making similar predictions. We use
the strength and correlation estimation procedures of@utind Kobayashi (2003) as they are the
corrected version of Breiman (2001). To make this paperamifained, the estimation procedures
are given in Appendix C.

Figure 3 shows a map of strength-correlation profiles wittygrcale indicating the generalisa-
tion error. We can see that the error rate is lower at the biggngth and low-correlation corner
(at the bottom-right), where the error rate is lower withkaargrey level. As for all the ensemble
classifiers in general, their goal is to get themselves t@@mmnewhere the estimated error rate can
be as low as possible. Aggregating with different values tyfpically spans in the fashion of either
curve (a) or curve (b) as shown in Figure 3, where each cuaresftoma = 0 (at the bottom-left)
to a = 1 (at the top-right). For (a), the lowest error rate can henébate: = 0. For (b), lower error
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rates can be found with a larger valuecaf However, error rates also increase wlheapproaches
1. In this case, a search would be necessary to determingtineabc:.

Figure 3: Ensemble generalisation error distribution giddmeiman’s inequality on strength and
correlation. Curves (a) and (b) represent two typical spphrgg.VR-Trees with) < o < 1.
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Figure 4 shows that the three different ensemble methodsderdifferent ranges of strength
and correlation profile. The most effective way to use VResres Aggregating. This is because
it consistently produces the longest span of strengthetadion curve in each of the data sets we
used. Bagging usually has the second longest span, follow&aibspacing. Note that Aggregating
usually spans in both strength and correlation dimensiamh&reas Bagging and Subspacing have
significantly smaller span, especially in the correlationehsion. Table 2 shows the range between
the minimum and the maximum values of strength as well asladion, averaged over forty-five
data sets. The result shows that Aggregating producestrtiestarange of trees in comparison with
Bagging and Subspacing. Most interestingly, the best ofrégmfting is usually located in a lower
or similar error region to those of Bagging and Subspacing.

Table 2: Average ranges of strength and correlation oveliotiig-five data sets.

Strength  Correlation
Agg.VR-Trees{ € [0, 1)) 0.135 0.696
Bag.VR-Treesf € [0,1]) 0.136 0.160
Subspace.VR-Trees(c [0, 1]) 0.069 0.088

It is also interesting to note that=0.5 is always close to or at the changing corner between
strength-varying leg and correlation-varying leg in a# #txamples shown in Figure 4. This means
thata = 0.5 is either close to or at the lowest generalisation aegron, if the ensemble exhibits
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Figure 4: Strength-Correlation distribution of Aggregati Bagging and Subspacing for different
values ofa. The solid-filled marks represent=0.5. For Aggregating, the first half of therange
(a € [0,0.5]) is characterised by lower correlation and lower strengtid it is located at the bottom-
left corner of the diagrams. The second halfq [0.5, 1]) is characterised by higher correlation and
higher strength, and it is located at the top-right cornghefdiagrams.
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curve (b) like behaviour as in Figure 3. Thusz 0.5 often serves as an upper limit in a rangevof
values that performs well.

Combining the above result with the analysis on the two Isabfethe spectrum from Section
5.1, we find that Aggregating exhibits the following chaedisttics in most of the data sets in Figure
4:

¢ At the first-half of the spectrum, strength increases rgpidim « = 0 and slows down at
abouta = 0.5; however, correlation only varies in a small degreeavary at all.

¢ At the second-half of the spectrum, correlation increaapilly froma = 0.5 and peaks at
= 1. In this range, both strength and correlation are veri,legror rates are not optimal.

In summary,« for better performing Aggregating models can be found inrtregge between 0
and 0.5. Most single operating pointsc [0, 0.5] have been shown to work well in Section 5.1.

In the next section, we show an alternative approach thaewaeh even better result by using
the range ofx € [0, 0.5] that we have identified thus far.

5.3 Coalescence of Different Operating Points

In this section, we show that combining single models fronitiple points in the spectrum will
achieve similar or better performance as compared to usiggsiagle point in the spectrum. We
coalesce VR-Trees with sampled at a fixed interval. For example, to form a 100-modistmble,
we construct trees with = {0, 0.005,0.01, ..., 0.495}. We call this approacRoalescence

The Coalescence approach is appealing because we do nabh@edy whicha value produces
the most accurate ensemble for any given data. By introdutiembers of different “talents” from
the random-half of the spectrum; Coalescence forms a cdeenitf different members. In this
committee, as far as we know, some members are good at aptinxg non-axis-parallel boundary
and some members are good at avoiding over-fitting. The rapla-this committee helps to handle
unforeseeable conditions that arise in training sample.

As aresult, Coalescence provides a comparable prediaifermance to a search-for-the-best-
« approach (Liu & Ting, 2006) without the cost of searchingtfoe optimala value. In Figure 5,
Coalescence is shown to be better than any single operatingip the first-half of the spectrum
using the Friedman test, over forty-five data sets.

An additional comparison is also conducted with some ottel kmown tree ensemble classi-
fiers. The complete result for Coalescence, Aggregatingivdes ¢=0) (i.e. Max-Diverse Ensem-
ble), Bagging, Subspacingv€l) (i.e. Random Subspace), C5 Boosting and Random Fonests a
presented in Table 3. The average error rates over fortydate sets are provided in the last row of
the table. Figure 6 shows the result of the Friedman test anldave the following observations:

e Coalescence ranks the highest among the five benchmarkaegndates in the Friedman test.

e The second highest ranking ensembles: Random Forests aBddsfing have almost identical
ranking in the Friedman test, and similar average errosrate

e The third highest ranking ensemble is Random Subspaceharidwest ranking ensembles are
Bagging and Aggregating VR-Treea € 0). Both ensemble methods have similar average
error rates.

366



SPECTRUM OFVARIABLE-RANDOM TREES

Figure 5: Friedman test result for comparing Coalescente fivie operating points of Agg.VR-
Trees in the first-half of the spectrum. Horizontal axis aadés the rank values. Coalescence ranks
top as compared to different points in the first-half of thectpum.
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Figure 6: Friedman test result for comparing Coalescente five benchmarking methods. Hori-
zontal axis indicates the rank values. Notice that Coalesees the only method that is significantly
better than Aggy = 0 (Max-Diverse Ensemble) and Bag= 1 (Bagging).
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Table 3: Experimental results: Average error rate of tdd-fmoss-validation.

Agg. Bag. Subspace.

VR-Trees VR-Trees VR-Trees C5 Random
data sets Coalescence (a=0) (a=1) (a=1) Boost Forests
abalone 30.0 30.2 30.7 30.0 311 30.9
anneal 15 14 35 3.2 5.0 9.7
audiology 17.2 17.7 16.2 20.3 15.0 20.8
autos 18.1 225 19.5 147 15.6 15.2
balance 14.4 12.3 18.1 11.4  18.9 16.3
breastw 3.0 2.4 3.4 3.0 3.1 3.4
breasty 28.7 25.9 27.3 251  26.9 29.7
chess 0.7 1.6 2.3 1.8 0.3 11
cleveland 42.9 41.6 44.2 419 416 41.9
coding 16.4 16.8 24.2 16.7 15.4 17.5
credit-a 12.3 13.0 12.8 13.0 143 13.0
credit-g 23.1 25.7 22.7 248 224 23.2
dna 5.3 26.5 6.0 3.7 4.8 3.4
echo 335 34.2 29.0 320 374 32.0
flare 18.6 19.2 17.7 171 175 18.5
glass 21.0 22.9 215 215 214 21.0
hayes 18.1 219 17.5 175 16.9 16.9
hepatitis 18.0 15.5 20.0 18.6 14.1 17.3
horse 13.3 17.9 15.2 16.0 225 14.1
hypo 0.8 1.7 0.8 1.3 0.8 1.0
ionosphere 5.7 8.5 54 5.4 5.4 6.5
iris 4.7 4.7 4.0 6.0 4.0 3.3
labor 7.0 3.3 10.7 120 15.7 5.0
led24 27.9 30.3 28.1 291 281 28.5
led7 26.7 26.9 26.3 275 278 26.3
liver 27.0 27.9 27.3 319 29.6 26.1
lymph 14.9 14.3 20.4 156 19.1 16.9
nursery 0.9 2.2 3.7 5.9 0.9 2.3
pima 234 24.6 24.0 232 250 23.2
post 40.0 36.7 37.8 32.2 30.0 32.2
primary 55.2 57.2 56.6 519 56.9 56.9
satimage 8.8 104 9.0 8.3 8.1 8.1
segment 2.1 3.1 2.4 2.3 1.8 2.1
sick 2.1 5.7 2.2 4.3 2.2 2.1
solar 29.4 30.3 27.2 278 257 27.2
sonar 15.9 15.9 24.0 18.7 15.9 13.9
soybean 5.4 6.0 6.6 5.3 6.2 5.7
threeOf9 0.0 0.6 14 10.0 0.0 0.8
tic-tac-toe 3.0 9.7 14.3 22.3 1.2 1.3
vehicle 24.5 271 24.9 254 233 26.1
vote 4.1 5.3 4.6 4.6 4.8 4.1
waveform21 14.5 14.7 16.1 147 15.6 14.7
waveform40 15.7 17.0 16.5 153 15.1 14.9
wine 3.4 11 3.4 2.3 5.6 23
z00 1.0 2.0 3.0 4.0 3.0 5.0
mean 15.6 16.8 16.7 16.4 15.9 15.6
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e Of all the ensembles, only Coalescence is shown to be signific better than Aggregating
VR-Trees & = 0) and Bagging in the Friedman test.

It is interesting to note that when employing an oracle to firebesiv, the optimal error rate
is 14.6%?2 (Liu & Ting, 2006). Thus, the Coalescence approach comesdio this optimal result
without using any oracle.

Figure 7 shows the predictive performance of Coalescencelation to Aggregating in eight
data sets. Coalescence sometimes outperforms its ‘pafents|0, 0.5]), and often comes close to
the best performing Aggregating.

5.4 Strengths and Weaknesses

This section will examine the strengths and weaknesses efiéR. Although Coalescence is not
significantly better than Random Forests in the Friedman Teble 3 clearly shows that Coales-
cence is better than Random Forests in some data sets b inasthers. This section will also
examine some of the conditions under which Coalescencerpesfbetter than Random Forests and
vice versa.

We find that the ensembles of complete-random-trees haveltbeing strengths: 1) capable
of approximating non-axis-parallel boundarand 2) they are highly stable learners in terms of
Pointwise Hypothesis StabilifBousquet & Elisseeff, 2002). An analysis that is base®aintwise
Hypothesis Stabilitgan be found in Appendix B. To verify the complete-randoges’ ability to
approximate non-axis-parallel boundary, in Figure 8, wavjgle a visualization example using a
Gaussian mixture data set (Hastie, Tibshirani, & Friedn28®1). Figure 8 shows that an ensem-
ble of complete-random-trees (using 100 trees) is able ttetbapproximate the non-axis-parallel
boundary as compared to a single deterministic tree.

Moreover, as described in the analysis in Appendix B, oné®fstrengths of complete-random
trees is also one of their weaknesses: complete-randors tirered toover-fit and this problem
stems mainly from the ability to approximate non-axis-flateboundary. We also find that the
overfitting problem is aggravated by irrelevant attributelass noise and small training size as
shown in the following empirical examination.

We denoteX’ as the input space ard as the output space. A learning algorithm outputs a
function that approximates the underlying true functjohy inspecting the training set. A training
setS = {z}",, wherez; = (z;,y;) andy; = f(z;), containsm i.i.d. examples inZ = X x Y
that are drawn from uniform distribution in the instancecgaNe define the input space with two
variables,z; = (v; 4, ;) and the output space with two possible clasges {+1,—1}. In this
case, the instance space is a square from gojnt 1,1, = 1) to point (v, = —1,1, = —1).

We define the two concepts as follows:

+1 if (Ve > vip)

1 else , Uy = <Vi,a>7/i,b>

ConceptA: f4(z;) = y; = {

ConcepB: fB(z;) = y; = i = (Via, Vi)

—1 else

{+1 if (i > 0)

2. Averaged over the same forty-five data sets used in thisrpap
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Figure 7: Detail results comparing Coalescence with Agafiag in eight data sets.
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Dataset: abalone
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Figure 8: Visualisation of a non-axis-parallel decisioubgdary on Gaussian mixture data using an
ensemble of complete-random-trees as compared to a sietgamdnistic tree (C4.5).
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ConceptA is useful for illustrating the ability to approximate norisparallel boundary. Concept
B is an axis-parallel concept, which is used as a control ¢mmdin this experiment. We conduct
four experiments using (a) a training samplekof= 1024 instances, (b) a training sample with
irrelevant attributes, (c) a training sample with classseand (d) a size-reduced training sample of
k = 64. We train ensemble models using Coalescence, VR-Trees (), « = 0.5) and Random
Forests. We use 100 trees for each ensemble. Finally, waatgalhe models by0000 lattice

samples from the instance space, and the average erroveaté®runs is reported.
Table 4 shows that:

e VR-Trees { = 0) is the best performer in approximating non-axis-pardi@indary in concept
A, even with small training size &f = 64. However, it is the worst performer in axis-parallel
conceptB in bothk = 1024 andk = 64.

e VR-Trees (v = 0.5) performs the best under class noise and irrelevant agribonditions in
both concept®\ andB. When irrelevant attributes are added, the error rate ofTvées (v =
0) increases at a faster rate as compare to VR-Trees(.5). Similarly, class noise affects

the complete-random-end: & 0) of the spectrum more severely than the middle point of the
spectrum ¢ = 0.5).
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Table 4: Averaged error rates of VR-Trees<£ 0, « = 0.5), Coalescence and Random Forests on
ConceptA andB. The default number of training samplesiis= 1024, unless otherwise specified.
The best error rate in each row is bold faced.

VR-Trees VR-Trees
(e =0) | Coalescence (o« = 0.5) | Random Forests

A 1.4% 1.6% 2.0% 1.9%
A, 8irr. att. 7.6% 3.4% 3.0% 3.2%
A, 40% class noise¢ 30% 21.9% 14.7% 33.4%
A k= 6.7% 8.9% 10.4% 7.3%
B 0.3% 0% 0% 0%

B, 8irr. att. 5.2% 0% 0% 0%

B, 40% class noise 30.7% 4.2% 2.6% 32.5%
B, k= 2.4% 1.1% 1.1% 0.8%

¢ Between Coalescence and Random Forests, Coalescencersebketter under class noise con-
dition; but Random Forests is a better performer under gnaétiing size in both concepss
andB.

The above empirical results show that, while complete-oamtrees, i.e. VR-Trees(= 0) are
good at approximating non-axis-parallel boundary, theyeasily over-fitted to irrelevant attributes,
class noise and small training sample. Although it is theca® find that Coalescence is a way
to manage these propensities without a search for a specii@ue. In Table 4, we find that
Coalescence tends to have performance closer to the betferrping learner of either VR-Trees
(a = 0) or VR-Trees ¢ = 0.5); the only exception is when learning the non-axisjpelrconceptA
with a small training sample.

As to further our understanding on how irrelevant attrisusdfect Coalescence, we perform
a simple check on the eighteen data sets in which RandomtEgredorms better (ignoring two
artificial data setsted andwaveformin which we have already known the results with and without
irrelevant attributes).

We remove the less-important half of all attributes acaaydio Random Forest’s variable-
importance (Breiman, 2001). We then evaluate these eigltata sets again using Coalescence
and Random Forests under the same 10-fold cross validattomresult in Table 5 shows that Co-
alescence performs better in ten out of the eighteen degaas®d Random Forests performs better
only in four data sets. This result indicates the influencirefevant attributes on Coalescence is
greater than that on Random Forests. Among the eighteerseistaCoalescence’s error rates are
reduced by more than half Iabor, hayesandtic-tac-toedata sets. The result indicates that further
management of irrelevant attributes can indeed improveén®rmance of Coalescence.

6. Related Work

In this section, we first highlight the differences betwedR-Vrees and Random Forests in their
capability to vary the degree of randomness, so to distsigWR-Trees from others. Then, in order
to better position VR-Trees, we discuss various differatiglon tree ensembles that are related to
VR-Trees.
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Table 5: Evaluation of Coalescence and Random Forests esject to the condition of irrele-
vant attribute: eighteen data sets are listed with theitapsrtant half of all attributes removed.
Boldfaced indicates improvement in error rate using theiced number of attributes
Coalescence Random Forests
data sets| Full att. | Half att. | Full att. | Half att.
autos 18.1 13.6 15.2 14.6
cleveland 42.9 45.2 41.9 43.9
dna 5.3 3.9 3.4 3.2
echo 33.5 39.0 32.0 42.8
flare 18.6 19.0 18.5 18.9
hayes 40.6 18.1 41.3 16.9
hepatitis 18.0 16.7 17.3 17.4
iris 4.7 4.0 3.3 3.3
labor 7.0 3.3 5.0 5.0
liver 27.0 33.6 26.1 33.1
pima 23.4 24.5 23.2 245
post 40.0 37.8 32.2 36.7
satimage 8.8 9.4 8.1 9.3
solar 29.4 30.3 27.2 28.7
sonar 15.9 13.0 13.9 16.4

tic-tac-toe 18.8 3.0 18.3 1.3
vote 4.1 4.4 4.1 4.4
wine 34 1.7 2.3 2.8

6.1 Relationship with Random Forests

It is interesting to note that Breiman (2001) found that Rand~orests’ accuracy is not overly
sensitive to the value af, which is the parameter intended to vary the degree of randem The
F parameter corresponds to thgparameter in VR-Tree. Yet, our experiments in section searty
shows that varying the degree of randomness (ualngas a significant impact on the predictive
performance of the resulting ensembles. It is thus impottaidentify the differences between the
two ensembles that cause the different behaviours. We wiiadin the following paragraphs.

Algorithm 6: The random feature selection framework of Random Forests
Input: D; - Training set,F' - number of features
Output: node: tree node
randomly select’ features from all available features
D’ = a subset of); according to the" features
node = DeterministicTestSelection()
return node

On the surface, Random Forests is very similar to Agg.VRe3leecause both of them use the
deterministic and random test-selections in the tree itiligprocess. However, they differ in the
way in which the test-selection is applied in each decisioten The randomisation framework of
Random Forests is described in Algorithm 6.
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In applying test-selection, Random Forests applies batdam feature selection and deter-
ministic test-selection in each node; however VR-Tree aplglies either random or deterministic
test-selection in each nodex controls the probability of whether deterministic or ramdtest-
selection is applied in each node; whereas the mixed apiplicaf the two selection processes in
each node constrains the ‘amount’ of randomness that cantfeeliiced to Random Forests. In
case of Random Forestg,only controls the number of features to be randomly selec@ette se-
lected, the deterministic test-selection chooses thefbatire. Thus, if the ‘best’ feature is readily
selected in the first place, then no matter what khes, the ‘best’ feature will always be chosen
by the deterministic test-selection. This agrees withlBegi's observation that the error rate is not
overly sensitive to the different values Bfin Random Forests.

The accessibility to the different degrees of randomnesstlly affects the diversity of models
that are produced, Figure 9 shows the strength-correlatioves for Random Forests (using all the
availableF' values, 19 fosegmentata and 21 fowaveform2idata), in comparison with Agg.VR-
Trees using eleven values sampled with an equal interval. We find that Randoredtsiproduces
ensembles which are highly correlated to each other and wianiich have similar strength. The
same result is also reported by Breiman (2001). Note thdittee curves for Random Forests are
visual aids which do not mean to represent accessibilitywéen points. In contrast, Agg.VR-Trees
produces ensembles which are accessible along the cunspesat along a wider range.

In a nutshell, the randomisation framework used in Randoredts significantly limits its abil-
ity to scale to the different levels of randomness when tted tmimber of features is small. On the
other hand, VR-Trees is able to scale to different levelsantiomness regardless of the number of
features.

6.2 Other Related Work

An approach to search for the besvalue is proposed (Liu & Ting, 2006). This approach searches
the optimala value based on average progressive training errors. Amatstd optimak for a task
is generated as follows:

_ 1 .
Q %2%1;1012[]\[ Zz_; err(a,i, Dy)] 2
where N is the total number of trees in an ensembiler;() returns the training error rate of an
ensemble of sizé while Agg.VR-Trees is set at with training setD;. After obtaininga, i.e., the
best performingy, the ensemble employs the model witHor actual predictive tasks. Note that
each unpruned tree in the ensemble stops growing if the nuafl@ining examples in the node is
four or less (the default setting as in C4.5.) This avoidsegating zero training error trees. Though
the method has comparable prediction performance to ththedfoalescence approach, it requires
a substantial computational overhead where the ensemblds @ values in the search must be
produced.

In contrary to common belief, Fan et al (2003) first proposeubke of complete-random trees
to produce accurate predictive models. Fan (2004) explhi@geason why the combination of
complete-random trees and probability averaging prodamesirate models. Using complete-
random trees, Liu et al. (2005) show that their ensemblefoymercomparably to Bagging and
Random Forests.

Cutler and Zhao (2001) propose PERT (Perfect Random Treenibiss) which randomises
the test-selection for continuous-valued features toesehiigher randomisation. At each potential
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Figure 9: Strength-Correlation plots for Random Forests Aggregating VR-Trees at different
F anda values. Aggregating VR-Trees has a wider range of coraglads compared to Random
Forests.
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split, PERT first randomly selects two examples of differelasses from the local training set. A
feature is then selected randomly. A cut point on the feasur@ndomly selected between the values
of that two samples. A leaf is formed if two examples of diffetr classes cannot be found after ten
trials. PERT is also shown to be competitive to Bagging andd&en Forests. We believe that this
method is likely to be close to the complete-random-end efitectrum. However, it is unclear on
how the different degrees of randomisation can be introdtc¢he PERT framework.

Extra-Trees (Geurts, Ernst, & Wehenkel, 2006) relies orsdrae framework as in Algorithm
6. However, a random split-selection is used instead of #ternhinistic split-selection. Different
from PERT, Extra-Trees’ cut points are randomly selectdédiéen the maximum and the minimum
values of the given samples. As compared to PERT, ExtrasTieguires an additional data-scan
at every node of a tree to find the maximum and minimum valuégctwcan be a disadvantage
in terms of computational complexity. For categorical feas, a random subset split is used in
Extra-Trees. This method is also shown to be competitiveaiod@m Forests.

Robnik-éikonja (2004) reports an improved version of Random Feregtusing five different
deterministic test-selection criteria instead of one sTuhieves the effect of increased diversity by
producing different variants of deterministic models — #laene starting point as Random Forests,
Bagging and Random Subspace.

MultiBoosting (Webb, 2000; Webb & Zheng, 2004) is anotheprapch that combines more
than one type of ensembles. MultiBoosting is a tightly-dedpmethod that incorporates bagging
(random sample weight assignment) into the main Boostimgquure (the incremental sample
weight modifier) in order to increase model diversity. Likadging and Random Forests, it is
focusing on increasing diversity at the deterministic-ehthe spectrum.

There are many algorithms reported in the literature, dtie@n those listed in this paper, sug-
gesting different ways to combine models generated fromadgerithm or different algorithms,
(e.g., see Breiman, 1996b; Ting & Witten, 1999; Perrone & [@wp1993) . All of these require
some kind of learning or estimation in order to either sélett choose some available models
or build a meta-model to combine them. The Coalescence appris more simple than these
approaches because it does not require to learn a meta-oréaedl some kind of estimation.

7. Conclusions

In this paper, we make the following contributions:

e Propose a new algorithm, which generates a spectrum of \é8sTthat span between complete-
random trees and deterministic trees. We show that diffgreimts in the spectrum can be
significantly different in terms of predictive accuracy. iSlopens up new opportunities for
decision tree ensembles.

e Show that existing ensemble methods such as Bagging, RaBdiaspace, and Max-Diverse
Ensemble are only at either end of the spectrum. The perfwenaf these ensembles can
be improved by moving towards the middle of the spectrum &edimhprovements can be
significant.

e Discover that the two halves of the spectrum have theirrdistie characteristics, separated by
a critical point ofa=0.5. This point has two interesting characteristics. tFitgproduces an
equal percentage of random and deterministic decisionsiod€R-Trees. Second, it often
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lies on the lowest generalisation error region (or closd)tmia typical strength-correlation
curve. Ensembles generated freme [0.0,0.5] often out-perform those generated from
a € [0.5,1.0].

e Propose a new approach in building better performing enl=miThe Coalescence approach
coalesces a number of points in the first-half of the spectrWa show that it ranks better
than any single operating point in the whole spectrum.

o Identify the key differences between ensembles consttuateler the frameworks of Random
Forests and VR-Tree and explain why the predictive accuiasgnsitive to a parameter in
the VR-Tree framework, but not in the Random Forests frankewo

In our empirical evaluation, Coalescence is compared withfenchmarking ensemble meth-
ods: Max-Diverse Ensemble, Bagging, Random Forests, Rai@ldospace and C5 Boosting. The
study reveals that Coalescence ranks top and it is the oslgnalnle method that is significantly
better than Bagging and Max-Diverse Ensemble using the&lfriaa test.

Although Coalescence is not significantly better than Rem&orests, we have identified that:
while Random Forests performs better than Coalescence threleonditions of irrelevant attribute
and small training size, Coalescence performs better imilega non-axis-parallel concepts and
under class noise.
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Appendix A. Data characteristics of all data sets

Table 6: Data characteristics of all forty-five data setsllisghe experiments. Data are taken from
the UCI repository (Asuncion & Newman, 2007).

data sets size #att. | #class| description
abalone| 4177 1n, 7c 2 | Abalone growth
anneal 898 | 13n, 6¢, 19b 6 | Steel annealing
audiology 226 8n, 61b 23 | Standardised Audiology Database
auto 205 | 6n, 15c, 4b 7 | 1985 Auto Imports Database
balance 625 4c 3 | Balance Scale weight and Distance Database
breast-w 699 10c 2 | Winconsin breast cancer database
breast-y 286 6n, 3b 2 | Ljubljana Breast cancer database
chess| 3196 35n, 1b 2 | Chess end games
cleveland 303 4n, 6¢, 3b 5 | Cleveland heart disease database
coding | 20000 15n 2 | Coding database
credit-a 690 4n, 6¢, 4b 2 | Australian Credit database
credit-g 1000 12c, 12b 2 | German credit database
dna| 3186 60n 3 | Primate splice-junction gene sequences
echo 133 6c, 1b 2 | Echocardiogram data
flare 1066 3n, 2¢, 5b 2 | Predicting solar flare
glass 214 9c 7 | Glass identification database
hayes 160 4c 3 | Hayes-Roth & Hayes-Roth database
hepatitis 155 6¢c, 13b 2 | Hepatitis Domain
horse 368 | 13n,7c,2b 2 | Horse colic database
hypo| 3163 7c, 18b 2 | Thyroid disease database
ionosphere 351 34c 2 | Radar returns from the ionosphere
iris 150 4c 3 | lIris plants database
labor 57 5n, 8¢, 3b 2 | Final settlements in labour negotiations
led24 | 3200 24b 10 | LED display + 17 irrelevant attributes
led7 | 3200 7b 10 | LED display with no irrelevant attribute
liver 345 6C 2 | BUPA liver disorder
lymph 148 6n, 3c, 9b 4 | Lymphography domain
nursery | 12960 8n 5 | Nursery database
pima 768 8c 2 | Diabetes of female Pima Indians
post 20 7n, 1c 3 | Postoperative patient data
primary 339 3n, 14b 22 | Primary tumor domain
satimage| 6435 36¢ 7 | Satellite image data set from NASA
segment| 2310 19¢ 7 | Image segmentation data
sick | 3163 7c, 18b 2 | Sick-euthyroid data
solar 323 3n, 3c, 6b 6 | Solar data set
sonar 208 60c 2 | Classification of sonar signals
soybean 683 19n, 16b 19 | Soy bean disease diagnosis
threeOf9 512 9b 2 | The concept of three of nine
tic-tac-toe 958 9n 2 | Tic-Tac-Toe board configurations
vehicle 846 18c 4 | Vehicle silhouette data set
vote 435 16n 2 | Votes for U.S. Congressmen
waveform21| 5000 21c 3 | Waveform data
waveform40| 5000 40c 3 | Waveform data with 19 noise attributes
wine 178 13c 3 | Wine recognition data
Z00 101 1n, 15b 7 | Zoo database

Attribute type is indicated by: nominal,c: continuous, ant: binary.
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Appendix B. Theoretical Analysis of VR-Trees ¢ = 0)

The notations below are similar to those of Bousquet andé&diff (2002). Denot&’” as the input
space an@’ as the output space. A learning algorithm is a funcfion Z* — F, whereF € Y¥

is a function space. We denagfeas an function inF. The learning algorithm outputs a function
that approximates the underlying true functigh by inspecting the training set. A training set
S = {z}t_,, wherez; = (z;,y;) andy; = f*(z;), containsk i.i.d. examples inZ = X x )
drawn from an unknown distributio®. We consider the case thatis a boundedReal space and
Y = {—1,+1}. Denote the training set afteemovingthe i-th example as

7
S\ = {Zla N s 7 M I ,Zk}

Given a learning algorithrff’ trained onS, we denote itgeneralisation erroas

R(T7 S) = IEz:(m,y) [g(fT,S(x)a y)] )
and itsempirical erroras
1 —k
Re(T,5) = + > s, i)

wherefr ¢ =T(S)andl: Y x Y — Ris aloss function.

We study the generalisation ability from the viewpoint oé ®Pointwise Hypothesis Stability
(Bousquet & Elisseeff, 2002).

Definition 1 (Pointwise Hypothesis Stability) An algorithmT' has pointwise hypothesis
stability 3 with respect to the loss functidhif it holds for all i € {1, ..., k} that

Es~pll(fr,s(xi), yi) = €(frgvi(xi) yi)l] < B

Theorem 11 of Bousquet and Elisseeff (2002) reveals théae&hip between th€ointwise Hy-
pothesis Stabilityand thegeneralisation error To be self-contained, we write the theorem as
Lemma 1.

Lemma 1 For any learning algorithm T with pointwise hypothesis gigb 5 with respect to a loss
function? such that for somé/, 0 < ¢(-,-) < M, we have with probability — 4,

M2 + 12Mkp3

<

Assume tha{i) there is only one attribute i&” and the attribute haReal values(ii) every
training example has unique attribute valu@#) each internal node has non-empty subs@t3,
the tree building process stops at nodes which contain amyexample, andv) the output of a
VR-Tree is+1 or —1 for an input instance in the case of binary classification.ewhuilding an
ensemble of VR-Trees, we run the VR-Tree algorithittimes to produce a set of tre¢g; }.¥ ;.
Given a test instance = (z, y), the output of the ensemble is:

1 N
Y@ =5 S i)

379



Liu, TING, YU, & ZHOU

whose range i1, +1]. In the following analysis, we leV approachinfinity.

In order to study the Pointwise Hypothesis Stability of VReds & = 0) ensembles, we need
to bound

Esp[[¢(fr,s(xi),yi) — €(frsni(zi), yi)l]-

We specify the loss function as

L |yi—wyel>1
ly1,92) = 0.5, |y1—1el=1.
07 |y1 _y2| <1

Let us denote the number dflass transitions which are example pair:;, z) in S such that
y; # yi, and there is no example betweenandzy,. ps will be used to bound later.

Now, when a training instance = (z/,3') € S is being held out as the test example and

leaving S\, we want to know how a VR-Tree ensemble makes its predictions. We find that
one of the following four events will happen when classifyiri, as illustrated in Figure 10.

Figure 10: lllustration of four possible places of a testanse. Circles of+1, —1 and? denote
positive, negative and test instances, respectively.

(a)

o
(c) ?

o r—
.

#..

®

a) 2’ is a duplicate of a training example = (z;,;), as illustrated in Figure 10(a). We have
f™(«") = y;, because every tree leaf is pure, which means the empiricalie always zero. Since
we assume that every instance has a unique location, weeiginisrcase foy:s.

b) 2'is located between two training examplgs= (z;,y;) andz; = (x;,y;) with y; = y;, as
illustrated in Figure 10(b). In this casé, will fall into a leaf node containing; or z;. Therefore,
we havef™(z') = y; = y;. Whenz' is wrongly classified, that is;’ has a different label frony;
andy;, two counts are added fos.

c) 2’ is locatedoutsidethe training set and; = (z;,y;) is the nearest training example, as
illustrated in Figure 10(c). In this case will fall into a leaf node that must contaig;, thus
f™(2") = y;. Whenz' is wrongly classified, one count is added.g.

d) Z'islocated between two training examples= (z;, y;) andz; = (z;,y;) with y; # y;. When

' is wrongly classified, that is;’ has a different label from eithey; or y;, one count is added fos.
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Therefore, given an example = (z;,y;) € S, we havel(fr s(x;),y;) = 0, becausey; is
included inS, which is the case of Figure 16)( By the above analysis, we also have the number of
errors upper-bounded hys. Then we have

B = Esplll(frs(@i), yi) — €(frsi(@i), vi)|]
= Esp[l(fr,sv(xi); i)l
< Egplusl/k .

Note thatug varies on training sets, but it is upper bounded by the classsitions of the
underlying true functiory*, that is, letu* be

pt=|{z € X|Vo > 032" : f*(x)f*(2') <ON |z —2'| <o},

which is a constant. We then have
VS ~D:us < p,

andug = p* whensS is large enough. Therefore, we have

B<u'/k.

Sincep* is a constant, the ensemble of VR-Treas<0) is a stable learner, whose generalisation
error is bounded, with probability — 6,

/14 12pu*
<3/ —.
R(T,S) < 2kd

It can be observed that features with lagygeweaken the predictive performance.
Moreover, we find that irrelevant attributes, class noisé msufficient training sample can
cause a large*. For irrelevant attributes, they perform an almost randoajegtion fromX’ to ).
If f*is a random projection, i.eP(f*(x) = +1) = 0.5, the probability that there ares class
transitions in training sef is
P(us) < (1/2)/8V/ns =1

by considering that theg transitions divideS into equal segments. This implies that irrelevant
attributes weaken the predictive performance of VR-Trees Q). For class noise and insufficiency
of training samples, it is not hard to see that they also as@e* and hence also weaken the
performance of VR-Treesy(= 0).
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Appendix C. Estimation of Strength and Correlation

To make this paper self contained, we provide the estimatfatrength and correlation which is
defined by Breiman (2001) and corrected by Kobayashi (20@yen an ensemble oW trees
{f1,..., fn}, ahold-out seD;, = {(z1,41), ..., (zk, yx) } @andk is the number of test cases, we can
estimate the followings:

e Strength - it is estimated by the average of margin dvgr

e Correlation - it is estimated by taking the variance of maugyver the standard deviation of
random vectors, which represent trees.

C.1 Estimation of Strength s

The estimation of Strength is given by:

k
Z 3)

?vll—‘

The margins; is given by:

1 Y 1 & )
si= % ;nfj(x» =)~ % ; I(fj(x;) = (i) (4)

For each test cagec(i) is the class label that receives the maximum votes amomtiges and:(7)
can be any class label other than the true lapel(.) is the indicator function that returriswhen
it is true,0 otherwise.

C.2 Estimation of Correlation p

The estimation of Correlation is given by:

N var(s
j=—Larts) ©
¥ 2 sd(j)
j=1
The variance of marginar(s) is given by:
Lk
_ 2 a2
var(s) = Z Zz:; sy —§ (6)
The standard deviation of each random veetd(j) is given by:
sd(j) = [p1 +p2 — (p1 — p2)*]"/? (7
L E
pL=7 Zf(fj(wz‘) = vi) (8)
Lk
== Z (fj(@) = c(i)) ©)
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