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Abstract
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to

a set of variables to maximize the total utility across a population of agents, where each agent has
private information about its utility function. In this paper we model the social choice problem as
a distributed constraint optimization problem (DCOP), in which each agent can communicate with
other agents that share an interest in one or more variables.Whereas existing DCOP algorithms
can be easily manipulated by an agent, either by misreporting private information or deviating from
the algorithm, we introduceM-DPOP, the first DCOP algorithm that provides afaithful distributed
implementationfor efficient social choice. This provides a concrete example of how the methods of
mechanism design can be unified with those of distributed optimization. Faithfulness ensures that
no agent can benefit by unilaterally deviating from any aspect of the protocol, neither information-
revelation, computation, nor communication, and whateverthe private information of other agents.
We allow for payments by agents to a central bank, which is theonly central authority that we
require. To achieve faithfulness, we carefully integrate the Vickrey-Clarke-Groves (VCG) mecha-
nism with theDPOPalgorithm, such thateach agent is only asked to perform computation, report
information, and send messages that is in its own best interest. Determining agenti’s payment
requires solving the social choice problem without agenti. Here, we present a method toreuse
computationperformed in solving the main problem in a way that is robust against manipulation
by the excluded agent. Experimental results on structured problems show that as much as 87% of
the computation required for solving the marginal problemscan be avoided by re-use, providing
very good scalability in the number of agents. On unstructured problems, we observe a sensitivity
of M-DPOP to the density of the problem, and we show that reusability decreases from almost
100% for very sparse problems to around 20% for highly connected problems. We close with a dis-
cussion of the features of DCOP that enable faithful implementations in this problem, the challenge
of reusing computation from the main problem to marginal problems in other algorithms such as
ADOPTandOptAPO, and the prospect of methods to avoid the welfare loss that can occur because
of the transfer of payments to the bank.

1. Introduction

Distributed optimization problems can model environments where a set of agentsmust agree on a
set of decisions subject to side constraints. We consider settings in which each agent has its own
preferences on subsets of these decisions. The agents are self interested, and each one would like to
obtain the decision that maximizes its own utility. However, the system as whole agrees (or some
social designer determines) that a solution should be selected to maximize the total utility across all
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agents. Thus, this is a problem ofefficient social choice. As motivation, we have in mind massively
distributed problems such as meeting scheduling, where the decisions are about when and where
to hold each meeting, or allocating airport landing slots to airlines, where the decisions are what
airline is allocated what slot, or scheduling contractors in construction projects.

One approach to solve such problems is with a central authority that computesthe optimal so-
lution. In combination with anincentive mechanismsuch as the Vickrey-Clarke-Groves (VCG)
mechanism (Jackson, 2000), we can also prevent manipulation through the misreporting of prefer-
ences. However, in many practical settings it is hard to bound the problem so that such a central
authority is feasible. Consider meeting scheduling: while each agent only participates in a few
meetings, it is in general not possible to find a set of meetings that has no further constraints with
any other meetings and thus can be optimized separately. Similarly, contractorsin a construction
project simultaneously work on other projects, again creating an web of dependencies that is hard to
optimize in a centralized fashion. Privacy concerns also favor decentralized solutions (Greenstadt,
Pearce, & Tambe, 2006).

Algorithms for distributed constraint reasoning, such as ABT and AWC (Yokoo & Hirayama,
2000), AAS (Silaghi, Sam-Haroud, & Faltings, 2000), DPOP (Petcu & Faltings, 2005b) and
ADOPT (Modi, Shen, Tambe, & Yokoo, 2005), can deal with large problems as long as the in-
fluence of each agent on the solution is limited to a bounded number of variables. However, the
current techniques assumecooperative agents, and do not provide robustness against misreports of
preferences of deviations from the algorithm by self-interested agents.This is a major limitation. In
recent years,faithful distributed implementation(Parkes & Shneidman, 2004) has been proposed as
a framework within which to achieve a synthesis of the methods of (centralized) MD with distributed
problem solving.Faithfulnessensures that no agent can benefit by unilaterally deviating from any
aspect of the protocol, neither information-revelation, computation, nor communication, and what-
ever the private information of other agents. Until now, distributed implementation has been applied
to lowest-cost routing (Shneidman & Parkes, 2004; Feigenbaum, Papadimitriou, Sami, & Shenker,
2002), and policy-based routing (Feigenbaum, Ramachandran, & Schapira, 2006), on the Internet,
but not to efficient social choice, a problem with broad applicability.

In this paper, we make the following contributions:

• We show how to model the problem of efficient social choice as a DCOP, and adapt the
DPOP algorithm to exploit the local structure of the distributed model and achieve the same
scalability as would be possible in solving the problem on a centralized problemgraph.

• We provide an algorithm whose first stage is tofaithfully generate the DCOP representation
from the underlying social choice problem. Once the DCOP representationis generated, the
next stages of ourM-DPOPalgorithm are also faithful, and form anex post Nashequilibrium
of the induced non-cooperative game.

• In establishing that DCOP models of social choice problems can be solved faithfully, we
observe that thecommunication and information structurein the problem are such that no
agent can prevent the rest of the system, in aggregate, from correctlydetermining the marginal
impact that allowing for the agent’s (reported) preferences has on the total utility achieved by
the other agents. This provides the generality of our techniques to other DCOP algorithms.

• Part of achieving faithfulness requires solving the DCOP with each agent’s (reported) prefer-
ences ignored in turn, and doing so without this agent able to interfere with this computational
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process. We provide an algorithm with this robustness property, that is nevertheless able to
reuse, where possible, intermediate results of computation from solving the main problem
with all agents.

• In experimental analysis, on structured meeting scheduling problems that are a common
benchmark in the literature, we demonstrate that as much as 87% of the computation required
for solving the marginal problems can be avoided through reuse. Results are also provided for
unstructured resource allocation problems1, and show M-DPOP to be sensitive to problem
density: for loose problems, up to around 80% of the computation can be reused, and this
decreases for highly connected problems.

The M-DPOP algorithm defines astrategyfor each agent in the extensive-form game induced by
the DCOP for efficient social choice. In particular, the M-DPOP algorithmdefines the messages that
an agent should send, and the computation that an agent should perform,in response to messages
received from other agents. In proving that M-DPOP forms a game-theoretic equilibrium, we show
that no agent can benefit by unilaterally deviating, whatever the utility functions of other agents and
whatever the constraints. Although not as robust as adominant strategy equilibrium, because this (ex
post) equilibrium requires every other agent to follow the algorithm, Parkes andShneidman (2004)
have earlier commented that this appears to be the necessary “cost of decentralization.”

The total payment made by each agent to the bank is always non-negativeand M-DPOP never
runs at a deficit (i.e. the bank always receives a non-negative net payment from the agents). In some
settings, this transfer of utility to the bank is undesirable and would be best avoided. We provide
some statistics for the problem domains studied that show that this loss can represent as much as
35% of the total utility achieved from the solution in some problems studied. While thepayments
cannot be naively redistributed back to agents without breaking faithfulness, extant work on redistri-
bution mechanisms for VCG payments suggests that this can be mitigated (Guo & Conitzer, 2007;
Faltings, 2004; Cavallo, 2006; Moulin, 2007; Bailey, 1997). We defer this extension to M-DPOP,
the details of which are surprisingly involved and interesting in their own right,to future work.

The reuse of computation, in solving the marginal problems with each agent removed in turn, is
especially important in settings ofdistributedoptimization because motivating scenarios are those
for which the problem size is massive, perhaps spanning multiple organizations and encompassing
thousands of decisions. For example, consider project scheduling, inter-firm logistics, intra-firm
meeting scheduling, etc. With appropriate problem structure, DCOP algorithmsin these problems
can scale linearly in the size of the problem. For instance, DPOP is able to solvesuch problems
through a single back-and-forth traversal over the problem graph. But without re-use the additional
cost of solving each marginal problem would make the computational cost quadratic rather than
linear in the number of agents, which could be untenable in such massive-scale applications.

The rest of this paper is organized as follows: after preliminaries (Section2), in Section 3 we
describe the DPOP (Petcu & Faltings, 2005b) algorithm for distributed constraint optimization,
which is the focus of our study. Section 4 introduces our model of self-interested agents and defines
the (centralized) VCG mechanism. Section 4.4 provides a simple method,Simple M-DPOPto make
DPOP faithful and serves to illustrate the excellent fit between the informationand communication
structure of DCOPs and faithful VCG mechanisms. In Section 5 we describeour main algorithm, M-
DPOP, in which computation is re-used in solving the marginal problems with eachagent removed

1. We consider distributed combinatorial auctions, with instances randomlygenerated using a distribution in the CATS
problem suite (Leyton-Brown & Shoham, 2006).
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in turn. We present experimental results in Section 6. In Section 7 we discuss adapting other DCOP
algorithms for social choice (ADOPT and OptAPO, see Section 7.2), and about the waste due to
payments in Section 7.3. We conclude in Section 8.

1.1 Related Work

This work draws on two research areas: distributed algorithms for constraint satisfaction and op-
timization, and mechanism design for coordinated decision making in multi-agent systems with
self-interested agents. We briefly overview the most relevant results in these areas.

1.1.1 CONSTRAINT SATISFACTION AND OPTIMIZATION

Constraint satisfaction and optimization are powerful paradigms that can model a wide range of
tasks like scheduling, planning, optimal process control, etc. Traditionally,such problems were
gathered into a single place, and a centralized algorithm was applied to find a solution. However,
social choice problems are naturally distributed, and often preclude the use of a centralized entity to
gather information and compute solutions.

The Distributed Constraint Satisfaction (DisCSP) (Yokoo, Durfee, Ishida, & Kuwabara, 1992;
Sycara, Roth, Sadeh-Koniecpol, & Fox, 1991; Collin, Dechter, & Katz,1991, 1999; Solotorevsky,
Gudes, & Meisels, 1996) and the Distributed Constraint Optimization (DCOP) (Modi et al., 2005;
Zhang & Wittenburg, 2003; Petcu & Faltings, 2005b; Gershman, Meisels, &Zivan, 2006) for-
malisms were introduced to enable distributed solutions. The agents involved in such problems
must communicate with each other to find a solution to the overall problem (unknown to any one
of them). Briefly, these problems consist of individual subproblems (each agent holds its own sub-
problem), which are connected with (some of) its peers’ subproblems viaconstraintsthat limit what
each individual agent can do. The goal is to find feasible solutions to the overall problem (in the
case of DisCSP), or optimal ones in the case of DCOP.

Many distributed algorithms for DCOP have been introduced, none of whichdeals with self-
interested agents. The most well known ones are ADOPT, DPOP and OptAPO:

• ADOPT (Modi et al., 2005) is a backtracking based, bound propagationalgorithm. ADOPT
is completely decentralized and message passing is asynchronous. While ADOPT has the
advantage of requiring linear memory, and linear-size messages, its applicability for large
problems2 is questionable due to the fact that it produces a number of messages whichis
exponential in the depth of the DFS tree chosen.

• OptAPO (Mailler & Lesser, 2005) is a centralized-distributed hybrid that usesmediator nodes
to centralize subproblems and solve them in dynamic and asynchronous mediation sessions.
The authors show that its message complexity is significantly smaller than ADOPT’s. How-
ever, it is designed for cooperative settings, and in settings with self-interested agents like the
social choice problem, it is unclear whether agents would agree revealingtheir constraints
and utility functions to (possibly many) other agents, such that they can solvethe partially
centralized subproblems.

• DPOP (Petcu & Faltings, 2005b) is a complete algorithm based on dynamic programming
which generates only a linear number of messages. In DPOP, the size of themessages depends

2. The largest ADOPT experiments that we are aware of comprise problems with around 20 agents and 40 variables.
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on the structure of the problem: the largest message is exponential in theinduced widthof
the problem (see Section 3.1.4) As with ADOPT, DPOP maintains the full distribution of the
problem. These features suggest that DPOP is a good foundation for anefficient distributed
implementation of a VCG-based mechanism for social choice problems.

A further discussion about the features of these algorithms and their applicability to social choice
problems is provided in Section 7. In this paper, we will focus on DPOP and provide appropriate
modifications and payments so that it can be effective for environments with self-interested agents.
In Section 7.2 we will also provide a brief discussion about the opportunitesand challenges in
applying our methodology to ADOPT and OptAPO.

1.1.2 MECHANISM DESIGN AND DISTRIBUTED IMPLEMENTATION

There is a long tradition of usingcentralizedincentive mechanisms within Distributed AI, going
back at least to the work of Ephrati and Rosenschein (1991) who considered the use of the VCG
mechanism to compute joint plans; see also the work of Sandholm (1996) andParkes et al. (2001)
for more recent discussions. Also noteworthy is the work of Rosenschein and Zlotkin (1994, 1996)
on rules of encounter, which provided non-VCG based approaches for task allocation in systems
with two agents.

On the other hand, there are very few known methods fordistributed problem solvingin the
presence of self-interested agents. For example, while TRACONET (Sandholm, 1993) improved
upon the CONTRACTNET system (Davis & Smith, 1983) of negotiation-based, distributed task re-
allocation, by providing better economic realism, TRACONET was nevertheless studied for simple,
myopically-rational agent behaviors and its performance with game-theoretic agents was never an-
alyzed; this remains true for more recent works (Endriss, Maudet, Sadri, & Toni, 2006; Dunne,
Wooldridge, & Laurence, 2005; Dunne, 2005). Similarly, Wellman’s workonmarket-oriented pro-
gramming(Wellman, 1993, 1996) considers the role of virtual markets in the supportof optimal
resource allocation, but is developed for a model of “price-taking” agents (i.e. agents that treat
current prices as though they are final), rather than game-theoretic agents.

The first step in providing a more satisfactory synthesis of distributed algorithms with MD was
provided by the agenda ofdistributed algorithmic mechanism design(DAMD), due to the work
of Feigenbaum and colleagues (Feigenbaum et al., 2002; Feigenbaum &Shenker, 2002). These
authors (FPSS) provided an efficient algorithm for lowest-cost interdomain routing on the Internet,
terminating with optimal routes and the payments of the VCG mechanism. The up-shot was that
agents– in this caseautonomous systemsrunning network domains –could not benefit by misreport-
ing information about their own transit costs. But missing from this analysis was any consideration
about the robustness of thealgorithm itselfto manipulation.Distributed implementation(Parkes
& Shneidman, 2004) introduces this additional requirement. An algorithm isfaithful if an agent
cannot benefit by deviating from any of its required actions, including information-revelation, com-
putation and message passing. A number of principles for achieving faithfulness in anex postNash
equilibrium are provided by Parkes and Shneidman (2004). By carefulincentive design and a small
amount of cryptography they are able to remove the remaining opportunities for manipulation from
the lowest-cost routing algorithm of FPSS. Building on this, Feigenbaum et al. (2006) recently pro-
vide a faithful method forpolicy-basedinterdomain routing, better capturing the typical business
agreements between Internet domains.
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Ours is the first work to achieve faithfulness for general DCOP algorithms, demonstrated here
via application to efficient social choice. In other work, Monderer and Tennenholtz (1999) con-
sider a distributed single item allocation problem, but focus on (faithful)communicationand do
not provide distributed computation. Izmalkov et al. (2005) adopt cryptographic primitives such
asballot boxesto show how to convertanycentralized mechanisms into a DI on afully connected
communication graph. There interest is in demonstrating the theoretical possibility of “ideal mech-
anism design” without a trusted center. Our work has a very different focus: we seek computational
tractability, do not require fully connected communication graphs, and make no appeal to crypto-
graphic primitives. On the other hand, we are content to retain desired behavior insomeequilibrium
(remaining consistent with the MD literature) while Izmalkov et al. avoid the introduction of any
additional equilibria beyond those that exist in a centralized mechanism.

We briefly mention two other related topics. Of note is the well established literature oniterative
VCG mechaisms(Mishra & Parkes, 2007; Ausubel, Cramton, & Milgrom, 2006; Bikhchandani,
de Vries, Schummer, & Vohra, 2002). These provide apartially distributed implementation for
combinatorial allocation problems, with the center typically issuing “demand queries” of agents
via prices, these prices triggering computation on the part of agents in generating a demand set in
response. These auctions can often be interpreted as decentralized primal-dual algorithms (Parkes
& Ungar, 2000; de Vries & Vohra, 2003). The setting differs from ours in that there remains a center
that performs computation, solving a winner determination problem in each round, and each agent
communicates directly with the center and not peer-to-peer. Mu’alem (2005) initiates an orthogonal
direction within computer science related to the topic ofNash implementation(Jackson, 2001) in
economics, but her approach relies on information that is part private and part common knowledge,
so that no one agent has entirely private information about its preferences.

2. Preliminaries: Modeling Social Choice

We assume that the social choice problem consists of a finite but possibly large number of decisions
that all have to be made at the same time. Each decision is modeled as a variable that can take
values in a discrete and finite domain. Each agent has private information about the variables on
which it placesrelations. Each relation associated with an agent defines the utility of that agent for
each possible assignment of values to the variables in the domain of the relation. There may also be
hard constraints that restrict the space of feasible joint assignments to subsets of variables.

Definition 1 (Social Choice Problem - SCP)An efficient social choice problem can be modeled as
a tuple< A,X ,D, C,R > such that:

• X = {X1, ..., Xm} is the set ofpublic decision variables (e.g. when and where to hold
meetings, to whom should resources be allocated, etc);

• D = {d1, ..., dm} is the set of finitepublic domains of the variablesX (e.g. list of possible
time slots or venues, list of agents eligible to receive a resource, etc);

• C = {c1, ..., cq} is a set ofpublic constraints that specify the feasible combinations of values
of the variables involved. Aconstraint cj is a functioncj : dj1 × .. × djk

→ {−∞, 0}
that returns 0 for all allowed combinations of values of the involved variables, and−∞ for
disallowed ones. We denote byscope(cj) the set of variables associated with constraintcj ;
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• A = {A1, ..., An} is a set ofself-interested agents involved in the optimization problem;
X(Ai) ⊆ X is a (privately known ) 3 set of variables in which agentAi is ”interested“ and
on which it has relations.

• R = {R1, ..., Rn} is a set ofprivate relations, whereRi is the set of relations specified by
agentAi and relationrj

i ∈ Ri is a functionrj
i : dj1 × .. × djk

→ R specified by agent
Ai, which denotes the utilityAi receives for all possible values on the involved variables
{j1, . . . , jk} (negative values mean costs). We denote byscope(rj

i ) the domain of variables
that rj

i is defined on.

The private relations of each agent may, themselves, be induced by the solution to local opti-
mization problems on additional, private decision variables and with additional, private constraints.
These are kept local to an agent and not part of the SCP definition.

The optimal solution to the SCP is a complete instantiationX∗ of all variables inX , s.t.

X∗ ∈ arg max
X∈D

∑

i∈{1,..,n}

Ri(X) +
∑

cj∈C

cj(X), (1)

whereRi(X) =
∑

r
j
i∈Ri

rj
i (X) is agentAi’s total utility for assignmentX. This is the natural

problem of social choice: the goal is to find a solution that maximizes the total utilityof all agents,
while respecting hard constraints; notice that the second sum is−∞ if X is infeasible and precludes
this outcome. We assume throughout that there is a feasible solution. In introducing the VCG
mechanism we will require the solution to the SCP with the influence of each agent’s relations
removed in turn. For this, letSCP(A) denote the main problem in Eq. (1) andSCP(−Ai) denote
the marginal problem without agentAi, i.e. maxX∈D

∑

j 6=i Rj(X) +
∑

cj∈C
cj(X). Note that

all decision variables remain. The only difference betweenSCP(A) andSCP(−Ai) is that the
preferences of agentAi are ignored in solvingSCP(−Ai).

For variableXj , refer to the agentsAi for which Xj ∈ X(Ai) as forming thecommunity for
Xj . We choose to emphasize the following assumptions:

• Each agent knows the variables in which it is interested, together with the domain of any such
variable and the hard constraints that involve the variable.

• Each decision variable is supported by acommunity mechanismthat allows all interested
agents to report their interest and learn about each other. For example,such a mechanism can
be implemented using a bulletin board.

• For each constraintcj ∈ C, every agentAk in a communityXl ∈ scope(cj), i.e. with
Xl ∈ X(Ak), can read the membership lists of all other communitiesXm ∈ scope(cj) for
Xm 6= Xl. In other words, every agent involved in a hard constraint knows about all other
agents involved in that hard constraint.

• Each agent can communicate directly with all agents in all communities in which it is a
member, and with all other agents involved in the same shared hard constraints. No other
communication between agents is required.

3. Note that the private knowledge of variables of interest is not a requirement; the algorithms we present work with
both public and private knowledge of variables of interest. What is required is that agents interested in the same
variable know about each other - see assumptions below.
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Figure 1: An operator placement problem:(a) A centralized model (each variable is a server load –possible
values are feasible combinations of services to be run by each server –, and the edges correspond
to relations and represent agent preferences).(b) A decentralized (DCOP) model with replicated
variables. Each agent has a local replica of variables of interest and inter-agent edges denote
equality constraints that ensure agreement. The preferences modeled by relations are now hyper-
edges local to the respective agents.

In Section 4 we will establish that the step of identifying the SCP, via the community mech-
anism, is itselffaithful so that self-interested agents will choose to volunteer the communities of
which they are a member (and only those communities.)

2.1 Modeling Social Choice as Constraint Optimization

We first introduce a centralized, constraint optimization problem (COP) model of the efficient so-
cial choice problem. This model is represented as acentralized problem graph. Given this, we
then model this as a distributed constraint optimization problem (DCOP), along with an associated
distributed problem graph. The distributed problem graph makes explicit the control structure of
the distributed algorithm that is ultimately used by the multi-agent system to solve the problem.
Both sections are illustrated by reference to an overlay network optimization problem (Huebsch,
Hellerstein, Lanham, et al., 2003; Faltings, Parkes, Petcu, & Shneidman, 2006; Pietzuch, Ledlie,
Shneidman, Roussopoulos, Welsh, & Seltzer, 2006):

OVERLAY NETWORK OPTIMIZATION Consider the problem of optimal placement of data aggrega-
tion and processing operators on anoverlay networksuch as a large-scale sensor network (Huebsch
et al., 2003; Pietzuch et al., 2006). In this application, there are multiple users and multiple servers.
Each user is associated with a query and has a client machine located at a particular node on an
overlay network. A query has an associated set ofdata producers, known to the user and located
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at nodes on the network. Each query also requires a set of data aggregation and processing op-
erators, which should be placed on server nodes between the nodes withdata producers and the
user’s node. Each user assigns a utility to different assignments of operators to servers to repre-
sent her preferences for different kinds of data aggregation. Examples of in-network operators for
data aggregation include database style “join” operators; e.g., a user may desire “volcano data X”
and “earthquake data Y” joined and sent to them. To address this, a specific operator that we call
“VolcanoXEarthquakeYJoin” is created and put into the network. Naturally, each user prefers to
have their operators placed on the “best” servers in the network, withoutregard to the costs in-
curred, overloading servers, denying service to other users, etc. The problem is to find the optimal
allocation of operators to servers, subject to capacity and compatibility constraints.

Faltings et al. (2006) model this problem as one of efficient social choice. A distributed algo-
rithm, to be executed by user clients situated on network nodes, is used to determine the assignment
of data aggregation and processing operators to server nodes.

2.1.1 A CENTRALIZED COP MODEL AS A MULTI GRAPH

Viewed as a centralized problem, the SCP can be defined as a constraint optimization problem on a
multigraph, i.e. a graph in which several distinct edges can connect the same set ofnodes. We denote
thisCOP(A), and provide an illustration in Figure 1(a). The decision variables are the nodes, and
relations defined over subsets of the variables form edges of the multigraph; hyperedges that connect
more than two vertices at once in the case of a relation involving more than two variables. There
can be multiple edges that involve the same set of variables, with each edge corresponding to the
relations of a distinct agent on the same set of variables. The hard constraints are also be represented
as edges on the graph.

Example 1 (Centralized Model for Overlay Optimization) The example in Figure 1(a) contains
3 usersAi and 3 serversSj . For simplicity reasons, assume that each userAi has one single opera-
tor oi that they want to have executed on some server. According to prerequisites and compatibility
issues, assume thatS1 can execute botho1 ando2, but noto3. Similarly, assume thatS2 can execute
botho2 ando3, but noto1, andS3 can execute any combination of at most two out of the three oper-
ators. Agents have preferences about where their operators are executed (e.g. because of proximity
to data sources, computational capabilities of the servers, cost of electricity, etc). For example,A1

extracts utility 10 wheno1 is executed byS1, and utility 5 wheno1 is executed byS3.
To model the problem as an optimization problem, we use the following:

1. variables: for each serverSi, we create a variableSi that denotes the set of operators thatSi

will execute.

2. values: each variableSi can take values from the set of all possible combinations of operators
the server can execute. For example,S1 = {null, o1, o2, o1 + o2}, wherenull means the
server executes no operator,oi that it executes operatoroi, ando1 + o2 that it executes both
o1 ando2.

3. constraints: restrict the possible combinations of assignments. Example: no two servers
should execute the same operator.

4. relations: allow agents to express preferences about combinations of assignments. A1 models
its preference for the placement ofo1 by using the relationr0

1, defined over the variablesS1
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and S3. This relation associates an utility value to each combination of assignments toS1

andS3 (in total 4× 8 = 32 combinations) as follows:

• 0 to all combinations whereo1 is executed neither onS1, or onS3 (e.g.〈S1 = o2, S3 =
o3〉)

• 10 to all combinations whereo1 is executed only onS1 (e.g.〈S1 = o1, S3 = o2 + o3〉)

• 5 to all combinations whereo1 is executed only onS3 (e.g.〈S1 = o2, S3 = o1〉)

We depict variables as nodes in a graph, and constraints and relations as(hyper)edges (see
Figure 1(a)). The problem can get arbitrarily complex, with multiple operators per agent, groups of
servers being able to execute only certain groups of compatible operators, etc.

2.1.2 A DECENTRALIZED COP (DCOP) MODEL USING REPLICATED VARIABLES

It is useful to define an alternate graphical representation of the SCP, with the centralized problem
graph replaced with adistributedproblem graph. This distributed problem graph has a direct cor-
respondence with the DPOP algorithm for solving DCOPs. We denote byDCOP(A) the problem
with all agents included, which corresponds to the main social choice problem,SCP(A). Similarly,
DCOP(−Ai) is the problem with agentAi removed, which corresponds toSCP(−Ai). In our
distributed model, each agent has alocal replicaof the variables in which it is interested.4 For each
public variable,Xv ∈ X(Ai), in which agentAi is interested, the agent has alocal replica, denoted
Xi

v. AgentAi then models its local problemCOP(X(Ai), Ri), by specifying its relationsrj
i ∈ Ri

on the locally replicated variables.
Refer to Figure 1(b) for the translation of the centralized problem from Figure 1(a) into a DCOP

model. Each agent has as local variables the loads of the servers that are of interest to itself, i.e.
servers that can execute one of its operators (e.g.S2

1 representsA2’s local replica of the variable
representing serverS1). Local edges correspond to localall-differentconstraints between an agent’s
variables and ensure that it does not execute its operator on several servers at the same time. Equality
constraints between local replicas of the same value ensure global agreement about what operators
will run on which servers.

Agents specify their relations via local edges on local replicas. For example, agentA1 with
its relation on the load of serversS1 andS3 can now express a preference for the placement of its
operatoro1 with relationr0

1, which can assign e.g. utility 5 toS3 executingo1, and utility 10 toS1

executingo1.
We can begin to understand the potential for manipulation by self-interested agents through this

example. Notice that although the globally optimal solution may require assigningo1 to S3, this is
less preferable toA1, providing utility 5 instead of 10. Therefore, in the absence of an incentive
mechanism,A1 could benefit from a simple manipulation: declare utility+∞ for 〈S1 = o1〉, thus
changing the final assignment to a suboptimal one that is nevertheless betterfor itself.

4. An alternate model designates an “owner” agent for each decision variable. Each owner agent would then centralize
and aggregate the preferences of other agents interested in its variable.Subsequently, the owner agents would use a
distributed optimization algorithm to find the optimal solution. This model limits the reusability of computation from
the main problem in solving the marginal problems in which each agent is removed in turn because when excluding
the owner agent of a variable, one needs to assign ownership to anotheragent and restart the computational process
in regards to this variable and other connected variables. This reuse of computation is important in making M-DPOP
scalable. Our approach is disaggregated and facilitates greater reuse.
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Theneighborhoodof each local copyXi
v of a variable is composed of three kinds of variables:

Neighbors(Xi
v) = Siblings(Xi

v) ∪ Local neighbors(Xi
v) ∪Hard neighbors(Xi

v). (2)

The siblings are local copies ofXv that belong to other agentsAj 6= Ai also interested inXv:

Siblings(Xi
v) = {Xj

v | Aj 6= Ai and Xv ∈ X(Aj)} (3)

All siblings of Xi
v are connected pairwise with anequality constraint. This ensures that all

agents eventually have a consistent value for each variable. The second set of variables are the
local neighbors ofXi

v from the local optimization problem ofAi. These are the local copies of the
other variables that agentAi is interested in, which are connected toXi

v via relations inAi’s local
problem:

Local neighbors(Xi
v) = {Xi

u | Xu ∈ X(Ai), and ∃rj
i ∈ Ri s.t. Xi

u ∈ scope(ri)} (4)

We must also consider the set ofhard constraintsthat contain in their scope the variableXv and
some other public variables:Hard(Xv) = {∀cs ∈ C|Xv ∈ scope(cs)}. These constraints connect
Xv with all the other variablesXu that appear in their scope, which may be of interest to some
other agents as well. Consequently,Xi

v should be connected with all local copiesXj
t of the other

variablesXt that appear in these hard constraints:

Hard neighbors(Xi
v) = {Xj

t |∃cs ∈ Hard(Xv) s.t. Xt ∈ scope(cs), and Xt ∈ X(Aj)} (5)

In general, each agent can also haveprivate variables, and relations or constraints that involve
private variables, and link them to the public decision variables. For example, consider a meeting
scheduling application for employees of a company. Apart from the work-related meetings they
schedule together, each one of the employees also has personal items on her agenda, like appoint-
ments to the doctor, etc. Decisions about the values for private variables and information about
these local relations and constraints remain private. These provide no additional complications and
will not be discussed further in the paper.

2.2 Example Social Choice Problems

Before continuing to present our main results we describe three additionalproblems of social choice
that serve to motivate our work. In fact, the problem of efficient social choice is fundamental to
microeconomics and political science (Mas-Colell, Whinston, & Green, 1995). Each problem that
we present is both large scale and distributed, and involves actors in the system that are businesses
and cannot be expected to cooperate, either in revealing their preferences or in following the rules
of a distributed algorithm.

A IRPORT SLOT ALLOCATION . As airports become more congested, governments are turning to
market-based approaches to allocate landing and takeoff slots. For instance, the U.S. Federal Avi-
ation Administration recently commisioned a study on the use of an auction to allocateslots at
New York’s congested LaGuardia airport (Ball, Donohue, & Hoffman,2006). This problem is large
scale when it expands to include airports throughout the U.S., and eventually the World, exhibits
self-interest (airlines are profit-maximizing agents with private information about their utilities for
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different slot allocations), and is one in which privacy is a major concernbecause of the competi-
tiveness of the airline industry. A typical policy goal is to maximize the total utility ofthe allocation,
i.e. one of efficient social choice. This problem motivates our study ofcombinatorial auctionsin
Section 6. A combinatorial auction (CA) is one in which a set of heterogeneous, indivisible goods
are to be allocated to agents, each of which has values expressed on setsof goods; e.g., “I only want
the 9am slot if I also get the 10am slot” or “I am indifferent between the 9amand the 9:05am slot.”
The airport slot allocation problem motivated the first paper on CAs (Rassenti, Smith, & Bulfin,
1982), in which it was recognized that airlines would likely need to expressutilities on sets of slots
that correspond to the right to fly aschedulein and out of an airport.

OPEN-ACCESSWIRELESSNETWORKS. Most wireless spectrum today is owned and operated as
closed networks, for example by cellular companies such as T-Mobile and AT&T. However there is
plenty of debate about creating open-access wireless networks in whichbandwidth must be available
for use on any phone and any software.5 Some have recently proposed using an auction protocol to
allow service providers to bid in a dynamic auction for the right to use spectrum for a given period of
time to deliver services.6 Taken to its logical conclusion, and in an idea anticipated by Rosenschein
and Zlotkin (1994) for wired telephony, this suggests a secondary market for wireless spectrum and
corresponds to a problem of efficient social choice: allocate spectrumto maximize the total utility
of consumers. This problem is large scale, exhibits self-interest, and is inherently decentralized.

THE MEETING SCHEDULING PROBLEM. Consider a large organization with dozens of depart-
ments, spread across dozens of sites, and employing tens of thousands of people. Employees from
different sites and departments want to setup thousands of meetings each week. Due to privacy
concerns among different departments, centralized problem solving is not desirable. Furthermore,
although the organization as a whole desires to minimize the cost of the whole process, each de-
partment and employee is self interested in that it wishes to maximize its own utility. An artificial
currency is created for this purpose and a weekly assignment is made to each employee. Employees
express their preferences for meeting schedules in units of this currency.

Refer to Figure 2 for an example of such a problem, where 3 agents want tosetup 3 meetings.
Figure 2(b) shows that each agent has as local variables the time slots corresponding to the meetings
it participates in (e.g.M2

1 representsA2’s local replica of the variable representing meetingM1).
Local edges correspond to localall-different constraints between an agent’s variables and ensure
that it does not participate in several meetings at the same time. Equality constraints between local
replicas of the same value ensure global agreement. Agents specify their relations via local edges on
local replicas. For example, agentA1 with its relation on the time of meetingM1 can now express a
preference for a meeting later in the day with relationr0

1, which can assign low utilities to morning
time slots and high utilities to afternoon time slots. Similarly, ifA2 prefers holding meetingM2

after meetingM1, then it can use the local relationr0
2 to assign high utilities to all satisfactory

combinations of timeslots and low utility otherwise. For example,〈M1 = 9AM, M2 = 11AM〉
gets utility 10, and〈M1 = 9AM, M2 = 8AM〉 gets utility 2.

5. In a breakthrough ruling, the U.S. Federal Communications Commission (FCC) will require open access
for around one-third of the spectrum to be auctioned in early ’08. But it stopped short of mandat-
ing that this spectrum be made available in a wholesale market to would be service providers. See
http://www.fcc.gov/073107/700mhznewsrelease073107.pdf

6. Google proposed such an auction in a filing made to the FCC on May 21st, 2007. See
http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?nativeor pdf=pdf&id document=6519412647.
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Figure 2: A meeting scheduling problem.(a) A centralized model (each vertex is a meeting variable, red
edges correspond to hard constraints on non-overlap for meetings that share a participant (that
for agentA2 is a hyperedge because it particpates in every meeting), blue edges correspond to
relations and represent agent preferences).(b) A decentralized (DCOP) model with replicated
variables. Each agent has a local replica of variables of interest and inter-agent edges denote
equality constraints that ensure agreement. The hard constraint for non-overlap between meetings
M1,M2 andM3 is now a local hyperedge to agentA2. (c)A DFS arrangement of the decentralized
problem graph. Used by the DPOP algorithm to control the order of problem solving.

In the experimental results presented in Section 6 we adopt meeting scheduling as prototypical
of structuredsocial choice problems with the problem instances associated with an organizational
hierarchy. Meeting scheduling was introduced in Section 2.1. For a second set of experiments we
consider combinatorial auctions (CAs), in which agents bid forbundlesof goods, and there we
consider a set of problem instances that areunstructuredand provide a comparison point to that of
meeting scheduling. CAs provide a nice abstraction of the kinds of allocation problems that exist in
the airport and wireless network domains.

3. Cooperative Case: Efficient Social Choice via DPOP

In this section, we review DPOP (Petcu & Faltings, 2005b), which is a general purpose distributed
optimization algorithm. DPOP (Distributed Pseudotree Optimization Protocol) is basedon dynamic
programming and adapts Dechter’s (Dechter, 2003) general bucket elimination scheme to the dis-
tributed case. Its main advantage is that it only generates a linear number of messages. This is in
contrast to other optimization algorithms like ADOPT (Modi et al., 2005) and ensures minimal net-
work overhead produced by message exchange. On the other hand, aconcern in DPOP can be the
size of individual messages since this grows exponentially with a parameter of the constraint graph
called theinduced width(see Section 3.1.4). Nevertheless, for problems that exhibit local structure,
DPOP typically scales to much larger problems, and is orders of magnitude moreefficient, than
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other techniques (Petcu & Faltings, 2005b, 2007). To simplify the exposition, we first illustrate
DPOP in a general DCOP context, and then show how to instantiate DPOP for social choice prob-
lems. In particular, we explain how to leverage the structure provided by local replicas. We consider
only cooperative agents throughout this section.

3.1 The DPOP Algorithm for DCOPs

This section presents the DPOP algorithm for generic DCOPs. To simplify the exposition, we
assume – in this section only – that each agentAi represents a single variableXi, and that the
constraint graph is given.

DPOP is composed of three phases:

• Phase one constructs a “DFS arrangement”,DFS (A), which defines the control flow of mes-
sage passing and computation in DPOP.

• Phase two is a bottom-up utility propagation along the tree constructed in phase 1. In this
phase utilities for different values of variables are aggregated to reflect optimal decisions that
will be made in subtrees rooted at each node in the tree.

• Phase three is a top-down value assignment propagation along the tree constructed in phase
1. In this phase decisions are made based on the aggregate utility information from phase 2.

In describing these phases we refer to Figure 3 for a running example. We also introduce an
explicit numerical example to illustrate phases two and three in more detail.

3.1.1 DPOP PHASE ONE: DFS TREE GENERATION

This first phase performs a depth-first search (DFS) traversal of the problem graph, thereby con-
structing a DFSarrangementof the problem graph. The DFS arrangement is subsequently used to
provide control flow in DPOP and guide the variable elimination order. When the underlying prob-
lem graph is a tree then the DFS arrangement will also be a tree. In general,the DFS arrangement is
a graph that we define as the union of a set oftree edgesand additionalback edges, which connect
some of the nodes with their ancestors.7

Definition 2 (DFS arrangement) A DFS arrangement of a graphG defines a rooted tree on a
subset of the edges (thetree edges) with the remaining edges included asback edges. The tree
edges are defined so that adjacent nodes inG fall in the same branch of the tree.

Figure 3 shows an example DFS arrangement. The tree edges are shown as solid lines (e.g.
1− 3) and the back edges are shown as dashed lines (e.g.12− 2, 4− 0). Two nodesXi andXv are
said to be “in the same branch” of the DFS arrangement if there is a path fromthe higher node to the
lower node along tree edges; e.g., nodesX0 andX11 in Figure 3. DFS arrangements have already
been investigated as a means to boost search in constraint optimization problems (Freuder & Quinn,
1985; Modi et al., 2005; Dechter & Mateescu, 2006). Their advantageis that they allow algorithms
to exploit the relative independence of nodes lying in different branches of the DFS arrangement

7. For simplicity, we assume in what follows that the original problem is connected. However there is no difficulty
in applying DPOP to disconnected problems. The DFS arrangement becomes aDFS forest, and agents in each
connected component can simply execute DPOP in parallel in a separate control thread. The solution to the overall
problem is just the union of optimal solutions for each independent subproblem.
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Figure 3: A DFS arrangement for a problem graph. Tree edges are shown insolid and back edges are
dashed. The DFS arrangement is constructed by initializingtoken-passing fromX0. Any k-ary
constraints, such asC4, are treated as if they are cliques.

(i.e. nodes that are not direct descendants or ancestors of one-another), in that it is possible to
perform search in parallel on independent branches and then combinethe results.

We introduce some definitions related to DFS arrangements:

Definition 3 (DFS concepts)Given a nodeXi in the DFS arrangement, we define:
• parent Pi / children Ci: Xi’s ancestor/descendants connected toXi via tree-edges (e.g.

P4 = X1, C4 = {X9, X10}).
• pseudo-parentsPP i: Xi’s ancestors connected toXi via back-edges (PP5 = {X0}).
• pseudo-children PC i: Xi’s descendants connected toXi via back-edges (e.g.PC 1 =

{X8}).
• separatorSepi of Xi: ancestors ofXi which are directly connected withXi or with descen-

dants ofXi (e.g.Sep3 = {X1} andSep11 = {X0, X2, X5}).
• tree neighborsTN i of Xi are the nodes linked toXi via tree edges, that isTN i = Pi ∪ Ci

(e.g.TN 4 = {X1, X9, X10}).

Removing the nodes inSepi completely disconnects the subtree rooted atXi from the rest of
the problem. In case the problem is a tree, thenSepi = {Pi},∀Xi ∈ X . In the general case,Sepi

containsPi, all PP i and all the pseudoparents of descendants ofXi where these pseudoparents are
also ancestors ofXi. For example, in Figure 3, the separator of nodeX4 contains its parentX1, and
its pseudoparentX0. It is both necessary and sufficient for the values on variables{X0, X1} to be
set before the problem rooted at nodeX4 is independent from the rest of the problem. Separators
play an important role in DPOP because contingent solutions must be maintained when propagating
utility information up the DFS arrangement for different possible assignmentsto separator variables.

Constructing the DFS Tree Generating DFS trees in a distributed manner is a task that has
received a lot of attention, and there are many algorithms available: for example Collin and
Dolev (1994), Barbosa (1996), Cidon (1988), Cheung (1983) to name just a few. For the pur-
poses of executing DPOP, we can assume for example the algorithm of Cheung (1983), which we
briefly outline below. When we instantiate DPOP for SCPs, we will present our own adaptation of
this DFS generation algorithm to exploit the particulars of SCP.

The simple DFS construction algorithm starts with all agents labeling internally theirneighbors
asnot-visited. One of the agents in the graph is designated as theroot, using for example a leader
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election algorithm such as that of Abu-Amara (1988),8 or by simply picking the agent with the
lowest ID. The root then initiates the propagation of atoken, which is a unique message that will be
circulated to all the agents in the graph, thus “visiting” them. Initially, the token contains just the
ID of the root. The root sends it to one of its neighbors, and waits for its return before sending it to
each one of its (still) unvisited neighbors. When an agentXi first receives the token, it marks the
sender as itsparent. All neighbors ofXi contained in the token are marked asXi’s pseudoparents
(PP i).

After this, Xi adds its own ID to the token, and sends the tokenin turn to each one of itsnot-
visitedneighborsXj , which become itschildren. Every time an agent receives the token from one
of its neighbors, it marks the sender asvisited. The token can return either fromXj (the child to
whomXi has sent it in the first place), or from another neighbor,Xk. In the latter case, it means
that there is a cycle in the subtree, andXk is marked as apseudochild.

When a dead end is reached, the last agent backtracks by sending the token back to its parent.
When all its neighbors are markedvisited, Xi has finished exploring all its subtree.Xi then removes
its own ID from the token, and sends the token back to its parent; the process is finished forXi.
When the root has marked all its neighborsvisited, the entire DFS construction process is over.

Handling Non-binary Constraints. No special treatment is required to construct neighbors to a
variable that correspond tok-ary constraints, fork > 2. For example, in Figure 3 (left), there is a
4-ary constraintC4 involving {X0, X2, X5, X11}. By Eq. 2, this implies that{X0, X2, X5, X11}
are neighbors, and in the DFS construction process and they will appearalong the same branch in
the tree. This produces the result in Figure 3 (right).

3.1.2 DPOP PHASE TWO: UTIL PROPAGATION (INFERENCE)

Phase two is a bottom-to-top pass on the DFS arrangement in which utility information is aggregated
and propagated from the leaves towards the root from each node to its parent and through tree edges
but not back edges. At a high level, the leaves start by computing and sending UTIL messages to
their parents, where aUTIL message informs the parent about its local utility for solutions to the
rest of the problem, minimally specified in terms of its local utility for different value assignments
to separator variables. Subsequently each node propagates aUTIL message that represents the
contingent utility of the subtree rooted at its node for assignments of values toseparator variables.
In more detail, all nodes perform the following steps:

1. Wait forUTIL messages fromall their children, and store them.

2. Perform anaggregation: join messages from children, and also the relations they have with
their parents and pseudoparents.

3. Perform anoptimization: project themselves out of the resulting join by picking their optimal
values for each combination of values of the other variables in the join.

4. Send the result to parent as a newUTIL message.

8. In cases where the problem is initially disconnected, then it is required to choose multiple roots, one for each con-
nected component. A standard leader election algorithm, when executed by all agents in the problem, will elect
exactly as many leaders as there are connected components.
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A UTIL message sent by a nodeXi to its parentPi is a multidimensional matrix which informs
Pi how much utility,u∗

i (Sepi) the subtree rooted atXi receives for different assignments of values
to variables that define the separatorSepi for the subtree. One of these variables, by definition, is the
variable managed by parentPi. This UTIL message already represents the result of optimization,
where variables local to the subtree have been optimized for different assignments of separator
variables. To compute aUTIL message a node uses two operations: aggregation and optimization.
Aggregations apply the JOIN operator and optimizations apply the PROJECT operator as described
by Petcu and Faltings (2005b), and briefly summarized here.

Let UTILi→j andUTILk→j denoteUTIL messages sent from nodesXi andXk to their parent
nodeXj . We denote bydim(UTILk→j) the set ofdimensionsof such a matrix, i.e. the set of
variables in the separator of sending nodeXk. AssumingXj is the node receiving these messages,
we define:

Definition 4 (JOIN operator) The⊕ operator (join): UTILi→j ⊕ UTILk→j is the join of two
UTIL matrices. This is also a matrix withdim(UTILi→j) ∪ dim(UTILk→j) as dimensions. The
value of each cell in the join is the sum of the corresponding cells in the two source matrices.

Definition 5 (PROJECT operator) The ⊥ operator (projection): if Xj ∈ dim(UTILi→j),
UTILi→j ⊥Xj

is the projection through optimization of theUTILi→j matrix along theXj axis:
for each instantiation of the variables in{dim(UTILi→j) \Xj}, all the corresponding values from
UTILi→j (one for each value ofXj) are tried, and the maximal one is chosen. The result is a matrix
with one less dimension (Xj).

Notice that the subtree rooted atXi is influenced by the rest of the problem only throughXi’s
separator variables. Therefore, aUTIL message contains the optimal utility obtained in the subtree
for each instantiation of variablesSepi and the separator size plays a crucial role in bounding the
message size.

Example 2 (UTIL propagation) Figure 4 shows a simple example of a UTIL propagation. The
problem has a tree structure (Figure 4(a)), with 3 relationsr1

3, r1
2, andr0

1 detailed in Figure 4(b).
The relations are between variables(X3, X1), (X2, X1) and (X1, X0) respectively. These are all
individual variables and there are no local replicas. In the UTIL phaseX2 andX3 project them-
selves out ofr1

2 andr1
3, respectively. The results are the highlighed cells inr1

2 andr1
3 in Figure 4(b).

For instance, the optimal value forX2 given thatX1 := a is to assignX2 := c and this has utility
5. These projections define the UTIL messages they send toX1. X1 receives the messages fromX2

andX3, and joins them together with its relation withX0 (adds the utilities from the messages into
the corresponding cells ofr0

1). It then projects itself out of this join. For instance, the optimal value
for X1 givenX0 := b is X1 := a because2 + 5 + 6 ≥ max{3 + 4 + 4, 3 + 6 + 3}. The result
is depicted in Figure 4(d). This is the UTIL message thatX0 receives fromX1. Each value in the
message represents the total utility of the entire problem for each value ofX0. We return to this
example below in the context of the third phase of value propagation.

Non-binary Relations and Constraints. As with binary constraints/relations, ak-ary constraint
is introduced in the UTIL propagation only once, by the lowest node in the DFS arrangement that is
part of the scope of the constraint. For example, in Figure 3, the constraint C4 is introduced in the
UTIL propagation only once, byX11, while computing its message for its parent,X5.
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Figure 4: Numerical example ofUTIL propagation. (a) A simple DCOP problem in which there are three
relationsr1

3
, r1

2
andr0

1
between(X3,X1), (X2,X1) and(X1,X0) respectively. (b) Projections of

X2 andX3 out of their relations withX1. The results are sent toX1 asUTIL2→1, andUTIL3→1

respectively. (c)X1 joinsUTIL2→1 andUTIL3→1 with its own relation withX0. (d)X1 projects
itself out of the join and sends the result toX0.

3.1.3 DPOP PHASE THREE: VALUEPROPAGATION

Phase three is a top-to-bottom pass that assigns values to variables, with decisions made recursively
from the root down to the leaves. This “VALUE propagation” phase is initiated by the root agent
X0 once it has receivedUTIL messages from all of its children. Based on theseUTIL messages,
the root assigns to variableX0 the valuev∗ that maximizes the sum of its own utility and that
communicated by all its subtrees. It then sends aVALUE(Xr

0 ← v∗) message to every child. The
process continues recursively to the leaves, with agentsXi assigning the optimal values to their
variables. At the end of this phase, the algorithm finishes, with all variablesbeing assigned their
optimal values.

Example 3 (Value propagation) Return to the example in Figure 4. OnceX0 receives theUTIL

message from nodeX1 it can simply choose the value forX0 that produces the largest utility for the
whole problem:X0 = a (X0 = a andX0 = c produce the same result in this example, so either one
can be chosen). Now in the value-assignment propagation phaseX0 informsX1 of its choice via a
messageVALUE (X0 ← a). NodeX1 then assigns optimal valueX1 = c and the process continues
with a messageV ALUE(X1 ← c) sent to its children,X2 andX3. The children assignX2 = b and
X3 = a and the algorithm terminates with an optimal solution〈X0 = a, X1 = c, X2 = b, X3 = a〉
and total utility of 15.

3.1.4 COMPLEXITY ANALYSIS OF DPOP

DPOP produces a number of messages that scales linearly in the size of the problem graph, i.e.
linearly in the number of nodes and edges in the DCOP model (Petcu & Faltings,2005b). The
complexity of DPOP lies in the size of theUTIL messages (note that the tokens passed around in
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constructing theDFS(A) and theVALUEmessages are of size linear in the problem graph). Petcu
and Faltings (2005b) show that the size of the largestUTIL message is exponential in a parameter
called theinduced width(Kloks, 1994; Dechter, 2003).

The induced width, denotedw, of a constraint graph given by a chosen DFS arrangement is a
structural parameter that equals the size of the largest separator of anynode in the DFS arrangement
(see Definition 3.):

w = max
Xi∈X

|Sepi|. (6)

In the example from Figure 3, the induced width of the graph given this particular DFS ordering
is w = 3, given bySep11 = {X0, X2, X5}. Intuitively, the more a problem has a tree-like structure,
the lower its induced width. In particular, if the problem graph is a tree then it will have an induced
width equal to 1 because the DFS arrangement will always be a tree. Problem graphs that are cliques,
on the other hand, have an induced width equal to the number of nodes minus1, irrespective of the
DFS-tree arrangement.

Proposition 1 (DPOP Complexity) (Petcu & Faltings, 2005b) The number of messages passed in
DPOP is2m, (n − 1) and(n − 1) for phases one, two and three respectively, wheren andm are
the number of nodes and edges in the DCOP model with replicated variables. The maximal number
of utility values computed by any node in DPOP isO(Dw+1), and the largest UTIL message has
O(Dw) entries, wherew is the induced width of the DFS ordering used.

In the case of trees, DPOP generatesUTIL messages of dimension equal to the domain size of
the variable defining the parent of each node. In the case of cliques, themaximal message size in
DPOP is exponential inn−1. Not all DFS arrangements yield the same width, and it is desirable to
construct DFS arrangements that provide low induced width. However, finding the tree arrangement
with the lowest induced width is an NP-hard optimization problem (Arnborg, 1985). Nevertheless,
good heuristics have been identified for finding tree arrangements with low width (Kloks, 1994;
Bayardo & Miranker, 1995; Bidyuk & Dechter, 2004; Petcu & Faltings, 2007, 2005b). Although
most were designed and explored in a centralized context, some of them (notably max-degreeand
maximum cardinality set) are easily amenable to a distributed environment.

3.2 DPOP Applied to Social Choice Problems

In this section, we instantiate DPOP for efficient social choice problems. Specifically, we first show
how the optimization problem is constructed by agents from their preferences and potential variables
of interest. Subsequently, we show the changes we make to DPOP to adapt itto the SCP domain.
The most prominent such adaptation exploits the fact that several variables represent local replicas
of the same variable, and can be treated as such both during the UTIL and the VALUE phases. This
adaptation improves efficiency significantly, and allowscomplexity claims to be stated in terms of
the induced width of the centralized COP problem graph rather than the distributed COP problem
graph (see Section 3.2.5).

3.2.1 INITIALIZATION : COMMUNITY FORMATION

To initialize the algorithm, each agent first forms the communities around its variables of interest,
X(Ai), and defines a local optimization problemCOP i(X(Ai), Ri) with a replicated variableXi

v
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for eachXv ∈ X(Ai). ShorthandXi
v ∈ COP i denotes that agentAi has a local replica of variable

Xv. Each agent owns multiple nodes and we can conceptualize each node as having an associ-
ated “virtual agent” operated by the owning agent. Each such virtual agent is responsible for the
associated variable.

All agents subscribe to the communities in which they are interested, and learn which other
agents belong to these communities. Neighboring relations are established foreach local variable
according to Eq. 2, as follows: all agents in a communityXv connect their corresponding local
copies ofXv with equality constraints. By doing so, the local problemsCOP i(X(Ai), Ri) are
connected with each other according to the interests of the owning agents. Local relations in each
COP i(X(Ai), Ri) connect the corresponding local variables. Hard constraints connect local copies
of the variables they involve. Thus, the overall problem graph is formed.

For example, consider again Figure 2(b). The decision variables are thestart times of the three
meetings. Each agent models its local optimization problem by creating local copies of the variables
in which it is interested and expressing preferences with local relations. Formally, the initialization
process is described in Algorithm 1.

Algorithm 1: DPOP init: community formation and buildingDCOP(A).

DPOP init(A,X ,D, C,R):
1 Each agentAi models its interests asCOP i(X(Ai), Ri): a set of relationsRi imposed on

a setX(Ai) of variablesXi
v that each replicate a public variableXv ∈ X(Ai)

2 Each agentAi subscribes to the communities ofXv ∈ X(Ai)
3 Each agentAi connects its local copiesXi

v ∈ X(Ai) with the corresponding local copies
of other agents via equality constraints

3.2.2 DFS TRAVERSAL

The method for DFS traversal is described in Algorithm 2. The algorithm starts by choosing one of
the variables,X0, as the root. This can be done randomly, for example using a distributed algorithm
for random number generation, with a leader election algorithm like Ostrovski (1994), or by simply
picking the variable with the lowest ID. The agents involved in the community forX0 then randomly
choose one of them,Ar as theleader. The local copyXr

0 of variableX0 becomes the root of the
DFS. Making the assumption that virtual agents act on behalf of each variable in the problem,
the functioning of the token passing mechanism is similar to that described in Section 3.1.1, with
additional consideration given to the community structure. Once a root has been chosen, the agents
participate in adistributed depth-first traversal of the problem graph. For convenience, we describe
the DFS process as a token-passing algorithm in which all members within a community can observe
the release or pick up of the token by the other agents. The neighbors of each node are sorted (in
line 7) to prioritize for copies of variables held by other agents, and then other local variables, and
finally other variables linked through hard constraints.

Example 4 Consider the meeting scheduling example in Figure 2. Assume thatM3 was chosen as
the start community andA2 was chosen within the community as the leader.A2 creates an empty
tokenDFS = ∅ and addsM2

3 ’s ID to the token (DFS = {M2
3 }). As in Eq. 2,Neighbors(M2

3 ) =
{M3

3 , M1
3 , M2

1 , M2
2 }. A2 sends the tokenDFS = {M2

3 } to the first unvisited neighbor from this
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Algorithm 2: DPOP Phase One: DFS construction.

Inputs: eachAi knows itsCOP i, andNeighbors(Xi
v),∀X

i
v ∈ COP i

Outputs: eachAi knowsP (Xi
v), PP(Xi

v), C(Xi
v), PC (Xi

v), ∀X
i
v ∈ COP i.

Procedure Initialization
1 The agents choose one of the variables,X0, as the root.
2 Agents inX0’s community elect a “leader”,Ar.
3 Ar initiates the token passing fromXr

0 to construct the DFS

Procedure Token Passing(performed by each “virtual agent”Xi
v ∈ COP i)

4 if Xi
v is root then P (Xi

v) = null; create empty tokenDFS := ∅
5 elseDFS :=Handle incoming tokens()
6 Let DFS := DFS ∪ {Xi

v}
7 SortNeighbors(Xi

v) by Siblings(Xi
v), thenLocal neighbors(Xi

v), then
Hard neighbors(Xi

v). SetC(Xi
v) := null.

8 forall Xl ∈ Neighbors(Xi
v) s.t.Xl not visited yetdo

9 C(Xi
v) := C(Xi

v) ∪Xl. SendDFS to Xl wait for DFS token to return.

10 SendDFS token back toP (Xi
v).

Procedure Handle incoming tokens() //run by each “virtual agent” Xi
v ∈ COP i

11 Wait for any incomingDFS message; letXl be the sender
12 Mark Xl asvisited.
13 if this is the firstDFS message (i.e.Xl is my parent)then
14 P (Xi

v) := Xl ; PP(Xi
v) := {Xk 6= Xl|Xk ∈ Neighbors(Xi

v) ∩DFS}; PP(Xi
v) := ∅

else
15 if Xl /∈ C(Xi

v) (i.e. this is a DFS coming from a pseudochild)then
PC (Xi

v) := PC (Xi
v) ∪Xl

list, i.e. M3
3 , which belongs toA3. A3 receives the token and adds its copy ofM3 (nowDFS =

{M2
3 , M3

3 }). A3 then sends the token toM3
3 ’s first unvisited neighbor,M1

3 (which belongs toA1).

AgentA1 receives the token and adds its own copy ofM3 to it (nowDFS = {M2
3 , M3

3 , M1
3 }).

M1
3 ’s neighbor list isNeighbors(M1

3 ) = {M2
3 , M3

3 , M1
1 }. Since the token thatA1 has received

already containsM2
3 andM3

3 , this means that they were already visited. Thus, the next variable
to visit is M1

1 , which happens to be a variable that also belongs toA1. The token is “passed”
to M1

1 internally (no message exchange required), andM1
1 is added to the token (nowDFS =

{M2
3 , M3

3 , M1
3 , M1

1 }).

The process continues, exploring sibling variables from each community inturn, and then pass-
ing on to another community, and so on. Eventually all replicas of a variableare arranged in a
chain and have equality constraints (back-edges) with all the predecessors that are replicas of the
same variable. When a dead end is reached, the last agent backtracksby sending the token back to
its parent. In our example, this happens whenA3 receives the token fromA2 in theM2 community.
Then,A3 sends back the token toA2 and so on. Eventually, the token returns on the same path all
the way to the root and the process completes.
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3.2.3 HANDLING THE PUBLIC HARD CONSTRAINTS.

Social choice problems, as defined in Definition 1 can contain side constraints, in the form of pub-
licly known hard constraints, that represent domain knowledge such as “a resource can be allocated
only once”, “this hotel can accomodate 100 people”, “no person can bein more than one meeting
at the same time.” etc. These constraints are not owned by any agent, but are available to all agents
interested in any variable involved in the domain of any such constraint. Handling these constraints
is essentially unchanged from handling the non-binary constraints in standard DPOP, as described in
Section 3.1.1 for the DFS construction phase, and in Section 3.1.2 for the UTIL phase. Specifically:

DFS Construction: Neighboring relationships as defined in Eq. 2 require for each local variable
that other local copies that share a hard constraint are considered asneighbors. Because of the
prioritization in line 7 of Algorithm 2 (for DFS construction), the DFS traversal is mostly made
according to the structure defined by the relations of the agents and most hard constraints will
appear as backedges in the DFS arrangement of the problem graph.

UTIL Propagation: Hard constraints are introduced in the UTIL propagation phase by the lowest
agent in the community of the variable from the scope of the hard constraint, i.e. the agent with the
variable that is lowest in the DFS ordering. For example, if there was a constraint betweenM2 and
M3 in Figure 2 to specify thatM2 should occur afterM3 then this becomes a backedge between the
2 communities and would be assigned toA3 for handling.

3.2.4 HANDLING REPLICA VARIABLES

Our distributed model of SCP replicates each decision variable for every interested agent and con-
nects all these copies with equality constraints. By handling replica variablescarefully we can
avoid increasing the induced widthk of the DCOP model when compared to the induced width
w of the centralized model. With no further adaptation, theUTIL messages in DPOP on the dis-
tributed problem graph would be conditioned on as many variables as there are local copies of an
original variable. However, all the local copies represent the same variable and must be assigned the
same value; thus, sending many combinations where different local copiesof the same variable take
different values is wasteful. Therefore, we handle multiple replicas of thesame variable inUTIL
propagation as though they are the single, original variable, and conditionrelations on just this one
value. This is realized by updating the JOIN operator as follows:

Definition 6 (Updated JOIN operator for SCP) Defined in two steps:
Step 1: Consider all UTIL messages received as in input. For each one,consider each variable

Xi
v on which the message is conditioned, and that is also a local copy of an original variableXv.

RenameXi
v from the input UTIL message asXv, i.e. the corresponding name from the original

problem.
Step 2: Apply the normal JOIN operator for DPOP.

Applying the updated JOIN operator makes all local copies of the same variable become indis-
tinguishable from each other, and merges them into a single dimension in theUTIL message and
avoids this exponential blow-up.

Example 5 Consider the meeting scheduling example in Figure 2. The centralized model in Fig-
ure 2(a) has a DFS arrangement that yields induced width 2 because it isa clique with 3 nodes.
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Nevertheless, the corresponding DCOP model in Figure 2(b) has induced width 3, as can be seen
in the DFS arrangement from Figure 2(c), in whichSepM2

2

= {M2
3 , M3

3 , M2
1 }. Applying DPOP to

this DFS arrangement,M2
2 would condition its UTIL messageUTILM2

2
→M2

1

on all variables in its

separator:{M2
3 , M3

3 , M2
1 }. However, bothM2

3 andM3
3 represent the same variable,M3. There-

fore,M2
2 can apply the updated JOIN operator, which leverages the equality constraint between the

two local replicas and collapse them into a single dimension (calledM3) in its message forM2
1 .

The result it that the outgoing message only has 2 dimensions:{M3, M
2
1 }, and it takes much less

space. This is possible because all 3 agents involved, i.e.A1, A2 andA3 know thatM1
3 , M2

3 and
M3

3 represent the same variable.

With this change, the VALUE propagation phase is modified so that only the top most local
copy of any variable solve an optimization problem and compute the best value, announcing this
result to all the other local copies which then assume the same value.

3.2.5 COMPLEXITY ANALYSIS OF DPOP APPLIED TOSOCIAL CHOICE

By this special handling of replica variables, DPOP applied to SCPs will scalewith the induced
width of thecentralizedproblem graph, and independently of the number of agents involved and in
the number of local replica variables.

Consider a DFS arrangement for the centralized model of the SCP that is equivalent to the
DFS arrangement for the DCOP model. “Equivalent” here means that the original variables from
SCP are visited in the same order in which their corresponding communities are visited during the
distributed DFS construction. (Recall that the distributed DFS traversal described in Section 3.1.1
visits all local copies from a community from DCOP before moving on to the nextcommunity). Let
w denote the induced width of this DFS arrangement of the centralized SCP. Similarly, let k denote
the induced width of the DFS arrangement of the distributed model. LetD = maxm |dm| denote
the maximal domain of any variable. Then, we have the following:

Theorem 1 (DPOP Complexity for SCP) The number of messages passed in DPOP in solving a
SCP is2m, (n − 1) and (n − 1) for phases one, two and three respectively, wheren andm are
the number of nodes and edges in the DCOP model with replicated variables. The maximal number
of utility values computed by any node in DPOP isO(Dw+1), and the largest UTIL message has
O(Dw+1) entries, wherew is the induced width of thecentralized problem graph.

PROOF. The first part of the claim (number of messages) follows trivially from Proposition 1. For
the second part (message size and computation): given a DFS arrangement of a DCOP, applying
Proposition 1 trivially gives that in the basic DPOP algorithm, the maximal amount of computation
on any node isO(Dk+1), and the largestUTIL message hasO(Dk) entries, wherek is the in-
duced width of the DCOP problem graph. To improve this analysis we need to consider the special
handling of the replica variables.

Consider theUTIL messages which travel up along the DFS tree, and whose sets of dimensions
contain the separators of the sending nodes. Recall that the updated JOIN collapses all local replicas
into the original variables. The union of the dimensions of theUTIL messages to join in the DPOP
on the DCOP model becomes identical to the set of dimensions of the nodes in theDPOP on the
centralized model. Thus, each node in the DCOP model performs the same amount of computation
as its counterpart on the centralized model. It follows that thecomputationrequired in DPOP scales
asO(Dw+1) rather thanO(Dk+1) by this special handling.
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There remains one additional difference between DPOP on the DFS arrangement for the cen-
tralized SCP versus DPOP on the DFS arrangement for the DCOP. A variable Xv that is replicated
across multiple agents can only be projected out from theUTIL propagation through local opti-
mization by the top-most agent handling a local replica ofXv. This is the first node at which all
relevant information is in place to support this optimization step. In particular, whenever a node
with the maximal separator set is not also associated with the top-most replica ofits variable then
it must retain dependence on the value assigned to its variable in theUTIL message that it sends to
its parent. This increases the worst casemessage sizeof DPOP toO(Dw+1), as opposed toO(Dw)
for the normal DPOP. Computation remainsO(Dw+1) because the utility has to be determined for
each value ofXv anyway, and before projectingXv out. 2

To see the effect on message size described in the proof, in which a localvariable cannot be
immediately removed duringUTIL propagation, consider again the problem from Figure 2. Sup-
pose now that agentA3 is also involved in meetingM1. This introduces an additional back-edge
M3

2 −M3
1 in the DFS arrangement for the decentralized model shown in Figure 2(c).The DFS

arrangement of the COP model that corresponds to the decentralized modelis simply a traversal
of the COP in the order in which the communities are visited during the distributed DFS construc-
tion. This corresponds to a chain:M3 −M1 −M2. The introduction of the additional back-edge
M3

2 −M3
1 in the distributed DFS arrangement does not change the DFS of the COP model, and its

width remainsw = 2. However, asM3
2 is not the top most copy ofM2, agentA3 cannot project

M2 out of its outgoingUTIL message. The result is that it sends aUTIL message withw + 1 = 3
dimensions, as opposed to justw = 2.

4. Handling Self-interest: A Faithful Algorithm for Social Choice

Having adapted DPOP to remain efficient for SCPs, we now turn to the issue of self-interest. With-
out further modification, an agent can manipulate DPOP by misreporting its private relations and
deviating from the algorithm in various ways. In the setting of meeting scheduling, for example,
an agent might benefit bymisrepresenting its local preferences(“I have massively more utility for
the meeting occurring at 2pm than at 9am”),incorrectly propagating utility information of other
(competing) agents(“The other person on my team has very high utility for the meeting at 2pm”),
or by incorrectly propagating value decisions(“It has already been decided that some other meeting
involving the other person on my team will be at 9am so this meeting must be at 2pm.”)

By introducing carefully crafted payments, by leveraging the information and communication
structure inherent to DCOPs for social choice, and by careful partitioning of computation so that
each agent is only asked to reveal information, perform optimization, and send messages that are
in its own interest, we are able to achievefaithfulness. This will mean that each agent willchoose,
even when self-interested, to follow the modified algorithm. We first define theVCG mechanism
for social choice and illustrate its ability to prevent manipulation in centralized problem solving in
a simple example. With this in place, we next review the definitions offaithful distributed imple-
mentationand the results of a useful principle, thepartition principle. We then describe theSimple
M-DPOPalgorithm – without reuse of computation – and prove its faithfulness.
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4.1 Review: Mechanism Design and the VCG Mechanism

Mechanism design (MD) addresses the problem of optimizing some criteria, frequently social wel-
fare, in the presence of self-interested agents that each have privateinformation relevant to the
problem at hand. In the standard story, agents report private information to a “center,” that solves
an optimization problem and enforces the outcome.

The second-price, sealed-bid (Vickrey) auction is a simple example of a mechanism: each agent
makes a claim about its value for an item to an auctioneer, who allocates the item tothe highest
bidder for the second-highest price (Krishna, 2002). The Vickrey auction is useful because it is
non-manipulable, in that the weakly dominant strategy of each agent is to report its true value, and
efficient, in that the item is allocated to the agent with the highest value.

In our setting of efficient social choice, we will assume the existence of acurrencyso that agents
can make payments, and make the standard assumption ofquasilinearutility functions, so that agent
Ai’s net utility is,

ui(X, p) = Ri(X)− p, (7)

for an assignmentX ∈ D to variablesX and paymentp ∈ R to the center, i.e., its net utility
is that defined by its utility for the assignment,Ri(X) =

∑

r
j
i∈Ri

rj
i (X), minus the amount of

its payment. One of the most celebrated results of MD is provided by the Vickrey-Clarke-Groves
(VCG) mechanism, which generalizes Vickrey’s second price auction to theproblem of efficient
social choice:

Definition 7 (VCG mechanism for Efficient Social Choice)Given knowledge of public con-
straintsC, and public decision variablesX , the Vickrey-Clarke-Groves (VCG) mechanism works
as follows:

• Each agent,Ai, makes a report̂Ri about its private relations.

• The center’s decision,X∗, is that which solvesSCP(A) given the reportŝR = (R̂1, . . . , R̂n).

• Each agentAi, makes payment

Tax (Ai) =
∑

j 6=i

(

R̂j(X
∗
−i)− R̂j(X

∗)
)

, (8)

to the center, whereX∗
−i, for eachAi, is the solution toSCP(−Ai) given reportsR̂−i =

(R̂1, . . . , R̂i−1, R̂i+1, . . . , R̂n).

Each agent makes a payment that equals thenegative marginal externality that its presence
imposes on the rest of the system, in terms of the impact of its preferences on the solution to the
SCP.

The VCG mechanism has a number of useful properties:

• Strategyproofness:Each agent’s weakly dominant strategy, i.e. its utility-maximizing strat-
egy whatever the strategies and whatever the private information of other agents, is to truth-
fully report its preferences to the center. This is the sense in which the VCGmechanism is
non-manipulable.
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• Efficiency: In equilibrium, the mechanism makes a decision that maximizes the total utility
to agents over all feasible solutions to the SCP.

• Participation: In equilibrium, the utility to agentAi, Ri(X
∗) − Tax (Ai) = (Ri(X

∗) +
∑

j 6=i R̂j(X
∗)) −

∑

j 6=i R̂j(X
∗
−i), is non-negative, by the principle of optimality, and there-

fore agents will choose to participate.

• No-Deficit: The payment made by agentAi is non-negative in the SCP, because
∑

j 6=i R̂j(X
∗
−i) ≥

∑

j 6=i R̂j(X
∗) by the principle of optimality, and therefore the entire

mechanism runs at a budget surplus.

To begin to understand why the VCG mechanism is strategyproof, notice thatthe first term in
Tax (Ai) is independent ofAi’s report. The second term, when taken together with the agent’s own
true utility from the decision, providesAi with net utility Ri(X

∗) +
∑

j 6=i R̂j(X
∗). This is the

total utility for all agents, and to maximize this the agent should simply report its truepreference
information, because the center will then explicitly solve this problem in pickingX∗.

Example 6 Return to the example in Figure 4. We can make this into a SCP by associating agents
A1, A2 andA3 with relationsr0

1, r
1
2 and r1

3 on variables{X0, X1}, {X1, X2}, and{X1, X3} re-
spectively. Breaking ties as before, the solution toSCP(A) is < X0 = a, X1 = c, X2 = b, X3 =
a> with utility < 6, 6, 3 > to agentsA1, A2 andA3 respectively. Removing agentA1, the solution
would be<X0 =?, X1 = a, X2 = c, X3 = a> with utility < 5, 6 > to agentsA2 andA3. The ‘?’
indicates that agentsA2 andA3 are indifferent to the value onX0. Removing agentA2, the solution
would be<X0 = c, X1 = b, X2 =?, X3 = c>, with utility < 7, 4 > to agentsA1 andA3. Remov-
ing agentA3, the solution would be< X0 = a, X1 = c, X2 = b, X3 =? >, with utility < 6, 6 >
to agentsA1 andA2. The VCG mechanism would assign<X0 = a, X1 = c, X2 = b, X3 = a>,
with payments(5 + 6)− (6 + 3) = 2, (7 + 4)− (6 + 3) = 2, (6 + 6)− (6 + 6) = 0 collected from
agentsA1, A2 andA3 respectively.A3 has no negative impact on agentsA1 andA2 and does not
incur a payment. The other agents make payments: the presence ofA1 helpsA2 but hurtsA3 by
more, while the presence ofA2 hurts bothA1 andA3. The only conflict in this problem is about the
value assigned to variableX1. AgentsA1, A2 andA3 each prefer thatX1 be assigned tob, c and
a respectively. In the chosen solution, only agentA2 gets its best outcome. Considering the case of
A3, it can force eithera or b to be selected by reporting a suitably high utility for this choice, but
for X1 = a it must pay4 while for X1 = b it must pay1, and in either case it weakly prefers the
current outcome in which it makes zero payment.

Having introduced the VCG mechanism, it is important to realize that the VCG mechanism
provides theonly known, general purpose, method that exists to solve optimization problems in
the presence of self-interest and private information. On the positive side, it is straightforward to
extend the VCG mechanism (and the techniques of our paper) to maximize alinear weighted sum
of the utility of each agent, where these weights are fixed and known, for instance by a social
planner (Jackson, 2000). Roberts (1979) on the other hand, established that the Groves mecha-
nisms – of which the VCG mechanism is the most important special case – are the only non-trivial
strategyproof mechanisms in the domain of social choice unless there is some known structure to
agent preferences; e.g., everyone prefers earlier meetings, or moreof a resource is always weakly
preferred to less. Together with another technical assumption, Robert’stheorem has also been ex-
tended by Lavi et al. (2003) to domains with this kind of structure, for instance to combinatorial
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auctions.We see that there is a very real sense in which it is only possible to addressself-interested
in DCOPs when maximizing something like the total utility of participants.

4.2 Faithful Distributed Implementation

Our goal in faithful distributed implementation is to distribute the computation required to solve
the SCP and determine payments to the population of agents, but to do this while retaining an
analog to strategyproofness. This can be challenging because it opensup additional opportunities
for manipulation beyond those in the centralized VCG mechanism.

In presenting our results, we introduce the following additional assumptionsover-and-above
those made so far:

• Agents arerational but helpful, meaning that although self-interested, they will follow a pro-
tocol whenever there is no deviation that will make themstrictly better off (given the behavior
of other agents).

• Each agent is prevented from posing as several independent agentsby an external technique
(perhaps cryptographic) for providing strong (perhaps pseudonymous) identities.

• Catastrophic failurewill occur if all agents in the community of a variable do not eventually
choose the same value for the variable.

• There is atrusted bank, connected with atrusted communication channelto each agent, and
with the authority to collect payments from each agent.

The property of “rational but helpful” is required in being able to rely upon agents to compute the
payments that other agents should make. Strong identities is required to avoid known vulnerabilities
of the VCG mechanism as shown by Yokoo, Sakurai and Matsubara (2004), wherein agents can
sometimes do better by participating under multiple identities. Catastrophic failure ensures that
the decision determined by the protocol is actually executed. It prevents a “hold-out” problem,
where an unhappy agent refuses to adopt the consensus decision. An alternative solution would
be to have agents report the final decision to a trusted party, responsiblefor enforcement. By a
“trusted communication channel”, we mean that each agent can send a message to the bank without
interference by any other agent. These messages are only sent by an agent upon termination of
M-DPOP, to inform the bank about other agents’ payments. The bank is also assumed in other work
on distributed MD (Feigenbaum et al., 2002, 2006; Shneidman & Parkes, 2004), and is the only
trusted entity that we require. Its purpose is to ensure that payments can beused to align incentives.

To provide a formal definition of a distributed implementation we need the concept of a local
state. The local state of an agentAi corresponds to the sequence of messages that the agent has
received and sent, together with the initial information available to an agent (including both its own
relations, and public information such as constraints). Given this, a distributed implementation,
dM =< g,Σ, s̆ >, is defined in terms of three components (Shneidman & Parkes, 2004; Parkes &
Shneidman, 2004):

• Strategy space, Σ, which defines the set of feasible strategiesσi ∈ Σ available to agentAi,
where strategyσi defines the message(s) that agentAi will send in every possible local state.

• Suggested protocol, s̆ = (s̆1, . . . , s̆n), which defines a strategy that is parameterized by the
private relationsRi of agentAi.
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• Outcome rule, g = (g1, g2), whereg1 : Σn → D defines the assignment of values,g1(σ) ∈ D,
to variablesX given ajoint strategy, σ = (σ1, . . . , σn) ∈ Σn, andg2 : Σn → R

n defines the
paymentg2,i(σ) ∈ R made by each agentAi given joint strategyσ ∈ Σn.

By defining the message(s) that are sent in every state, a strategyσi ∈ Σ encompasses all
computation performed internally to an agent, all information that an agent reveals about its private
inputs (e.g. its relations), and all decisions that an agent makes about howto propagate information
received as messages from other agents.9 The suggested protocols̆i corresponds to an algorithm,
which takes as input the private information available to an agent and relevant details about the
agent’s local state, and generates a message or messages to send to neighbors in the network. When
applied to distributed inputR = (R1, . . . , Rn) and the known parts of the input such as hard
constraintsC, the protocols̆ induces a particular execution trace of the algorithm. This in turn
induces the outcomeg(σ), for σ = s̆(R), whereg1(σ) is the final assignment of values (information
about which is distributed across agents) andg2(σ) is the vector of payments that the bank will
collect from agents.10

The main question that we ask, given a distributed algorithm and its corresponding suggested
protocol, is whether the suggested protocol forms anex postNash equilibrium of the induced game:

Definition 8 (Ex post Nash equilibrium.) Given distributed implementationdM =< g,Σ, s̆ >,
the suggested protocols̆ = (s̆1, . . . , s̆n) is an an ex post Nash equilibrium (EPNE) if, for all agents
Ai, all relationsRi, all relations of other agentsR−i, and all alternate strategiesσ′

i ∈ Σ,

Ri(g1(s̆i(Ri), s̆−i(R−i)))− g2(s̆i(Ri), s̆−i(R−i)) ≥ Ri(g1(σ
′
i, s̆−i(R−i)))− g2(σ

′
i, s̆−i(R−i))

(9)

In an EPNE, no agentAi can benefit by deviating from protocol,si, whatever the particular
instance of DCOP (i.e. for all private relationsR = (R1, . . . , Rn)), so long as the other agents also
choose to follow the protocol. It is this latter requirement that makes EPNE weaker than dominant-
strategy equilibrium, in whichsi would be the best protocol for agenti even ifthe other agents
followed an arbitrary protocol.

Definition 9 (Faithfulness) Distributed implementation,dM = < g,Σ, s̆ >, is ex post faithful if
suggested protocol̆s is an ex post Nash equilibrium.

That is, when a suggested protocol,s̆, is said to beex postfaithful (or simply “faithful”) then it is
in the best interest of every agentAi to follow all aspects of the algorithm – information revelation,
computation and message-passing – whatever the private inputs of the otheragents, as long as every
other agent follows the algorithm.

9. The idea that each agent only has a limited set of possible messages that can be sent in a local state – as implied by
the notion of a (restricted) strategy spaceΣ – is justified in the following sense. Agents in the model are autonomous
and self-interested and, of course, free to send any message in any state. But on the other hand, and if the suggested
protocol is followed by every other agent, then only some messages will be semantically meaningful to the recipient
agent(s) and trigger a meaningful change in local state in the recipient agent(s); i.e. a change in local state that will
changes the future (external) behavior of the recipient agent. In this way, the strategy space characterizes the complete
set of “interesting” behaviors available to an agentgiven that the other agents follow the suggested protocol.This is
sufficient, from a technical perspecitve, to define anex postNash equilibrium.

10. The outcome rule must be well-defined for any unilateral deviation from s̆, i.e. where any one agent deviates and does
not follow the suggested protocol. Either the protocol still reaches a terminal state so that decisions and payments
are defined, or the protocol reaches some “bad” state with suitably negative utility to all participants, such as livelock
or deadlock. We neglect this latter possibility for the rest of our analysis, but it can be easily treated by introducing
special notation for this bad outcome.
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4.3 The Partition Principle Applied to Efficient Social Choice

One cannot achieve a faithful DI for efficient SCP by simply running DPOP, n + 1 times on the
same problem graph, once for the main problem and then with each agent’s effect nullified in turn
by asking it to simply propagate messages. AgentAi would seek to do the following: (a) interfere
with the computational process forSCP(−Ai), to make the solution as close as possible to that
to SCP(A), so that its marginal impact appears small; and (b) otherwise decrease its payment, for
example by increasing the apparent utility of other agents for the solution toSCP(A), and in turn
increases the value of the second term in its VCG payment (Eq. 8).

This opportunity for manipulation was recognized by Parkes and Shneidman (2004) in a more
general setting, who proposed thepartition principleas a method for achieving faithfulness in dis-
tributed VCG mechanisms, instantiated here in the context of efficient SCPs:

Definition 10 (partition principle) A distributed algorithm, corresponding to suggested protocol
s̆, satisfies the partition principle in application to efficient social choice, if:

1. (Correctness)An optimal solution is obtained forSCP(A) andSCP(−Ai) when every agent
follows s̆, and the bank receives messages that instruct it to collect the correct VCG payment
from every agent.

2. (Robustness)AgentAi cannot influence the solution toSCP(−Ai), or the report(s) that
the bank receives about the negative externality thatAi imposes on the rest of the system
conditioned on solutions toSCP(A) andSCP(−Ai).

3. (Enforcement) The decision that corresponds toSCP(A) is enforced, and the bank collects
the payments as instructed.

Theorem 2 (Parkes & Shneidman, 2004) A distributed algorithm for efficient social choice that
satisfies the partition principle is an ex post faithful distributed implementation.

For some intuition behind this result, note that the opportunity for manipulation by an agent
Ai is now restricted to: (a) influencing the solution computed toSCP(A); and (b) influencing the
payments made by other agents. AgentAi cannot prevent the other agents from correctly solving
SCP(−Ai) or from correctly reporting the negative externality thatAi imposes on the other agents
by its presence. As long as the other agents follow the algorithm, thenex postfaithfulness follows
from the strategyproofness of the VCG mechanism because the additionalopportunity for manipu-
lation, over and above that available from misreporting preferences in thecentralized context, is to
change (either increase or reduce) the amount of someotheragent’s payment. This is opportunity
(b). Opportunity (a) is not new. An agent can always influence the solution in the context of a
centralized VCG mechanism by misreporting its preferences.

Remark: As has been suggested in previous work, the weakening from dominant-strategy equilib-
rium in the centralized VCG mechanism, toex postNash equilibrium in a distributed implementa-
tion, can be viewed as the “cost of decentralization”. The incentive properties necessarily rely on
the payments that are collected which rely in turn on the computation performed by other agents
and in turn on the strategy followed by other agents.11

11. An exception is provided by Izmalkov et al. (2005), who are able to avoid this through the use of cryptographic
primitives, in their case best thought of as physical devices such as ballot boxes.
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4.4 Simple M-DPOP

Algorithm 3 describes simple-M-DPOP. In this variation the main problem,SCP(A) is solved,
followed by the social choice problem,SCP(−Ai) with each agent removed in turn.12 Once these
n + 1 problems are solved, every agentAj knows thelocal part of the solution toX∗ andX∗

−i

for all Ai 6= Aj , which is the part of the solution that affects its own utility. This provides enough
information to allow the system of agents without some agentAi, for anyAi, to each send a message
to the bank about acomponentof the payment that agentAi should make.

Algorithm 3: Simple-M-DPOP.

1 Run DPOP forDCOP(A) onDFS (A); find X∗

2 forall Ai ∈ A do
3 Build DFS (−Ai); run DPOP forDCOP(−Ai) onDFS (−Ai); find X∗

−i

4 All agentsAj 6= Ai computeTax j(Ai) = Rj(X
∗
−i)−Rj(X

∗) and report to bank.
5 Bank deducts

∑

j 6=i Tax j(Ai) from Ai’s account

6 EachAi assigns values inX∗ as the solution to its localCOPi

The computation of payments is disaggregated across the agents. The tax payment collected
from agentAi is Tax (Ai) =

∑

j 6=i Tax j(Ai), where

Tax j(Ai) = Rj(X
∗
−i)−Rj(X

∗), (10)

is the component of the payment that occurs because of the negative effect that agentAi has on the
utility of agentAj . This information is communicated to the bank by agentAj in the equilibrium.

The important observation, in being able to satisfy the partition principle, is thatthese compo-
nents ofAi’s payment satisfy alocality property , so thateach agentAj can compute this compo-
nent ofAi’s payment with just its private information about its relations and its local information
about the parts of solutionsX∗ andX∗

−i that affect its own utility. All of this information is avail-
able upon termination of simple-M-DPOP. Correctly determining this payment, once we condition
on solutionsX∗ andX∗

−i, does not rely on any aspect of any other agent’s algorithm, including that
of Ai.13

Figure 5 provides an illustration of Simple M-DPOP on the earlier meeting scheduling example,
and shows how the marginal problems (and the DFS arrangements for eachsuch problem) are
related to the main problem.

Theorem 3 The simple-M-DPOP algorithm is a faithful distributed implementation of efficientso-
cial choice and terminates with the outcome of the VCG mechanism.

PROOF. To prove this we establish that simple-M-DPOP satisfies the partition principle and then
by appeal to Theorem 2. First, DPOP computes optimal solutions toSCP(A) andSCP(−Ai) for

12. Simple M-DPOP is presented for a setting in which the main problem and thesubproblems are connected but extends
immediately to disconnected problems. Indeed, it may be that the main problem is connected but one or more
subproblems are disconnected. To see that there are no additional incentive concerns notice that it is sufficient to
recognize that the correctness and robustness properties of the partition principle would be retained in this case.

13. A similar disaggregation was identified by Feigenbaum et al. (2002) for lowest-cost interdomain routing on the
Internet. Shneidman and Parkes (2004) subsequently modified the protocol by those authors so that agents other than
Ai had enough information to report the payments to be made by agentAi.
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Figure 5: Simple M-DPOP: Each agentAi is excluded in turn from the optimizationDCOP(−Ai). This is
illustrated on the meeting scheduling example.

all Ai ∈ A when every agent follows the protocol. This is immediate because of the correctness
of the DCOP model of SCP and the correctness of DPOP. The correct VCG payments are collected
when every agent follows the algorithm by the correctness of the disaggregation of VCG payments
in Eq. 10. Second, agentAi cannot influence the solution toSCP(−Ai) because it is not involved
in that computation in any way. The DFS arrangement is constructed, and theproblem solved, by
the other agents, who completely ignoreAi and any messages that agentAi might send. (Any hard
constraints thatAi may have handled inSCP(A) are reassigned automatically to some other agent
in SCP(−Ai) as a consequence of the fact that the DFS arrangement is reconstructed). DPOP
still solvesSCP(−Ai) correctly in the case that the problem graph corresponding toSCP(−Ai)
becomes disconnected (in this case the DFS arrangement is a forest). Therobustness of the value of
the reports from agents6= Ai about the negative externality imposed byAi, conditioned on solutions
to SCP(A) andSCP(−Ai), follows from the locality property of payment termsTax j(Ai) for all
Aj 6= Ai. For enforcement, the bank is trusted and empowered to collect payments, and all agents
will finally set local copies of variables as inX∗ to prevent catastrophic failure. AgentAi will
not deviate as long as other agents do not deviate. Moreover, if agentAi is the only agent that is
interested in a variable then its value is already optimal for agentAi anyway.2

The partition principle, and faithfulness, has sweeping implications. Not onlywill each agent
follow the subtantive aspects of simple-M-DPOP,but each agent will also choose to faithfully par-
ticipate in the community discovery phase, in any algorithm for choosing a root community, and in
selecting a leader agent in Phase one of DPOP.14

14. One can also observe that is not useful for an agent to misreportthe local utility ofanother agentAj while sending
UTIL messages around the system. On one hand, such a deviation could of course change the selection ofX∗ or
X∗

−k for somek 6= {i, j} and thus the payments by other agents or the solution ultimately selected. But, by deviating
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Remark on Antisocial Behavior: Note that reporting exaggerated taxes hurts other agents but
does not increase one’s own utility so this is excluded by our assumption thatthe agents are self-
interested but helpful.

5. M-DPOP: Reusing Computation While Retaining Faithfulness

In this section, we present our main result, which is the M-DPOP algorithm. Insimple-M-DPOP, the
computation to solve the main problem is completely isolated from the computation to solve each
of the marginal problems. In comparison, inM-DPOPwe re-use computation already performed in
solving the main problem in solving the marginal problems. This enables the algorithm to scale well
to problems where each agent’s influence is limited to a small part of the entire problem because
little additional computation is required beyond that of DPOP. These problems inwhich an agent’s
influence is limited are precisely those of interest because they are also those for which the induced
tree width is small and for which DPOP scales.

The challenge that we face, in facilitating this re-use of computation, is to retainthe incentive
properties that are provided by the partition principle.A possible new manipulation is for agent
Ai to deviate in the computation inDCOP (A), with the intended effect to change the solution
to DCOP (−Ai) via the indirect impact of the computation performed inDCOP (A) when it is
reused in solvingDCOP (−Ai). To prevent this, we have to determine which UTIL messages in
DCOP (A) could not have been influenced by agentAi.

Example 7 Refer to Figure 6. Here agentAi controls onlyX3 and X10. Then it has no way of
influencing the messages sent in the subtrees rooted at{X14, X15, X2, X7, X5, X11}. We want to
be able to reuse as many of these UTIL messages as possible. In solvingthe problem with agent
Ai removed we will strive to construct aDFS−i arrangement for problemDCOP(−Ai) that is as
similar as possible to the DFS for the main problem. This is done with the goal of maximizing the
re-use of computation across problems. See Figure 6(b). Notice that this is now a DFS forest, with
three distinct connected components. The UTIL messages that were sent by the shaded nodes can be
re-used in solvingDCOP(−Ai). These are all the UTIL messages sent by nodes in the subtrees that
were not influenced by agentAi except for{X14, X15, X5} and alsoX9, which now has a different
local DFS arrangement.

M-DPOP uses the “safe reusability” idea suggested by this example. See Algorithm 4. In its first
stage, M-DPOP solves the main problem just as in Simple-M-DPOP. Once this is complete, each
marginal problemDCOP(−Ai) is solved in parallel. To solveDCOP(−Ai), a DFS−i forest (it
will be a forest in the case thatDCOP(−Ai) becomes disconnected) is constructed as a modification
to DFS (A), retaining as much of the structure ofDFS (A) as possible. A newDPOP(−Ai)
execution is performed on theDFS−i andUTIL messages are determined to be eitherreusableor
not reusableby the sender of the message based on the differences betweenDFS−i andDFS (A).
We will explain below howDFS−i is constructed.

in this way the agent cannot change the utility information that is finally used in determining its own payments. This
is because it is agentAj itself that computes the marginal effect of agentAi on its local solution, and component
Tax j(Ai) of agentAi’s payment.
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Figure 6: ReconstructingDFS (−Ai) from DFS (A) in M-DPOP. The result is in general a DFS forest. The
bold nodes from main DFS initiateDFS−i propagation. The one initiated byX5 is redundant
and eventually stopped byX9. The ones fromX4 andX15 are useful, as their subtrees become
really disconnected after removingAi. X14 does not initiate any propagation since it hasX1

as a pseudoparent.X1 is not controlled byAi, and will eventually connect toX14. Notice that
X0 −X9 andX1 −X14 are turned into tree edges.

5.1 Phase One of M-DPOP for a Marginal Problem: ConstructingDFS−i

Given a graphDCOP(A) and a DFS arrangementDFS (A) of DCOP(A), if one removes a set of
nodesX(Ai) ∈ DCOP(A) (the ones that belong toAi), then we need an algorithm that constructs
a DFS arrangement,DFS−i, for DCOP(A) \X(Ai). We want to achieve the following properties:

1. DFS−i must represent a correct DFS arrangement for the graphDCOP(−Ai) (a DFS forest
in the caseDCOP(−Ai) becomes disconnected).

2. DFS−i must be constructed in a way that is non-manipulable byAi, i.e. without allowing
agentAi to interfere with its construction.

3. DFS−i should be as similar as possible toDFS (A). This allows for reusingUTIL messages
from DPOP(A), and saves on computation and communication.

The main difficulty stems from the fact that removing the nodes that represent variables of inter-
est to agentAi fromDFS (A) can create disconnected subtrees.We need to reconnect and possibly
rearrange the (now disconnected) subtrees ofDFS (A) whenever this is possible. Return to the ex-
ample in Figure 6. Removing agentAi and nodesX3 andX10 disrupts the tree in two ways: some
subtrees become completely disconnected from the rest of the problem (e.g. X15 − X18 − X19);
some other ones remain connected only via back-edges, thus forming an invalid DFS arrangement
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Algorithm 4: M-DPOP: faithfully reuses computation from the main problem.

1 Run DPOP forDCOP(A) onDFS (A); find X∗

2 forall Ai ∈ A do
in parallel

3 CreateDFS−i with Algorithm 5 by adjustingDFS (A)

Run DPOP for DCOP(−Ai) on DFS−i:
4 if leaves inDFS−i observe no changes in theirDFS−i then

they sendnull UTIL−i messages

elsethey compute theirUTIL−i messages anew, as in DPOP
subsequently, all nodesXk ∈ DFS−i do:

5 if Xk receives onlynull UTIL−i msgs∧ (Pk = P−i
k ∧ PPk = PP−i

k ∧ Ck = C−i
k ) then

Xk sends anull UTIL−i message

else
6 nodeXk computes itsUTIL−i message,reusing:

forall Xl ∈ Neighbors(Xk) s.t.Xl sentUTIL−i = null do
Xk reusestheUTIL messageXl had sent inDCOP(A)

7 Compute and levy taxes as in simple-M-DPOP;
8 EachAi assigns values inX∗ as the solution to its localCOPi;

(e.g.X5−X8−X9). The basic principle we use is to reconnect disconnected parts via back-edges
from DFS (A) whenever possible. This is intended to preserve as much of the structure of as possi-
ble. For example, in Figure 6, the back edgeX0 −X9 is turned into a tree edge, andX5 becomes
X9’s child. NodeX8 remainsX5’s child.

TheDFS−i reconstruction algorithm is presented in Algorithm 5. The high-level overview is
as follows (in bold we state the purpose of each step):

1. (Similarity to DFS (A) :) All nodes retain the DFS data structures from constructing
DFS (A); i.e., the lists of their children, pseudo parents/children, and their parents from
DFS (A). They will use this data as a starting point for building the DFS arrangements,
DFS (−Ai), for marginal problems.

2. (At least one traversal of each connected component on a DFS forest:) The root of
DFS (A) and the children15 of removed nodeseach initiate aDFS−i token passing as in
DFS (A), except for these changes:

• Each nodeXk sends the token only to neighbors not owned byAi.

• The order in whichXk sends the token to its neighbors is based onDFS (A): FirstXk’s
children fromDFS (A), then its pseudochildren, then its pseudoparents, and then its
parent. This order helps preserve structure fromDFS (A) into DFS (−Ai).

15. Children which have pseudoparents above the excluded node, forinstanceX14 in Figure 6, do not initiate DFS token
passing because it would be redundant: they would eventually receive aDFS token from their pseudoparent.
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Algorithm 5: Reconstruction ofDFS−i fromDFS (A).
All data structures for theDFS−i are denoted with superscript−i.

Procedure Tokenpassing forDFS−i (executed by all nodesXk /∈ X(Ai)) :

forall Xl ∈ Neighbors(Xk) s.t.Xl belongs toAi do
1 RemoveXl from Neighbors(Xk) and fromCk,PC k,PPk //i.e. send nothing toAi

2 SortNeighbors(Xk) in this order:Ck,PC k,PPk, Pk //mimicDFS (A)
if Xk is root, orPk ∈ X(Ai) (i.e. executed by the root and children ofAi) then

3 InitiateDFS−i as in normal DFS (Algorithm 2)

4 else doProcessincoming tokens()
5 SendDFS−i(Xk) back toP−i

k // Xk’s subtree completely explored

Procedure Processincoming tokens()

6 Wait for any incomingDFS−i token; LetXl be its sender
7 if Xl ∈ Ai then ignore message
8 else
9 if this is first token receivedthen

10 P−i
k = Xl; PP−i

k = {Xj 6= P−i
k |Xj ∈ Neighbors(Xi) ∩DFS−i}

11 root−i
k = first node in the tokenDFS−i

else
12 let Xr be the first node inDFS−i

13 if Xr 6= root−i
k //i.e. this is anotherDFS−i traversalthen

14 if depth ofXr in DFS (A) < depth ofroot−i
k in DFS (A) then

15 ResetP−i
k ,PP−i

k , C−i
k ,PC−i

k //override redundant DFS from lower root
16 P−i

k = Xl; PP−i
k = {Xj 6= P−i

k |Xj ∈ Neighbors(Xi) ∩DFS−i}
17 root−i

k = Xr

18 Continue as in Algorithm 2

3. (Unique traversal of each connected component on a DFS forest:) Each nodeXk retains
its “root path” inDFS (A) and knows its depth in the DFS arrangement. When a new token
DFS−i arrives:

• If it is the first DFS−i token that arrives, then the sender (let this beXl) is marked as
the parent ofXk in DFS−i: P−i

k = Xl. Notice thatXl could be different from the
parent ofXk from DFS (A). Xk stores the first node from the received tokenDFS−i,
asroot−i

k : the (provisional) root of the connected component to whichXk belongs in
DCOP(−Ai).

• If this is not the firstDFS−i token that arrives, then there are two possibilities:

– the token received is part of the sameDFS−i traversal process.Xk recognizes
this by the fact that the first node in the newly received token is the same as the
previously storedroot−i

k . In this case,Xk proceeds as normal, as in Algorithm 2:
marks the sender as pseudochild, etc.
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– the token received is part ofanotherDFS−i traversal process, initiated by another
node thanroot−i

k (see below in text for when this could happen). LetXr be the first
node in the newly received token.Xk recognizes this situation by the fact thatXr

is not the same as the previously storedroot−i
k . In this case, theDFS−i traversal

initiated by the higher node inDFS (A) prevails, and the other one is dropped. To
determine which traversal to pursue and which one to drop,Xk compares the depths
of root−i

k andXr in DFS (A). If Xr is higher, then it becomes the newroot−i
k . Xk

overrides all the previousDFS−i information with the one from the new token. It
then continues the token passing with the new token as in Algorithm 2.

To see why it is necessary to also start propagations from the children ofremoved nodes (step
2), consider again the example from Figure 6. RemovingX10 andX3 completely disconnects the
subtree{X4, X6, X11, X7, X12, X13}. HadX4 not started a propagation, this subtree would not
have been visited at all since there are no connections between the rest of the problem and any
nodes in the subtree.16 17

Lemma 1 (DFS correctness)Algorithm 5 constructs a correct DFS arrangement (or forest),
DFS−i for DCOP (−Ai) given a correct DFS arrangementDFS (A) for DCOP(A).

PROOF. First, since aDFS−i is started from each child of a node that was controlled byAi, and also
from the root, it is ensured that each connected component is DFS-traversed at least once (follows
from Step 2). Second, each DFS process is similar to a normal DFS construction, in that each node
sends the token to all its neighbors (except for the ones controlled byAi ); it is just that they do so in
a pre-specified order (the one given byDFS (A)). It follows that all nodes in a connected component
will eventually be visited (follows from Step 3). Third, higher-priority DFS traversals override the
lower priority ones (i.e. DFS traversals initiated by nodes higher in the tree have priority), again by
Step 3. Eventually one single DFS-traversal is performed in a single connected component.2

Lemma 2 (DFS robustness)The DFS arrangement,DFS−i, constructed by Algorithm 5 is non-
manipulable by agentAi, for any input DFS arrangement from the solution phase toDCOP(A).

PROOF. This follows directly from Step 3, sinceAi does not participate in the process at all: its
neighbors do not send it any messages (see Algorithm 5, line 1), and anymessages it may send are
simply ignored (see Algorithm 5, line 7)2

In fact, no additional links are created while constructingDFS−i. The only possible changes
are that some edges can reverse their direction (parents/children or pseudoparents-pseudochildren

16. Some of the DFS traversals initiated in Step 2 are redundant and the same part of the problem graph can be visited
more than once. The simple overriding rule in Step 3 ensures that only a single DFS

−i tree is eventually adopted
in each connected component, namely the one that is initiated by thehighest nodein the original DFS(A). For
example, in Figure 6,X5 starts an unnecessaryDFS

−i propagation, which is eventually stopped byX9, which
receives a higher priorityDFS

−i token fromX0. SinceX9 knows thatX0 is higher inDFS(A) thanX5, it drops
the propagation initiated byX5, and relays only the one initiated byX0. It does so by sendingX5 the token for
DFS

−i received fromX0 to which it adds itself. Upon receiving the new token fromX9, nodeX5 realizes that
X9 is its new parent inDFS

−i. Thus, the redundant propagation initiated byX5 is eliminated and the result is a
consistent DFS subtree for the single connected componentP1.

17. A simple time-out mechanism can be used to ensure that each agent knows when its provisional DFS ordering is final
(i.e. no higher priority DFS traversals will arrive in the future).
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can switch places), and existing back-edges can turn into tree edges. Again, one can see this in
Figure 6.18

5.2 Phase Two of M-DPOP for a Marginal Problem:UTIL−i propagations

OnceDFS−i is built, the marginal problem withoutAi is then solved onDFS−i. Utility propaga-
tion proceeds as in normal DPOP except that nodes determine whether theUTIL message that was
sent inDPOP(A) can be reused. This is signaled to their parent by sending a specialnull UTIL
message. More specifically, the process is as follows:

• The leaves inDFS−i initiateUTIL−i propagations:

1. If the leaves inDFS−i observe no changes in their localDFS−i arrangement as com-
pared toDFS (A) then theUTIL message they sent inDCOP (A) remains valid and
they announce this to their parents by sending instead anull UTIL−i message.

2. Otherwise, a leaf node computes itsUTIL message anew and sends it to their (new)
parent inDFS−i.

• All other nodes wait for incomingUTIL−i messages and:

1. If everyincoming messages a nodeXk receives from its children isnull and there are
no changes in the parent/pseudoparents then it can propagate anull UTIL−i message
to its parent.

2. Otherwise,Xk has to recompute itsUTIL−i message. It does so by reusing all theUTIL
messages that it received inDCOP(A) from children that have sent itnull messages in
DCOP(−Ai) and joining these with any newUTIL messages received.

For example, considerDCOP(−Ai) in Figure 6, whereX16 andX17 are children ofX14. X14

has to recompute aUTIL message and send it to its new parentX1. To do this, it can reuse the
messages sent byX16 andX17 in DCOP(A), because neither of these sending subtrees containAi.
By doing so,X14 reuses the effort spent inDCOP(A) to compute the messagesUTIL16

20, UTIL16
21,

UTIL14
16 andUTIL14

17.

Theorem 4 The M-DPOP algorithm is a faithful distributed implementation of efficient social
choice and terminates with the outcome of the VCG mechanism.

PROOF. From the partition principle and appeal to Theorem 3 (and in turn to Theorem 2). First,
agentAi cannot prevent the construction of a validDFS−i for DCOP(−Ai) (Lemmas 1 and 2).
Second, agentAi cannot influence the execution of DPOP onDCOP(−Ai) because all messages
thatAi influenced in the main problemDCOP(A) are recomputed by the system withoutAi. The
rest of the proof follows as for simple-M-DPOP, leveraging the locality of the tax payment messages
and the enforcement provided by the bank and via the catastrophic failureassumption.2

18. A simple alternative is to have children of all nodesXi
k that belong toAi, create a bypass link to the first ancestor of

Xi
k that does not belong toAi. For example, in Figure 6,X4 andX5 could each create a link withX1 to bypassX3

completely inDFS(−Ai). However, additional communication links may be required in this approach.
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6. Experimental Evaluation: Understanding the Effectivenessof M-DPOP

We present the results of our experimental evaluation of DPOP, Simple M-DPOP and M-DPOP in
two different domains: distributed meeting scheduling problems (MS), and combinatorial auctions
(CAs). In the first set of experiments we investigate the performance of M-DPOP on a structured
constraint optimization problem (MS) which has received a lot of attention in cooperative distributed
constraint optimization. In the second set of experiments (CAs), we investigate unstructured do-
mains, and observe the performance – specifically the ability to re-use computation in computing
payments – of M-DPOP with respect to problem density. CAs provide an abstract model of many
real world allocation problems and are much studied in mechanism design (Cramton, Shoham, &
Steinberg, 2006).

6.1 Distributed Meeting Scheduling

In distributed meeting scheduling, we consider a set of agents working fora large organization and
representing individuals, or groups of individuals, and engaged in scheduling meetings for some
upcoming period of time. Although the agents themselves are self interested, theorganization as
a whole requires an optimal overall schedule, that minimizes cost (alternatively, maximizes the
utility of the agents). This makes it necessary to use a faithful distributed implementation such as
M-DPOP. In enabling this, we suppose that the organization distributes a virtual currency to each
agent (perhaps using this currency allocation to prioritize particular participants.) All relations held
by agents and defining an agent’s utility for a solution to the scheduling problem are thus stated in
units of this currency.

Each agentAi has a set of local replicate variablesXi
j for each meetingMj in which it is

involved. The domain of each variableXj (and thus local replicasXi
j) represents the feasible

time slots for the meeting. An equality constraint is included between replica variables to ensure
that meeting times are aligned across agents. Since an agent cannot participate in more than one
meeting at once there is anall-differentconstraint on all variablesXj

i belonging to the same agent.
This is modeled as a clique constraint between these meeting variables. Each agent assigns a utility
to each possible time for each meeting by imposing a unary relation on each variableXi

j . Each such
relation is private toAi, and denotes how much utilityAi associates with starting meetingMj at
each timet′ ∈ dj , wheredj is the domain for meetingMj . The social objective is to find a schedule
in which the total utility is maximized while satisfying the all-different constraints foreach agent.

Following Maheswaran et al. (2004), we model the organization by providing a hierarchical
structure. In a realistic organization, the majority of interactions are within departments, and only
a small number are across departments and even then these interactions will typically take place
between two departments adjacent in the hierarchy. This hierarchical organization provides structure
to our test instances: with high probability (around 70%) we generate meetings within departments,
and with a lower probability (around 30%) we generate meetings between agents belonging to
parent-child departments. We generated random problems having this structure, with an increasing
number of agents: from 10 to 100 agents. Each agent participates in 1 to 5 meetings, and has a
uniform random utility between 0 and 10 for each possible schedule for each meeting in which it
participates. The problems are generated such that they have feasible solutions.19

19. The test instances can be found at http://liawww.epfl.ch/People/apetcu/research/mdpop/MSexperiments.tgz
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For each problem size, we averaged the results over 100 different instances. We solved the main
problems using DPOP and the marginal ones using simple-M-DPOP, and M-DPOP respectively. All
experiments were performed in the FRODO multiagent simulation environment (Petcu, 2006), on
a 1.6Ghz/1GB RAM laptop. FRODO is a simulated multiagent system, where each agent executes
asynchronously in its own thread, and communicates with its peers only via message exchange.

The experiments were geared towards showing how much effort M-DPOPis able to reuse from
the main to the marginal problems. Figure 6.1 shows the absolute computational effort in terms
of number of messages (Figure 6.1(a)), and in terms of the total size of the messages exchanged,
in bytes (Figure 6.1(b)). The curves for DPOP represent just the number of messages (total size
of messages, respectively) required for solving the cooperative problem. The curves for simple-
M-DPOP and M-DPOP represent the total number (size, respectively) of UTIL messages, for both
main and marginal economies.

We notice several interesting facts. First, the number of messages required by DPOP increases
linearly with the number of agents because DPOP’s complexity in terms of numberof messages is
always linear in the size of the problem. On the other hand, the number of messages of simple-M-
DPOP increases roughly quadratically with the number of agents, since it solves a linear number
of marginal economies from scratch using DPOP, each requiring a linear number of messages.
The performance of M-DPOP lies somewhere between the DPOP and simple-M-DPOP with more
advantage achieved over simple-M-DPOP as the size of the problem increases, culminating with
almost an order of magnitude improvement over Simple M-DPOP for the largestproblem sizes (i.e.
with 100 agents in the problem). Similar observations can be made about the totalsize of theUTIL
messages, also a good measure of computation, traffic and memory requirements, by inspecting
Figure 6.1(b). For both metrics we find that the performance of M-DPOP is only slightly super-
linear in the size of the problem.

Figure 8 shows the percentage of the additional effort required for solving the marginal problems
that can be reused from the main problem, i.e. the probability that aUTIL message required in solv-
ing a marginal problem can be taken directly from the message already usedin the main problem.
We clearly see that as the problem size increases we can actually reuse moreand more computation
from the main problem. The intuition behind this is that in large problems, each individual agent
is localized in a particular area of the problem. This translates into the agent being localized in a
specific branch of the tree, thus rendering all computation performed in other branches reusable for
the marginal problem that corresponds to that respective agent. Looking also at the percentage of
reuse when defined in terms of message size rather than the number of messages we see that this is
also trending upwards as the size of the problem increases.

6.2 Combinatorial Auctions

Combinatorial Auctions (CAs) are a popular means to allocate resources to multiple agents. In CAs,
bidders can bid onbundlesof goods (as opposed to bidding on single goods). Combinatorial bids
can model both complementarity and substitutability among the goods, i.e. when the valuation for
the bundle is more, respectively less than the sum of the valuations for individual items. In our
setting the agents are distributed (geographically or logically), and form a problem graph in which
neighbors are agents with whom their bids overlap. The objective is to find the feasible solution (i.e.
declare bids as winning or losing such that no two winning bids share a good) that maximizes the
total utility of the agents.
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Figure 7: Meeting scheduling problem: measures of absolute computational effort (in terms of the number
of messages sent and the total size of theUTIL messages) in DPOP, simple-M-DPOP and M-
DPOP. The curves for DPOP represent effort spent just on the main problem, while the ones for
simple-M-DPOP and M-DPOP represent total effort over the main and the marginal problems.
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Figure 8: Meeting scheduling problem: Percentage of effort requiredfor the marginal problems that is
reused by M-DPOP from the main problem. Reuse is measured both in terms of the percentage
of theUTIL messages that can be reused (dashed) and also in terms of the total size of theUTIL
messages that are reused as a fraction of the totalUTIL message size (solid).
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CAs are adopted here as a stylized model of distributed allocation problems such as airport slot
allocation and wireless spectrum allocation as discussed in the Introduction.The CA instances also
provide a counterpoint to the meeting scheduling problems because they represent problems with
less structure. In our DCOP model, each agent holds a variable for eachone of its bids, with two
possible values: 0 when the bid is rejected, and 1 when the bid is accepted. Any pair of overlapping
bids (bids that share at least one good) is connected by a “at most one”constraint that specifies
that they cannot be both accepted. When multiple bids are submitted by an agent then they can be
connected by additional constraints to capture the bid logic, for instance exclusive-or constraints if
only one bid can be accepted.

We generated random problems using CATS (Leyton-Brown, Pearson,& Shoham, 2000), using
the L3 distribution from Sandholm (2002). L3 is theConstantdistribution in which each agent
demands a bundle of 3 goods, selected uniformly at random, and with a valuedistributed uniformly
on [0, 1]. In our simulations we consider a market with 50 goods and vary the number of agents
between 5 and 40. We recorded the performance of DPOP, simple-MDPOPand M-DPOP in the
graphs from Figures 9 and 10. Figure 9 shows that as the density of the problems increase, all three
algorithms require more effort in solving them (both in terms of number of messages, and in terms
of total information exchange).

Figure 10 shows how reusability varies with problem density: one can see that for loose prob-
lems the reusability is very good, close to 100% for problems with 5 agents. As the density of the
problems increases with the number of agents, reusability decreases as well, and is around 20% for
the most dense problems, with 40 agents. We explain this phenomenon as follows: for very loose
problems (many goods and few bidders), the bids are mostly non-overlapping, which in turn ensures
that removing individual agents for solving the marginal problems does notaffect the computation
performed while solving the main problem. At the other end of the spectrum, very dense problems
tend to be highly connected, which produces DFS trees which are very similar to chains. In such a
case, removing agents which are close to the bottom of the chain invalidates much of the computa-
tion performed while solving the main problem. Therefore, only a limited amount ofcomputation
can be reused.

While noting that L3 is recognized as one of the hardest problem distributions in the CATS
suite (Leyton-Brown et al., 2000), we remark that we need to limit our experiments to this distri-
bution because other problems have a large induced tree width (and high density problem graphs).
Consider for example a problem in which every agent bids for a bundle that overlaps with every
other agent. The problem graph is a clique and DPOP does not scale. Whilewe leave a detailed
examination for future work, a recent extension of DPOP – H-DPOP (Kumar, Petcu, & Faltings,
2007) – can immediately address this issue. In H-DPOP, consistency techniques are used in order
to compactly represent UTIL messages, and on tightly constrained problems, orders of magnitude
improvements over DPOP are reported (see Section 7.1).

7. Discussion

In this section we discuss alternatives for improving the computational performance of M-DPOP,
the possibility of faithful variations of other DCOP algorithms (ADOPT (Modi et al., 2005) and
OptAPO (Mailler & Lesser, 2004)), and the loss in utility for the agents that can occur due to the
transfer of payments to the bank, mentioning an approach to address this problem.
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Figure 9: Combinatorial Auctions problems: measures of absolute computational effort (in terms of the
number of messages sent and the total size of theUTIL messages) in DPOP, simple-M-DPOP and
M-DPOP. The curves for DPOP represent effort spent just on the main problem, while the ones
for simple-M-DPOP and M-DPOP represent effort on both the main and the marginal problems.
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problem density), the greater the computational effort to solve the problem.
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Figure 10: Combinatorial Auctions problems: Percentage of effort required for the marginal problems that
is reused by M-DPOP from the main problem. Reuse is measured both in terms of the percentage
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messages that are reused as a fraction of the totalUTIL message size (solid).
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7.1 Algorithmic Alternatives for Improved Performance

M-DPOP scales very well with problem size as long as the induced width of theproblem remains
low. This is a characteristic M-DPOP inherits from DPOP, on which it is based. For problems
with high induced width, DPOP/M-DPOP require producing, sending and storing large messages,
which may be unfeasible or undesirable. To mitigate this problem, several advances to the basic
DPOP algorithm have been recently proposed. Some of these new algorithmssacrifice optimality in
return for computational tractability, which makes them difficult to combine with a VCG payment
mechanism in such a way that faithfulness be guaranteed. Nevertheless,H-DPOP (Kumar et al.,
2007) and MB-DPOP (Petcu & Faltings, 2007) employ two different techniques that preserve the
optimality guarantees, and can be fitted to M-DPOP.

H-DPOP leverages the observation that many real problems contain hard constraints that sig-
nificantly reduce the space of feasible assignments. For example, in auctions, it is not possible to
allocate an item to more than one bidder. In meeting scheduling, it is not possibleto set two dif-
ferent start times for a given meeting. Unfortunately, DPOP does not takeadvantage of the pruning
power of these hard constraints, and sends messages that explicitly represent all value combina-
tions, including many infeasible ones. H-DPOP addresses this issue by using Constraint Decision
Diagrams (CDD) introduced by Cheng and Yap (2005) to compactly represent UTIL messages by
excluding unfeasible combinations. Performance improvements of severalorders of magnitude can
be achieved, especially on highly constrained problems (Kumar et al., 2007).

MB-DPOP (Petcu & Faltings, 2007) uses the idea ofcycle cutsets(Dechter, 2003) to explore
parts of the search space sequentially. Dense parts of the problem are explored by iterating through
assignments of a subset of nodes designated as “cycle cuts”, and for each assignment performing
a limited UTIL propagation similar to the one from DPOP. Easy parts of the problem are explored
with one-shot UTIL messages, exactly as in DPOP. MB-DPOP offers thusa configurable tradeoff
between the number of the messages exchanged, and the size of these messages and the memory
requirements.

7.2 Achieving Faithfulness with other DCOP Algorithms

The partition principle, described in Section 4.3, is algorithm independent. The question as to
whether another, optimal DCOP algorithm can be made faithful therefore revolves, critically, around
whether the algorithm will satisfy the robustness requirement of the partition priciple. We make the
following observations:

• Robustness in the first sense, i.e. that no agentAi can influence the solution to the effi-
cient SCP without agentAi, is always achievable at the cost of restarting computation on the
marginal problem with each agent removed in turn, just as we proposed for simple-M-DPOP.

• Robustness in the second sense, i.e. that no agentAi can influence the report(s) that the bank
receives about the negative externality thatAi imposes on the rest of the system, conditioning
on the solutions to the main problem and the problem withoutAi, requires that the DCOP
algorithm terminates with every agent knowing the part of the solution that is relevant in
defining its own utility; the robustness property then follows by disaggregation of payments.

Thus, if one is content to restart the DCOP algorithm multiple times, then the same kinds of
results that we provide for simple-M-DPOP are generally available. This is possible because of
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the already mentioned locality property of payments, which follows from the disaggregation of
the VCG payment across agents in Eq. (10) and because of the informationand communication
structure of DCOP.

The other useful property of DCOP in the context of self-interested agents, and worth reem-
phasizing, is that it is possible to retain faithfulness even when one agent plays apivotal role in
connecting the problem graph. Suppose that problem,DCOP (−Ai), becomes disconnected with-
out Ai. But, if this is the case then its optimal solution is represented by the union of the optimal
solutions in each connected subcomponent of the problem, and no information needs to flow be-
tween disconnected components either for the purpose of solving the problem or for the purpose of
reporting the components of agentAi’s tax.

We discuss in the following two sections the adaptation of the two other most prominent com-
plete DCOP algorithms: ADOPT (Modi et al., 2005) and OptAPO (Mailler & Lesser, 2004).

We discuss in the following two sections the adaptation of the two other most prominent com-
plete DCOP algorithms: ADOPT (Modi et al., 2005) and OptAPO (Mailler & Lesser, 2004). We
consider the computational aspects of making these algorithms faithful, specifically the issues re-
lated to the efficient handling of replica variables and to providing for reusability from the main to
the marginal problems.

7.2.1 USING ADOPT FOR FAITHFUL , EFFICIENT SOCIAL CHOICE

ADOPT is a polynomial-space search algorithm for DCOP that is guaranteedto find the globally
optimal solution while allowing agents to execute asynchronously and in parallel. The agents in
ADOPT make local decisions based on conservative cost estimates. ADOPT also works on a DFS
arrangement, constructed as detailed in Section 3.1.1. Roughly speaking, the main process that is
executed in ADOPT is a backtrack search on the DFS tree.

Adaptation of ADOPT to the DCOP Model with Replicated Variables. ADOPT’s complexity
is given by the number of messages, which is exponential in the height of theDFS tree. Similar to
DPOP, using the DCOP model with replicated variables could artificially increase the complexity
of the solving process. Specifically, the height of the DFS tree is increased when using replicated
variables compared to the centralized problem graph. ADOPT can be modifiedto exploit the special
structure of these replicated local variables in a similar way as DPOP. Specifically, ADOPT should
explore sequentially only the values of the original variable, and ignore assignments where replicas
of the same variable take different values. This works by allowing just the agent that owns the
highest replica of each variable to freely choose values for the variable. This agent then announces
the new value of the variable to all other agents owning replicas of the variable. These other agents
would then consider just the announced value for their replicas, add theirown corresponding util-
ities, and continue the search process. Using this special handling of the replica variables, the
resulting complexity is no longer exponential in the height of the distributed DFStree, but in the
height of the DFS tree obtained by traversing the original problem graph.For example, in Fig-
ure 2, it is sufficient to explore the values ofM2

3 , and directly assign these values toM3
3 andM1

3

via VALUE messages, without trying all the combinations of their values. This reduces ADOPT’s
complexity from exponential in 6, to exponential in 3.

Reusability of Computation in ADOPT. Turning to the re-use of computation from the main to
the marginal problems, we note that because ADOPT uses a DFS arrangement then it is easy to
identify which parts of the DFS arrangement for the main problem are impossible for an agent to
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manipulate, and therefore can be “reused” while computing the solution to the marginal problem
with that agent removed. However, a major difference between DPOP andADOPT is that in DPOP,
each agent stores its outgoingUTIL message, and thus has available all the utilities contingent to
all assignments of the variables in the agent’s separator. This makes it possible for the agent to
simply reuse that information in all marginal economies where the structure of the DFS proves that
this is safe. In contrast, ADOPT does not store all this information becauseof its linear memory
policy. This in turn makes it impossible to reuse computation from the main problem tothe marginal
problems. All marginal problems have to be solved from scratch, and thus the performance would
scale poorly as problem size increases and even in structured problems such as meeting scheduling.

We see two alternatives for addressing this problem: (a) renounce linearmemory guarantees,
and use a caching scheme like for example in NCBB (Chechetka & Sycara, 2006): this would allow
for a similar reusability as in M-DPOP, where previously computated utilities can be extracted from
the cache instead of having to be recomputed. Alternatively, (b) one can devise a scheme where
the previously computed best solution can be saved as a reference, andsubsequently used as an
approximation while solving the marginal problems. This could possibly providebetter bounds and
thus allow for better pruning, such that some computation could be saved. Both these alternatives
are outside the scope of this paper, and considered for future work.

7.2.2 USING OPTAPO FOR FAITHFUL , EFFICIENT SOCIAL CHOICE

OptAPO (Mailler & Lesser, 2004) is the other most popular algorithm for DCOP. Similar to the
adaptations of DPOP and ADOPT to social choice, OptAPO can also be made totake advantage of
the special features of the DCOP model with replicated variables. Its complexity then would not
be artificially increased by the use of this DCOP model. OptAPO has the particularity that it uses
“mediator agents” tocentralize subproblemsand solve them in dynamic and asynchronous media-
tion sessions, i.e. partial centralization. The mediator agents then announcetheir results to the other
agents, who have previously sent their subproblems to the mediators. This process alone would
introduce additional possibility for manipulation in a setting with self interested agents. However,
using the VCG mechanism addresses this concern and agents will choose tobehave correctly ac-
cording to the protocol.

As with ADOPT, the main issue with using OptAPO for faithful social choice is thereusability
of computation from the main to the marginal problems. Specifically, consider that while solving the
main problem, a mediator agentAi has centralized and aggregated the preferences of a number of
other agents, while solving mediation problems as dictated by the OptAPO protocol. Subsequently,
when trying to compute the solution to the marginal problem without agentAi, all this computation
has to go to waste, as it could have been manipulated byAi while solving the main problem. Fur-
thermore, since OptAPO’s centralization process is asynchronous and conflict-driven as opposed
to structure-driven as in M-DPOP, it is unclear whetherany computation from the main problem
could be safely reused in any of the marginal problems. To make matters worse, experimental stud-
ies (Davin & Modi, 2005; Petcu & Faltings, 2006) show that in many situations, OptAPO ends up
relying on a single agent in the system to centralize and solve the whole problem. This implies
that while solving the marginal problem without that agent, one can reuse zero effort from the main
problem.
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7.3 Loss in Utility due to Wasting the VCG Taxes

In the VCG mechanism, each agent’snet utility is the difference between the utility it derives from
the optimal solution and the VCG tax it has to pay. The net utility of the whole groupof agents is
the sum of individual net utilities of the agents, i.e. the total utility from the assignment of values
to variables but net of the total payment made by agents to the bank.This loss in utility while
using M-DPOP can be as great as 35% of the total utility of the optimal solution inthe meeting
scheduling domain.As the problem size increases, more and more money has to be burnt in the
form of VCG taxes. Similar waste has been observed by others; e.g., Faltings (2004), also in the
context of efficient social choice.

One cannot naively redistribute the payment back to the agents, for instance sharing the pay-
ments equally across all agents would break faithfulness. For example, agentAi would prefer for
the other agents to make greater payments, in order to receive a larger repayment from the bank.
The faithfulness properties of M-DPOP would unravel. On the other hand, when the problem has
inherent structure then it is possible to redistribute some fraction of the payments back to agents.
This idea of careful redistribution was suggested in Bailey (1997), and subsequently extended by
Cavallo (2006), Guo and Conitzer (2007) and Moulin (2007). Another approach, advocated for ex-
ample by Faltings (2004), is to simply preclude an agent from the problem andtransfer the payments
to this agent. All this work is in a centralized context.

An important issue for future work, then, is to study the budget surplus that accrues to the bank
in M-DPOP and seek to mitigate this welfare loss in a setting of distributed implementation. We
defer any further discussion of this topic to future work, in which we will investigate methods to
leverage structure in the problem in redistributing the majority of these paymentsback to agents
without compromising either efficiency or faithfulness.

8. Conclusions

We have developed M-DPOP, which is a faithful, distributed algorithm with which to solve efficient
social choice problems in multi-agent systems with private information and self-interest. No agent
can improve its utility either by misreporting its local information or deviating from any aspect of
the algorithm (e.g., computation, message-passing, information revelation.) The only centralized
component is that of a bank that is able to receive messages about payments and collect payments.
In addition to promoting efficient decisions, we minimize the amount of additional computational
effort required for computing the VCG payments by reusing effort fromthe main problem. A first
set of experimental results shows that a significant amount of the computationrequired in all the
marginal problems can be reused from the main problem, sometimes above 87%.This provides
near-linear scalability in massive, distributed social choice problems that have local structure so
that the maximal induced tree width is small. A second set of experiments performed on problems
without local structure shows that as the problem density increases, the amount of effort required in-
creases, and the reusability of computation decreases. These results suggest that M-DPOP is a very
good candidate for solving loose problems that exhibit local structure such that the induced width
remains small. In addition to addressing the need to reduce the total payments made by agents to the
bank, one issue for future work relates to the need to provide robustness when faced withadversarial
or faulty agents: the current solution is fragile in this sense, with its equilibrium properties relying
on other agents following the protocol. Some papers (Lysyanskaya & Triandopoulos, 2006; Aiyer,
Alvisi, Clement, Dahlin, Martin, & Porth, 2005; Shneidman & Parkes, 2003) provide robustness to

750



M-DPOP: FAITHFUL DISTRIBUTED IMPLEMENTATION OF EFFICIENT SOCIAL CHOICE PROBLEMS

mixture models (e.g. some rational, some adversarial) but we are not aware of any work with these
mixture models in the context of efficient social choice. Another interesting direction is to find ways
to allow for approximate social choice, for example with memory-limited DPOP variations (Petcu
& Faltings, 2005a) while retaining incentive properties, perhaps in approximate equilibria. Future
research should also consider the design of distributed protocols that are robust against false-name
manipulations in which agents can participate under multiple pseudonyms (Yokooet al., 2004),
and seek to mitigate the opportunities for collusive behavior and the possibility of multiple equi-
libria that can exist in incentive mechanisms (Ausubel & Milgrom, 2006; Andelman, Feldman, &
Mansour, 2007; Katz & Gordon, 2006).
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