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Abstract

This paper defines the notion of analogical dissimilaritywaen four objects, with a special
focus on objects structured as sequences. Firstly, itesutie case where the four objects have a
null analogical dissimilarityi.e. are in analogical proportion. Secondly, when one of thegectd
is unknown, it gives algorithms to compute it. Thirdly, ickdes the problem of defining analogical
dissimilarity, which is a measure of how far four objectsfaoen being in analogical proportion. In
particular, when objects are sequences, it gives a defirdinml an algorithm based on an optimal
alignment of the four sequences. It gives also learningrihgus, i.e. methods to find the triple
of objects in a learning sample which has the least analbdisaimilarity with a given object.
Two practical experiments are described: the first is a ifieaon problem on benchmarks of
binary and nominal data, the second shows how the gene@tgstuences by solving analogical
equations enables a handwritten character recognitidarayte rapidly be adapted to a new writer.

1. Introduction

Analogy is a way of reasoning that has been studied throughout the hidtphilosophy and has
been widely used in Artificial Intelligence and Linguistics. We focus in thisepaqm a restricted
concept of analogy called ‘analogical proportion’.

1.1 Analogical Proportion between Four Elements

An analogical proportionbetween four elementd, B, C and D in the same universe is usually
expressed as follows:A'is to B asC'is to D”. Depending on the elements, analogical proporttons
can have very different meanings. For example, natural languadmgéra proportions could be:
“a crowistoa ravenasa nerlinistoa peregrine”or“vinegar istow ne asa
sl oeistoa cherry”. They are based on treemantic®of the words. By contrast, in the formal
universe of sequences, analogical proportions suctabsd is to abc asabbd is to abb” or
“gistogt asgg istoggt " are morphological

Whether morphological or not, the examples above show the intrinsic ambiguity in
defining an analogical proportion. We could as well accept, for othevd geasons:
“gistogt asggistoggtt” or “vi negar is tow ne asvul gar is towul ”. Obviously,
such ambiguities are inherent in semantic analogies, since they are relatedaeahing of words
(the concepts are expressed through natural language). Heneepis smportant, as a first step,
to focus on formal morphological properties. Moreover, solving suaiagies in sequences is an

1. When there is no ambiguity, we may use ‘analogy’ for short insteaahalogical proportion’.
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operational problem in several fields of linguistics, such as morpholodysgntax, and provides a
basis to learning and data mining by analogy in the universe of sequences.

In this paper, we will firstly consider analogical proportions in sets ofabjand we will sec-
ondly present how they may be transferred to sequences of elementsefsits.

1.2 Solving Analogical Equations

When one of the four elements is unknown, an analogical proportion toims&n equation. For
instance, on sequences of letters, the analogical propomiohf” is tol eaf aswol ves istox”
corresponds to the equatich= {x | wol f istol eaf aswol ves istoz}. Resolving this equa-
tion consists in computing the (possibly empty) Setf sequences which satisfy the analogy. The
sequencé eaves is an exact semantic and morphological solution. We shall see that, houtever
is not straightforward to design an algorithm able to solve this kind of equatigrarticular when
looking for an approximate solution if necessary.

Solving analogical equations on sequences is useful for linguistic anafgks and has been
applied (with empirical resolution techniques, or in simple cases) mainly to lexedysis tasks.
For example, Yvon (1999) presents an analogical approach to thiesgrapto-phoneme conversion,
for text-to-speech synthesis purposes. More generally, the resobftimmalogical equations can
also be seen as a basic componenteaining by analogysystems, which are part of tHazy
learningtechniques (Daelemans, 1996).

1.3 Using Analogical Proportions in Machine Learning

LetS = {(x,u(z))} be afinite set of training examples, wherés the description of an example
(x may be a sequence or a vectorRft, for instance) and:(x) its label in a finite set. Given
the descriptiory of a new pattern, we would like to assignga labelu(y), based only from the
knowledge ofS. This is the problem of inductive learning of a classification rule from exasyp
which consists in finding the value ofat pointy (Mitchell, 1997). The nearest neighbor method,
which is the most popular lazy learning technique, simply findss ithe descriptionz* which
minimizes some distance foand hypothesizesg(x*), the label ofz*, for the label ofy.

Moving one step further, learning from analogical proportions consistearching inS for a
triple (z*, z*,t*) such that %* is to z* ast* is to y” and predicts fory the labeld(y) which is
solution of the equationu(x*) is to u(z*) asu(t*) is to u(y)”. If more than one triple is found,
a voting procedure can be used. Such a learning technique is baseslresdlution of analogical
equations. Pirrelli and Yvon (1999) discuss the relevance of suchr@rggrocedure for various
linguistic analysis tasks. It is important to notice thaand u(y) are in different domains: for
example, in the simple case of learning a classification rul@ay be a sequence whereass a
class label.

The next step in learning by analogical proportions is, giyeto find a triple(z*, z*,¢*) in
S such that &> is to z* ast* is to y” holds almosttrue, or, when a closeness measure is defined,
the triple which is the closest tpin term of analogical proportion. We study in this article how to
guantify this measure, in order to provide a more flexible method of learnirgalpgy.
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1.4 Related Work

This paper is related with several domains of artificial intelligence. Obviptigyfirst one is that
of reasoning by analogy. Much work has been done on this subjeutdroognitive science point
of view, which had led to computational models of reasoning by analogyfamsesxample, the
classical paper (Falkenhainer, Forbus, & Gentner, 1989), the (taektner, Holyoak, & Kokinov,
2001) and the recent survey (Holyoak, 2005). Usually, these wasksthe notion otransfer,
which is not within the scope of this article. It means that some knowledgelemg@ problem
in a domain is transported to another domain. Since we work on four objettaréhan the same
space, we implicitly ignore the notion of transfer betweéferentdomains. Technically speaking,
this restriction allows us to use an axiom called ‘exchange of the means’ twedsmii analogical
proportion (see Definition 2.1). However, we share with these worksllening idea: there may
be a similar relation between two couples of structured objects even if thetobjecapparently
quite different. We are interested in giving a formal and algorithmic definitfcuoh a relation.

Our work also aims to define some supervised machine learning proceskdMii®97; Cor-
nuéjols & Miclet, 2002), in the spirit ofazylearning. We do not seek to extract a model from the
learning data, but merely conclude what is the class, or more generallyplevssion, of a new
object by inspecting (a part of) the learning data. Usually, lazy learhk&gthe k-nearest neighbors
technique, makes use of unstructured objects, such as vectors. Bitaree measures can be also
defined on strings, trees and even graphs, this technique has alsgsleelern structured objects, in
the framework of structural pattern recognition (see for example the efd@kinke & Caelli, 2004;
Blin & Miclet, 2000; Basu, Bunke, & Del Bimbo, 2005). We extend here tharsh of the nearest
neighbor in the learning set to that of the best triple (when combined with thehbject, it is the
closest to make an analogical proportion). This requires defining wiaat @alogical proportion
on structured objects, like sequences, but also to give a definition ofdra4-tuple of objects is
from being in analogy (that we call analogical dissimilarity).

Learning by analogy on sequences has already being studied, in aestieted manner, on
linguistic data (Yvon, 1997, 1999; Itkonen & Haukioja, 1997). Reaspmind learning by anal-
ogy has proven useful in tasks like grapheme to phoneme conversiomohmyp and translation.
Sequences of letters and/or of phonemes are a natural application t@dyrbat we are also in-
terested in other type of data, structured as sequences or treessquos@dic representations for
speech synthesis, biochemical sequences, online handwriting recngeitio

Analogical proportions between four structured objects of the samenseivmainly strings,
have been studied with a mathematical and algorithmic approach, like ourgidheN(1993) and
Hofstadter et al. (1994), Dastani et al. (2003), Schmid et al. (2008)he best of our knowledge
our proposition is original: to give a formal definition of what can be anagieal dissimilarity
between four objects, in particular between sequences, and to pralfiocghms that enable the
efficient use of this concept in machine learning practical problems. \We &leeady discussed
how to compute exact analogical proportions between sequences impiregyay'von et al. (2004)
and given a preliminary attempt to compute analogical dissimilarity betweenrsespim the paper
by Delhay and Miclet (2004). Excerpts of the present article have pezsented in conferences
(Bayoudh, Miclet, & Delhay, 2007a; Bayoudh, Mouchére, Miclet, & Argl, 2007b).

To connect with another field of A.l., let us quote Aamodt and Plaza (188dyit the use of
the term ‘analogy’ in Case-Based Reasoning (CBR): 'Analogy-bessssbning: This term is some-
times used, as a synonym to case-based reasoning, to describe thedsgpesdased approach.
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However, it is also often used to characterize methods that solve nelem®based on past cases
from a different domain, while typical case-based methods focus omiimgland matching strate-
gies for single-domain cases.’ According to these authors, who useotideanalogy’ in its broader
meaning, typical CBR deals with single domain problems, as analogical piampoalso do. In that
sense, our study could be seen as a particular case of CBR, as apphéxdpaper to supervised
learning of classification rules.

1.5 Organization of the Paper

This paper is organized in six sections. After this introduction, we presesgction 2 the general
principles which govern the definition of an analogical proportion betWeenobjects in the same
set and we define what is an analogical equation in a set. We apply thigsiéaies in R™ and
{0,1}". Finally, this section defines analogical proportion between four segsean an alphabet
in which an analogy is defined, using an optimal alignment method betweenuhseiguences.

Sections 3 introduces the new concepapélogical dissimilarity A D) between four objects, by
measuring in some way how much these objects are in analogy. In particotastibe equivalent
to say that four objects are in analogy and that their analogical dissimilaritylisTinen we extend
it to sequences. The end of this section gives two algorithms: SEQUANAwutes the value of
AD between four sequences and SOLVANA solves analogical equationganexalized manner:
it can produce approximate solution®(of strictly positive AD).

Section 4 begins to explore the use of the concept of analogical dissimilaréypervised
machine learning. We give an algorithm (FADANA) for the fast searcithefk-best analogical
3-tuples in the learning set.

Section 5 presents two applications of these concepts and algorithms qirabkms. We
firstly apply FADANA to objects described by binary and nominal featuEegeriments are con-
ducted on classical benchmarks and favorably compared with stanidasdfication techniques.
Secondly, we make use of SOLVANA to produce new examples in a handwrét®gnition sys-
tem. This allows training a classifier from a very small number of learning patter

The last section presents work to be done, particularly in discussing eireorld application
of learning by analogy, especially in the universe of sequences.

2. Analogical Proportions and Equations

In this section, we give a formal definition of tlamalogical proportionbetween four objects and
explain what is to solve aanalogical equation Instanciations of the general definitions are given
when the objects are either finite sets (or equivalently binary vectorggabors of real numbers or
sequences on finite alphabets.

2.1 The Axioms of Analogical Proportion

The meaning of an analogical proportioA: B:: C: D between four objects in a sat depends
on the nature ofX, in which the ‘is to’ and the ‘as’ relations have to be defined. Howeveregs
properties can be required, according to the usual meaning of the amaibyy’ in philosophy and
linguistics. According to Lepage (2003) three basic axioms can be given:

Definition 2.1 (Analogical proportion) An analogical proportion on a seX is a relation onX*,
i.e. asubsetd c X*. When(A, B,C, D) € A, the four elementsi, B, C and D are saidto be

796



ANALOGICAL DISSIMILARITY

in analogical proportionand we write: ‘the analogical proportion AB :: C: D holds true’,
orsimply A:B: C:D ,whichreadsAisto B asC isto D’. For every 4-tuple in analogical
proportion, the following equivalences must hold true:
Symmetry of the ‘as’relation A:B::C:D & C:D:A:B
Exchange ofthemeans A:B::C:D < A:C:B:D
The third axiom determinism requires that one of the two following implications holds true
(the other being a consequence):

A:A:B:x = =
A:B:A: X = =x

B
B

According to the first two axioms, five other formulations are equivalent eéocémonical form
A:B::C:D:

B:A:D:C D:B:C:A C:A:D:B

D:C:B:A and B:D:A:C

Consequently, there are only three different possible analogicabprops between four objects,
with the canonical forms:

A:B:C:D A:C:D:B A:D:B:C

2.2 Analogical Equations

To solve an analogical equation consists in finding the fourth term of dogioal proportion, the
first three being known.

Definition 2.2 (Analogical equation) D is a solution of the analogical equation :AB:: C: x if
andonlyif A:B::C:D .

We already know from previous sections that, depending on the natthie objects and the defini-
tion of analogy, an analogical equation may have either no solution or aaua@ution or several
solutions. We study in the sequel how to solve analogical equations indfiffeets.

2.3 Analogical Proportion between Finite Sets and Binary Objects

When the ‘as’ relation is the equality between sets, Lepage has giveméidefof an analogical
proportion between sets coherent with the axioms. This will be useful tibse2.3.2 in which
objects are described by sets of binary features.

2.3.1 AN ANALOGICAL PROPORTION INFINITE SETS

Definition 2.3 (Analogical proportion between finite sets)Four setsA, B, C' and D are in ana-
logical proportion A : B :: C: D ifand onlyif A can be transformed int®, andC into D, by
adding and subtracting the same elementsltandC.

This is the case, for example, of the four sets= {t,tq,t3,t4, }, B = {t1,t2,t3,t5} andC =

{t1,ts,t6,t7}, D = {t1,15,t6,t7}, Wheret, has been taken off from, artg has been added té
andC, giving B andD.
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2.3.2 DLVING ANALOGICAL EQUATIONS IN FINITE SETS
Considering analogy in sets, Lepage (2003) has shown the followingetineavith respect to the
axioms of analogy (section 2.1):

Theorem 2.4 (Solution of an analogical equation in setshet A, B andC be three sets. The ana-
logical equation A : B :: C': D whereD is the unknown has a solution if and only if the following
conditions hold true:

ACBUC and ADBnNnC

The solution is then unique, given by:
D=((BUC)\A)U(BNC)

2.3.3 ANALOGICAL PROPORTIONS IN{0, 1}"

Let now X be the sef0,1}". For eachr € X and each € [1,n], fi(z) = 1 (resp. fi(x) = 0)
means that the binary featufetakes the valug§ RU E' (resp.F'ALSFE) on the objectr.

Let A:B: C:D beananalogical equation. For each featfir¢here are only eight different
possibilities of values o, B andC'. We can derive the solutions from the definition and properties
of analogy on sets, with the two following principles:

e Each feature;(D) can be computed independently.

e The following table gives the solutiofy(D):

fi(A)/0 0 0 0 1 1 1 1
fitB)]0 01 1.0 0 1 1
fitt)]0O01 0 1 0 1 0 1
fiD)yJo 1. 1.2 2 0 0 1

In two cases among the eighft{ D) does not exists. This derives from the definingtoby binary
features, which is equivalent to definidg as a finite set. Theorem 2.4 imposes conditions on the
resolution of analogical equations on finite sets, which results in the fadintbdinary analogical
eguations have no solution.

2.4 Analogical Proportion in R™
2.4.1 DEFINITION

Let O be the origin ofR". Leta = (ai,aq,...,a,)T be a vector ofR”, as defined by its:
coordinates. Let, b, c andd be four vectors oR”. The interpretation of an analogical proportion
a :b:: c: disusually thata, b, ¢, d are the corners of a parallelogramandd being opposite
corners (see Figure 1).

Deflnltlon 2.5 (Analoglcal proportion in R™) Four elements oR™ are in the analoglcal propor-
tion(a : b : d)_n>c and only if they form_(?l parallelogram, that is whér + Od = Ob + Oc
or equivalentlyab = cd or equivalentlyac = bd

It is straightforward that the axioms of analogy, given in section 2.1 aieatby this definition.
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Figure 1: Analogical parallelogram R”.

2.4.2 DLVING ANALOGICAL EQUATIONS INR™

Solving the analogical equationa: b :: ¢c: x , wherea, b andc are vectors ofR™ andx is the
unknown derives directly from the definition of analogy in vector spaties four vectors must
form a parallelogram. There is always one and only one solution giveineogquation:

— — — —
Oz = Ob+ Oc — Oa
2.5 Analogical Proportion between Sequences

2.5.1 NOTATIONS

A sequencéis a finite series of symbols from a finite alphalefThe set of all sequences is denoted
¥*. Forz, y in ¥*, zy denotes the concatenation:ofindy. We also denotéx | = n the length
of z, and we writex asz = z1...xy Or x = z[1]...z[n], with z; or z[i] € ¥. We denote: the
empty word, of null length, anil* = X*\{¢}.

A factor (or subword)f of a sequence is a sequence ii* such that there exists two sequences
wandv in X* with: x = ufv. For exampleabb andbbac are factors otibbacbbaba.

A subsequencef a sequence = x; ...z} is composed of the letters af with the indices
i1...1, SUCh thaty < is... < ip. FOr exampleg¢a andaaa are two subsequencesdafbacbaba.

2.5.2 DEFINITION

Let 3 be an alphabet. We add a new lettebipthat we denote~, giving the augmented alphabet
¥'. The interpretation of this new letter is simply that of an ‘empty’ symbol, that wenvedd in
subsequent sections.

Definition 2.6 (Semantic equivalence)Letx be a sequence &f* andy a sequence of™*. z and
y are semantically equivalernt the subsequence gfcomposed of letters af is x. We denote this
relation by=.

For exampleab «~ a « a = abaa.
Let us assume that there is an analogiini.e. that for every 4-tuple, b, ¢, d of letters ofY,
the relationa : b :: ¢ : d is defined as being eith@tRUE or FALSE.

Definition 2.7 (Alignment between two sequencesin alignmentbetween two sequencesy €
¥*, of lengthsm andn, is a wordz on the alphabet>’) x (X')\{(-, )} whose first projection
is semantically equivalent to and whose second projection is semantically equivalent to

2. More classically in language theoryward or asentence

799



MICLET, BAYOUDH & D ELHAY

Informally, an alignment represents a one-to-one letter matching betwebmdisequences, in
which some letters~- may be inserted. The matchirig, ) is not permitted. An alignment can
be presented as an array of two rows, onexf@nd one fory, each word completed with some
resulting in two words of’ having the same length.

For instance, here is alignmentbetween: = abge f andy = acde :

/

T = a b A g e f

Y = a c d “ e -

We can extend this definition to that of an alignment between four sequences

Definition 2.8 (Alignment between four sequencespn alignment between four sequences
u,v,w,z € ¥*, is a wordz on the alphabet® U {-})*\{(+, «, «~, )} whose projection on
the first, the second, the third and the fourth component is respectiveinseally equivalent to
u, v, w andzx.

The following definition uses alignments between four sequences.

Definition 2.9 (Analogical proportion between sequencesh.et u, v, w andx be four sequences
on X*, on which an analogy is defined. We say that, w andz are inanalogical proportioin >*
if there exists four sequence$§ v’, w’ andz’ of same length in 3/, with the following properties:

1. v =u,v =v,vw =wandz’ = z.
2. Vi € [1,n] the analogies; : v} :: w) : 2} hold true inX'.

One has to note that Lepage (2001) and Stroppa and Yvon (2004ahesdy proposed a defi-
nition of an analogical proportion between sequences with applications todtiggdata. Basically,
the difference is that they accept only trivial analogies in the alphabeh(@sa : b :: a : b or
a i a ).

For example, lety’ = {a,b,a, 8, B,C, -~} with the non trivial analogiesa:b :: A:B ,
a:a:xb:p and A:a : B:pg . The following alignment between the four sequene8s,
abBA, ba andfba is an analogical proportion on*:

A
A

@D o e

- § oS

e o Wl
S

3. Analogical Dissimilarity
3.1 Motivation

In this section, we are interested in defining what could be a relaxed anaibich linguistic
expression would bei'is tob almost as: is tod’. To remain coherent with our previous definitions,
we measure the term ‘almost’ by some positive real value, equal to 0 wham#hegy stands true,
and increasing when the four objects are less likely to be in analogy. Wevalgdhis value, that we
call ‘analogical dissimilarity’ (AD), to have good properties with respedhanalogy. We want it
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to be symmetrical, to stay unchanged when we permute the mean terms of theyamaddally
to respect some triangle inequality. These requirements will allow us, in sektimngeneralize
a classical fast nearest neighbor search algorithm and to exhibit aritlatgic learning process
which principle is to extract, from a learning set, the 3-tuple of objects tratheleast AD when
combined with another unknown object. This lazy learning technique is dthergeneralization
of the nearest neighbor method.

We firstly study the definition of the analogical dissimilarity on the same strucsetdas in
the previous sections, and secondly extend it to sequences.

3.2 A Definition in {0,1}"

Definition 3.1 (Analogical dissimilarity in {0,1}) The analogical dissimilarity between four bi-
nary values is given by the following table:

u 000O0OO0OOO 0O OT 171111111
v 00007111 1000U011 11
w 0011 0071100110011
x 0101 010101010101
AD(wo,w,t) |0 1L 1 0 1 0 2 1 1 2 0 1 0 1 1 0

In other words, thed D between four binary values is the minimal number of bits that have to be
switched in order to produce an analogical proportion. It can be sean axtension of the edit
distance in four dimensions which supports the coherence with analogy.

Definition 3.2 (Analogical dissimilarity in {0,1}™) The analogical dissimilarityl D (u, v, w, t) be-
tween four objects, v, w andt of a finite setX defined by binary features is the sum of the values
of the analogical dissimilarities between the features.

3.2.1 RROPERTIES
With this definition, the analogical dissimilarity has the following properties:
Property 3.1 (Properties of AD in {0, 1}")

Coherence with analogy.
(AD(u,v,w,z) =0) S u:v:w:x

Symmetry for ‘as’. AD(u,v,w,z) = AD(w, x,u,v)

Exchange of medians.AD(u, v, w,z) = AD(u,w,v, x)

Triangle inequality. AD(u,v,z,t) < AD(u,v,w,x) + AD(w, z, 2,t)
Asymmetry for ‘is to’. In general: AD(u,v,w,z) # AD(v,u, w, x)

The first properties are quite straightforward from the definition. Theatestration of the third one
is simple as well. If the property

AD(fi(u), fi(v), fi(2), fi(t)) < AD(fi(u), fi(v), fi(w), fi(x))
+ AD(fi(w), fi(x), fi(2), fi(t))
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t
W \\.X
AD(u,v,w,x) = da(t, x)

Figure 2: Analogical dissimilarity in vector spaces with distafice

holds true for every 6-tuple of elements and every feafurthen property (4) is true. The demon-
stration being done by examining all possible cases: it is impossible to find &/ bewuresa, b,

¢, d, e, f such thatAD(a,b,e, f) = 2 andAD(a,b,c,d) + AD(c,d,e, f) < 2. More precisely,
if AD(a,b,e, f) =2, AD(a,b,c,d) + AD(c,d, e, f) is also equal t@ for all the four values that
(c,d) can take.

3.3 Analogical Dissimilarity in R™

The analogical dissimilarity between four vectors must reflect in some wayfdmothey are from

constructing a parallelogram. Four vectarsy, w andz arei in analoglcal proportlon é., form a
parallelogram) with opposite sid@® andwz if and only if Ou+ Oz = 00 + Ow or equivalently
u+ x = v + w, we have chosen the following definition (see Figure 2):

Definition 3.3 (Analogical dissimilarity between vectors) The analogical dissimilarity between
four vectorsu, v, w andz of R™ in which is defined the nortn||,, and the corresponding distance
d, is given by the real positive valuéD (u, v, w, z) = é,(u+z,v +w) = |[(u+ ) — (v + w)||p.

It is also equal taj, (¢, ), wheret is the solution of the analogical equatian: v :: w : .

Property 3.2 (Properties of AD between vectors) This definition of analogical dissimilarity in
R™ guarantees that the following properties hold true: coherence with anatymgymetry for ‘as’,
exchange of medians, triangle inequality and asymmetry for ‘is to’.

The first two properties are quite straightforward from the definition. &jn, is a norm, it
respects the triangle inequality which involves the third property:

AD(u,v,z,t) < AD(u,v,w,x) + AD(w, x, z,1)

3.4 Analogical Dissimilarity between Sequences

We present in the following a definition and two algorithms. Firstly, we extenahdtien of ana-
logical dissimilarity to sequences. The first algorithm, called SEQUANA4, cdagthe analogical
dissimilarity between four sequencesXof. The second one, called SOLVANA, given an analogical
equation on sequences, produces the Directed Acyclic Graph (DA&Itbe solutions. If there is
no solution, it gives the DAG of all the sentences that have the least aaldgssimilarity when
associated with the three known sentences of the equation.
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These two algorithms are quite general, since they make no particular assuimptibe al-
phabet of the sequences. This alphabes simply augmented t&’ = ¥ U {-} to produce
alignments as described in section 2.5. The analogical dissimilarity’omust be such that:
AD(w, v a,a) = 0, and AD(«,a,b,c) > 0 for everya,b,c € X, but no more constraint is
required.

3.4.1 DEFINITION

Let X be a set on which is defined an analogical dissimila#ify. We augment it t&-’ by adding
the special symboh. We assume now that there is an analogical dissimilatiB/on X'.

Definition 3.4 (Analogical dissimilarity between four sequences)he cost of an alignmenbe-
tween four sequences is the sum of the analogical dissimilarities betweenrtulpted of letters
given by the alignment.

The analogical dissimilarityAD(u,v,w,z) between four sequences ¥ is the cost of an
alignment of minimal cost of the four sequences.

This definition ensures that the following properties hold true: coheraitbeanalogy, symmetry
for ‘as’, exchange of medians and asymmetry for ‘iSto’

Depending on what are we looking for, many methods have been deddtmpaultiples align-
ment in bio-informatics (Needleman & Wunsch, 1970; Smith & Waterman, 1981) :

1. For structure or functional similarity like in protein modelization, pattern ideatifon or
structure prediction in DNA, methods using simultaneous alignment like MSA ¢Wan
Jiang, 1994) or DCA (Dress, Fullen, & Perrey, 1995), or iterativenatignt like MUSCLE
(Edgar, 2004) are the best.

2. For Evolutionary similarity like in phylogenic classification, methods usingnassive align-
ment and tree structure, like ClustalW (Thompson, Higgins, & Gibson, 129d)the most
fitted.

However, all of these alignment methods (global or local) are heuristicitiiges to overcome the
problem of time and space complexity introduced first by the length of seqaemd second by the
number of the sequences to align. In our generation problem neithergherse length which is
around 30 characters nor the number of sequences to align which igsdiowa in analogy need a
heuristic alignment to speed up the algorithm. But techniques used in bioratics to compute
automatically the substitution matrix could be very helpful and interesting in hdttelvcharacters
recognition. Introducing Gap (Gep, Gop) penalties like in DNA or protegusaces should also be
an interesting idea to explore.

3.5 Computing the Analogical Dissimilarity between Four Sequenceshe SEQUANA4
Algorithm

We computed D (u, v, w, x) with a dynamic programming algorithm, called SEQUANA4, that pro-
gresses in synchronicity in the four sequences to build an optimal alignment.

3. With this definition of AD, the ‘triangle inequality’ property is not alwaysdmn sequences.
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The input of this algorithm is the augmented alphabebn which there an analogical dis-
similarity AD(a, b, c,d). The output is the analogical dissimilarity between four sentence® of
namelyAD (u, v, w, ).

We give below the basics formulas of the recurrence. When implementingtigutation, one
has to check the correct progression of the indéxgsk and!.

Initialisation
Cizy — 0
for i = 1,|u| do Cti% — Cupzy * + AD(uj, ) done;

for j = 1, |v| dO Cuggy « Cupgy " + AD(,v;,, ) done;
for k =1, |w| do Clovo — Cuovo 4 AD(w, o, wy, ) done;

W To WE—1T0
for [ =1,]z[ do Cy00 « Cyote  + AD(w, «, , 77) done;
Recurrence

(O 37 + AD(ug,vj,wi,ap) i =i+ 15« j+ Lk k+ 11— 1 +1]
Coi 07 + AD(ujy v, wp, ) [i =i+ 155« j+ Lk —k+1]
Cupary '+ AD(uj,vj, 0 mp) i =i+ 155« j+ Ll 1+ 1]
Cuz, ™'+ AD(ui,vj, 0, ) i =it L j+1]

Cup vz + AD(, wm) e j+lik—k+1;1—1+1]

Cod™ + AD(wvj, 1) [+ 151 1+1]

Cu?idy + AD (o, vj,w, ) i it 1k — b+ 1]

Cundy = Min { Cii?" + AD(, 05, <, <) [j—j+1]

Cuy 3 + AD(uj, o~ wi, ) [i— i+ 15— j+ 11— 1+1]
CZ?EE + AD(u;, ~,, x1) [Z<—z+1 l<—l—|—1]

Cuy iy + AD (i, wy, ) [i —i+ 1k —k+1]
Cuna” + AD(uj, oy, ) i =i+ 1]

Cun oy + AD(o, g ay) [k e k+ 150 e 1+ 1]

Curdyy + AD(y @) [l 141]

[

Coui? oy + AD( A, A, wy, ) k—k+1]
End
Wheni = |u| andj = |[v| andk = |w| andl = |z|.
Result
CZMJ‘TQTH is AD(u,v, w, x) in X*.
Complexity
This algorithms runs in a time complexity @ (|u|.|v|.|w].|z|).
Correctness

The correctness of this algorithm is demonstrated by recurrence, simsithe dynamic pro-
gramming principles. It requires only the analogical dissimilarity:irto have the properties that
we have calledcoherence with analoggymmetry for ‘asandexchange of median3 hetriangle
inequalityproperty is not necessary.
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3.6 Generalized Resolution of Analogical Equations in Sequences: th©8VANA Algorithm
3.6.1 APPROXIMATE SOLUTIONS TO AN ANALOGICAL EQUATION

Up to now, we have considered that an analogical equation has eith@raeeeral) exact solutions,
or no solution. In the latter case, the concept of analogical dissimilarity iilusedefine an
approximate solution.

Definition 3.5 (Best approximate solution to an analogical equation)let X be a set on which is
defined an analogy and an analogical dissimilarityD. Let a:b :: c:x be an analogical
equation inX. The set of best approximate solutions to this equation is given by:

{y : argmin AD(a, b, c,y)}
yeX

In other words, the best approximate solutions are the objeetsX that are the closest to be
in analogical proportion witlu, b andc. Obviously, this definition generalizes that of a solution
to an analogical equation given at section 2.2. Since we have dedibedith good properties on
several alphabets and on sequences on these alphabets, we catecmgguproximate solution to
analogical equations in all these domains.

We can easily enlarge this concept and define the set of-thest solutions to the analogical
equation a: b:: c: x . Informally, it is any subset of elements ofX which have a minimal.D
when associated in fourth position withb andc.

In R™ and{0, 1}", there is only one best approximate solution to an analogical equation, which
can be easily computed (see sections 3.2 and 3.3). Finding the setiobtst solutions is also a
simple problem.

Let us turn now to an algorithm which finds the set of the best approximétése to the
equation u:v: w:x when the objects are sequences on an alphabet on whidiDamas been
defined. We will also make some comments to extend its capacity to find the set i
solutions.

3.6.2 THE SOLVANA ALGORITHM

This algorithm uses dynamic programming to construct a 3-dimensional &itagn the construc-
tion is finished, a backtracking is performed to produce the DAG of all tiedmdutions.

An alignment of four sequences of different lengths is realized bytingeetters-~ so that all
the four sequences have the same length. Once this is done, we consédehinolumn of the
alignment the analogical dissimilarity in the augmented alphabet.

We construct a three dimensional x ny x ng matrix M (respectively the length of the first,
second and third sequencésB andC of the analogical equatiom'is to Bas Cis toz).
To find the fourth sequence, we fill ug with the following recurrence:
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=

i—1,7—1, k—l]—l—M’mAD(az,bj,ck, x)

Mli,j— 1,k — ]—i—MmAD(m bj,ck,x)

M]i, j, —1]+MmAD(mka, )
1<i,j,k<ni,na2,n e
x,),R=xN1,n2,Nn3 Mq/ 1]7 ]+MZHAD(ai,WCk;x)
M~ 1,5~ 1K + Min AD(ay.b;.~.2)

[
[
(2,
Mli,j, k] = Min Mli,j —1,k] +Mzn AD(~,bj,, x)
[
[
[i

M

i—1,7, ]—l—Mm AD(az,m,m x)
zeXx!
a; is thei'" object of the sequencé. ¥’ = X U {-}.

At each step, we save in the céll[i, j, k] not only the cost but also the letter(s) found by analogical
resolution along the optimal way of progression. Whdénis completed, a backward propagation
gives us all the optimal generated sequences with the same optimal anatbgsialilarity, stru-
cured as a DAG.

The computational complexity of this algorithm@m * n3), wherem = Card(X') andn is the
maximum length of sequences

3.6.3 EXAMPLE
LetX = {a,b,c, A, B,C} be an alphabet defined by 5 binary features, as follows:

fi fo f3 fi fs
a |l O O 1 O
b |0 1 O 1 O
c |0 O 1 1 O
A|l1 O 0 O 1
B |0 1 0 O 1
c|0 O 1 O 1
-0 0 O 0 O

The first three features indicates what is the letter (for exanjplis,true ona and A only) and the

last two indicate the case of the lettg} folds true for lower case letters; for upper case letters).
For example, letab: Bc:: Bc: x be an analogical equation. There is no exact solution, but six

best approximate solutionssuch thatA D (ab, Be, Be,y) = 4, for exampley = BB ory = Ce.

Figure 3 displays the DAG of the results produced by SOLVANA on this examp

4. Analogical Dissimilarity and Machine Learning
4.1 Motivation

We assume here that there exists an analogy defined on tt& aet an analogical dissimilarity
AD with the following properties: coherence with analogy, symmetry for ‘agintfle inequality,
exchange of medians and asymmetry for ‘is to’.

Let S be a set of elements df, which is of cardinalitym, and lety be another element of
with y ¢ S. The problem that we tackle in this section is to find the triple of objécts, w) in S
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Figure 3: Result of SOLVANA: the DAG of all best approximate solutions to an aicalagguation
on sequences. Each path displays a different alignment of optimal cost.

such that:

AD(u,v,w,y) = argmin AD(t1,t2,t3,y)
t1,ta,t3€S

This will directly lead us to use the notion dfD in supervised machine learningg. of a classifi-
cation rule.

4.2 The Brute Force Solution

An obvious solution is to examine all the triples$h This brute force method requires® calls
to a procedure computing the analogical dissimilarity between four objecks. oAccording to
the properties of analogical dissimilarity, this number can actually be diviged) but it does not
change the theoretical and practical complexity of the search.

The situation is similar to that of the search for the nearest neighbor in Matkiarning, for
which the naive algorithm requires distance computations. Many proposals have been made to
decrease this complexity (see for example the work of Chavez, NaBaeza-Yates, & Marroquin,
2001). We have chosen to focus on an extension of the AESA algorithsedlan the property
of triangle inequality for distances (Mic6, Oncina, & Vidal, 1994). Since hawe defined the
concept of analogical dissimilarity with a similar property, it is natural to explaw to extend this
algorithm.
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4.3 'FADANA': FAst search of the least Dissimilar ANAlogy

This section describes a fast algorithm to find, given a set of obigaf cardinaltym and an
objecty, the three object§z*, t*, z*) in S such that the analogical dissimilarityD (z*, t*, x*, y)

is minimal. It is based on the AESA technique, which can be extended to araldgsimilarity.
Thanks to its properties, an analogical dissimiladt®(z, ¢, x, y) can be seen as a distance between
the two couples$z, t) and(z, y), and consequently we will basically work on couples of objects. We
use equivalently in this paragraph the terms ‘(analogical) distance betivedéwo couplegu, v)

and (w, z)" and ‘(analogical) dissimilarity between the four elements,w andz’ to describe
AD(u,v,w,x).

4.3.1 RELIMINARY COMPUTATION

In this part, which is done off line, we have to compute the analogical dissimilagityeen every
four objects in the data base. This step has a complexity in time and spéerdf, wherem

is the size ofS. We will come back to this point in section 4.4, where we will progress from an
AES A-like to a LAE S A-like technigue and reduce the computational complexity.

4.3.2 RRINCIPLE OF THEALGORITHM

The basic operation is to compose a couple of objects by addip@toobjectr; € S wherei =

1, m. The goal is now to find the couple of objectsSrhaving the lowest distance with;;, v), then

to changer; into ;1. Loopingm times on arAESAlike select and eliminate technique insures to
finally find the triple inS having the lowest analogical dissimilarity when associated with

4.3.3 NOTATIONS

Let us denote:
¢ C the set of coupleéu, v) which distance tqx;, y) has already been computed.

Y (5 = arg mln(AD(Z, t7 xi: y))
(z,t)eU

° 51 = argmin (AD(Z,t,CCZ,y))
(z,6)eU1<5<s

Dist = {AD(z,t,x;,y), (2,t) € C}
Dist(j) thej*" element ofDist
o Quady = {(z,t,x:,9), (2,t) € C}

e Quady(j) the ' element ofQuady,

The algorithm is constructed in the three following phases:

4.3.4 INITIALIZATION

Each time thatr; changes (wher is increased by 1), the sét is refilled with all the possible
couples of objects S.
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The setC and Dist which contain respectively the couples and the distancés;tg) that have
been measured during one loop, are initialized as empty sets.

The local minimumM in, containing the minimum of analogical dissimilarities of one loop is
set to infinity.

k = Card(C) represents the number of couples where the distance have been comijthted
(z4,y) in the current loopk is initialized to zero.

Algorithm 1 Algorithm FADANA: initialization.
begin
U —{(z,z;), i=1,mandj =1,m};
C«— @
Min «— 4o0;
Dist «— @;
k—0;
end

4.3.5 FLECTION
The goal of this function is to extract from the géthe couple(zz, tt) that is the more promising
in terms of the minimum analogical dissimilarity witl;, v), using the criterion:

(zz,tt) = argmin Mazx ‘ AD(u,v,z,t) — AD(z,t,z;,y) ‘
(uw)eu (zH)eC

Algorithm 2 Algorithm FADANA: selection of the most promising couple.
sel ection4,C, (z;,y), Dist)
begin
s—20
for i = 1, Card(U{) do
if s <> .cclAD(zj, tj, us, v;) — Dist(j)| then
s — > jec |[AD(25, tj, us, v;) — Dist(j)[;
arg min <— 1,
end if
end for
Return(uarg min, Varg min);
end

4.3.6 H.IMINATION

During this section all the couplés, v) € U where the analogical distance with;, y) can not be
less than what we already found are eliminated thanks to the two criteria below:

AD(U7U7Z7t) < AD(Z7t7y7xz) 0= AD(U,’U,(L‘Z‘,y) Z o

and
AD(U,’U,Z,t) > AD(thayaxi) +0 = AD(U,U,QZ‘Z‘,y) > 0
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whered = AD(z*,t*, z*, y) represents the minimum analogical dissimilarity found until now (see
figure 4). Note thab is updated during the whole algorithm and is never reinitialized whisn
increased.

Algorithm 3 Algorithm FADANA: elimination of the useless couples.
elimnate4,C, (z;,y),0,k)
(21, t1) is thekt" element ofQuady,
begin
for i = 1, Card(U) do
if AD (2, tx, u;, v;) < Dist(k) + d then
U—U—{(u;, vi)};
C — CU{(u4, v5)};
else ifAD(zg, tx, u;, v;) > Dist(k) — 6 then
U—Uu-— {(’u“ 1}1)},
C—Cu {(ui, ’Ui)};
end if
end for
end

Algorithm 4 Algorithm FADANA: main procedure.
begin
S —{z;, i=1,m};
AD* «— +00;
for i = Card(S) do
Initialize;
while Y # @ do
(2,t) «—sel ection,C, (z;,y), Dist);
Dist(k) «— AD(z,t,x,y);
k=k+1,
U—U-{(z1)}
C—CuU{(zt)};
if Dist(k) > Min then
el imnated,C, (z;,y),0,k)
else
Min « Dist(k);
if Dist(k) < AD* then
AD* « Dist(k);
Xz, tF—t, TF — xy;
end if
for k =1,Card(C) do
elimnated,C, (zi,y),0,k)
end for
end if
end while
end for
The best triple irS is (2*,t*, 2*) ;
The least analogical dissimilarity $D* = AD(z*,t*,z*,y) ;
end
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Figure 4: Elimination process in FADANA.

4.4 Selection of Base Prototypes in FADANA

So far,FADANAhas the drawback of requiring a precomputing time and storagkin’), which
is in practice impossible to handle for > 100.

To go further, we have devised an ameliorated version of the FADANArisigo, in which the
preliminary computation and storage is limited¥om?, whereN is a certain number afouplesof
objects. The principle is similar to that afAES A (Mic6 et al., 1994).N base prototypesouples
are selected among the? possibilities through a greedy process, the first one being chosen at
random, the second one being as far as possible from the first ongp amd The distance between
couples of objects is, according to the definition of the analogical dissimilarity:

6(($, y), (z, t)) = AD(z,t,z,y)

4.5 Efficiency of FADANA

We have conducted some experiments to measure the efficiency of FADANAave tested this
algorithm on four databases from the UCI Repository (Newman, HettickeB&aMerz, 1998), by
noting each time the percentage4D computed in-line for different numbers of base prototypes
compared to those made by the naive method (see Figure 5, the scalesdtlritg). The number
of base prototypes is expressed as percentage on the learning sédugBhuf the learning set
containsm elements, the number of possible 3-tuples that can be buitfisThis point explains
why the percentage of base prototypes compared to the size of the lesehaan rise abovE)0%.
The number of in-line computations of theD is the mean over the test set.

We observe in these results that the optimal number of base prototypes éeh&di and20%
if we aim to optimize the computation time performance.

5. Two Applications in Machine Learning Problems
5.1 Classification of Objects Described by Binary and Nominal Featur®

The purpose of this first experiment is to measure the benefit of andldggsanilarity applied to
a basic problem of classification, compared to standard classifiergesuelrest neighbors, neural
networks, and decision trees. In this benchmarking, we are not yeestéer in classifying se-
guences, but merely to investigate what the basic concept of analo@isahitarity can bring to
the learning of a classification rule for symbolic objects.

811



MICLET, BAYOUDH & D ELHAY

- « ‘Breast-Cancer —=—Balance-Scale
— -Breast-W —>Bridges

100%

10 100 1000

10% A

Percentage of computed AD.

0%

Percentage of base prototypes in the learning set

Figure 5: Efficiency of FADANA w.r.t. the number of base prototypes

5.1.1 MeETHOD DESCRIPTION

LetS = { (05, h(0;)) | 1 <i < m} be alearning set, whergo;) is the class of the objeet. The
objects are defined by binary attributes. kdie an object not its. The learning problem is to find
the class of a new objeat using the learning s&l. To do this, we define a learning rule based on
the concept of analogical dissimilarity depending on an intégerhich could be called thk least
dissimilar 3-tuplerule.

The basic principle is the following: among all the 3-tuplesh, c) in S3, we consider the subset
of those which produce the least analogical dissimilarity when associatedewitte FADANA
algorithm is used here). For a part of them, the analogical equaki(a : h(b) :: h(c): g has an
exact solution in the finite set of the classes. We keep only these 3-tuglegeachoose the class
which takes the majority among these valyess the class far.

More precisely, the procedure is as follows:

1. Compute the analogical dissimilarity betweeand all then 3-tuples inS which produce a
solution for the class af.

2. Sort these: 3-tuples by the increasing value of theiiD when associated with.

3. If the k-th object has the valug then letk’ be the greatest integer such that ie¢h object
has the same valye

4. Solve thé’ analogical equations on the label of the class. Take the winner of thearotasy
the k' results.

To explain, we firstly consider the case where there are only two clagseslw;. An example
with 3 classes will follow.

Point 1 means that we retain only the 3-tuples which have one of thé donfigurations for
their class displayed in Table 1. We ignore the 3-tuples that do not lead guatien with a trivial
solution on classes:

4. There are actually two more, each one equivalent to one of theligpuxchange of the means objects).
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h(a) : h(b) == h(c) : h(x) | resolution
wo  owo i owo : ? | h(z)=wo
w1 wo w1 ?
w1 w1 w1 ? | h(z)=w
wo w1 wo ?

Table 1: Possible configurations of a 3-tuple

01 02 03 | h(o1) h(o2) h(os) | h(z) | AD | k
b a d wo wo w1 w1 0 1
b d e wo w1 w2 1 1
c d e w1 w1 wa wa 1 2
a b d wo wo w1 w1 1 3
c a e w1 wo wa 1 2
d ¢ e w1 w1 wa wo 2 4
d b ¢ w1 wo w1 wo 2 5
a ¢ e wo w1 wa 1 2
a ¢ c wo w1 w1 1 3
a b e wo wo wa wa 3 6
b a e wo wo wa wo 3 7
b ¢ d wo w1 w1 1 3
c ¢ ¢ w1 w1 w1 w1 4 8
a a ¢ wo wo w1 w1 4 9

Table 2: An example of classification by analogical dissimilarity. Analogicapprtions whose
analogical resolution on classes have no solution (representdd lye not taken into
account.AD is short forAD (o1, 02, 03, ).

Example

LetS = {(a,wo), (b,wo), (c,w1), (d,w1), (e,w2)} be a set of five labelled objects and tetZ S
be some object to be classified. According to the analogical proportiomaxithere is onlyrs
(= (Card(S)? + Card(S)?)/2) non-equivalent analogical equations amdg(= Card(S)?)
equations that can be formed between three objectsf@amdz. Table (2) shows only the firdtd
lines after sorting with regard to some arbitrarily analogical dissimilarity. Theviing table gives
the classification of an objeataccording tok:

k 1234567
4 1335577
]classificationo&\l 11?2222
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5.1.2 WEIGHTING THE ATTRIBUTES

The basic idea in weighting the attributes is that they do not have the same ingedriahe classi-
fication, and that more importance has to be given to the most discriminatiedd&a of selecting
or enhancing interesting attributes is classical in Machine Learning, drggiite new in the frame-
work of analogy. In a paper of Turney (2005), a discrimination is dgniesleping the most frequent
patterns in words. Therefore, a greater importance is given to the attriiiatieare actually discrim-
inant. However, in an analogical classification system, there are seayalto find the class of the
unknown element. Let us take again the preceding two class problem ex@eplable 1) to focus
on this point.

We notice that there are two ways to decide between the ¢lpand the class;, (there is also
a third possible configuration which is equivalent to the second by egehahthe means). We
therefore have to take into account the equation used to find the clasds Wiig we define a set
of weights for each attribute, depending on the number of classes. $hissare stored in what we
call ananalogical weighting matrix

Definition 5.1 An analogical weighting matrixi{’) is a three dimensional array. The first di-
mension is for the attributes, the second one is for the class of the first elémem analogical
proportion and the third one is for the class of the last element in an analbgicaortion. The
analogical proportion weighting matrix is@ x C' x C matrix, whered is the number of attributes
andC is the number of classes.

For a given attributen, of rankk, the elementV;; of the matrix indicates which weight must
be given taz;, when encountered in an analogical proportion on classes whose lfrsteat isw;,
and for whichw; is computed as the solution.

Hence, for the attributey,:

Last element (decision)
classw; classw;
First ele- classw; Wi Whj
ment classw; | Wi Wiy

Since we only take into account the 3-tuples that give a solution on the éeiséxh, all the possible
situations are of one of the three patterns:

Possible patterns First | Decision
element| class

Wi W Wyl Wy Wi Wi

Wi Wi LWL Wy wj Wi

Wi « Wi Wi L Wi Wi wj

This observation gives us a way to compute the valligs from the learning set.

5.1.3 LEARNING THE WEIGHTING MATRIX FROM THE TRAINING SAMPLE

The goal is now to fill the three dimensional analogical weighting matrix usindegmming set.
We estimatdVy,;; by the frequency that the attributeis in an analogical proportion with the first
element class);, and solves in class;.

Firstly, we tabulate the splitting of every attributg on the classes;:
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. classy; ...
ak:() nog
ar=11... ny

whereay, is the attributek andng; (resp.ny;) is the number of objects in the clasthat have the
value0 (resp. 1) for the binary attributek. Hence,Z}ﬁ:O Ziczl ng; = m (the number of objects
in the training set). Secondly, we compulg,;; by estimating the probability to find a correct
analogical proportion on attribufewith first element class; which solves in class;.

In the following table we show all the possible ways of having an analogicgigstion on the
binary attributek. 0, (resp.1;) is the0 (resp.1) value of the attributé that has class);.

P (1% estimates the probability that the first analogical proportion in the table alooueso

Pk(ISt) = ngmgmgjnoj/m4

FromWy,; = P(1%%) + - - - + Pi(6™), we compute
Wkij = ((ngl + ni)(ngj + n%]) + 2 % nomojnlmlj)/(G * m4)

The decision algorithm of section 5.1.1 is only modified at point 1, which turtts Weighted
Analogical Proportion Classifie(iW APC):

e Givenz, find all then 3-tuples inS which can produce a solution for the classcofor every
3-tuple among these, say(a, b, c), consider the class; of the first element and the class
w; of the solution. Compute the analogical dissimilarity betweemd this 3-tuple with the

weightedAD:
d

AD(a,b,c,x) = Z Wiij AD(ag, by, cx, Tk)
k=1

Otherwise, if point 1 is not modified, the method is calfethlogical Proportion ClassifiefAPC).

5.1.4 EXPERIMENTS AND RESULTS

We have applied the weighted analogical proportion classifiedPC) to eight classical data
bases, with binary and nominal attributes, of the UCI Repository.

MONK 1,2 and 3 Problems 0.1, MO.2 and MO.3), MONK3 problem has noise added.
SPECT heart data$P). Balance-Scale(B.§ and Hayes Roth (H.R) database, both multiclass
databaseBreast-W (Br.) andMushroom (Mu.), both data sets contain missing valu&svs-kp
Kasparov vs Karpowq( k).

In order to measure the efficiency Bf APC, we have applied some standard classifiers to the
same databases, and we have also apglied' to point out the contribution of the weighting matrix
(Sect.5.1.2). We give here the parameters used for the comparison meffaiularB:
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¢ Decision Table the number of non improving decision tables to consider before abarglonin
the search is.

e 1d3: unpruned decision tree, no missing values allowed.

e Part: partial C4.5 decision tree in each iteration and turns the ‘best’ leaf into aQule-per-
value encoding.

e Multi layer Perceptron: back propagation training, One-per-value encoding, one hidden
layer with (# classes + # attributes)/2 nodes.

e LMT (logistic model trees’): classification trees with logistic regression funstianthe
leaves, One-per-value encoding.

e |IB1: Nearest-neighbor classifier with normalized Euclidean distance, whigh lhetter re-
sults thaniB10.

¢ JRip: propositional rule learner, Repeated Incremental Pruning to Prdeiuoe Reduction
(RIPPER), optimized version of IREP. .

We have worked with the WEKA package (Witten & Frank, 2005), choo6idgferent classi-
fication rules on the same data. Some are well fit to binary data, like ID3, PB&dision Table.
Others, like IB1 or Multilayer Perceptron, are more adapted to numeridahaisy data.

The results are given in Table 3. We have arbitrarily taken 100 for our two rules. The value
k is not very sensitive in the case of nominal and binary data and on smdikedatasuch as the ones
that are used in the experiments (see Figure 6). However, it is possitdeiaising a validation
set.
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Figure 6: Modification in recognition rate subjectitoFull line and dotted line are respectively the
recognition rates on the database ‘breast-w’ and ‘vote’.

We draw the following conclusions from this study: firstly, according to thedyclassification
rate of W APC in Br. andMu. databases, we can say th&tA PC handles the missing values
well. Secondly,W APC seems to belong to the best classifiers for B:8 and H.R databases,
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Methods MO.1| MO.2|MO.3| SP.| B.S| Br. | H.R| Mu. | k.k.
nb. of nominal atts. 7 7 7 22 | 4 9 4 | 22| 34
nb. of binary atts. 15 15 15 | 22| 4 9 4 | 22 | 38
nb. of train instances | 124 | 169 | 122 | 80 | 187| 35 | 66 | 81 | 32
nb. of testinstances | 432 | 432 | 432 | 172 | 438 | 664 | 66 |8043|3164
nb. of classes 2 2 2 2 3 2 4 2 2
WAPC (k = 100) 98% | 100% | 96% | 79% | 86% | 96% |82% |98% | 61%
APC (¢ = 100) 98% |100% | 96% | 58% |86% |91% | 74% |97% | 61%
Decision Table 100%| 64% | 97% | 65% | 67% | 86% | 42% |99% | 72%
Id3 8% | 65% |94% | 71% | 54% | — |71%| — | 71%
PART 93% | 78% | 98% |81%| 76% | 88% |82% |94% | 61%
Multi layer Perceptron 100% | 100% | 94% | 73% | 89% | 96% | 77% |96% | 76%
LMT 94% | 76% | 97% |77% |89% | 88% |83% |94% | 81%
IB1 79% | 4% | 83% |80% | 62% |96% | 56% |98% | 71%
IBKk (k = 10) 81% | 79% | 93% |57% | 82% | 86% | 61% | 91% | —
IB1 (k = 5) 73% | 59% | 97% | 65% | 78% | 95% | 80% |97% | —
JRip 75% 62.5% | 88% |80% | 69% | 86% | 85% | 97% | 94%

Table 3: Comparison Table betweBAAPC and other classical classifiers on eight data sets. Best
classifiers on a database are in bold with a significance level eqb#l.to

which confirms thal? APC' deals well with multiclass problems. Thirdly, as shown by the good
classification rate oV’ APC in the MO.3 problem, W APC' handles well noisy data. Finally, the
results orMO. andB.Sdatabase are exactly the same with the weighted decisioMfldlé&C than
with APC'. This is due to the fact that al D that are computed up to = 100 are of null value.
But on the other data bases, the weighting is quite effective. Unfortutiagiyast database show
that W APC have a poor recognition rate on some databases, which means that at@aloofyfit

all classification problems.

5.2 Handwritten Character Recognition: Generation of New Examples
5.2.1 INTRODUCTION

In a number of Pattern Recognition systems, the acquisition of labeled datpeissiéxe or user
unfriendly process. For example, when buying a smartphone equipged Wwandwritten recogni-
tion system, the customer is not likely to write dozens of examples of every latiatigit in order
to provide the system with a consequent learning sample. However, tdiciergf any statistical
classification system has to be retrained to the new personal writing style newhpatterns with
as many examples as possible, or at least a sufficient number of wedirchramples.

To overcome this paradox, and hence to make possible the learning ofsdietasith very
few examples, a straightforward idea is to generate new examples bymhnaldding noise to the
elements of a small learning sample. In his recent book, Bishop (20059 givtheoretical coverage
of such a procedure, but rather draws a pragmatic conclusion: ‘e addition of random noise to
the inputs . .. has been shown to improve generalization in appropriatensitances’.

As far as character recognition is concerned, generating synthetidadatse learning of a
recognition system has mainly be used with offline systems (which processage of the char-
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Figure 7: @) Resolution on Freeman direction sequences by BRhe corresponding characters
representation.

acter). For offline character recognition, several image distortions hewever been used (Cano,
Pérez-Cortes, Arlandis, & Llobet, 2002): slanting, shrinking, ink immsind ink dilatation. For
online character recognition, several online distortions have beenssddas speed variation and
angular variation (Mouchére, Anquetil, & Ragot, 2007).

We therefore are interested in the quick tuning of a handwritten charactegmition to a new
user, and we consider that only a very small set of examples of eachcoda(typically 2 or 3) can
be required from the new user. As we learn a writer-dependent sy#teraynthetic data have to
keep the same handwriting style as the original data.

5.2.2 ANALOGY BASED GENERATION

In this second experiment, we are interested in handwritten charactac$, are captured online.
They are represented by a sequence of letteds, efhereX = {1,2,...,16,0,C, ..., N} is the al-
phabet of the Freeman symbols code augmented of symbasadborage pointsThese anchorage
points come from an analysis of the stable handwriting properties, as didgfirilouchere et al.,
2007): pen-up/down, y-extrema, angular points and in-loop y-extrema.

Having a learning set that contains a few examples of each letter, weatgeegnthetic examples
by analogical proportion as described in section 3.6 (see Figure 7xtetiby generating artificial
examples of the lettef by analogical proportion using only three instances we augment the lgarnin
set with new and different examples as shown in the following pictures.

29 L L

Oiginal letters Anal ogy based generated letters

5.2.3 EXPERIMENTS

In this section we show that our generation strategies improves the recagaitoof three classical
classifiers learned with few data.

Experimental Protocol In the data base that we use (Moucheére et al., 2007), twelve different
writers have written 40 times the 26 lowercase letters (1040 characterdyDA.aNe use a 4-fold
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stratified cross validation. The experiments are composed of two phasdsdh three writer-
dependent recognition systems are learned: a Radial Basis FunctioarkéRBFN), a K-Nearest
Neighbor (K-NN) and a one-against-all Support Vector Machine ($VM

Firstly, we compute two Reference recognition Rates without data generati®h) which is
the recognition rate achievable with 10 original characters without cteairgeneration an@&® R30
gives an idea of achievable recognition rates with more original datati¢ahc speaking, in the
context of on the fly learning phase we should not ask the user to inputthraordl0 characters per
class.

Secondly the artificial character generation strategies are tested. h@nangiter, one to ten
characters per class are randomly chosen. Then 300 synthetictelnsuzar class are generated to
make a synthetic learning database. This experiment is done 3 times pevalrdagon split and
per writer (12 times per user). The mean and the standard deviation ofltheszformance rates
are computed. Finally the means of these measurements are computed to giex dependent
mean recognition rate and the associated standard deviation.

We study three different strategies for the generation of synthetic lgpdiaitabases. The strat-
egy 'Image Distortions’chooses randomly for each generation one among several image distor-
tions. In the same way the straté@nline and Image Distortionsthooses randomly one distortion
among the image distortions and online distortions. Rmalogy and Distortionsstrategy gener-
ates two-thirds of the base with the previous strategy and the remaining thirdRigieneration.

Results Figure 8 compares the recognition rates achieved by the three genetadimgiss for
the three classifiers. Firstly we can note that the global behavior is the sathe three classifiers.
Thus the following conclusions do not depend on the classifier type n8ctine three generation
strategies are complementary because u€hmjine and Image Distortionsis better tharilmage
Distortions’ alone andAnalogy and Distortionsis better than using distortions. Furthermore us-
ing only four original character with the complete generation strategy is lb#ertheRR10. The
RR30 is achieved by using 9 or 10 original characters. Thus we can conttiatiasing our gener-
ation strategies learns classifier with very few original data as efficientigiag original data from

a long input phase : we need about three times fewer original data to ach&egame recognition
rate.

Comparing ‘Image Distortions’, ‘Online Distortions’ and ‘Analogy’ alonesls that ‘Analogy’
is less efficient than thad-hocmethods. Nevertheless, generating sequences by approximate ana-
logical proportion is meaningful and somewhat independant of clagtgtalsions. In other words,
the analogy of character shapes, which is used in ‘natural intelligemeeheen somehow captured
by our definition and algorithms.

Our aim here is to know if the difference of the average of the three methaigificant. We
have performed two methods of validation to evaluate the difference betweestategies. The first
method is parametric: the TEBT (Gillick & Cox, 1989). The second method is non-parametric:
the SGN TEST (Hull, 1993). In both methods, the comparaison is between the first anétbad
strategy then between the second and the third strategy on each numhbginafl characters.

The T-TEsTcompares the value of the difference between the two generation methadding
to the variation between the differences. The assumption is that the ednsaanormal distribution
and that the errors are independent. If the mean difference is largeacoigpo the standard
deviation, the two strategies are statistically different. In our case, thelpitiyp that our results
are a random artefact is less theom 2,

819



MICLET, BAYOUDH & D ELHAY

The SGN TESTis non-parametric comparison method. Its benefit is to avoid assumptions on
the normal distribution of the observations and the errors. This test espéach difference by the
sign of this difference. The sum of these occurrences is comparedyvaltheof the hypothesi#

(Ho: the difference between the methods is not significant). Thus if a stratéggisently better
than the expected mean, then this strategy is significantly better. In outlvageobability that the
hypothesisH, is true is less tham0—3%. Hence, the difference is significantly better.
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Figure 8: Writer-dependent recognition rates (mean and standardidey@epending on the num-

ber of used original characters compared to reference rates usog300characters per
class for RBFN, KNN and SVM classifiers.

6. Conclusions and Future Work

In this article, we have investigated a formal notion of analogy betweendijects in the same
universe. We have given definitions of analogy, formulas and algorifomsolving analogical
equations in some particular sets. We have given a special focus otsadijeictured as sequences,
with an original definition of analogy based on optimal alignments. We alsoih&regluced, in a
coherent manner, the new notion of analogical dissimilarity, which quantifiesfar four objects
are from being in analogy. This notion is useful for lazy supervisechiegr we have shown
how the time consuming brute force algorithm could be ameliorated by genegadiZast nearest
neighbor search algorithm, and given a few preliminary experiments. vowauch is left to be
done, and we want especially to explore further the following questions:
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e What sort of data are particularly suited for lazy learning by analogy?kiéev from the
bibliography that linguistic data have been successfully processed witlingady analogy
techniques, in fields such as grapheme to phoneme transcription, morghéogslation.
We are currently working on experiments on phoneme to grapheme traiscrighich can
be useful in some special cases in speech recognition (for propesponexample). We
also are interested on other sequential real data, such as biosexjuemdgch the analogical
reasoning technique is (rather unformally) presently already usedsédibetion of the data
and of the supervision are equally important, since both the search of thdissemblant
analogic triple and the labelling process are based on the same conceplagfya

e What sort of structured data can be processed? Sequences callynati extended to or-
dered trees, in which several generalizations of alignments have abeadydefined. This
could be useful, for example, in extending the nearest neighbor techimi¢parning prosodic
trees for speech synthesis (Blin & Miclet, 2000). We could also imagine ¢optesices mod-
els, like Hidden Markov Models (HMM) could be combined through an ane&gonstruc-
tion.

e What sort of algorithms can be devised to let large amount of data begsextdy such
techniques? We have given a first answer with the FADANA algorithm, amdielieve that
the quality of the results can be still increased. More experiments remain tmieeadth this
type of algorithm. We have to notice also that not all the properties of analajgsimilarity
have been used so far. We believe that an algorithm with a precomputing stodage in
O(m) can be devised, and we are currently working on it.

In conclusion, we are confident in the fact that the new notion of anabdissimilarity and the
lazy learning technique that we have associated with it can be extended ¢oreabdata, other
structures of data and larger problems.
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