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Abstract

In this paper, we elucidate the equivalence between inference in game theory and machine
learning. Our aim in so doing is to establish an equivalent vocabulary between the two
domains so as to facilitate developments at the intersection of both fields, and as proof of
the usefulness of this approach, we use recent developments in each field to make useful
improvements to the other. More specifically, we consider the analogies between smooth
best responses in fictitious play and Bayesian inference methods. Initially, we use these
insights to develop and demonstrate an improved algorithm for learning in games based
on probabilistic moderation. That is, by integrating over the distribution of opponent
strategies (a Bayesian approach within machine learning) rather than taking a simple em-
pirical average (the approach used in standard fictitious play) we derive a novel moderated
fictitious play algorithm and show that it is more likely than standard fictitious play to
converge to a payoff-dominant but risk-dominated Nash equilibrium in a simple coordina-
tion game. Furthermore we consider the converse case, and show how insights from game
theory can be used to derive two improved mean field variational learning algorithms. We
first show that the standard update rule of mean field variational learning is analogous
to a Cournot adjustment within game theory. By analogy with fictitious play, we then
suggest an improved update rule, and show that this results in fictitious variational play,
an improved mean field variational learning algorithm that exhibits better convergence in
highly or strongly connected graphical models. Second, we use a recent advance in fictitious
play, namely dynamic fictitious play, to derive a derivative action variational learning al-
gorithm, that exhibits superior convergence properties on a canonical machine learning
problem (clustering a mixture distribution).
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1. Introduction

There has recently been increasing interest in research at the intersection of game theory
and machine learning (Shoham, Powers, & Grenager, 2007; Greenwald & Littman, 2007).
Such work is motivated by the observation that whilst these two fields have traditionally
been viewed as disparate research areas, there is actually a great deal of commonality
between them that can be exploited within both fields. For example, insights from the
machine learning literature on graphical models have led to the development of efficient
algorithms for calculating Nash equilibria in large multi-player games (Kearns, Littman, &
Singh, 2001). Similarly, the development of boosting algorithms within machine learning
has been facilitated by regarding them as being engaged in a zero-sum game against a base
learner (Freund & Schapire, 1997; Demiriz, Bennett, & Shawe-Taylor, 2002).

While such interdisciplinary inspiration is promising, unless there is a clearer under-
standing of the principal connections that exist between the two disciplines, these examples
will remain isolated pieces of research. Thus, the general goal of our work is to explore in a
more formal way the commonalities between game theory and machine learning. In order
to do so, we consider an important problem that is central to both fields; that of making
inferences based on previous observations.

We first consider game theory, where this problem occurs in the context of inferring
the correct strategy to play against an opponent within a repeated game. This is generally
termed learning in games and a common approach is to use an algorithm based on fictitious
play (see Fudenberg & Levine, 1999). Here, we show that an insight from Bayesian inference
(a standard machine learning technique) allow us to derive an improved fictitious play
algorithm. More specifically, we show that by integrating over the distribution of opponent
strategies (a standard approach within machine learning), rather than taking a simple
empirical average (the approach used within the standard fictitious play algorithm), we can
derive a novel moderated fictitious play algorithm. Moreover, we then go on to demonstrate
that this algorithm is more likely than standard fictitious play to converge to a payoff-
dominant but risk-dominated Nash equilibrium in a simple coordination game1.

In the second part of the paper, we consider the mean field variational learning algo-
rithm, which is a popular means of making inferences within machine learning. Here we
show that analogies with game theory allows us to suggest two improved variational learning
algorithms. We first show that the standard update rule of mean field variational learning
is analogous to a Cournot adjustment process within game theory. By analogy with fic-
titious play, we suggest an improved update rule, which leads to an improved mean field
variational learning algorithm, which we term fictitious variational play. By appealing to
game-theoretic arguments, we prove the convergence of this procedure (in contrast standard
mean-field updates can suffer from “thrashing” behaviour (Wolpert, Strauss, & Rajnarayan,
2006) similar to a Cournot process), and we show that this algorithm exhibits better con-
vergence in highly or strongly connected graphical models. Second, we show that a recent
advance in fictitious play, namely dynamic fictitious play (Shamma & Arslan, 2005), can
be used to derive the novel derivative action variational learning algorithm. We demon-

1. We note here that a form of Bayesian learning in games is known to converge to equilibrium (Kalai
& Lehrer, 1993). However, in that work the players perform Bayesian calculations in the space of all
repeated game strategies, resulting in extremely complex inference problems. In contrast, we consider a
Bayesian extension of fictitious play, using insights from machine learning to aid myopic decision-making.
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strate the properties of this algorithm on a canonical machine learning problem (clustering
a mixture distribution), and show that it again exhibits superior convergence properties
compared to the standard algorithm.

When taken together, our results suggest that there is much to be gained from a closer
examination of the intersection of game theory and machine learning. To this end, in this
paper, we present a range of insights that allow us to derive improved learning algorithms
in both fields. As such, we suggest that these initial first steps herald the possibility of more
significant gains if this area is exploited in the future.

The remainder of the paper is organised as follows. In section 2 we discuss work related
to the interplay of learning in games and machine learning. Then, in section 3 we discuss how
techniques within machine learning can be used in relation to learning in games. We review
the standard stochastic fictitious play algorithm, and then go on to derive and evaluate our
moderated fictitious play algorithm. We then change focus, and in section 4, we show how
techniques within game theory apply to machine learning algorithms. Again, we initially
review the standard mean field variational learning algorithm, and then, by analogy with
fictitious play and the Cournot adjustment, present in section 4.2 our fictitious variational
play algorithm. In section 4.3 we continue this theme and incorporate insights from dynamic
fictitious play to derive and evaluate our derivative action variational learning algorithm.
Finally, we conclude and discuss future directions in section 5.

2. Related Work

The topics of inference and game theory have traditionally been viewed as separate research
areas, and consequently little previous research has exploited their common features to
achieve profitable cross-fertilisation.

One area where progress has been made is in the use of concepts from game theory to
find the optimum of a multi-dimensional function. In this context, Lambert, Epelman, and
Smith (2005) used fictitious play as an optimisation heuristic where players each represent
a single variable and act independently to optimise a global cost function. The analysis
restricts attention to the class of objective functions that are products of these independent
variables, and is thus rather limited in practice.

In a similar vein, Wolpert and co-authors consider independent players who, through
their actions, are attempting to maximise a global cost function (Lee & Wolpert, 2004;
Wolpert, 2004). In this body of work, however, the optimisation is to be carried out
with respect to the joint distributions of the variables chosen by all players. A mean-field
approach is taken, resulting in independent choices for each player; the approach is very
similar in flavour to that presented in Section 4 of this article. However, in this paper we
explicitly use advances in the theory of learning in games to develop improved optimisation
algorithms.

In the context of improving game-theoretical algorithms using techniques from machine
learning and statistics, Fudenberg and Levine (1999) show that fictitious play has an in-
terpretation as a Bayesian learning procedure. However this interpretation shows fictitious
play to be a type of plug-in classifier (Ripley, 2000), and they stop short of using the full
power of Bayesian techniques to improve the method. In contrast, in this article we take a
fully Bayesian approach to deciding the optimal action at each play of the game.
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Other articles where cross-over has been attempted, but that do not overlap greatly with
the current article, include that of Demiriz et al. (2002) and Freund and Schapire (1997),
who have interpreted boosting algorithms as zero sum games, and Kearns et al. (2001) who
consider the use of techniques from graphical models (Jordan, Ghahramani, Jaakkola, &
Saul, 1997) to help calculate equilibria in graphical games.

3. Fictitious Play

Fictitious play is an important model for learning in games and the source of the algorithmic
developments presented later in this work. We begin by presenting the notation and termi-
nology used in the standard game-theoretic representation of fictitious play. The reader is
referred to the work of Fudenberg and Levine (1999) for a more extensive discussion.

We will consider strategic-form games with I players that are indexed by i ∈ {1, . . . , I},
and where we use −i to index all players other than player i. By S

i we denote the finite set of
pure strategies Si (also known as actions) available to player i, by S the set S

1×S
2×· · ·×S

I

of pure strategy profiles of all players, and by S
−i the set of pure strategy profiles of all

players other than i. Each player’s pay-off function is denoted by Ri : S → R and maps pure
strategy profiles to the real line, i.e. each set of actions selected by the players is associated
with a real number.

This simple model is usually extended to allow players to use mixed strategies πi ∈
∆(Si), where ∆(Si) denotes the set of probability distributions over the pure strategy set
S

i. Hence each πi is a probability distribution on the discrete space S
i. Writing π =

(π1, π2, . . . , πI) for the probability distribution on S which is the product of the individual
mixed strategies, πi, we extend the reward functions to the space of mixed strategies by
setting

Ri(π) = EπRi(S) (1)

where Eπ denotes expectation with respect to the pure strategy profile S ∈ S selected
according to the distribution π. Similarly

Ri(Si, π−i) = Eπ−iRi(Si, S−i) (2)

where Eπ−i denotes expectation with respect to S−i ∈ S
−i.

The standard solution concept in game theory is the Nash equilibrium. This is a mixed
strategy profile π such that for each i

Ri(π) ≥ Ri(π̃i, π−i) for all π̃i ∈ ∆(Si). (3)

In other words, a Nash equilibrium is a set of mixed strategies such that no player can
increase their expected reward by unilaterally changing their strategy.

If all players receive an identical reward then we have what is known as a partnership
game. In this case, players are acting independently while trying to optimise a global
objective function. This special case is important since it corresponds to a distributed
optimisation problem, where the objective function represents the reward function of the
game. At a Nash equilibrium it is impossible to improve the expected value of this objective
function by changing the probability distribution of a single player. Thus Nash equilibria
correspond to local optima of the objective function.
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Fictitious play proceeds by assuming that during repeated play of a game, every player
monitors the action of their opponent. The players continually update estimates σ of their
opponents’ mixed strategies by taking the empirical average of past action choices of the
other players. Given an estimate of play, a player selects a best response (i.e. an action
that maximizes their expected reward given their beliefs). Thus, at time t, the estimates
are updated according to

σi
t+1 =

(

1 −
1

t + 1

)

σi
t +

1

t + 1
bi(σ−i

t ) (4)

where bi(σ−i
t ), the best response to the other players’ empirical mixed strategies, satisfies

bi(σ−i
t ) ∈ argmax

Si∈Si

Ri(Si, σ−i
t ). (5)

In certain classes of games, including the partnership games mentioned previously, be-
liefs that evolve according to equation 4 are known to converge to Nash equilibrium. On
the other hand, there also exist games for which non-convergence of equation 4 has been
shown Fudenberg and Levine.

3.1 Stochastic Fictitious Play

Now, one objection to fictitious play has been the discontinuity of the best response func-
tion, which means that players almost always play pure strategies, even when beliefs have
converged to a Nash equilibrium in mixed strategies. To overcome such problems, fictitious
play has been generalized to stochastic fictitious play (see Fudenberg & Levine, 1999) which
employs a smooth best response function, defined by

βi(π−i) = argmax
πi∈∆(Si)

Ri(πi, π−i) + τvi(πi) (6)

where τ is a temperature parameter and vi is a smooth, strictly differentiable concave
function such that as πi approaches the boundary of ∆(Si) the slope of vi becomes infinite.
One popular choice of smoothing function vi is the entropy function, which results in the
logistic choice function with the noise or temperature parameter τ

βi(π−i)(Si) =
1

Z
exp

{
1

τ
Ri(Si, π−i)

}

(7)

where the partition function Z ensures that the best response adds to unity. Thus, in
stochastic fictitious play, players choose at every round an action randomly selected using
the smooth best response to their current estimate of the opponents’ probability of play.

The estimates under this process are also known to converge in several classes of games,
including partnership games (Hofbauer & Hopkins, 2005) which will be discussed again in
section 4. Several further extensions of fictitious play have been introduced in attempts
to extend the classes of games in which convergence can be achieved, including weakened
fictitious play (Leslie & Collins, 2005; van der Genugten, 2000) and dynamic fictitious
play (Shamma & Arslan, 2005). We will use these extensions in the second part of the
paper to improve convergence of modifications of variational learning.
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3.2 Moderated Fictitious Play

In fictitious play, each player “learns” by using an empirical average of the past action
choices of the other players to estimate their current mixed strategy. This estimate can be
thought of as the maximum likelihood estimate (MLE) of the opponent’s mixed strategy at
time t under the assumption that all the actions of each player i have been selected using
a multinomial distribution with parameter π−i such that

σ−i
t = π̂−i

t = argmax
π−i

t∏

u=0

P (S−i
u ;π−i) (8)

where P (S−i
u ;π−i) can be modelled by a product of multinomial distributions P (S−i

u ;π−i) =
∏I

j=1,j 6=i π
j(Sj

u). Fudenberg and Levine note that this choice of π−i
t corresponds to the

maximum a posteriori estimate of the opponent mixed strategies in a Bayesian model.

However, from a machine learning perspective, the logistic choice best response func-
tion, given in equation 7, may be viewed as a single layer neural network with a sigmoid
activation function (Bishop, 2006). Substituting the unknown parameter, π−i

t , in equation
7 by its maximum likelihood estimate (or by a Bayesian point estimate) fails to take into
account anything that is known about the parameter’s distribution; classifiers using this ap-
proach have been called “plug-in” classifiers (Ripley, 2000). From a Bayesian perspective,
better predictions can be obtained by integrating out the parameter’s distribution and thus
computing the posterior predictive best response function (Gelman, Carlin, Stern, & Rubin,
2000). This process is known in the neural network literature as “moderation” (MacKay,
1992).

This suggests a modification of fictitious play that we term moderated fictitious play.
In this, every player uses the posterior predictive best response, obtained by integrating
out over all opponent mixed strategies, weighted by their posterior distribution given the
previously observed actions. As it is conventional to choose to use the posterior mean as
the point estimate, the strategy now chosen by player i is

β̃i
t =

∫

βi(π−i
t )P (π−i

t |S−i
1:t) dπ−i

t (9)

where P (π−i
t |S−i

1:t) is the posterior probability of the opponents’ mixed strategies π−i
t given

the observed history S−i
1:t of play from time 1 to t.

Since we model the observed pure strategies of player j as observations of a multinomial
random variable with parameters πj, we place a uniform Dirichlet prior, Dir(πj;αj

0), on

each πj, with all parameters αj
0k

= 1. The posterior distribution of π−i
t is therefore again a

product of independent Dirichlet distributions,

P (π−i
t | s−i

1:t;α
−i
t ) =

∏

j 6=i

Dir(πj
t ;α

j
t ) (10)

with αj
t (s

j) = 1 +
∑t

u=1 I{sj
u = sj}, where I is an indicator function.

There are multiple approaches to estimating the integral in equation 9. A generally
applicable approach is to sample N opponent mixed strategies, Π−i

n , from the posterior

264



On Similarities between Inference in Game Theory and Machine Learning

distribution and use a Monte Carlo approximation of the integral in equation 9, given by

β̃i
t ≈

1

N

N∑

n=1

βi(Π−i
n ). (11)

To investigate the effect of moderation we also consider an analytic expression for β̃i
t

that makes use of two approximations. The first approximates the distribution in equation
10 by a normal distribution

N (µ; Σ) (12)

with mean vector
µ = α−i

t /ᾱ−i
t (13)

and covariance matrix

Σ =
1

ᾱ−i
t






µ1(1 − µ1) . . . −µ1µK

. . .

−µKµ1 . . . µK(1 − µK)




 (14)

where K = |S−i| and ᾱ−i
t =

∑

k αtk (Bernardo & Smith, 1994). The second, given in
MacKay (1992) for the case of two action choices, approximates the integral of a sigmoid

g
(a

τ

)

=
1

1 + exp
(

a
τ

)

with respect to a normal distribution, P (a) = N (a;m,σ2) with mean m and variance σ2,
by the modified sigmoid

∫

g
(a

τ

)

P (a) d a ≈ g

(
1

τ
κ(σ)m

)

(15)

where

κ(σ) =

(

1 +
πσ2

8

)− 1

2

. (16)

We see from equations 15 and 16 that the effect of moderation is to scale high rewards
down in proportion to the variance (and thus uncertainty of estimated opponent mixed
strategy) and shift the probability value of any action closer to 0.5 (i.e. down from unity or
up from zero to 0.5). At the onset of play when little is known about the opponent, playing
both actions with equal probability is an intuitively reasonable course of action.

To test the general moderated fictitious play of equation 9 with Dirichlet posterior
distributions, we investigate games with varying degrees of risk dominance, since in these
cases the equilibrium selection of strategies is strongly dependent upon the players’ beliefs
about the other players’ probabilities for each action. We compared the probability of
moderated and stochastic fictitious play converging to the payoff dominated solution for
games in which the payoffs are described by the payoff matrix

R =

(
(1, 1) (0, r)
(r, 0) (10, 10)

)

(17)
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Figure 1: Probability of convergence (with 95% confidence intervals) of fictitious and mod-
erated play to the payoff-dominant but risk-dominated equilibrium of the game
represented by the payoff matrix shown in equation 17.

where the factor r determined the degree of risk dominance of the action pair 1/1 and was
set to range from r = −1,−2 · · · − 25.

In this game, it is clearly best if both players choose action 2 (since in doing so they both
receive a reward of 10). However for many learning processes (see Fudenberg & Levine, 1999
and Young, 1998, for example) the players see a few initial actions and become convinced
that the opponent is playing a strategy that means choosing action 2 is bad (since the
penalty for playing 2 against 1 is high). We find that by taking uncertainty over strategies
into account at the start, through the use of our moderated fictitious play algorithm, we
are less likely to get stuck playing action 1, and so convergence to the strategy at (10, 10)
is more likely.

For each value of r we ran 500 plays of the game and measured the convergence rates
for moderated and stochastic fictitious play using matching initial conditions. Both algo-
rithms used the same smooth best response function. Specifically, Boltzmann smooth best
responses with temperature parameter τ = 0.1. We present the results in Figure 1. Stochas-
tic fictitious play converges to the (1,1) equilibrium for all games in which action (2,2) is
risk dominated (i.e. for r < −10). As soon as action (2/2) is no longer risk dominated
then stochastic fictitious play does converge. In contrast, moderated play exhibits a much
smoother overall convergence characteristic. Moderated play achieves convergence to action
(2/2) over a much greater range of values of r, though with varying degrees of probability.
Thus for most risk dominated games examined (r = −25 · · · − 10), moderated play is more
likely to converge to the payoff-dominant equilibrium than stochastic fictitious play.
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Thus, by using an insight from machine learning, and specifically, the standard proce-
dure in Bayesian inference of integrating over the distribution of the opponent’s strategies,
rather than taking an empirical average, we have been able to derive an algorithm based on
stochastic fictitious play with a smoother and thus more predictable convergence behaviour.

4. Variational Learning

Having shown in the first part of the paper how insights from machine learning can be used
to derive improved algorithms for fictitious play, we now consider the converse case. More
specifically, we consider a popular machine learning algorithm, the mean field variational
learning algorithm, and show how this can be viewed as learning in a game where all players
receive identical rewards. We proceed to show how insights from game theory (specifically,
relating variational leaning to a Cournot process and fictitious play) can be used to derive
improved algorithms.

We start by reviewing the mean field variational learning algorithm, and first note that
it and other methods are typically used to infer the probability distribution of some latent
(or hidden) variables, based on the evidence provided by another set of observable variables.
Computing these probability distributions, however, requires an integration step which is
frequently intractable (MacKay, 2003). To tackle this problem one can use Markov chain
Monte Carlo methods (Robert & Casella, 1999) to obtain asymptotically optimal results,
or alternatively use approximate analytical methods, such as variational approaches, if
faster algorithms are preferred. Among the variational methods, the mean field variational
approach to distribution estimation (Jordan et al., 1997) has been applied to real world
problems ranging from bioinformatics (Husmeier, Dybowski, & Roberts, 2004) to finite
element analysis (Liu, Besterfield, & Belytschko, 1988), and now here to games.

4.1 Mean Field Variational Method

The typical starting point in variational learning is the distributional form of a model, pos-
tulated to underlie the experimental data generating processes (i.e. the generative model).
The distribution will usually be instantiated with some observations, D, and defined over
a set I of latent variables which are indexed by i = 1, · · · I. We denote the domain of the
latent variable Si by S

i, and an element by si ∈ S
i. Note that, for ease of exposition later

in the text, we re-use and newly define S as we intend to make the connection to the earlier
definition of S as the strategy profile. We often desire the marginal distribution pi ∈ ∆(Si)
of the latent variable i, taken from the set of all marginal distributions ∆(Si) over Si.

In the absence of any detailed knowledge about dependence or independence of the
variables, we define the joint distribution p ∈ ∆(S) for the set of all distributions over S,
where S = S

1 × S
2 × · · · SI is the profile domain of the latent variables. For mathematical

convenience we resort to the logarithm of the density

ℓ(S | D, θ) , log (p(S | D, θ)) (18)

and parameterise the distribution p with θ ∈ Θ.

Due to the intractability of integrating equation 18 with respect to S ∈ S, variational
learning methods (Jordan et al., 1997) approach the problem by finding the distribution,
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q ∈ ∆(S), which minimises the criterion

F =

∫

· · ·

∫

q(s)ℓ(s | D, θ) d s + τH (q) (19)

where H(·) is the entropy function

H (q) = −

∫

· · ·

∫

q(s) log q(s) d s. (20)

This is equivalent to minimising

D(q||p) =

∫

· · ·

∫

q(s) log

(
q(s)τ

p(s | D, θ)

)

d s (21)

and highlights the fact that the variational cost function described in equation 19 is a
Kullback-Leibler (KL) divergence between the marginal log-likelihood log (p(D)) and the
negative free energy (Jordan et al., 1997).

Within variational learning, the “mean field” approach makes the assumption that all
latent variables are independent. Thus, the distribution profile, q, for the latent variables
simplifies to

q(s) ,

I∏

i=1

qi(si) (22)

where qi ∈ ∆(Si). On the basis of the mean field assumption, the optimal distribution of
variable i is the one that minimises the KL divergence in equation 21, assuming that all
other variables −i adopt the distribution q−i ∈ ∆(S−i), and can be obtained by partial
differentiation of equation 21. The model-free update equation for qi, under these assump-
tions (Haft, Hofmann, & Tresp, 1999), takes the general form

qi(si) ∝ exp

{
1

τ

∫

· · ·

∫

q@i(s@i)ℓ(si, s@i | D; θ) d s@i

}

(23)

where the index set @i denotes the Markov blanket of variable i (i.e. the set of nodes
neighbouring node i). In a 2 player game this set consist of just the opponent, while in a
graphical game the Markov blanket consists of all players affecting player i’s actions (Kearns
et al., 2001; Pearl, 1988).

The variational algorithm thus proceeds by iterating the update equation 23 until the
KL divergence expressed in equation 21 has converged to a stationary value — possibly a
local extremum. In the case of the EM algorithm, one round of updates by equation 23 will
be interlaced with one round of updates of parameter θ. The update equations for θ are
obtained by differentiation of equation 19 with respect to θ.

From a game-theoretic perspective, the log-probability shown in equation 18, with in-
stantiated observations D, can be interpreted as a global reward function

r(S | θ) ≡ log (p(S | D, θ)) (24)

parameterised by θ. The I latent variables then become synonymous with the players, each
player having a strategy space consisting of all possible values of Si and mixed strategy
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qi. Interpreted in terms of players, the task of probabilistic inference is now a partnership
game, played by I players jointly against nature (Grünwald & Dawid, 2004). The total
expected reward

L(θ) ≡

∫

· · ·

∫

q(s) log (p(s | D, θ)) d s (25)

given some set of mixed strategies, is simply the expected log-likelihood. In the Bayesian
setting, with priors on θ, the global reward is the full log-posterior distribution and the
equivalent total expected reward is the marginal log-likelihood, or evidence. If p factorises
then it can often be represented as a graphical model. Within a game-theoretic interpre-
tation, graphical models can be seen as players having their own, local, reward functions,
and such graphical games (Kearns et al., 2001) are an active research area which implicitly
makes use of the analogy between game theory and graphical models.

4.2 Fictitious Variational Play

The variational mean field algorithm, described in the previous section, suggests that the
mixed strategies that maximise equation 24 can be determined by iterating over equation 23
and gradually taking the limit τ → 0. This is analogous to a Cournot adjustment process
in the game theory literature, with the modification that smooth best responses are used
in place of best responses2. However, a well known shortcoming of the Cournot process’
iteration of best response is that it can often fail to converge and, instead, exhibit cyclic
behaviour. Consider, for instance, the partnership game with reward matrix

(
1 0
0 1

)

.

If the players commence play by choosing different actions, the Cournot process fails to
converge and the iterated best responses will exhibit cyclic solutions.

Such cyclic behaviour can indeed be observed in the variational mean field algorithm.
Whilst not commonly reported, cycles can also occur in highly connected graphical models
(e.g. Markov Random Fields or Coupled Hidden Markov Models), and when the proba-
bility distribution being approximated does not really support the imposed independence
assumption in the mean field approach (i.e. when random variables are strongly instead of
weakly connected). Clearly, especially in the latter case, even random initialisation cannot
avoid the mean field algorithm’s problem of convergence. This phenomenon is described as
“thrashing” by Wolpert et al.’s (2006).

Example: This simple example illustrates our point. Suppose we have two observations,
D = {y1, y2} with y1 = 10 and y2 = −10. We know that each observation is drawn from a
two-component mixture of one dimensional normal distributions, with mixing probability
0.5 and both variances set to 1. The means of the normal distributions are chosen from the

2. In the Cournot adjustment process, players use strategies that are a best response to the action the
opponents used in the previous period. In many cases, this process does not converge (Fudenberg &
Levine, 1999).
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set {−10, 10}. Therefore, we have for

ℓ(µ1, µ2 | D) = log(0.5(φ(d1 − µ1) + φ(d1 − µ2)))

+ log(0.5(φ(d2 − µ1) + φ(d2 − µ2)))

where φ(yi − µj) for i, j = 1, 2 denotes the density of yi − µj under a standard normal
distribution. Now by symmetry, it should be clear that lsame ≡ l(10, 10) = l(−10,−10) =
log φ(0)+ log φ(20) ≈ −201.8379 and ldifferent ≡ l(10,−10) = l(−10, 10) = 2 log(0.5(φ(0)+
φ(20))) ≈ −3.2242. From a game theory perspective, this means that the partnership game
we are playing is simply given by the 2 × 2 matrix

(
−201.8379 −3.2242
−3.2242 −201.8379

)

.

If we choose two q-distributions of equation 23 for each component mean, initialise them
with qi(µi = 10) = 0.9 = 1 − qi(µi = −10) for component index i = {1, 2} (i.e. each
marginal distribution places weight 0.9 on having the mean at 10), and update them si-
multaneously, both distributions switch virtually all of their mass to the −10 point. This
shouldn’t be a surprise, given that we clearly need to have µ1 6= µ2. The problem is that
both components of the mean field approximation jump at the same time. At the next step,
the reverse move will happen. Each time things get more extreme, and continuous cycling
occurs.

In the work by Wolpert et al. (2006) it was suggested that thrashing can be avoided by
adjusting the distributions toward the best responses, instead of setting them to be the best
responses. Here, we use the analogy with game theory to rigorously develop this approach,
and prove its convergence. We start by noting that fictitious play does exactly this; it
modifies the Cournot process by adjusting players’ mixed strategies towards the smooth best
response, instead of setting it to be the smooth best response. This suggests a fictitious play-
like modification to the standard mean field algorithm, in which best responses computed
at time t are mixed with the current distributions:

qi
t+1 = (1 − λt)q

i
t + λtβ

i
MF

(
q−i
t

)
(26)

where λt is a sequence satisfying the usual Robins-Monro conditions (Bishop, 2006) such
that

∑∞
t=1 λt = ∞, limt→∞ λt = 0,

∑∞
t=1 λ2

t < ∞, and βi
MF

(
q−i
t

)
denotes the best response

function for distribution i and is given by equation 23. We call this process variational
fictitious play.

The game theory literature proves that stochastic fictitious play in partnership games
is guaranteed to converge when S

i is finite (Leslie & Collins, 2005). This allows us to prove
the following result:

Theorem: If each random variable is discrete, the variational fictitious play converges.

Proof: In the case of discrete random variables, equation 26 defines a generalised weakened
fictitious play process for the game where each player receives reward log(p(s | D, θ)). This
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Figure 2: Comparison of the performance of the standard mean field variational algorithm
and our improved algorithm when applied to an exemplar binary hidden Markov
model.

process is known to converge (Leslie & Collins, 2005).

Remark: While an equivalent theorem is not yet available for continuous random variables,
a similar approach may yield suitable results when combined with recent work of Hofbauer
and Sorin (2006).

Example: As an example of the change the fictitious update scheme has on the standard
variational algorithm, consider the binary hidden Markov model shown in Figure 2a. The
model contains two latent nodes, indexed by i and i − 1, which are jointly parent to the
observed variable Ei. Both latent variables take values Si−1, Si ∈ {0, 1}. The model is
specified such that observation is best explained (with probability 0.9; see Figure 2b), if
the two neighbouring states take different values. Further, the joint prior for states i − 1
and i is the uniform distribution. For simplicity we omit the parameter θ, which encodes
observation state probabilities and the prior distribution.

• Consider initialising so that both the distributions q1(s1 = 1) and q2(s2 = 1) are close
to 1. The result is a periodic flipping of the state probability distributions, q1 and
q2, at every update iteration of the mean field algorithm (top graph in Figure 2b).
In contrast, the fictitious variational play scheme gradually forces the algorithm to
converge (bottom graph in Figure 2b).
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• Initialisation at random reduces the likelihood of the mean field algorithm’s failure to
converge. However, empirically, we could still observe such cyclic solutions in 50% of
all the random starts of the hidden Markov model training procedure. In contrast,
the modified mean field variational algorithm converges reliably in all cases.

4.3 Derivative Action Variational Algorithm

In the previous sections we have shown that, when viewed from a game theoretic per-
spective, the smooth best response function is equivalent to the mean field update rule
and, consequently, we were able to apply results from game theory to derive an improved
variational learning algorithm. In this section we go further and use this equivalence to
incorporate a recent development in fictitious play, specifically dynamic fictitious play, into
the variational mean field method.

In dynamic fictitious play (Shamma & Arslan, 2005) the standard best response expres-
sion, shown in equation 7, is extended to include an additional term

β




q−i

t + γ
d

dt
q−i

︸ ︷︷ ︸

new




 . (27)

This additional derivative term acts as an “anticipatory” component of the opponent’s play
and is expected to increase the speed of convergence in the partnership game considered
here. Note that, on convergence, the derivative terms become zero and the fixed points are
exactly the same as for the standard variational algorithm.

Based on the correspondence between the best response function in fictitious play and
the model-free update expression of variational learning in section 4.1, we incorporate this
additional differential term into the update equation of our variational learning algorithm to
derive a derivative action variational algorithm (DAVA) that displays improved convergence
properties compared to the standard variational algorithm.

To illustrate this procedure, we consider the case of applying this derivative action
variational algorithm to the problem of performing clustering (i.e. learning and labelling
a mixture distribution in order to best fit an experimental data set). We chose clustering
as it represents a canonical problem, widely reported in the literature of machine learning.
We consider a standard mixture distribution consisting of K one-dimensional Gaussian
distributions, N (d|µk, βk) for k = 1, . . . ,K, given by

p(d|θ) =

K∑

k=1

πkN (d|µk, βk) (28)

where θ is the set of distribution parameters {µ1, β1, π1, . · · · , µK , , βK , πK}. Here, µk and βk

are the mean and precision of each Gaussian, and πk is their weighting within the mixture.
The usual approach to learning this distribution (Redner & Walker, 1984) is to assume
the existence of an indicator (or labelling) variable, indexed by i and which takes values
Si ∈ {1, · · ·K}, for each sample, di, and formulate the complete likelihood

p(Si, µ1, . . . , µK , β1, . . . , βK | di) ∝
K∏

k=1

π
δ(Si=k)
k N (di|µk, βk)

δ(Si=k)p(θ) (29)
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where p(θ) denote the parameter prior distributions. To obtain analytic coupled update
equations for each member of the parameter set, {π1, µ1, β1, · · · , πK , µK , βK}, we use the
model discussed in Uedaa and Ghahramani (2002), which describes the appropriate choice
of the approximating marginal posterior distribution for each parameter. By evaluating
the integral in equation 23, after replacing the generic latent variables S by the model
parameters θ and the indicator variables S, Uedaa and Ghahramani show that a closed
form expression can be derived for the approximating marginal posterior distributions for
all parameters. To compute the approximate marginal posterior mean distribution, for
example, the set of variables Si and S@i in equation 23 become place holders for µk and
{βk, π, S1, · · · , SN}, respectively. In other words, to compute the posterior distribution of
µk, the logarithm of equation 23 must be averaged with respect to the distributions q(βk),
q(π), and q(Si), i = 1, · · ·N .

The computations result in a closed form solution for the marginal posterior for each
element of the parameter set. Thus, the posterior of the means, µk, is a normal distribution

qµk , N (µk|mk, τk) (30)

with mean mk and precision βk and where

µk =
(
ckbkd̄k + τ0µ0

)
τk

λ̄ =
P

i
λi

k

λi
k = qi(Si = k)

d̄k =
P

i
λi

k
di

τk = ckbkλ̄k + τ0

and µ0 and τ0 are, respectively, the mean and precision of the Gaussian prior for µk.
The posterior for the precisions is a Gamma distribution

qβk , Γ(βk|bk, ck) (31)

where

ck =
1

2
λ̄k + α0

bk =
1

2
P

i
λi

k(d
i−µk)2)+ 1

2
λ̄kτ−1

k
+β0

where α0 and β0 are, respectively, are the shape and precision parameters of the Gamma
prior for the precisions βk. Finally, the posterior of the mixture weights is a K-dimensional
Dirichlet distribution

qπ , Dir(π|κ) (32)

where
κ =

P

i
λi

k
+κ0

and κ0 is the parameter of the Dirichlet prior for π. Finally, the distribution of the compo-
nent labels si has the form

qi(Si) =
1

ZSi

K∏

k=1

π̃
δ(Si=k)
k β̃

1

2

k exp

{

−
bkck

2

[

(di − mk)
2 +

1

τk

]}

(33)
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where the normalising constant ZSi is computed over the finite set of states of Si. The
values for π̃k and β̃k are computed using the relations

π̃k =Ψ(κk) − Ψ (
P

K

l=1
κl)

β̃k =Ψ(ck) + log(bk).

Ψ is the digamma function.
As noted earlier, the update equations can be interpreted as the best response of a

particular parameter given the values of the others. Thus, the additional derivative term
seen in dynamic fictitious play can, in principle, be included into the variational update
equations 30, 31, 32, and 33. If it is desired, however, to obtain closed form solutions for
the modified best response functions, or update equations, the derivative term can only be
incorporated in the discrete distribution, given by equation 33, as follows.

For notational clarity we will only add the anticipatory component to the estimate of
the means, µk, and use this only for the update of the sk. That is, we will consider only the
inclusion of the d

dt
qµk term to equation 33. Furthermore, we will approximate the derivative

d
dt

qµk by the discrete difference in the distributions between iterations t and t − 1

d

dt
qµk ≈ qµk

t − qµk

t−1. (34)

It is also possible to implement a smoothed version of the derivative to provide added
robustness against random fluctuations, as was done in the equivalent fictitious play algo-
rithm described by Shamma and Arslan (2005). When we introduce the derivative term
into equation 33 the update equation for the component labels becomes

qi(Si) ∝
K∏

k=1

π̃
δ(Si=k)
k β̃

1

2

k exp

{

−
bkck

2
(1 + γ)

[
(
di − mkt

)2
+

1

τkt

]

+
bkck

2
γ

[
(
di − mkt−1

)2
+

1

τkt−1

]} (35)

where the parameters of qµk

t are denoted by mkt
and τkt

. The differential coefficient, γ,
allows us to control the degree by which the differential term contributes toward the overall
update equation.

In order to demonstrate empirically the convergence properties of the derivative action
variational inference algorithm, we compared the algorithm using either update equation 33
or update equation 35 to test data. To control the problem setting, we generated synthetic
test data by drawing data points from a mixture of 3 Gaussian distributions and then
applying a non-linear mapping function3. This data is shown in Figure 3 along with the
optimal clustering solution.

We then performed 200 runs comparing the standard variational algorithm (implemented
as described in Penny & Roberts, 2002) with the derivative action variational algorithm.
During each run, both algorithms were started from an identically and randomly initialised

3. Equation 35 generalises to two dimensions or higher by replacing the quadratic term (di
− mkt

)2 with

the inner product (~di
− ~mkt

)T(~di
− ~mkt

). This assumes vector valued data samples, ~di
∀i, are Gaussian

distributed with means ~mk and homoscedastic precision βk.
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(1)

(2)

(3)

(a) (b)

Figure 3: Synthetic data (a) used for empirical study of the convergence properties of the
derivative action variational inference algorithm and the optimal clustering solu-
tion (b) showing the centres of each of the three Gaussians in the mixture.

set of model parameters and at each iteration we measured the value of the Kullback-Leibler
divergence of equation 21. The algorithms were terminated after 60 iterations (chosen to be
well above the number of iterations required to achieve a relative change of Kullback-Leibler
divergence of less than 10−5). The differential coefficient, γ, in equation 35 was set to a
constant value throughout. For illustrative purposes we chose the following values for this
coefficient: γ = 0.5, 1.0, 1.5, and 2.0.

We first consider the difference in the convergence rate between the standard variational
algorithm and the derivative action variational algorithm. Due to the nature of both algo-
rithms, different initial conditions can lead to different final clustering solutions. In addition,
the difference in the update rule of the two algorithms means that, although we start both
algorithms with identical initial conditions, they do not necessarily result in identical final
clustering solutions. Thus, we analyse the difference in the Kullback-Leibler divergence at
each iteration, for just those runs that did in fact produce identical clustering solutions at
termination. In Figure 4 we compare these algorithms for the case when γ = 0.5. As can be
clearly seen, the DAVA converges everywhere more quickly than the standard algorithm.

Our experiments also indicate that the choice of the differential coefficient, γ, has a
significant effect on the convergence behaviour of DAVA. This is seen in Figure 5 for the
case when γ = 1.0. Compared to the results in Figure 4, the magnitude of the differ-
ence in Kullback-Leibler divergence is much larger, indicating a substantial increase in the
convergence rate.

By comparing the times at which each algorithm reached equilibrium (indicated by a
relative change of Kullback-Leibler divergence of less than 10−5), for all four values of γ,
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Figure 4: For comparison of the standard and the derivative action variational algorithm
(γ = 0.5), the Kullback-Leibler divergence values, obtained from both algorithms
and at every iteration, were compared. Shown here are the estimates of the 10th,
50th (the median) and 90th percentiles of the differences between the standard
KL and the derivative action KL, i.e. KLstandard(t) − KLDAV A(t) at iteration
t. A positive value suggests that the current solution of the standard algorithm
is worse than than of the derivative action algorithm. A zero value implies that
the solutions found by both algorithms are identical. At initialisation the KL
differences are zero as both algorithms have identical initialisation conditions.

the role of the differential coefficient in improving convergence rates becomes apparent. In
particular, Table 1 shows the relative convergence rate improvement shown by the deriva-
tive action variational algorithm, compared to the standard variational algorithm. The
results indicate that the median improvement can be as much as 28% when γ = 2.0. In
addition, as the value of the differential coefficient increases, the variance in the convergence
rate increases, and thus, there is a widening gap between the best and worst performance
improvements.

However, this increasing variance does not imply that DAVA is converging to inferior
solutions. This can be seen in Figure 6 which shows an analysis of the quality of the solutions
reached by each algorithm, for all 200 runs (not just those where both algorithms converged
to the same clustering solution). At moderate values of γ (γ ≤ 1.5) the derivative component
can assist in finding a better solution. This is indicated by the proportion of positive KL
divergence differences (in Figure 6). Positive values imply that the standard algorithm often
finds worse solutions compared to DAVA at the particular setting of γ. Increasing the value
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Figure 5: Estimates of the 10th, 50th (the median) and 90th percentiles of the differences
in the Kullback-Leibler divergence values, at each iteration, after 200 runs of the
standard and the derivative action variational algorithm (γ = 1.0).

of the differential coefficient further increases the variance in the clustering solutions that
are generated by the algorithm.

Having evaluated the performance of the DAVA algorithm on a synthetic data set, and
investigated its performance over a range of values for the derivative coefficient, γ, we now
consider a more realistic experimental setting and apply the algorithm to medical magnetic
resonance data (see Figure 7). This data consists of a 100×100 pixel region of a slice through
a tumour patient’s brain. Data was collected using both T2 and proton density (PD) spin
sequences (shown in Figure 7a), which are used directly to form a two-dimensional feature
space.

A 10 component Gaussian mixture model is fitted to this data space, and as before, we
use the DAVA algorithm derived earlier to learn and label the most appropriate mixture
distribution. Following the synthetic data experiments, the DAVA derivative coefficient
γ was set to 1.0. This being the best compromise between speed and robustness of the
algorithm. We let the algorithms run for 100 iterations and measured the KL divergence
at each iteration to monitor convergence. Figure 7b shows the resulting segmentation from
the DAVA algorithm.

On this dataset, the algorithm converged to K = 5 classes; identical to the Markov Chain
Monte Carlo clustering reported in the work of Roberts, Holmes, and Denison (2001). The
segmentation clearly shows spatial structure which was not incorporated into the segmen-
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Figure 6: Relative difference in Kullback-Leibler divergence values at equilibrium for the
standard and the derivative action variational algorithms with derivative coeffi-
cients: γ = 0.5, 1.0, 1.5, and 2.0.

γ 10th percentile 50th percentile 90th percentile

0.5 0% 9 % 21 %
1.0 0% 19 % 39 %
1.5 -2% 22% 46 %
2.0 8 % 28% 53 %

Table 1: Relative convergence rate improvement of the derivation action variational algo-
rithm over the standard variational algorithms.

tation process a priori, and the algorithm was approximately 1.5 times faster than the
standard segmentation algorithm4.

In summary, by adding a derivative term to the variational learning algorithm, we have
produced an algorithm that, in empirical studies, shows improved convergence rates com-
pared to the standard variational algorithm. Indeed, this convergence rate improvement has
been achieved by applying the additional derivative response term to the mean components
of the mixture model parameters only, and, thus, we believe that further improvement is
possible if other parameters are treated similarly.

4. To determine the factor of speedup between the two algorithms we averaged the KL divergence values
of every iteration and for each segmentation algorithm. Based on the mean KL divergence curve the
iteration number at which the algorithm converged could be calculated. This is the iteration at which
the relative change in KL divergence between 2 successive iterations was less than 10−4. The ratio of
the convergence points of the DAVA and the standard algorithm then produced our indicator of speed.
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Slice of a T2 magnetic resonance image through a tumour in a patient’s brain.

(a)

The proton density image corresponding to the T2 MR image.

(b)

Figure 7: The results of the segmentation using the DAVA algorithm with γ = 1.0. For
this data the segmentation was obtained at approximately half the time it took
the standard segmentation algorithm.

5. Conclusions and Future Work

In this work we have shown an equivalence between game-theoretical learning in partner-
ship games and the variational learning algorithm common in machine learning. In this
comparison, probabilistic inference using the mean field variational learning is seen to be
a Cournot adjustment process in a partnership game. Likewise, the smooth best response
function used by players is a plug-in single layer classifier with a sigmoid activation function.

By exploiting this analysis and the insights derived from it, we have been able to show
that insights from one area may be applied to the other to derive improved fictitious play
and variational learning algorithms. In empirical comparisons, these algorithms showed
improved convergence properties compared to the standard counterparts.
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Figure 8: Using dynamic logistic regression (DLR) for adaptive estimation of opponent
mixed strategies. In a game of repeated prisoner’s dilemma one player changes
strategies from “always co-operate” to “always defect” midway through the game.
Using DLR as model of learning, the other player adapts to the changes based on
the uncertainty between the predicted and observed opponent strategies.

We believe these initial results are particularly exciting. Thus, whilst there still remains
further analysis to be performed (specifically, we would like to prove convergence of moder-
ated fictitious play and compare the performance of our variational algorithms on large real
world data sets), the work clearly shows the value of studying the intersection of machine
learning and game theory.

One conclusion from this work is that almost any machine learning algorithm can be put
to use as a model of players learning from each other. Consider, for instance adaptive clas-
sification algorithms which are capable of adapting to changes in the learner’s environment.
Most game-theoretic methods are tuned toward achieving equilibrium and estimating, for
example, Nash mixed strategy profiles. While this is desirable in stationary environments,
such algorithms fail to adapt to non-stationary environments, and are consequently of lit-
tle practical use in dynamic real-world applications. The research presented in this paper
strongly suggests that adaptive classifiers might prove useful.

As a proof of concept, we have implemented the dynamic logistic regression (DLR),
presented in Penny and Roberts (1999), as a model of play for one player (player 1) in a
game of repeated prisoner’s dilemma. The other player (player 2) was set to play an “always
co-operate” strategy for the first 75 rounds of play. For the second set of 75 rounds, player 2
was set to play a “always defect” strategy. The task of player 1 is to detect this change in the
opponent’s behaviour and compute the best responses according to the updated estimate
of player 2’s strategy. The estimates of player 1 of player 2’s strategy for the entire game
are shown in Figure 8, together with both players’ expected rewards. The DLR adaptively

280



On Similarities between Inference in Game Theory and Machine Learning

changes the one-step ahead predicted opponent strategy on the basis of the uncertainty
that results from incorporation of the most recently observed opponent action (see Penny
& Roberts, 1999 for details; the observations considered in this work map directly to the
observed actions made by the opponent). The decision about which action to play follows
then as usual (i.e. compute the best response according to the updated estimate using
equation 9).

There are two things we would like to point out. First, as implemented here, the input
required for DLR is simply the recently observed opponent action, and the decision made
by the DLR is the action drawn from the best response function. However, DLR also allows
for a vector of inputs, and as a consequence, players can be made to respond not just to
the opponent’s actions, but also to other context or application specific variables. Second,
the DLR estimation described in Penny and Roberts (1999) is fully Bayesian. Missing data
can be naturally embedded in the Bayesian estimation and this is demonstrated in Lowne,
Haw, and Roberts (2006). Mapping this fact back to the use of DLR as model of play
implies that players can keep track of the opponent’s behaviour without the need to follow
or observe their every move. Missing observations, for instance, could result in an increased
uncertainty in the opponent’s predicted play and, within, a reversal toward the appropriate
best response (as it might have existed at the onset of play).

Similar ideas of using dynamic, instead of static, estimators of opponent strategy have
recently been presented in the work of Smyrnakis and Leslie (2008). Extending further
the use of machine learning techniques to allow dynamic estimation of both strategies and
environmental parameters will allow game theoretical learning to become more generally
applicable in real-world scenarios.
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