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Abstract

Thanks to recent advances, AI Planning has become the underlying technique for several ap-

plications. Figuring prominently among these is automated Web Service Composition (WSC) at

the “capability” level, where services are described in terms of preconditions and effects over onto-

logical concepts. A key issue in addressing WSC as planning is that ontologies are not only formal

vocabularies; they also axiomatize the possible relationships between concepts. Such axioms cor-

respond to what has been termed “integrity constraints” in the actions and change literature, and

applying a web service is essentially a belief update operation. The reasoning required for belief

update is known to be harder than reasoning in the ontology itself. The support for belief update is

severely limited in current planning tools.

Our first contribution consists in identifying an interesting special case of WSC which is both

significant and more tractable. The special case, which we term forward effects, is characterized

by the fact that every ramification of a web service application involves at least one new constant

generated as output by the web service. We show that, in this setting, the reasoning required for

belief update simplifies to standard reasoning in the ontology itself. This relates to, and extends,

current notions of “message-based” WSC, where the need for belief update is removed by a strong

(often implicit or informal) assumption of “locality” of the individual messages. We clarify the

computational properties of the forward effects case, and point out a strong relation to standard no-

tions of planning under uncertainty, suggesting that effective tools for the latter can be successfully

adapted to address the former.

Furthermore, we identify a significant sub-case, named strictly forward effects, where an actual

compilation into planning under uncertainty exists. This enables us to exploit off-the-shelf plan-

ning tools to solve message-based WSC in a general form that involves powerful ontologies, and

requires reasoning about partial matches between concepts. We provide empirical evidence that

this approach may be quite effective, using Conformant-FF as the underlying planner.

c©2009 AI Access Foundation. All rights reserved.
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1. Introduction

Since the mid-nineties, AI Planning tools have become several orders of magnitude more scalable,

through the invention of automatically generated heuristic functions and other search techniques

(see McDermott, 1999; Bonet & Geffner, 2001; Hoffmann & Nebel, 2001; Gerevini, Saetti, &

Serina, 2003; Helmert, 2006; Chen, Wah, & Hsu, 2006). This has paved the way to the adoption

of planning as the underlying technology for several applications. One such application area is

web service composition (WSC), by which in this paper we mean the automated composition of

semantic web services (SWS). SWS are pieces of software advertised with a formal description

of what they do. Composing SWS means to link them together so that their aggregate behavior

satisfies a complex user requirement. The ability to automatically compose web services is the key

to reducing human effort and time-to-market when constructing integrated enterprise applications.

As a result, there is a widely recognized economic potential for WSC.

In the wide-spread SWS frameworks OWL-S1 and WSMO2, SWS are described at two distinct

“levels”. One of these addresses the overall functionality of the SWS, and the other details precisely

how to interact with the SWS. At the former level, called “service profile” in OWL-S and “service

capability” in WSMO, SWS are described akin to planning operators, with preconditions and ef-

fects. Therefore, planning is a prime candidate for realizing WSC at this level. This is the approach

we follow in our paper.

In such a setting, a key aspect is that SWS preconditions and effects are described relative to

an ontology which defines the formal (logical) vocabulary. Indeed, ontologies are much more than

just formal vocabularies introducing a set of logical concepts. They also define axioms which con-

strain the behavior of the domain. For instance, an ontology may define a subsumption relationship

between two concepts A and B, stating that all members of A are necessarily members of B. The
natural interpretation of such an axiom, in the context of WSC, is that every state that can be en-

countered – every possible configuration of domain entities – must satisfy the axiom. In that sense,

ontology axioms correspond to integrity constraints as discussed in the actions and change literature

(Ginsberg & Smith, 1988; Eiter & Gottlob, 1992; Brewka & Hertzberg, 1993; Lin & Reiter, 1994;

McCain & Turner, 1995; Herzig & Rifi, 1999).3 Hence WSC as considered here is like planning in

the presence of integrity constraints. Since the constraints affect the outcome of action executions,

we are facing the frame and ramification problems, and execution of actions corresponds closely to

complex notions such as belief update (Lutz & Sattler, 2002; Herzig, Lang, Marquis, & Polacsek,

2001). Unsurprisingly, providing such support for integrity constraints in the modern scalable plan-

ning tools mentioned above poses serious challenges. To the best of our knowledge, it has yet to be

attempted at all.

Regarding the existing WSC tools, or planning tools employed for solving WSC problems, the

situation isn’t much better. Most tools ignore the ontology, i.e., they act as if no constraints on the

domain behavior were given (Ponnekanti & Fox, 2002; Srivastava, 2002; Narayanan & McIlraith,

2002; Sheshagiri, desJardins, & Finin, 2003; Pistore, Traverso, & Bertoli, 2005b; Pistore, Mar-

coni, Bertoli, & Traverso, 2005a; Agarwal, Chafle, Dasgupta, Karnik, Kumar, Mittal, & Srivastava,

2005a). Other approaches tackle the full generality of belief update by using general reasoners, and

1. For example, see the work of Ankolekar et al. (2002) and Burstein et al. (2004).

2. For example, see the work of Roman et al. (2005) and Fensel et al. (2006).

3. Integrity constraints are sometimes also called state constraints or domain constraints.
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suffer from the inevitable performance deficiencies (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003;

Giunchiglia, Lee, Lifschitz, McCain, & Turner, 2004).

is a planning−based
formalization of

is a planning−based
formalization of

Conformant Planning

Forward Effects

WSC Formalism

is a rich version of

is a restriction of

is a restriction of

Message−based WSC

is a variant of

WSC

can be

tackled by
Strictly Forward Effects

Figure 1: An overview of the planning and WSC frameworks addressed in this paper. Special cases

identified herein shown in red / boldface.

Our work addresses the middle ground between these two extremes, i.e., the trade-off between

expressivity and scalability in WSC. We do so via the identification of special cases that can be

tackled more efficiently. Figure 1 gives an overview of the WSC and planning frameworks involved.

In brief, the forward effects case requires that every effect and ramification of a web service

affects at least one new constant that was generated as the web service’s output. In this situation,

the frame problem trivializes, making the planning problem more similar to common notions of

conformant planning (Smith & Weld, 1998; Bonet & Geffner, 2000; Cimatti, Roveri, & Bertoli,

2004; Hoffmann & Brafman, 2006). We will discuss how existing tools for the latter, in particular

Conformant-FF (Hoffmann & Brafman, 2006), can be extended to deal with WSC under forward

effects. With strictly forward effects, where action effects are required to affect only outputs, we

devise an actual compilation into conformant planning. We thus obtain a scalable tool for interesting

WSC problems with integrity constraints. In particular we are able to exploit (some of) the heuristic

techniques mentioned above (Hoffmann & Nebel, 2001; Hoffmann & Brafman, 2006).

In what follows, we will explain the various parts of Figure 1 in a little more detail. Our starting

point is a WSC formalism, addressing WSC in terms of planning in the presence of integrity con-

straints, as discussed above. The formalism is essentially an enriched form of conformant planning.

Its distinguishing aspects are:

• The initial state description is a conjunction of literals (possibly not mentioning some of the
logical facts in the task, and hence introducing uncertainty).

• Actions have a conditional effects semantics, meaning they can be executed in any state, but
have an effect only if they are applicable.

• Actions may have output variables, i.e., they may create new constants.

• There is a set of integrity constraints, each of which is a universally quantified clause.

• The semantics of action execution is defined in terms of a belief update operation.

Section 2 below provides more details on these choices, and motivates them with an example and

results from the literature. As we will show, planning in the formalism is very hard. Particularly,
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even just testing whether a given action sequence is a plan is Πp
2-complete. This is in contrast to the

more common notions of conformant planning, where plan testing is “only” coNP-complete.

As we will see, forward effects remove the additional complexity. Intuitively, the forward effects

case covers the situation where a web service outputs some new constants, sets their characteristic

properties relative to the inputs, and relies on the ontology axioms to describe any ramifications

concerning the new constants. This case is syntactically characterized as follows:

(1) Every effect literal contains at least one output variable.

(2) Within each integrity constraint, every literal has the same set of variables in its arguments.

This definition is best understood with an example. Consider the following variant of the wide-

spread “virtual travel agency” (VTA). Web services that book travel and accommodation must

be linked. These web services generate new constants corresponding to tickets and reservations.

For example, there are integrity constraints stating subsumption, such as ∀z : trainTicket(z) ⇒
ticket(z). A web service bookTicket may have the input variable x, the precondition train(x ), the
output variable y, and the effect trainTicket(y) ∧ ticketFor(y, x). This is a forward effects task:
every effect literal contains the output variable y, and the integrity constraint has the single variable
z which provides the arguments of all literals in the constraint. Say one instantiates the input of
bookTicket with a constant c and its output with a new constant d. When applying the resulting
ground action to a state where train(c) holds true, the constant d gets created, and its characteristic
properties relative to the inputs – trainTicket(d) ∧ ticketFor(d, c) – are set directly by the action.
The integrity constraint takes care of the ramification, establishing that ticket(d) holds. Note that
the status of c – apart from its relation to d – is not affected in any way. 4

The forward effects case is closely related to a wide-spread notion of WSC problems, which

we refer to as “message-based WSC”. In such approaches, the composition semantics is based on

chaining over input and output messages of web services, in one or the other sense. Inferences from

ontology axioms can be made in many of these approaches, but only in a restricted way limited by an

assumption of “locality” of the individual messages, where the interferences affect only a particular

message transfer, and any implications for other transfers are ignored. This locality assumption is

usually made in an informal way, and often not stated explicitly at all. One contribution of our work

is to shed some light on this issue, via the identification of the forward effects case which lies “in

between” message-based WSC and a full planning framework with belief update semantics.

Both message-based WSC and the forward effects case share the focus on output constants.

There are two important differences. First, the forward effects case is more restricted than message-

based WSC in terms of the ontology axioms allowed. Essentially, forward effects correspond to

a special case of WSC where the locality assumption of message-based WSC is actually justified,

within a full planning framework. Second, that full framework comes with the benefit of increased

flexibility in the combination of services, because locality is not enforced (e.g. the output of one

service may be reused at several points in a plan).

From a computational point of view, the key property of the forward effects case is that it

removes the need for belief update. In a nutshell, the reason is that actions affect only “new” propo-

sitions, i.e., propositions involving at least one output constant. (Recall here the point made about

4. The latter would not be the case if the effect of bookTicket included a literal affecting only x (example:

¬train(x)), or if there was an integrity constraint capable of mixing “old” and “new” constants (example: ∀x, y :
trainTicket(y) ⇒ ¬train(x)).
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the unchanged status of c, in the VTA example above.) The output constant (d, in the example) does
not exist prior to the application of the action, and hence the previous belief carries no knowledge

about it and need not be revised. Consider the characterization of forward effects, as given above.

Condition (1) ensures that the immediate effect of the action affects only new propositions. Con-

dition (2) ensures that any changes on new propositions only propagate to new propositions. Since

all literals in a constraint share the same variables, the output constant in question is copied to all of

them. As we will see, by virtue of these properties the complexity of plan testing is coNP-complete,

rather than Πp
2-complete, in the forward effects case.

This complexity reduction is critical because the reduced complexity is the same as in the more

common notions of conformant planning under initial state uncertainty. Therefore it should be fea-

sible to adapt conformant planning tools to address WSC with forward effects. Scalable planning

tools for conformant planning have already been developed (Cimatti et al., 2004; Bryce, Kamb-

hampati, & Smith, 2006; Hoffmann & Brafman, 2006; Palacios & Geffner, 2007). Hence this is a

promising line of research. As an example, we will focus on the Conformant-FF tool (Hoffmann

& Brafman, 2006) (short CFF) and outline the main steps that need to be taken in adapting CFF to

handle WSC with forward effects.

We then identify a case where an actual compilation into conformant planning under initial

state uncertainty exists. For that, one must fix a set of constants a priori. In a manner that is

fairly standard (see, e.g., the Settlers domain of Long & Fox, 2003), we simply include in that set

a subset of “potential constants” that can be used to instantiate outputs. The more subtle idea we

put forward is to identify a condition on the actions under which we can “predict” which properties

will be assigned to which potential constants, in case they are created. This enables us to design

a compilation that moves all action effects into the initial state formula, and uses actions only to

modify the set of constants that already exist. In this way, reasoning about the initial state formula

in the compiled task is the same as reasoning about output constants in the original task, and the

reasoning mechanisms included in tools such as CFF can be naturally used to implement the latter.

Our trick for predicting output properties is to require that all actions are compatible in the sense

that they either produce different outputs, or have the same effects. It turns out that this condition is

naturally given in a restriction of forward effects, which we call strictly forward effects, where the

web service effects concern only new constants.

Clearly, not being able to reference the inputs is a limitation. For example, we can no longer

say, in the above VTA example, that the output y is a ticket for the input x. Still, the strictly forward
effects case describes an interesting class of WSC problems. That class corresponds to web services

modeled as in the early versions of OWL-S, for example, where there was no logical connection

between inputs and outputs. Further, this class of WSC problems allows powerful ontologies –

universally quantified clauses – and makes it possible to combine services very flexibly. Using

our compilation, this class of problems can be solved by off-the-shelf tools for planning under

uncertainty.

We validate the compilation approach empirically by running a number of tests using CFF as

the underlying planner. We use two test scenarios, both of which are scalable in a variety of param-

eters, covering a range of different problem structures. We examine how CFF reacts to the various

parameters. Viewed in isolation, these results demonstrate that large and complex WSC instances

can be comfortably solved using modern planning heuristics.

A comparison to alternative WSC tools is problematic due to the widely disparate nature of

what kinds of problems these tools can solve, what kinds of input languages they understand, and
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what purpose the respective developers had in mind. To nevertheless provide some assessment of

the comparative benefits of our approach we run tests with the DLVK tool by Eiter et al. (2003)

and Eiter, Faber, Leone, Pfeifer, and Polleres (2004). DLVK is one of the few planning tools that

deals with ontology axioms – called “static causal rules” – directly, without the need to restrict

to forward effects and without the need for a compilation. Since, in the context of our work, the

main characteristic of WSC is the presence of ontology axioms, this means that DLVK is one of

the few existing “native WSC tools”. By comparison, our forward effects compilation approach

solves a similar problem, but sacrifices some expressivity. The question is, can we in principle

gain anything from this sacrifice? Absolutely, the answer is “yes”. DLVK is much slower than

compilation+CFF, solving only a small fraction of our test instances even when always provided

with the correct plan length bound. We emphasize that we do not wish to over-state these results,

due to the above-mentioned differences between the tools. The only conclusion we draw is that the

trade-off between expressivity and scalability in WSC is important, and that the forward effects case

seems to constitute an interesting point in that trade-off.

The paper is organized as follows. First, Section 2 provides some further background necessary

to understand the context and contribution of our work. Section 3 introduces our WSC planning

formalism. Section 4 defines and discusses forward effects. Section 5 introduces our compilation to

planning under uncertainty, and Section 6 presents empirical results. We discuss the most closely

related work at the relevant points during the text, and Section 7 provides a more complete overview.

Finally, Section 8 concludes and discusses future work. To improve readability, most proofs are

moved into Appendix A and replaced in the text by proof sketches.

2. Background

The context of our work is rather intricate. WSC as such is a very new topic posing many different

challenges to existing techniques, with the effect that the field is populated by disparate works dif-

fering considerably in their underlying purpose and scope. In other words, the “common ground” is

fairly thin in this area. Further, our work actually involves three fields of research – WSC, planning,

and reasoning about actions and change – which are all relevant to understanding our contribution.

For these reasons, we now explain this background in some detail. We first discuss WSC in general,

and WSC as Planning in particular. We then state the relevant facts about belief update. We finally

consider “message-based” WSC.

2.1 WSC, and WSC as Planning

Composition of semantic web services has received considerable attention in the last few years. A

general formulation of the problem, shared by a large variety of works, focuses on the “capability”

level, where each web service is conceived as an atomic operator that transforms concepts. More

specifically, a service is defined via an “IOPE” description: the service receives as input a set I
of typed objects, and, provided some precondition P on I holds, produces as output a set O of
typed objects for which some effect E is guaranteed to hold. The typing of the objects exchanged
by the services is given in terms of their membership in concepts. Concepts are classes defined

within ontologies, which exploit Description Logics (DL), or some other form of logic, to formally

define the universe of concepts admitted in the discourse. An ontology can express complex rela-

tionships among concepts, like a subsumption hierarchy, or the way objects belonging to a concept

are structured into parts referring to other concepts.
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This general setting can be instantiated in various ways depending on the kind of conditions

admitted as preconditions/effects of services, and on the kind of logics underlying the ontology

definitions. Independent of this, the problem of semantic web service composition can be stated

as one of “linking appropriately a set of existing services so that their aggregate behavior is that

of a desired service (the goal)”. To illustrate this problem, consider the following example, which

is inspired by the work of Thakkar, Ambite, and Knoblock (2005) on e-services for bioinformatics

(and relies on the actual structure of proteins, see for example Petsko & Ringe, 2004; Branden &

Tooze, 1998; Chasman, 2003; Fersht, 1998):

Example 1 Say we want to compose a web service that provides information about different classes

of proteins. The ontology states which classes of proteins exist, and which structural characteristics

may occur. We have available an information service for every structural characteristic, and a

presentation service that combines a range of information. Given a particular protein class, the

composed web service should run the relevant information services, and present their output.

Concretely, classes of proteins are distinguished by their location (cell, membrane, inter-

membrane, . . . ). This is modeled by predicates protein(x), cellProtein(x), membraneProtein(x),
intermembraneProtein(x), along with sub-concept relations such as ∀x : cellProtein(x) ⇒
protein(x). An individual protein is characterized by the following four kinds of structures:

1. The “primary structure” states the protein’s sequence of amino-acids, e.g., 1kw3(x) (a pro-
tein called “Glyoxalase”) and 1n55(x) (a protein called “Triosephosphate Isomerase”).

2. The “secondary structure” states the protein’s external shape in terms of a DSSP (“Dictio-

nary of Secondary Structure for Proteins”) code, admitting a limited set of possible values.

For example, G indicates a 3-turn helix, B a β-sheet, and so on. The total set of values is
G,H,I,T,E,B,S.

3. The “tertiary structure” categorizes the protein’s 3-D shape.

4. For a subset of the proteins, a “quaternary structure” categorizes the protein’s shape when

combined in complexes of proteins (amounting to about 3000 different shapes, see for example

3DComplex.org, 2008).

There are various axioms that constrain this domain, apart from the mentioned subconcept

relations. First, some obvious axioms specify that each protein has a “value” in each of the four

kinds of structures (i.e., the protein has a sequence of amino-acids, an external shape, etc). However,

there are also more complex axioms. Particular kinds of proteins come only with particular structure

values. This is modeled by axioms such as:

∀x : ¬cellProtein(x) ∨ G(x) ∨ ¬1n55(x)

∀x : ¬cellProtein(x) ∨ ¬B(x) ∨ 1kw3(x) ∨ complexBarrel(x)

For each DSSP code Z there is an information service, named getInfoDSSPZ , whose precondition

is Z(x) and whose effect is InfoDSSP(y) where y is an output of the service. Similarly, we have in-
formation services for amino-acids, 3-D shapes, and shapes in complexes. The presentation service,

named combineInfo, requires that information on all four kinds of structures has been created, and

has the effect combinedPresentation(y) (where y is an output of combineInfo).
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The input to the composed web service is a protein c (a logical constant) and its class. The
goal is ∃x : combinedPresentation(x). A solution is to reason about which characteristics may
occur, to apply the respective information services, and then to run combineInfo. In a variant of

the problem, an additional requestInfo service is used to initiate the information request, i.e., the

output of requestInfo is the protein c and its class.

This example shows how ontology axioms play a crucial role in our form of WSC, formulating

complex dependencies between different concepts. Note that applying a web service may have in-

direct consequences implied by the ontology axioms. In the example, the output of the requestInfo

service has implications for which kinds of information services are required.

Another interesting aspect of Example 1 is that it requires what the SWS community calls “par-

tial matches”, as opposed to “plug-in matches” (Paolucci, Kawamura, Payne, & Sycara, 2002; Li

& Horrocks, 2003; Kumar, Neogi, Pragallapati, & Ram, 2007).5 Consider the situation where one

wants to “connect” a web service w to another web service w′. That is, w will be executed prior to
w′, and the output of w will be used to instantiate the input of w′. Then w and w′ are said to have

a partial match if, given the ontology axioms, the output of w sometimes suffices to provide the
necessary input for w′. By contrast, w and w′ are said to have a plug-in match if, given the ontology

axioms, the output of w always suffices to provide the necessary input for w′.

Plug-in matches are tackled by many approaches to WSC, whereas partial matches are tackled

only by few. Part of the reason probably is that plug-in matches are easier to handle, in many types

of WSC algorithms. Indeed most existing WSC tools support plug-in matches only (see a detailed

discussion of WSC tools in Section 7). Example 1 cannot be solved with plug-in matches because

each of the information services provides the necessary input for the combineInfo service only in

some particular cases.

We base our work on a planning formalism that allows to specify web services (i.e., actions)

with outputs, and that allows to specify ontology axioms. The axioms are interpreted as integrity

constraints, and the resulting semantics corresponds closely to the common intuitions behind WSC,

as well as to the existing formal definitions related to WSC (Lutz & Sattler, 2002; Baader, Lutz,

Milicic, Sattler, & Wolter, 2005; Liu, Lutz, Milicic, & Wolter, 2006b, 2006a; de Giacomo, Lenz-

erini, Poggi, & Rosati, 2006). Since one of our main aims is to be able to exploit existing planning

techniques, we consider a particular form of ontology axioms, in correspondence with the represen-

tations that are used by most of the existing tools for planning under uncertainty. Namely, the axioms

are universally quantified clauses. An example is the subsumption relation ∀x : trainTicket(x) ⇒
ticket(x) mentioned above, where as usual A⇒ B is an abbreviation for ¬A∨B. A planning task
specifies a set of such clauses, interpreted as the conjunction of the clauses. Note that this provides

significant modeling power. The meaning of the universal quantification in the clauses is that the

clauses hold for all planning “objects” – logical constants – that are known to exist. In that sense, the

interpretation of formulas is closed-world as is customary in planning tools. However, in contrast

to most standard planning formalisms including PDDL, we do not assume a fixed set of constants.

Rather, the specification of actions with outputs enables the dynamic creation of new constants. The

quantifiers in the ontology axioms range over all constants that exist in the respective world. In a

similar fashion, the planning goal may contain variables, which are existentially quantified. The

constants used to instantiate the goal may have pre-existed, or they may have been generated as

5. The terminology in these works is slightly different from what we use here, and they also describe additional kinds

of matches. Some details are given in Section 7.
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the outputs of some of the web services that were applied on the path to the world. Consider for

illustration the goal ∃x : combinedPresentation(x) in Example 1, where the goal variable x will
have to be instantiated with an output created by the combineInfo service.

Another important aspect of our planning formalism is that we allow incomplete initial state

descriptions. The initial state corresponds to the input that the user provides to the composed web

service. Certainly we cannot assume that this contains complete information about every aspect

of the world. (In Example 1, the initial state tells us which class of proteins we are interested

in, but leaves open what the consequences are regarding the possible structural characteristics.)

We consider the case where there is no observability, i.e., conformant planning. The outcome of

WSC is a sequence of web services that satisfies the user goal in all possible situations.6 As is

customary in conformant planning, the actions have a conditional effects semantics, i.e., they fire if

their precondition holds true, and otherwise they do nothing. Note that, this way, we obtain a notion

of partial matches: the solution employs different actions depending on the situation.

The main difference between our planning formalism and the formalisms underlying most cur-

rent planning tools is the presence of integrity constraints, and its effect on the semantics of execut-

ing actions. That semantics is defined as a belief update operation.

2.2 Belief Update

The correspondence of web service applications to belief update was first observed by Lutz and

Sattler (2002), and followed by Baader et al. (2005), Liu et al. (2006b, 2006a) and de Giacomo

et al. (2006). In the original statement of the belief update problem, we are given a “belief” Φ,
i.e., a logical formula defining the worlds considered possible. We are further given a formula φ,
the “update”. Intuitively, φ corresponds to some observation telling us that the world has changed
in a way so that, now, φ is true. We want to obtain a formula Φ′ defining the worlds which are

possible given this update. Certainly, we need to have that Φ′ |= φ. Ensuring this corresponds
to the well-known ramification problem. At the same time, however, the world should not change

unnecessarily. That is, we want Φ′ to be “as close as possible to Φ”, among the formulas which
satisfy φ. This corresponds to the frame problem.
Say we want to apply an action a in the presence of integrity constraints. Φ describes the

worlds that are possible prior to the application of a. Φ′ is the resulting set of possible worlds.

The integrity constraints correspond to a formula ΦIC which holds in Φ, and which we require to
hold in Φ′. The update formula φ is given as the conjunction of the action effect with ΦIC , i.e.,

we have φ = effa ∧ ΦIC . This means that we update our previous belief with the information that,

after a, effa is a new formula required to hold, and ΦIC is still true. For example, we may have an

action effect A(c) and a subsumption relation between concepts A and B, formulated as a clause
∀x : ¬A(x) ∨B(x). Then the update formula A(c) ∧ ∀x : ¬A(x) ∨B(x) ensures that B(c) is true
in Φ′.

Belief update has been widely considered in the literature on AI and databases (see for example

Fagin, Kuper, Ullman, & Vardi, 1988; Ginsberg & Smith, 1988; Winslett, 1988, 1990; Katzuno

& Mendelzon, 1991; Herzig, 1996; Herzig & Rifi, 1999; Liu et al., 2006b; de Giacomo et al.,

2006). The various approaches differ in exactly how Φ′ should be defined. The best consensus is

that there is no one approach that is most adequate in every application context. All approaches

6. Of course, more generally, observability is partial and web service effects are also uncertain. We do not consider

these generalizations here. Extending our notions accordingly should be straightforward, and is future work.
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agree that φ should hold in the updated state of affairs, Φ′ |= φ. Major differences lie in what
exactly it should be taken to mean that Φ′ should be “as close as possible to Φ”. Various authors, for
example Brewka and Hertzberg (1993), McCain and Turner (1995), Herzig (1996), and Giunchiglia

and Lifschitz (1998), argue that a notion of causality is needed, in addition to (or even instead of) a

notion of integrity constraints, to model domain behavior in a natural way. We do not counter these

arguments, but neither do we follow a causal approach in our work. The reason is that ontologies

in the context of WSC, for example ontologies formulated in the web ontology language OWL

(McGuinness & van Harmelen, 2004), do not incorporate a notion of causality. All we are given is a

set of axioms, made with the intention to describe the behavior of the domain itself, rather than the

behavior it exhibits when changed by some particular web services. Our idea in this work is to try

to leverage on what we have (or what we are reasonably close to having). Consideration of causal

approaches in WSC is left for future work.

Belief update is a computationally very hard problem. Eiter and Gottlob (1992) and Liberatore

(2000) show that, for the non-causal approaches to defining Φ′, reasoning about Φ′ is typically

harder than reasoning in the class of formulas used for formulating Φ and φ. Specifically, deciding
whether or not a particular literal is true in Φ′ is Π2

p-hard even if Φ is a complete conjunction of
literals (corresponding to a single world state) and φ is a propositional CNF formula. The same
problem is coNP-hard even if Φ is a single world state and φ is a propositional Horn formula. We
use these results to show that, in our planning formalism, checking a plan – testing whether or

not a given action sequence is a plan – is Π2
p-complete, and deciding polynomially bounded plan

existence is Σ3
p-complete.

Given this complexity, it is perhaps unsurprising that the support for integrity constraints in cur-

rent planning tools is severely limited. The only existing planning tools that do support integrity

constraints, namely those by Eiter et al. (2003) and Giunchiglia et al. (2004), are based on generic

deduction, like satisfiability testing or answer set programming. They hence lack the planning-

specific heuristic and search techniques that are the key to scalability in the modern planning tools

developed since the mid-nineties. It has not even been investigated yet if and how integrity con-

straints could be handled in the latter tools. The only existing approach that ventures in this di-

rection implements so-called derived predicates in some of the modern planning tools (Thiébaux,

Hoffmann, & Nebel, 2005; Gerevini, Saetti, Serina, & Toninelli, 2005; Chen et al., 2006). This

approach postulates a strict distinction between “basic” predicates that may be affected by actions,

and “derived” predicates that may be affected by integrity constraints taking the form of logic pro-

gramming rules. If a predicate appears in an action effect, then it is not allowed to appear in the

head of a rule. This is not a desirable restriction in the context of WSC, where web services are

bound to affect properties that are constrained by ontology axioms.

The existing work connecting WSC with belief update (Lutz & Sattler, 2002; Baader et al.,

2005; Liu et al., 2006b, 2006a; de Giacomo et al., 2006) is of a theoretical nature. The actual imple-

mented WSC tools make severe simplifying assumptions. Most often, that assumption is to ignore

the ontology axioms (Ponnekanti & Fox, 2002; Srivastava, 2002; McIlraith & Son, 2002; Sheshagiri

et al., 2003; Sirin, Parsia, Wu, Hendler, & Nau, 2004; Pistore et al., 2005b, 2005a). Sometimes,

the ontology constraints are restricted to subsumption hierarchies, which makes the update problem

easy (Constantinescu & Faltings, 2003; Constantinescu, Faltings, & Binder, 2004b, 2004a). Sirin

and Parsia (2004) and Sirin, Parsia, and Hendler (2006) discuss the problem of dealing with on-

tology axioms in WSC, but do not make a connection to belief update, and describe no alternative

solution. Finally, some authors, for example Meyer and Weske (2006), do deal with ontology ax-
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ioms during composition, but do not provide a formal semantics and do not specify exactly how

action applications are handled. It seems that these not fully formalized WSC approaches implicitly

assume a message-based framework. Those frameworks are closely related to the forward effects

special case identified herein.

2.3 Message-Based WSC

In message-based approaches to WSC, the composition semantics is based on chaining over input

and output messages of web services. The word “message” is not a standard term in this context.

Most authors use their own individual vocabulary. As far as we are aware, the first appearance of the

word “message” in a WSC paper title is in the work by Liu, Ranganathan, and Riabov (2007). This

work describes message-based WSC as follows. A solution is a directed acyclic graph (DAG) of

web services, where the input needed for web service (DAG graph node) w must be provided by the
outputs of the predecessors ofw in the graph. That is, the plan determines fixed connections between
the actions. Reasoning, then, only takes place “within these connections”. Any two connections

between different output and input messages, i.e., any two graph edges ending in a different node,

are assumed to be mutually independent. Consider the following example for illustration. Say a web

service w has the effect hasAttributeA(c, d) where d is an output constant and c is an input (i.e., c
existed already prior to application of w). Say there is an axiom ∀x, y : hasAttributeA(x, y) ⇒
conceptB(x) expressing an “attribute domain restriction”. If x has y as a value of attribute A,
then x must be of concept B. Given this, w’s effect implies conceptB(c). Now, suppose that our
belief prior to applying w did not constrain c to be of concept B. Then applying w leads to new
knowledge about c. Hence we need a non-trivial belief update taking into account the changed
status of c, and any implications that may have. Message-based WSC simply acts as if the latter is
not the case. It only checks whether w correctly supplies the inputs of the web services w′ that w
is connected to. That is, the new fact hasAttributeA(c, d) may be taken as part of a proof that the
effect of w implies the precondition of a connected web service w′. But it is not considered at all

what implications hasAttributeA(c, d) may have with respect to the previous state of affairs. In
that sense, message-based WSC “ignores” the need for belief update.

The intuitions underlying message-based WSC are fairly wide-spread. Many papers use them

in a more or less direct way. There are many approaches that explicitly define WSC solutions to be

DAGs with local input/output connections as above (Zhan, Arpinar, & Aleman-Meza, 2003; Lecue

& Leger, 2006; Lecue & Delteil, 2007; Kona, Bansal, Gupta, & Hite, 2007; Liu et al., 2007; Ambite

& Kapoor, 2007). In various other works (Constantinescu & Faltings, 2003; Constantinescu et al.,

2004b, 2004a; Meyer & Weske, 2006), the message-based assumptions are more implicit. They

manifest themselves mainly in the sense that ontology axioms are only used to infer the properties

of output messages, and often only for checking whether the inferences imply that a desired input

message is definitely given.

Previous work on message-based WSC does not address at all how message-based WSC relates

to the various notions, like belief update, considered in the literature. One contribution of our work

is to shed some light on this issue, via the identification of the forward effects case which lies “in

between” message-based WSC and a full planning framework with belief update semantics.

Both message-based WSC and the forward effects case share the focus on outputs. Indeed,

the output constants generated by our actions can be viewed as “messages”. An output constant

represents an information object which is created by one web service, and which will form the
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input of some other web service. In the forward effects case, due to the restriction on axioms, the

individual messages do not interact. This is much like message-based WSC. The main difference is

this: while message-based WSC ignores any possible interactions, in forward effects there actually

aren’t any interactions, according to a formal planning-based execution semantics. In that sense,

forward effects correspond to a special case of WSC where the assumptions of message-based WSC

are justified.

Reconsider our example from above, featuring a web service w with an effect implying that
conceptB(c) where c is a pre-existing constant. As explained above, message-based WSC will
simply ignore the need for updating the knowledge about c. In contrast, the forward effects case
disallows the axiom ∀x, y : hasAttributeA(x, y) ⇒ conceptB(x) because it may lead to new
conclusions about the old belief (note that the literals in the axiom refer to different sets of variables).

The forward effects case also differs significantly from most approaches to message-basedWSC

in terms of the flexibility with which it allows to combine actions into plans. In the message-

based approach using DAGs, a solution DAG ensures that the inputs of each service w can always
be provided by w’s predecessors. That is, we have a plug-in match between the set W of w’s
predecessors in the DAG, and w itself. Note that this is slightly more general than the usual notion
of plug-in matches, in that |W |may be greater than 1, and hence each single service inW may have
only a partial match with w. This is the notion used, amongst others, by Liu et al. (2007). Other
authors, for example Lecue and Leger (2006) and Lecue and Delteil (2007), are more restrictive in

that they consider every individual input x ofw in turn and require that there exists aw′ ∈W so that
w′ has a plug-in match with x (i.e., w′ guarantees to always provide x). Even in the more generous
of these two definitions, partial matches are restricted to appear locally, on DAG links. Every

action/web service is required to be always executable at the point where it is applied. In other

words, the services are used in a fixed manner, not considering the dynamics of actual execution.

In Example 1, this would mean using the same information services regardless of the class of the

protein, hence completely ignoring what is relevant and what is not.

The forward effects case incorporates a much more general notion of partial matches. This hap-

pens in a straightforward way, exploiting the existing notions from planning, in the form of a condi-

tional effects semantics. The standard notion of a conformant solution defines how partial matches

must work together on a global level, to accomplish the goal. To the best of our knowledge, there

is only one other line of work on WSC, by Constantinescu et al. (Constantinescu & Faltings, 2003;

Constantinescu et al., 2004b, 2004a), that incorporates a comparable notion of partial matches. In

that work, web services are characterized in terms of input and output “types”. To handle partial

matches, so-called “switches” combine several web services in a way that ascertains all relevant

cases can be covered. The switches are designed relative to a subsumption hierarchy over the types.

Note that subsumption hierarchies are a special case of the much more general integrity constraints

– universally quantified clauses – that we consider in our work.

3. Formalizing WSC

As a solid basis for addressing WSC, we define a planning formalism featuring integrity constraints,

on-the-fly creation of output constants, incomplete initial state descriptions, and actions with a con-

ditional effects semantics. The application of actions is defined as a belief update operation, follow-

ing the possible models approach by Winslett (1988). That definition of belief update is somewhat

canonical in that it is very widely used and discussed. In particular it underlies all the recent work
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relating to formalizations of WSC (Lutz & Sattler, 2002; Baader et al., 2005; Liu et al., 2006b,

2006a; de Giacomo et al., 2006; de Giacomo, Lenzerini, Poggi, & Rosati, 2007). As we will show

further below (Section 4.3), most belief update operations are equivalent anyway as soon as we

are in the forward effects case. Recall here that the forward effects case is the central object of

investigation in this paper.

We first give the syntax of our formalism, which we denote withWSC, then we give its seman-
tics. We conclude with an analysis of its main computational properties.

3.1 Syntax

We denote predicates withG,H, I , variables with x, y, z, and constants with c, d, e. Literals are pos-
sibly negated predicates whose arguments are variables or constants. If all arguments are constants,

the literal is ground. We refer to positive ground literals as propositions. Given a set P of predicates
and a set C of constants, we denote by PC the set of all propositions that can be formed from P
and C. Given a setX of variables, we denote by LX the set of all literals l which use only variables
from X . Note here that l may use arbitrary predicates and constants.7 If l is a literal, we write
l[X] to indicate that l has the variable arguments X . If X = {x1, . . . , xk} and C = (c1, . . . , ck),
then by l[c1, . . . , ck/x1, . . . , xk] we denote the respective substitution, abbreviated as l[C]. In the
same way, we use the substitution notation for any construct involving variables. Slightly abusing

notation, we use a vector of constants also to denote the set of constants appearing in it. Further, if

a function a assigns constants to the variables X , then by l[a/X] we denote the substitution where
each argument x ∈ X was replaced with a(x). We are only concerned with first-order logic, that is,
whenever we write formula we mean a first-order formula. We denote true as 1 and false as 0.
A clause, or integrity constraint, is a disjunction of literals with universal quantification on the

outside. The variables quantified over are exactly those that appear in at least one of the literals. For

example, ∀x, y : ¬G(x, y)∨H(x) is an integrity constraint but ∀x, y, z : ¬G(x, y)∨H(x) and ∀x :
¬G(x, y)∨H(x) are not. An operator o is a tuple (Xo, preo, Yo, effo), whereXo, Yo are sets of vari-

ables, preo is a conjunction of literals from LXo , and effo is a conjunction of literals from LXo∪Yo .8

The intended meaning is thatXo are the inputs and Yo the outputs, i.e., the new constants created by

the operator. For an operator o, an action a is given by (prea, effa) ≡ (preo, effo)[Ca/Xo, Ea/Yo]
where Ca and Ea are vectors of constants. For Ea we require that the constants are pairwise differ-

ent – it makes no sense to “output the same new constant twice”. Given an action a, we will refer
to a’s inputs and outputs by Ca and Ea, respectively. We will also use the notations prea, effa with

the obvious meaning.

AWSC task, or planning task, is a tuple (P,ΦIC ,O, C0, φ0, φG). Here, P is a set of predicates.
ΦIC is a set of integrity constraints. O is a set of operators and C0 is a set of constants, the initial

constants supply. φ0 is a conjunction of ground literals, describing the possible initial states. φG

is a conjunction of literals with existential quantification on the outside, describing the goal states,

e.g., ∃x, y : G(x) ∧ H(y). All predicates are taken from P , and all constants are taken from C0.

All constructs (e.g., sets and conjunctions) are finite. We will sometimes identify ΦIC with the

conjunction of the clauses it contains. Note that the existential quantification of the goal variables

7. One could of course introduce more general notations for logical constructs using some set of predicates or constants.

However, herein the two notations just given will suffice.

8. As stated, we do not address disjunctive or non-deterministic effects. This is a topic for future work.
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provides the option to instantiate the goal with constants created during planning – obtaining objects

as requested by the goal may be possible only through the use of outputs.

The various formulas occurring in (P,ΦIC ,O, C0, φ0, φG)may make use of constants fromC0.

Specifically, this is the case for clauses in ΦIC and for the goal formula φG. Allowing such use of

constants does not have any effect on our complexity or algorithmic results. It is conceivable that

the feature may be useful. As a simple example, in the VTA domain the user may wish to select a

particular train. Say the train company provides a table of trains with their itineraries. That table can

be represented in φ0, possibly with help from ΦIC stating constraints that hold for particular trains.

The user can then select a train, say ICE107, and pose as a goal that ∃y : ticketFor(y, ICE107).
Constraining the produced ticket in this way would not be possible without the use of pre-existing

constants (or would at least require a rather dirty hack, e.g., encoding the desired train in terms of a

special predicate).

Operator descriptions, that is, preconditions and effects, may also use constants from C0. The

value of this is more benign than for ΦIC and φG because one can always replace a constant c in
the precondition/effect with a new input/output variable x, and instantiate x (during planning) with
c. Note, however, that this would give the planner the option to (uselessly) instantiate x with some
other constant, and may hence affect planning performance. In our above example, there might be a

special operator booking a ticket for ICE107 (e.g., if that train has particular ticketing regulations).
The correspondence of a WSC task to a web service composition task is fairly obvious. The

set P of predicates is the formal vocabulary used in the underlying ontology. The set ΦIC of

integrity constraints is the set of axioms specified by the ontology, i.e., domain constraints such as

subsumption relations. The setO of operators is the set of web services. Note that our formalization
corresponds very closely to the notion of IOPE descriptions: inputs, outputs, preconditions, and

effects (Ankolekar et al., 2002; Burstein et al., 2004). An action corresponds to a web service call,

where the web service’s parameters are instantiated with the call arguments.

The constructs C0, φ0, and φG are extracted from the user requirement on the composition.

We assume that such requirements also take the form of IOPE descriptions. Then, C0 are the

user requirement inputs, and φ0 is the user requirement precondition. In other words, C0 and φ0

describe the input given to the composition by the user. Similarly, φG is the user requirement effect

– the condition that the user wants to be accomplished – and the user requirement outputs are the

(existentially quantified) variables in φG.

3.2 Semantics

In what follows, assume we are given a WSC task (P,ΦIC ,O, C0, φ0, φG). To be able to model
the creation of constants, states (also called world states) in our formalism are enriched with the set

of constants that exist in them. A state s is a pair (Cs, Is) where Cs is a set of constants, and Is is a
Cs-interpretation, i.e., a truth value assignment Is : PCs 7→ {0, 1}. Quantifiers are taken to range
over the constants that exist in a state. That is, if I is a C-interpretation and φ is a formula, then by
writing I |= φ we mean that I |= φC where φC is the same as φ except that all quantifiers were
restricted to range over C. To avoid clumsy notation, we will sometimes write s |= φ to abbreviate
Is |= φ.
The core definition specifies how the application of an action affects a state. This is defined

through a form of belief update. Let us first define the latter. Assume a state s, a set of constants
C ′ ⊇ Cs, and a formula φ. We define update(s, C ′, φ) to be the set of interpretations that result
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from creating the constants C ′ \ Cs, and updating s with φ according to the semantics proposed by
Winslett (1988).

Say I1 and I2 are C
′-interpretations. We define a partial order over such interpretations, by

setting I1 <s I2 if and only if

{p ∈ PCs | I1(p) 6= Is(p)} ⊂ {p ∈ PCs | I2(p) 6= Is(p)}. (1)

In words, I1 is ordered before I2 iff it differs from s in a proper subset of values. Given this, we can
now formally define update(s, C ′, φ). Let I be an arbitrary C ′-interpretation. We define

I ∈ update(s, C ′, φ) :⇔ I |= φ and {I ′ | I ′ |= φ, I ′ <s I} = ∅. (2)

Hence, update(s, C ′, φ) is defined to be the set of all C ′-interpretations which satisfy φ, and which
are minimal with respect to the partial order <s. Put in different terms, update(s, C ′, φ) contains
all interpretations that differ from s in a set-inclusion minimal set of values.
Now, assume an action a. We say that a is applicable in s, short appl(s, a), if s |= prea,

Ca ⊆ Cs, and Ea ∩ Cs = ∅. That is, on top of the usual precondition satisfaction we require that
a’s inputs exist and that a’s outputs do not yet exist. The result of executing a in s is:

res(s, a) :=

{

{(C ′, I ′) | C ′ = Cs ∪ Ea, I
′ ∈ update(s, C ′,ΦIC ∧ effa)} appl(s, a)

{s} otherwise
(3)

Note that a can be executed in s even if it is not applicable. In that case, the outcome is the singleton
set containing s itself, i.e., the action does not affect the state. This is an important aspect of our
formalism, which we get back to below. If ΦIC ∧ effa is unsatisfiable, then obviously we get
res(s, a) = ∅. We say in this case that a is inconsistent.9

The overall semantics ofWSC tasks is now easily defined via a standard notion of beliefs. These
model our uncertainty about the true state of the world. A belief b is the set of world states that are
possible at a given point in time. The initial belief is

b0 := {s | Cs = C0, s |= ΦIC ∧ φ0}. (4)

An action a is inconsistent with a belief b if it is inconsistent with at least one s ∈ b. In the latter
case, res(b, a) is undefined. Otherwise, it is defined by

res(b, a) :=
⋃

s∈b

res(s, a). (5)

This is extended to action sequences in the obvious way. A plan is a sequence 〈a1, . . . , an〉 so that

∀s ∈ res(b0, 〈a1, . . . , an〉) : s |= φG. (6)

For illustration, consider the formalization of our example from Section 2.

Example 2 Reconsider Example 1. For the sake of conciseness, we formalize only a part of the

example, with simplified axioms. TheWSC task is defined as follows:

9. Unless ΦIC mentions any constants, if a is based on operator o and a is inconsistent, then any action based on o is

inconsistent. Such operators can, in principle, be filtered out in a pre-process to planning.
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• P = {protein, cellProtein, G, H, I, 1n55, 1kw3, InfoDSSP, Info3D, combinedPresentation},
where all the predicates are unary.

• ΦIC consists of the clauses:

– ∀x : ¬cellProtein(x) ∨ protein(x) – [subsumption]

– ∀x : ¬protein(x) ∨ G(x) ∨ H(x) ∨ I(x) – [at least one DSSP value]

– ∀x : ¬protein(x) ∨ 1n55(x) ∨ 1kw3(x) – [at least one 3-D shape]

– ∀x : ¬cellProtein(x) ∨ G(x) ∨ 1n55(x) – [dependency]

– ∀x : ¬cellProtein(x) ∨ H(x) ∨ ¬1n55(x) – [dependency]

• O consists of the operators:

– getInfoDSSPG: ({x},G(x), {y}, InfoDSSP(y))

– getInfoDSSPH : ({x},H(x), {y}, InfoDSSP(y))

– getInfoDSSPI : ({x}, I(x), {y}, InfoDSSP(y))

– getInfo3D1n55: ({x}, 1n55(x), {y}, Info3D(y))

– getInfo3D1kw3: ({x}, 1kw3(x), {y}, Info3D(y))

– combineInfo: ({x1, x2}, InfoDSSP(x1) ∧ Info3D(x2), {y}, combinedPresentation(y))

• C0 = {c}, φ0 = cellProtein(c)

• φG = ∃x : combinedPresentation(x)

To illustrate the formalism, we now consider a plan for this example task.

The initial belief b0 consists of all states s where Cs = {c} and s |= ΦIC ∧ cellProtein(c). Say
we apply the following sequence of actions:

1. Apply getInfoDSSPG(c, d) to b0. Then we get to the belief b1 which is the same as b0 except
that, from all s ∈ b0 where s |= G(c), new states are generated that have the constant d and
InfoDSSP(d).

2. Apply getInfoDSSPH(c, d) to b1. We get the belief b2 where new states with d and
InfoDSSP(d) are generated from all s ∈ b1 where s |= H(c).

3. Apply getInfo3D1n55(c, e) to b2, yielding b3.

4. Apply getInfo3D1kw3(c, e) to b3. This yields b4, where we get e and Info3D(e) from all s ∈ b2
where s |= 1n55(c) or s |= 1kw3(c).

5. Apply combineInfo(d, e, f) to b4. This brings us to b5 which is like b4 except that from all
s ∈ b4 where d, e ∈ Cs new states are generated that have f and combinedPresentation(f).

From the dependencies in ΦIC (the last two clauses), we get that any s ∈ b0 satisfies either G(c) or
H(c). From the subsumption clause and the clause regarding 3-D shapes (first and third clauses)
we get that any s ∈ b0 satisfies either 1n55(c) or 1kw3(c). Hence, as is easy to verify, b5 |=
φG and so 〈getInfoDSSPG(c, d), getInfoDSSPH(c, d), getInfo3D1n55(c, e), getInfo3D1kw3(c, e),
combineInfo(d, e, f)〉 is a plan.
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Note that this plan does not make use of getInfoDSSPI(c, d). To obtain a plan, in this domain
one can always just apply all information services. However, this plan is trivial and does not take

into account what is relevant and what is not. Reasoning over ΦIC enables us to find better plans.

Our semantics for executing non-applicable actions is vital for the workings of Example 2. As

pointed out above, below the definition of res(s, a) (Equation (3)), a can be executed in s even if it
is not applicable. This realizes partial matches: a web service can be called as soon as it might match

one of the possible situations. In planning terms, our actions have a conditional effects semantics.10

The contrasting notion would be to enforce preconditions, i.e., to say that res(s, a) is undefined if
a is not applicable to s. This would correspond to plug-in matches.
In Example 2, the partial match semantics is necessary in order to be able to apply actions that

cover only particular cases. For example, consider the action getInfoDSSPG(c, d), which is applied
to the initial belief in the example plan. The precondition of that action is G(c). However, there
are states in the initial belief which do not satisfy that precondition. The initial belief allows any

interpretation satisfying ΦIC ∧ φ0 (cf. Equation (4)), and some of these interpretations satisfy H(c)
rather than G(c). Due to the partial match semantics, getInfoDSSPG(c, d) does not affect such
states – its match with the initial belief is partial.

Clarification is also in order regarding our understanding of constants. First, like every PDDL-

like planning formalism (we are aware of), we make a unique name assumption, i.e., different

constants refer to different objects. Second, our understanding of web services is that any output

they create is a separate individual, i.e., a separate information object.

The latter directly raises the question why we allow actions to share output constants. The

answer is that we allow the planner to treat two objects as if they were the same. This makes

sense if the two objects play the same role in the plan. Consider again Example 2. The actions

getInfoDSSPG(c, d) and getInfoDSSPH(c, d) share the same output constant, d. This means that
d is one name for two separate information objects. These two objects have the same properties,
derived from InfoDSSP(d). The only difference between them is that they are created in different
cases, namely from states that satisfy G(c) and H(c) respectively. Having a single name for the
two objects is useful because we can take that name as a parameter of actions that do not need to

distinguish between the different cases. In the example, combineInfo(d, e, f) is such an action.
As hinted, the “cases” in the above correspond to different classes of concrete execution traces.

Importantly, on any particular execution trace, each output constant is created at most once. To see

this, consider an execution trace s0, a0, s1, a1, . . . , ak, sk+1, i.e., an alternating sequence of states

and actions where s0 ∈ b0, and si+1 ∈ res(si, ai) for all 0 ≤ i ≤ k. Say that ai and aj share

an output constant, d. Say further that ai is applicable in si, and hence d ∈ Csi+1
. Then, quite

obviously, we have d ∈ Csl
for all i + 1 ≤ l ≤ k + 1. In particular, aj is not applicable in sj : the

intersection of its output constants with Csj
is non-empty (cf. the definition of appl(s, a)). So, due

to our definition of action applicability, it can never happen that the same constant is created twice.

In other words, there can never be a reachable state where a single constant name refers to more

than one individual information object. In that sense, the use of one name for several objects occurs

only at planning time, when the actual execution trace – the actual case which will occur – is not

known. For illustration, consider getInfoDSSPG(c, d) and getInfoDSSPH(c, d), and their shared

10. An obvious generalization is to allow several conditional effects per action, in the style of the ADL language (Ped-

nault, 1989). We omit this here for the sake of simplifying the discussion. An extension in this direction is straight-

forward.
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output d, in Example 2. Even if the concrete state s0 ∈ b0 in which the execution starts satisfies
both G(c) and H(c), only one of the actions will fire – namely the one that comes first.
We remark that we initially experimented with a definition where actions instantiate only their

inputs, and when they are applied to a state s their outputs are, by virtue of the execution semantics,
instantiated to constants outside of Cs. In such a framework, one can never choose to “share output

constants”, i.e., to use the same name for two different outputs. The notion we have settled for is

strictly richer: the planner can always choose to instantiate the outputs with constants outside of Cs.

The question is, when does it make sense to share outputs? Answering this question in a domain-

independent planner may turn out to be quite non-trivial. We get back to this when we discuss a

possible adaptation of CFF in Section 4.5. In the experiments reported herein (Section 6), we use a

simple heuristic. Outputs are shared iff the operator effects are identical (giving an indication that

the respective outputs may indeed “play the same role” in the plan).

We conclude this sub-section with a final interesting observation regarding modeling in our

framework. Negative effects are not an essential part of theWSC formalism: they can be compiled
away. We simply replace any negative effect ¬G(x1, . . . , xk) with notG(x1, . . . , xk) (introducing
a new predicate) and state in the integrity constraints that the two are equivalent. That is, we in-

troduce the two new clauses ∀x1, . . . , xk : G(x1, . . . , xk) ∨ notG(x1, . . . , xk) and ∀x1, . . . , xk :
¬G(x1, . . . , xk) ∨ ¬notG(x1, . . . , xk). While this is a simple compilation technique, the formal
details are a little intricate, and are moved to Appendix A. If a is an action in the original task, then
a+ denotes the corresponding action in the compiled task, and vice versa. Similarly, if s is an action
in the original task, then s+ denotes the corresponding state in the compiled task. We get:

Proposition 1 (Compilation of Negative Effects inWSC) Assume aWSC task (P, ΦIC , O, C0,
φ0, φG). Let (P+,Φ′+

IC ,O
+, C0, φ0, φG) be the same task but with negative effects compiled away.

Assume an action sequence 〈a1, . . . , an〉. Let b be the result of executing 〈a1, . . . , an〉 in (P, ΦIC ,
O, C0, φ0, φG), and let b+ be the result of executing 〈a+

1 , . . . , a
+
n 〉 in (P+,Φ+

IC ,O
+, C0, φ0, φG).

Then, for any state s, we have that s ∈ b iff s+ ∈ b+.

This can be proved by straightforward application of the relevant definitions. The most impor-

tant aspect of the result is that the new clauses introduced are allowed in the forward effects and

strictly forward effects special cases identified later. Hence, any hardness results transfer directly to

tasks without negative effects and dropping negative effects cannot make the algorithms any easier.

3.3 Computational Properties

We now perform a brief complexity analysis of the WSC formalism in its most general form as
introduced above. In line with many related works of this kind (Eiter & Gottlob, 1992; Bylander,

1994; Liberatore, 2000; Eiter et al., 2004), we consider the propositional case. In our context, this

means that we assume a fixed upper bound on the arity of predicates, on the number of input/output

parameters of each operator, on the number of variables appearing in the goal, and on the number of

variables in any clause. We will refer toWSC tasks restricted in this way asWSC tasks with fixed
arity.

We consider the problems of checking plans – testing whether or not a given action sequence is a

plan – and of deciding plan existence. For the latter, we distinguish between polynomially bounded

plan existence, and unbounded plan existence. We deem these to be particularly relevant decision

problems in the context of plan generation. Certainly, plan checks are an integral part of plan gen-
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eration. Indeed, if a planning tool is based on state space search, then the tool either performs such

checks explicitly for (potentially many) plan candidates generated during search, or this complexity

is inherent in the effort that underlies the computation of state transitions. Polynomially bounded

plan existence is relevant because, in most commonly used planning benchmark domains, plans are

of polynomial length (it is also a very wide-spread intuition in the SWS community that composed

web services will not contain exceedingly large numbers of web services). Finally, unbounded plan

existence is the most general decision problem involved, and thus is of generic interest.

All the problems turn out to be very hard. To prove this, we reuse and adapt various results from

the literature. We start with the complexity of plan checking, for which hardness follows from a

long established result (Eiter & Gottlob, 1992) regarding the complexity of belief update. For all

the results, detailed proofs are available in Appendix A.

Theorem 1 (Plan Checking inWSC) Assume a WSC task with fixed arity, and a sequence
〈a1, . . . , an〉 of actions. It is Π

p
2-complete to decide whether 〈a1, . . . , an〉 is a plan.

Proof Sketch: Membership can be shown by a guess-and-check argument. Guess the proposition

values along 〈a1, . . . , an〉. Then check whether these values comply with res, and lead to an
inconsistent action, or to a final state that does not satisfy the goal. 〈a1, . . . , an〉 is a plan iff this is
not the case for any guess of proposition values. Checking goal satisfaction is polynomial, checking

compliance with res is in coNP, checking consistency is in NP.
Hardness follows by a simple adaptation of the proof of Lemma 6.2 from Eiter and Gottlob

(1992). That proof uses a reduction from checking validity of a QBF formula ∀X.∃Y.ψ[X,Y ]. The
lemma considers the case where a propositional belief Φ is updated with an arbitrary (propositional)
formula φ, and the decision problem is to ask whether some other formula Φ′ is implied by the

updated belief. In the proof, Φ is a complete conjunction of literals, i.e., Φ corresponds to a single
world state. Φ′ is a single propositional fact r which is true in Φ. The semantics of ∀X.∃Y.ψ[X,Y ]
are encoded in a complicated construction defining the update φ. In a nutshell, φ is a CNF telling
us that for every assignment toX (which will yield a world state s′ in the updated belief), we either
have to find an assignment to Y so that ψ[X,Y ] holds (“completing” s′), or we have to falsify r.
The difference in our setting lies in our very restricted “update formulas” – action effects – and

in the fact that the integrity constraints are supposed to hold in every belief. We adapt the above

proof by, first, taking the integrity constraints to be the clauses in Eiter and Gottlob’s CNF formula

φ. We then modify the constraints so that they need only be true if a new fact t holds – i.e., we insert
¬t into every clause. The initial belief has t false, and otherwise corresponds exactly to Φ as above.
The only action of the plan makes t true. The goal is Eiter and Gottlob’s fact r. 2

We remark that membership in Theorem 1 remains valid when allowing actions with multiple

conditional effects, when allowing parallel actions, and even when allowing their combination. On

the other hand, by virtue of the proof argument as outlined, hardness holds even if the initial state

literals φ0 are complete (describe a single world state), the plan consists of a single action with a

single positive effect literal, and the goal is a single propositional fact that is initially true.

We next consider polynomially bounded plan existence. For this, membership follows directly

from Theorem 1. To prove hardness, we construct a planning task that extends Eiter and Gottlob’s

construction from above with actions that allow to choose a valuation for a third, existentially quanti-

fied, set of variables, and hence reduces validity checking of a QBF formula ∃X.∀Y.∃Z.ψ[X,Y, Z].

67



HOFFMANN, BERTOLI, HELMERT & PISTORE

Theorem 2 (Polynomially Bounded Plan Existence inWSC) Assume aWSC task with fixed ar-
ity, and a natural number b in unary representation. It is Σp

3-complete to decide whether there exists

a plan of length at most b.

Proof: For membership, guess a sequence of at most b actions. By Theorem 1, we can check with
a Πp

2 oracle whether the sequence is a plan.

For hardness, validity of a QBF formula ∃X.∀Y.∃Z.ψ[X,Y, Z], where ψ is in CNF, is reduced
to testing plan existence. SayX = {x1, . . . , xn}. In the planning task, there are n actions (operators
with empty input/output parameters) oxi and o¬xi of which the former sets xi to true and the latter

sets xi to false. Further, there is an action o
t which corresponds to the action used in the hardness

proof of Theorem 1. The actions are equipped with preconditions and effects ensuring that any

plan must first apply, for all 1 ≤ i ≤ n, either oxi or o¬xi , and thereafter must apply ot (of course

enforcing the latter also requires a new goal fact that can be achieved only by ot). Hence, choosing

a plan candidate in this task is the same as choosing a value assignment aX for the variables X .
In our construction, after all the oxi and o¬xi actions have been executed, one ends up in a belief

that contains a single world state, where the value assignment aX for the variables X corresponds
to the chosen actions. This world state basically corresponds to the belief Φ as in the hardness proof
of Theorem 1. The only difference is that the construction has been extended to cater for the third

set of variables. This is straightforward. Then, the belief that results from executing ot satisfies the

goal iff Eiter and Gottlob’s fact r holds in all its world states. By virtue of similar arguments to
those of Eiter and Gottlob, the latter is the case iff ∀Y.∃Z.ψ[aX/X, Y, Z], i.e., the substitution of
∃X.∀Y.∃Z.ψ[X,Y, Z] with aX , is valid. From this, the claim follows. 2

Our final result regards unbounded plan existence in WSC. The result is relatively easy to
obtain from the generic reduction described by Bylander (1994) to prove PSPACE-hardness of plan

existence in STRIPS. Somewhat shockingly, it turns out that plan existence inWSC is undecidable
even without any integrity constraints, and with a complete initial state description. The source of

undecidability is, of course, the ability to generate new constants on-the-fly.

Theorem 3 (Unbounded Plan Existence inWSC) Assume a WSC task. The decision problem
asking whether a plan exists is undecidable.

Proof Sketch: By a modification of the proof by Bylander (1994) that plan existence in propo-

sitional STRIPS planning is PSPACE-hard. The original proof proceeds by a generic reduction,

constructing a STRIPS task for a Turing Machine with polynomially bounded space. The latter re-

striction is necessary to model the machine’s tape: tape cells are pre-created for all positions within

the bound. Exploiting the ability to create constants on-the-fly, we can instead introduce simple

operators that allow to extend the tape, at both ends. 2

Not being able to decide plan existence is, of course, a significant limitation in principle. How-

ever, this limitation is probably of marginal importance in practice, because most planning tools

just assume that there is a plan, and they try to find it – rather than trying to prove that there is

no plan. In that sense, most planning tools are, by their nature, semi-decision procedures anyway.

What matters more than decidability in such a setting is the question whether one can find a plan
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quickly enough, i.e., before exhausting time or memory.11 This is also the most relevant question in

web service composition.

4. Forward Effects

The high complexity of planning in WSC motivates the search for interesting special cases. We
define a special case, called forward effects, where every change an action makes to the state involves

a newly generated constant.

We start the section by defining the forward effects case and making a core observation about

its semantics. We then discuss the modeling power of this special case. Next, we discuss for-

ward effects from a more general perspective of belief update. We analyze the main computational

properties of forward effects, and we conclude the section with an assessment of how an existing

planning tool could be adapted to handle forward effects.

4.1 WSC|fwd and its Semantics

The forward effects special case ofWSC is defined as follows.

Definition 1 Assume aWSC task (P,ΦIC ,O, C0, φ0, φG). The task has forward effects iff:

1. For all o ∈ O, and for all l[X] ∈ effo, we have X ∩ Yo 6= ∅.

2. For all clauses φ ∈ ΦIC , where φ = ∀x1, . . . , xk : l1[X1] ∨ · · · ∨ ln[Xn], we have X1 =
· · · = Xn.

The set of allWSC tasks with forward effects is denoted withWSC|fwd.

The first condition says that the variables of every effect literal contain at least one output vari-

able. This implies that every ground effect literal of an action contains at least one new constant. The

second condition says that, within every integrity constraint, all literals share the same arguments.

This implies that effects involving new constants can only affect literals involving new constants.

Note that, since x1, . . . , xk are by definition exactly the variables occurring in any of the literals,

for each Xi we have Xi = x1, . . . , xk. Note further that we may have k = 0, i.e., the literals
in the clause may be ground. This is intentional. The constants mentioned in the clause must be

taken from C0, cf. the discussion in Section 3.1. Therefore, such clauses have no interaction with

statements about the new constants generated by aWSC|fwd action.

We will discuss the modeling power of WSC|fwd below (Section 4.2). First, we observe that

the semantics of WSC|fwd is much simpler than that of general WSC. One no longer needs the
notion of minimal change with respect to the previous state. To state this more precisely, assume a

WSC task with predicates P . Say I ′ is an interpretation over PC′

, where C ′ is a set of constants.

Say that C ⊆ C ′. We denote by I ′|C the restriction of I
′ to PC , i.e., the interpretation of PC that

coincides with I ′ on all these propositions. Given a state s and an action a, we define:

res|fwd(s, a) :=

{

{(C ′, I ′) | C ′ = Cs ∪ Ea, I
′|Cs = Is, I

′ |= ΦIC ∧ effa} appl(s, a)
{s} otherwise

(7)

11. Indeed the planning community is generally rather unconcerned by undecidability, cf. the numeric track of the inter-

national planning competitions, and Helmert’s (2002) results on the decidability of numerical planning problems.
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Compare this to Equation (3), where I ′ is defined to be a member of update(s, C ′,ΦIC ∧ effa),
which returns all interpretations that satisfy ΦIC ∧ effa and that differ minimally from Is. In Equa-
tion (7), I ′ is simply set to be identical to Is, on the constants (on the propositions over the constants)
that existed beforehand. In other words, the set of new states we get is the cross-product of the old

state with all satisfying assignments to ΦIC ∧ effa.

Lemma 1 (Semantics ofWSC|fwd) Assume aWSC|fwd task, a reachable state s, and an action
a. Then res(s, a) = res|fwd(s, a).

Proof Sketch: InWSC|fwd, if s
′ differs minimally from s, then it follows that s′ agrees totally with

s, on the set of propositions PCs interpreted by s. To see this, denote as before with PCs+Ea the

set of all propositions with arguments in Cs ∪Ea, and with at least one argument in Ea, and denote

with ΦIC [Cs + Ea] the instantiation of ΦIC with all constants from Cs ∪ Ea, where in each clause

at least one variable is instantiated from Ea. The key argument is that s
′ |= ΦIC ∧ effa is equivalent

to s′ |= ΦIC [Cs ∪ Ea] ∧ effa, which in turn is equivalent to s
′ |= ΦIC [Cs] ∧ ΦIC [Cs + Ea] ∧ effa.

In the last formula, ΦIC [Cs] only uses the propositions P
Cs , whereas ΦIC [Cs + Ea] ∧ effa only

uses the propositions PCs+Ea . Since s is reachable, we have s |= ΦIC [Cs]. Therefore, to satisfy
ΦIC ∧ effa, there is no need to change any of the values assigned by s. 2

4.2 Modeling Power

Intuitively, WSC|fwd covers the situation where a web service outputs some new constants, sets

their characteristic properties relative to the inputs, and relies on the ontology axioms to describe any

ramifications concerning the new constants. As was detailed in Section 2, this closely corresponds

to the various notions of message-based WSC explored in the literature. In that sense, the modeling

power of WSC|fwd is comparable to that of message-based WSC, one of the most-widespread

approaches in the area.

A simple concrete way of assessing the modeling power ofWSC|fwd is to consider the allowed

and disallowed axioms. Examples of axioms that are not allowed byWSC|fwd are: attribute domain

restrictions, taking the form ∀x, y : ¬G(x, y) ∨H(x); attribute range restrictions, taking the form
∀x, y : ¬G(x, y)∨H(y); and relation transitivity, taking the form ∀x, y, z : ¬G(x, y)∨¬G(y, z)∨
G(x, z). Note that, for all these axioms, it is easy to construct a case where an action effect, even
though it involves a new constant, affects the “old belief”. For example, if constants c and e existed
beforehand, and an action outputs d and sets G(c, d) ∧G(d, e), then the axiom ∀x, y : ¬G(x, y) ∨
¬G(y, z) ∨G(x, z) infers that G(c, e) – a statement that does not involve the new constant d.
Typical ontology axioms that are allowed by WSC|fwd are: subsumption relations, taking

the form ∀x : ¬G(x) ∨ H(y); mutual exclusion, taking the form ∀x : ¬G(x) ∨ ¬H(y); rela-
tion reflexivity, taking the form ∀x : ¬G(x, x); and relation symmetry, taking the form ∀x, y :
¬G(x, y) ∨ G(y, x). We can also express that a concept G is contained in the union of concepts
H1, . . . , Hn, and more generally we can express any complex dependencies between concepts, tak-

ing the form of clausal constraints on the allowed combinations of concept memberships.

One example where complex dependencies are important is the domain of proteins as illustrated

in Example 1. Capturing the dependencies is important here in order to be able to select the cor-

rect web services. Similar situations arise in many domains that involve complex interdependencies

and/or complex regulations. An example for the latter is the Virtual Travel Agency which we dis-

cussed before. For example, in the German rail system there are all kinds of regulations regarding
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which train may be booked with which kind of discount under which conditions. Modeling these

regulations would enable a WSC algorithm to select the appropriate booking services. Another in-

teresting case is the hospital domain described by de Jonge, van der Linden, and Willems (2007).

There, the problem of hospital asset tracking is handled by means of a set of tracking, logging and

filter services, which transform logs to extract various kinds of information. In this setting, it would

make sense to model complex dependencies so that the web service composer may determine which

hospital assets need to be tracked and retrieved. Namely, the latter depends on the type of operation

in question, and on the kind of examinations which that operation requires. Accordingly, what we

need to model is a categorization of operations, their mapping to sets of required examinations, and

how those examinations are associated with hospital assets. Further complications arise since the

required examinations/assets may depend on particular circumstances. Clearly, we can express the

categorization and dependencies in terms of clauses. While this of course captures only a fraction

of what is relevant in a hospital, it is considerably more informed than a composer which always

just tracks all the assets.

The main weakness ofWSC|fwd is that it does not allow us to express changes regarding pre-

existing objects. This is best illustrated when considering the case of negative effects.12 In the

planning community, these are commonly used to model how previous properties of objects are

invalidated by an action. For illustration, reconsider Example 1. Say there is an additional operator

dropCoffeeIn3Dmachine, with effect ¬Info3D(y). One would normally expect that, when this
operator is applied, the fact Info3D(y) is deleted and must be re-established. This is not so in
WSC|fwd. According to the restrictions this special case imposes, the variable y in ¬Info3D(y)
must be an output of dropCoffeeIn3Dmachine. That is, dropping coffee into the machine creates a

new object, whose characteristic property happens to be ¬Info3D(y) rather than Info3D(y). Clearly,
this is not the intended semantics of the operator.

To model the intended semantics, we would need to instantiate y with a pre-existing constant.
Say that, as in belief b3 in Example 1, a constant e with Info3D(e) was previously created by
getInfo3D1n55(c, e). Then WSC|fwd does allow us to instantiate dropCoffeeIn3Dmachine with

e, so that we have the effect ¬Info3D(e). However, by virtue of the definition of action applicability,
that action will be applicable only in states where e does not yet exist – corresponding to execution
paths where getInfo3D1n55(c, e) was not executed. Hence the property Info3D(e) does not get
deleted from any state, and e as used by dropCoffeeIn3Dmachine is still regarded as a newly
created object whose characteristic property is ¬Info3D(y). The only difference the new action
makes is that, now, the plan uses the same name (e) to refer to two different information objects
(output of getInfo3D1n55(c, e) vs. output of dropCoffeeIn3Dmachine) that do not play the same
role in the plan, cf. the discussion in Section 3.2.

An interesting workaround is to let the operators output “time steps”, in a spirit reminiscent of

the situation calculus (McCarthy & Hayes, 1969; Reiter, 1991). Every operator obtains an extra

output variable t, which is included into every effect literal. The new time step t is stated to stand
in some relation to the previous time steps, e.g., next(tprev, t) where tprev is an input variable
instantiated to the previous time step. In such a setting, we can state how the world changes over

time. In particular we can state that some object property is different in t than in tprev. For
example, if an action moves a file f from “RAEDME” to “README” then we could state that
name(f,“RAEDME”, tprev) and name(f,“README”, t). The problem with such a construction

12. Or, inWSC, positive effects triggering negative effects via ΦIC , cf. Proposition 1.
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is that the time steps have no special interpretation, they are just ordinary objects.13 This causes at

least two difficulties. (1) If we want to refer to an object property, we have to know the time step

in the first place – that is, we have to know whether the actual time step is t or tprev. Note here
that we cannot maintain a predicate actualTime(x) because this would require us to invalidate a
property of tprev. (2) There is no solution to the frame problem. The operators must explicitly state
every relevant property of the previous time step, and how each property is changed in the new time

step.14

To conclude this sub-section, let us consider howWSC|fwd can be generalized without losing

Lemma 1. Most importantly, instead of requiring that every effect literal involves a new constant,

one can postulate this only for literals that may actually be affected by the integrity constraints. In

particular, if a predicate does not appear in any of the clauses, then certainly an effect literal on

that predicate is not harmful even if it does not involve an output constant. One obtains a poten-

tially stronger notion by considering ground literals, rather than predicates. Note that this kind of

generalization solves difficulty (1) of the time-step construction, presuming that time steps are not

constrained by the clauses. (The frame problem, however, persists.)

Another possibility, deviating somewhat from the way WSC and WSC|fwd are currently de-

fined, is to define the integrity constraints in terms of logic programming style rules, along the lines

of Eiter et al. (2003, 2004). The requirement onWSC|fwd can then be relaxed to postulate that the

effect literals without new constants do not appear in the rule heads.

We remark that the latter observation suggests a certain strategic similarity with the aforemen-

tioned derived predicates (Thiébaux et al., 2005) previously used in AI Planning to manage the

complexity of integrity constraints. There, the integrity constraints take the form of stratified logic

programming style derivation rules, and the predicates appearing in rule heads are not allowed to

appear in operator effects. This is an overly restricted solution, in the WSC context. The effects

of web services are indeed very likely to affect concepts and relations appearing in the ontology

axioms. They may do so inWSC|fwd, as long as output constants are involved.

4.3 Belief Update

Lemma 1 is specific to the possible models approach (Winslett, 1988) that underlies our semantics

of action applications. It is interesting to consider the semantics ofWSC|fwd from a more general

perspective of belief update. Recall that such an update involves a formula characterizing the current

belief, and a formula describing the update. We seek a formula that characterizes the updated belief.

A wide variety of definitions has been proposed as to how the updated belief should be defined.

However, some common ground exists. Katzuno and Mendelzon (1991) suggest eight postulates,

named (U1) . . . (U8), which every sensible belief update operation should satisfy. Herzig and Rifi

(1999) discuss in detail to what degree the postulates are satisfied by a wide range of alternative

belief update operators. In particular they call a postulate “uncontroversial” if all update operators

under investigation satisfy them. We will take up these results in the following. We examine to what

extent we can draw conclusions about the updated belief, Φ′, in the setting of the forward effects

case, when relying only on Herzig and Rifi’s “uncontroversial postulates”.

13. Note that here the similarity to the situation calculus ends. Whereas time steps are assigned a specific role in the

formulas used in the situation calculus, here they are just ordinary objects handled by actions, as if they were packages

or blocks.

14. Despite these difficulties, Theorem 6 below shows that a time step construction can be used to simulate an Abacus

machine, and hence to prove undecidability of plan existence inWSC|fwd.
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We assume that a planning task with predicates P is given. We need the following notations:

• If Φ and φ are formulas, then Φ ◦ φ denotes the formula that results from updating the belief
Φ with the update φ, under some semantics for the belief update operator ◦.

• Given disjoint sets of constants C and E, PC+E denotes the set of all propositions formed

from predicates in P , where all arguments are contained in C ∪E and there exists at least one
argument contained in E. (Recall that PC denotes the set of all propositions formed from

predicates in P and arguments from C.)

• Given a set of constants C, ΦIC [C] denotes the instantiation of ΦIC with C. That is, ΦIC [C]
is the conjunction of all clauses that result from replacing the variables of a clause φ ∈ ΦIC ,

φ = ∀x1, . . . , xk : l1[X1] ∨ · · · ∨ ln[Xn], with a tuple (c1, . . . , ck) of constants in C.

• Given disjoint sets of constants C and E, ΦIC [C + E] is the conjunction of all clauses that
result from replacing the variables of a clause φ ∈ ΦIC , φ = ∀x1, . . . , xk : l1[X1] ∨ · · · ∨
ln[Xn], with a tuple (c1, . . . , ck) of constants in C ∪ E, where at least one constant is taken
from E.15

• If ψ is a ground formula then by P (ψ) we denote the set of propositions occurring in ψ.

We will denote the current belief by Φ and the update by φ. As another convention, given a set of
constants C, by writing ψC we indicate that P (ψ) ⊆ PC . Similarly, given disjoint sets of constants

C and E, by writing ψC+E we indicate that P (ψ) ⊆ PC+E . If s is a state, then by ψs we denote

the conjunction of literals satisfied by s.
We first consider the case where, similar to the claim of Lemma 1, Φ corresponds to a single

concrete world state s. We want to apply an action a. We wish to characterize the set of states
res(s, a), i.e., we wish to construct the formula Φ ◦ φ. For simplicity of notation, denote C := Cs

and E := Ea. If a is not applicable to s, there is nothing to do. Otherwise, we have that:

(I) Φ ≡ ΦIC [C] ∧ ψC where P (ψC) ⊆ PC .

For example, we can set ψC := ψs. Since s |= ΦIC , we get the desired equivalence. Further, we

have that:

(IIa) φ ≡ ΦIC [C] ∧ ΦIC [C + E] ∧ effa;

(IIb) P (ΦIC [C + E]) ⊆ PC+E and P (effa) ⊆ PC+E .

(IIa) holds trivially: φ is defined as ΦIC ∧ effa, which is equivalent to ΦIC [C ∪ E] ∧ effa which is
equivalent to ΦIC [C]∧ΦIC [C+E]∧ effa. As for (IIb), this is a consequence of the forward effects
case. Every effect literal contains at least one output constant, hence effa contains only propositions

from PC+E . For ΦIC [C + E], we have that at least one variable in each clause is instantiated with
a constant e ∈ E. Since, by definition, all literals in the clause share the same variables, e appears
in every literal and therefore ΦIC [C + E] contains only propositions from PC+E .

As an illustration, consider our simple VTA example. There are four predicates, train(x),
ticket(x), trainTicket(x), and ticketFor(x, y). The set of integrity constraints ΦIC consists of

15. If no clause in ΦIC contains any variable, then ΦIC [C + E] is empty. As is customary, an empty conjunction is
taken to be true, i.e., 1.
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the single axiom ∀x : trainTicket(x) ⇒ ticket(x). In our current state s, we have Cs = {c},
and Is sets all propositions to 0 except for train(c). We consider the application of the action
a = bookTicket(c, d), whose precondition is train(c), whose set E of output constants is {d},
and whose effect effa is trainTicket(d) ∧ ticketFor(d, c). In this setting, we have: ΦIC [C] =
(trainTicket(c) ⇒ ticket(c)); ψC = (train(c)∧¬ticket(c)∧¬trainTicket(c)∧¬ticketFor(c, c));
and ΦIC [C + E] = (trainTicket(d) ⇒ ticket(d)).
We will derive in the following that:

(III) Φ ◦ φ ≡ (ΦIC [C] ∧ ψC) ∧ (ΦIC [C + E] ∧ effa).

That is, we can characterize the updated belief simply by the conjunction of the previous belief

with the action effect and the extended instantiation of the ontology axioms. This corresponds

exactly to Lemma 1. To illustrate, we will continue the VTA example. The left hand side of (III)

refers to the four propositions based only on c, and sets them according to s. The right hand side
refers to propositions based only on d – trainTicket(d) and ticket(d) – as well as the proposition
ticketFor(d, c) which links c and d.
As one prerequisite of our derivation of (III), we have to make an assumption which, to the best

of our knowledge, is not discussed anywhere in the belief update literature:

(IV) Let ψ1, ψ
′
1, ψ2, ψ

′
2 be formulas where P (ψ1) ∩ P (ψ′

1) = ∅, P (ψ1) ∩ P (ψ′
2) = ∅, P (ψ2) ∩

P (ψ′
1) = ∅, and P (ψ2) ∩ P (ψ′

2) = ∅. Then (ψ1 ∧ ψ
′
1) ◦ (ψ2 ∧ ψ

′
2) ≡ (ψ1 ◦ ψ2) ∧ (ψ′

1 ◦ ψ
′
2).

This assumption postulates that formulas talking about disjoint sets of variables can be updated

separately. Since formulas with disjoint variables essentially speak about different aspects of the

world, this seems a reasonable assumption.

Now, we start from the formula Φ◦φ. We make replacements according to (I) and (IIa), leading
to the equivalent formula (ΦIC [C] ∧ ψC) ◦ (ΦIC [C] ∧ ΦIC [C + E] ∧ effa). We can map this
formula onto (IV) by taking ψ1 to be ΦIC [C] ∧ ψC , ψ′

1 to be 1, ψ2 to be ΦIC [C], and ψ′
2 to be

ΦIC [C + E] ∧ effa. Hence, we can separate our update into two parts as follows:

(A) (Φ ◦ φ)C := (ΦIC [C] ∧ ψC) ◦ ΦIC [C]

(B) (Φ ◦ φ)C+E := 1 ◦ (ΦIC [C + E] ∧ effa)

According to (IV), we then obtain our desired formula Φ ◦ φ by Φ ◦ φ ≡ (Φ ◦ φ)C ∧ (Φ ◦ φ)C+E .

Illustrating this with the VTA example, we simply separate the parts of the update that talk

only about c from those that talk only about d or the combination of both constants. The (A) part
of the update is trainTicket(c) ⇒ ticket(c) conjoined with ψs, updated with trainTicket(c) ⇒
ticket(c). The (B) part of the update is 1 – representing the (empty) statement that the previous state
smakes about d – updated with (trainTicket(d) ⇒ ticket(d))∧ trainTicket(d)∧ ticketFor(d, c).
It remains to examine (Φ ◦ φ)C and (Φ ◦ φ)C+E . We need to prove that:

(C) (Φ ◦ φ)C ≡ ΦIC [C] ∧ ψC , and

(D) (Φ ◦ φ)C+E ≡ ΦIC [C + E] ∧ effa.

Essentially, this means to prove that: (C) updating a formula with something it already implies does

not incur any changes; (D) updating 1 with some formula yields a belief equivalent to that formula.
To see this, compare (A) with (C) and (B) with (D).
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While these two statements may sound quite trivial, it is in fact far from trivial to prove them for

the wide variety of, partly rather complex, belief update operations in the literature. Here we build

on the works by Katzuno and Mendelzon (1991) and Herzig and Rifi (1999). We need two of the

postulates made by Katzuno and Mendelzon (1991), namely:

(U1) For any ψ1 and ψ2: (ψ1 ◦ ψ2) ⇒ ψ2.

(U2) For any ψ1 and ψ2: if ψ1 ⇒ ψ2 then (ψ1 ◦ ψ2) ≡ ψ1.

Herzig and Rifi (1999) prove that (U1) is “uncontroversial”, meaning it is satisfied by all belief

update operators they investigated (cf. above). They also prove that (U2) is equivalent to the con-

junction of two weaker statements, of which only one is uncontroversial, namely:

(U2a) For any ψ1 and ψ2: (ψ1 ∧ ψ2) ⇒ (ψ1 ◦ ψ2).

The other statement is not uncontroversial. However, it is proved to be satisfied by all non-causal

update operators under investigation, except the so-called Winslett’s standard semantics (Winslett,

1990). The latter semantics is not useful in our context anyway. The only restriction it makes on

the states in res(s, a) is that they differ from s only on the propositions mentioned in the update
formula. In our case, these include all propositions appearing in ΦIC [C ∪E], which is bound to be
quite a lot. So, if we were to use Winslett’s standard semantics, then res(s, a) would be likely to
retain hardly any information from s.
Consider now the formula (Φ ◦ φ)C as specified in (A), (Φ ◦ φ)C = (ΦIC [C] ∧ ψC) ◦ ΦIC [C].

We will now prove (C). This is indeed quite simple. We have that (ΦIC [C] ∧ ψC) ⇒ ΦIC [C],
so we can instantiate ψ1 in (U2) with ΦIC [C] ∧ ψC , and ψ2 in (U2) with ΦIC [C]. We obtain
(ΦIC [C] ∧ ψC) ◦ ΦIC ≡ ΦIC [C] ∧ ψC , and hence (Φ ◦ φ)C ≡ ΦIC [C] ∧ ψC as desired. With

what was said above, this result is not uncontroversial, but holds for all non-causal update operators

(except Winslett’s standard semantics) investigated by Herzig and Rifi (1999). In terms of the VTA

example, (U2) allowed us to conclude that the update trainTicket(c) ⇒ ticket(c) does not make
any change to the previous belief, which already contains that property.

Next, consider the formula (Φ◦φ)C+E as specified in (B), (Φ◦φ)C+E = 1◦(ΦIC [C+E]∧effa).
We now prove (D). By postulate (U1), we get that (Φ ◦ φ)C+E ⇒ ΦIC [C + E] ∧ effa, because
ΦIC [C+E]∧effa is the update formula ψ2. For the other direction, we exploit (U2a). We instantiate

ψ1 in (U2a) with 1, and get that 1∧ (ΦIC [C +E]∧ effa) ⇒ 1 ◦ (ΦIC [C +E]∧ effa), which is the
same as 1 ∧ (ΦIC [C + E] ∧ effa) ⇒ (Φ ◦ φ)C+E , which is equivalent to ΦIC [C + E] ∧ effa ⇒
(Φ ◦φ)C+E . This proves the claim. Note that we have used only postulates that are uncontroversial

according to Herzig and Rifi (1999). Reconsidering the VTA example, we haveΦIC [C+E]∧effa =
(trainTicket(d) ⇒ ticket(d))∧ trainTicket(d)∧ ticketFor(d, c). The previous state does not say
anything about these propositions, and is thus represented as 1. The postulates allow us to conclude
that (for all belief update operators investigated by Herzig & Rifi, 1999) the resulting belief will be

equivalent to (trainTicket(d) ⇒ ticket(d)) ∧ trainTicket(d) ∧ ticketFor(d, c).
So far, we were restricted to the case where Φ, the belief to be updated, corresponds to a single

world state s. Consider now the more general case where Φ characterizes a belief b, and we want
to characterize the set of states res(b, a). At first glance, it seems that not much changes, because
Katzuno and Mendelzon (1991) also make this following postulate:

(U8) For any ψ1, ψ2, and ψ: (ψ1 ∨ ψ2) ◦ ψ ≡ (ψ1 ◦ ψ) ∨ (ψ2 ◦ ψ).
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This means that, if Φ consists of two alternate parts, then updating Φ is the same as taking the union
of the updated parts. In other words, we can compute the update on a state-by-state basis. The

statement (I) from above is still true, it’s just that now ψC is the disjunction over ψs for all states

s ∈ b, rather than only the single ψs. The rest of the argumentation stays exactly the same. Herzig

and Rifi (1999) prove that (U8) is uncontroversial and leave it at that.

However, matters are not that simple. The source of complications is our use of a partial

matches/conditional effects semantics. The update formula φ is different for the individual states
s ∈ b. Hence we cannot directly apply (U8). Obviously, states s1 ∈ b where a is applicable are up-
dated differently from states s2 ∈ b where a is not applicable – the latter are not updated at all.16 A
somewhat more subtle distinction between states in b is which constants exist in them: for different
sets of constants, the integrity constraints in the update are different. Hence, to obtain a “generic”

update of Φ, we have to split Φ into equivalence classes Φ1, . . . ,Φn where the states within each

Φi cannot be distinguished based on prea and based on the existing constants. Then, (U8) and the

argumentation from above can be used to show the equivalent of (III) for each Φ′
i. The last step,

defining the final Φ ◦ φ to be the disjunction of the individual Φi ◦ φi, appears sensible. But it does

not follow immediately from Katzuno and Mendelzon (1991).

For illustration, consider a variant of the VTA example where we have two preceding states, one

state s where we have train(c) as before, and a new state s′ where we have ticket(c) instead. In s′,
bookTicket(c, d) is not applicable, and hence the update is different for s and s′. The s part is as
above, yielding the result ψs ∧ (trainTicket(d) ⇒ ticket(d)) ∧ trainTicket(d) ∧ ticketFor(d, c).
The update to s′ is trivial, and yields ψs′ as its result. The final outcome is the disjunction of these

two beliefs.

We point out that the situation is much easier if we consider plug-in matches (i.e., forced pre-

conditions) instead of partial matches. There, a is applicable to all states, and it is also easy to
see that every state in b has the same constants. Therefore, for plug-in matches, (III) follows im-
mediately with (U8). In the above VTA example, an update would not be computed at all since

bookTicket(c, d) would not be considered to be applicable to the preceding belief. If s′ satisfies
train(c) but disagrees in some other aspect, e.g. (quite nonsensically) that also ticket(c) holds, then
the updated belief is equivalent to (ψs ∨ ψs′) ∧ (trainTicket(d) ⇒ ticket(d)) ∧ trainTicket(d) ∧
ticketFor(d, c).

4.4 Computational Properties

Paralleling our analysis for general WSC from Section 3.3, we now perform a brief complexity
analysis of the WSC|fwd special case. As before, we consider the “propositional” case which

assumes a fixed upper bound on the arity of predicates, on the number of input/output parameters

of each operator, on the number of variables appearing in the goal, and on the number of variables

in any clause. Also as before, we consider the decision problems of checking plans, of deciding

polynomially bounded plan existence, and of deciding unbounded plan existence, in that order.

In contrast to before, we cannot reuse results from the literature as much because, of course, the

particular circumstances ofWSC|fwd have not been investigated before. We include proof sketches

here, and refer to Appendix A for the detailed proofs.

16. One might speculate that the common update would be prea ⇒ φ, but that is not the case. For example, under the

possible models approach that we adopt in WSC, updating s where s |= prea with prea ⇒ φ gives rise to result

states that change s to violate prea instead of changing it to satisfy φ.
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Thanks to the simpler semantics as per Lemma 1, plan checking is much easier in WSC|fwd

than inWSC.

Theorem 4 (Plan Checking inWSC|fwd) Assume a WSC|fwd task with fixed arity, and a se-

quence 〈a1, . . . , an〉 of actions. It is coNP-complete to decide whether 〈a1, . . . , an〉 is a plan.

Proof Sketch: Hardness is obvious, considering an empty sequence. Membership can be shown

by a guess-and-check argument. Say C is the union of C0 and all output constants appearing in

〈a1, . . . , an〉. We guess an interpretation I of all propositions over P and C. Further, for each
1 ≤ t ≤ n, we guess a set Ct of constants. I needs not be time-stamped because, once an action has
generated its outputs, the properties of the respective propositions remain fixed forever. Thanks to

Lemma 1, we can check in polynomial time whether (a) I and the Ct correspond to an execution of

〈a1, . . . , an〉. Also, we can check in polynomial time whether (b) I and Cn satisfy φG. 〈a1, . . . , an〉
is a plan iff there is no guess where the answer to (a) is “yes” and the answer to (b) is “no”. 2

Membership in Theorem 4 remains valid when allowing parallel actions and multiple condi-

tional effects – provided one imposes restrictions ensuring that the effects/actions applied simul-

taneously (in one step) can never be self-contradictory. Otherwise, checking plans also involves a

consistency test for each plan step, which is an NP-complete problem. Note that it is quite rea-

sonable to demand that simultaneous actions/effects do not contradict each other. Widely used

restrictions imposed to ensure this are mutually exclusive effect conditions, and/or non-conflicting

sets of effect literals.

We next consider polynomially bounded plan existence. Membership follows directly from The-

orem 4. To prove hardness, we reduce from validity checking of a QBF formula ∃X.∀Y.φ[X,Y ].
The constructed planning task allows to choose values for X , and thereafter to apply actions evalu-
ating φ for arbitrary values of Y . The goal is accomplished iff a setting for X exists that works for
all Y .

Theorem 5 (Polynomially Bounded Plan Existence inWSC|fwd) Assume aWSC|fwd task with

fixed arity, and a natural number b in unary representation. It is Σp
2-complete to decide whether

there exists a plan of length at most b.

Proof Sketch: For membership, guess a sequence of at most b actions. By Theorem 4, we can
check with an NP oracle whether the sequence is a plan.

Hardness can be proved by reduction from validity checking of a QBF formula ∃X.∀Y.φ[X,Y ]
where φ is in DNF normal form, i.e., φ =

∨k
j=1 φj . The key idea is to use outputs for the creation

of “time steps”, and hence ensure that the operators adhere to the restrictions ofWSC|fwd. Setting

xi is allowed only at time step i. That is, for each xi we have operators o
xi1 and oxi0. These take

as input a set of time steps {t0, . . . , ti−1} which are required to be successive, by the precondition
start(t0)∧ next(t0, t1) ∧ · · · ∧ next(ti−2, ti−1). They output a new time step ti which they attach
as a successor of ti−1, and they set xi to 1 and 0, respectively, at time step i. That is, they have an
effect literal of the form xi(ti) and ¬xi(ti), respectively. The rest of the planning task consists of:
operators ot that allow extending a sequence of time steps until step B, for a suitable value B (see
below); and of operators oφj which allow achieving the goal, given φj is true at the end of a time

step sequence of length B. There are no integrity constraints (ΦIC is empty). The values of the yi

are not specified, i.e., those variables can take on any value in the initial belief.
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If ∃X.∀Y.φ[X,Y ] is valid then obviously one can construct a plan for the task simply by setting
the xi accordingly, using the o

t for stepping on to timeB, and applying all the oφj . What necessitates

our complicated construction is the other direction of the proof: namely, the plan may cheat by

setting a xi to both 1 and 0. The construction ensures that this is costly, because such a plan is
forced to maintain two parallel sequences of time steps, starting from the faulty xi. We can choose a

sufficiently large value forB, together with a sufficiently small plan length bound b, so that cheating
is not possible. 2

Our final result regards unbounded plan existence. Somewhat surprisingly, it turns out that this

is still undecidable inWSC|fwd. Similar to the above, the key idea again is to let actions output a

new “time step”, thereby ensuring membership of the constructed task inWSC|fwd.

Theorem 6 (Unbounded Plan Existence inWSC|fwd) Assume a WSC|fwd task. The decision

problem asking whether a plan exists is undecidable.

Proof Sketch: By reduction from the halting problem for Abacus machines, which is undecidable.

An Abacus machine consists of a tuple of integer variables v1, . . . , vk (ranging over all positive

integers including 0), and a tuple of instructions I1, . . . , In. A state is given by the content of
v1, . . . , vk plus the index pc of the active instruction. The machine stops iff it reaches a state where
pc = n. All vi are initially 0, and pc is initially 0. The instructions either increment a variable
and jump to another instruction, or they decrement a variable and jump to different instructions

depending on whether or not the variable was already 0.
It is not difficult to encode an Abacus machine as aWSC|fwd task. The two key ideas are: (1)

design an operator that “outputs” the next successor to an integer; (2) design operators simulating

the instructions, by stepping to successors or predecessors of integer values. In the latter kind of

operators, membership inWSC|fwd is ensured by letting the operators output a new “time step” to

which the new variable values are associated. The goal asks for the existence of a time step where

the active instruction is In. 2

As argued at the end of Section 3.3 already, we don’t deem undecidability of unbounded plan

existence a critical issue in practice. Most planning tools are by nature semi-decision procedures,

anyway. In particular, web service composition is typically expected to occur in a real-time setting,

where severe time-outs apply.

4.5 Issues in Adapting CFF

In our view, the most crucial observation about WSC|fwd is that we can now test plans in coNP,

rather than inΠp
2 as for generalWSC. Standard notions of planning under uncertainty have the same

complexity of plan testing, and research has already resulted in a sizable number of approaches and

(comparatively) scalable tools (Cimatti et al., 2004; Bryce et al., 2006; Hoffmann & Brafman,

2006; Palacios & Geffner, 2007). We will show in the next section that, under certain additional

restrictions onWSC|fwd, these tools can be applied off-the-shelf. Regarding generalWSC|fwd, the

match in the complexity of plan testing suggests that the underlying techniques can be successfully

adapted. In the following, we consider in some detail the CFF tool (Hoffmann & Brafman, 2006).

Other promising options would be to extend MBP (Cimatti et al., 2004) or POND (Bryce et al.,

2006), or to look into the compilation techniques investigated by Palacios and Geffner (2007).

CFF can be characterized as follows:
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(1) Search is performed forward in the space of action sequences.

(2) For each sequence ā, a CNF formula φ(ā) is generated that encodes the semantics of ā, and
SAT reasoning over φ(ā) checks whether ā is a plan.

(3) Some reasoning results – namely the literals that are always true after executing ā – are cached
to speed up future tests.

(4) Search is guided by an adaptation of FF’s (Hoffmann & Nebel, 2001) relaxed plan heuristic.

(5) Relaxed planning makes use of a strengthened variant of the CNF formulas φ(ā) used for
reasoning about action sequences, where most of the clauses are projected onto only 2 of

their literals (i.e., all but 2 of the literals are removed from each respective clause).

All of these techniques should be self-explanatory, except possibly the last one. Projecting the CNF

formulas ensures that the relaxed planning remains an over-approximation of the “real” planning,

because the projected formulas allow us to draw more conclusions. At the same time, the projected

formulas can be handled sufficiently runtime-efficiently.17 The method for 2-projecting “most” of

the clauses is, in a nutshell, to ignore all but one of the condition literals of each conditional effect

in the relaxed planning graph.

It is fairly obvious that the basic answers given by CFF, i.e., the techniques (1) – (5), also apply

inWSC|fwd. Note that, indeed, the main enabling factor here is that we can check plans in coNP,

rather than in Πp
2 as for general WSC. This enables us to design the desired CNF formulas φ(ā)

in a straightforward fashion. If plan checking is Πp
2-hard, then we either need to replace the CNF

formulas with QBF formulas, or we have to create worst-case exponentially large CNF formulas.

Both are, at the least, technically quite challenging.

The adaptation of CFF toWSC|fwd is of more immediate promise, but is not trivial. It involves

technical challenges regarding the on-the-fly creation of constants as well as the computation of

the heuristic function. The latter also brings significant new opportunities in the WSC context,

pertaining to the exploitation of typical forms of ontology axioms. Let us consider these issues in a

little detail.

First, like most of today’s planning tools, CFF pre-instantiates PDDL into a purely propositional

representation, based on which the core planning algorithms are implemented. If one allows on-the-

fly creation of constants, then pre-instantiation is no longer possible, and hence the adaptation to

WSC|fwd involves re-implementing the entire tool. While this is a challenge in itself, there are

more difficult obstacles to overcome. A sloppy formulation of the key question is: How many

constants should we create? One can, of course, create a new tuple of constants for (the outputs of)

each and every new action application. However, it seems likely that such an approach would blow

up the representation size very quickly, and would hence be infeasible. So one should instead share

output constants where reasonable. But how does one recognize the “reasonable” points? This issue

is especially urgent inside the heuristic function. Namely, it is easy to see that, in the worst case,

the relaxed planning graph grows exponentially in the number of layers. Just imagine an example

where web service w1 takes an input of type A and generates an output of type B, whereas w2 takes

an input of type B and generates an output of type A. Starting with one constant of type A and
one of type B, we get 2 constants of each type in the next graph layer. Then, each of w1 and w2

17. Inside the heuristic function, the formulas come from relaxed planning graphs which can be quite big. So handling

them without further approximations seems hopeless. This is discussed in detail by Hoffmann and Brafman (2006).
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can be applied two times, and we get 4 constants of each type in the next graph layer, and so forth.
This dilemma probably cannot be handled without making further approximations in the relaxed

planning graph.

One a more positive note, it seems possible to exploit the most typical structures of ontologies

in practice. In particular, most practical ontologies make extensive use of subsumption relations,

structuring the domain of interest into a concept hierarchy. Additional ontology axioms often come

in the form of constraints on relations (reflexivity, symmetry, transitivity) or on the typing or number

of relation arguments. It may make sense to exploit some of these structures for optimizing the

formulas φ(ā) and the associated SAT reasoning. Certainly, it makes sense to exploit these structures
inside the heuristic function. One can include specialized analysis and sub-solver techniques that

recognize these structures and solve them separately in order to obtain more precise relaxed plans.

One can even try to take into account only these structures inside the relaxed planning, and hence

(potentially) obtain a very fast heuristic function.

5. Compilation to Initial State Uncertainty

We now show that, under certain additional restrictions, off-the-shelf scalable tools for planning

under uncertainty can be exploited to solve WSC|fwd. The main limiting factors are: (1) These

tools do not allow the generation of new constants. (2) These tools allow the specification of a

clausal formula only for the initial state, not for all states. Our approach to deal with (1) considers

a set of constants fixed a priori, namely the initially available constants plus additional “potential”

constants that can be used to instantiate outputs. Our more subtle observation is that, within a special

case ofWSC|fwd, where the dynamics of states become predictable a priori, one can also deal with

(2) in a natural way.

In what follows, we first introduce our core observation of a case where the state space becomes

“predictable”, in a certain sense. We then observe that predictability is naturally given in a special

case of forward effects, which we term strictly forward effects. We discuss the strengths and lim-

itations of this new special case. We finally provide a compilation of strictly forward effects into

planning under initial state uncertainty.

5.1 Predictable State Spaces

Our core observation is based on a notion of compatible actions. Assume aWSC|fwd task (P,ΦIC ,
O, C0, φ0, φG). Two actions a, a′ are compatible if either Ea ∩ Ea′ = ∅, or effa = effa′ . That is,

a and a′ either have disjunct outputs – and hence affect disjunct sets of literals since we are in
WSC|fwd – or their effects agree completely. A set A of actions is compatible if Ea ∩ C0 = ∅ for
all a ∈ A, and every pair of actions in A is compatible.
Lemma 2 states that, given the used actions are compatible, every state that can ever be reached

satisfies all action effects, modulo the existing constants.

Lemma 2 (Predictable State Spaces inWSC|fwd) Assume aWSC|fwd task, a compatible set of

actions A, and a state s that can be reached with actions from A. Then s |= φ0 and, for all a ∈ A,
if Ea ⊆ Cs then s |= effa.

Proof: The proof is by induction. In the base case, for s ∈ b0, the claim holds by definition since
Cs ∩ Ea = ∅ for all a ∈ A. Say s′ is reached from s by an action a ∈ A. If a is not applicable
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to s, with induction assumption there is nothing to prove. Otherwise, because we are inWSC|fwd,

by Lemma 1 we have that res(s, a) = {(C ′, I ′) | C ′ = Cs ∪ Ea, I
′|Cs = Is, s |= ΦIC ∧ effa}.

With induction assumption applied to s, we have res(s, a) = {(C ′, I ′) | C ′ = Cs ∪ Ea, s |=
φ0 ∧

∧

a′∈A,Ea′⊆Cs
effa′ ∧ΦIC ∧ effa}. Now, if any a

′ ∈ A has Ea′ ⊆ Cs ∪Ea but Ea′ 6⊆ Cs, then

we have Ea′ ∩ Ea 6= ∅ and hence effa′ = effa by prerequisite. This concludes the argument. 2

By virtue of this lemma, the possible configurations of all constants that can be generated by

actions from A are characterized by the formula ΦIC ∧ φ0 ∧
∧

a∈A effa. Since all parts of this

formula are known prior to planning, the set of possible configurations is “predictable”. Before

we even begin to plan, we already know how the constants will behave if they are generated. So

we can list the possible behaviors of all potential constants in our initial belief, and let the actions

affect only those constants which actually exist. In other words, we can compile into initial state

uncertainty. We will detail this further below. First, we need to identify a setting in which Lemma 2

can actually be applied.

5.2 Strictly Forward Effects

Given a WSC|fwd task, we must settle for a finite set A of compatible actions that the planner
should try to compose the plan from. One option is to simply require every action to have its own

unique output constants. This appears undesirable since planning tasks often contain many actions,

and so the set of potential constants would be huge. Further, to enable chaining over several actions,

the potential constants should be allowed to instantiate the input parameters of every operator, hence

necessitating the creation of a new action and, with that, more new potential constants. It is unclear

where to break this recursion, in a sensible way.

Herein, we focus instead on a restriction ofWSC|fwd where it suffices to assign unique output

constants to individual operators, rather than to individual actions.

Definition 2 Assume a WSC task (P,ΦIC ,O, C0, φ0, φG). The task has strictly forward effects
iff:

1. For all o ∈ O, and for all l[X] ∈ effo, we have |X| > 0 and X ⊆ Yo.

2. For all clauses φ ∈ ΦIC , where φ = ∀x1, . . . , xk : l1[X1] ∨ · · · ∨ ln[Xn], we have X1 =
· · · = Xn.

The set of allWSC tasks with strictly forward effects is denoted withWSC|sfwd.

The second condition is identical to the corresponding condition forWSC|fwd. The first con-

dition is strictly stronger. WhileWSC|fwd requires that at least one effect literal variable is taken

from the outputs,WSC|sfwd requires that all these variables are taken from the outputs. Therefore,

obviously,WSC|sfwd ⊂ WSC|fwd. Note that theWSC task formulated in Example 2 is a member
ofWSC|sfwd.

The key property of WSC|sfwd is that, without input variables in the effect, all actions based

on the operator will have the same effect. So, for the action set to be compatible, all we need is to

choose a set of unique output constants for every operator. Indeed, we can do so for every set of

operators whose effects are pairwise identical. We can also choose several sets of output constants

for each such group of operators.
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5.3 Modeling Power

The limitations ofWSC|fwd, discussed in Section 4.2, are naturally inherited byWSC|sfwd. More-

over, unlike WSC|fwd, we cannot state any properties in the effect that connect the inputs to the

outputs. This is a serious limitation. For illustration, consider the small VTA example we have

been using. The operator bookTicket has an effect ticketFor(y, x), relating the produced ticket y
to the train x given as input. Clearly, the notion of a “ticket” is rather weak if we cannot state
what the ticket is actually valid for. Another interesting case is the one where we extend Ex-

ample 2 by considering two proteins rather than just one. That is, we set C0 = {c, c′}, φ0 =
cellProtein(c)∧cellProtein(c′). We wish to encode that we need the combined presentation for both
of those, i.e., φG = ∃y : combinedPresentation(y, c) ∧ combinedPresentation(y, c′). InWSC|fwd,

we can solve this by including, for every information providing operator, the input variable x into
the effect literal. For example, we set getInfo3D1n55 := ({x}, 1n55(x), {y}, Info3D(y, x)). This is
not possible inWSC|sfwd.

To some extent, these difficulties can be overcome by encoding the relevant inputs into pred-

icate names. To handle composition for the two proteins c and c′, this would essentially mean
making a copy of the entire model and renaming the part for c′. The goal would be φG = ∃y, y′ :
combinedPresentation(y)∧ combinedPresentation′(y′), and the operator preconditions would make
sure that combinedPresentation(y) is generated as before, while combinedPresentation′(y′) is gen-
erated using the new operators. Note that this a rather dirty hack, and that it depends on knowing the

number of copies needed, prior to planning. The equivalent solution for the VTA would introduce

a separate “ticketFor-x” predicate for every entity x for which a ticket may be bought. At the very
least, this would result in a rather oversized and unreadable model. A yet more troublesome case is

the time-step construction outlined in Section 4.2, where we added a new output variable t into each
effect and related that via an effect literal next(prevt, t) to a previous time step prevt provided as
input. In WSC|sfwd, we can no longer relate t to prevt so there is no way of stating which time
step happens after which other one. Trying to encode this information into predicate names, we

would have to include one predicate per possible time step. This necessitates assuming a bound on

the number of time steps, a clear limitation with respect to the more natural encoding.

Despite the above,WSC|sfwd is far from a pathological and irrelevant special case. An example

where it applies is the domain of proteins as shown in Example 1. Similarly, the hospital domain

discussed in Section 4.2 can be naturally modeled inWSC|sfwd. More generally, there is in fact a

wealth of WSC formalisms which do not encode any connections between inputs and outputs. For

example, that category contains all formalisms which rely exclusively on specifying the “types” of

input and output parameters. The information modeled with such types is only what kind of input

a service requires, and what kind of output it produces – for example, “input is a train” and “output

is a ticket”. Examples of such formalisms are various notions of message-based composition (Zhan

et al., 2003; Constantinescu et al., 2004a; Lecue & Leger, 2006; Lecue & Delteil, 2007; Kona

et al., 2007; Liu et al., 2007). In fact, the early versions of OWL-S regarded inputs and outputs as

independent semantic entities, using a Description Logic formalization of their types.

Thus, the existence of a compilation from WSC|sfwd into planning under uncertainty is quite

interesting. It shows how a composition model similar to the early versions of OWL-S, in a general

form with partial matches and powerful background ontologies, can be attacked by off-the-shelf

planning techniques. This opens up a new connection between WSC and planning.
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5.4 Compilation

We compile a WSC|sfwd task into a task of conformant planning under initial state uncertainty,

which takes the form (P,A, φ0, φG). P is the finite set of propositions used. A is a finite set of
actions, where each a ∈ A takes the form (pre(a), eff(a)) of a pair of sets of literals over P . φ0 is

a CNF formula over P , φG is a conjunction of literals over P . These notions are given a standard
belief state semantics. A state is a truth value assignment to P . The initial belief is the set of states
satisfying φ0. The result of executing an action a in a state s is res(s, a) := s if s 6|= pre(a),18 and
otherwise res(s, a) := (s∪add(a))\del(a). Here we use the standard notation that gives s in terms
of the set of propositions that it makes true, uses add(a) to denote the positive literals in eff(a), and
del(a) to denote the negative literals in eff(a). Extension of res to beliefs and the definition of a
plan remain unchanged.

Assume aWSC|sfwd task (P,ΦIC ,O, C0, φ0, φG). The compiled task (P ′,A, φ′0, φ
′
G) makes

use of a new unary predicate Ex that expresses which constants have yet been brought into ex-
istence. The compilation is obtained as follows. For each operator o ∈ O, with outputs Yo =
{y1, . . . , yk}, we create a set of new constants Eo = {e1, . . . , ek}. Then, C := C0 ∪

⋃

o∈O Eo will

be the set of constants fixed a priori. Initialize A := ∅. For each operator o ∈ O, include into A
the set of actions resulting from using C to instantiate the precondition preo ∧ (

∧

x∈Xo
Ex(x)) ∧

(
∧

e∈Eo
¬Ex(e)). Give each of these actions the same effect,

∧

e∈Eo
Ex(e). In words, we instan-

tiate o’s outputs with Eo, we enrich o’s precondition by saying that all inputs exist and that all
outputs do not yet exist, and we replace o’s effect with a statement simply bringing the outputs into
existence.

Replacing the effects in this way, where do the original effects go? They are included into the

initial state formula. That is, we initialize φ′0 as the conjunction of effo[Eo/Yo] for all operators
o ∈ O. Then, we instantiate all clauses in ΦIC with C and conjoin this with φ

′
0. We obtain our final

φ′0 by further conjoining this with φ0 ∧ (
∧

c∈C0
Ex(c)) ∧

∧

c∈C\C0
¬Ex(c)) ∧ ¬Goal. Here, Goal

is a new proposition. It serves to model the goal. Namely, we have to introduce a set of artificial

goal achievement actions. The goal has the form φG = ∃x1, . . . , xk.φ[x1, . . . , xk]. The new actions
are obtained by instantiating the operator ({x1, . . . , xk}, φ ∧

∧k
i=1Ex(xi), ∅, Goal) with C. That

is, the goal achievement actions instantiate the existentially quantified variables in the goal with all

possible constants. Those actions are added to the set A. The overall compiled task now takes the
form (P ′,A, φ′0, Goal), where P

′ is simply the set of mentioned propositions.

In summary, we compile aWSC|sfwd task (P,ΦIC ,O, C0, φ0, φG) into a conformant planning
task (P ′,A, φ′0, φ

′
G) as follows:

• For each operator o ∈ O, create a unique set of new constants Eo = {e1, . . . , ek} where
Yo = {y1, . . . , yk}. We denote C := C0 ∪

⋃

o∈O Eo.

• P ′ contains all instantiations, with C, of P plus two new predicates, Ex and Goal. Ex has
arity 1 and expresses which constants have yet been brought into existence. Goal has arity 0
and forms the new goal, i.e., φ′G = Goal.

• The actionsA are the instantiations of all o ∈ O, whereXo is instantiated withC, and Yo is in-

stantiated with Eo. The preconditions are enriched with (
∧

x∈Xo
Ex(x))∧ (

∧

e∈Eo
¬Ex(e)),

the effects are replaced by
∧

e∈Eo
Ex(e).

18. As before, we give the actions a conditional effects semantics, rather than the more usual distinction between forced

preconditions, and non-forced effect conditions.
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• Further, A contains goal achievement actions, achieving Goal under preconditions instanti-
ating φG with C.

• The original action effects, i.e., the conjunction of effo[Eo/Yo] for all operators o ∈ O, is
moved into φ′0. Further, φ

′
0 contains φ0, ΦIC instantiated with C, and (

∧

c∈C0
Ex(c)) ∧

∧

c∈C\C0
¬Ex(c)) ∧ ¬Goal.

In the terminology of Section 5.1, this means that we choose the set A of actions as all actions
that can be obtained from an operator o ∈ O by instantiating the inputs with constants from C,
and the outputs with Eo. As suggested by Lemma 2, the initial state formula φ

′
0 of the compiled

task describes the possible configurations of the constants C, and the only effect of applying an
action is to bring the respective output constants into existence. Note that, although the effects of

the compiled actions are all positive, planning is still hard (coNP-complete, to be precise) due to the

uncertainty. (If we allowWSC operators to also delete constants, then we have negative effects –
deleting constants – in the compiled task.)

According to the above strategy, we create only one set of output constants per operator, and

we do not take into account sets of operators that have identical effects. This is only to simplify

the presentation. Our results carry over immediately to more complicated strategies that create

more than one set of output constants per operator, as well as to strategies that share sets of output

constants between operators with identical effects. It should be noted, however, that operators

whose effects are not identical can not, in general, share their outputs. In particular, if the two

effects are in conflict, e.g., InfoDSSP(d) and ¬InfoDSSP(d), then the initial state formula φ′0 as
above is unsatisfiable. The compiled planning task is then trivially solved by the empty plan, and,

of course, does not encode solutions in the original problem.

Example 3 Re-consider the planning task defined in Example 2. We specify a compiled task. We set

C = {c, d, e, f} where c is the only initially available constant, and d, e, f are potential constants
for operator outputs. The compiled planning task (P ′,A, φ′0, φ

′
G) is the following:

• P ′ = {protein, cellProtein, G, H, I, 1n55, 1kw3, combinedPresentation, InfoDSSP,
Info3D, Ex,Goal}, where all the predicates except Goal are unary (have one argument).

• A consists of all instantiations of:

– getInfoDSSPG[d/y]: ({x},G(x) ∧ Ex(x) ∧ ¬Ex(d), Ex(d))

– getInfoDSSPH [d/y]: ({x},H(x) ∧ Ex(x) ∧ ¬Ex(d), Ex(d))

– getInfoDSSPI [d/y]: ({x}, I(x) ∧ Ex(x) ∧ ¬Ex(d), Ex(d))

– getInfo3D1n55[e/y]: ({x}, 1n55(x) ∧ Ex(x) ∧ ¬Ex(e), Ex(e))

– getInfo3D1kw3[e/y]: ({x}, 1kw3(x) ∧ Ex(x) ∧ ¬Ex(e), Ex(e))

– combineInfo[f/y]: ({x1, x2}, InfoDSSP(x1) ∧ Info3D(x2) ∧ Ex(x1) ∧ Ex(x2) ∧
¬Ex(f), Ex(f))

– GoalOp: ({x}, combinedPresentation(x) ∧ Ex(x), Goal)

• φ′0 is the conjunction of:

– all instantiations of ΦIC – [consisting of the five axioms given in Example 2]
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– cellProtein(c) – [φ0]

– InfoDSSP(d)∧ Info3D(e)∧ combinedPresentation(f) – [original action effects]

– Ex(c)∧ ¬Ex(d)∧ ¬Ex(e)∧ ¬Ex(f) – [constants existence]

– ¬Goal – [goal not yet achieved]

• φ′G = Goal

Now consider again the plan for the original task (see Example 2): 〈getInfoDSSPG(c, d),
getInfoDSSPH(c, d), getInfo3D1n55(c, e), getInfo3D1kw3(c, e), combineInfo(d, e, f)〉.
To illustrate, we now verify that this plan yields a plan for the compiled task. In that task,

the initial belief b0 consists of all states s where c is the only existing constant, d, e, f satisfy the
respective effects, and s |= ΦIC ∧ cellProtein(c). Now we apply the action sequence:

1. Apply getInfoDSSPG(c, d) to b0. We get to the belief b1 which is the same as b0 except that,
in all s ∈ b0 where s |= G(c), d now also exists.

2. Apply getInfoDSSPH(c, d) to b1. We get to the belief b2 which is the same as b1 except that,
in all s ∈ b1 where s |= H(c), d exists.

3. Apply getInfo3D1n55(c, e) to b2, yielding b3.

4. Apply getInfo3D1kw3(c, e) to b3. This brings us to b4 where we have Ex(e) for all s ∈ b2
with s |= 1n55(c) or s |= 1kw3(c).

5. Apply combineInfo(d, e, f) to b4. This brings us to b5 which is like b4 except that all s ∈ b4
where both d and e exist now also have Ex(f).

6. Apply GoalOp(f) to b5, yielding b6.

The same reasoning over ΦIC used in Example 2 to show that b5 satisfies the original goal, can
now be used to show that GoalOp(f) is applicable in all s ∈ b5 and hence the resulting belief b6
satisfies the goal. So we obtain a plan for the compiled task simply by attaching a goal achievement

action to the original plan.

To prove soundness and completeness of the compilation, we need to rule out inconsistent

operators, i.e., operators whose effects are in conflict with the background theory (meaning that

ΦIC ∧ ∃Xo, Yo : effo is unsatisfiable). For example, this is the case if ∀x : ¬A(x) ∨ ¬B(x) is
contained in ΦIC , and effo = A(y) ∧ B(y). In the presence of such an operator, the initial belief
of the compiled task is empty, making the task meaningless. Note that inconsistent operators can

never be part of a plan, and hence can be filtered out as a pre-process. Note also that, inWSC|sfwd,

an operator is inconsistent iff all actions based on it are inconsistent.

Non-goal achievement actions in A correspond to actions in the original task, in the obvious
way. With this connection, we can transform plans for the compiled task directly into plans for the

original task, and vice versa.

Theorem 7 (Soundness of Compilation) Consider the WSC|sfwd task (P,ΦIC ,O, C0, φ0, φG)
without inconsistent operators and a plan 〈a1, . . . , an〉 for the compiled task (P ′,A, φ′0, φ

′
G).

Then the sub-sequence of non-goal achievement actions in 〈a1, . . . , an〉 is a plan for the task
(P,ΦIC ,O, C0, φ0, φG).
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Proof Sketch: For an arbitrary sequence of non-goal achievement actions, denote by b the belief
after execution in the original task, and by b the belief after execution in the compiled task. For a
state s in the original task, denote by [s] the class of all compiled-task states s over the constants
C0 ∪

⋃

o∈O Eo so that {c | s(Ex(c)) = 1} = Cs, s|Cs = Is, and s |= ΦIC ∧ φ0 ∧
∧

o∈O effo[Eo].
One can prove that b =

⋃

s∈b[s]. The claim follows directly from that. 2

Theorem 8 (Completeness of Compilation) Consider the WSC|sfwd task (P,ΦIC ,O, C0, φ0,
φG) without inconsistent operators and a plan 〈a1, . . . , an〉 where every operator o appears with at
most one instantiation Eo of the outputs. Then 〈a1, . . . , an〉 can be extended with goal achievement
actions to form a plan for the compiled task (P ′,A, φ′0, φ

′
G) obtained using the outputs Eo.

Proof Sketch: Follows immediately from b =
⋃

s∈b[s] as shown for the proof of Theorem 7. Say
one executes 〈a1, . . . , an〉 in the compiled task, ending in a belief b. From there, a plan for the
compiled task can be obtained simply by attaching one goal achievement action for every tuple of

constants satisfying φG in a world state from b. 2

The reader may have noticed that the number of instantiations of the goal achievement operator

is exponential in the arity of the goal. In the worst case, all these instantiations must be included

in the plan for the compiled task. In particular, this may happen in the plan constructed as per the

proof of Theorem 8. However, for practical purposes it appears reasonable to assume a fixed upper

bound on the number of goal variables.

As indicated, the proofs of Theorems 7 and 8 remain valid when allowing more than one Eo

per operator, and/or when operators with identical effects share output constants. Note that opera-

tors have identical effects if several web services provide alternative ways of achieving something.

Example 3 illustrates such a situation (cf. our earlier discussion in Section 3.2). In our experiments

as described in the next section, all groups of operators with identical effects are assigned the same

output constants.

6. Empirical Results

To show that the compilation approach has merits, we now report on a number of empirical experi-

ments using CFF as the underlying planner. We start with a discussion of the general experimental

setup and then discuss the results for two different test scenarios.

6.1 Experiments Setup

We implemented the compilation from WSC|sfwd into planning under uncertainty as described

above, and connected it to the CFF tool. It should be noted here that, although the compiled planning

tasks do not have delete effects, they are not solved by CFF’s relaxed-plan-based heuristic function.

That function makes a further relaxation ignoring all but one of the conditions of each effect (see

the earlier discussion of CFF in Section 4.5). Ignoring all but one condition significantly affects the

compiled tasks because their effects typically involve many conditions, particularly those conditions

stating that all inputs exist and all outputs do not yet exist.

One problematic point in evaluating planning-based WSC is the choice of test cases. The field

is still rather immature, and due to the widely disparate nature of existing WSC tools, there is
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no common set of benchmarks.19 In fact, because web service composition is such a new topic

posing so many challenges to existing techniques, the different works differ widely in terms of both

their underlying purpose, and the specific aspect of WSC they address. A detailed discussion of

existing WSC tools is given below in Section 7. The method we choose for evaluation is to design

two test scenarios that reflect what are intuitively relevant kinds of problem structures in potential

applications of planning-based WSC, and that are scalable in a number of interesting parameters.

We test the reaction of our approach to these parameters.

While our test scenarios are artificial benchmarks, and cannot lead to broad conclusions of sig-

nificance for practice, they do allow us to draw conclusions about planning behavior in differently

structured test problems. Our solution method scales quite well in most of the tested cases, effi-

ciently finding solutions that involve many web service calls, and that successfully employ only

those services that are really necessary. Viewing these results in isolation, one can conclude that

representation techniques and heuristic functions from planning under uncertainty may be useful to

attack large and complex planning-like WSC instances.

A comparison to alternative WSC tools is, again, problematic, due to the broad range of prob-

lems the tools can solve, the different kinds of solutions they find, and the different kinds of input

syntax/language they read. To obtain at least some notion of empirical comparison to these tools,

in the following we consider only expressivity (“How general is the input language of a tool?”) and

scalability (“How quickly can the tool compose?”). Each of the existing WSC tools constitutes a

separate point in the trade-off between these two. The question then is whether our compilation

approach, restricting toWSC|sfwd and using CFF to solve the compiled tasks, is a sensible point in

that trade-off.

In terms of expressivity, our approach is located in between very general planning methods (like

Eiter et al., 2003, 2004; Giunchiglia et al., 2004), inspired by the actions and change literature, and

the more restricted methods that have been applied to WSC so far. The question is whether we gain

scalability in comparison to the more expressive methods.

We confirm in our experiments that the answer is, as expected, “yes”. We run the DLVK tool

(Eiter et al., 2003, 2004), which handles a powerful planning language based on logic programming.

That language in particular features “static causal rules” which are similar to the integrity constraints

in fully general WSC.20 In that sense, from our perspective DLVK is a “native WSC tool” that
handles ontology axioms directly rather than via restricting their expressivity and compiling them

away. In particular, we encoded ourWSC test problems directly in DLVK’s input language, without
the compilation that we use for CFF.

DLVK relies on answer set programming, instead of relaxed plan heuristics, to find plans. Fur-

ther, in the style of many reasoning-based planners, DLVK requires as input a length bound on the

plan, and can hence be used to find optimal plans by running it several times with different bounds.

In all cases, we ran DLVK only once, with the bound corresponding to the optimal plan length.

Even so, DLVK is much slower than CFF, solving only a small fraction of our test instances. We do

not wish to over-interpret these results. All we conclude is thatWSC|sfwd constitutes an interesting

point in the trade-off between expressivity and scalability in WSC.

19. While the VTA example could be considered one such benchmark, essentially every individual approach defines its

own particular version of that example.

20. The similarity lies in that both static causal rules and fully general integrity constraints can, as a side effect of applying

an action, yield ramifications affecting the properties inherited from the previous state.
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When running some first tests with the compilation approach, we noticed that the encoding as

per Section 5.4 is unnecessarily generous about the set of initial states. Observe that our compiled

tasks are always easier to solve if more propositions are true in the initial state. This is, simply, be-

cause all literals in operator preconditions, effects, and the goal are positive. Hence, if a proposition

p does not appear positively in any initial state clause, then one can set p to 0 initially, and thereby
reduce the number of initial states, without introducing any new plans.21 Setting a proposition to

0 may cause unit propagations, setting other propositions to 1 or 0. We iterate these steps until a
fixpoint occurs. The resulting initial state description is stricter than before, and yields better perfor-

mance both for CFF and for DLVK. We use this optimized encoding in all the experiments reported

below.

We also experimented with another optimization. That optimization makes the assumption that

the constants requested by the goal will be generated in a step-wise fashion, where each intermediate

constant is generated with certainty before generating the next constant. Recall that in the encoding

as per Section 5.4, the existence of the inputs of operators, i.e., the condition
∧

x∈Xo
exists(x), is

part of the operator precondition and is thus interpreted under a conditional effects semantics. How-

ever, both CFF and DLVK offer a distinction between effect conditions and forced preconditions

that must hold in the entire belief for the action to be applicable. We can exploit that distinction to

postulate that the condition
∧

x∈Xo
exists(x) is forced. This reduces the state space, but may cut

out solutions. The reduction is quite beneficial both for CFF and for DLVK. Since the optimization

affects the set of plans, we switch it on only in part of the test cases, to point out the possible speed-

up. The tests where the optimization is switched on are discussed in the text, and indicated by the

keyword forced in the name of the test case.

We use two versions of CFF. One is CFF’s default configuration which makes use of FF’s “en-

forced Hill-climbing” search algorithm as well as its “helpful actions pruning” technique (Hoffmann

& Nebel, 2001). In the other configuration, CFF helpful actions pruning is turned off, and the search

proceeds in standard “greedy best-first” fashion, with an open queue ordered by increasing heuristic

values. We henceforth denote the former configuration with CFF-def and the latter configuration

with CFF-std.

All results were obtained on a 2.8GHz Pentium IV PC running Linux. All tests were run with a

time-out of 600 seconds CPU, and limiting memory usage to 1 GB.

6.2 Subsumption Hierarchies

We first investigate how well our approach can deal with scaling subsumption hierarchies, and with

building chains of successively created entities (outputs). For that purpose, we design a test scenario

called SH, which demands the composition of web services realizing a chain of generation steps,

where every generation step has to deal with a subsumption hierarchy.

The scenario is depicted in Figure 2. There are n “top-level” concepts TL1, . . . , TLn, depicted

with “TL” in Figure 2. The goal input is TL1, the goal output is TLn. Beneath each TLi, there

is a tree-shaped hierarchy of sub-concepts. More precisely, the tree is perfectly balanced with

branching factor b, and has depth d. The inner nodes of the tree are called “intermediate-level”
(or simply “intermediate”) concepts, depicted with “IL” in Figure 2. The leaf nodes of the tree

are called “basic-level” (or simply “basic”) concepts, depicted with “BL” in Figure 2. For every

non-leaf concept C in the tree, with children C1, . . . , Cb, we have the axioms ∀x : Ci(x) ⇒ C(x)

21. Of course, reducing the set of initial states does not invalidate any old plans, either.

88



WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

TL

IL IL

BL BLBLBLBLBL

TL

ILIL

BL BL BL BL BL BL

SWS SWS SWS SWS SWS SWS

Figure 2: Schematic illustration of the SH scenario.

expressing subsumption, as well as an axiom ∀x : C(x) ⇒ C1(x)∨ · · · ∨Cb(x) expressing that the
parent is covered by its children.

The available web services are defined as follows. For each top level concept TLi, and for

each leaf BLi,j of the corresponding tree structure, there is a web service available that takes

BLi,j as input and that outputs TLi+1. The corresponding WSC operator takes the form oi,j =
({x}, BLi,j(x), {y}, TLi+1(y)). Then, by applying, for each 1 ≤ i < n in order, all services oi,j ,

it is possible to make sure that a constant of concept TLi+1 is created in all possible cases. Hence,

sequencing all these steps is a plan, of length (n − 1) ∗ bd. Note here that, as we already stated
in Section 5.4, in our experiments groups of operators with identical effects are assigned the same

output constants. For the SH scenario, this means that for each 1 ≤ i < n, all the oi,j share the

same output constant. Hence the total number of output constants generated, i.e., the number of

“potential constants” in the initial state, is equal to the number of top-level concepts, n.
Although the SH scenario is of an abstract nature, it is representative for a variety of relevant

situations. Specifically, the scenario can model situations where sets of different services must be

used to address a request which none of them can handle alone. The role of each single service is

then to handle some particular possible case. In our example, the “set of different services” is the

set of services oi,j assembled for each TLi. Given a constant c which is a member of TLi, i.e.,

TLi(c) holds, the “particular possible case” handled by service oi,j is the case where c happens to
be a member of leaf BLi,j – one of those cases must hold due to the coverage clauses in the tree.
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Similar situations arise, e.g., for geographically located (regional) services when the composition

request is not location-specific or addresses locations at a higher (inter-regional) level. A similar

pattern can also be found in e-government scenarios where a clear-cut classification of activities

leads to establishing several “parallel” services that serve different departmental areas.

Orthogonal to this “horizontal” composition, the scenario can model “vertical” composition,

where one function has to be pursued by concatenating existing functions. This is the case for most

complex procedures in such diverse areas as e-government or e-commerce.

The scenario can be instantiated to study different aspects of the scalability of our approach.

Our empirical tests measure scalability in both the horizontal and the vertical direction. Further,

we consider two extreme cases of the possible shapes of the individual concept trees in the chain,

giving us instances with identical numbers of leaves. We set up the test scenario SH-broad, where

d = 1 and b scales over 2, 4, 8, 16, 32. We set up the test scenario SH-deep, where b = 2 and d
scales over 1, 2, 3, 4, 5. In both scenarios, n scales from 2 to 20.
Further, we designed a SH-trap variant where a second chain of n concepts can be linked,

but is completely irrelevant for the goal service. This variant is suitable for testing to what extent

the composition techniques are affected by irrelevant information. Finally, recall that the encoding

method comes in two versions as explained above, where the default method treats input existence

–
∧

x∈Xo
exists(x) – by a conditional effects semantics, whereas the non-default method, forced,

compromises completeness for efficiency by treating input existence as a forced precondition.

All in all, we have the following choices: 3 different planners (CFF-def, CFF-std, DLVK);

2 different encoding methods; SH with or without the trap; SH-broad or SH-deep. The cross-

product of these choices yields 24 experiments, within each of which there are 19 possible values

for n and 5 possible values for b or d, i.e., 95 test instances. For CFF, we measured 3 performance
parameters: total runtime, number of search states inserted into the open queue, and number of

actions in the plan. For DLVK, we measured total runtime and number of actions in the plan. Of

course, not all of this large amount of data is interesting. In what follows, we summarize the most

important observations. Figure 3 shows the data we selected for this purpose. Part (a) of the figure

shows CFF-std on SH-broad; (b) shows CFF-std on SH-deep; (c) shows CFF-def on SH-forced-

broad; (d) shows DLVK on SH-broad and SH-deep; (e) shows DLVK on SH-forced-broad and

SH-forced-deep; (f) shows DLVK and CFF-std on SH-trap. The vertical axes all show log-scaled

runtime (sec). The horizontal axes show n in (a), (b) and (c). In (d), (e) and (f), n is fixed to n = 2
and the horizontal axes show the number of leaves in the concept hierarchy.

Consider first Figure 3 (a) and (b). These plots point out how efficiently CFF can handle this

kind of WSC problem, even with no forced optimization. Comparing the two plots points out the

difference between handling broad and deep concept hierarchies. In both plots, CFF-std runtime

is shown over n, the length of the chain to be built. In (a), we show 5 curves for the 5 different
values of b (the number of leaves in a hierarchy of depth 1), and in (b) we show 5 curves for the 5
different values of d (the depth of a hierarchy with branching factor 2). In both cases, the scaling
behavior is fairly good. With small concept hierarchies (b = 2 or d = 1), chains of almost arbitrary
length can be built easily. As the hierarchies grow, runtime becomes exponentially worse. Note,

however, that from one curve to the next the size of the hierarchies doubles, so that growth is itself

exponential. With concept hierarchies of 16 leaves, i.e., 16 alternative cases to be handled in each

step, we can still easily build chains of 6 steps, where the solution involves 96 web services. The

most interesting aspect of comparing the two plots, (a) and (b), is that the underlying search spaces

are actually identical: the open queues are the same. The only difference in performance stems
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Figure 3: Selected results for SH scenario. See detailed explanation in text.
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from an overhead in CFF’s reasoning techniques, which consume more runtime in the case of deep

concept hierarchies. Hence the slightly worse behavior in (b).

If we run CFF-def on the test suites of Figure 3 (a) and (b), then we obtain much worse behavior.

For example, with b = 8 we only get up to n = 3. The reason seems to be that FF’s helpful actions
pruning and enforced hill-climbing are too greedy in this domain. A simple way to overcome this is

to use a standard heuristic search algorithm instead, as done by CFF-std shown in Figure 3 (a) and

(b). On the other hand, if the forced optimization is switched on, then helpful actions pruning and

enforced hill-climbing work much better, and we obtain a significant performance boost when using

CFF-def. The latter is pointed out by Figure 3 (c), showing data for CFF-def on SH-forced-broad.

Like Figure 3 (a) for CFF-std on SH-broad, this plot shows 5 curves, one for each of the 5 values

of b (legend omitted from the plot because it would overlap the curves). We see that, in this case,
we can easily build arbitrarily long chains even for b = 16, giving us a solution involving 320 web
services for n = 20. Even for b = 32, we still get up to n = 9.
Figure 3 (d) and (e) show what one gets when trying to solve the same examples, encoding them

directly for DLVK instead of using the compilation and solving them with CFF. As expected, the

performance is much worse. Since hardly any test instance is solved for n > 2, we fixed n to its
minimum value 2 in these plots, unlike (a), (b) and (c). Each of (d) and (e) shows data for both the
broad and deep variants, showing the number of leaves on the horizontal axis. In order to obtain a

more fine-grained view, for the broad variant we increase that number by steps of 1 rather than by
a multiplicative factor of 2 as before. We see that, without the forced optimization – Figure 3 (d) –
performance is poor, and the largest case we can solve is n = 2, b = 6 where the solution involves
6 web services. As we switch forced on – Figure 3 (e) – performance is dramatically improved but

is still on a different level than what we obtain by compilation+CFF.

Figure 3 (f), finally, exemplifies the results we get in the trap scenario. We show data for

the broad version, on the default encoding with CFF-std, and on both the default and the forced

encoding with DLVK. DLVK is quite affected by the irrelevant chain of concepts, now solving only

the single instance n = 2, b = 2 for the default encoding, and getting up to n = 2, b = 16 for
the forced encoding, instead of n = 2, b = 20 without the trap. This behavior is expected since
DLVK does not make use of heuristic techniques that would be able to detect the irrelevance of the

second chain of concepts. The question then is whether CFF’s techniques are better at that. Figure 3

(f) shows that CFF-std is largely unaffected for n = 2 – one can see this by comparing that curve
with the points on the vertical axis in Figure 3 (a). However, for n > 2 the performance of CFF-std
drastically degrades: the only instances solved are n = 3, b = 2 and n = 4, b = 2. The reason
seems to be that the additional actions yield a huge blow-up in the open queue used by the global

heuristic search algorithm in CFF-std. Indeed, the picture is very different when using CFF-def and

the forced encoding instead: the search spaces are then identical to those explored with no trap, and

the behavior we get is identical to that shown in Figure 3 (c).

All plans found in the SH scenario are optimal, i.e., the plans returned contain only those web

services that are needed. The single exception is DLVK in trap, where the solutions include some

useless web services from the trap chain.22

22. Note here that DLVK’s plans are parallel. Their parallel length is optimal (because we provided the correct plan

length bound, cf. Section 6.1. However, each parallel step may contain unnecessary actions, on top of the necessary

ones. That’s what happens in trap.
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6.3 Complex Concept Dependencies

The two variants of the SH scenario feature tightly structured relationships between the involved

concepts, and allow the investigation of scalability issues by varying the size of the structure. We

now consider a more advanced scenario, where the way top-level concepts are covered by lower-

level concepts is subject to complex concept dependencies, similar to the axioms constraining pro-

tein classes and their characteristics in Example 1. Therefore we investigate how performance is

impacted by more complex concept structures than just subsumption hierarchies.

TL
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BL BLBLBLBLBL
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BL BL BL BL BL BL

SWS SWS SWS SWS SWS SWS
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IL IL

BL BLBLBLBLBL
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Figure 4: Schematic illustration of the CD scenario vs. the SH scenario.

Our new scenario is called CD, for concept dependencies. Figure 4 illustrates this scenario, and

contrasts it with the SH scenario. Similarly to what we had in SH, we have top-level concepts,

of which each one is associated to a set of basic sub-concepts. There are b basic concepts for
every top-level concept. There are n top-level concepts TL1, . . . , TLn, and the goal is to achieve

TLn starting from TL1. As before, this is done through combining web services that cover all

possibilities. Namely, for every top-level concept TLi and for every basic concept BLi,j associated

with it, we have the operator oi,j = (({x}, BLi,j(x), {y}, TLi+1(y)).
23

The difference lies in the connection between the basic concepts and the top-level concepts.

In SH, this was rigidly given in terms of a tree structure of subsumption and coverage axioms

over intermediate concepts. Every basic concept – i.e., every operator oi,j corresponding to such a

concept – had to be included in the plan in order to cover all possible cases. In CD, we use instead a

complex set of axioms to connect the basic concepts to the top-level. Each top-level concept hasm
intermediate concepts ILi,1, . . . , ILi,m, for which as before we have axioms stating that each ILi,j

23. Note here again that, for the same i, all these operators are assigned the same output constant by our compilation

technique.
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is a sub-concept of TLi, as well as the axiom ∀x : TLi(x) ⇒ ILi,1(x) ∨ · · · ∨ ILi,m(x) stating
that TLi is covered by ILi,1, . . . , ILi,m. For the connection between the intermediate concepts and

the basic concepts, complex dependencies are used. Each intermediate subconcept is constrained to

be covered by some non-empty set of combinations of the basic subconcepts. Precisely, we create a

random DNF, of only positive literals, using the basic concepts as the predicates. We then take that

DNF to imply ILi,j . Note here that, in the implication, the DNF is negated and hence becomes a

CNF, which we can directly encode into our formalism. We do this for every ILi,j .

In such a setting, it is interesting to control how many combinations are required to cover the

top-level concept TLi. This directly corresponds to the total number of random combinations (ran-

dom DNF disjuncts) that are generated, for all of the intermediate concepts ILi,j taken together.

We control this via what we call the coverage factor, c, ranging in (0, 1]. From the 2b − 1 possible
combinations of basic concepts, we pick a random subset of size ⌈c × (2b − 1)⌉. Each such com-
bination is associated to the DNF of a randomly chosen intermediate concept. Note that the CNF

formulas generated this way may be enormous. To minimize the size of the encoding, we use the

formula minimization software Espresso (Brayton, Hachtel, McMullen, & Sangiovanni-Vincentelli,

1984; McGeer, Sanghavi, Brayton, & Sangiovanni-Vincentelli, 1993).

If – hypothetically – c is set to 0 then the task is unsolvable. In the experiments reported below,
whenever we write c = 0% this means that exactly one combination was selected, and associated
with every intermediate concept.

By escaping from the rigid schema of relationships presented by SH, the CD scenario is suit-

able to test whether the performance of our approach is tied to the specific structure of the SH

problem. Moreover, the way CD is designed allows us to determine to what degree the planners

react intelligently to different concept structures. In particular, the scenario allows the analysis of:

1. The ability of our approach, and in particular of the selected underlying planner CFF, to iden-

tify plans that contain only relevant actions. Especially when the “coverage factor” c is low,
some basic subconcepts may never appear in any partition of intermediate concepts, and thus,

the plan does not need to include the respective operators. Still, due to the conditional ef-

fects/partial matches semantics, plans that include those operators are valid plans. Evaluating

plan length performance over varying c is therefore interesting.

2. The ability of our approach to deal with complex axiomatizations. This can be measured in

terms of the impact of the coverage factor on runtime performance. The randomization of

the choice of combinations of basic factors, in different settings of c, may induce significant
differences in the CNF axiomatizations, and as a result, subject the underlying reasoning

engine to very different situations.

In summary, the CD scenario is representative for situations where complex dependencies must be

taken into account in order to select the correct services. Examples of such domains were discussed

in Sections 4.2 and 5.3. In particular, the CD scenario corresponds closely to (a scalable version of)

our protein domain example. The different values for the DSSP code correspond to different basic

concepts, and the respective getInfoDSSP services are the operators taking them to an intermediate

concept, InfoDSSP(y). This is similar for amino-acids, 3-D shapes, and shapes in complexes. The
top level concept combinedPresentation(y) can be achieved once constants for every intermediate
concept have been created. So, the only difference to CD lies in that, rather than having just a single

top-level concept generated from its intermediates, CD has a sequence of top-level concepts that

need to be generated in turn.
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As with the SH scenario, the total data of our experiments is extensive, even more so since we

now have 4 scenario parameters rather than 2 as before, and since individual instances now contain
a random element. In Figure 5, we report selected results pointing out the main observations. Part

(a)/(b) of the figure show CFF-std runtime/plan length over n form = 4, b = 5; (c)/(d) show CFF-
std runtime/search nodes over c for n = 5, m = 3, b = 7; (e) shows DLVK and CFF-std runtime
over b in CD for n = 2, c = 100%; (f) show the latter data for CFF-def and CD-forced.
Figure 5 (a) and (b) consider the scalability and solution lengths of the test varying the size of

the scenario, and representing different coverage factors as different lines. We report data for CFF-

std. Results are very similar for CD-forced and CFF-def, i.e., contrary to SH, in CD this setting of

options does not bring a significant performance gain. We see in Figure 5 (a) that CFF scales up

pretty well, though not as well as in SH, being easily able to solve tasks with 7 top level concepts of
which each has 4 intermediate concepts and 5 basic concepts. Tasks with minimum coverage factor,
c = 0%, are solved particularly effortlessly. For higher c values, one can observe somewhat of an
easy-hard-easy pattern, where, for example, the curve for c = 100% lies significantly below the
curves for c = 40% and c = 60%. We examine this easy-hard-easy pattern in more detail below.
In Figure 5 (b), an obvious and expected observation is that plan length grows linearly with

n, i.e., with the number of top level concepts. A likewise obvious, but much more important,
observation is that plan length grows monotonically with the coverage factor c. As reported above,
a lower coverage factor opens up the opportunity to employ less basic services, namely only the

relevant ones. Figure 5 (b) clearly shows that CFF-std is effective at determining which of the

services are relevant and which are not.

Let us get back to the intriguing observation from Figure 5 (a), the easy-hard-easy pattern over

growing c. Figure 5 (c) and (d) examine this phenomenon in more detail. Both plots scale c on
the horizontal axis, for a fixed setting of n, m and b. Runtime is shown in (c), while (d) shows
the number of search states inserted into the open queue. For each value of c, the plots give the
average and standard deviation of the results for 30 randomized instances. We clearly see the easy-

hard-easy pattern in (c) for runtime, with high variance particularly for c = 80%. In (d), we
see that there is no such pattern for the number of search states, and that the variance is much less

pronounced. This shows that the easy-hard-easy pattern is not due to differences in the actual search

performed by CFF, but due to the effort spent in the search nodes. We traced the behavior of CFF

in detail, and found that the reason for the easy-hard-easy pattern lies in the runtime CFF spends

in its SAT reasoning for “state transitions”, i.e., in the reasoning it uses to determine which facts

are definitely true/false in each belief. For high but non-100 values of c, the CNF encodings of the
concept dependency structures take on a rather complex form. In the cases where CFF takes a lot

of runtime, almost all of the runtime is spent within a single call to the SAT solver. That is, it seems

that CFF’s SAT solver exhibits a kind of heavy-tailed behavior on these formulas, a phenomenon

well known in the SAT and CP community, see for example the work of Gomes, Selman, Crato, and

Kautz (2000). It should be noted here that, in typical planning benchmarks, the CNFs have a much

simpler structure, which motivates the use of a fairly naive SAT solver in CFF, using neither clause

learning nor restarts, in order to save overhead on formulas that are simple anyway. It seems likely

that the addition of advanced SAT techniques to the solver could ameliorate the observed problem.

Finally, Figure 5 (e) and (f) compare the performances of compilation+CFF and DLVK (with

no compilation). Both plots fix n = 2, i.e., data is shown for only 2 top level concepts. The only
instances that DLVK solves for n > 2 are the ones where the forced optimization is used and n = 3,
m = 2, b = 2. Further, in both plots c is fixed to c = 100%. The reason for this is that we did
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Figure 5: Selected results for CD scenario. See detailed explanation in text.

not find a significant difference in the performance of DLVK for different values of c. DLVK was
unable to exploit lower c for lower runtime, and neither did it show an easy-hard-easy pattern. We
speculate that DLVK’s answer set programming solver tends to perform exhaustive search anyway

and is accordingly not as affected by different structures as the heuristic techniques employed by

CFF. However, like CFF, DLVK was able to exploit lower coverage factors c for shorter plans.
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Figure 5 (e) shows the default setting without the forced optimization. We see that the perfor-

mance of DLVK explodes quickly while CFF does not experience as much trouble. CFF fails at the

upper ends of its curves, both in Figure 5 (e) and (f), only because the problem files, i.e., the CNFs

describing the complex concept dependencies, become too large to parse (> 4 MB). That notwith-
standing, CFF’s runtime behavior is clearly exponential. Note, however, that the actual encodings,

i.e., the problem instances to be solved, also grow exponentially over c.
We can further observe that DLVK exhibits quite some variance, particularly across different

settings ofm: the curves cross in Figure 5 (e). This is even more pronounced in Figure 5 (f), where
we can also observe, as before for SH, that the forced optimization brings a huge advantage for

DLVK. For m = 2 and m = 6 in Figure 5 (f), DLVK fails on the first unsolved problem instance
due to running out of memory shortly after parsing the problem.

Concluding this section, we observe that the empirical behavior of CFF in the SH and CD sce-

narios is promising. These results should not be over-interpreted, though. While the test scenarios

do capture problem structure typical of a variety of potential applications of WSC technology, our

approach has yet to be put to the test of actual practice. The same, however, can be said of essentially

all current planning-based WSC technology, since the field as a whole is still rather immature.

7. Related Work

The relation of our work to the belief update literature has been covered in detail already in Sec-

tions 2.2 and 4.3. As for the relation to planning, our formalism basically follows all the commonly

used frameworks. Our notions of operators, actions, and conditional effects are exactly as used in

the PDDL framework (McDermott et al., 1998; Bacchus, 2000; Fox & Long, 2003), except for the

extension with outputs. Regarding the latter, it has been recognized for some time in the planning

community, for example by Golden (2002, 2003) and Edelkamp (2003), that on-the-fly creation of

constants is a relevant feature for certain kinds of planning problems. However, attempts to actually

address this feature in planning tools are scarce. In fact the only attempt we are aware of is the work

by Golden (2002, 2003) and Golden, Pand, Nemani, and Votava (2003). Part of the reason for this

situation is probably that almost all current state of the art tools employ pre-processing procedures

that compile the PDDL task into a fully grounded description. The core algorithms are then im-

plemented based on a propositional representation. Lifting such algorithms to a representation that

involves variables and on-the-fly instantiations requires a major (implementation) effort. In the work

herein, we circumvent that effort by using “potential” constants and feeding the resulting problem

to CFF, which like most planners employs the said pre-processing. Extending CFF for WSC|fwd

will involve dealing with non-propositional representations as a sub-problem.

Our notion of initial state uncertainty and conformant plans closely follows the related literature

from planning under uncertainty (Smith & Weld, 1998; Cimatti et al., 2004; Hoffmann & Brafman,

2006). The formalization in terms of beliefs is adapted from the work by Bonet and Geffner (2000).

There are some related works in planning which allow a domain axiomatization, i.e., some form of

axioms constraining the possible world states (Eiter et al., 2003; Giunchiglia et al., 2004). To the

best of our knowledge, no work in planning exists, apart from the work presented herein, which

considers the combination of domain axioms and outputs.

A few words are in order regarding our notions of “partial” and “plug-in” matches. This termi-

nology originates from work on service discovery in the SWS community (see for example Paolucci

et al., 2002; Li & Horrocks, 2003; Kumar et al., 2007). In service discovery, one is concerned with
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matching service advertisements against service requests. The discovery result is the set of services

whose advertisement matches the request. The descriptions of services and requests are similar to

the functional-level service descriptions, i.e., the planning operators that we use here. However, the

terminology in these works is slightly different from ours, and they also describe additional kinds

of matches. The notions given by Li and Horrocks (2003) have the closest relation to ours. Service

descriptions are defined in terms of constructed Description Logic concepts. Say A is the concept
describing the advertisement, and R is the concept describing the request. Then Li and Horrocks
say that A and R have: an “exact match” ifA ≡ R; a “plug-in match” ifA ⊒ R; a “subsume match”
if A ⊑ R; and an “intersection match” if A ⊓ R 6⊑ ⊥. To compare this to our setting, consider the
situation where A is the effect of action a, and R is the precondition of action r. Exact matches
are a special case of plug-in matches which we do not distinguish herein. Intersection matches

correspond to what we call partial matches. Concerning plug-in and subsume matches, matters are

more subtle. The intuitive meaning of “plug-in match” is that “the advertisement fully suffices to

fulfill the request”. In planning terms, this means that the effect of a implies the precondition of r.
However, in service discovery this is traditionally taken to mean that every requested entity is being

provided, i.e., A ⊒ R. The latter notion – where the precondition of r implies the effect of a – is
not meaningful in planning. Hence we use only one of the two notions, in correspondence to Li and

Horrocks’s “subsume matches”.

In contrast to the work of Li and Horrocks (2003), and to our work, Paolucci et al. (2002) and

Kumar et al. (2007) define matches for individual input/output parameters in service descriptions,

rather than for service descriptions on a more global level (precondition/effect for us, constructed

concept for Li & Horrocks, 2003). On the level of individual parameters, Paolucci et al. (2002)

suggest the same notions as Li and Horrocks (2003) except that they do it in a less formal notation,

and they do not define intersection matches. The same is true of Kumar et al. (2007). The latter

authors also define notions of “contains” and “part-of” matches, relating to the building blocks of

constructed concepts. Obviously, such notions do not make sense in our framework, where there

aren’t any constructed concepts. Finally, Kumar et al. define some ways of aggregating matches for

individual parameters to matches for entire service descriptions. Again, this is not applicable in our

case since we work on a more global level in the first place.

A brief survey of the existing works on WSC is as follows. There is a variety of works that com-

pile composition into more or less standard deterministic planning formalisms (Ponnekanti & Fox,

2002; Srivastava, 2002; Sheshagiri et al., 2003). Some other works (Agarwal, Dasgupta, Karnik,

Kumar, Kundu, Mittal, & Srivastava, 2005b; Agarwal et al., 2005a) additionally focus on end-to-end

integration of SWS composition in the larger context. Akkiraju, Srivastava, Anca-Andreea, Good-

win, and Syeda-Mahmood (2006) investigate techniques to disambiguate concept names. McIlraith

and Fadel (2002) achieve composition with particular forms of non-atomic services, by modeling the

latter as atomic actions that take the meaning of a kind of macro-actions. Narayanan and McIlraith

(2002) obtain a composition ability as a side-effect of verifying SWS properties using Petri Nets.

Kuter, Sirin, Nau, Parsia, and Hendler (2005), Au, Kuter, and Nau (2005), and Au and Nau (2006)

focus on information gathering at composition time, rather than at plan execution time. McDermott

(2002) treats the actual interaction (communication) with a web service as a planning problem.

Mediratta and Srivastava (2006) design an approach to WSC based on conditional planning, i.e.,

a form of planning under uncertainty. While this suggests a close relation to our work, the focus

of Mediratta and Srivastava’s work is actually quite different from ours. Mediratta and Srivastava

do not consider output variables, and neither do they consider any domain axiomatizations. The
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only overlap with our formalism lies in that they allow incomplete initial state descriptions, i.e.,

initial states that assign a value to only a subset of the propositions. They handle observation

actions which allow observing the value of any unspecified proposition. To ameliorate the need

for complete modeling, they consider a definition of “user acceptable” plans, where only a subset

of the plan branches, as specified by the user, are guaranteed to lead to the goal. The latter may be

an interesting option to look into when extending our framework to handle partial observability.

Two approaches explore how to adapt formalisms from so-called “hand-tailored planning” for

SWS composition. The approaches are based on Golog (McIlraith & Son, 2002) and HTN plan-

ning (Sirin et al., 2004), respectively. These frameworks enable the human user to provide control

information. However, non-deterministic action choice is allowed. If no control information is

given, then planning is fully automatic. Hence, in this sense, these frameworks are strictly more

powerful than planning without such control information. Further, both approaches are capable of

handling advanced plan constructs such as loops and branches. In Golog, the possible plans – the

possible composition solutions – are described in a kind of logic where high-level instructions are

given by the programmer, and the planner will bind these instructions to concrete actions as part

of the execution. In HTN, the programmer supplies the planning algorithm with a set of so-called

“decomposition methods”, specifying how a certain task can be accomplished in terms of a com-

bination of sub-tasks. Recursively, there are decomposition methods for those sub-tasks. Thus the

overall task can be decomposed in a step-wise fashion, until atomic actions are reached. Neither

McIlraith and Son (2002) nor Sirin et al. (2004) are concerned with handling ontology axioms, as

we do in this paper. Hence, combining the insights of both directions has synergetic potential, and

is an interesting topic for future work.

Another approach capable of handling advanced plan constructs (loops, branches) is described

by Pistore et al. (2005b), Pistore, Traverso, Bertoli, and Marconi (2005c), Pistore et al. (2005a), and

Bertoli, Pistore, and Traverso (2006). In this work, “process level” composition is implemented, as

opposed to the profile/capability level composition as addressed in this paper. At the process level,

the semantic descriptions detail precisely how to interact with the SWS, rather than characterizing

them only in terms of preconditions and effects. Pistore et al. (2005b, 2005c, 2005a) and Bertoli

et al. (2006) exploit BDD (Binary Decision Diagram) based search techniques to obtain complex

solutions fully automatically. However, ontology axioms are not handled and input/output types are

matched based on type names.

There are only a few approaches where ontology axioms are used and the requirements on the

matches are relaxed. One of those is described by Sirin, Hendler, and Parsia (2003), Sirin, Parsia,

and Hendler (2004), Sirin and Parsia (2004), and Sirin et al. (2006). In the first two papers of

this series (Sirin et al., 2003, 2004), a SWS composition support tool for human programmers is

proposed: at any stage during the composition process, the tool provides the user with a list of

matching services. The matches are found by examining the subconcept relation. An output A
is considered a match of input B if A ⊆ B. This corresponds to plug-in matches. In later work
(Sirin & Parsia, 2004; Sirin et al., 2006), the HTN approach (Sirin et al., 2004) mentioned above

is adapted to not work on the standard planning semantics, but on the description logics semantics

of OWL-S. The difficulties inherent in updating a belief are observed, but the connection to belief

update as studied in the literature is not made, and it remains unclear which solution is adopted.

As far as we are aware, all other methods with more relaxed matches follow what we have here

termed a message-based approach to WSC. These approaches were already discussed in some depth

in Section 2.3. Next, we give a few more details on the ones most closely related to our work. The
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approach by Liu et al. (2007) was discussed in sufficient detail already in Section 2.3, so we do not

reconsider this here.

Meyer and Weske (2006) handle ontology axioms in their WSC tool, but do not provide a

semantics for action applications. Reasoning is only used to determine whether a particular output

can be used to establish a particular input, so the approach can be classified as “message-based”,

in our terms. The kind of matches handled is said to be plug-in. To the best of our knowledge,

this tool is the only existing WSC tool that employs a relaxed plan based heuristic function, like

CFF. However, through various design decisions, the authors sacrifice scalability. They explicitly

enumerate all world states in every belief, and hence suffer from exponentially large beliefs. They

search forward with parallel actions and consequently suffer from a huge branching factor. They

take their heuristic to be relaxed planning graph length (rather than relaxed plan length) and thus

suffer from the fact that, most of the time, hmax is a much less informative heuristic than h+ (Bonet

& Geffner, 2001; Hoffmann, 2005).

An approach rather closely related to ours, in that it can handle partial matches, is described

by Constantinescu and Faltings (2003) and Constantinescu et al. (2004a, 2004b). In this work the

ontology is assumed to take the form of a tree of concepts, where edges indicate the subconcept

relation. Such a tree is compiled into intervals, where each interval represents a concept and the

contents are arranged to correspond to the tree. The intervals are used for efficient implementation

of indexing in service lookup (discovery), as well as for matching during composition. The latter

searches forward in a space of “switches”. Starting at the initial input, if the current input is of type

A, then a service with input Ai matches if A ∩ Ai 6= ∅. Such services are collected until the set
of the collected Ai covers A (that is, until the union of the intervals for the various Ai contains the

interval forA). The collected services form a switch, and in the next step of the search, each of their
outputs becomes a new input that must be treated (i.e., the switch is an AND node). Composition

is interleaved with discovery, i.e., in every search state discovery is called to find the services that

match this state. The search proceeds in a depth-first fashion. Major differences to our work are

the following. First, the formalization is very different, using intervals vs. using standard notions

from planning based on logics. Second, the approach interleaves discovery and composition, which

are separate steps in our framework (web service discovery is needed to determine the “operators”

of aWSC task). Third, the approach considers concept trees vs. clausal integrity constraints. Last,
the approach uses depth-first search, whereas one of the main points we are making is that one can

exploit the heuristic techniques implemented in standard planning tools for scalable WSC.

Finally, an interesting approach related to planning is described by Ambite and Kapoor (2007).

To capture the dependencies between different input variables of a web service, the input is de-

scribed in terms of a relation between those variables. The same is done for the outputs. The

relations are formulated in terms of logical formulas relative to an ontology. The underlying for-

malism is first-order logic, so the modeling language is quite expressive.24 Reasoning is performed

in order to establish links (“messages”, in our terms) between inputs and outputs. The algorithmic

framework in which that happens is inspired by partial-order planning (Penberthy & Weld, 1992),

starting from the goal relation and maintaining a set of open links. The solution is a DAG of web

services where links correspond to different kinds of data exchanges (selection, projection, join,

union). Automatic insertion of mediator services, e.g., for converting a set of standard formats, is

also supported.

24. At the cost of undecidable reasoning, which according to the authors is not a major issue in practice.
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To some extent, our preconditions/effects and clausal integrity constraints can be used to model

“relations” in the sense of Ambite and Kapoor (2007). Say r is a k-ary relation with definition
φ, describing the input of a web service. We set the corresponding operator’s precondition to
r(x1, . . . , xk), and we transform φ into a set of universally quantified clauses. As long as the
latter can be done, and as long as the ontology axioms can be likewise transformed, we obtain a

model equivalent to that of Ambite and Kapoor. In that sense, the main modeling advantage of the

approach of Ambite and Kapoor overWSC|fwd is existential quantification. It is an open question

whether such quantification can be accommodated in our framework. Insertion of mediator services

can be supported inWSC|fwd, but only in the limited sense of recognizing, via particular precon-

ditions, that a particular kind of mediator is required. Modeling the actual data flow is bound to be

awkward. In summary, the work of Ambite and Kapoor is more advanced than ours from a data de-

scription and transformation point of view. On the other hand, Ambite and Kapoor neither consider

belief update, nor do they place their work in the context of a fully-fledged planning formalism, and

they are less concerned with exploiting the heuristic technologies of recent planners. Combining

the virtues of both approaches – within either framework – is an interesting direction for further

research.

8. Discussion

We have suggested a natural planning formalism for a significant notion of web service composition

at the profile / capability level, incorporating on-the-fly creation of constants to model outputs, in-

complete initial states to model incomplete user input, conditional effects semantics to model partial

matches, and, most importantly, clausal integrity constraints to model ontology axioms. We have

identified an interesting special case, forward effects, where the semantics of action applications

is simpler than in the general case. We have demonstrated how this relates to the belief update

literature, and we have shown how it results in reduced computational complexity. Forward effects

relate closely to message-based WSC, and our results serve both to put this form of WSC into con-

text, and to extend it towards a more general notion of partial matches. Further, we have identified a

compilation into planning under (initial state) uncertainty, opening up an interesting new connection

between the planning and WSC areas.

Our empirical results are encouraging, but should not be over-interpreted. While our test sce-

narios serve to capture some structural properties that are likely to appear in applications of WSC

technology, our approach has yet to be put to the test of actual practice. The same, however, can be

said of essentially all current planning-based WSC technology, since that field is still rather imma-

ture. In that sense, a more thorough evaluation of our approach, and of planning-based WSC as a

whole, is a challenge for the future.

Apart from such evaluation, there are several directions for research improving and extending

the technology introduced herein. A line of research that we find particularly interesting is to adapt

modern planning tools for WSC, starting from our special cases, where the complications incurred

by integrity constraints are more manageable. We have already outlined a few ideas for adapting

CFF, and pointed out that new challenges arise. It appears particularly promising to tailor generic

heuristic functions, originating in planning, to exploit the typical forms of ontology axioms as occur

in practice. Considering the wealth of heuristic functions available by now, this topic alone provides

material for a whole family of subsequent work.
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Appendix A. Proofs

We first formally prove Proposition 1, stating that negative effects can be compiled away inWSC.
Before we do so, we first need to introduce the compilation formally. Assume a WSC task (P,
ΦIC ,O, C0, φ0, φG). We construct a secondWSC task (P+,Φ+

IC ,O
+, C0, φ0, φG), where initially

P+,Φ+
IC and O

+ are the same as P,ΦIC and O, respectively. We proceed as follows. Let G ∈
P be a predicate with arity k, so that there exists o ∈ O, o = (Xo, preo, Yo, effo) where effo
contains a negative literal ¬G(x1, . . . , xk). We introduce a new predicate notG into P+, and we

introduce the two new clauses ∀x1, . . . , xk : G(x1, . . . , xk) ∨ notG(x1, . . . , xk) and ∀x1, . . . , xk :
¬G(x1, . . . , xk) ∨ ¬notG(x1, . . . , xk). For every operator o whose effect contains a negation of
G, we replace, in effo, ¬G(a1, . . . , ak) with notG(a1, . . . , ak).

25 We continue doing so until no

negative effect literals remain in O+.

If a is an action in (P,ΦIC ,O, C0, φ0, φG) then we denote by a+ the corresponding action

in (P+,Φ+
IC ,O

+, C0, φ0, φG). We also use this notation vice versa, i.e., if a+ is an action in

(P+,Φ+
IC ,O

+, C0, φ0, φG) then a denotes the corresponding action in (P,ΦIC ,O, C0, φ0, φG). If
s = (Cs, Is) is a state using the predicates P , then we denote by s

+ a state using the predicates P+,

with the following properties: Cs+ = Cs; for all p ∈ PCs we have Is+(p) = Is(p); for all notp
where p ∈ PCs we have Is+(notp) = 1 iff Is(p) = 0. Since there is, obviously, exactly one such
s+, we will also use this correspondence vice versa.

Proposition 1 Assume aWSC task (P, ΦIC , O, C0, φ0, φG). Let (P+,Φ′+
IC ,O

+, C0, φ0, φG) be
the same task but with negative effects compiled away. Assume an action sequence 〈a1, . . . , an〉.
Let b be the result of executing 〈a1, . . . , an〉 in (P, ΦIC , O, C0, φ0, φG), and b+ is the result of
executing 〈a+

1 , . . . , a
+
n 〉 in (P+,Φ+

IC ,O
+, C0, φ0, φG). Then, for any state s, we have that s ∈ b iff

s+ ∈ b+.

Proof: By induction over the length of the action sequence in question. If the sequence is empty,

then we have to consider the initial beliefs of the two tasks, for which the claim follows directly by

definition. For the inductive step, say that the claim holds for b and b+, and a is an action. We need
to show that, for any state s, we have that s ∈ res(b, a) iff s+ ∈ res(b+, a+).
For the direction from right to left, say s+ ∈ res(b+, a+). By definition we have s+ ∈

res(s+0 , a
+) for a state s+0 ∈ b+. By induction hypothesis, s0 ∈ b. It therefore suffices to show that

25. The arguments ai here may be either variables or constants.
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s ∈ res(s0, a). We need to show that (1) s |= ΦIC ∧ effa and (2) s differs from s0 in a set-inclusion
minimal set of values. (1) is obvious from the definitions. Assume to the contrary of (2) that there

exists s1 so that s1 |= ΦIC ∧ effa and s1 is identical to s except that there exists at least one propo-
sition p where s1(p) = s0(p) but s(p) 6= s0(p). By definition, we get that s

+
1 |= Φ+

IC ∧ effa+ .

Further, we get that s+1 (p) = s+0 (p) but s+(p) 6= s+0 (p), and altogether that s+1 <
s+

0

s+. This is a

contradiction to s+ ∈ res(s+, a+), and hence proves that s ∈ res(s0, a) as desired.
The direction from left to right proceeds in the same fashion. Say s ∈ res(b, a). By definition

we have s ∈ res(s0, a) for a state s0 ∈ b. By induction hypothesis, s+0 ∈ b+. It then suffices to
show that s+ ∈ res(s+0 , a

+). We need to show that (1) s+ |= Φ+
IC ∧ effa and (2) s

+ differs from s+0
in a set-inclusion minimal set of values. (1) is obvious from the definitions. Assume to the contrary

of (2) that there exists s+1 so that s
+
1 |= Φ+

IC ∧ effa+ and s+1 is identical to s
+ except that there

exists at least one proposition p where s+1 (p) = s+0 (p) but s+(p) 6= s+0 (p). By definition, we get
that s1 |= ΦIC ∧ effa. Further, if p ∈ PCs0 then we get that s1(p) = s0(p) but s(p) 6= s0(p). If
p = notq 6∈ PCs0 then we get the same property for q. Altogether, we get that s1 <s0

s. This is a
contradiction to s ∈ res(s, a), and hence proves that s+ ∈ res(s+0 , a

+) as desired. 2

Theorem 1 Assume a WSC task with fixed arity, and a sequence 〈a1, . . . , an〉 of actions. It is
Πp

2-complete to decide whether 〈a1, . . . , an〉 is a plan.

Proof: Membership is proved by a guess-and-check argument. First, observe that, for arbitrary s, s′,
and A, we can decide within coNP whether s′ ∈ res(s,A). Guess a state s′′ where Cs′′ = Cs ∪Ea.

Check whether s′′ |= ΦIC ∧ effa. Check whether Is′ 6≤s Is′′ . Then s
′ ∈ res(s, a) iff no guess

succeeds. Further, for an action a, deciding whether a is inconsistent is, obviously, equivalent
to a satisfiability test, so this is contained in NP. With these instruments at hand, we can design

a guess-and-check procedure to decide whether 〈a1, . . . , an〉 is a plan. We guess the proposition
values along 〈a1, . . . , an〉. We then check whether these values comply with res, and lead to an
inconsistent action, or to a final state that does not satisfy the goal. In detail, the checking proceeds

as follows. First, check whether the initial proposition values satisfy ΦIC ∧ φ0. If not, stop without

success. Otherwise, iteratively consider each action ai, with pre-state s and post-state s
′. Check

with an NP oracle whether a is inconsistent. If yes, stop with success. If not, test with an NP oracle
whether s′ ∈ res(s, a). If not, stop without success. Otherwise, if i < n, then go on to ai+1. If

i = n, then test whether s′ |= φG. Stop with success if s
′ 6|= φG, stop without success if s

′ |= φG.

〈a1, . . . , an〉 is a plan iff no guess of proposition values is successful.
Hardness follows by the following adaptation of the proof of Lemma 6.2 from Eiter and Gottlob

(1992). Validity of a QBF formula ∀X.∃Y.φ[X,Y ], where φ is in CNF, is reduced to plan testing
for a single action a. We use the 0-ary predicates X = {x1, . . . , xm}, Y = {y1, . . . , yn}, and
new 0-ary predicates {z1, . . . , zm, r, t}. The set of operators contains the single operator o with
empty in/out parameters, empty precondition, and effect t. The initial constants are empty; φ0 is the

conjunction of all xi, all yi, all zi, r, and ¬t; φG is r. The theory is:

(
m
∧

i=1

(¬t ∨ xi ∨ zi)) ∧ (
m
∧

i=1

(¬t ∨ ¬xi ∨ ¬zi)) ∧ (
∧

C∈φ

(¬t ∨ ¬r ∨ C)) ∧ (
n
∧

i=1

(¬t ∨ ¬yi ∨ r))
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where φ is viewed as a set of clauses C. More readably, the theory is equivalent to:

t⇒ [(
m
∧

i=1

xi ≡ ¬zi) ∧ (r ⇒ φ) ∧ ((
n
∨

i=1

yi) ⇒ r)]

We refer to the initial belief as b. The plan to test contains the single action a based on (equal to, in
fact) o. We refer to the resulting belief as b′. Obviously, b contains a single state s where everything
except t is true. Also, a is consistent: any interpretation that sets r and all yi to 0 satisfiesΦIC∧effa.
The theory conjuncts xi ≡ ¬zi make sure that each w ∈ b′ makes exactly one of xi, zi true.

In particular, the different assignments to X are incomparable with respect to set inclusion. Hence,
we have that for every assignment aX of truth values to X , there exists a state s

′ ∈ b′ that complies
with aX : aX is satisfiable together with ΦIC ∧ effa, and any other assignment a

′
X is more distant

from s in at least one variable (e.g., if a′X(xi) = 1 and aX(xi) = 0 then aX is closer to s than a
′
X

regarding the interpretation of zi).
We now prove that, if a is a plan, then ∀X.∃Y.φ[X,Y ] is valid. Let aX be a truth value assign-

ment to X . With the above, we have a state s′ ∈ b′ that complies with aX . Since a is a plan, we
have s′ |= r. Therefore, due to the theory conjunct r ⇒ φ, we have s′ |= φ. Obviously, the values
assigned to Y by s′ satisfy φ for aX .

For the other direction, say ∀X.∃Y.φ[X,Y ] is valid. Assume that, contrary to the claim, a is not
a plan. Then we have s′ ∈ b′ so that s′ 6|= r. But then, due to the theory conjunct (

∨n
i=1 yi) ⇒ r,

we have that s sets all yi to false. Now, because ∀X.∃Y.φ[X,Y ] is valid, there exists a truth value
assignment aY to Y that complies with the setting of all xi and zi in s. Obtain s

′′ by modifying s′

to comply with aY , and setting r to 1. We have that s′′ |= ΦIC ∧ effa. But then, s
′′ is closer to s

than s′, and hence s′ 6∈ b′ in contradiction. This concludes the argument. 2

Theorem 2. Assume aWSC task with fixed arity, and a natural number b in unary representation.
It is Σp

3-complete to decide whether there exists a plan of length at most b.

Proof: For membership, guess a sequences of actions containing at most b actions (note that the
size of such a sequence is polynomial in the size of the input representation). By Theorem 1, we

can check with a Πp
2 oracle whether the sequence is a plan.

Hardness follows by an extension of the proof of Lemma 6.2 of Eiter and Gottlob (1992). Valid-

ity of a QBF formula ∃X.∀Y.∃Z.φ[X,Y, Z], where φ is in CNF, is reduced to testing plan existence.
We use the 0-ary predicates X = {x1, . . . , xn}, Y = {y1, . . . , ym}, Z = {z1, . . . , zk}, and new
0-ary predicates {q1, . . . , qm, r, t, f1, . . . fn, h, g}. The set of operators is composed of:

• ot := (∅, f1 ∧ · · · ∧ fn ∧ h, ∅, t ∧ g ∧ ¬h)

• For 1 ≤ i ≤ n: oxi := (∅, h, ∅, xi ∧ fi)

• For 1 ≤ i ≤ n: o¬xi := (∅, h, ∅,¬xi ∧ fi)

The initial constants are empty. The initial literal conjunction φ0 is composed of all yi, all zi, all qi,
r, ¬t, all ¬fi, h, and ¬g. That is, the yi, zi, and qi as well as r and h are true, while the fi as well

as t and g are false. No value is specified (only) for the xi. The goal φG is r ∧ g. The theory is:

(
m
∧

i=1

(¬t ∨ yi ∨ qi)) ∧ (
m
∧

i=1

(¬t ∨ ¬yi ∨ ¬qi)) ∧ (
∧

C∈φ

(¬t ∨ ¬r ∨ C)) ∧ (
n
∧

i=1

(¬t ∨ ¬zi ∨ r))
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where φ is viewed as a set of clauses C. More readably, the theory is equivalent to:

t⇒ [(
m
∧

i=1

yi ≡ ¬qi) ∧ (r ⇒ φ) ∧ ((
n
∨

i=1

zi) ⇒ r)]

First, note a few obvious things about this construction:

• ot must be included in any plan.

• Once ot is applied, no action can be applied anymore.

• Before ot is applied, either oxi or o¬xi must be applied, for every 1 ≤ i ≤ n.

• The theory is “switched off”, i.e., made irrelevant because t is false, up to the point where ot

is applied.

That is, any plan for this task must first apply oxi or o¬xi , for every 1 ≤ i ≤ n, thereby choosing a
value for every xi. Then, o

t must be applied and the plan must stop. Before applying ot, no changes

are made to the states except that the values of xi are set and that the fi are made true one after

the other. Hence, the belief b in which ot is applied contains a single state s which corresponds to
an extension of φ0 with a value assignment for X , where the values of the fi have been flipped.

We denote the value assignment for X in s with aX . We further denote b
′ := res(b, ot). Note that

ot is consistent: any interpretation that sets r and all zi to 0, besides setting the immediate effects
t∧ g ∧¬h, satisfies ΦIC ∧ effot . Obviously, all of the applications of oxi and o¬xi are consistent as

well.

The theory conjuncts yi ≡ ¬qi make sure that each w ∈ b′ makes exactly one of yi, qi true. In
particular, the different assignments to Y are incomparable with respect to set inclusion. Hence, we
have that for every assignment aY of truth values to Y , there exists a state s

′ ∈ b′ that complies with
aY : aY is satisfiable together with ΦIC ∧ effot , and any other assignment a′Y is more distant from s
in at least one variable (e.g., if a′Y (yi) = 1 and aY (yi) = 0 then aY is closer to s than a

′
Y regarding

the interpretation of qi).
We now prove that, if there exists a plan ~a yielding assignment aX , then ∃X.∀Y.∃Z.φ[X,Y, Z]

is valid. Let aY be an arbitrary truth value assignment to Y . Then we have a state s
′ ∈ b′ that

complies with aX and aY . aX and aY are satisfiable together with ΦIC ∧ effot . With the above, any

other assignment a′Y is more distant from s in at least one variable. And, of course, if one deviates
from aX then one is more distant from s in the respective variable. Since~a is a plan, we have s

′ |= r.
Therefore, due to the theory conjunct r ⇒ φ, we have s′ |= φ. Obviously, the values assigned to Z
by s′ satisfy φ for aX and aY . This proves the claim because aY can be chosen arbitrarily.

For the other direction, say ∃X.∀Y.∃Z.φ[X,Y, Z] is valid. Let aX be an assignment toX so that
∀Y.∃Z.φ[aX/X, Y, Z] is valid. Let ~a be the corresponding plan, i.e., ~a first applies, for 1 ≤ i ≤ n,
either oxi or o¬xi according to aX . Thereafter, ~a applies o

t. Assume that ~a is not a plan. Then we
have s′ ∈ b′ so that s′ 6|= r. But then, due to the theory conjunct (

∨n
i=1 zi) ⇒ r, we have that s sets

all zi to false. Now, because ∀Y.∃Z.φ[aX/X, Y, Z] is valid, there exists a truth value assignment
aZ to Z that complies with the setting of all xi, yi, and qi in s. Obtain s

′′ by modifying s′ to comply
with aZ , and setting r to 1. We have that s′′ |= ΦIC ∧ effot . But then, s′′ is closer to s than s′, and
hence s′ 6∈ b′ in contradiction. This concludes the argument. 2
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Theorem 3. Assume a WSC task. The decision problem asking whether there exists a plan is
undecidable.

Proof: This result holds even with an empty background theory, a complete specification of the

initial state, predicates of arity at most 2, operators of arity at most 2, a goal with no variables at all
(arity 0), and only positive literals in preconditions and the goal. The result follows with a minor
modification of Tom Bylander’s proof (Bylander, 1994) that plan existence in propositional STRIPS

planning is PSPACE-complete.26 The original proof proceeds by a generic reduction, constructing a

STRIPS task for a Turing Machine (TM) with polynomially bounded space. The latter restriction is

necessary to model the machine’s tape: tape cells are pre-created for all positions within the bound.

What makes the difference between PSPACE-membership and undecidability is the ability to create

constants. We can introduce simple operators that allow us to extend the tape, at both ends.

In detail, say the TM has (a finite number of) states q and tape alphabet symbols a (where b is the
blank); δ is the transition function, q0 is the initial state, and F is the set of accepting states; ω is the
input word. Our planning encoding contains the following predicates. State(q) indicates that the
current TM state is q. In(a, c) indicates that the current content of tape cell c is a. Neighbors(c, c′)
is true iff c′ is the (immediate) right neighbor of c. At(c) indicates that the current position of the
TM head is c. Rightmost(c) (Leftmost(c)) is true iff c currently has no right (left) neighbor. The
set of initial constants contains all states q, all alphabet symbols a, and tape cells c corresponding
to ω. By the initial literals, all the propositions over these constants are assigned truth values as
obvious. For every transition (q, a, q′, a′, R) ∈ δ we include an operator:

({x, x′}, State(q) ∧ In(x, a) ∧Neighbors(x, x′) ∧At(x),

∅, State(q′) ∧ ¬State(q) ∧ In(x, a′) ∧ ¬In(x, a) ∧At(x′) ∧ ¬At(x)).

Obviously, this encodes exactly that transition. We do likewise for transitions (q, a, q′, a′, L) ∈ δ.
To model the final states, we introduce a 0-ary predicateG, and include for each q ∈ F an operator:

(∅, State(q), ∅, G)

We finally include the operators:

({x}, Rightmost(x), {x′}, Neighbors(x, x′) ∧ In(b, x′) ∧Rightmost(x′) ∧ ¬Rightmost(x))

and

({x′}, Leftmost(x′), {x}, Neighbors(x, x′) ∧ In(b, x) ∧ Leftmost(x) ∧ ¬Leftmost(x′))

With these definitions, it is easy to verify that there exists a plan iff the TM can reach an accepting

state on ω. 2

Lemma 1. Assume a WSC|fwd task, a reachable state s, and an action a. Then res(s, a) =
res|fwd(s, a).

26. Propositional STRIPS is like our framework, but with an empty background theory, a complete specification of

the initial state, a goal with no variables, only positive literals in preconditions and the goal, and with no output

parameters in the operators.
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Proof: If a is not applicable to s, then the claim holds trivially. Consider the other case. By
Equation 3, res(s, a) is defined as

res(s, a) :=

{

{(C ′, I ′) | C ′ = Cs ∪ Ea, I
′ ∈ min(s, C ′,ΦIC ∧ effa)} appl(s, a)

{s} otherwise

wheremin(s, C ′,ΦIC ∧ effa) is the set of all C
′-interpretations that satisfy ΦIC ∧ effa and that are

minimal with respect to the partial order defined by I1 ≤s I2 :iff for all propositions p over Cs, if

I2(p) = Is(p) then I1(p) = Is(p).
It is obvious that res|fwd(s, a) ⊆ res(s, a) – if Is′ satisfies ΦIC ∧ effa and Is′ is identical to Is

on the propositions over Cs, then in particular Is′ is minimal according to ≤s.

For the other direction, let s′ ∈ res(s, a). Assume that Is′(p) 6= Is(p) for some proposition p
over Cs. Define s

′′ to be equal to s′ except that Is′′(p) := Is(p). Obviously, Is′ 6≤s′′ I2. It now
suffices to show that s′′ |= ΦIC ∧ effa: then, we get Is′ 6∈ min(s, C ′,ΦIC ∧ effa) in contradiction,
hence Is′ agrees with Is on all propositions p over Cs, hence s

′ ∈ res|fwd(s, a).
As before, denote with PCs+Ea the set of all propositions with arguments in Cs ∪ Ea, and

with at least one argument in E, and denote with ΦIC [Cs + Ea] the instantiation of ΦIC with all

constants from Cs ∪ Ea, where in each clause at least one variable is instantiated from Ea. To see

that s′′ |= ΦIC ∧ effa, consider first that this is equivalent to s
′′ |= ΦIC [Cs ∪ Ea] ∧ effa, which in

turn is equivalent to s′′ |= ΦIC [Cs]∧ΦIC [Cs +Ea]∧effa. In the last formula, because the task is in
WSC|fwd,ΦIC [Cs] speaks only over the propositionsP

Cs , whereasΦIC [Cs+Ea]∧effa speaks only
over the propositions PCs+Ea . So we can treat these two parts separately. We have s′′ |= ΦIC [Cs]
because s |= ΦIC [Cs] by prerequisite since s is reachable. We have s

′′ |= ΦIC [Cs + Ea] ∧ effa by
definition. This concludes the argument. 2

Theorem 4. Assume aWSC|fwd task with fixed arity, and a sequence 〈a1, . . . , an〉 of actions. It
is coNP-complete to decide whether 〈a1, . . . , an〉 is a plan.

Proof: Hardness is obvious, considering an empty sequence. Membership can be shown by the

following guess-and-check argument. Say C is the union of C0 and all output constants appearing

in 〈A1, . . . , An〉. We guess an interpretation I of all propositions over P and C. Further, for each
1 ≤ t ≤ n, we guess a set Ct of constants. We can then check in polynomial time whether I
and the Ct correspond to an execution of 〈A1, . . . , An〉. For 1 ≤ t ≤ n and a ∈ At, say that a
is applicable if I |= prea, Ca ⊆ Ct, and Ea ∩ Ct = ∅. First, we assert I |= ΦIC . Second, for

all t and for all a ∈ At, assert that, if a is applicable, then I |= effa. Third, assert that Ct+1 =
Ct ∪ {Ea | a ∈ At, a is applicable}. Using Lemma 1, it is easy to see that I and the Ct correspond

to an execution iff all three assertions hold. Note that I needs not be time-stamped because once
an action has generated its outputs then the properties of the respective propositions remain fixed

forever. The claim follows because, with fixed arity, we can also test in polynomial time whether I
and Cn satisfy φG. A guess of I and Ct is successful if it corresponds to an execution and does not

satisfy φG. Obviously, 〈A1, . . . , An〉 is a plan iff there is no such guess of I and Ct. 2

Theorem 5. Assume aWSC|fwd task with fixed arity, and a natural number b in unary represen-
tation. It is Σp

2-complete to decide whether there exists a plan of length at most b.

Proof: For membership, guess a sequence of at most b actions. By Theorem 1, we can check with
a Πp

2 oracle whether the sequence is a plan.
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To prove hardness, assume a QBF formula ∃X.∀Y.φ[X,Y ] where φ is in DNF normal form.
(This formula class is complete for Σp

2.) SayX = x1, . . . , xn, Y = y1, . . . , ym, and φ = φ1 ∨ · · · ∨
φk. We design aWSC|fwd task which has a plan iff ∃X.∀Y.φ[X,Y ] is true. The key construction
is to use outputs for the creation of “time steps”, and to allow setting xi only at time step i. The
yi can take on arbitrary values. Once all xi are set, one operator per φk allows to achieve the goal

given φk is true. The main property we need to ensure in the construction is that each xi can be set

at most once, i.e., either to 1 or to 0. Then there is a plan for the task iff one can set X so that, for
all Y , at least one φi is true – which is the case iff ∃X.∀Y.φ[X,Y ] is true.
The predicates for our task are P = {x1(.), . . . , xn(.), y1(), . . . , ym(), time(.), start(.),

next(..), goal(.)}. We indicate predicate arity here by the number of points in the parentheses.
For example, the predicate next(..) has arity 2. The theory ΦIC is empty. The initial constants are

C0 = {t0}. The initial literals are φ0 = time(t0). The goal is ∃y.goal(y). The operators are as
follows:

• For all 1 ≤ i ≤ n, we have: oxi1 = ({t0, . . . , ti−1}, start(t0)∧ next(t0, t1) ∧ · · · ∧
next(ti−2, ti−1), {ti}, time(ti)∧next(ti−1, ti)∧xi(ti)). Such an operator allows generating
time step i, and setting xi to 1 at that step.

• For all 1 ≤ i ≤ n, we have: oxi0 = ({t0, . . . , ti−1}, start(t0)∧ next(t0, t1) ∧ · · · ∧
next(ti−2, ti−1), {ti}, time(ti) ∧ next(ti−1, ti) ∧ ¬xi(ti)). Such an operator allows gen-
erating time step i, and setting xi to 0 at that step.

• We will define a value B below. For all n ≤ j < n + B, we have: otj = ({t0, . . . , tj−1},
start(t0)∧ next(t0, t1) ∧ · · · ∧ next(tj−2, tj−1), {tj}, time(tj) ∧ next(tj−1, tj)). These
operators allow increasing the time step from n to n+B.

• For 1 ≤ i ≤ k, say φi = xlxj1 ∧ · · · ∧ xlxjxn∧ ylyj1 ∧ · · · ∧ ylyjyn where xlj ∈ {xj ,¬xj}
and ylj ∈ {yj ,¬yj}. We have: o

φi = ({t0, . . . , tn+B}, start(t0)∧ next(t0, t1) ∧ · · · ∧
next(tn+B−1, tn+B)∧ xlxj1(txj1) ∧ · · · ∧ xlxjxn(txjxn)∧ ylyj1() ∧ · · · ∧ ylyjyn(), {c},
goal(c)). Such an operator allows to achieve the goal after time step n + B, provided the
respective φi is true. Note here that the xj precondition literals refer to time step tj , i.e., the
value set for xj at an earlier time step, while the yj precondition literals have no arguments

and refer to the initial values of yj , which are arbitrary.

Assume we choose any value for B (polynomial in the input size). If ∃X.∀Y.φ[X,Y ] is true,
then, obviously, we can find a plan of size n+B+k. We apply an oxi1 or oxi0 operator for each xi,

depending on whether xi must be set to 1 or 0. We apply B operators otj . We apply all operators

oφi . The respective input parameter instantiations are all obvious.

The opposite direction – proving truth of ∃X.∀Y.φ[X,Y ] based on a plan – is more problematic.
The plan might “cheat” by setting some xi to both 1 and 0. The reason why our construction is so
complicated is to be able to avoid precisely this case, based on specifying a strict enough plan length

bound b. The key property is that, in order to cheat for xi, the plan has to generate two sequences

of time steps ti, . . . , tn+B . Therefore, a lower bound on the length for a cheating plan is n + 2B.
As we have already seen, an upper bound on the length of a non-cheating plan is n + B + k. To
determine our plan length bound b, we now simply choose aB so that any cheating plan will have to
use too many steps: n+2B > n+B+k is the case iffB > k. So we can setB := k+1, and obtain
b := n+ 2k + 1. With this bound b, any plan will proceed by setting each xi to a value (n actions),
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increasing the time step to n+B = n+k+1 (k+1 actions), and applying a sufficient subset of the
oφi (at most k actions). If the plan cheats, then it needs to apply at least n+2B = n+2k+2 actions
before being able to apply oφi actions exploiting different value settings for a xi. This concludes

the argument. 2

Theorem 6. Assume aWSC|fwd task. The decision problem asking whether there exists a plan is

undecidable.

Proof: We reduce from the halting problem for Abacus machines, which is undecidable. An Aba-

cus machine consists of a tuple of integer variables v1, . . . , vk (ranging over all positive integers

including 0), and a tuple of instructions I1, . . . , In. A state is given by the content of v1, . . . , vk plus

the index pc of the active instruction. The machine stops iff it reaches a state where pc = n. All vi

are initially 0, and pc is initially 0. There are two kinds of instructions. Ii : INC j;GOTO Ii′ incre-
ments the value of vj and jumps to pc = i′. Ii : DEC j;BRANCH Ii+/Ii0 asks whether vj = 0. If
so, it jumps to pc = i0. Otherwise, it decrements the value of vj and jumps to pc = i+.
We map an arbitrary abacus program to aWSC|fwd instance as follows:

• Predicates: number(v), zero(v), succ(v′, v), value1(v, t), . . . , valuek(v, t), instruction1(t),
. . . , instructionn(t)

• Background theory: none (i.e., the trivial theory)

• Operators:

– An operator 〈{v}, {number(v)}, {v′}, {number(v′), succ(v′, v)}〉

– For instructions of the form Ii : INC j;GOTO Ii′ , the operator

〈{v1, . . . , vk, t},

{instructioni(t), value1(v1, t), . . . , valuek(vk, t), succ(v
′, vj)},

{t′},

{instructioni′(t
′), value1(v1, t

′), . . . , valuej−1(vj−1, t
′), valuej(v

′, t′),

valuej+1(vj+1, t
′), . . . , valuek(vk, t

′)}〉.

– For instructions of the form Ii : DEC j;BRANCH Ii+/Ii0 , the operators

〈{v1, . . . , vk, t},

{instructioni(t), value1(v1, t), . . . , valuek(vk, t), succ(vj , v
′)},

{t′},

{instructioni+(t′), value1(v1, t
′), . . . , valuej−1(vj−1, t

′), valuej(v
′, t′),

valuej+1(vj+1, t
′), . . . , valuek(vk, t

′)}〉.

and

〈{v1, . . . , vk, t},

{instructioni(t), value1(v1, t), . . . , valuek(vk, t), zero(vj)},

{t′},

{instructioni0(t
′), value1(v1, t

′), . . . , valuej−1(vj−1, t
′), valuej(vj , t

′),

valuej+1(vj+1, t
′), . . . , valuek(vk, t

′)}〉.
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• Initial constants: v0, t0

• Initial literals: number(v0)∧zero(v0)∧value1(v0, t0)∧· · ·∧valuek(v0, t0)∧instruction1(t0)

• Goal condition: ∃t.instructionn(t)

We now describe the intuitive meaning of the constants and predicates. There are two kinds of con-

stants: numbers, which represent natural numbers (including 0), and time points, which represent
computation steps of the Abacus machine. Variables that refer to time points are denoted as t or t′

above. All other variables represent numbers.

Three predicates refer to numbers exclusively: number(v) is true iff v encodes a natural number
(and not a time point); zero(v) is true iff v encodes the number 0; and succ(v′, v) is true iff v′

encodes the number that is one larger than the number encoded by v. The reduction does not
enforce that every number is uniquely represented (e.g., there may be several representations of the

number 3), but such a unique representation is not necessary. It is guaranteed that the number 0 is
uniquely represented, though.

The remaining predicates encode configurations of the Abacus machine: valuei(v, t) is true iff,
at time point t, the i-th Abacus variable holds the number represented by v, and instructionj(t) is
true iff the current instruction at time point t is Ij .
Obviously, from an accepting run of the Abacus machine we can extract a plan for the task, and

vice versa. This proves the claim. 2

To prove Theorems 7 and 8, we first establish a core lemma from which both theorems follow

relatively easily. We need a few notations. We denote beliefs (states) in (P,ΦIC ,O, C0, φ0, φG)
with b (s), and we denote beliefs (states) in (P ′,A, φ′0, φ

′
G) with b (s). Assume a sequence 〈a1, . . . ,

ai〉 of non-goal achievement actions. Then we denote b := res(b0, 〈a1, . . . , ai〉) and b := res(b0,
〈a1, . . . , ai〉). Note here that we overload the res function to also denote state transitions in the
compiled task formalism. Further, for a state s, by C(s) := {c | s(Ex(c)) = 1} we denote
the constants that exist in s. We denote by ≡C the relation over states s and s

′ that is true iff

C(s) = C(s′) and s|C(s) = s′|C(s). ≡C is an equivalence relation, where equivalent states agree on

which constants exist and how they are interpreted. Note that every state s reachable in the compiled
task satisfies s |= ΦIC ∧φ0∧

∧

o∈O effo[Eo]. Note further that ΦIC ∧φ0∧
∧

o∈O effo[Eo] is actually
satisfiable be prerequisite, unless ΦIC ∧φ0 is unsatisfiable, because the outputs are instantiated with

unique constants and the operators are consistent. For a state s, we define [s] :=

{s | s defined over C0 ∪
⋃

o∈O

Eo, C(s) = Cs, s|Cs = Is, s |= ΦIC ∧ φ0 ∧
∧

o∈O

effo[Eo]}

That is, [s] is the equivalence class of states s reachable in the compiled task that agree with s on
which constants exist and how they are interpreted.

Lemma 3 Assume a WSC|sfwd task without inconsistent operators. Let 〈a1, . . . , ai〉 consist of
non-goal achievement actions, and let b := res(b0, 〈a1, . . . , ai〉) and b := res(b0, 〈a1, . . . , ai〉).
Then b =

⋃

s∈b[s].

Proof: The proof is by induction over i. In the base case, we have i = 0, i.e., b = b0 and b = b0.
We have b0 =

{s | Cs = C0, Is |= ΦIC ∧ φ0}
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On the other hand, we have b0 =

{s | C(s) = C0, s |= ΦIC ∧ φ0 ∧
∧

o∈O

effo[Eo]}

Obviously, the latter is comprised of one equivalence class for each possibility to assign the propo-

sitions over C0 in a way compliant with ΦIC ∧ φ0. This is exactly the claim.

In the inductive case, say we add another action a to 〈a1, . . . , ai〉. By induction assumption, we
have b =

⋃

s∈b[s]. We need to prove that res(b, a) =
⋃

s′∈res(b,a)[s
′]. Obviously, it suffices to prove

that, for every s ∈ b, we have res([s], a) =
⋃

s′∈res(s,a)[s
′]. First, say a is not applicable to s. Then

s is neither applicable in any s ∈ [s], and we have res([s], a) = [s] =
⋃

s′∈res(s,a)[s
′]. Second, say

a is applicable to s. Then by Lemma 1 we have res(s, a) =

{(Cs ∪ Ea, I
′) | I ′|Cs = Is, I

′ |= ΦIC ∧ effa}

On the other hand, we have res([s], a) =

{s′ | ex. s ∈ [s], C(s′) = C(s) ∪ Ea, s
′|C(s) = s, s′ |= ΦIC ∧ φ0 ∧

∧

o∈O

effo[Eo]}

We can re-write the latter into

{s′ | C(s′) = Cs ∪ Ea, s
′|Cs = Is, s

′ |= ΦIC ∧ φ0 ∧
∧

o∈O

effo[Eo]}

Obviously, as desired, the latter set is comprised of one equivalence class for each possibility to

assign the propositions over Cs ∪Ea in a way compliant with s and ΦIC ∧ effa. This concludes the
argument. 2

Theorem 7. Assume a WSC|sfwd task (P,ΦIC ,O, C0, φ0, φG) without inconsistent operators,
and a plan 〈a1, . . . , an〉 for the compiled task (P ′,A, φ′0, φ

′
G). Then the sub-sequence of non-goal

achievement actions in 〈a1, . . . , an〉 is a plan for (P,ΦIC ,O, C0, φ0, φG).

Proof: If ΦIC ∧ φ0 is unsatisfiable, there is nothing to prove, because the start belief of the original

task is empty. For the non-trivial case, first note that, in any plan for the compiled task, the goal

achievement actions can be moved to the back of the plan. Hence, without loss of generality, we can

assume that 〈a1, . . . , ai〉 consist entirely of non-goal achievement actions, and 〈ai+1, . . . , ai〉 consist
entirely of goal achievement actions. Denote b := res(b0, 〈a1, . . . , ai〉) and b := res(b0, 〈a1, . . . ,
ai〉). By Lemma 3, we have b =

⋃

s∈b[s]. Since 〈a1, . . . , an〉 is a plan for the compiled task, every
s ∈ b has a tuple of constants satisfying φG. With b =

⋃

s∈b[s], it follows that every s ∈ b satisfies
φG. 2

Theorem 8. Assume a WSC|sfwd task (P,ΦIC ,O, C0, φ0, φG) without inconsistent operators,
and a plan 〈a1, . . . , an〉 where every operator o appears with at most one instantiation Eo of the

outputs. Then 〈a1, . . . , an〉 can be extended with goal achievement actions to form a plan for the
compiled task (P ′,A, φ′0, φ

′
G) obtained using the outputs Eo.

Proof: Denote b := res(b0, 〈a1, . . . , an〉) and b := res(b0, 〈a1, . . . , an〉). By Lemma 3, we have
b =

⋃

s∈b[s]. Since 〈a1, . . . , an〉 is a plan, every s ∈ b satisfies φG. With b =
⋃

s∈b[s], it follows that
every s ∈ b has a tuple of constants satisfying φG. Attaching all the respective goal achievement

actions yields a plan for the compiled task. 2
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