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Abstract

Vickrey-Clarke-Groves (VCG) mechanisms are often usedl¢cate tasks to selfish and rational
agents. VCG mechanisms are incentive compatible, direcharésms that are efficient (i.e., max-
imise social utility) and individually rational (i.e., ages prefer to join rather than opt out). How-
ever, an important assumption of these mechanisms is thagents wilelwayssuccessfully com-
plete their allocated tasks. Clearly, this assumption realistic in many real-world applications,
where agents can, and often do, fail in their endeavoursedar, whether an agent is deemed to
have failed may be perceived differently by different agei®uch subjective perceptions about an
agent’s probability of succeeding at a given task are of@gtuwred and reasoned about using the
notion oftrust. Given this background, in this paper we investigate thédesf novel mechanisms
that take into account the trust between agents when ataciasks.

Specifically, we develop a new class of mechanisms, céllexd-based mechanispthat can
take into account multiple subjective measures of the fnitihaof an agent succeeding at a given
task and produce allocations that maximise social utilitijlst ensuring that no agent obtains
a negative utility. We then show that such mechanisms podeabenging new combinatorial
optimisation problem (that is NP-complete), devise a nogptesentation for solving the problem,
and develop an effective integer programming solutiont (tha solve instances with abduk 10°
possible allocations in 40 seconds).

(©?2009 Al Access Foundation. All rights reserved.
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1. Introduction

Task allocation is an important and challenging problem within the field of muliMagystems.
The problem involves deciding how to assign a number of tasks to a settfsagccording to some
allocation protocol. For example, a number of computational jobs may needtimbated to agents
that run high performance computing data centres (Byde, 2006), a naietwork maintenance
tasks may need to be performed by communications companies for a numhesirdds clients
(Jennings, Faratin, Norman, O’Brien, Odgers, & Alty, 2000), or a nunolbéransportation tasks
may need to be allocated to a number of delivery companies (Sandholm, 19€8) general case,
the agents performing these jobs or asking for these jobs to be perforithbd tkying to maximise
their own gains (e.g., companies owning data centres or servers will bg tiyiminimise the
number of servers utilised, communications companies will try to minimise the nurhpepple
needed to complete the tasks demanded, and transportation companies wiligeythe minimum
number of vehicles). Given this, Mechanism Design (MD) techniquedeamployed to design
these task allocation protocols since these techniques can produce salliéibhave provable and
desirable properties when faced with autonomous and utility maximising actash{[Parkes, &
Jennings, 2003). In particular, the Vickrey-Clarke-Groves (VClas< of mechanisms has been
advocated in a number of problem domains (Walsh & Wellman, 1998; Hegpltb& Suri, 2001;
Dash et al., 2003) because they maximise social welfare (i.e., they arergjfand guarantee a non-
negative utility to the participating agents (i.e., they are individually rationaBubih mechanisms,
agents typically reveal their costs for performing the tasks or their valuatithre requested tasks to
a centre and the centre then computes the allocation of tasks to each aft payments they all
need to make and receive. However, an important underpinning assarttgicsuch mechanisms
make is that an agemalwayssuccessfully completes every task that is assigned to it by the centre.
The result of this assumption is that an allocation (i.e., an assignment of taskar¢hasked for
by requester agents and executed by task performer agents) is sélgdtesl centre based only
on the costs or valuations provided by the agents. This ensures thanthe @levays chooses the
performers that are the cheapest and the requesters that are rgagyttee most. However, the
agents chosen by the centre may ultimately not be successful in completinggbiginment. For
example, an agent providing access to a data centre with a cdstOpfout with a success rate of
100%, might be preferable to one providing the same service with a cheapesfc65tbut with a
10% chance of being successful. Thus, in order to make efficient allocatiGugncircumstances,
we need to design mechanisms that consider both the task performer$bctistsserviceandtheir
probability of succes@POS). Now, this probability may be perceived differently by differeyeras
because they typically have different standards or means of evaluagngetformance of their
counterparts. For example, different customers might evaluate theaparioe of a data centre in
different ways such as timeliness, security, or quality of the output. Ghisnwe turn to the notion
of trustto capture such subjective perceptions (Ramchurn, Huynh, & Jenr#@@4). To take into
account the agents’ trust in other agents, as well as their costs, wheat@ptasks requires the
design of a new class of mechanisms that we have previously termed teest-{zash, Ramchurn,
& Jennings, 2004).

To date, however, existing work on trust-based mechanisms (TBMs)dag@anumber of impor-
tant aspects of the task allocation problem which makes them less robusettaimty (see Section
2 for more details). First, Porter, Ronen, Shoham, and Tennenholt8) 200/ allow POS reports
to come from the task performer, rather than any other agent. This meataskheequester can
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be misled by the task performer’s opinion (even if it is truthfully revealed)esthe task requester
may believe, at times, that the task performer failed while the task performevdselichas suc-
ceeded. Second, in our previous work (Dash et al., 2004), wermisgka trust-based mechanism
that could result in inefficient allocations as agents had strong incemndweager-report their POS.
Even more importantly, however, existing trust-based mechanisms completei itpe computa-
tional cost associated with including the POS and computing the optimal allocatiopegments.
Thus, while previous work highlights the economic benefits, they do noffggew the new prob-
lem can be effectively represented and efficiently solved. By ignoriagetlissues, previous work
has failed to prove that such mechanisms can actually be implemented, saidedhether they
scale up to reasonable numbers of agents.

Against this background, this paper provides economically efficientimsididually rational
mechanisms for scenarios in which there exists uncertainty about agenessfully completing
their assigned tasks. Thixecution uncertaintgan generally be modelled as follows. First, poten-
tial task performers are assessed by a task requester that uses balividsiah experience of their
performance and information gathered from its environment (such agsdyy other agents about
their performance) to construct its estimation of their POS. Often theseesoare called confi-
dence and reputation respectively (Ramchurn et al., 2004; Dasg@®8), and when combined
they give the notion of trust in an agent performing a particular task. Tdnthed view of trust
is used here because it is a more robust measure of POS than any simgégeegspecially one
originating from the task performer). This is evident from the fact thaheaent is only likely to
have a partial view of the performance of a task performer becausesdtii®d from a finite subset
of its interactions. For example, a task requester having ten tasks pedfoyna@ agent may benefit
from the experience acquired from another requester’s fifty interatigth that same agent. How-
ever, incorporating trust in the decision mechanism of the requester uicgedwo major issues.
First, when agents use reports from other agents to build trust, it intredinegoossibility ointer-
dependent valuationg his means that the value that is generated by one agent in the system can b
affected by another agent’s report to the mechanism (Jehiel & Moldpw001; Mezzetti, 2004).
This, in turn, makes it much harder than in standard VCG-based techn@uneentivise agents to
reveal their private information truthfully. Second, using trust to find {htéenaal allocation involves
a significant computational cost and we show that solving the optimisatiotepnatf trust-based
mechanisms is NP-complete.

To tackle the issue of interdependence, we build upon the work by Meg2e@#, 2007) to
construct a novel mechanism that incentivises agents to reveal theatepmformation. More-
over, to help combat the computational complexity generated by trust, we podavelop a novel
representation for the optimisation problem posed by trust-based mechamigdmsovide an im-
plementation based on Integer Programming (IP). Given this, we show thataim bottleneck of
the mechanism lies in searching through a large set of possible allocatibiggrbonstrate that our
IP solution can comfortably solve small and medium instances within minutes (&.6 .t&sks and
50 agents) or hours (e.g., for 8 tasks and 70 agéniis)so doing, we provide the first benchmark
for algorithms that aim to solve such optimisation problems.

In more detalil, this paper advances the state of the art in the following ways:

1. Though the time taken to find the optimal solution grows exponentially withuheer of tasks, our mechanism sets
the baseline performance in solving the optimisation problem posed bybmesti mechanisms.
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1. We design novel TBMs that can allocate tasks when there is uncertaity their comple-
tion. Our TBMs are non-trivial extensions to the paper by Porter et @0§Rbecause they
are the first to consider the reputation of a task performer within the systeddition to its
self-report. This allows us to build greater robustness into the mechanismisiakes into
account the subjective perceptions of all agents (task requesterdioulza) about the POS
of task performers.

2. We prove that our TBMs are incentive compatible, efficient and indallgl rational.

3. We develop a novel representation for the optimisation problem posé&8ldg and, given
this, cast the problem as a special matching problem (Berge, 1973) hdMethat solving
the generalised version of TBMs is NP-complete and provide the firstdnfggramming
solution for it. This solution can solve instances of 50 agents and 6 tasks witkiminute
and even larger instances within hours.

The rest of the paper is structured as follows. We start by providingzarview of the related
work in Section 2. We then provide the contributions listed above in a stepmasmer. First,
a simple task allocation model is detailed in Section 3, where we introduce the TBMsiagle
requester, single task scenario. Section 4 then develops the genera&idddr multiple requesters
and multiple tasks and we prove its economic properties. Having dealt with dinemic aspects,
we then turn to the computational problem of implementing TBMs in Section 5. Sgalyifiwe
develop a new representation for the optimisation problem posed by theatiee@ TBM, study
the computational costs associated with solving the problem, and providebasée solution to it.
Section 6 then discusses a number of broader issues related to the dexsiopfuture trust-based
mechanisms.

2. Related Work

In associating uncertainty to mechanism design, we build upon work in beds.avith regards to
capturing uncertainty in multi-agent interactions, most work has focuseéwsing computational
models of trust and reputation (see papers by Teacy, Patel, Jennihgsk&2006, and Ramchurn
et al., 2004, for reviews). These models mostly use statistical methods to estimatdiability of
an opponent from other agents’ reports and direct interactions withpgpenent. Some of these
models also try to identify false or inaccurate reports by checking howlgleaeh report matches
an agent’s direct experience with the opponent (Teacy et al., 2008 8uFaltings, 2006). Now,
while these models can help in choosing the most successful agents, et ahown to generate
efficient outcomes in any given mechanism. In contrast, in this paper waprthe means to use
such models in order to do just this.

In the case of MD, there has been surprisingly little work on achievingeficincentive com-
patible and individually rational mechanisms that take into accangtrtaintyin general. The
approaches adopted can be separated into work on reputation mechangmeechanisms for
task or resource allocation. The former mainly aim at eliciting honest fekdibam reputation
providers. Examples of such mechanisms include papers by Dellard@@®)(Miller, Resnick,
and Zeckhauser (2005), and Jurca and Faltings (2003, 2006artiouar, Miller et al. (2005) re-
cently developed the peer prediction model, which incentivises agentsoia tephfully about their
experience. Their mechanism operates by rewarding reporterdaggdo how well their reports
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coincide with the experience of their peers. Specifically, it assigns storthe distance between
a given agent’s report and other selectefiérencereporters’ reports on a given task performer. In
a similar way, Jurca and Faltings (2007) have also attempted to solve the saitespby placing
more importance on the repeated presence of agents in the system in andeicetruthful report-
ing. However, given that they focus on eliciting honest feedback, thehanism is silent as to
what this feedback is actually used for. In particular, it cannot be eredlay the task allocation
scenario we study in this paper because in our case the objective is to matkim»eerall utility

of the society that, therefore, considers the valnd POS of agents. For example, a car repair has
a lower value than building a bridge. Hence, the feedback on the caraejsdess critical than the
feeback on the bridge builder in terms of its impact on the social welfareebtitegly, their mech-
anism is shown to have truth-telling as a (non-unique) Nash equilibrium asméuidget balanced,
but not individually rational (see Section 6 on how these social desaderi@rplay).

In terms of MD for task allocation, type uncertainty is taken into account byeBian mech-
anisms such as dAGVA (d’Aspremont & Gerard-Varet, 1979; Arro@79). This considers the
case when the payoffs to the agents are determined via a probability distmibfitigpes which is
common knowledge to all agents. However, this mechanism cannot dealwitimablem in which
there is uncertainty about task completion, and each agent has informatiahthe POS of all
other agents, but there is no common knowledge of the type distributioner Boal. (2008) have
also considered this task allocation problem and their mechanism is the ong thast closely
related to ours. However, they limit themselves to the case where agentslgaemort on their
own POS. This is a serious drawback because it assumes the agentsasamentbeir own POS
accurately and it does not consider the case where the agents mayifferemperceptions on the
POS (e.g., a performer believes that it performs better or worse tharthehegquester perceives).
Moreover, they only consider a single requester setting, while the meatmmie develop here
deal with multiple tasks and multiple requesters. Thus, our mechanisms camdidered to be
a two-way generalisation of theirs. First, we allow multiple reports of uncéytéiat need to be
fused appropriately to give a precise POS as perceived by the tegu&scond, we generalise their
mechanism to the case of multiple requesters where the agents can praovtdaaiorial valuations
on multiple tasks. In our earlier work on this problem (Dash et al., 2004)pneposed a prelim-
inary TBM where the agents could have followed the risky, but potentialiyitable strategy, of
over-reporting their costs or under-reporting their valuations sincenpais are not made accord-
ing to whether they succeed or fail in the allocated task (which we do in eqummechanism). In
contrast, in this work, the payment scheme ensures that such a strategyisbte and thus this
mechanism is more robust. Moreover, our previous work assumed uingttdns that were mono-
tonically increasing in POS reports and (similar to Porter et al.) did not detieéoglgorithms that
are needed to actually solve the optimisation problem posed by a TBM. In {b&s, pee present a
mechanism that applies to more general trust functions and also devedophaits to solve TBMs.

Finally, our work is a case of interdependent, multidimensional allocatiomseheWith inter-
dependent payoffs, Jehiel and Moldovanu (2001) have showistingpossible to achieve efficiency
with a one-stage mechanism. Mezzetti (2004), however, has shownithpbisible to achieve ef-
ficiency with an elegant two-stage mechanism under very reasonahle@sns. Our mechanism
achieves efficiency without needing two reporting stages because, settivey we consider, pay-
ments can be contingent on whether or not tasks are successful @gsbegents do not derive a
direct payoff from the allocation of a task to another agent or the othemtagassessments about
the completion probabilities. In our setting, there exists a specific functiocaipaires the interde-
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pendence that exists among the agents through their assessments dheefP@S. This function
is, in our case, the agents’ trust model.

3. Single Requester, Single Task Allocation Mechanisms

In this section, we first present the basic VCG mechanism for a simple taglatdio model (a
single task being requested by a single agent) where the allocated taskaistged to be completed
(i.e., all agents’ POS are equal to 1). We then briefly describe Portdrse(2908) extension
which considers task performers that have a privately known objegtoeability that they finish
the assigned task. Finally, we consider the case where the POS of a thsknpe is a function
of privately known variables held by each task performer in the systenis éisures that the
choice made by the task requester is better informed (drawing data fréousaources) about
the POS of task performers. We show how Porter et al's mechanism vailtd produce the
efficient allocation in such settings and then go on to provide a non-trixiahsion of their model
to cater for this. In so doing, we define a new trust-based mechanismeairigle requester,
single task scenario (as a prelude to the generalised mechanism that wewslbplin the next
section). We then go on to prove the economic properties of this simple TBkug@hout this
section, a running example task allocation problem is employed to demonstrateritiegs of the
mechanisms discussed.

3.1 Allocation with Guaranteed Task Completion

In this task allocation scenario, a single agent derives a value wheteandask is performed. To
this end, that agent needs to allocate the task to one of the available taskrsed, which will
charge a certain amount to execute the task. We start by consideringldérfg simple example:

Example 1. MoviePictures.com, a computer graphics company, has an imagermegdask that
it wishes to complete for a new movie. Hence, MoviePictures.com publichuanes its intention
to all companies owning data centres that can execute the task. Given thesirgieown by many
of these companies, MoviePictures.com needs to decide on the mectmalimate the contract
and how much to pay the chosen contractor, given that MoviePicturesdoesinot know all the
contractors’ costs to execute the job (i.e., it does not know how much éljctosts each company
to process the images and render them to the required quality).

The above example can be captured by the following model. There is a agenfs (data
centre agents in the examplg),= {1,2,...,4,...,I}, who each have a privately-known cost
ci(t) € RT U {0} of performing the rendering task Furthermore, let MoviePictures.com be
represented by a special agéntvho has a valuey(7) € R™ U {0} for the rendering task and a
cost ofco(7) > vp(7) to perform the taskeqy(7) = oo in case agent 0 cannot execute the task).
Hence, MoviePictures.com can only get the task performed by anoteet imghe sef who has a
coste; (1) < vo(7).

Now, MoviePictures.com needs to decide on the procedure to award titatp and hence,
acts as theentrethat will invite offers from the other agents to perform the task. In devisinch
a mechanism for task allocation, we focusionentive-compatible direct revelatianechanisms
(DRMs) by invoking therevelation principlewhich states that any mechanism can be transformed
into a DRM (Krishna, 2002). In this context, “direct revelation” means thatagy space (i.e., all
possible actions) of the agents is restricted to reporting tea(i.e., their private information, for
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example their cost or valuation of a task) and “incentive-compatible” meareghilibrium strategy
(i.e., best strategy under a certain equilibrium concept) is truth-telling.

Thus, in a DRM, the designer has control over two parts: 1) the allocatilentihat deter-
mines who wins the contract, and 2) the payment rule that determines thestrahsfioney be-
tween the centre (i.e., MoviePictures.com) and the agents (i.e., the data cehet& denote
a particular allocation within the space of possible allocatitinand 7:~° represent that agent
i1 gets allocated task from agent0. Then, in this setting, the space of all possible allocations
are K = {@, 710 7279 . 71=01 where o denotes the case where the task is not allocated.
Moreover, we abuse notation slightly to define the cost of an allocdticio agenti, as being
ci(K) = ¢i(r) if K = 7% and¢;(K) = 0 otherwise. Similarly, for the centre, the value of a
non empty allocation is simply the value it has for the task, @ K) = vo(7) if K # () and
vo(K) = 0if K = 0. Finally, letr;(-) € R be the payment by the centre to agéenn caser;(-) is
negative, agenthas to payr;(-)| to the centre.

Within the context of task allocation, direct mechanisms take the form of sealealictions
where task performers report their costs to a centre (or auctionegentdmay not wish to report
their true costs if reporting these falsely leads to a preferable outcomeefor tWe will therefore
distinguish between the actual costs and the reported ones by supéargahp latter with .

The task allocation problem then consists of choosing the allocation and pagutes such that
certain desirable system objectives (some of which are detailed belowatsted. An allocation
rule is a mapping from reported costs to the set of allocations, i), ¢_;) being the allocation
chosen when agentreportse; and all other agents report the vector;. Similarly, a payment rule
is @ mapping from reported costs to payments for each agentrwithc—;) being the payment to
agent; when agent reportsc; and all other agents report the vector;.

Following the task execution and payments, an ageetives a utility given by its utility func-
tionu; : K x R — R. As is common in this domain, we assume that an agent is rational (expected
utility maximiser) and has a quasi-linear utility function (MasColell, Whinston, &&arel 995):

Definition 1. A quasi-linear utility function is one that can be expressed as:
ui(K, 7“,‘) =T; — Cl(K) (1)
whereK € K is a given allocation.

Having modelled the problem as above, MoviePictures.com would like to usat@cpl that
possesses the desirable properties of efficiency and individualaéitjorit also needs to make sure
that the protocol is incentive compatible: agents must find it optimal to reparttthe costs. These
desiderata can be formally defined as follows:

Definition 2. Efficiency: the allocation mechanism is said to achieve efficiency if the outcome it
generates maximises the total utility of all the agents in the system (withoutleong transfers).
That is, for all vectors of reportg, it calculatesk™ such that:

K*(@) = arg max [vO(K) - Za(m] 2)
€ €T

Definition 3. Individual Rationality: the allocation mechanism is said to achieve individual ratio-
nality if agents derive higher utility when participating in the mechanism than wpéng out of it.
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Assuming that the utility that an agent obtains when opting out is zero, thewadually rational
allocation K is one in which (Krishna, 2002):

w(K,ri) 20, Vi€ 3)

Definition 4. Incentive compatibility:the allocation mechanism is said to achieve incentive com-
patibility if an agent’s true type is its optimal report no matter what other agesp®rt. That
is:

ri(ci, €—i) — ¢i(K(ci,€—q)) > 1i(¢, ¢—) — ¢i(K (¢, ¢—y)) Vey, Ve, Ve,

Note that incentive compatibility implies that for each vector of reports of therapents:_;
the payments to ageintnust depend ofis own report only through the chosen allocation. Incentive
compatibility requires that telling the truth be a (weakly) dominant strategy. Iscsimportant to
note that incentive compatibility in dominant strategies is the strongest possibieof incentive
compatibility. The VCG mechanism has this property.

MoviePictures.com then decides to employ a Vickrey auction (also knownsasand-price
sealed bid auction) since this protocol possesses the desired propéitiesntive compatibility,
efficiency, and individual rationality (Krishna, 2002). In more detaitemhaving received the
sealed bids (repor@®) from all the agents, the centre calculates the allocaki¢iic) according to
Equation (2), while the transfe(-) to the winneri is given by:

ri(@) = vo(K*(@) - max |wo(K') = Y (K" (4)
i JET\i

whereK _; is the set of all allocations that do not involivas a task performer.

3.2 Allocation with Execution Uncertainty

In the mechanism presented in the previous section, it is assumed that eradé@dationK ™ is
decided, its valuey (K *) will be obtained by the centre (eitheg(7) if the task has been allocated
or 0 otherwise). Thus, there is an implicit assumption that once allocated a tasigean will
alwaysperform it successfully. However, this is unrealistic, as illustrated bydheWing example:

Example 2. Many of the previous rendering tasks required by MoviePictures.com altocated
to PoorRender Ltd because of its very competitive prices. UnfortunatetyRender Ltd could
not complete the task in many cases because of lack of staff and otheictdgroblems (which
it knew about before even bidding for the task). As a result, MoviePictamn@sincurred severe
losses. Hence, MoviePictures.com decides to alter the allocation mechangmh a way that
the agents’ POS in completing the tasks can be factored into the selection dfehpest agent.
MoviePictures.com assumes each contractor knows its own POS anprivasely and needs the
mechanism to elicit this information truthfully in order to choose the best allocation

The above problem was studied by Porter et al. (2008) and we brieftyitie, in our own terms,
their mechanism in order to extend and generalise it later (see Sectionsl3l &ve first introduce
the boolean indicator variable that will denote whether the task has been completeé- (1) or
not (= = 0). Thus,x is only observable after the task has been allocated. Moreover, wedexten
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our notation here to capture the centre’s valuation of the task executibrttsate, (x) = vo(K™)

if x = 1 andvg(k) = 0if x = 0. In this setting, we assume thatis commonly observed (i.e.,
if agent: believes thatc = 1, then all agents € Z U {0} believe the same). In our rendering
example,x might denote whether the images are rendered up to the appropriate reswolbiah
will allow its usage or not. Furthermore, the probability that= 1 once the task is allocated to
agenti is dependent upon another privately known variaplér) € [0, 1], which is the POS of
agenti in executing task. Note that this variable is privately known to the task perforinself,
and so there is a single observation within the system, carried out by theedeknper, about its
own POS. Also note that the task performer incurs the ¢@st as soon as it attempts the task
and irrespective of whether it is successful or not.

As can be seen, the value that the centre (MoviePictures.com) will desifre), is not known
beforethe allocation is calculated. Hence, the notions of efficiency and individtiahality intro-
duced in section 3.1 need to be adjusted to this new setting. Given the probiaiitiie task will
be executed by a given agent, we have to consideexpectedsalue of an allocationy (X, p),
which is calculated as:

Uo(K, p) = vo(K) - pi(7) ()

wherei is the agent chosen to perform the task in allocattorandp = (pi(7),...,pr(7)) is
the vector of POS values of all the agents (the list of assessments by @#chactor of its own
probability that it will complete the rendering task as in our example). We n@d ne require
agents to report their POS, in addition to the cost. We denqielzes vector ofeportedPOS values
B1(7),- ., ())-

The following modified desiderata need to be considered now:

Definition 5. Efficiency: a mechanism is said to achieve efficiency if it chooses the allocation that
maximises the sum of expected utilities (without considering the transfers):

K*(¢,p) = arg max [vo(K, p) - ZEZI@(K)] (6)

Note here that both; (K') andp are reported by the agents and are key to computing the efficient
allocation.

Definition 6. Individual Rationality: a mechanism achieves individual rationality if a participating
agent; derives an expected utility;, which is always non-negative:

ui(e,p) =Ti(e,p) —ci(K) >0

whereT; (¢, p) is the expected payment that agéngceives.

In order to achieve these desiderata, one could suppose thateaaxéension of the standard
Vickrey mechanism presented above would be sufficient. In such a msaohahe centre would
ask the agents to report their extended tyj@@g;(7)). The allocation chosen would then be the one
maximising the expected utility of the agents and the payment rule would be coedit@cording
to Equation (4) witho (K™, p) replacingug(K*). However, such a mechanism would fail in these
settings, as illustrated in the next section.
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3.2.1 NAIVE APPLICATION OF THEVICKREY AUCTION

Example 3. Consider the case where MoviePictures.com derives a valug(oj = 300 when
the rendering task is completed and let there be three contractors wlostg-g7) to render the
images are given bt (1), co(7), cs(7)) = (100, 150, 200). Furthermore, assume each contractor
has a POS given bip; (1), p2(7), p3(7)) = (0.5,0.9,1). This information is represented in Table
1.

The efficient allocation in this case (shaded line in Table 1) involves asgi¢imntask to agent
2 with an expected social utility a300 x 0.9 — 150 = 120. The payment to ager using the
(reverse) Vickrey auction with expected value8@® x 0.9 — (300 — 200) = 170 (from Equation
(4)). However, such a mechanism is not incentive-compatible. For draihpgentl reveals that
p1(7) = 1, then the centre will implemerdt* = 71— and will pay agent, 71 = 300— 120 = 180.
Thus, the agents in such a mechanism are always better off repprting= 1, no matter what
their actual POS is! Hence, the centre will not be able to implement the effallenation.

Agent || ¢;(7) | pi(T)
1 100 0.5
2 150 0.9
3 200 1

Table 1: Costs of performing task and each agent’s own perceived probability of successtaliyipleting
the task.

This type extension (i.e., including the POS) is non-trivial because the Bt of an agent
affects the social value expected by the centre, but not the agent'simdsr an allocation. As
a result, reporting a higher POS will only positively affect an agent'®abdity of winning the
allocation and thus will positively affect its utility. To rectify this, we need a nselay which this
gain in utility is balanced by a penalty so that only on truthfully reporting its tygé,an agent
maximise its utility. This is achieved in Porter et al.'s (2008) mechanism, whichrigfiybdetail in
the next section.

3.2.2 PORTER ET AL’S MECHANISM

This mechanism is based around payments being apgfiecthe completion of tasks. Specifically,
the mechanism finds the marginal contribution that an agent has made to Hweskpelfare of
other agents depending on whether it completes its assigned task or nitizdlyiithis works since
the payment scheme punishes an agent that is assigned a task buttdmeaplete it (i.e.x = 0).
As a result, the agent is not incentivised to reveal a higher POS valuéshraal POS since if it is
then allocated the task, it is more likely to reap a punishment rather than thelnehigh it obtains
when it successfully completes the task (ixe= 1).

In more detail, the allocation is determined by the centre according to Equajiomh{é pay-
ment rule for an agentto which the taskr is allocated is similar to that of the VCG in that the
marginal contribution of the agent to the system is extracted by comparindfittiere allocation
with the second best allocation, excluding the agent (the agent gét®, ) = 0 if it is not allo-
cated the task). The difference is that it is thgectednarginal contribution that is extracted (i.e.,
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taking into account the agent’s real probability of success). This is\athis follows:
w(K*(@p) — max (To(K'.P) ~ Tjer &(K")) . if =1
(@) = "
— Kr,ré%{i(ﬁo(ff’,f?) = 2jenni EJ(K,)> Jif k=0
whereK _; is the set of allocations excluding agent
The mechanism would work with the example provided in Table 1 since if, famgke, agent
1 reportspy (7) = 1, it will then be allocated the task and will be paid0 — 120 = 180 with a
probability of 0.5 and —120 with a probability of0.5. Thus, on average, agehwill be paid 30
but each time it will incur a cost of00, thereby making an expected utility ef70. Clearly, then,
a rational agent will not overstate its POS. In fact, the incentive compatibilititi® mechanism
arises because an agéstexpected utility, given it is allocated the task, is:

(6 B) = () |w0(K*(€,5) — (K" (@p)) = max (50(K',p) = Y &(K")

ek jET\i
+ (L= pir) |—a(K* @) - max (To(K' )~ Y (k) (8)
- JET\i

— kN kN N — o~ ~ /
= 00(K*(2.9).p) ~ ei(K*(@.9) — max (w0(K".D) ~ Y &(K)
JET\i
Note that the expected utility within this mechanism is the same as what would hexe be
derived by agents in the heae extension of the VCG if they were truthful in reportipg However,
in Porter et al.’'s mechanism, agents do not have an incentive to lie. Thisag$e if;(7) > p;(7)
(i.e., the agent over-reports its POS), then the agent might be allocatedktevéa though:

i # arg max [’UO(KI)pm(T) - cI(Kx)]
xeTl
whereK?* = 70 which means it could be that:

Bo(K*(@.P).p) — (K" (@P) < max (%o(K'.p)~ Y &G(K))
o JET\i

This results in the agent deriving a negative utility as per Equation (8).céjean agent will not
report higher POS values. A more complete treatment of the proof of thetineeompatibility
of the mechanism is given in the paper by Porter et al. (2008). Furtherria mechanism is also
proven to be individually rational and efficient.

3.3 Allocation with Multiple Reports of Execution Uncertainty

In the previous section, we considered a mechanism in which each agaolly its privately known
estimation of its own uncertainty in task completion. This mechanism consideth¢hegntre can
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only receive asingle estimate of each agent’s POS. We now turn our attention to the previously
unconsidered, but more general, case wkereralagents may have such an estimate. For example,
a number of agents may have interacted with a given data centre provismnimgany on many
occasions in the past and therefore acquired a partial view on the P& abmpany. Using such
estimates, the centre can obtain a more accurate picture of a given agetypkkformance if

it combines these different estimates together. This combination results in adstiteate for a
number of reasons, including:

1. Accuracy of estimation: The accuracy of an estimation is typically affdayetbise. Thus,
combining a number of observations should lead to a more refined estimatebthamrg a
single point estimate.

2. Personal Preferences: Each agent within the system may havemifftginions as to what
constitutes success when attempting a task. As a result, the centre may be widsgigio
more weight to an agent’s estimate if it believes this agent’s perspective issinatar to its
own.

We illustrate the above points by considering the following example:

Example 4. MoviePictures.com is still not satisfied with the solution chosen so far. This#&ibe
PoorRender Ltd still reports that it has a high POS, even though Movieegttom has noticed
that they have failed their task on a number of occasions. This is becaosBéhder Ltd believes
the images it rendered were of a high enough quality to be used in a fedtmreliile MoviePic-
tures.com believed they were not. MoviePictures.com therefore cangadnehe agents’ own
perception of their POS to decide on the allocation. Rather, MoviePictumesveants to ask all
agents to submit their perception about each others’ POS. In so doiagigHictures.com aims to
capture the knowledge that agents might have about each other eithepfevious sub-contracted
tasks or simple observations. To this end, MoviePictures.com needdse dexechanism that will
capture all the agents’ perceptions (including its own) into measures & f80Oeach agent and use
these fused measures in the selection process.

The above example can be modelled by introducing a new variable, the tedp@aality of
Service (EQOS), noted aﬁ(r), which is the perception of each agérgbout the POS of agerit
on taskr. Now, the vector of agents EQOS of all agents (including itself) within the system is
noted asy; = (n}(7),...,nl(r)). Furthermore, we shall denote g the EQOS that all agents
within the system (including itself) have about aggnthus, in our image rendering exampl;é(r)
might denote the probability as perceived by agethat the rendering task is completed according
to a certain level of quality of the computer graphics (which is perceivéerdiftly by the different
agents). Then, MoviePictures.com needs a function in order to combiEX®S of all the agents
S0 as to give it a resultant POS that the movie is rendered up to its own gragbicements.

In more detail, given’s previous personal interaction with i can compute, based on the fre-
guency of good and bad interactions, a probability, termechitd§idencein j as the POS. Second,
1 can also take into account other agentsi) opinions abouy, known asj’s reputationin the so-
ciety, in order to compute the POS pfRamchurn et al., 2004). The combination of both measures
is generally captured by the concept of trust, which is defined as thegaggrexpectation, derived
from the history of direct interactions and information from other soyrited j will complete the
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task assigned to it. The aggregate trust that agenll successfully complete taskfor agento is
a functiontr : [0, 1] — [0, 1].

There are multiple ways in which the trust function could be computed, butftes captured
as follows:

trj(n) = Zwl X 1} 9)
lel

wherew; € [0,1] and)>_ w; = 1. This function generates trust as a weighted sum of EQOS values.
In some cases, thgs are actually considered to be probability distributions and the trust funistio
the expected value of the joint distribution constructed from the individuappred distributions
(Teacy et al., 2006; Jurca & Faltings, 2007). Much work exists in the titezathat deals with
different ways of combining these distributions such that biases or inddoilpias between agents’
perceptions are taken into account. Essentially, however, they all agsights to different reports
of the agents and choose the expected value of these reports as tlie amsigent. However, to
date, none of these models actually studies how to get self-interested taggenerate such reports
truthfully along with maximising the social welfare.

Now, a direct mechanism in this case elicits from each ageits cost and EQOS vector,
{e;(7),m;}, after which the centre decides on the allocation and payments to the ageramput-
ing its expected utility in a mechanism, an agent must evaluate the trust, or pitglmtsuccess,
by the agent who is allocated the task. This raises a conceptual difficutty sHould an agent
treat the other agents’ POS reports in assessing the probability of tasketiomgas opposed to
computing its best response to their type reports)? The approach we \ilintakis paper is that
an agent assumes the reported POS of the other agents is truthful in captpetinust in another
agent; more precisely, an agent computes the value of the trust functigirgyhis true EQOS and
the reported EQOS of the other agents. Thus, the trust of agkeat ageny will be able to com-
plete the task i$r (n;,7_;). As we have already seen, in general a payment to an agent depends
on the reported types of all agents and on whether the task succeeils.ofd this end, let(c, )
be the agent who is allocated the task when the vector of reported typesjis Then, define
the expected payment to agémwhen the true types afe, ) and the reported types afé 7)) as
follows:

PPN ~ i(C, ~ ~ o~ i(C,7) .
Eri(@,m;e,m) = ri(@ 7, 5 = Dtrg ©™P (. 51_;) +r4(&, 75, 5 = 0) [1 — trg &™) (m,n_i)}

We should point out that the type of an agent (EQOS plus cost) is multidimehsindaas is

common in a multidimensional world, there could be several type reports thataje the same
expected payment to an agent. We are now ready to define the modified efdticentive compat-

ibility we will use 2

Definition 7. Incentive compatibility (in Dominant Strategies)he allocation mechanism is said
to achieve incentive compatibility in dominant strategies if an agent’s true tyifeaptimal report
no matter what the other agents report. That¥e:, Vn, V¢;, vn,, Ve—;, V0 _,;,

Eri(ci,c—,m;,n_i;¢,m) — ci(K(ci,€¢-4)) > Eri(c, ¢—i, My, M3 ¢,m) — ci(K(c;,¢-4))

2. That an agent uses the reported POS of the other agents in competirajub of the trust function seems a natural
assumption when an agent can rely on the other agents truthfully reptivéingypes. This is the case, for example,
when the history of interactions between the POS reporters is publicly k(@gn on eBay or Amazon).
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Now, in the case where agents do not view the EQOS reports of the otbetsaas being
truthful, the trust of agent that agentj will be able to complete the task may depend on both
true and reported types of all agents; in such a case we could relax giveccompatibility
requirement from dominant strategy to (ex-post) Nash equilibrium (MitiG al., 1995), which
means that if all the other agents report truthfully, then it is optimal for antajeays to report its
true type, no matter what the true types of the other agents are. Afterirgplae new trust function
in the definition of the expected payment to agerthe definition of incentive compatibility would
change to:

Definition 8. Incentive compatibility (in Nash Equilibrium):the allocation mechanism is said to
achieve incentive compatibility in (ex-post) Nash equilibrium if an agent’stirpe is its optimal
report provided other agents report their type truthfully. Thatvs;, Ve;, vn,, vn,, Ve—;, Vn_;,

Eri(ci,c—i,m,m_ie,m) — ci(K(¢i, e—)) = Eri(Ci, c—i, My, m_g; e,m) — (K (¢, )

We next demonstrate why Porter et al.'s mechanism would not work in thisgby extending
example 1.
3.3.1 FAILURE OF PORTER ET. AL'S MECHANISM

Example 5. Two agents have costs for performing a tastequested by the centre and have formed
perceptions on the set of agedtgiven in Table 2. Suppose thaf,(n) = [} (1) + 75(7)]/2, and
vo(7) = 1.

Agent || ¢i("7) | mi (1) | ni(7)
1 0 06 | 1
2 0 08 | 06
T | 0.7 | 08 |

Table 2: Costs and EQOS reports of agents in a single task scenargotrdst of the requester is calculated
assuming truthful reports.

Porter et al. do not specify a procedure that deals with EQOS repousietér, a natural
extension of their technique would be to allocate accordirntgt;) instead of;(7), and to ignore
all reports of agent in the computation of its payment. We implement this in the above example.
Agent 2 should be the winner since it generates an expected social utliig,afhile agent 1 would
generate a utility of 0.7. The expected utility to the agent allocated the task isabeording to
Equation (8)):

(2, 7) = vo(KC*(€.7) - tr(my, ) — ei( K@) — max [u(K) -t (73) = & (K)|
(10)
wheren_, excludes ally reports by agent, X_; is the set of allocations excluding agentand
7’ is the agent that is allocated the task under allocafion Unfortunately, this extension breaks
incentive compatibility in the following way. Given that the efficient allocationamputed using
thereportedn values ofall agents (usingry(n) instead ofp in Equation (6)), the value of the best
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allocation obtained by removing one agent could be arbitrarily lower. Intample above, if agent
1 reportsy? = 0, the efficient allocation becomes agent 1 with an expected social utility ohel.7 a
agent 1 gets an expected utility of 0.1 because the system’s utility drops to @r6itshreports are
removed and the allocation recomputed. If agent 1 is truthful it will obtain O usiitge agent 2
would be the winner in this case. In effect, the removal of an agent frensyktem breaks the
mechanism because of the@erdependencbetween the valuations introduced by the trust model.
We elaborate further on this issue and show how to solve it in the next section

We thus need to develop a mechanism that is incentive-compatible when agenéporting
about their perceptions of other agents’ POS. In order to do so, lerywes now need to additionally
consider the effect that reporting the EQOS vector has on an agepéstex utility. Specifically,
we need to develop a trust-based mechanism in which the EQOS reportagé@irdo not provide
it with a way of increasing its overall expected utility (as per the intuition behiedAB8G). Then,
with the true value of the EQOS, the mechanism will result in the selection of timal@llocation
of tasks.

3.3.2 THE SINGLE REQUESTERSINGLE TASK TRUST-BASED MECHANISM

Intuitively, the following mechanism works by ascertaining that an agerivetea positive utility
when it successfully completes a task and its EQOS report does notecian@llocation in its
favour (thus, the mechanism we develop can be regarded as a gextienalis the paper by Porter
et al., 2008).

In more detall, leti(K') be the agent performing the task under allocationthe centre first
determines the allocation according to:

K*(€,7) = argmax |vo(K) - trg ") (77) — Y _é(K) (11)
Kek i€l

Having computed the efficient allocation as above, we adopt a similar agpptoaPorter et
al's to compute the payments after tasks have been executed (see sez@)n Blowever, the
novelty of our mechanism lies in the use af agents’ EQOS reports in the computation of the
efficient allocation (as we showed above). Moreover, we have addifgayments for the losers to
incentivise all agents to select the efficient allocation.

Thus, we apply different payments to the cases where the agent wineiatjdbation succeeds
(i.e.,x = 1) and when it fails (i.e.x = 0). So if agent is allocated the task (i.ek* = {77 9})
the payment is:

vo(K*(¢,n)) — Bi(c—i,n;) , ifr=1
T (Ev ?77 "{‘7) = (12)
_Bi(/c\—ia ﬁfz) ) if k=0

where B;(-) > 0 is a term independent froriis report (a constant froni's point of view) that
reduces the payment that needs to be made to the agent. We briefly disauteivalue ofB;(-)
could be set to reduce the payout made by the centre later in this sectiowegmdvide greater
detail in section 4.4.

In addition to paying the winner, we also reward the logers I \ i in the following way,
depending on whethérsucceeds or not:
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wo(K* @) — (K @) — Bu@ fiy) »ifr=1
(@7 k) = | (19
_a(K*(E7ﬁ))_Bk(Efk7ﬁ—k‘) 5 if k=0

Intuitively, the payment scheme aims to incentivise all agents to reveal theirstyphat the
most efficient allocation is chosen. L&Y be the allocation assigning the task to agerSuppose
agenti with type (c¢;, n;) reports its type aéc;, n;) and all other agents repai&_;,n_,). When
agenti wins the task, it will derive the following expected utility:

w; (K§m;, M) = vo (K) - trh (mi,m_y) — ci (K§) — Bi(e—i,m_;) (14)

Note thattr{, (n;,7_;) reflects the true POS of agent When agenk # i is assigned the task,
agent; obtains the following expected utility by participating in the mechanism:

Uj (K[])C’Ir’ivﬁ—i> = o (Ké“) 'trloc (m,ﬁ_i) —Ck (K(’)“) — Bi(ci,m_;) (15)

The only difference between Equations (14) and (15) is the identity of theer Hence, by
falsely reporting, agent can only influence the identity of the winner. Ageig expected utility
in the mechanism is equal to the expected social utility in the system minus a ¢dandegrendent
of i’s report. Hence, if agentis rational it should report its true type, so that the efficient agent
(outcome) is chosen. This shows that the single task trust-based meclmirnisentive compatible
and efficient

Proposition 1. The mechanism described by Equati¢hg), (12), and(13)is incentive compatible.
Proposition 2. The mechanism described by Equati¢hs), (12), and(13)is efficient.

Proof. Since agenk’s report about,,, affects the expected utility of all other agents (see Equations
(14) and (15)), we have interdependence between agents’ payoidisuations. However, no agent
can influence its own transfer through its report, because the computétigeiot:’'s payment is
independent of its repof}, (andc¢;) and is only dependent on tlaetual executiorof the task and
therefore on the true; value. It is this feature that permits the implementation of the efficient
allocation with a single-stage mechanism. O

To exemplify the payments in our mechanism, consider the following extensierawhple 5.

Example 6. Two agents have zero cost for performing a taslequested by the centre and have
EQOSw! (1) € {0.6,0.7,0.8} for 4,5 = 1,2. Suppose thatr)(n) = [7i(r) + ni(r)]/2, and
vo(7) = 1.

By setting B; = 0.6 in the above example, we have that the payment to each agent when the
task is completed successfully(ist, while the payment when the task fails-ig).6. Hence, the
centre profits from implementing the mechanism. Agents have an incentivedi teghfully, so
that the agent most likely to succeed is allocated the task. Furthermoreentsagye willing to
participate, because the probability of success is at [eadit is 0.6 in the worst case scenario)

3. We provide a more detailed proof for the generalised case in Sec8on 4.
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and hence, agents expect to obtain at least zero from participating: tteamem is individu-
ally rational. Also note that the total expected payment from the centre to ettitegs at most
0.8 x0.4%x2—-0.2x%x0.6x2=0.4,butcouldbeaslowas6 x 0.4 x2—0.4x0.6x2=0.As
we now show,B; can always be chosen so that individual rationality is satisfied.

Proposition 3. For an appropriate choice oB;(-), the mechanism described by Equati¢hs),
(12), and (13)is individually rational.

Proof. By not participating in the mechanism, an agent can only obtain O utility. Howvieen
agent decides to participate, and by virtue of the selection of the effidleaation (which returns
no allocation if the social welfare generated is less than 0), it is guarargeedwinner, to obtain
the utility u; described in Equation (14) or, as a loser, the utilityin Equation (15). Since in both
casesi; > —B;(-) when the efficient allocation is chosen, aidcan be set to 0, the mechanism is
individually rational. O

Obviously, since all agents’ utilities are tied to that of the winning agent, theylat® out if
the winning agent fails but, in expectation, all agents make a profit of dtléasaseB; is set to
0. As Example 6 shows, if the centre is trying to minimise payments (and increasenitsrofits),
it could setB; to be greater than zero and still satisfy individual rationality. In Sectionwet,
show how to sef3; to a value that maintains individual rationality while minimising payments in
the general model.

Here we note that sometimes it may be preferable for the centre to give vjglimalirationality.
Consider, for example, if we modify Example 6 to allow for an additional EQ&I8es] () = 0.3
for i, = 1,2. To induce typenf(r) = 0.3 to participate, the centre could sBt(-) = 0.3,
so that the payment following succesdi§ and the payment after failure is0.3. In the worst
case scenario for the centre (i.e., when the centre’s profit is the lowestptal expected payment
in this mechanism i$.8 x 0.7 x 2 — 0.2 x 0.3 x 2 = 1 (in the best case scenario, the total
expected payment is zero). As we shall see in Section 4.4, the centresudadthntially reduce
its payments by makind;(-) depend on the report of the other agents (i.e., other thastill, it
may be preferable for the centre to d&(-) = 0.6, giving up on the participation of agents with
EQOS values)i(t) = n/(r) = 0.3. In general, when there are low EQOS types, the centre faces
a trade off between efficient task allocation and payments minimisation. Wetleageudy of this
trade-off to future work (see Section 6 for some initial thoughts).

4. The Generalised Trust-Based Mechanism

The mechanisms we presented in the previous section dealt with the basiideakan problem

in which there is one requester, one task, and several performeams, Wikeaim to efficiently solve
the more general problem of trust-based interactions in which more thaager requests or
performs (or both) more than one task. To this end, we extend the singlesteq single task
setting to the more general one of multiple requesters and multiple tasks @emeralised Trust-
Based MechanisiGTBM). This extension needs to consider a number of complex features o
top of those dealt with previously. First, we need to consider multiple reqeeistat can each
make requests for sets of tasks and task performers that can eachpeeits of tasks as well.
Thus, the centre now acts as a clearing house, determining the allocatiomyandris from the
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multiple bids from the task requesters and multiple asks from the task pergoriites significantly

complicates the problem of incentivising agents to reveal their types sinceowdave to make
sure that the agents reveal their costs, valuations, and EQOS truthfellyrawe than one task.
Second, the computation of the efficient allocation and payments will havesides a much larger
space than previously. Thus, we believe it is important to show how théegpnadan be modelled,
implemented, and solved to demonstrate how our mechanism scales with ingneasibers of

agents and tasks (the computability aspects are dealt with in Section 5).

The following example illustrates this more general setting.

Example 7. After using the trust-based mechanism for a few months, MoviePictures.ade m
significant profits and expanded into several independent busindsseach performing rendering
tasks or having rendering tasks performed for certain clients. Now, Nraatieres.com would like
to find ways in which its business units can efficiently allocate tasks amoegssehves. However,
some companies have uncertainties about each other’s performdrtbe endering tasks. For
example, while some business units, such as HighDefFilms.com, belie\®eRder Ltd (now part
of MoviePictures.com) is inefficient, some others, such as GoodFilmshadieve it is not so bad,
having recently had a large set of animations rendered very well foryacreeap price. To cater for
these differences in opinion while maximising the overall utility, MoviePicturesreeds to extend
the single task trust-based mechanism and implement the generaliseaniseclefficiently.

In order to deal with this more complex setting, we extend our task allocationlnmatie next
subsection, before describing the allocation rule and payment schemetionS&2 and proving
the economic properties of the mechanism in Section 4.3.

4.1 The Extended Task Allocation Setting

Let7 = {1, ,...,7ar} denote the set of tasks which can be requested or performed (compared
to the single task before). We use the notatioit’ to specify that the subset of tasksC 7 is
performed specifically for agenit* Similarly, by adding the superscript to the task— C K
denotes a subset of tasks that aggregrforms. Note that there is nothing in our model that restricts
an agent to benly a task performer or requester.

A selected allocatiork” in this multiple task, multiple requester model then generates a match-
ing problem that involves finding agents that will perform the tasks thaeapeested by some other
agents (e.gK = {r/ ', r} 2 ... .ol ' ... 7l=T}). Let the set of all possible allocations be
denoted a&’. Note that not all requested tasks need to be allocated: that is, the matclinggied
not be perfect.

In the multiple task case, agents may express valuations and costs for tetksoas well as
subsets of these sets of tasks. For example, ageay havev; (71, 72, 73) = 100 andv; (1, 72) =
10 andwv;(3) = 0. Then, if agent getst, » and s executed it gets a value of 100, while if
only 71 andr, get executed and; fails, agent still obtains a value of 10. Similarly, agentnay
have task execution costg(ry, 75, 76) = 100 and¢;(14,75) = 40 and¢;(76) = 10. To capture
such inter-relationships between valuations Kétbe the set of tasks within the allocatidhwhich
have to be performed by agenfor agent: (K{ could be the empty set). Note that each task is
specific to a task requester. This means that if agents 1 and 2 reques}, taiskn a task performer

4. In this paper, we will not consider agents requesting the perforenafimmultiple units of tasks. Although our model
is easily extensible to this case, the explanation is much more intricate.
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(putting in one bid forr,,) matched tar,, for agent 1, only performs it for agent 1 and not for agent
2. We will abuse notation slightly and defidé = {K;, K'};cr whereK; = (K}, ..., K}) and
K'= (Kj,...,K}). An agent has a value (assumirajl the tasks ik’ will be completed) and cost
for an allocationk’, v;(K) € R U {0} andc;(K) € R U {0} respectively, whereby:

UZ(K) = UZ(Kz)

CZ(K) = Ci(Ki>

Moreover, within our model, each ageinhas an EQOS vecto); = {nf(Kh)}fgecz’C that
represents its belief in how successful all agents within the system aoengleting the taské;,
for agenth. Thus, atthe most general level, agésitype is now given by; = {v;, ¢;,n,}. For any
given set of task%(] thatj must perform for, for any subset of taskK] C K and for any EQOS

vectorn), we lettr? (Kj‘ K7, n) be the trust that exactly the set of tagk$ will be completed by

j. The trust can be computed as we have shown in Section 3.3 by simply repda@ng0 with

agent; and replacing the single task by the set of taBkdAs in the single requester case, the trust

function represents the aggregate belief that agents have abounhaagkeperformer and hence all

task requesters form the same probability of success (give all aggp@SEeports) about a given

task performer. Finally, we let; (I?z = 1t (f(f :
icT

We are now ready to present the generaliséd trust-based mechanism.

X

4.2 The Allocation Rule and Payment Scheme

In our generalised mechanism (GTBM), the task requesters first grole centre with a list of
tasks they require to be performed, along with their valuation vector agsoaiath each set of
tasks, whereas the task performers provide their costs for perforratagstasks. All agents
also submit their EQOS vector to the centre. Thus, each agent providesritre with reports
0, = = {v;,¢;,n,;}, SO that = (01,.. 91) is the report profile. Given this, the centre applies the
rules of the mechanism in order to find the allocatiéh and net payments; to each agent. In
more detail:

1. The centre computes the allocation according to the following:

K* (5) = arg max Z Z i}}([?l) - tr; (IN(Z
K={KiK'}ier€K et | g,

n)-a(K)| (1)

i

Thus, the centre uses the reports of the agents in order to find the allottattanaximises
the expected utility of all agents within the system.

2. The agents carry out the tasks allocated to them in the allocation \Iéét(ﬁ).

5. As a result of this setup, an ageémhay not want some sets of tasks to be performed or it may be unablefdorpe
such tasks. In such cases, we then assign a default valuanaf cost obo to those sets of tasks.
6. As noted before, task performers can also be task requesteessaintie time (and vice versa).
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3. The centre computes the payments to the agents, conditional on compldtiertagks allo-
cated. Lets(K;) be an indicator function that takes the value on&’jfis the set of all the
tasks (requested by ageinfrom all agents) that are completed, and takes the value of zero
otherwise. The payment to agens as follows:

r(0.50) = >0 > w (&) ok (K) -5 (K7 (8))] - BB a7)

JEINI | K;CK:(0)

whereBZ-(@,i) > 0 is a constant fromi’s point of view (i.e., it is computed independently
of agenti’s reports, but it may depend on the reports of the other agents), thakcased to
reduce the payout that the centre has to make.

As we discussed in Section 3.3.2, the centre faces a trade-off. Byingdhe value ofB;(-)
itinduces participation by a larger set of types (i.e., types with low EQO$it ingreases the
centre’s payments to agents, making the mechanism less profitable for thee Cehus, the
scale of the payments one might expect from application of the GTBM dspmndhether
the centre decides to satisfy the individual rationality constraint, thus mauneglisat every
type wants to participate. As we shall see in Section 4.4, if the centre decidasdfy the
individual rationality constraint, then the scale of payments to agenteases with the lower
bound on trust values that could be derived usiagcQOS report.

It should also be noted that the computation of the payments requires sodvegakopti-
misation problems (i.e., finding the optimal allocation with and without severati®pd\s
the number of agents increases, the difficulty of computing payments willaserand it is
important to show how such payments can be efficiently computed. We efalwraour
solution to this in Section 5. Before doing so, however, we detail and gie/economic
properties of our mechanism in what follows.

4.3 Economic Properties
Here, we provide the proofs of the incentive compatibilind efficiency of the mechanism. We
also prove that there are values®fwhich make the mechanism individually rational.

Proposition 4. The GTBM is incentive compatible.

Proof. In order to prove incentive-compatibility, we will analyse agéstbest responsgi.e., its

best report ob, = {vi,¢i,m;})) when all other agents repcﬂL We first calculate the expected
utility that an agent will derive given the above mechanism.

7. Again, we place the same caveat on the notion of incentive compatibilinse/bere as we do in in Section 3.3 (i.e.,
Dominant Strategy or (ex-post) Nash equilibrium depending on whethegant computes the trust functions by
using the other agents’ POS reports as if they were true or not).
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The expected utility of an ageintvhen the reported types afeand the true types agkis given
by:

U; (5, 0) = Z vi(K;) - tr (I?JK: (@ﬁ—z) 7niaﬁ—i>

KicK;(6:0-,) (18)

e (5 (8,8-)) + B (0:6)

where Er; is the expectation of; taken with respect to the likelihood of task completion. The
probability attached by to the indicator variable (X ;) being equal to one (i.e., all tasks; being
completed), given that the set of tasks requested isyK; and all agents different fromreport

§_Z~, istr; (f(]‘ K;,n;, ﬁ_i). Hence, we can now use the formula for the payments to obtain:

Z Vj (f(j) -t <I~(j‘ K; (51,571) 777ivﬁfi)

Br, (6:0) = 3 | Rocr; (0.0-) = B0
=2 4 (K (6:61))
(19)

If we replace the expression above into the formulafore can observe that an agent can only
affect its utility with its report by changinﬁ*(@). The key point to note is that the agent computes
the value of the trust function using the true valueppf rather than its reported valag ).

Now, Equation (16) implies that for all allocatiois:

u; (92"5—1; 9) > u; <§z’,57i; 9) : (20)

because the efficient allocation, computed by taking into accdaitriue type#; and the reported
types of all other agen@,l- is better than or equal to any other allocation.

Given the above condition and since Equation (20) applies to all possdiisations of9, the
mechanism is incentive compatible. O

Proposition 5. The GTBM is efficient.

Proof. Given the incentive compatibility of the mechanism, the centre will receive trutéports
from all the agents. As a result, it will compute the allocation according to tiquél6), thereby
leading to an efficient outcome. O]

Proposition 6. There exist values d8;(-) such that the GTBM is individually rational.

Proof. We again begin by making the standard assumption that the agent derize®, when not

participating in the mechanism. Then, it remains to be shown that the agergsiean-negative
utility from the mechanism. Since the efficient allocation is chosen (and is at eaoull allocation),

the expected utility of each agent is always greater than or equaBt0-) according to Equation
(18). SinceB;(+) can be set t0, the mechanism is individually rational. O

Note that there are possibly many other valueBdb _;), besides3; = 0, that guarantee individual
rationality.
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Speaking more generally, it can easily be seen that the GTBM mechanismmiitiple task,
multiple requester scenario is a generalisation of the GTBM mechanism withla seggester and
a single task. It is also a generalisation of the mechanism of Porter et ak Wisy simply assume
that each agent only has an EQOS about its own probability of successoWér, in the paper by
Porter et al. for exampld3; is specified as follows:

o~

Bi(0-) = max (v(K)-5uilr) = 3 G(K"))

K'eK_;
! JET\i

wherep_;(7) is the reported probability of completion of the agent assigned the task intédloca
K’ andK _; is the set of allocations excluding agent

4.4 Extracting the Minimum Marginal Contribution

Up to now, we have considered thB(6_;) could be set to arbitrary values to try and reduce
the payments made by the centre to all the agents. More interestingly, it shogldskible, as
in the standard VCG mechanism, to only pay an agent its marginal contributiore teystem.
However, in our case, due to the interdependence of valuations, it é&srsitnple as comparing the
social welfare with and without a given agent in the system as is commonby idoviCG-based
mechanisms (Porter et al., 2008 is an obvious example of this). This is leetawsir case, when
an agent is removed from the domain used to compute the efficient allocagmentiaining EQOS
reports can arbitrarily change the allocation value. This could, in turnpleieed by other agents
to improve their utility. The example in Section 3.3.1 showing the failure of a simplesixte of
Porter et al.'s mechanism illustrates this point.

Assuming that the centre wants to induce participation by all agent typesweepropose a
novel approach to extracting the marginal contribution of an agent, bygakio account EQOS
reports of other agents apdssible reportshat the agent could make. Lt ; be the set of possible
allocations when ageritis excluded from society. The value 8%(-) can be chosen such that it is
equivalent to the social utility of the mechanism when agesexcluded and its EQOS reports are
chosen so as to minimise social utility, that is:

B;i(0-;) = ne[éﬂ}i%\xm nax. Z ~Z vj (Ka) trj (Ka‘ Kjvniaﬁfz) —¢(K)| (21)
' JEINi | K;CK;

Itis to be noted thaB; is computed using the lowest trust values that could be derived tising
EQOS reports.
Then, the generalised payment scheme is:

n(@0)= X | X w(&) e () -5 (k (9))

- i e S0 S 6 (R) oty (R Kmd) =5 ()

c0A)TIXITI KeK_; &= | _
n; [ } 1.762-\2 Kngj

(22)
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The point to note here is that incentive compatibility (and hence efficientdyeomechanism)
still holds given that the payment scheme is still independeiis oéports. In facty; rewardsi with
the r??x‘im‘um difference that ageintould make by setting all elementss to different values in
(), 1 T|x|T .8
| ']I'his procedure reduces the payments made by the centre, while keepiriduatrationality
since the value of the efficient allocation (given incentive compatibility agger@arlier) is always
higher than or equal to the value Bf, which means that:

W (K(0,0) =3 | > v (K) -t (K

IT | R,C15(6)

K (6).n) — ¢ (K" (6))

s S0 ST (By) b (K| Kgmm) = e ()| 2 0
' JEI\i | K,;CK;

It is also to be noted that the above equation implies that there is no restricticedpda the
functional form of the trust functionr for the payment scheme to work and for the properties of
the mechanism to hold. This is an improvement on previous mechanisms (sie& which had
considered trust functions that are only monotonically increasimg for eachi.

Now, the choice ofB; determines whether the centre runs the mechanism at a profit or not.
Hence, to understand what the scale of payments may be in the GTBM diddasthis section,
consider the following example.

Example 8. There aren agents,Z = {1,...,n}, each requiring that a single task be performed
for them. All agents have value 1 for the task to be performed for them aredZ&mw cost for
performing all tasks. The EQOS of agénabout agent’s probability of succeeding at the task for
agentj is nj, (K;) € [z, 1] forall h,4,j = 1,...,n. Suppose that () = [z, (K;)] /n.

In the above example, the EQOS of each agent are in the infervd so thatr can be viewed
as the lower bound on the expected probability of success at each tagk Hguation (21) we can
compute the value aB;:

> ohet\i iy (Kj) +
n

— leT
JEI\i

Bi(0_;) = max [

Note that, depending on the valuewf,, B;(0_;) could be any value betwedn — 1)z and
(n—1)(n — 1+ z)/n; B; increases with the lower boundon agents’ EQOS. The actual payment
to agent; will depend on the success or failure of each task (e.g., the paymeitd;isf all tasks
fail). From Equation (19), we can calculate the value of the expected paymagent as:

14
)= 3 |3 200

JET\i hel

B;(0-;)

=
< i
<> |7
FET\i

8. This minimisation takes place over the domain of trust values which ceutdher tharjo, 1] in the general case.
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wheref*(5) is the agent allocated the task for aggninder the efficient allocation rule. L&tV be
the total expected value from all tasks:

EV(0)=)_

JET

(5
[Ziez T; (j)]

n

Note that the total expected value of all tasks is greater than the sum ofggbeted payments
over all agents, that is:
o (j
o @ _
n

Thus, the centre always profits from the mechanism. A lower bound onffaeedce between total
expected value and total expected paymenfs)s ; nf 04 (n—1)z]/n. Note also that the lower
bound on the centre’s profit from the mechanism increases with the laueidon EQOS:.

As we pointed out in the discussion of Example 6 in Section 3.3.2, if the centyéng to min-
imise payments, it could give up on individual rationality, by increadiagat the cost of inducing
some agent types not to participate in the mechanism. This may be appealin¢hetpeabability
of task failure is high; in such cases, the centre may prefer to avoid pagiagiount almost as large
as the total value of the tasks. On the other hand, in a number of practplaledions the centre
may want to use the mechanism that induces participation by all types, dabanilthis section.
This is certainly the case, for example, if the lower bound on EQOS (i.e., thex loeund on the
probability that tasks are successful) is high. Moreover, our mechanigmparticipation by all
types is appropriate when the centre mainly seeks to maximise social weltarsid€r, for exam-
ple, a government that is trying to boost the economy through major publastnficture projects.
In order to do so, it may be willing to invest in the trust-based mechanism togbett infrastruc-
tures built at the cheapest cost. Moreover, the government may be willimgke a low profit in
order to ensure the survivability of the construction companies by gigiag them some payoff
if they participate in the mechanism. Another example where a company mightaiamblve all
task performers would be a company trying to acquire as much informatioasagbfe about all
task performers in order to maximise the returns on its future decisions. Fadjdvom our run-
ning scenario, say MovePictures.com needs to contract a video editimgacy to add computer
graphics to a movie that may become a blockbuster if the graphics are well tonase the task
is successful, MoviePictures.com is likely to get many contracts in the futuseherefore critical
that all the available information is collected from agents in order to choosadkereliable video
editing company. In this case, MoviePictures.com may accept a smallerghgtefit by running
our mechanism with full participation, in order to guarantee that the selegtatt & the best one
and that future contracts will be obtained.

To summarise, in this section we have devised a mechanism that is incentivatiddepndi-
vidually rational and efficient for task allocation under uncertainty whehipte distributed reports
are used in order to judge this uncertainty. It is to be noted that we did edttm®-stage mecha-
nisms, as in the work of Mezzetti (2004), because in our settings we calitiom payments on the
completion of the tasks (the indicator functiert-) captures this dependence of payments on task
completion). So far, we have just considered the economic properties ofebhanisms, but as we
argued earlier, this is only part of the picture. In the next section, wartep its implementation.

¥ |Beit] sy

jez iel |je1\i
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5. Implementing the Generalised Trust-Based Mechanism

As shown above, the addition of trust to the basic task allocation problemmhotomplicates the
payment scheme, but also requires a larger number of important optimisiajstisan the normal
VCG. In more detall, trust-based mechanisms require that agents speepected value for a set
of tasks depending on the performer of such tasks which, in turn, meatrteéspace of solutions to
be explored is significantly larger than in common task allocation problems.dverghe payment
scheme of trust-based mechanisms requires finding the efficient allocatitplenimes with and
without the agents’ reports. With this added level of complexity, it is importashtaw that the
mechanisms are actually implementable and that solutions can be found idhusieed problems
in reasonable time.

Against the above background, in this section we describe the first Fatioruand implemen-
tation of the GTBM. In patrticular, in the GTBM, we tackle the main optimisation probi@sed
by Equation (16) (which is then repeated several times in the payment schEm®is commonly
referred to as the winner determination problem in combinatorial auctionsrdir to solve it,
we take insight from solutions to combinatorial exchanges which often mgpréidem to a well
studied matching problem (Kalagnanam & Parkes, 2004; Engel, Wellmarmgchrer, 2006). In
so doing, we develop a novel representation of the optimisation problersibyg bhypergraphs to
describe the relationships between valuations, trust, and bids by taskrper§ and then cast the
problem as a special hypergraph matching problem. Given this repaisenwe are then able
to solve the problem using Integer Programming techniques through a edanisulation of the
objective function and constraints.

5.1 Representing the Search Space

It is important to define the search space in such a way that relationslvpsdrevaluations, bids,
trust, and tasks can be clearly and concisely captured. In particutagmesentation aims to map
the GTBM optimisation problem to a matching problem that has been well studied liteitature.
To do this, the representation must allow us to define the whole space ifiée@sk allocations,
and, subsequently, define how to select them as valid solutions to the GpBiisation problem.
Now, to allow bidders (task performers) and askers (task requetierspress their bids and valua-
tions in a consistent and implementable way, we choose the XOR bidding landsach a bidding
language requires that an auctioneer can accept at most one bideaaioKOR bid and that each
XOR bid can belong to only one agent. We choose this particular bidding dgegoecause it has
been shown that any valuation can be expressed using it (Nisan,.2086)example of an XOR
bid in our context would béc; (71, 72) XOR ¢;(11,73) XOR ¢;(71, T2, T3) } Which means that agent
7 would only go for one of these three bids over tasksr, andr; (¢; could also be replaced by
v; for task requesters). In terms of our running example, such a bid woplegs PoorRender
Ltd’s cost for performing a sound editing task (i.a.), a movie production task (i.er), or both in
combination (i.e.7y, 72).

9. Itis already known that computing the efficient allocation and paynient8CG mechanisms is NP-hard (Sandholm,
Suri, Gilpin, & Levine, 2002). Therefore, finding efficient solutions t€& mechanisms is already a significant
challenge in its own right.

10. Other bidding languages (such as those describing Atomic or ORasidsNisan, 2006) could equally well be used
in our model and would only require minor changes to the constraints thaeed to apply.
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Figure 1: Graphical representation of the GTBM search space. Nodieafame colour represent valuation
or cost nodes that belong to the same agent (here nodeswhiiblong to agent 1 and those with belong
to agent 4). Edges of the same colour either originate frenséme node or end up at the same node.

To build the overall representation of the problem, we first focus oresgmting expected val-
uations and costs as well as their relationships. These are depicted ia Eigtrmore detail, we
specify three types of nodes: (1) valuations (along¥heolumn); (2) bids (under thé column);
and (3) task-per-bidder nodes (under theolumn). Each node;(7) in theV column stands for a
valuation submitted by agenbver a set of taske C 7. Each node;(7) in theC column stands
for a bid issued by agentover tasksr C 7. Each element oft represents the allocatiat; ~ of
a single taskr,,, € 7 to task performer (bidder) by a task requester yet to be determined (repre-
sented by a dot). In other words, the elementslinepresenpatternsfor single-task allocations.
We term such elements task-per-bidder nodes.

Note that it is possible that different valuations come from the same requéfsse they are
labelled by the same subscript. Moreover, since we have opted for an bidlinhg language,
valuations belonging to the very same requester are mutually exclusive.
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5.1.1 DEFINING RELATIONSHIPS BETWEENVALUATIONS, TASKS, AND BIDS

Given the nodes defined by, V', andC, by relating a node? " in Ato a nodev;(..., T, ...) iN V

we define the assignment of task by i to j through the specific valuatian(..., 7,,, ...). Similarly,

by relating a node?; " in Atoa node:;(..., T, ...) in C we define the assignment of the task to the
specific bidc; (..., 7, ...) by agentj. Therefore, a triplév, 751 ", ¢) wherev € V, 7 € A,c € C
fully characterises an allocation for tagk, namely asingle-task allocationHence, as can be seen
in Figure 1, we define two types of relationships: between valuations akgéahidder nodes
(noted by edges, es, ...), and between bids and task-per-bidder nodes (noted by eflggs...).t

Using these relationships, a valuation can then be relatedabaf task-per-bidder nodésand
only if these fully cover the performance of the task(s) in the valuationirfstance, we can relate
v1(71, 72) to nodesr{— (agent 4 performs task) and 72— (agent 2 performs task) because
they guarantee the performance of taskandr,. Similar to valuation relationships, each naéle
is only related to the set of task-per-bidder nodedlimto which each bid splits. Thus, in Figure 1,
bid c4(71) is only related tor; ", whereas bidz (7, 73) is related to nodes; — andry .

Thus, we can identify the task performers for each task in a given vatudattos is critical since
the GTBM, contrary to common task allocation mechanisms (such as VCG'gpriide auctions),
requires that we identify exactly who performs a task in order to determirle@g:of that task (by
virtue of the requester’s trust in the performer) and hence the expesaiiae of the task.

As can be seen, our representation allows us to capture all tasks dodses of such tasks
since each valuation nodenhcan be potentially related to multiple nodes4dnand, likewise, each
bid in theC column can be potentially related to multiple nodesdinTo capture these related rela-
tionships precisely, we define special edges that can connectlseygea (e.g., the ones depicted as
e1, e2, - +,€}, €h,... in Figure 1). Such edges are termed hyperedges because they combinber
of singleton edges. Hence, Figure 1 can be best describetygeeegraph(Berge, 1973). In order
to precisely define the matching problem that the GTBM poses, we elabarabe dormalism of
hypergraphs since this will help in concisely expressing the problem latévlore specifically, the
formal notion of hypergraphs, as introduced in the paper by Bergé3j18:

Definition 9. Hypergraph. Let X = {z1,z2,...,z,} be a finite set of, elements, and lef =
{ej|j € J} be afamily of subsets of X whefe= {1,2,...}. The family€ is said to be a hypergraph
on X if:

1Le#0 (Vjel)

2. Ujese; = X.
The pairH = (X, ) is called a hypergraph. The elements zo, ..., z, are called the vertices
and the setsy, ey, .. ., ¢; are called the hyperedges.

We say that a hypergraph weeightedif we associate to each hyperedge £ a real number,
w(e), called theweightof e. This is used to give more or less importance to some edges.

From the formal definition of hypergraphs, we observe that Figuresdlteefrom the overlap-
ping of two separate hypergraphs: (i) weduation hypergraplthat occurs from linking valuations

11. Figure 1 only depicts a sample of all possible relationships for eakesfation.
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to task-per-bidder nodes; and (ii) thil hypergraphthat occurs from linking each bid to the corre-
sponding task-per-bidder nodes. In what follows, we formally defoth bhypergraphs from valu-
ations and bids so that later on we can structurally characterise the notimasible and optimal
allocations.

5.1.2 THE VALUATION HYPERGRAPH

The valuation hypergraph highlights the main difference between the GTigiNh& common com-
binatorial exchanges (e.g., those based on traditional VCG'p¥ce auctions). In particular, in
the GTBM valuations need to take into account the trust of the task requestertask performer
while, in normal combinatorial exchanges, task requesters are indifferéask performers. This
means the weight of each hyperedge in a valuation hypergraph is depesrdtrust and a large
number of edges need to be generated (one per task performer) whiohtlse case in normal
combinatorial exchanges.

To define the valuation hypergraph, we need to define hyperedgesntiaaiate from each node
inV to one or more nodes iA. To this end, leV = {v;(7) # 0|7 C 7,i € T} andC = {¢;(T) #
oo|T C 7T,j € I} be the sets of all valuations and all bids respectively. it = {r € T |
3" C T : ¢j(1) # oo andt € 7'} be the set of tasks over which aggnsubmits bids. Hence,
A= {Tg*-m € 1/ j € Z,cj(T) € C} is the set containing all the tasks bid by each bidder.

Furthermore, we need to define some auxiliary sets as follows. Given atiealwver a set of
tasksr, a set of nodesl C A fulfils it if and only if:

U {77} =randlr| = 4]
T]?—'EA

For instance, the set of nodels = {7, 73—} fulfils any valuation ovefry,}. Hence, the
subsets of4 that fulfil a valuation over a set of tasksare expressed using” which is defined as:

AT ={ACA| |J {7 =7 and || =|A]}
T]ZH'GA

For instance, considering the example in Figure 1,

A{TIVTQ} = {{Tl <_.7 7—24<_.}a {7—1 (_'7 7—22(_.}7 {Tl <_.7 7—5](_}}
A = ({7 ) )

Given the above definitions, we can now define the set of all hypesextgmected to a valuation
vi(T) € Vas:

EN(T) = Ugear {{ui(T)} Uaj
For instance, from Figure 1:
5%(7’1, 7'2) = {61, €9, 63} andé’f(rg) = {64, 65},

wheree; = {vi (11, 72), 7+, 79}, e2 = {v1(11, 1), 74, 72}, ..., and so on.

12. Recall that since the mechanism has been proven to be incentiygatible we can use the agents’ true valuations
and costs instead of their reported counterparts.
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The set of all hyperedges containing valuations of the very same ageti¢fined as:

&= &

TCT

Then, the set of hyperedges connecting nodasto nodes inA is defined as:

e =J&

i€l
Given this, we define the valuation hypergraph as a pair:
H = (VUAZEY)

Thus, each hyperedge i consists of a single valuation vertex corresponding to an elemént in
along with a complete task allocation for the valued tasks out of the taskigidrinodes in4.

The valuation hypergrapHi? partly defines the space within which a solution needs to be found.
However, in order to define the quality of the solution found, it is importantetind the weight
attached to each hyperedge of the hypergrafsh The weight of a hyperedge is actually equal to
the expected value of the allocation of the tasks to a set of task perforhiédeis). Consider,
for instance, valuatiom; (71, 72). All the possible matchings that fulfil it are represented by all the
pairs(r;—!, 1). For example, the hyperedgeg involving the pairing(r{—!, 72!) denotes that
agent 4 performs task 1 for agent 1 and agent 2 performs task 2dot AgThe expected valuation
associated to this allocation depends on the POS of agemd2 when performing tasks, andrs
respectively.

In this case, the expected valuation associated te assessed as:

(i) = v, ) pa(r ) pe(m3 )+

vi(m) - pa(ri™h) - (1= pa(r5 1)+ (23)
v1(m2) - (1= pa(ri ™)) - pa(r3 ™)

wherep is a function that returns the POS of the agent that is assigned a giveedasuted using
confidence, reputation, or trust). Notice that the vdlue- pi(r,ffj)) represents the probability of
agent; failing to perform task, for agent j. Since no requests are submittedrfoandr, alone,
v(m1) = v(m) = 0. Thus, the expected valuation associated to the particular allocationesfwes
by arces becomesr; (711, 7271 = vi (11, 2) - palri ) - pa(721). With a similar argument,
we obtainvy (741 Y = v (11, 1) - pa(r ) - ps (78T # i (L, 72, corresponding
to hyperedges.

Generalising, given a hyperedges £ with valuationv;(7), we can readily build an allocation
for the tasks inr from the elements im andv;(7). If p is a function that returns the POS (be it
confidence, reputation, or trust) of a given task performer from eamhester’s point of view, then
we can compute the expected valuation of the allocation defined by hypereddollows:

wi(r) =Y |u) I e I (-piE) (24)

T'CT T eemneT! T el T\ T
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In other words, given a hyperedge=z £, its weight is assessed using Equation (24) which is
equivalent to the expected value computed in Equation (16) (i.e., the surpedted values over
all allocations from agen#). Now, given that each edge of the valuation hypergraph is assigned a
weight, " is termed a weighted hypergraph.

5.1.3 THE BID HYPERGRAPH

To define the bid hypergraph we need to determine the hyperedges timetctdids to task-per-
bidder nodes. In more detail, given a hidr) € C, we relate it to the task-per-bidder nodes4n
by constructing hypereddg® () = {c;(7)} U {Tg*m € 7}. This hyperedge is assigned a weight
which is equal to the cost @fj(7). Then the set of all hyperedges containing all the bids of agent
can be defined as:

&= &

TCT

Given this, the set of all hyperedges connecting nodéstcmnodes in4 can be defined as:

=&

i€T
Finally, we define the bid hypergraph as a pair:
He=(AUC,E9

In other words, each hyperedgefitf consists of a single bid vertex corresponding to an element in
C along with the corresponding task-per-bidder noded.ifNotice that our definitions of valuation
and bid hypergraphs ensure that each hyperedg® inontains a single valuation fromand each
hyperedge in{ ¢ contains a single bid frord.

5.1.4 DEFINING THE MATCHING PROBLEM FOR THEGTBM

Having defined the valuation and bid hypergraphs, we can now strilgtcinaracterise the notions
of feasible and optimal allocations (these are needed to determine the comaltetimplexity of
the problem and define the objective function in particular). For this mapeme must firstly recall
some notions of hypergraph theory. In a hypergraph, two hypeseatgesaid to badjacentif their
intersection is not empty. Otherwise they are said tdisint For a hypergraplf = (X,€), a
family £’ C £ is defined to be anatchingif the hyperedges of’ are pairwise disjoint. With respect
to a given matching’, a vertexz; is said to bematchedor coveredif there is a hyperedge ifi’
incident tox;. If a vertex is not matched, it is said to hematchedr exposed A matching that
leaves no vertices exposed is said tacbeplete

Based on the definitions above, we can characterise feasible allocatthe<Gi BM as follows.
First, we must find a matching for the valuation hypergraph that is not sagkscomplete (some
valuations may remain exposed). Second, we must find another matching foidthypergraph
that is not necessarily complete either. The two matchings must be related alldigrfg manner:
the task-per-bidder nodes in both matchings should be the same. In otfis, wven a task-per-
bidder node, it must be related to some valuation node and to some bid nadse twe excluded
from both matchings. In this way, valuations and bids are linked to creatkedamk allocations.
For instance, in Figure 1, if; belongs to the matching for the valuation hypergraph, #emust
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be part of the matching for the bid hypergraph to ensure that there is arbigif- and that either
e}, ey, or ¢4 are part of the matching for the bid hypergraph to ensure that there isfarhbig—.
More formally:

Definition 10. Feasible allocation.We say that a pai(E”', 50’) defines a feasible allocation iff:
e £ is a matching forH.
e £ is a matching forH¢.
e V7 € A: (7 is matched b?') <= (r is matched by*).

Given a feasible allocatiof”’, £¢') as defined above, it is straightforward to assess the ex-
pected utility of all agents within the system as follows:

> wle) = Y w(e)

ec&’ e'e&

since the weights of the hyperedges in the valuation hypergraph staagected valuations and
the weights of the hyperedges in the bid hypergraph stand for costang@&yguation (16) in the
GTBM amounts to finding the feasible allocation that maximises the expected utilityarfents
within the system. Therefore, the following definition naturally follows.

Definition 11. GTBM Task Allocation ProblemThe problem of assessing the task allocation that
maximises the expected utility of all agents within the system amounts to solving:

arg max Z wy(e) — Z we(e) (25)
(EVE) cegwr e'ege

where(£Y', £¢') stands for a feasible allocation.

Having defined the matching problem for the GTBM, we next describe olutisn to this
problem using Integer Programming techniques that are commonly used &ssallr problems
(Cerquides, Endriss, Giovannucci, & Ragliez-Aguilar, 2007}3

5.2 An Integer Programming Solution

In this section we show how to map the problem posed by Equation (25) intdegeimprogram
(Papadimitriou & Steiglitz, 1982) so that it can be efficiently implemented and ¢ol@&/en this
translation, the resulting program can be solved by powerful commeniars such as ILOG
CPLEX or LINGO.®

13. Other special purpose algorithms (e.g., using dynamic progiagron search trees) could also be designed to solve
this combinatorial problem. However, to understand the magnitude ofrtiepn and to compare the difficulty of
solving this problem against other similar problems, we believe it is betterstaafiempt to find the solution using
standard techniques such as IP.

14.http://ww. il og. com

15.http://ww. | i ndo. com
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5.2.1 BJECTIVEFUNCTION AND SIDE CONSTRAINTS

The translation of Equation (25) into an IP is reasonably straightforwigeshgur representation.
Thus, solving the GTBM task allocation problem amounts to maximising the followijectve
function:

Y e wu(e) = Y yerwe(e) (26)
ecEV e'eke
wherez,. € {0,1} is a binary decision variable representing whether the valuation in hygered
e is selected or not, ang.: € {0, 1} is a binary decision variable representing whether the bid in
hyperedge’ is selected or not. Thus, is a decision variable that selects a given valuation with a
given task-bidder matching, ang selects a given bid.

However, some side constraints must be fulfilled in order to obtain a valid solufiost, the
semantics of the bidding language must be satisfied. Second, if a hype®muigining a set of task-
per-bidder nodes inl is selected, we must ensure that the bids covering such nodes aredstdecte
Moreover, as we employ the XOR bidding language, the auctioneer — thre @elour case — can
only select at most one bid per bidder and at most one valuation per abkes; as for bidders, this
constraint translates into:

d ye<1l Viel (27)

e'e&f

For instance, in Figure 1 this constraint ensures the auctioneer seledtyperedge out of;, ¢},
andef, since they all belong to agent 4 (they all come from nodes labelled with the sabscript
cq(.)).
For the valuations, the XOR constraints involving them are collected in the fiolipexpres-
sion:
dwe<1l Viel (28)
ety

For instance, in Figure 1 this constraint forces the auctioneer to selettyperedge out afy, eo,
e3, e4, andes since they all belong to agent 1 (they all come from nodes labelled with the same
subscript (.)).

If a valuation hyperedge < £" is selected, the set of task-per-bidder nodeslinonnected
to e must be performed by the corresponding bidder agent. For instancigureR, if hyperedge
e is selected, the task-per-bidder nod¢s ' and 75! must be covered by some bid of agent
In this case, bid: (71, 73) is the one covering those tasks. Thus, if we select hyperedge are
forced to select bidy (71, 73) by selecting hyperedge;. Thus, in terms of hyperedges, we must
ensure that the number of valuation hyperarcs containing a given éaghkigder node is less than
or equal to the number of bid hyperarcs containing it. Graphically, this mibanshe number of
incident valuation hyperedges in a given nede A must be less than the number of incident bid
hyperedges im.

Yoow< Y oy VT eA (29)
eES”,TﬁH‘Ee e’ESC,TZH'Ge’

In case of no free-disposal (i.e., if we do not allow agents to executs vaghout them being asked
for) we simply have to replace with =. To summarise, solving the GTBM task allocation problem
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amounts to maximising the objective function defined by expression (26)csubjhe constraints
in expressions (27), (28), and (29). Next, we determine the complexsitytsefor this problem.

5.2.2 GOMPLEXITY RESULTS

Having represented the GTBM task allocation problem and defined thespamding IP formula-
tion, we analyse its computational complexity in order to show the difficulty in splthe GTBM.

We also identify the main parameters that affect the computational costs wigfitine optimal al-
location. These parameters should then allow us to determine in which setting3 B can be
practically used.

Proposition 7. The GTBM task allocation problem j§P-complete and cannot be approximated
to a ratio n'~¢ in polynomial time unles® = ZP7P, wheren is the total number of bids and
valuations.

Proof. Notice that our optimisation model, as formalised by Equation (26), naturallglatas to a
combinatorial exchange (Kalagnanam, Davenport, & Lee, 2000). Tdmslation can be achieved
using our representation by taking the goods (in a combinatorial exchame the dummy tasks
T € T, the bids the elements &y and the asks the weights of the hyperedgeX in Thus, while
bids remain the same in the exchange, the number of valuations may significandgse. The
reason being that the introduction of trust in our theoretical model makestihévaluations (asks),
the elements iV, allocation-dependent. Hence, every single valuatioyl tauses several asks to
be originated for the exchange when considering the bidder to whichtaskimay be allocated
(see examples in Section 5.1.2). As shown by Sandholm et al. (2002)etistath problem for a
binary single-unit combinatorial exchange winner determination problexif?scomplete and the
optimisation problem cannot be approximated to a ratio’ in polynomial time unles® = ZPP,
wheren is the number of bids. Therefore, the optimisation problenViB-hard, and so it is in
GTBM. O

From the above proof, it can be understood that the search spaceGTBM task allocation
problem is significantly larger than in traditional combinatorial exchangeaus® of the depen-
dency of valuations on the bidders performing tasks. In what followspnweide a formula that
allows us to calculate exactly how big this search space is. This allows us tondetevhether
the instance to be solved can actually be handled by the solver (which wdllitsagwn limits on
memory requirements and computation time).

In more detail, say thatl; is the subset ofA containing the task-per-bidder nodes referring
to the same tasks. More formall, = {r;" € A | j € Z}. From the example in Figure 1,
Ay = {r5 7, 747,75 }. Thus, the expression to assess the number of feasible allocations is:

€ =>">" I 14« (30)

€l Ui(‘T);éO TLET

Observe that the number of possible allocations can be computed as timaligrdf £ (i.e., the
number of valuation hyperarcs) since it exactly determines the numberysftva valuations can
be satisfied by the provided bids. The total number of decision variabliee dfiteger Program is
thus|E?| + |£€¢|. Since the number of expected valuations is several times larger than themofmb
bids, we expect the number of decision variables associated to bid dgesrto be much less than
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the number of valuation hyperedges. Hence, assuming&fpks |£”|, the number of decision
variables will be of the order 9€"|.

In order to understand the implications of these parameters, considesthaaahich all task
performers bid oveall tasks anall requesters submitsinglevaluation over all tasks. Specifically,
consider a scenario with 15 task performers, 20 requesters, andss t@sken that in this case
|Ax = 5|, the number of allocations j€,| = 20 x 15° = 15187500. In reality, agents may not be
able to submit bids and asks over all tasks and this would result in a sigtifitamer number of
allocations (given the possible matchings). Hence, to see whether stecies can be practically
solved, in Appendix A, we report the running times of the solver, showiagittstances with less
than2 x 10° variables can be comfortably solved within 40 seconds (in the worst.da%$en taken
together, our empirical results and our formula to compute the size of the(imyEquation 30)
allow us to affirm that, even if the computational cost associated to the GTBNhegotential to
be rather high, our solution can handle small and medium sized problemssonedde time (see
table 3). However, as can be seen, the time to complete grows exponentiallthavitumber of

Set | Tasks| Task Requesters Task Performers Worst Case Running Time
1 5 20 15 34s
2 8 20 15 40 mins
3 10 20 15 3 days

Table 3: Average running times for different numbers of tasks ancheg@aken over 300 sample runs for set
1, 50 sample runs for sets 2 and 3).

tasks. During our experimental analysis, we also found that the impaatrefising the number of
task performers and task requesters was not as significant as ingrésesnumber of tasks. This
can be explained by the fact that, given our setup, a larger numbeksfabsws significantly more
matchings between bids and asks than a larger number of bids and asiee, Hany more task
requesters and performers can be accommodated for small numbeikssoftalould also be noted
that we expect these worst case results to occur fairly rarely ongevémauch less than half of the
instances generated from the same parameters), as shown in Figure [ZeimiixpA.

Having described the complete picture of the GTBM and its implementation, wedisextss
some important issues that may arise when trying to use a GTBM for task allocatio

6. Discussion

In this paper we have developed task allocation mechanisms that opeeatitvely when agents
cannot reliably complete tasks assigned to them. Specifically, we have el@sigiovel Generalised
Trust-Based Mechanism that is efficient and individually rational. Thishaeism deals with the
case where task requesters form their opinions about task perfausiegsreports from their envi-
ronment and their own direct interactions with the performers. In additiotuttygg the economic
properties of the allocation mechanisms, we provided the optimisation model tretggs the so-
lutions that guarantee the efficiency of our mechanism. This optimisation matthel fsst solver

for trust-based mechanisms (and other mechanisms in which the value of @atialadepends on
the performer of the allocation) and is based on Integer Programming. ésuH, we have shown
that the input explodes combinatorially due to the huge number of possiblatales that must
be enumerated. Nevertheless, while the computational cost associate@tbBheis shown to be
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rather high, given our implementation, we are still able to manage small to mediethgsiablems
in reasonable time.

Speaking more generally, our work on trust-based mechanisms has armeintiveader im-
plications. First, the GTBM shows how to explicitly blend work on trust models witink on
mechanism design. Since the mechanism guarantees that certain prdpedifes task allocation
problems, it can be used as a new, well-founded testbed within which truglsncan be eval-
uated. Up to now, trust models have mainly been tested with randomly genecatearios and
interactions that obey somewhat ad hoc market rules such as those tlsedRIT testbed (Fullam,
Klos, Muller, Sabater, Topol, Barber, Rosenschein, & Vercouted520Second, our work is the
first single-stage interdependent valuations mechanism that is efficiémdividually rational (as
opposed to Mezzetti’s two-stage mechanism). This has been made achievtdidesettings we
consider by capturing the interdependence between types throughghiitrction and making the
payments to the agents contingent ondhtual executiof tasks. Another novelty of our approach
is that we are able to extract the (maximum) marginal contribution of an agepitel¢he valua-
tions being interdependent (as we have shown in Section 4.4). Thirdmplementation of GTBM
highlights the importance of considering the computational aspects of anyneetanism, since
these determine whether the mechanism is implementable for realistic scenatrioaraimdeed
bring about its claimed benefits. Our work is a strong statement in this diredtios we provide
the complete picture of the problem, starting from its representation, throughpgtesmentation
and sample results, to its complexity analysis.

In practical terms, the GTBM is a step towards building robust multi-agentregdta uncertain
environments. In such environments, it is important to aggregate the ageetsiences, while
taking into account the uncertainty in order to ensure that the solutiongrthiesult in the best
possible outcome for the whole system. Prior to the GTBM, it was not possilzenie up with
an efficient solution that would maximise this expected utility. Moreover, thetlfead agents can
express their perception of the task performers’ POS is a new way ofirmyifdore expressive
interactions between buyers and sellers of services (Sandholm, 20@&7helieve that the more
such perceptions are expressed, the better is the ensuing matchingrobtwees and sellers and
our results are proof of the gain in efficiency this better matching bringstgbee sections 3.2.1,
3.3.1,and 4.3).

By introducing GTBM as a new class of mechanisms, this work lays the foondgor several
areas of inquiry. To this end, we outline some of the main areas below.

e Budget Balance An important economic property of mechanisms in some contexts is budget
balance'® However, as mentioned in Section 3.3.2, we have designed our TBMs without
considering budget balance. In fact, the GTBM is not budget balasinglr to the VCG and
Porter et al.’'s mechanism. Now, one possible way of overcoming this pnabléo sacrifice
either efficiency or individual rationality. In fact, the dAGVA mechanism isoainterpart of
the VCG which does indeed sacrifice individual rationality for budgetrizaasee Section
2). Moreover, Parkes, Kalagnanam, and Eso (2001) develop misoigmwhere a number
of budget balancing schemes are proposed and near-incentive tdailitpas attained by
making the payments by the agents as close as possible to those of the VCGlboeées

16. If a mechanism is budget balanced, it computes transfers in Bacht@n such that the overall transfer in the system
is zero (MasColell et al., 1995). Thus, in a budget balanced mechafiseach allocatiod and associated transfer
vectorr, we have) r; = 0.

T,ET
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most effective scheme, the Threshold rule, results in a low loss of ineecwimpatibility
and it has a relatively high efficiency (arou%). Such budget balance may be useful in
situations where the centre cannot run the risk of incurring a loss in gi@mgithe efficient
outcome for the set of agents in the system. For example, MoviePictures.cpmotiind
it worth injecting money into the system to find the efficient outcome if all its subanés
all nearly equally competitive (both in price and POS). Instead MoviePEitoen might
prefer a mechanism that generates a near-efficient outcome by ingéasas discussed in
Section 4.4. By doing this, the set of agents that participate might be rethecedse it is
not individually rational for all of them to participate in the mechanism, buterteeless,
MoviePictures.com may obtain a better outcome. In the future, we will studytsade-offs
between the efficiency achieved in the system against the profit made ogrttre.

Trust in Task Requesters One other potential criticism of mechanisms such as ours is that
the task requesters (and the centre) must be trusted to reveal thesabmezeution of the task
(Mezzetti, 2004). However, in our setting, task requesters have agsimoantive to reveal
their observations (in case these are not publicly visible) since they woefiergheir chosen
task performer to be available the next time the mechanism is run. To this egdntis
ensure that the task performer does not go bankrupt. As noted in Bugiét®) and (17), the
task performer would have to pay a significant amount to the centre in caseiorted to

fail at its task. Hence, the task requester is better off revealing a sfictegecution if the
task performer is indeed successful.

Another issue with the trust function used is that weights given to eaci’'a§€pOS report
may be uncertain. Thus, in this case, agents may have to learn these weghtsudtiple
interactions. Given this, it is important to develop learning and searchitpesthat will
be able to deal with the large number of possible weights that could be useesin tifust
functions. These techniques will have to take into account the fact teatagay lose out
significantly while exploring the search space.

Iterative Mechanisms The GTBM is a one-shot mechanism in which the allocation and
the payments are calculated given the type of the aglants, 7} using their trust models.
However, in some cases the participants may be engaged in repeatedionsrdmat can be
exploited by their trust models in order to build accurate trust values of tbeimterparts.
In such situations, the introduction of multiple rounds can compromise the ntiexpef the
mechanism by allowing for a greater range of strategies (e.g., corneemgatket by consis-
tently offering low prices in initial rounds or accepting losses in initial roulggroviding
false and damaging information about competitors). However, the explositie strategy
space also implies that agents might not be able to compute their optimal stratetytta
intractability of such a process. Now, one way of solving this problem is tstcain the
strategies of the agents to be myopic (i.e., best response to the curred} esushown by
Parkes and Ungar (2000) using proxy bidding. Another is to allow thetage learn the trust
models without participating in the allocation problem. Then, once the agergsanaaccu-
rate representation of the trust functions and POS values, the mechamda mmplemented
as a one-shot encounter. Note that this problem arisasymne-shot mechanism which is
implemented in an iterative context and is not solely in the realm of the GTBM.
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e Computational Cost As discussed in Section 5, the algorithms we developed to compute

the efficient allocation have to be run multiple times to compute the individual pagrmn
the agents for TBMs. Hence, the time needed to compute the allocation andepagyethts

may be impractical if the agents have a very limited time to find a solution, put fdraviarge

number of bids, or ask for a large number of tasks to be performed. &;léris important

that either less complex mechanisms such as those described by Nisan reerd (R007)

or approximate (and computationally less expensive) algorithms be desldlmgelve such
problems (Archer, Papadimitriou, Talwar, & Tardos, 2003). This wiljuiee more work in

developing local approximation algorithms and the approximate mechanismséisatye

some of the properties we seek. In this vein, this paper provides a palepafture for these
future mechanisms since it provides the efficient mechanisms against whiapphoximate
ones can be compared.
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Appendix A. Analysing the Performance of the IP Solution

In this section we analyse the computational performance of the InteggralProing solution we
detailed in Section 5 in order to gauge the sizes of problems that can be solgadonable time. To
this end, it is important to recall that (as was shown in Section 5) the numbendfiariables to the
optimization problem is nearly equal to the number of valuation hyperddgesince|&.| < |&,|.
Given this, we can assume that the performance of the solver is directlgdeétathe number of
possible allocations approximated|&s|.

Therefore, our test set is composed of several instances of the GEBKAllocation Problem
characterised by the number of possible allocations. In more detail, toggedeh allocations, bids
and valuations are generated so that the number of bids submitted by a &idglednd the number
of valuations submitted by a single requester follow a geometric distribution with tfaeameter
set t00.23 (Milton & Arnold, 1998) (in order to randomly generate relatively large nensbof

bids/asks per agent}. A medium-sized problem is set as follows. The number of negotiated tasks

is setto 5. The number of task performers is sdtit@and the number of task requesters is s@to

17. Settingp higher would result in fewer bids/asks per agent.
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The average number of generated valuations for each instagg8airsl the average number of bids
is 65. Finally, the number of runs of the experiments is 300. Our experimentspeei@med on a
Xeon dual processor machine with 3Ghz CPUs, 2 GB RAM and the commsotialare employed
to solve the Integer Program is ILOG CPLEX 9.1.
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Figure 2: Performance of the IP solution.

The results are shown in Figure 2. Specifically, thaxis represents the number of allocations
of a given problem instance and theaxis represents the time in seconds elapsed in solving the
corresponding problem instance. Notice that the dependence of tleailthfiof the problem on the
number of allocations is quite clear. Moreover, as can be seen, it is [gossdnlve a problem with
less thar2 x 10° variables within 40 seconds. It is important to note that the performancesof th
solver used is critical in this case and future advancements to Mixed Irfieggramming (MIP)
solvers and CPU clock speeds can only improve our results.

Given these results and since we provide a general formula (see Hy(ad) to compute
a priori the number of generated allocations, it is possible to estimate theiligasiba general
problem before performing it. This means that the system designer camasiskequesters and
performers to constrain the number of tasks they ask for or the numbéifHey issue to come
up with an input that can be solved by the program in a reasonable time. bewiflore important,
however, to design special purpose algorithms that can deal with lajgaisiand this is left as
future work.
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