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Abstract

Decentralized planning in uncertain environments is a complex task generally dealt with
by using a decision-theoretic approach, mainly through the framework of Decentralized Par-
tially Observable Markov Decision Processes (DEC-POMDPs). Although DEC-POMDPS
are a general and powerful modeling tool, solving them is a task with an overwhelming
complexity that can be doubly exponential. In this paper, we study an alternate formu-
lation of DEC-POMDPs relying on a sequence-form representation of policies. From this
formulation, we show how to derive Mixed Integer Linear Programming (MILP) problems
that, once solved, give exact optimal solutions to the DEC-POMDPs. We show that these
MILPs can be derived either by using some combinatorial characteristics of the optimal
solutions of the DEC-POMDPs or by using concepts borrowed from game theory. Through
an experimental validation on classical test problems from the DEC-POMDP literature, we
compare our approach to existing algorithms. Results show that mathematical program-
ming outperforms dynamic programming but is less efficient than forward search, except
for some particular problems.

The main contributions of this work are the use of mathematical programming for DEC-
POMDPs and a better understanding of DEC-POMDPs and of their solutions. Besides,
we argue that our alternate representation of DEC-POMDPs could be helpful for designing
novel algorithms looking for approximate solutions to DEC-POMDPs.

1. Introduction

The framework of Decentralized Partially Observable Markov Decision Processes (DEC-
POMDPs) can be used to model the problem of designing a system made of autonomous
agents that need to coordinate in order to achieve a joint goal. Solving DEC-POMDPs is an
untractable task as they belong to the class of NEXP-complete problems (see Section 1.1).
In this paper, DEC-POMDPs are reformulated into sequence-form DEC-POMDPs so as
to derive Mixed Integer Linear Programs that can be solved using very efficient solvers
in order to design exact optimal solutions to finite-horizon DEC-POMDPs. Our main
motivation is to investigate the benefits and limits of this novel approach and to get a
better understanding of DEC-POMDPs (see Section 1.2). On a practical level, we provide
new algorithms and heuristics for solving DEC-POMDPs and evaluate them on classical
problems (see Section 1.3).

c©2010 AI Access Foundation. All rights reserved.
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1.1 Context

One of the main goals of Artificial Intelligence is to build artificial agents that exhibit
intelligent behavior. An agent is an entity situated in an environment which it can perceive
through sensors and act upon using actuators. The concept of planning, i.e., to select
a sequence of actions in order to reach a goal, has been central to the field of Artificial
Intelligence for years. While the notion of “intelligent behavior” is difficult to assess and to
measure, we prefer to refer to the concept of “rational behavior” as formulated by Russell
and Norvig (1995). As a consequence, the work presented here uses a decision-theoretic
approach in order to build agents that take optimal actions in an uncertain and partially
unknown environment.

We are more particularly interested in cooperative multi-agent systems where multiple
independent agents with limited perception of their environment must interact and coordi-
nate in order to achieve a joint task. No central process with a full knowledge of the state
of the system is there to control the agents. On the contrary, each agent is an autonomous
entity that must execute its actions by itself. This setting is both a blessing, as each agent
should ideally deal with a small part of the problem, and a curse, as coordination and
cooperation are harder to develop and to enforce.

The decision-theoretic approach to rational behavior relies mostly on the framework of
Markov Decision Processes (MDP) (Puterman, 1994). A system is seen as a sequence of
discrete states with stochastic dynamics, some particular states giving a positive or negative
reward. The process is divided into discrete decision periods; the number of such periods
is called the horizon of the MDP. At each of these periods, an action is chosen which
will influence the transition of the process to its next state. By using the right actions to
influence the transition probabilities between states, the objective of the controller of the
system is to maximize its long term return, which is often an additive function of the reward
earned for the given horizon. If the controller knows the dynamics of the system, which is
made of a transition function and of a reward function, algorithms derived from the field
of Dynamic Programming (see Bellman, 1957) allow the controller to compute an optimal
deterministic policy, i.e., a decision function which associates an “optimal” action to every
state so that the expected long term return is optimal. This process is called planning in
the MDP community.

In fact, using the MDP framework, it is quite straightforward to model a problem with
one agent which has a full and complete knowledge of the state of the system. But agents,
and especially in a multi-agent setting, are generally not able to determine the complete
and exact state of the system because of noisy, faulty or limited sensors or because of the
nature of the problem itself. As a consequence, different states of the system are observed
as similar by the agent which is a problem when different optimal actions should be taken in
these states; one speaks then of perceptual aliasing. An extension of MDPs called Partially
Observable Markov Decisions Processes (POMDPs) deals explicitly with this phenomenon
and allows a single agent to compute plans in such a setting provided it knows the conditional
probabilities of observations given the state of the environment (Cassandra, Kaelbling, &
Littman, 1994).

As pointed out by Boutilier (1996), multi-agent problems could be solved as MDPs
if considered from a centralized point of view for planning and control. Here, although
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planning is a centralized process, we are interested in decentralized settings where every
agent executes its own policy. Even if the agents could instantly communicate their ob-
servation, we consider problems where the joint observation resulting from such communi-
cations would still not be enough to identify the state of the system. The framework of
Decentralized Partially Observable Markov Decision Processes (DEC-POMDP) proposed
by Bernstein, Givan, Immerman, and Zilberstein (2002) takes into account decentralization
of control and partial observability. In a DEC-POMDP, we are looking for optimal joint
policies which are composed of one policy for each agent, these individual policies being
computed in a centralized way but then independently executed by the agents.

The main limitation of DEC-POMDPs is that they are provably untractable as they
belong to the class of NEXP-complete problems (Bernstein et al., 2002). Concretely, this
complexity result implies that, in the worst case, finding an optimal joint policy of a finite
horizon DEC-POMDP requires time that is exponential in the horizon if one always make
good choices. Because of this complexity, there are very few algorithms for finding exact
optimal solutions for DEC-POMDPs (they all have a doubly exponential complexity) and
only a few more that look for approximate solutions. As discussed and detailed in the
work of Oliehoek, Spaan, and Vlassis (2008), these algorithms follow either a dynamic
programming approach or a forward search approach by adapting concepts and algorithms
that were designed for POMDPs.

Yet, the concept of decentralized planning has been the focus of quite a large body of
previous work in other fields of research. For example, the Team Decision Problem (Radner,
1959), later formulated as a Markov system in the field of control theory by Anderson and
Moore (1980), led to the Markov Team Decision Problem (Pynadath & Tambe, 2002). In
the field of mathematics, the abundant literature on Game Theory brings a new way for
looking at multi-agent planning. In particular, a DEC-POMDP with finite horizon can
be thought as a game in extensive form with imperfect information and identical interests
(Osborne & Rubinstein, 1994).

Taking inspiration from the field of game theory and mathematical programming to de-
sign exact algorithms for solving DEC-POMDPs is precisely the subject of our contribution
to the field of decentralized multi-agent planning.

1.2 Motivations

The main objective of our work is to investigate the use of mathematical programming,
more especially mixed-integer linear programs (MILP) (Diwekar, 2008), for solving DEC-
POMDPs. Our motivation relies on the fact that the field of linear programming is quite
mature and of great interest to the industry. As a consequence, there exist many efficient
solvers for mixed-integer linear programs and we want to see how these efficient solvers
perform in the framework of DEC-POMDPs.

Therefore, we have to reformulate a DEC-POMDP to solve it as a mixed-integer linear
program. As shown in this article, two paths lead to such mathematical programs, one
grounded on the work from Koller, Megiddo, and von Stengel (1994), Koller and Megiddo
(1996) and von Stengel (2002), and another one grounded on combinatorial considerations.
Both methods rely on a special reformulation of DEC-POMDPs in what we have called
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sequence-form DEC-POMDPs where a policy is defined by the histories (i.e., sequences of
observations and actions) it can generate when applied to the DEC-POMDP.

The basic idea of our work is to select, among all the histories of the DEC-POMDP,
the histories that will be part of the optimal policy. To that end, an optimal solution to
the MILP presented in this article will assign a positive weight to each history of the DEC-
POMDP and every history with a non-negative weight will be part of the optimal policy
to the DEC-POMDP. As the number of possible histories is exponential in the horizon of
the problem, the complexity of a naive search for the optimal set of histories is doubly
exponential. Therefore, our idea appears untractable and useless.

Nevertheless, we will show that combining the efficiency of MILP solvers with some quite
simple heuristics leads to exact algorithms that compare quite well to some existing exact
algorithms. In fact, sequence-form DEC-POMDPs only need a memory space exponential
in the size of the problem. Even if solving MILPs can also be exponential in the size of the
MILP and thus leads to doubly exponential complexity for sequence-form based algorithms,
we argue that sequence-form MILPs compare quite well to dynamic programming thanks
to optimized industrial MILP solvers like “Cplex”.

Still, our investigations and experiments with Mathematical Programming for DEC-
POMDPs do not solely aim at finding exact solutions to DEC-POMDPs. Our main moti-
vation is to have a better understanding of DEC-POMDPs and of the limits and benefits of
the mathematical programming approach. We hope that this knowledge will help deciding
to what extent mathematical programming and sequence-form DEC-POMDPs can be used
to design novel algorithms that look for approximate solutions to DEC-POMDPs.

1.3 Contributions

In this paper we develop new algorithms in order to find exact optimal joint policies for
DEC-POMDPs. Our main inspiration comes from the work of Koller, von Stegel and
Megiddo that shows how to solve games in extensive form with imperfect information and
identical interests, that is how to find a Nash equilibrium for this kind of game (Koller et al.,
1994; Koller & Megiddo, 1996; von Stengel, 2002). Their algorithms caused a breakthrough
as the memory space requirement of their approach is linear in the size of the game whereas
more canonical algorithms required space that is exponential in the size of the game. This
breakthrough is mostly due to the use of a new formulation of a policy in what they call a
sequence-form.

Our main contribution, as detailed in Section 3.3, is then to adapt the sequence-form
introduced by Koller, von Stegel and Megiddo to the framework of DEC-POMDPs (Koller
et al., 1994; Koller & Megiddo, 1996; von Stengel, 2002). As a result, it is possible to
formulate the resolution of a DEC-POMDP as a special kind of mathematical program
that can still be solved quite efficiently: a mixed linear program where some variables
are required to be either 0 or 1. The adaptation and the resulting mixed-integer linear
program is not straightforward. In fact, Koller, von Stegel and Megiddo could only find
one Nash equilibrium in a 2-agent game. What is needed for DEC-POMDPs is to find
the set of policies, called a joint policy, that corresponds to the Nash equilibrium with
the highest value, finding “only” one Nash equilibrium – already a complex task – is not
enough. Besides, whereas Koller, von Stegel and Megiddo algorithms could only be applied
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to 2-agent games, we extend the approach so as to solve DEC-POMDPs with an arbitrary
number of agents, which constitutes an important contribution.

In order to formulate DEC-POMDPs as MILPs, we analyze in detail the structure of
an optimal joint policy for a DEC-POMDP. A joint policy in sequence-form is expressed as
a set of individual policies that are themselves described as a set of possible trajectories for
each of the agents of the DEC-POMDP. Combinatorial considerations on these individual
histories, as well as constraints that ensure these histories do define a valid joint policy are
at the heart of the formulation of a DEC-POMDP as a mixed linear program, as developped
in Sections 4 and 5. Thus, another contribution of our work is a better understanding of
the properties of optimal solutions to DEC-POMDPs, a knowledge that might lead to the
formulation of new approximate algorithms for DEC-POMDPs.

Another important contribution of this work is that we introduce heuristics for boost-
ing the performance of the mathematical programs we propose (see Section 6). These
heuristics take advantage of the succinctness of the DEC-POMDP model and of the knowl-
edge acquired regarding the structure of optimal policies. Consequently, we are able to
reduce the size of the mathematical programs (resulting also in reducing the time taken to
solve them). These heuristics constitute an important pre-processing step in solving the
programs. We present two types of heuristics: the elimination of extraneous histories which
reduces the size of the mixed integer linear programs and the introduction of cuts in the
mixed integer linear programs which reduces the time taken to solve a program.

On a more practical level, this article presents three different mixed integer linear
programs, two are more directly derived from the work of Koller, von Stegel and Megiddo
(see Table 4 and 5) and a third one is based solely on combinatorial considerations on the
individual policies and histories (see Table 3). The theoretical validity of these formula-
tions is backed by several theorems. We also conducted experimental evaluations of our
algorithms and of our heuristics on several classical DEC-POMDP problems. We were thus
able to confirm that our algorithms are quite comparable to dynamic programming exact
algorithms but outperformed by forward search algorithms like GMAA* (Oliehoek et al.,
2008). On some problems, though, MILPs are indeed faster by one order of magnitude or
two than GMAA*.

1.4 Overview of this Article

The remainder of this article is organized as follows. Section 2 introduces the formalism of
DEC-POMDP and some background on the classical algorithms, usually based on dynamic
programing. Then we expose our reformulation of the DEC-POMDP in sequence-form in
Section 3 where we also define various notions needed by the sequence-form. In Section 4,
we show how to use combinatorial properties of the sequence-form policies to derive a first
mixed integer linear program (MILP, in Table 3) for solving DEC-POMDP. By using game
theoretic concepts like Nash equilibrium, we take inspiration from previous work on games
in extensive form to design two other MILPs for solving DEC-POMDP (Tables 4, 5). These
MILPs are smaller in size and their detailed derivation is presented in Section 5. Our
contributed heuristics to speed up the practical resolutions of the various MILPs make
up the core of Section 6. Section 7 presents experimental validations of our MILP-based
algorithms on classical benchmarks of the DEC-POMDP literature as well as on randomly
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built problems. Finally, Section 8 analyzes and discusses our work and we conclude this
paper with Section 9.

2. Dec-POMDP

This section gives a formal definition of Decentralized Partially Observed Markov Decision
Processes as introduced by Bernstein et al. (2002). As described, a solution of a DEC-
POMDP is a policy defined on the space of information sets that has an optimal value.
This sections ends with a quick overview of the classical methods that have been developed
to solve DEC-POMDPs.

2.1 Formal Definition

A DEC-POMDP is defined as a tuple D = 〈 I, S, {Ai}, P, {Oi}, G, R, T , α 〉 where:

• I = {1, 2, · · · , n} is a set of agents.

• S is a finite set of states. The set of probability distributions over S shall be denoted
by ∆(S). Members of ∆(S) shall be called belief states.

• For each agent i ∈ I, Ai is a set of actions. A = ×i∈IAi denotes the set of joint
actions.

• P : S × A× S → [0, 1] is a state transition function. For each s, s′ ∈ S and for each
a ∈ A, P(s, a, s′) is the probability that the state of the problem in a period t is s′ if,
in period t− 1, its state was s and the agents performed the joint action a. Thus, for
any time period t ≥ 2, for each pair of states s, s′ ∈ S and for each joint action a ∈ A,
there holds:

P(s, a, s′) = Pr(st = s′|st−1 = s, at = a).

Thus, (S, A, P) defines a discrete-state, discrete-time controlled Markov process.

• For each agent i ∈ I, Oi is a set of observations. O = ×i∈IOi denotes the set of joint
observations.

• G : A × S × O → [0, 1] is a joint observation function. For each a ∈ A, for each
o ∈ O and for each s ∈ S, G(a, s, o) is the probability that the agents receive the
joint observation o (that is, each agent i receives the observation oi) if the state of
the problem in that period is s and if in the previous period the agents took the joint
action a. Thus, for any time period t ≥ 2, for each joint action a ∈ A, for each state
s ∈ S and for each joint observation o ∈ O, there holds:

G(a, s, o) = Pr(ot = o|st = s, at−1 = a).

• R : S ×A → R is a reward function. For each s ∈ S and for each a ∈ A, R(s, a) ∈ R

is the reward obtained by the agents if they take the joint action a when the state of
the process is s.
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• T is the horizon of the problem. The agents are allowed T joint-actions before the
process halts.

• α ∈ ∆(S) is the initial state of the DEC-POMDP. For each s ∈ S, α(s) denotes the
probability that the state of the problem in the first period is s.

As said, S, A and P define a controlled Markov Process where the next state depends
only on the previous state and on the joint action chosen by the agents. But the agents
do not have access to the state of the process and can only rely on observations, generally
partial and noisy, of this state, as specified by the observation function G. From time to
time, agents receive a non-zero reward according to the reward function R.

s0 s1 st

11o

n1o

a11

an1

a1t

antnto

1to

an0

a10

s2

Figure 1: DEC-POMDP. At every period t of the process, the environment is in state
st, every agent i receives observations oti and decides of its action ati. The joint
action 〈at1, a

t
2, · · · , a

t
n〉 alters the state of the process.

More specifically, as illustrated in Figure 1, the control of a DEC-POMDP by the n
agents unfolds over discrete time periods, t = 1, 2, · · · ,T as follows. In each period t, the
process is in a state denoted by st from S. In the first period t = 1, the state s1 is chosen
according to α and the agents take actions a1i . In each period t > 1 afterward, each agent
i ∈ I takes an action denoted by ati from Ai according to the agent’s policy. When the
agents take the joint action at = 〈at1, a

t
2, · · · , a

t
n〉, the following events occur:

1. The agents all obtain the same reward R(st, at).

2. The state st+1 is determined according to the function P with arguments st and at.

3. Each agent i ∈ I receives an observation ot+1
i from Oi. The joint observation ot+1 =

〈ot+1
1 , ot+1

2 , · · · , ot+1
n 〉 is determined by the function G with arguments st+1 and at.

4. The period changes from t to t + 1.

In this paper, the DEC-POMDP we are interested in have the following properties:
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• the horizon T is finite and known by the agents;

• agents cannot infer the exact state of the system from their joint observations (this is
the more general setting of DEC-POMDPs);

• agents do not observe actions and observations of the other agents. They are only
aware of their own observations and reward;

• agents have a perfect memory of their past; they can base their choice of action on
the sequence of past actions and observations. We speak of perfect recall setting;

• transition and observation functions are stationary, meaning that they do not depend
on the period t.

Solving a DEC-POMDPmeans finding the agents’ policies (i.e., their decision functions)
to optimize a given criterion based on the rewards received. The criterion we will work with
is called the cumulative reward and defined by:

E

[

T
∑

t=1

R(st, 〈at1, a
t
2, . . . , a

t
n〉)

]

(1)

where E is the mathematical expectation.

2.2 Example of DEC-POMDP

The problem known as the “Decentralized Tiger Problem” (hereby denoted MA-Tiger),
introduced by Nair, Tambe, Yokoo, Pynadath, and Marsella (2003), has been widely used
to test DEC-POMDPs algorithms. It is a variation of a problem previously introduced
for POMDPs (i.e., DEC-POMDPs with one agent) by Kaelbling, Littman, and Cassandra
(1998).

In this problem, we are given two agents confronted with two closed doors. Behind one
door is a tiger, behind the other an escape route. The agents do not know which door
leads to what. Each agent, independently of the other, can open one of the two doors or
listen carefully in order to detect the tiger. If either of them opens the wrong door, the
lives of both will be imperiled. If they both open the escape door, they will be free. The
agents have a limited time in which to decide which door to open. They can use this time
to gather information about the precise location of the tiger by listening carefully to detect
the location of the tiger. This problem can be formalized as a DEC-POMDP with:

• two states as the tiger is either behind the left door (sl) or the right door (sr);

• two agents, that must decide and act;

• three actions for each agent: open the left door (al), open the right door (ar) and
listen (ao);

• two observations, as the only thing the agent can observe is that they hear the tiger
on the left (ol) or on the right (or).
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The initial state is chosen according to a uniform distribution over S. As long as the door
remains closed, the state does not change but, when one door is opened, the state is reset
to either sl or sr with equal probability. The observations are noisy, reflecting the difficulty
of detecting the tiger. For example, when the tiger is on the left, the action ao produces
an observation ol only 85% of the time. So if both agents perform ao, the joint observation
(ol,ol) occurs with a probability of 0.85× 0.85 = 0.72. The reward function encourages the
agents to coordinate their actions as, for example, the reward when both open the escape
door (+20) is bigger than when one listens while the other opens the good door (+9). The
full state transition function, joint observation function and reward function are described
in the work of Nair et al. (2003).

2.3 Information Sets and Histories

An information set ϕ of agent i is a sequence (a1.o2.a2.o3 · · · .ot) of even length in which
the elements in odd positions are actions of the agent (members of Ai) and those in even
positions are observations of the agent (members of Oi). An information set of length 0
shall be called the null information set, denoted by ∅. An information set of length T −1
shall be called a terminal information set. The set of information sets of lengths less
than or equal to T − 1 shall be denoted by Φi.

We define a history of agent i ∈ I to be a sequence (a1.o2. a2. o3 · · · .ot.at) of odd
length in which the elements in odd positions are actions of the agent (members of Ai) and
those in even positions are observations of the agent (members of Oi). We define the length
of a history to be the number of actions in the history (t in our example). A history of
length T shall be called a terminal history. Histories of lengths less than T shall be called
non-terminal histories. The history of null length shall be denoted ∅. The information
set associated to an history h, denoted ϕ(h), is the information set composed by removing
from h its last action. If h is a history and o an observation, then h.o is an information set.

We shall denote by Ht
i the set of all possible histories of length t of agent i. Thus, H1

i is
just the set of actions Ai. We shall denote by Hi the set of histories of agent i of lengths
less than or equal to T . The size ni of Hi is thus:

ni = |Hi| =
∑T

t=1 |Ai|
t|Oi|

t−1 = |Ai|
(|Ai||Oi|)

T − 1

|Ai||Oi| − 1
. (2)

The set HT
i of terminal histories of agent i shall be denoted by Ei. The set Hi\H

T
i of

non-terminal histories of agent i shall be denoted by Ni.

A tuple 〈h1, h2, . . . , hn〉 made of one history for each agent is called a joint history. The
tuple obtained by removing the history hi from the joint history h is noted h−i and called
an i-reduced joint history.

Example Coming back to the MA-Tiger example, a set of valid histories could be: ∅, (ao),
(ao.ol.ao), (ao.or.ao), (ao.ol.ao.ol.ao), (ao.ol.ao.or.ar), (ao.or.ao.ol.ao) and (ao.or.ao.or.ar).
Incidently, this set of histories corresponds to the support of the policy (i.e., the histories
generated by using this policy) of the Figure 2, as explained in the next section.
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2.4 Policies

At each period of time, a policy must tell an agent what action to choose. This choice
can be based on whatever past and present knowledge the agent has about the process at
time t. One possibility is to define an individual policy πi of agent i as a mapping from
information sets to actions. More formally:

πi : Φi −→ ∆(Ai) (3)

Among the set Π of policies, three families are usually distinguished:

• Pure policies. A pure or deterministic policy maps a given information set to one
unique action. The set of pure policies for the agent i is denoted Π̂. Pure policies
could also be defined using trajectories of past observations only since actions, which
are chosen deterministically, can be reconstructed from the observations.

• Mixed policies. A mixed policy is a probability distribution over the set of pure
policies. Thus, an agent using a mixed policy will control the DEC-POMDP by using
a pure policy randomly chosen from a set of pure policies.

• Stochastic policies. A stochastic policy is the more general formulation as it associates
a probability distribution over actions to each history.

If we come back to the MA-Tiger problem (Section 2.2), Figure 2 gives a possible policy
for a horizon 2. As shown, a policy is classically represented by an action-observation tree.
In that kind of tree, each branch is labelled by an observation. For a given sequence of past
observations, one starts from the root node and follows the branches down to an action
node. This node contains the action to be executed by the agent when it has seen this
sequence of observations.

Observation sequence ∅ ol or ol.ol ol.or or.ol or.or
Chosen action ao ao ao al ao ao ar

ao

ao

ol

al

ol

ao

or

ao

or

ao

ol

ar

or

Figure 2: Pure policy for MA-Tiger. A pure policy maps sequences of observations to
actions. This can be represented by an action-observation tree.

A joint policy π = 〈π1, π2, · · · , πn〉 is an n-tuple where each πi is a policy for agent i.
Each of the individual policies must have the same horizon. For an agent i, we also define
the notion of an i-reduced joint policy π−i = 〈π1, · · · , πi−1, πi+1, · · · , πn〉 composed of
the policies of all the other agents. We thus have that π = 〈πi, π−i〉.
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2.5 Value Function

When executed by the agents, every T -horizon joint policy generates a probability distri-
bution over the possible sequences of reward from which one can compute the value of the
policy according to Equation 1. Thus the value of the joint policy π is formally defined as:

V (α, π) = E

[

T
∑

t=1

R(st, at)|π, α

]

(4)

given that the state in the first period is chosen according to α and that actions are chosen
according to π.

There is a recursive definition of the value function of a policy π that is also a way to
compute it when the horizon T is finite. This definition requires some concepts that we
shall now introduce.

Given a belief state β ∈ ∆(S), a joint action a ∈ A and a joint observation o ∈ O,
let T (o|β, a) denote the probability that the agents receive joint observation o if they take
joint action a in a period t in which the state is chosen according to β. This probability is
defined as

T (o|β, a) =
∑

s∈S

β(s)
∑

s′∈S

P(s, a, s′)G(a, s′, o) (5)

Given a belief state β ∈ ∆(S), a joint action a ∈ A and a joint observation o ∈ O , the
updated belief state βao ∈ ∆(S) of β with respect to a and o is defined as (for each
s′ ∈ S),

βao(s′) =
G(a,s′,o)[

∑
s∈S

β(s)P(s,a,s′)]
T (o|β,a) if T (o|β, a) > 0 (6)

βao(s′) = 0 if T (o|β, a) = 0 (7)

Given a belief state β ∈ ∆(S) and a joint action a ∈ A, R(β, a) denotes
∑

s∈S β(s)R(s, a).
Using the above definitions and notations, the value V (α, π) of π is defined as follows:

V (α, π) = V (α, π,∅) (8)

where V (α, π,∅) is defined by recursion using equations (9), (10) and (11), given below.
These equations are a straight reformulation of the classical Bellman equations for finite
horizon problems.

• For histories of null length

V (α, π,∅) = R(α, π(∅)) +
∑

o∈O

T (o|α, π(∅))V (απ(∅)o, π, o) (9)

π(∅) denotes the joint action 〈π1(∅), π2(∅), · · · , πn(∅)〉 and απ(∅)o denotes the
updated state of α given π(∅) and the joint observation o.
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• For non-terminal histories. For any α′ ∈ ∆(S), for each t of {1, . . . , T − 2}, for each
tuple of sequences of t observations o1:T = 〈o1:T1 , o1:T2 , · · · , o1:Tn 〉 where o1:Ti ∈ ×TOi

is a sequence of t observations of agent i ∈ I:

V (α′, π, o1:T ) = R(α′, π(o1:T )) +
∑

o∈O

T (o|α′, π(o1:T ))V (α′π(o1:T )o, π, o1:T .o) (10)

α′π(o1:T )o is the updated state of α′ given the joint action π(o1:T ) and joint observation
o = 〈o1, o2, · · · , on〉 and o1:T .o is the tuple of sequences of (t + 1) observations 〈o1:T1 .o1,
o1:T2 .o2, · · · , o

1:T
n .on〉.

• For terminal histories. For any α′ ∈ ∆(S), for each tuple of sequences of (T - 1)
observations o1:T−1 = 〈o1:T−1

1 , o1:T−1
2 , · · · , o1:T−1

n 〉:

V (α′, π, o1:T−1) = R(α, π(o1:T−1)) =
∑

s∈S

α′(s)R(s, π(o1:T−1)) (11)

An optimal policy π∗ is a policy with the best possible value, verifying:

V (α, π∗) ≥ V (α, π) ∀π ∈ Π. (12)

An important fact about DEC-POMDPs, based on the following theorem, is that we can
restrict ourselves to the set of pure policies when looking for a solution to a DEC-POMDP.

Theorem 2.1. A DEC-POMDP has at least one optimal pure joint policy.

Proof: See proof in the work of Nair et al. (2003). �

2.6 Overview of DEC-POMDPs Solutions and Limitations

As detailed in the work of Oliehoek et al. (2008), existing methods for solving DEC-
POMDPs with finite-horizon belong to several broad families: “brute force”, alternating
maximization, search algorithms and dynamic programming.

Brute Force The simplest approach for solving a DEC-POMDP is to enumerate all
possible joint policies and to evaluate them in order to find the optimal one. However, such
a method becomes quickly untractable as the number of joint policies is doubly exponential
in the horizon of the problem.

Alternating Maximization Following Chadès, Scherrer, and Charpillet (2002) and Nair
et al. (2003), one possible way to solve DEC-POMDPs is for each agent (or each small group
of agents) to alternatively search for a better policy while all the other agents freeze their
own policy. Called alternating maximization by Oliehoek and alternated co-evolution by
Chadès this method guarantees only to find a Nash equilibria, that is a locally optimal joint
policy.
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Heuristic Search Algorithms The concept was introduced by Szer, Charpillet, and
Zilberstein (2005) and relies on heuristic search for looking for an optimal joint policy,
using an admissible approximation of the value of the optimal joint policy. As the search
progresses, joint policies that will provably by worse that the current admissible solution are
pruned. Szer et al. used underlying MDPs or POMDPs to compute the admissible heuristic,
Oliehoek et al. (2008) introduced a better heuristic based on the resolution of a Bayesian
Game with a carefully crafted cost function. Currently, Oliehoek’s method called GMAA*
(for Generic Multi-Agent A*) is the quickest exact method on a large set of benchmarks.
But, as every exact method, it is limited to quite simple problems.

Dynamic Programming The work from Hansen, Bernstein, and Zilberstein (2004)
adapts solutions designed for POMDPs to the domain of DEC-POMDPs. The general
idea is to start with policies for 1 time step that are used to build 2 time step policies
and so on. But the process is clearly less efficient that the heuristic search approach as an
exponential number of policies must be constructed and evaluated at each iteration of the
algorithm. Some of these policies can be pruned but, once again, pruning is less efficient.

As exposed in more details in the paper by Oliehoek et al. (2008), several others ap-
proaches have been developed for subclasses of DEC-POMDPs. For example, special set-
tings where agents are allowed to communicate and exchange informations or settings where
the transition function can be split into independant transition functions for each agent have
been studied and found easier to solve than “generic” DEC-POMDPs.

3. Sequence-Form of DEC-POMDPs

This section introduces the fundamental concept of policies in “sequence-form”. A new
formulation of a DEC-POMDP is thus possible and this leads to a Non-Linear Program
(NLP) the solution of which defines an optimal solution to the DEC-POMDP.

3.1 Policies in Sequence-Form

A history function p of an agent i is a mapping from the set of histories to the interval
[0, 1]. The value p(h) is the weight of the history h for the history function p. A policy πi
defines a probability function over the set of histories of the agent i by saying that, for each
history hi of Hi, p(hi) is the conditional probability of hi given an observation sequence
(o0i .o

1
i . · · · .o

t
i) and πi.

If every policy defines a policy function, not every policy function can be associated to
a valid policy. Some constraints must be met. In fact, a history function p is a sequence-
form policy for agent i when the following constraints are met:

∑

a∈Ai

p(a) = 1, (13)

−p(h) +
∑

a∈Ai

p(h.o.a) = 0, ∀h ∈ Ni, ∀o ∈ Oi, (14)

where h.o.a denotes the history obtained on concatenating o and a to h. This definition
appears in a slightly different form as Lemma 5.1 in the work of Koller et al. (1994).
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Variables: x(h), ∀h ∈ Hi,

∑

a∈Ai

x(a) = 1 (15)

−x(h) +
∑

a∈Ai

x(h.o.a) = 0, ∀h ∈ Ni, ∀o ∈ Oi (16)

x(h) ≥ 0, ∀h ∈ Hi (17)

Table 1: Policy Constraints. This set of linear inequalities, once solved, provide a valid
sequence-form policy for the agent i. That is, from the weights x(h), it is possible
to define a policy for the agent i.

A sequence-form policy can be stochastic as the probability of choosing action a in the
information set h.o is p(h.o.a)/p(h). The support S(p) of a sequence-form policy is made
of the set of histories that have a non-negative weight, i.e. S(p) = {h ∈ Hi | p(h) > 0}. As
a sequence-form policy p defines a unique policy π for an agent, a sequence-form policy will
be called a policy in the rest of this paper when no ambiguity is present.

The set of policies in the sequence-form of agent i shall be denoted by Xi. The set of
pure policies in the sequence-form shall be denoted by X̂i ⊂ Xi.

In a way similar to the definitions of Section 2.4, we define a sequence-form joint
policy as a tuple of sequence-form policies, one for each agent. The weight of the joint
history h = 〈hi〉 of a sequence-form joint policy 〈p1, p2, · · · , pn〉 is the product

∏

i∈I pi(hi).
The set of joint policies in the sequence-form ×i∈IXi shall be denoted by X and the set of
i-reduced sequence-form joint policy is called X−i.

3.2 Policy Constraints

A policy of agent i in the sequence-form can be found by solving a set of linear inequalities
(LI) found in Table 1. These LI merely implement the definition of a policy in the sequence-
form. The LI contains one variable x(h) for each history h ∈ Hi to represent the weight of
h in the policy. A solution x∗ to these LI constitutes a policy in the sequence-form.

Example In the Section E.1 of the Appendices, the policy constraints for the decentralized
Tiger problem are given for 2 agents and a horizon of 2.

Notice that in the policy constraints of an agent, each variable is only constrained to be
non-negative whereas by the definition of a policy in sequence-form, the weight of a history
must be in the interval [0, 1]. Does it mean that a variable in a solution to the policy
constraints can assume a value higher than 1? Actually, the policy constraints are such
that they prevent any variable from assuming a value higher than 1 as the following lemma
shows.

Lemma 3.1. In every solution x∗ to (15)-(17), for each h ∈ Hi, x
∗(h) belongs to the [0, 1]

interval.
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Proof: This can be shown by forward induction.
Every x(h) being non-negative (see Eq. (17)), it is also the case for every action a of

Ai. Then, no x(a) can be greater than 1 otherwise constraint (15) would be violated. So,
∀h ∈ H1

i , (i.e. ∀a ∈ Ai), we have x(h) belong to [0, 1].
If every h of Ht

i is such that x(h) ∈ [0, 1], the previous reasoning applied using constraint
(16) leads evidently to the fact that x(h) ∈ [0, 1] for every h of Ht+1

i .
Thereby, by induction this holds for all t. �

Later in this article, in order to simplify the task of looking for joint policies, the policy
constraints LI will be used to find pure policies. Looking for pure policies is not a limitation
as finite-horizon DEC-POMDPs admit deterministic policies when the policies are defined
on information set. In fact, pure policies are needed in two of the three MILPs we build
in order to solve DEC-POMDPs, otherwise their derivation would not be possible (see
Sections 4 and 5.4).

Looking for pure policies, an obvious solution would be to impose that every variable
x(h) belongs to the set {0, 1}. But, when solving a mixed integer linear program, it is
generally a good idea to limit the number of integer variables as each integer variable is
a possible node for the branch and bound method used to assign integer values to the
variables. A more efficient implementation of a mixed integer linear program is to take
advantage of the following lemma to impose that only the weights of the terminal histories
take 0 or 1 as possible values.

Lemma 3.2. If in (15)-(17), (17) is replaced by,

x(h) ≥ 0, ∀h ∈ Ni (18)

x(h) ∈ {0, 1}, ∀h ∈ Ei (19)

then in every solution x∗ to the resulting LI, for each h ∈ Hi, x∗(h) = 0 or 1. We will
speak of a 0-1 LI.

Proof: We can prove this by backward induction. Let h be a history of length T - 1.
Due to (16), for each o ∈ Oi, there holds,

x∗(h) =
∑

a∈Ai

x∗(h.o.a). (20)

Since h is a history of length T - 1, each history h.o.a is a terminal history. Due to Lemma
3.1, x∗(h) ∈ [0, 1]. Therefore, the sum on the right hand side of the above equation is also
in [0, 1]. But due to (19), each x∗(h.o.a) ∈ {0, 1}. Hence the sum on the right hand side
is either 0 or 1, and not any value in between. Ergo, x∗(h) ∈ {0, 1} and not any value in
between. By this same reasoning, we can show that x∗(h) ∈ {0, 1} for every non-terminal
history h of length T - 2, T - 3, · · · , 1. �

To formulate the linear inequalities of Table 1 in memory, we require space that is only
exponential in the horizon. For each agent i ∈ I, the size of Hi is

∑T
t=1 |Ai|

t|Oi|
t−1. It is

then exponential in T and the number of variables in the LP is also exponential in T . The
number of constraints in the LI of Table 1 is

∑T−1
t=0 |Ai|

t|Oi|
t, meaning that the number of

constraints of the LI is also exponential in T .
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3.3 Sequence-Form of a DEC-POMDP

We are now able to give a formulation of a DEC-POMDP based on the use of sequence-form
policies. We want to stress that this is only a re-formulation, but as such will provide us
with new ways of solving DEC-POMDPs with mathematical programming.

Given a “classical” formulation of a DEC-POMDP (see Section 2.1), the equivalent
sequence-form DEC-POMDP is a tuple 〈I, {Hi}, Ψ, R〉 where:

• I = {1, 2, · · · , n} is a set of agents.

• For each agent i ∈ I, Hi is the set of histories of length less than or equal to T for
the agent i, as defined in the previous section. Each set Hi is derived using the sets
Ai and Oi.

• Ψ is the joint history conditional probability function. For each joint history j ∈ H,
Ψ(α, j) is the probability of j occurring conditional on the agents taking joint actions
according to it and given that the initial state of the DEC-POMDP is α. This function
is derived using the set of states S, the state transition function P and the joint
observation function G.

• R is the joint history value. For each joint history j ∈ H, R(α, j) is the value of
the expected reward the agents obtain if the joint history j occurs. This function is
derived using the set of states S, the state transition function P, the joint observation
function G and the reward function R. Alternatively, R can be described as a function
of Ψ and R.

This formulation folds S, P and G into Ψ and R by relying on the set of histories. We
will now give more details about the computation of Ψ and R.

Ψ(α, j) is the conditional probability that the sequence of joint observations received
by the agents till period t is (o1(j).o2(j).· · · . ot−1(j)) if the sequence of joint actions
taken by them till period t - 1 is (a1(j). a2(j). · · · . at−1(j)) and the initial state of the
DEC-POMDP is α. That is,

Ψ(α, j) = Prob.(o1(j).o2(j). · · · .ot−1(j)|α, a1(j).a2(j). · · · .at−1(j)) (21)

This probability is the product of the probabilities of seeing observation ok(j) given the
appropriate belief state and action chosen at time k, that is:

Ψ(α, j) =
t−1
∏

k=1

T (ok(j)|βk−1
j , ak(j)) (22)

where βk
j is the probability distribution on S given that the agents have followed the joint

history j up to time k, that is:

βk
j (s) = Prob.(s|o1(j).a1(j). · · · .ok(j)). (23)
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Variables: xi(h), ∀i ∈ I, ∀h ∈ Hi

Maximize
∑

j∈E

R(α, j)
∏

i∈I

xi(ji) (27)

subject to

∑

a∈Ai

xi(a) = 1, ∀i ∈ I (28)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, ∀i ∈ I, ∀h ∈ Ni, ∀o ∈ Oi (29)

xi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Hi (30)

Table 2: NLP. This non-linear program expresses the constraints for finding a sequence-
form joint policy that is an optimal solution to a DEC-POMDP.

Regarding the value of a joint history, it is defined by:

R(α, j) = R(α, j)Ψ(α, j) (24)

where

R(α, j) =

t
∑

k=1

∑

s∈S

βk−1
j (s)R(s, ak(j)). (25)

Thus, V(α, p), the value of a sequence-form joint policy p, is the weighted sum of
the value of the histories in its support:

V(α, p) =
∑

j∈H

p(j)R(α, j) (26)

with p(j) =
∏

i∈I pi(ji).

3.4 Non-Linear Program for Solving DEC-POMDPs.

By using the sequence-form formulation of a DEC-POMDP, we are able to express joint
policies as sets of linear constraints and to assess the value of every policy. Solving a DEC-
POMDP amounts to finding the policy with the maximal value, which can be done with the
non-linear program (NLP) of Table 2 where, once again, the xi variables are the weights of
the histories for the agent i.

Example An example of the formulation of such an NLP can be found in the Appendices,
in Section E.2. It is given for the decentralized Tiger problem with 2 agents and an horizon
of 2.

The constraints of the program form a convex set, but the objective function is not
concave (as explained in appendix A). In the general case, solving non-linear program is
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very difficult and there are no generalized method that guarantee finding a global maximum
point. However, this particular NLP is in fact a Multilinear Mathematical Program (see
Drenick, 1992) and this kind of programs are still very difficult to solve. When only two
agents are considered, one speaks of bilinear programs, that can be solved more easily
(Petrik & Zilberstein, 2009; Horst & Tuy, 2003).

An evident, but inefficient, method to find a global maximum point is to evaluate all the
extreme points of the set of feasible solutions of the program since it is known that every
global as well as local maximum point of a non-concave function lies at an extreme point of
such a set (Fletcher, 1987). This is an inefficient method because there is no test that tells
if an extreme point is a local maximum point or a global maximum point. Hence, unless
all extreme points are evaluated, we cannot be sure of having obtained a global maximum
point. The set of feasible solutions to the NLP is X, the set of T -step joint policies. The
set of extreme points of this set is X̂, the set of pure T -step joint policies, whose number is
doubly exponential in T and exponential in n. So enumerating the extreme points for this
NLP is untractable.

Our approach, developed in the next sections, is to linearize the objective function of
this NLP in order to deal only with linear programs. We will describe two ways for doing
this: one is based on combinatorial consideration (Section 4) and the other is based on
game theory concepts (Section 5). In both cases, this shall mean adding more variables and
constraints to the NLP, but upon doing so, we shall derive mixed integer linear programs
for which it is possible to find a global maximum point and hence an optimal joint policy
of the DEC-POMDP.

4. From Combinatorial Considerations to Mathematical Programming

This section explains how it is possible to use combinatorial properties of DEC-POMDPs
to transform the previous NLP into a mixed integer linear program. As shown, this mathe-
matical program belongs to the family of 0-1 Mixed Integer Linear Programs, meaning that
some variables of this linear program must take integer values in the set {0, 1}.

4.1 Linearization of the Objective Function

Borrowing ideas from the field of Quadratic Assignment Problems (Papadimitriou & Stei-
glitz, 1982), we turn the non-linear objective function of the previous NLP into a linear
objective function and linear constraints involving new variables z that must take integer
values. The variable z(j) represents the product of the xi(ji) variables.

Thus, the objective function that was:

maximize
∑

j∈E

R(α, j)
∏

i∈I

xi(ji) (31)

can now be rewritten as

maximize
∑

j∈E

R(α, j)z(j) (32)

where j = 〈j1, j2, · · · , jn〉.
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We must ensure that there is a two way mapping between the value of the new variables
z and the x variables for any solution of the mathematical program, that is:

z∗(j) =
∏

i∈I

x∗i (ji). (33)

For this, we will restrict ourself to pure policies where the x variables can only be 0 or 1.
In that case, the previous constraint (33) becomes:

z∗(j) = 1 ⇔ x∗i (ji) = 1, ∀i ∈ I (34)

There, we take advantage on the fact that the support of a pure policy for an agent i is
composed of |Oi|

T−1 terminal histories to express these new constraints. On the one hand,
to guarantee that z(j) is equal to 1 only when enough x variables are also equal to 1, we
write:

n
∑

i=1

xi(ji)− nz(j) ≥ 0, ∀j ∈ E . (35)

On the other hand, to limit the number of z(j) variables that can take a value of 1, we will
enumerate the number of joint terminal histories to end up with:

∑

j∈E

z(j) =
∏

i∈I

|Oi|
T−1. (36)

The constraints (35) would weight heavily on any mathematical program as there would
be one constraint for each terminal joint history, a number which is exponential in n and
T . Our idea to reduce this number of constraints is not to reason about joint histories
but with individual histories. An history h of agent i is part of the support of the solution
of the problem (i.e., xi(h) = 1) if and only if the number of joint histories it belongs to
(
∑

j′∈E−i
z(〈h, j′〉)) is

∏

k∈I\{i} |Ok|
T−1. Then, we suggest to replace the

∏

|Ei| constraints
(35)

n
∑

i=1

xi(ji)− nz(j) ≥ 0, ∀j ∈ E . (35)

by the
∑

|Ei| constraints

∑

j′∈E−i

z(〈h, j′〉) =

∏

k∈I |Ok|
T−1

|Oi|T−1
xi(h)

= xi(h)
∏

k∈I\{i}

|Ok|
T−1, ∀i ∈ I, ∀h ∈ Ei. (37)

4.2 Fewer Integer Variables

The linearization of the objective function rely on the fact that we are dealing with pure
policies, meaning that every x and z variable is supposed to value either 0 or 1. As solving
linear programs with integer variables is usually based on the “branch and bound” technique
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Variables:
xi(h), ∀i ∈ I, ∀h ∈ Hi

z(j), ∀j ∈ E

Maximize
∑

j∈E

R(α, j)z(j) (38)

subject to:

∑

a∈Ai

xi(a) = 1, ∀i ∈ I (39)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, ∀i ∈ I, ∀h ∈ Ni, ∀o ∈ Oi (40)

∑

j′∈HT
−i

z(〈h, j′〉) = xi(h)
∏

k∈I\{i}

|Ok|
T−1, ∀i ∈ I, ∀h ∈ Ei (41)

∑

j∈E

z(j) =
∏

i∈I

|Oi|
T−1 (42)

xi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Ni (43)

xi(h) ∈ {0, 1}, ∀i ∈ I, ∀h ∈ Ei (44)

z(j) ∈ [0, 1], ∀j ∈ E (45)

Table 3: MILP. This 0-1 mixed integer linear program finds a sequence-form joint policy
that is an optimal solution to a DEC-POMDP.

(Fletcher, 1987), for efficiency reasons, it is important to reduce the number of integer
variables in our mathematical programs.

As done in Section 3.2, we can relax most x variables and allow them to take non-negative
values provided that the x values for terminal histories are constrained to integer values.
Furthermore, as proved by the following lemma, these constraints on x also guarantee that
z variables only take their value in {0, 1}.

We eventually end up with the following linear program with real and integer variables,
thus called an 0-1 mixed integer linear program (MILP). The MILP is shown in Table 3.

Example In Section E.3 of the Appendices, an example if such MILP is given for the
problem of the decentralized Tiger for 2 agents and an horizon of 2.

Lemma 4.1. In every solution (x∗, z∗) to the MILP of Table 3, for each j ∈ E, z∗(j) is
either 0 or 1.

Proof: Let (x∗, z∗) be a solution of MILP. Let,

S(z) = {j ∈ E|z∗(j) > 0} (46)

Si(xi) = {h ∈ Ei|x
∗
i (h) = 1}, ∀i ∈ I (47)

Si(z, j
′) = {j ∈ E|j−i = j′, z∗(j) > 0}, ∀i ∈ I, ∀j′ ∈ E−i (48)
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Now, due to (42) and (45), |S(z)| ≥
∏

i∈I |Oi|
T−1. By showing that |S(z)| ≤

∏

i∈I |Oi|
T−1,

we shall establish that |S(z)| =
∏

i∈I |Oi|
T−1. Then due to the upper bound of 1 on each z

variable, the implication will be that z∗(j) is 0 or 1 for each terminal joint history j thus
proving the statement of the lemma.

Note that by Lemma (3.2), for each agent i, x∗i is a pure policy. Therefore, we have that
|Si(x)| = |Oi|

T−1. This means that in the set of constraints (41), an i-reduced terminal
joint history j′ ∈ E−i will appear on the right hand side not more than |Oi|

T−1 times when
in the left hand side, we have x∗i (h) = 1. Thus, ∀j′ ∈ E−i,

|Si(z, j
′)| ≤ |Oi|

T−1. (49)

Now, we know that for each agent i and for each history h ∈ Hi , x
∗
i (h) is either 0 or 1 since

x∗i is a pure policy. So, given an i-reduced terminal joint history j′,
∏

k∈I\{i} x
∗
k(j

′
k) is either

0 or 1. Secondly, due to (41), the following implication clearly holds for each terminal joint
history j,

z∗(j) > 0 ⇒ x∗i (ji) = 1, ∀i ∈ I. (50)

Therefore, we obtain

|Si(z, j
′)| ≤ |Oi|

T−1 (51)

= |Oi|
T−1

∏

k∈I\{i}

x∗k(j
′
k). (52)

As a consequence,

∑

j′∈E−i

|Si(z, j
′)| ≤

∑

j′∈E−i

|Oi|
T−1

∏

k∈I\{i}

x∗k(j
′
k) (53)

= |Oi|
T−1

∑

j′∈E−i

∏

k∈I\{i}

x∗k(j
′
k) (54)

= |Oi|
T−1

∏

k∈I\{i}

∑

h′∈Ek

x∗k(h
′) (55)

= |Oi|
T−1

∏

k∈I\{i}

|Ok|
T−1 (56)

=
∏

j∈I

|Oj |
T−1. (57)

Since
⋃

j′∈E−i
Si(z, j

′) = S(z), there holds that
∑

j′∈E−i
|Si(z, j

′)| = |S(z)|. Hence,

|S(z)| ≤
∏

j∈I

|Oj |
T−1. (58)

Thus the statement of the lemma is proved. �
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4.3 Summary

By using combinatorial considerations, it is possible to design a 0-1 MILP for solving a given
DEC-POMDP. As proved by theorem 4.1, the solution of this MILP defines an optimal joint
policy for the DEC-POMDP. Nevertheless, this MILP is quite large, with O(kT ) constraints
and

∑

i |Hi|+
∏

i |Ei| = O(knT ) variables, O(kT ) of these variables must take integer values.
The next section details another method for the linearization of NLP which leads to a
“smaller” mathematical program for the 2-agent case.

Theorem 4.1. Given a solution (x∗, z∗) to MILP, x∗ = 〈x∗1, x∗2, · · · , x∗n〉 is a pure
T -period optimal joint policy in sequence-form.

Proof: Due to the policy constraints and the domain constraints of each agent, each x∗i
is a pure sequence-form policy of agent i. Due to the constraints (41)-(42), each z∗ values 1
if and only if the product

∏

i∈I xi(ji) values 1. Then, by maximizing the objective function
we are effectively maximizing the value of the sequence-form policy 〈x∗1, x

∗
2, · · · , x

∗
n〉. Thus,

〈x∗1, x
∗
2, · · · , x

∗
n〉 is an optimal joint policy of the original DEC-POMDP. �

5. From Game-Theoretical Considerations to Mathematical

Programming

This section borrows concepts like “Nash equilibrium” and “regret” from game theory in
order to design yet another 0-1 Mixed Integer Linear Program for solving DEC-POMDPs.
In fact, two MILPs are designed, one that can only be applied for 2 agents and the other
one for any number of agents. The main objective of this part is to derive a smaller
mathematical program for the 2 agent case. Indeed, MILP-2 agents (see Table 4) has
slightly less variables and constraints than MILP (see Table 3) and thus might prove easier
to solve. On the other hand, when more than 2 agents are considered, the new derivation
leads to a MILP which is only given for completeness as it is bigger than MILP.

Links between the fields of multiagent systems and game theory are numerous in the
literature (see, for example, Sandholm, 1999; Parsons & Wooldridge, 2002). We will elabo-
rate on the fact that the optimal policy of a DEC-POMDP is a Nash Equilibrium. It is in
fact the Nash Equilibrium with the highest utility as the agents all share the same reward.

For the 2-agent case, the derivation we make in order to build the MILP is similar to
the first derivation of Sandholm, Gilpin, and Conitzer (2005). We give more details of this
derivation and adapt it to DEC-POMDP by adding an objective function to it. For more
than 2 agents, our derivation can still be use to find Nash equilibriae with pure strategies.

For the rest of this article, we will make no distinction between a policy, a sequence-form
policy or a strategy of an agent as, in our context, these concepts are equivalent. Borrowing
from game theory, a joint policy will be denoted p or q, an individual policy pi or qi and a
i-reduced policy p−i or q−i.

5.1 Nash Equilibrium

A Nash Equilibrium is a joint policy in which each policy is a best response to the reduced
joint policy formed by the other policies of the joint policy. In the context of a sequence-form
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DEC-POMDP, a policy pi ∈ Xi of agent i is said to be a best response to an i-reduced
joint policy q−i ∈ X−i if there holds that

V(α, 〈pi, q−i〉)− V(α, 〈p′i, q−i〉) ≥ 0, ∀p′i ∈ Xi. (59)

A joint policy p ∈ X is a Nash Equilibrium if there holds that

V(α, p) − V(α, 〈p′i, p−i〉) ≥ 0, ∀i ∈ I, ∀p′i ∈ Xi. (60)

That is,

∑

h∈Ei

∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

pk(j
′
k)
{

pi(h)− p′i(h)
}

≥ 0, ∀i ∈ I, ∀p′i ∈ Xi. (61)

The derivation of the necessary conditions for a Nash equilibrium consists of deriving
the necessary conditions for a policy to be a best response to a reduced joint policy. The
following program finds a policy for an agent i that is a best response to an i-reduced joint
policy q−i ∈ X−i. Constraints (63)-(64) ensure that the policy defines a valid joint policy
(see Section 3.2) and the objective function is a traduction of the concept of best response.

Variables: xi(h), ∀i ∈ I, ∀h ∈ Hi

Maximize
∑

h∈Ei







∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k)







xi(h) (62)

subject to:

∑

a∈Ai

xi(a) = 1 (63)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, ∀h ∈ Ni, ∀o ∈ Oi (64)

xi(h) ≥ 0, ∀h ∈ Hi. (65)

This linear program (LP) must still be refined so that its solution is not only a best
response for agent i but a “global” best response, i.e., the policy of each agent is a best
response to all the other agents. This will mean introducing new variables (a set of variable
for each agent). The main point will be to adapt the objective function as the current
objective function, when applied to find “global” best response, would lead to a non-linear
objective function where product of weights of policies would appear. To do this, we will
make use of the dual of the program (LP).

The linear program (LP) has one variable xi(h) for each history h ∈ Hi representing
the weight of h. It has one constraint per information set of agent i. In other words, each
constraint of the linear program (LP) is uniquely labeled by an information set. For instance,
the constraint (63) is labeled by the null information set ∅, and for each nonterminal
history h and for each observation o, the corresponding constraint in (64) is labeled by the
information set h.o. Thus, (LP) has ni variables and mi constraints.

As described in the appendix (see appendix B), the dual of (LP) is expressed as:
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Variables: yi(ϕ), ∀ϕ ∈ Φi

Minimize yi(∅) (66)

subject to:

yi(ϕ(h)) −
∑

o∈Oi

yi(h.o) ≥ 0, ∀h ∈ Ni (67)

yi(ϕ(h)) −
∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k) ≥ 0, ∀h ∈ Ei (68)

yi(ϕ) ∈ (−∞,+∞), ∀ϕ ∈ Φi (69)

where ϕ(h) denotes the information set to which h belongs. The dual has one free variable
yi()̇ for every information set of agent i. This is why the function ϕ(h) (defined in Sec-
tion 2.3) appears as a mapping from histories to information sets1. The dual program has
one constraint per history of the agent. Thus, the dual has mi variables and ni constraints.
Note that the objective of the dual is to minimize only yi(∅) because in the primal (LP),
the right hand side of all the constraints, except the very first one, is a 0.

The theorem of duality (see the appendix B), applied to the primal (LP) (62)-(65) and the
transformed dual (66)-(69), says that their solutions have the same value. Mathematically,
that means that:

∑

h∈Ei







∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k)







x∗i (h) = y∗i (∅). (70)

Thus, the value of the joint policy 〈x∗i , q−i〉 can be expressed either as

V(α, 〈x∗i , q−i〉) =
∑

h∈Ei

{

∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k)
}

x∗i (h) (71)

or as

V(α, 〈x∗i , q−i〉) = y∗i (∅). (72)

Due to the constraints (63) and (64) of the primal LP, there holds that

y∗i (∅) = y∗i (∅)
{

∑

a∈Ai

x∗i (a)
}

+
∑

h∈Ni

∑

o∈Oi

y∗i (h.o)
{

− x∗i (h) +
∑

a∈Ai

x∗i (h.o.a)
}

(73)

as constraint (63) guarantees that the first term in the braces is 1 and constraints (65)
guarantee that each of the remaining terms inside the braces is 0. The right hand side of
(73) can be rewritten as
∑

a∈Ai

x∗i (a)
{

y∗i (∅) −
∑

o∈Oi
y∗i (a.o)

}

+
∑

h∈Ni\Ai

x∗i (h)
{

y∗i (ϕ(h)) −
∑

o∈Oi

y∗i (h.o)
}

+
∑

h∈Ei

x∗i (h)y
∗
i (ϕ(h))

=
∑

h∈Ni
x∗i (h)

{

y∗i (ϕ(h))−
∑

o∈Oi

y∗i (h.o)
}

+
∑

h∈Ei

x∗i (h)y
∗
i (ϕ(h)) (74)

1. As h.o is an information set, yi(h.o) is a shortcut in writing for yi(ϕ(h.o)).
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So, combining equations (70) and (74), we get

∑

h∈Ni

x∗i (h)
{

y∗i (ϕ(h)) −
∑

o∈Oi

y∗i (h.o)
}

+
∑

h∈Ei

x∗i (h)
{

y∗i (ϕ(h)) −
∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k)
}

= 0 (75)

It is time to introduce supplementary variables w for each information set. These vari-
ables, usually called slack variables, are defined as:

yi(ϕ(h)) −
∑

o∈Oi

yi(h.o) = wi(h), ∀h ∈ Ni (76)

yi(ϕ(h)) −
∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

qk(j
′
k) = wi(h), ∀h ∈ Ei. (77)

As shown is Section C of the appendix, these slack variables correspond to the concept of
regret as defined in game theory. The regret of an history expresses the loss in accumulated
reward the agent incurs when he acts according to this history rather than according to a
history which would belong to the optimal joint policy.

Thanks to the slack variables, we can furthermore rewrite (75) as simply

∑

h∈Ni

x∗i (h)w
∗
i (h) +

∑

h∈Ei

x∗i (h)w
∗
i (h) = 0 (78)

∑

h∈Hi

x∗i (h)w
∗
i (h) = 0. (79)

Now, (79) is a sum of ni products, ni being the size of Hi. Each product in this sum is
necessarily 0 because both xi(h) and wi(h) are constrained to be nonnegative in the primal
and the dual respectively. This property is strongly linked to the complementary slackness
optimality criterion in linear programs (see, for example, Vanderbei, 2008). Hence, (79) is
equivalent to

x∗i (h)w
∗
i (h) = 0, ∀h ∈ Hi. (80)

Back to the framework of DEC-POMDPs, these constraints are written:

pi(h)µi(〈h, q−i〉) = 0, ∀h ∈ Hi. (81)

To sum up, solving the following mathematical program would give an optimal joint
policy for the DEC-POMDP. But constraints (87) are non-linear and thus prevent us from
solving this program directly. The linearization of these constraints, called complementarity
constraints, is the subject of the next section.

Variables:
xi(h), wi(h) ∀i ∈ I and ∀h ∈ Hi

yi(ϕ) ∀i ∈ I and ∀ϕ ∈ Φi

Maximize y1(∅) (82)
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subject to:

∑

a∈Ai

xi(a) = 1 (83)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, ∀i ∈ I, ∀h ∈ Ni, ∀o ∈ Oi (84)

yi(ϕ(h)) −
∑

o∈Oi

yi(h.o) = wi(h), ∀i ∈ I, ∀h ∈ Ni (85)

yi(ϕ(h)) −
∑

j′∈E−i

R(α, 〈h, j′〉)
∏

k∈I\{i}

xk(j
′
k) = wi(h), ∀i ∈ I, ∀h ∈ Ei (86)

xi(h)wi(h) = 0, ∀i ∈ I, ∀h ∈ Hi (87)

xi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Hi (88)

wi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Hi (89)

yi(ϕ) ∈ (−∞,+∞), ∀i ∈ I, ∀ϕ ∈ Φi (90)

5.2 Dealing with Complementarity Constraints

This section explains how the non-linear constraints xi(h)wi(h) = 0 in the previous math-
ematical program can be turned into sets of linear constraints and thus lead to a mixed
integer linear programming formulation of the solution of a DEC-POMDP.

Consider a complementarity constraint ab = 0 in variables a and b. Assume that the
lower bound on the values of a and b is 0. Let the upper bounds on the values of a and b be
respectively ua and ub. Now let c be a 0-1 variable. Then, the complementarity constraint
ab = 0 can be separated into the following equivalent pair of linear constraints,

a ≤ uac (91)

b ≤ ub(1− c). (92)

In other words, if this pair of constraints is satisfied, then it is surely the case that ab = 0.
This is easily verified. c can either be 0 or 1. If c = 0, then a will be set to 0 because a is
constrained to be no more than uac (and not less than 0); if c = 1, then b will be set to 0
since b is constrained to be not more than ub(1 − c) (and not less than 0). In either case,
ab = 0.

Now consider each complementarity constraint xi(h)wi(h) = 0 from the non-linear pro-
gram (82)-(90) above. We wish to separate each constraint into a pair of linear constraints.
We recall that xi(h) represents the weight of h and wi(h) represents the regret of h. The
first requirement to convert this constraint to a pair of linear constraints is that the lower
bound on the values of the two terms be 0. This is indeed the case since xi(h) and wi(h)
are both constrained to be non-negative in the NLP. Next, we require upper bounds on the
weights of histories and regrets of histories. We have shown in Lemma 3.1 that the upper
bound on the value of xi(h) for each h is 1. For the upper bounds on the regrets of histories,
we require some calculus.
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In any policy pi of agent i there holds that
∑

h∈Ei

pi(h) = |Oi|
T−1. (93)

Therefore, in every i-reduced joint policy 〈q1, q2, · · · , qn〉 ∈ X−i, there holds

∑

j′∈E−i

∏

k∈I\{i}

qk(j
′
k) =

∏

k∈I\{i}

|Ok|
T−1 (94)

Since the regret of a terminal history h of agent i given 〈q1, q2, · · · , qn〉 is defined as

µi(h, q) = max
h′∈ϕ(h)

∑

j′∈E−i

∏

k∈I\{i}

qk(j
′
k)

{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

, (95)

we can conclude that an upper bound Ui(h) on the regret of a terminal history h ∈ Ei
of agent i is,

Ui(h) =
∏

k∈I\{i}

|Ok|
T−1

{

max
h′∈ϕ(h)

max
j′∈E−i

R(α, 〈h′, j′〉)− min
j′′∈E−i

R(α, 〈h, j′′〉)

}

. (96)

Now let us consider the upper bounds on the regrets of non-terminal histories. Let ϕ be
an information set of length t of agent i. Let Ei(ϕ) ⊆ Ei denote the set of terminal histories
of agent i such the first 2t elements of each history in the set are identical to ϕ. Let h be a
history of length t ≤ T of agent i. Let Ei(h) ⊆ Ei denote the set of terminal histories such
that the first 2t - 1 elements of each history in the set are identical to h. Since in any policy
pi of agent i, there holds

∑

h′∈Ei(h)

pi(h
′) ≤ |Oi|

T−t (97)

we can conclude that an upper bound Ui(h) on the regret of a nonterminal history
h ∈ Ni of length t agent i is

Ui(h) = Li

{

max
h′∈Ei(ϕ(h))

max
j′∈E−i

R(α, 〈h′, j′〉)− min
g∈Ei(h)

min
j′′∈E−i

R(α, 〈g, j′′〉)

}

(98)

where

Li = |Oi|
T−t

∏

k∈I\{i}

|Ok|
T−1. (99)

Notice that if t = T (that is, h is terminal) (98) reduces to (96).

So, the complementarity constraint xi(h)wi(h) = 0 can be separated into a pair of linear
constraints by using a 0-1 variable bi(h) as follows,

xi(h) ≤ 1− bi(h) (100)

wi ≤ Ui(h)bi(h) (101)

bi(h) ∈ {0, 1} (102)
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Variables:
xi(h), wi(h) and bi(h) for i ∈ {1, 2} and ∀h ∈ Hi

yi(ϕ) for i ∈ {1, 2} and ∀ϕ ∈ Φi

Maximize y1(∅) (103)

subject to:

∑

a∈Ai

xi(a) = 1 (104)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, i = 1, 2, ∀h ∈ Ni, ∀o ∈ Oi (105)

yi(ϕ(h)) −
∑

o∈Oi

yi(h.o) = wi(h), i = 1, 2, ∀h ∈ Ni (106)

y1(ϕ(h)) −
∑

h′∈E2

R(α, 〈h, h′〉)x2(h
′) = w1(h), ∀h ∈ E1 (107)

y2(ϕ(h)) −
∑

h′∈E1

R(α, 〈h′, h〉)x1(h
′) = w2(h), ∀h ∈ E2 (108)

xi(h) ≤ 1− bi(h), i = 1, 2, ∀h ∈ Hi (109)

wi(h) ≤ Ui(h)bi(h), i = 1, 2, ∀h ∈ Hi (110)

xi(h) ≥ 0, i = 1, 2, ∀h ∈ Hi (111)

wi(h) ≥ 0, i = 1, 2, ∀h ∈ Hi (112)

bi(h) ∈ {0, 1}, i = 1, 2, ∀h ∈ Hi (113)

yi(ϕ) ∈ (−∞,+∞), i = 1, 2, ∀ϕ ∈ Φi (114)

Table 4: MILP-2 agents. This 0-1 mixed integer linear program, derived from game
theoretic considerations, finds optimal stochastic joint policies for DEC-POMDPs
with 2 agents.

5.3 Program for 2 Agents

When we combine the policy constraints (Section 3.2), the constraints we have just seen
for a policy to be a best response (Sections 5.1, 5.2) and a maximization of the value of the
joint policy, we can derive a 0-1 mixed integer linear program the solution of which is an
optimal joint policy for a DEC-POMDP for 2 agents. Table 4 details this program that we
will call MILP-2 agents.

Example The formulation of the decentralized Tiger problem for 2 agents and for an
horizon of 2 can be found in the appendices, in Section E.4

The variables of the program are the vectors xi, wi, bi and yi for each agent i. Note that
for each agent i ∈ I and for each history h of agent i, Ui(h) denotes the upper bound on
the regret of history h.
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A solution (x∗, y∗, w∗, b∗) to MILP-2 agents consists of the following quantities: (i)
an optimal joint policy x∗ = 〈x∗1, x

∗
2〉 which may be stochastic; (ii) for each agent i = 1,

2, for each history h ∈ Hi, w
∗
i (h), the regret of h given the policy x∗−i of the other agent;

(iii) for each agent i = 1, 2, for each information set ϕ ∈ Φi, y
∗
i (ϕ), the value of ϕ given

the policy x−i of the other agent; (iv) for each agent i = 1, 2, the vector b∗i simply tells us
which histories are not in the support of x∗i ; each history h of agent i such that b∗i (h) = 1 is
not in the support of x∗i . Note that we can replace y1(∅) by y2(∅) in the objective function
without affecting the program. We have the following result.

Theorem 5.1. Given a solution (x∗, w∗, y∗, b∗) to MILP-2 agents, x∗ = 〈x∗1, x
∗
2〉 is an

optimal joint policy in sequence-form.

Proof: Due to the policy constraints of each agent, each x∗i is a sequence-form policy of
agent i. Due to the constraints (106)-(108), y∗i contains the values of the information sets
of agent i given x∗−i. Due to the complementarity constraints (109)-(110), each x∗i is a best
response to x∗−i. Thus 〈x∗1, x

∗
2〉 is a Nash equilibrium. Finally, by maximizing the value

of the null information set of agent 1, we are effectively maximizing the value of 〈x∗1, x
∗
2〉.

Thus 〈x∗1, x
∗
2〉 is an optimal joint policy. �

In comparison with the MILP presented before in Table 3, MILP-2 agents should
constitutes a particularly effective program in term of computation time for finding a 2-
agent optimal T -period joint policy because it is a much smaller program. While the number
of variables required by MILP is exponential in T and in n, the number of variables required
by MILP-2 agents is exponential only in T . This represents a major reduction in size
that should lead to an improvement in term of computation time.

5.4 Program for 3 or More Agents

When the number of agents is more than 2, the constraint (86) of the non-linear program
(82)-(90) is no longer a complementarity constraint between 2 variables that could be lin-
earized as before. In particular, the term

∏

k∈I\{i} xk(j
′
k) of the constraint (86) involves as

many variables as there are different agents. To linearize this term, we will restrict our-
selves once again to pure joint policies and exploit some combinatorial facts on the number
of histories involved. This leads to the 0-1 mixed linear program called MILP-n agents
and depicted in Table 5.

The variables of the program MILP-n agents are the vectors xi, wi, bi and yi for each
agent i and the vector z. We have the following result.

Theorem 5.2. Given a solution (x∗, w∗, y∗, b∗, z∗) to MILP-n agents, x∗ = 〈x∗1, x
∗
2,

· · · , x∗n〉 is a pure T -period optimal joint policy in sequence-form.

Proof: Due to the policy constraints and the domain constraints of each agent, each
x∗i is a pure sequence-form policy of agent i. Due to the constraints (118)-(119), each y∗i
contains the values of the information sets of agent i given x∗−i. Due to the complementarity
constraints (122)-(123), each x∗i is a best response to x∗−i. Thus x∗ is a Nash equilibrium.
Finally, by maximizing the value of the null information set of agent 1, we are effectively
maximizing the value of x∗. Thus x∗ is an optimal joint policy. �
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Variables:
xi(h), wi(h) and bi(h) ∀i ∈ I and ∀h ∈ Hi

yi(ϕ) ∀i ∈ I, ∀ϕ ∈ Φi

z(j) ∀j ∈ E

Maximize y1(∅) (115)

subject to:

∑

a∈Ai

xi(a) = 1 (116)

−xi(h) +
∑

a∈Ai

xi(h.o.a) = 0, ∀i ∈ I, ∀h ∈ Ni, ∀o ∈ Oi (117)

yi(ϕ(h)) −
∑

o∈Oi

yi(h.o) = wi(h), ∀i ∈ I, ∀h ∈ Ni (118)

yi(ϕ(h)) −
1

|Oi|T−1

∑

j∈E

R(α, 〈h, j−i〉)z(j) = wi(h), ∀i ∈ I, ∀h ∈ Ei (119)

∑

j′∈E−i

z(〈h, j′〉) = xi(h)
∏

k∈I\{i}

|Ok|
T−1,

∀i ∈ I, ∀h ∈ Ei (120)
∑

j∈E

z(j) =
∏

i∈I

|Oi|
T−1 (121)

xi(h) ≤ 1− bi(h), ∀i ∈ I, ∀h ∈ Hi (122)

wi(h) ≤ Ui(h)bi(h), ∀i ∈ I, ∀h ∈ Hi (123)

xi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Ni (124)

xi(h) ∈ {0, 1} ∀i ∈ I, ∀h ∈ Ei (125)

wi(h) ≥ 0, ∀i ∈ I, ∀h ∈ Hi (126)

bi(h) ∈ {0, 1}, ∀h ∈ Hi (127)

yi(ϕ) ∈ (−∞,+∞), ∀i ∈ I, ∀ϕ ∈ Φi(128)

z(j) ∈ [0, 1], ∀j ∈ E (129)

Table 5: MILP-n agents. This 0-1 mixed integer linear program, derived from game
theoretic considerations, finds pure optimal joint policies for DEC-POMDPs with
3 or more agents.
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Compared to the MILP of Table 3, MILP-n agents has roughly the same size but
with more real valued variables and more 0-1 variables. To be precise, MILP has a 0-1
variable for every terminal history of every agent (that is approximatively

∑

i∈I |Ai|
T |Oi|

T−1

integer variables) while MILP-n agents has two 0-1 variables for every terminal as well
as nonterminal history of each agent (approximatively 2

∑

i∈I(|Ai||Oi|)
T integer variables).

5.5 Summary

The formulation of the solution of a DEC-POMDP and the application of the Duality
Theorem for Linear Programs allow us to formulate the solution of a DEC-POMDP as the
solution of a new kind of 0-1 MILP. For 2 agents, this MILP has “only” O(kT ) variables
and constraints and is thus “smaller” than MILP of the previous section. Still, all these
MILPS are quite large and the next section investigates heuristic ways to speed up their
resolution.

6. Heuristics for Speeding up the Mathematical Programs

This section focusses on ways to speed up the resolution of the various MILPs presented so
far. Two ideas are exploited. First, we show how to prune the set of sequence-form policies
by removing histories that will provably not be part of the optimal joint policy. These
histories are called “locally extraneous”. Then, we give some lower and uppers bounds to
the objective function of the MILPs, these bounds can sometimes be used in the “branch and
bound” method often used by MILP solvers to finalize the values of the integer variables.

6.1 Locally Extraneous Histories

A locally extraneous history is a history that is not required to find an optimal joint policy
when the initial state of the DEC-POMDP is α because it could be replaced by a co-history
without affecting the value of the joint policy. A co-history of a history h of an agent is
defined to be a history of that agent that is identical to h in all aspects except for its last
action. If Ai = {b, c}, the only co-history of c.u.b.v.b is the history c.u.b.v.c. The set of
co-histories of a history h shall be denoted by C(h).

Formally, a history h ∈ Ht
i of length t of agent i is said to be locally extraneous if,

for every probability distribution γ over the set Ht
−i of i-reduced joint histories of length t,

there exists a history h′ ∈ C(h) such that

∑

j′∈Ht
−i

γ(j′)
{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

≥ 0 (130)

where γ(j′) denotes the probability of j′ in γ.

An alternative definition is as follows. A history h ∈ Ht
i of length t of agent i is said to be

locally extraneous if there exists a probability distribution ω over the set of co-histories
of h such that for each i-reduced joint history j′ of length t, there holds

∑

h′∈C(h)

ω(h′)R(α, 〈h′, j′〉) ≥ R(α, 〈h, j′〉) (131)
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where ω(h′) denotes the probability of the co-history h′ in ω.
The following theorem justifies our incremental pruning of locally extraneous histories

so that the search for optimal joint policies is faster because it is performed on a smaller
set of possible support histories.

Theorem 6.1. For every optimal T -period joint policy p′ such that for some agent i ∈ I
and for a terminal history h of agent i that is locally extraneous at α, p′i(h) > 0, there exists
another T -period joint policy p that is optimal at α and that is identical to p′ in all respects
except that pi(h) = 0.

Proof: Let p′ be a T -period joint policy that is optimal at α. Assume that for some
agent i ∈ I and for a terminal history h of agent i that is locally extraneous at α, p′i(h) > 0.
By (130), there exists at least one co-history h′ of h such that,

∑

j′∈HT
−i

p′−i(j
′)
{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

≥ 0. (132)

Let q be a T -period policy of agent i that is identical to p′i in all respects except that q(h′)
= p′i(h) + p′i(h

′) and q(h) = 0. We shall show that q is also optimal at α. There holds,

V(α, 〈q, p′−i〉)− V(α, 〈p′i, p−i〉) =
∑

j′∈HT
−i

p′−i(j
′)
{

R(α, 〈h′, j′〉)q(h′)−R(α, 〈h′, j′〉)p′i(h
′)−R(α, 〈h, j′〉)p′i(h)

}

=

∑

j′∈HT
−i

p′−i(j
′)
{

R(α, 〈h′, j′〉)(q(h′)− p′i(h
′))−R(α, 〈h, j′〉)p′i(h)

}

=

∑

j′∈HT
−i

p′−i(j
′)
{

R(α, 〈h′, j′〉)p′i(h)−R(α, 〈h, j′〉)p′i(h)
}

since q(h′) = p′i(h) + p′i(h
′). Therefore,

V(α, 〈q, p′−i〉)− V(α, 〈p′i, p−i〉) =
∑

j′∈HT
−i

p′−i(j
′)
{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

≥ 0 (due to (132)).

Hence, p = 〈q, p′−i〉 is also an optimal T -period joint policy at α. �

One could also wonder if the order with which extraneous histories are pruned is important
or not. To answer this question, the following theorem shows that if many co-histories are
extraneous, they can be pruned in any order as:

• either they all have the same value, so any one of them can be pruned ;

• or pruning one of them does not change the fact that the others are still extraneous.

Theorem 6.2. If two co-histories h1 and h2 are both locally extraneous, either their values
R(α, 〈h1, j

′〉) and R(α, 〈h2, j
′〉)for all j′ ∈ Ht

−i are equal or h1 is also locally extraneous
relatively to C(h) \ {h2}.
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Proof: Let C+ denotes the union C(h1) ∪ C(h2). We have immediately that C(h1) =
C+ \ {h1} and C(h2) = C+ \ {h2}. h1 (resp. h2) being locally extraneous means that there
exists a probability distribution ω1 on C(h1) (resp. ω2 on C(h2)) such that, for all j′ of
Ht

−i:

∑

h′∈C+\{h1}

ω1(h
′)R(α, 〈h′, j′〉) ≥ R(α, 〈h1, j

′〉) (133)

∑

h′∈C+\{h2}

ω2(h
′)R(α, 〈h′, j′〉) ≥ R(α, 〈h2, j

′〉) (134)

(135)

Eq. (133) can be expanded in:

ω1(h2)R(α, 〈h2, j
′〉) +

∑

h′∈C+\{h1,h2}

ω1(h
′)R(α, 〈h′, j′〉) ≥ R(α, 〈h1, j

′〉). (136)

Using (134) in (136) gives

ω1(h2)
∑

h′∈C+\{h2}

ω2(h
′)R(α, 〈h′, j′〉) +

∑

h′∈C+\{h1,h2}

ω1(h
′)R(α, 〈h′, j′〉) ≥ R(α, 〈h1, j

′〉)

(137)

leading to

∑

h′∈C+\{h1,h2}

(ω1(h2)ω2(h
′) + ω1(h

′))R(α, 〈h′, j′〉) ≥ (1− ω1(h2)ω2(h1))R(α, 〈h1, j
′〉) (138)

So, two cases are possible:

• ω1(h2) = ω2(h1) = 1. In that case, asR(α, 〈h2, j
′〉) ≥ R(α, 〈h1, j

′〉) andR(α, 〈h1, j
′〉) ≥

R(α, 〈h2, j
′〉), we have that R(α, 〈h1, j

′〉) = R(α, 〈h2, j
′〉) for all j′ of Ht

−i.

• ω1(h2)ω2(h1) < 1. In that case we have:

∑

h′∈C+\{h1,h2}

ω1(h2)ω2(h
′) + ω1(h

′)

1− ω1(h2)ω2(h1)
R(α, 〈h′, j′〉) ≥ R(α, 〈h1, j

′〉) (139)

meaning that even without using h2, h1 is still locally extraneous because
ω1(h2)ω2(h′)+ω1(h′)

1−ω1(h2)ω2(h1)
is a probability distribution over C+ \ {h1, h2}

∑

h′∈C+\{h1,h2}

ω1(h2)ω2(h
′) + ω1(h

′)

1− ω1(h2)ω2(h1)
=

ω1(h2)(1− ω2(h1)) + (1− ω1(h2))

1− ω1(h2)ω2(h1)
(140)

=
1− ω1(h2)ω2(h1)

1− ω1(h2)ω2(h1)
(141)

= 1. (142)

�
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In order to prune locally extraneous histories, one must be able to identify these histories.
There are indeed two complementary ways for doing this.

The first method relies on the definition of the value of a history (see Section 3.3), that
is

R(α, 〈h, j′〉) = Ψ(α, 〈h, j′〉)R(α, 〈h, j′〉). (143)

Therefore, if

Ψ(α, 〈h, j′〉) = 0, ∀j′ ∈ Ht
−i (144)

is true for a history h, then that means that every joint history of length t occurring from
α of which the given history is a part of has an a priori probability of 0. thus, h is clearly
extraneous. Besides, every co-history of h will also be locally extraneous as they share the
same probabilities.

A second test is needed because some locally extraneous histories do not verify (144).
Once again, we turn to linear programing and in particular to the following linear program

Variables: y(j), ∀j ∈ Ht
−i

Minimize ǫ (145)

subject to:

∑

j′∈Ht
−i

y(j′)
{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

≤ ǫ, ∀h′ ∈ C(h) (146)

∑

j′∈Ht
−i

y(j′) = 1 (147)

y(j′) ≥ 0, ∀j′ ∈ Ht
−i (148)

because of the following Lemma.

Lemma 6.1. If, it exists a solution (ǫ∗, y∗) to the linear program (145)-(148) where ǫ∗ ≥ 0,
then h is locally extraneous.

Proof : Let (ǫ∗, y∗) be a solution to the LP (145)-(148). y∗ is a probability distribution
over Ht

−i due to constraints (147)-(148). If ǫ∗ ≥ 0, since we are minimizing ǫ, due to
constraints (146), we have that for every ỹ ∈ ∆(Ht

−i), and for every co-history h′ of h

∑

j′∈Ht
−i

ỹ(j′)
{

R(α, 〈h′, j′〉)−R(α, 〈h, j′〉)
}

≥ ǫ∗. (149)

Therefore, by definition, h is locally extraneous. �

The following procedure identifies all locally extraneous terminal histories of all the agents
and proceed to their iterative pruning. This is mainly motivated by Theorems 6.1 and 6.2
for effectively removing extraneous histories. The procedure is similar to the procedure of
iterated elimination of dominated strategies in a game (Osborne & Rubinstein, 1994). The
concept is also quite similar to the process of policy elimination in the backward step of the
dynamic programming for partially observable stochastic games (Hansen et al., 2004).
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• Step 1: For each agent i ∈ I, set H̃T
i to Ei. Let H̃T denote the set ×i∈IH̃

T
i . For

each joint history j ∈ H̃T , compute and store the value R(α, j) of j and the joint
observation sequence probability Ψ(α, j) of j.

• Step 2: For each agent i ∈ I, for each history h ∈ H̃T
i , if for each i-reduced joint

history j′ ∈ H̃T
−i, Ψ(α, 〈h, j′〉) = 0, remove h from H̃T

i .

• Step 3: For each agent i ∈ I, for each history h ∈ H̃T
i do as follows: If C(h) ∩ H̃T

i

is non-empty, check whether h is locally extraneous or not by setting up and solving
LP (145)-(148). When setting the LP, replace Ht

−i by the set H̃T
−i and the set C(h)

by the set C(h) ∩ H̃T
i . If upon solving the LP, h is found to be locally extraneous at

α, remove h from H̃T
i .

• Step 4: If in Step 3 a history (of any agent) is found to be locally extraneous, go to
Step 3. Otherwise, terminate the procedure.

The procedure builds the set H̃T
i for each agent i. This set contains every terminal

history of agent i that is required for finding an optimal joint policy at α, that is every
terminal history that is not locally extraneous at α. For each agent i, every history that
is in HT

i but not in H̃T
i is locally extraneous. The reason for reiterating Step 3 is that if

a history h of some agent i is found to be locally extraneous and consequently removed
from H̃T

i , it is possible that a history of some other agent that was previously not locally
extraneous now becomes so, due to the removal of h from H̃T

i . Hence, in order to verify if
this is the case for any history or not, we reiterate Step 3.

Besides, Step 2 of the procedure below also prunes histories that are impossible given
the model of the DEC-POMDP because their observation sequence can not be observed.

A last pruning step can be taken in order to remove non-terminal histories that can only
lead to extraneous terminal histories. This last step is recursive, starting from histories of
horizon T − 1, we remove histories hi that have no non-extraneous terminal histories, that
is, histories hi such that all h.o.a are extraneous for a ∈ Ai and o ∈ Oi.

Complexity The algorithm for pruning locally extraneous histories has an exponential
complexity. Each joint history must be examined to compute its value and its occurence
probability. Then, in the worst case, a Linear Program can be run for every local history in
order to check it is extraneous or not. Experimentations are needed to see if the prunning
is really interesting.

6.2 Cutting Planes

Previous heuristics were aimed at reducing the search space of the linear programs, which
incidentally has a good impact on the time needed to solve these programs. Another option
which directly aims at reducing the computation time is to use cutting planes (Cornuéjols,
2008). A cut (Dantzig, 1960) is a special constraint that identifies a portion of the set
of feasible solutions in which the optimal solution provably does not lie. Cuts are used in
conjunction with various “branch and bounds” mechanism to reduce the number of possibles
combination of integer variables that are examined by a solver.

We will present two kinds of cuts.
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Variables: y(j), ∀j ∈ H

Maximize
∑

j∈E

R(α, j)y(j) (153)

subject to,

∑

a∈A

y(a) = 1 (154)

−y(j) +
∑

a∈A

y(j.o.a) = 0, ∀j ∈ N , ∀o ∈ O (155)

y(j) ≥ 0, ∀j ∈ H (156)

Table 6: POMDP. This linear program finds an optimal policy for a POMDP.

6.2.1 Upper Bound for the Objective Function

The first cut we propose is the upper bound POMDP cut. The value of an optimal
T -period joint policy at α for a given DEC-POMDP is bounded from above by the value
V∗
P of an optimal T -period policy at α for the POMDP derived from the DEC-POMDP.

This derived POMDP is the DEC-POMDP but assuming a centralized controller (i.e. with
only one agent using joint-actions).

A sequence-form representation of the POMDP is quite straightforward. Calling H the
set ∪T

t=1H
t of joint histories of lengths less than or equal to T and N the set H\E of non-

terminal joint histories, a policy for POMDP with horizon T in sequence-form is a function
q from H to [0, 1] such that:

∑

a∈A

q(a) = 1 (150)

−q(j) +
∑

a∈A

q(j.o.a) = 0, ∀j ∈ N , ∀o ∈ O (151)

The value VP (α, q) of a sequence-form policy q is then given by:

VP (α, q) =
∑

j∈E

R(α, j)q(j) (152)

Thereby, the solution y∗ of the linear program of Table 6 is an optimal policy for the
POMDP of horizon T and the optimal value of the POMDP is

∑

j∈E R(α, j)y∗(j). So, the
value V(α, p∗) of the optimal joint policy p∗ = 〈p∗1, p

∗
2, · · · , p

∗
n〉 of the DEC-POMDP is

bounded by above by the value VP (α, q
∗) of the associated POMDP.

Complexity The complexity of finding an upper bound is linked to the complexity of
solving a POMDP which, as showed by Papadimitriou and Tsitsiklis (1987), can be PSPACE
(i.e. require a memory that is polynomial in the size of the problem, leading to a possible
exponential complexity in time). Once again, only experimentation can help us decide in
which cases the upper bound cut is efficient.
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6.2.2 Lower Bound for the Objective Function

In the case of DEC-POMDPs with non-negative reward, it is trivial to show that the value
of a T -period optimal policy is bounded from below by the value of the T−1 horizon optimal
value. So, in the general case, we have to take into account the lowest reward possible to
compute this lower bound and we can say that:

∑

j∈E

R(α, j)z(j) ≥ VT−1(α) + min
a∈A

min
s∈S

R(s, a) (157)

where VT−1 is the value of the optimal policy with horizon T − 1. The reasoning leads to
an iterated computation of DEC-POMDPs of longer and longer horizon, reminiscent of the
MAA* algorithm (Szer et al., 2005). Experiments will tell if it is worthwhile to solve bigger
and bigger DEC-POMDPs to take advantage of a lower bound or if it is better to directly
tackle the T horizon problem without using any lower bound.

Complexity To compute the lower bound, one is required to solve a DEC-POMDP whith
an horizon that is one step shorter than the current horizon. The complexity is clearly at
least exponential. In our experiments, the value of a DEC-POMDP has been used for the
same DEC-POMDP with a bigger horizon. In such case, the computation time has been
augmented by the best time to solve the smaller DEC-POMDP.

6.3 Summary

Pruning locally extraneous histories and using the bounds of the objective function can be
of practical use for software solving the MILPs presented in this paper. Pruning histories
means that the space of policies used by the MILP is reduced and, because the formulation
of the MILP depends on combinatorial characteristics of the DEC-POMDP, these MILP
must be altered as show in Appendix D.

Validity As far as cuts are concerned, they do not alter the solution found by the MILPs,
so a solution to these MILPs is still an optimal solution to the DEC-POMDP. When ex-
traneous histories are pruned, at least one valid policy is left as a solution because, in step
3 of the algorithm, an history is pruned only if it has other co-histories left. Besides, this
reduced set of histories can still be used to build an optimal policy because of Theroem 6.1.
As a consequence, the MILP build on this reduced set of histories admit a solution and this
solution is one optimal joint policy.

In the next section, experimental results will allow us to understand in which cases the
heuristics introduced can be useful.

7. Experiments

The mathematical programs and the heuristics designed in this paper are tested on four
classical problems found in the literature. For these problems, involving two agents, we have
mainly compared the computation time required to solve a DEC-POMDP using Mixed
Integer Linear Programming methods to computation time reported for methods found
in the literature. Then we have tested our programs on three-agent problems randomly
designed.
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Problem |Ai| |Oi| |S| n

MABC 2 2 4 2
MA-Tiger 3 2 2 2
Fire Fighting 3 2 27 2
Grid Meeting 5 2 16 2
Random Pbs 2 2 50 3

Table 7: “Complexity” of the various problems used as test beds.

MILP and MILP-2 are solved using the “iLog Cplex 10” solver – a commercial set of
Java packages – that relies on a combination of the “Simplex” and “Branch and Bounds”
methods (Fletcher, 1987). The software is run on an Intel P4 at 3.4 GHz with 2Gb of
RAM using default configuration parameters. For the mathematical programs, different
combination of heuristics have been evaluated: pruning of locally extraneous histories, using
a lower bound cut and using an upper bound cut, respectively denoted “LOC”, “Low” and
“Up” in the result tables to come.

The Non-Linear Program (NLP) of Section 3.4 has been evaluated by using vari-
ous solvers from the NEOS website (http://www-neos.mcs.anl.gov ), even thought this
method does not guarantee an optimal solution to the DEC-POMDP. Three solvers have
been used: LANCELOT (abbreviated as LANC.), LOQO and SNOPT.

The result tables also report results found in the literature for the following algorithms:
DP stands for Dynamic Programming from Hansen et al. (2004); DP-LPC is an improved
version of Dynamic Programming where policies are compressed in order to fit more of them
in memory and speed up their evaluation as proposed by Boularias and Chaib-draa (2008);
PBDP is an extension of Dynamic Programming where pruning is guided by the knowledge
of reachable belief-states as detailed in the work of Szer and Charpillet (2006); MAA* is
a heuristically guided forward search proposed by Szer et al. (2005) and a generalized and
improved version of this algorithm called GMAA* developed by Oliehoek et al. (2008).

The problems selected to evaluate the algorithms are detailed in the coming subsections.
They have been widely used to evaluate DEC-POMDPs algorithms in the literature and
their “complexity”, in term of space size, is summarized in Table 7.

7.1 Multi-Access Broadcast Channel Problem

Several versions of the Multi-Access Broadcast Channel (MABC) problem can be found in
the literature. We will use the description given by Hansen et al. (2004) that allows this
problem to be formalized as a DEC-POMDP.

In the MABC, we are given two nodes (computers) which are required to send messages
to each other over a common channel for a given duration of time. Time is imagined to
be split into discrete periods. Each node has a buffer with a capacity of one message. A
buffer that is empty in a period is refilled with a certain probability in the next period. In
a period, only one node can send a message. If both nodes send a message in the same
period, a collision of the messages occurs and neither message is transmitted. In case of
a collision, each node is intimated about it through a collision signal. But the collision
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signaling mechanism is faulty. In case of a collision, with a certain probability, it does not
send a signal to either one or both nodes.

We are interested in pre-allocating the channel amongst the two nodes for a given number
of periods. The pre-allocation consists of giving the channel to one or both nodes in a period
as a function of the node’s information in that period. A node’s information in a period
consists only of the sequence of collision signals it has received till that period.

In modeling this problem as a DEC-POMDP, we obtain a 2-agent, 4-state, 2-actions-
per-agent, 2-observations-per-agent DEC-POMDP whose components are as follows.

• Each node is an agent.

• The state of the problem is described by the states of the buffers of the two nodes.
The state of a buffer is either Empty or Full. Hence, the problem has four states:
(Empty, Empty), (Empty, Full), (Full, Empty) and (Full, Full).

• Each node has two possible actions, Use Channel and Don’t Use Channel.

• In a period, a node may either receive a collision signal or it may not. So each node
has two possible observations, Collision and No Collision.

The initial state of the problem α is (Full, Full). The state transition function P, the
joint observation function G and the reward function R have been taken from Hansen et al.
(2004). If both agents have full buffers in a period, and both use the channel in that period,
the state of the problem is unchanged in the next period; both agents have full buffers in
the next period. If an agent has a full buffer in a period and only he uses the channel in
that period, then his buffer is refilled with a certain probability in the next period. For
agent 1, this probability is 0.9 and for agent 2, this probability is 0.1. If both agents have
empty buffers in a period, irrespective of the actions they take in that period, their buffers
get refilled with probabilities 0.9 (for agent 1) and 0.1 (for agent 2).

The observation function G is as follows. If the state in a period is (Full, Full) and
the joint action taken by the agents in the previous period is (Use Channel, Use Channel),
the probability that both receive a collision signal is 0.81, the probability that only one of
them receives a collision signal is 0.09 and the probability that neither of them receives a
collision signal is 0.01. For any other state the problem may be in a period and for any other
joint action the agents may have taken in the previous period, the agents do not receive a
collision signal.

The reward function R is quite simple. If the state in a period is (Full, Empty) and
the joint action taken is (Use Channel, Don’t Use Channel) or if the state in a period is
(Empty, Full) and the joint action taken is (Don’t Use Channel, Use Channel), the reward
is 1; for any other combination of state and joint action, the reward is 0.

We have evaluated the various algorithms on this problem for three different horizons (3,
4 and 5) and the respective optimal policies have a value of 2.99, 3.89 and 4.79. Results are
detailed in Table 8 where, for each horizon and algorithm, the value and the computation
time for the best policy found are given.

The results show that the MILP compares favorably to more classical algorithms except
for GMAA* that is always far better for horizon 4 and, for horizon 5, roughly within the
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Resolution method Horizon 3 Horizon 4 Horizon 5

Program Solver Heuristics Value Time Value Time Value Time

MILP Cplex - 2.99 0.86 3.89 900 - -m
MILP Cplex Low 2.99 0.10 / 0.93 3.89 0.39 / 900 - 3.5 / -m
MILP Cplex Up 2.99 0.28 / 1.03 3.89 0.56 / 907 - 4.73 / -m
MILP Cplex LOC 2.99 0.34 / 0.84 3.89 1.05 / 80 - 2.27 / -t
MILP Cplex LOC, Low 2.99 0.44 / 0.84 3.89 1.44 / 120 - 5.77 / -t
MILP Cplex LOC, Up 2.99 0.62 / 0.93 3.89 1.61 / 10.2 4.79 7.00 / 25
MILP-2 Cplex - 2.99 0.39 3.89 3.53 - -m

NLP SNOPT - 2.90 0.01 3.17 0.01 4.70 0.21
NLP LANC. - 2.99 0.02 3.79 0.95 4.69 20
NLP LOQO - 2.90 0.01 3.79 0.05 4.69 0.18

Algorithm Family Value Time Value Time Value Time

DP Dyn. Prog. 2.99 5 3.89 17.59 - -m
DP-LPC Dyn. Prog. 2.99 0.36 3.89 4.59 - -m
PBDP Dyn. Prog. 2.99 < 1s 3.89 2 4.79 105

MAA* Fw. Search 2.99 < 1s 3.89 5400 - -t
GMAA* Fw. Search ? ? 3.89 0.03 4.79 5.68

Table 8: MABC Problem. Value and computation time (in seconds) for the solution of
the problem as computed by several methods, best results are highlighted. When
appropriate, time shows first the time used to run the heuristics then the global
time, in the format heuristic/total time. “-t” means a timeout of 10,000s;
“-m” indicates that the problem does not fit into memory and “?” indicates that
the algorithm was not tested on that problem.

same order of magnitude as MILP with the more pertinent heuristics. As expected, apart
for the simplest setting (horizon of 3), NLP based resolution can not find the optimal policy
of the DEC-POMDP, but the computation time is lower than the other methods. Among
MILP methods, MILP-2 is better than MILP even with the best heuristics for horizon 3
and 4. When the size of the problem increases, heuristics are the only way for MILPs to
be able to cope with the size of the problem. The table also shows that, for the MABC
problem, pruning extraneous histories using the LOC heuristic is always a good method and
further investigation revealed that 62% of the heuristics proved to be locally extraneous. As
far are cutting bounds are concerned, they don’t seem to be very useful at first (for horizon
3 and 4) but are necessary for MILP to find a solution for horizon 5. For this problem,
one must also have in mind that there is only one optimal policy for each horizon.

7.2 Multi-Agent Tiger Problem

As explained in section 2.2, the Multi-Agent Tiger problem (MA-Tiger) has been introduced
in the paper from Nair et al. (2003). From the general description of the problem, we ob-
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Joint Action State Joint Observation Probability

(Listen, Listen) Left (Noise Left, Noise Left) 0.7225
(Listen, Listen) Left (Noise Left, Noise Right) 0.1275
(Listen, Listen) Left (Noise Right, Noise Left) 0.1275
(Listen, Listen) Left (Noise Right, Noise Right) 0.0225

(Listen, Listen) Right (Noise Left, Noise Left) 0.0225
(Listen, Listen) Right (Noise Left, Noise Right) 0.1275
(Listen, Listen) Right (Noise Right, Noise Left) 0.1275
(Listen, Listen) Right (Noise Right, Noise Right) 0.7225

(*, *) * (*, *) 0.25

Table 9: Joint Observation Function G for the MA-Tiger Problem.

tain a 2-agent, 2-state, 3-actions-per-agent, 2-observations-per agent DEC-POMDP whose
elements are as follows.

• Each person is an agent. So, we have a 2-agent DEC-POMDP.

• The state of the problem is described by the location of the tiger. Thus, S consists
of two states Left (tiger is behind the left door) and Right (tiger is behind the right
door).

• Each agent’s set of actions consists of three actions: Open Left (open the left door),
Open Right (open the right door) and Listen (listen).

• Each agent’s set of observations consists of two observations: Noise Left (noise coming
from the left door) and Noise Right (noise coming from the right door).

The initial state is an equi-probability distribution over S. The state transition function P,
joint observation function G and the reward function R are taken from the paper by Nair
et al. (2003). P is quite simple. If one or both agents opens a door in a period, the state of
the problem in the next period is set back to α. If both agents listen in a period, the state
of the process in unchanged in the next period. G, given in Table (9), is also quite simple.
Nair et al. (2003) describes two reward functions called “A” and “B” for this problem, here
we report only results for reward function “A”, given in Table 10, as the behavior of the
algorithm are similar for both reward functions. The optimal value of this problem for
horizons 3 and 4 are respectively 5.19 and 4.80.

For horizon 3, dynamic programming or forward search methods are generally better
than mathematical programs. But this is the contrary for horizon 4 were the computa-
tion time of MILP with the “Low” heuristic is significatively better than any other, even
GMAA*. Unlike MABC, the pruning of extraneous histories does not improve methods
based on MILP, this is quite understandable as deeper investigations showed that there are
no extraneous histories. Using lower cutting bounds proves to be very efficient and can be
seen as a kind of heuristic search for the best policy ; not directly in the set of policies (like
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Joint Action Left Right

(Open Right, Open Right) 20 -50
(Open Left, Open Left) -50 20
(Open Right, Open Left) -100 -100
(Open Left, Open Right) -100 -100
(Listen, Listen) -2 -2
(Listen, Open Right) 9 -101
(Open Right, Listen) 9 -101
(Listen, Open Left) -101 9
(Open Left, Listen) -101 9

Table 10: Reward Function “A” for the MA-Tiger Problem.

GMAA*) but in the set of combination of histories, which may explain the good behavior
of MILP+Low.

It must also be noted that for this problem, approximate methods like NLP but also
other algorithms not depicted here like the “Memory Bound Dynamic Programming” of
Seuken and Zilberstein (2007) are able to find the optimal solution. And, once again,
methods based on a NLP are quite fast and sometimes very accurate.

7.3 Fire Fighters Problem

The problem of the Fire Fighters (FF) has been introduced as a new benchmark by Oliehoek
et al. (2008). It models a team of n fire fighters that have to extinguish fires in a row of nh

houses.

The state of each house is given by an integer parameter, called the fire level f , that
takes discrete value between 0 (no fire) and nf (fire of maximum severity). At every time
step, each agent can move to any one house. If two agents are at the same house, they
extinguish any existing fire in that house. If an agent is alone, the fire level is lowered with
a 0.6 probability if a neighbor house is also burning or with a 1 probability otherwise. A
burning house with no fireman present will increase its fire level f by one point with a 0.8
probability if a neighbor house is also burning or with a probability of 0.4 otherwise. An
unattended non-burning house can catch fire with a probability of 0.8 if a neighbor house
is burning. After an action, the agents receive a reward of −f for each house that is still
burning. Each agent can only observe if there are flames at its location with a probability
that depends on the fire level: 0.2 if f = 0, 0.5 if f = 1 and 0.8 otherwise. At start,
the agents are outside any of the houses and the fire level of the houses is sampled from a
uniform distribution.

The model has the following characteristics:

• na agents, each with nh actions and nf possible informations.

• There are nnh

f .
(

na+nh−1
na

)

states as there are nnh

f possible states for the burning houses

and
(

na+nh−1
na

)

different ways to distribute the na fire fighters in the houses. For
example, 2 agents with 3 houses and 3 levels of fire lead to 9× 6 = 54 states. But, it
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Resolution method Horizon 3 Horizon 4

Program Solver Heuristics Value Time Value Time

MILP Cplex - 5.19 3.17 - -t
MILP Cplex Low 5.19 0.46 / 4.9 4.80 3.5 / 72
MILP Cplex Up 5.19 0.42 / 3.5 - 0.75 / -t
MILP Cplex LOC 5.19 1.41 / 6.4 - 16.0 / -t
MILP Cplex LOC, Low 5.19 1.88 / 7.6 4.80 19.5 / 175
MILP Cplex LOC, Up 5.19 1.83 / 6.2 - 16.75 / -t
MILP-2 Cplex - 5.19 11.16 - -t

NLP SNOPT - -45 0.03 -9.80 4.62
NLP LANC. - 5.19 0.47 4.80 514
NLP LOQO - 5.19 0.01 4.78 91

Algorithm Family Value Time Value Time

DP Dyn. Prog. 5.19 2.29 - -m
DP-LPC Dyn. Prog. 5.19 1.79 4.80 534
PBDP Dyn. Prog. ? ? ? ?
MAA* Fw. Search 5.19 0.02 4.80 5961
GMAA* Fw. Search 5.19 0.04 4.80 3208

Table 11: MA-Tiger Problem. Value and computation time (in seconds) for the solution
of the problem as computed by several methods, best results are highlighted.
When appropriate, time shows first the time used to run the heuristics then
the global time, in the format heuristic/total time.“-t” means a timeout of
10.000s; “-m” indicates that the problem does not fit into memory and “?” indi-
cates that the algorithm was not tested on that problem.
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Resolution method Horizon 3 Horizon 4

Program Solver Heuristics Value Time Value Time

MILP Cplex - - -t - -t
MILP-2 Cplex - -5.98 38 - -t

NLP SNOPT - -5.98 0.05 -7.08 4.61
NLP LANC. - -5.98 2.49 -7.13 1637
NLP LOQO - -6.08 0.24 -7.14 83

Algorithm Family Value Time Value Time

MAA* Fw. Search (-5.73) 0.29 (-6.57) 5737
GMAA* Fw. Search (-5.73) 0.41 (-6.57) 5510

Table 12: Fire Fighting Problem. Value and computation time (in seconds) for the solu-
tion of the problem as computed by several methods, best results are highlighted.
“-t” means a timeout of 10.000s. For MAA* and GMAA*, value in parenthesis
are taken from the work of Oliehoek et al. (2008) and should be optimal but are
different from our optimal values.

is possible to use the information from the joint action to reduce the number of state
needed in the transition function to simply nnh

f , meaning only 27 states for 2 agents
with 3 houses and 3 levels of fire.

• Transition, observation and reward functions are easily derived from the above de-
scription.

For this problem, dynamic programming based methods are not tested as the problem
formulation is quite new. For horizon 3, the value of the optimal policy given by Oliehoek
et al. (2008) (−5.73) differs from the value found by the MILP algorithms (−5.98) whereas
both methods are supposed to be exact. This might come from slight differences in our
respective formulation of the problems. For horizon 4, Oliehoek et al. (2008) report an
optimal value of (−6.57).

For this problem, MILP methods are clearly outperformed by MAA* and GMAA*.
Only NLP methods, which give an optimal solution for horizon 3, are better in term of
computation time. It might be that NLP are also able to find optimal policies for horizon 4
but as our setting differs from the work of Oliehoek et al. (2008), we are not able to check
if the policy found is really the optimal. The main reason for the superiority of forward
search method lies in the fact that this problem admits many many optimal policies with
the same value. In fact, for horizon 4, MILP-based methods find an optimal policy quite
quickly (around 82s for MILP-2) but then, using branch-and-bound, must evaluate all the
other potential policies before knowing that it indeed found an optimal policy. Forward
search methods stop nearly as soon as they hit one optimal solution.

Heuristics are not reported as, not only do they not improve the performance of MILP
but they take away some computation time and thus the results are worse.
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7.4 Meeting on a Grid

The problem called “Meeting on a grid” deals with two agents that want to meet and stay
together in a grid world. It has been introduced in the work of Bernstein, Hansen, and
Zilberstein (2005).

In this problem, we have two robots navigating on a two-by-two grid world with no
obstacles. Each robot can only sense whether there are walls to its left or right, and the
goal is for the robots to spend as much time as possible on the same square. The actions
are to move up, down, left or right, or to stay on the same square. When a robot attempts
to move to an open square, it only goes in the intended direction with probability 0.6,
otherwise it randomly either goes in another direction or stays in the same square. Any
move into a wall results in staying in the same square. The robots do not interfere with
each other and cannot sense each other. The reward is 1 when the agents share a square,
and 0 otherwise. The initial state distribution is deterministic, placing both robots in the
upper left corner of the grid.

The problem is modelled as a DEC-POMDP where:

• There are 2 agents, each one with 5 actions and observations (wall on left, wall on
right).

• There are 16 states, since each robot can be in any of 4 squares at any time.

• Transition, observation and reward functions are easily derived from the above de-
scription.

For this problem, dynamic programming based methods are not tested as the problem
formulation is quite new. This problem is intrinsically more complex that FF and as such
is only solved for horizon 2 and 3. Again, optimal value found by our method differ from
the value reported by Oliehoek et al. (2008). Whereas we found that the optimal values are
1.12 and 1.87 for horizon 2 and 3, they report optimal values of 0.91 and 1.55.

Results for this problem have roughly the same pattern that the results for the FF
problem. MAA* and GMAA* are quicker than MILP, but this time MILP is able to find
an optimal solution for horizon 3. NLP methods give quite good results but they are slower
than GMAA*. As for the FF, there are numerous optimal policies and MILP methods are
not able to detect that the policy found quickly is indeed optimal.

Again, heuristics are not reported as, not only do they not improve the performance of
MILP but they take away some computation time and thus the results are worse.

7.5 Random 3-Agent Problems

To test our approach on problems with 3 agents, we have used randomly generated DEC-
POMDPs where the state transition function, the joint observation function and the reward
functions are randomly generated. The DEC-POMDPs have 2 actions and 2 observations
per agent and 50 states. Rewards are randomly generated integers in the range 1 to 5.
The complexity of this family of problem is quite similar to the complexity of the MABC
problem (see Section 7.1).
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Resolution method Horizon 2 Horizon 3

Program Solver Heuristics Value Time Value Time

MILP Cplex - 1.12 0.65 1.87 1624
MILP-2 Cplex - 1.12 0.61 - -t

NLP SNOPT - 0.91 0.01 1.26 1.05
NLP LANC. - 1.12 0.06 1.87 257
NLP LOQO - 1.12 0.07 0.48 81

Algorithm Family Value Time Value Time

MAA* Fw. Search (0.91) 0s (1.55) 10.8
GMAA* Fw. Search (0.91) 0s (1.55) 5.81

Table 13: Meeting on a Grid Problem. Value and computation time (in seconds) for
the solution of the problem as computed by several methods, best results are
highlighted. “-t” means a timeout of 10.000s. For MAA* and GMAA*, value
in parenthesis are taken from the work of Oliehoek et al. (2008) and should be
optimal but are different from our optimal values...

Program Least Time (secs) Most Time (secs) Average Std. Deviation

MILP 2.45 455 120.6 183.48
MILP-2 6.85 356 86.88 111.56

Table 14: Times taken by MILP and MILP-2 on the 2-agent Random Problem for hori-
zon 4.

In order to assess the “real” complexity of this Random problem, we have first tested a
two-agent version of the problem for a horizon of 4. Results averaged over 10 runs of the
programs are given in Table 14. When compared to the MABC problem which seemed of
comparable complexity, the Random problem proves easier to solve (120s vs 900s). For this
problem, the number of 0-1 variable is relatively small, as such it does not weight too much
on the resolution time of MILP-2 which is thus faster.

Results for a three-agent problem with horizon 3 are given in Table 15, once again
averaged over 10 runs. Even though the size of the search space is “smaller” in that case
(for 3 agents and a horizon of 3, there are 9 × 1021 policies whereas the problem with 2
agents and horizon 4, there are 1.5 × 1051 possible policies), the 3 agent problems seems
more difficult to solve, demonstrating that one of the big issue is policy coordination. Here,
heuristics bring a significative improvement on the resolution time of MILP. As predicted,
MILP-n is not very efficient and is only given for completeness.
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Program Least Time (secs) Most Time (secs) Average Std. Deviation

MILP 21 173 70.6 64.02
MILP-Low 26 90 53.2 24.2
MILP-n 754 2013 1173 715

Table 15: Times taken by MILP and MILP-n on the 3-agent Random problem for hori-
zon 3.

8. Discussion

We have organized the discussion in two parts. In the first part, we analyze our results and
offer explanations on the behavior of our algorithms and the usefulness of heuristics. Then,
in a second part, we explicitely address some important questions.

8.1 Analysis of the Results

From the results, it appears that MILP methods are a better alternative to Dynamic Pro-
gramming methods for solving DEC-POMDPs but are globally and generally clearly out-
performed by forward search methods. The structure and thus the characteristics of the
problem have a big influence on the efficiency of the MILP methods. Whereas it seems
that the behavior of GMAA* in terms of computation time is quite correlated with the
complexity of the problem (size of the action and observation spaces), MILP methods seem
sometimes less correlated to this complexity. It is the case for the MABC problem (many
extraneous histories can be pruned) and the MA-Tiger problem (special structure) where
they outperform GMAA*. On the contrary, when many optimal policies exists, forward
search methods like GMAA* are clearly a better choice. Finally, Non-Linear Programs,
even though they can not guarantee an optimal solution, are generally a good alternative
as they are sometimes able to find a very good solution and their computation time is often
better than GMAA*. This might prove useful for approximate heuristic-driven forward
searches.

The computational record of the two 2-agent programs shows that MILP-2 agents is
slower thanMILP when the horizon grows. There are two reasons to which the sluggishness
of MILP-2 agents may be attributed. The time taken by the branch and bound (BB)
method to solve a 0-1 MILP is inversely proportional to the number of 0-1 variables in
the MILP. MILP-2 agents has many more 0-1 variables than MILP event hough the
total number of variables in it is exponentially less than in MILP. This is the first reason.
Secondly, MILP-2 agents is a more complicated program than MILP; it has many more
constraints than MILP. MILP is a simple program, concerned only with finding a subset
of a given set. In addition to finding weights of histories, MILP also finds weights of
terminal joint histories. This is the only extra or superfluous quantity it is forced to find.
On the other hand, MILP-2 agents takes a much more circuitous route, finding many more
superfluous quantities than MILP. In addition to weights of histories, MILP-2 agents
also finds supports of policies, regrets of histories and values of information sets. Thus, the
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Problem Heuristic Horizon 2 Horizon 3 Horizon 4 Horizon 5
Time #pruned Time #pruned Time #pruned Time #pruned

MABC LOC 0.34 14/32 1.047 74/128 2.27 350/512
Low 0.10 0.39 3.5
Up 0.28 3.89 4.73

MA-Tiger LOC 0.41 0/18 1.41 0/108 16.0 0/648
Low 0.46 3.5
Up 0.42 0.75

Meeting LOC 1.36 15/50* 74.721 191/500*

Table 16: Computation time of heuristics. For the LOC heuristics, we give the com-
putation time in seconds and the number of locally extraneous histories pruned
over the total number of histories (for an agent). A ’*’ denotes cases where one
additional history is prunned for the second agent. For the Low and Up heuristic,
only computation time is given.

relaxation of MILP-2 agents takes longer to solve than the relaxation of MILP. This is
the second reason for the slowness with which the BB method solves MILP-2 agents.

For bigger problems, namely Fire-Fighters and Meeting on a Grid, when the horizon
stays small, MILP-2 agents can compete with MILP because of its slightly lower size. Its
complexity grows like O((|Ai||Oi|)

T ) whereas it grows like O((|Ai||Oi|)
2T ) for MILP. But

that small difference does not hold long as the number of integer variables quickly lessens
the efficiency of MILP-2 agents.

As far as heuristic are concerned, they proved to be invaluable for some problems (MABC
and MA-Tiger) and useless for others. In the case of MABC, heuristics are very helpful to
prune a large number of extraneous heuristics but ultimately, it is the combination with
the upper bound cut that it the more efficient when the horizon grows. In the case of
MA-Tiger, although no extraneous histories are found, using the lower bound cut heuristic
with MILP leads to the quickest algorithm for solving the problem with a horizon of 4.
For other problems, heuristics are more of a burden as they are too greedy in computation
time to speed up the resolution. For example, for the “Grid Meeting” problem, the time
taken to prune extraneous histories is bigger than the time saved for solving the problem.

As a result, the added value of using heuristics depends on the nature of the problem
(as depicted in Table 16) but, right now, we are not able to predict their usefulness without
trying them.

We also emphasize that the results given here lie at the limit of what is possible to solve
in an exact manner given the memory of the computer used for the resolution, especially
in terms of the horizon. Furthermore, as the number of agent increases, the length of the
horizon must be decreased for the problems to still be solvable.
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8.2 Questions

The mathematical programing approach presented in this paper raises different questions.
We have explicitly addressed some of the questions that appears important to us.

Q1: Why is the sequence-form approach not entirely doomed by its exponential
complexity?

As the number of sequence-form joint policies grows doubly exponentially with the hori-
zon and the number of agents, the sequence-form approach seems doomed, even compared
to dynamic programming which is doubly exponential in the worst cases only. But, indeed,
some arguments must be taken into consideration.

“Only” an exponential number of individual histories need to be evaluated. The “joint”
part of the sequence-form is left to the MILP solver. And every computation done on a
particular history, like computing its value or checking if it is extraneous, has a greater
“reusability” than computations done on entire policies. An history is shared by many
more joint policies than an individual policy. In some way, sequence-form allows us to work
on reusable part of policies without having to work directly in the world of distributions on
the set of joint-policies.

Then, the MILPs derived from the sequence-form DEC-POMDPs need a memory size
which grows “only” exponentially with the horizon and the number of agents. Obviously,
such a complexity is quickly overwhelming but it is also the case of every other exact method
so far. As shown by the experiments, the MILP approach derived from the sequence-form
compares quite well with dynamic programming, even if outperformed by forward methods
like GMAA*.

Q2: Why does MILP sometimes take so little time to find an optimal joint
policy when compared to existing algorithms?

Despite the complexity of our MILP approach, three factors contribute to the relative
efficiency of MILP.

1. First, the efficiency of linear programming tools themselves. In solving MILP, the
BB method solves a sequence of linear programs using the simplex algorithm. Each of
these LPs is a relaxation of MILP. In theory, the simplex algorithm requires in the
worst case an exponential number of steps (in the size of the LP) in solving a LP2,
but it is well known that, in practice, it usually solves a LP in a polynomial number
of steps (in the size of the LP). Since the size of a relaxation of MILP is exponential
in the horizon, this means that, roughly speaking, the time taken to solve a relaxation
of MILP is “only” exponential in the horizon whereas it can be doubly exponential
for other methods.

2. The second factor is the sparsity of the matrix of coefficients of the constraints of
MILP. The sparsity of the matrix formed by the coefficients of the constraints of

2. This statement must be qualified: this worst case time requirement has not been demonstrated for all
variants of the simplex algorithm. It has been demonstrated only for the basic version of the simplex
algorithm.
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an LP determines in practice the rate with which a pivoting algorithm such as the
simplex solves the LP (this also applies to Lemke’s algorithm in the context of an
LCP). The sparser this matrix, the lesser the time required to perform elementary
pivoting (row) operations involved in the simplex algorithm and the lesser the space
required to model the LP.

3. The third factor is the fact that we supplement MILP with cuts; the computational
experience clearly shows how this speeds up the computations. While the first two
factors were related to solving a relaxation of MILP (i.e., an LP), this third factor
has an impact on the BB method itself. The upper bound cut identifies an additional
terminating condition for the BB method, thus enabling it to terminate earlier than
in the absence of this condition. The lower bound cut attempts to shorten the list
of active subproblems (LPs) which the BB method solves sequentially. Due to this
cut, the BB method has potentially a lesser number of LPs to solve. Note that in
inserting the lower bound cut, we are emulating the forward search properties of the
A* algorithm.

Q3: How do we know that the MILP-solver (iLog’s “Cplex” in our experiments)
is not the only reason for the speedup?

Clearly, our approach would be slower, even sometime slower than a classical dynamic
programming approach if we had used another program for solving our MILPs as we exper-
imented also our MILPs with solvers from the NEOS website that were indeed very very
slow. It is true that Cplex, the solver we have used in our experiments, is quite optimized.
Nevertheless, it is exactly one of the points we wanted to experiment with in this paper:
one of the advantages of formulating a DEC-POMDP as a MILP is the possibility to use
the fact that, as mixed integer linear programs are very important for the industrial world,
optimized solvers do exist.
Then, we had to formulate a DEC-POMDP as a MILP and this is mostly what this paper
is about.

Q4: What is the main contribution of this paper?

As stated earlier in the paper, current algorithms for DEC-POMDPs were largely in-
spired by POMDPs algorithms. Our main contribution was to pursue an entirely different
approach, i.e., mixed integer linear programming. As such, we have learned a lot about
DEC-POMDPs and about the pro & con of this mathematical programming approach. This
has lead to the formulation of new algorithms.

In designing these algorithms, we have, first of all, drawn attention to a new represen-
tation of a policy, namely the sequence form of a policy, introduced by Koller, Megiddo
and von Stengel. The sequence form of a policy is not a compact representation of the
policy of an agent, but it does afford a compact representation of the set of policies of the
agent.

The algorithms we have proposed for finite horizon DEC-POMDPs are mathematical
programming algorithms. To be precise, they are 0-1 MILPs. In the MDP domain,
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mathematical programming has been long used for solving the infinite horizon case. For
instance, an infinite horizon MDP can be solved by a linear program (d’Epenoux, 1963).
More recently, mathematical programming has been directed at infinite horizon POMDPs
and DEC-POMDPs. Thus, an infinite horizon DEC-MDP (with state transition indepen-
dence) can be solved by a 0-1 MILP (Petrik & Zilberstein, 2007) and an infinite horizon
POMDP or DEC-POMDP can be solved (for local optima) by a nonlinear program (Am-
ato, Bernstein, & Zilberstein, 2007b, 2007a). The finite horizon case – much different in
character than the infinite horizon case – has been dealt with using dynamic programming.
As stated earlier, whereas dynamic programming has been quite successful for finite horizon
MDPs and POMDPs, it has been less so for finite horizon DEC-POMDPs.

In contrast, in game theory, mathematical programming has been successfully directed
at games of finite horizon. Lemke’s algorithm (1965) for two-player normal form games, the
Govindan-Wilson algorithm (2001) for n-player normal form games and the Koller, Megiddo
and von Stengel approach (which internally uses Lemke’s algorithm) for two-player extensive
form games are all for finite-horizon games.

What remained then was to a find way to appropriate mathematical programming for
solving the finite horizon case of the POMDP/DEC-POMDP domain. Our work has done
precisely this (incidently, we now have an algorithm for solving some kind of n-player nor-
mal form games). Throughout the paper, we have shown how mathematical programming
(in particular, 0-1 integer programming) can be applied for solving finite horizon DEC-
POMDPs (it is easy to see that the approach we have presented yields a linear program
for solving a finite horizon POMDP). Additionally, the computational experience of our
approach indicates that for finite horizon DEC-POMDPs, mathematical programming may
be better (faster) than dynamic programming. We have also shown how the well-entrenched
dynamic programming heuristic of the pruning of redundant or extraneous objects (in our
case, histories) can be integrated into this mathematical programming approach.
Hence, the main contribution of this paper is that it presents, for the first time, an alter-
native approach for solving finite horizon POMDPs/DEC-POMDPs based on MILPs.

Q5: Is the mathematical programming approach presented in this paper some-
thing of a dead end?

This question is bit controversial and a very short answer to this question could be
a “small yes”. But this is true for every approach that looks for exact optimal solutions
to DEC-POMDPs, whether it is grounded on dynamic programming or forward search or
mathematical programming. Because of the complexity of the problem, an exact solution
will always be untractable but our algorithms can still be improved.

A longer answer is more mitigated, especially in the light of the recent advances made
for dynamic programming and forward search algorithms. One crucial point in sequence-
form DEC-POMDPs is the pruning of extraneous histories. A recent work from Oliehoek,
Whiteson, and Spaan (2009) has shown how to clusters histories that are equivalent in a
way that could also reduce the nomber of constraints in MILPs. The approach of Amato,
Dibangoye, and Zilberstein (2009) that improves and speed up the dynamic programming
operator could help in finding extraneous histories. So, at the very least, some work is
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still required before stating that every aspect of sequence-form DEC-POMDPs have been
studied.

We now turn to an even longer answer. Consider the long horizon case. Given that exact
algorithms (including the ones presented in this paper) can only tackle horizons less than 6,
by ‘long horizon’, we mean anything upwards of 6 time periods. For the long horizon case,
we are required to conceive a possibly sub-optimal joint policy for the given horizon and
determine an upper bound on the loss of value incurred by using the joint policy instead of
using an optimal joint policy.

The current trend for the long horizon case is amemory-bounded approach. The memory
bounded dynamic programming (MBDP) algorithm (Seuken & Zilberstein, 2007) is the
main exponent of this approach. This algorithm is based on the backward induction DP
algorithm (Hansen et al., 2004). The algorithm attempts to run in a limited amount of
space. In order to do so, unlike the DP algorithm, it prunes even non-extraneous (i.e., non-
dominated) policy trees at each iteration. Thus, at each iteration, the algorithm retains
a pre-determined number of trees. This algorithm and its variants have been used to find
a joint policy for the MABC, the MA-tiger and the Box pushing problems for very long
horizons (of the order of thousands of time periods).

MBDP does not provide an upper bound on the loss of value. The bounded DP (BDP)
algorithm presented in the paper by Amato, Carlin, and Zilberstein (2007c) does give an
upper bound. However, on more interesting DEC-POMDP problems (such as MA-tiger),
MBDP finds a much better joint policy than BDP.

A meaningful way to introduce the notion of memory boundedness into our approach is
to fix an a priori upper bound on the size of the concerned mathematical program. This
presents all sorts of difficulties but the main difficulty seems to be the need to represent
a policy for a long horizon in limited space. The MBDP algorithm solves this problem
by using what may be termed as a recursive representation. The recursive representation
causes the MBDP algorithm to take a long time to evaluate a joint policy, but it does allow
the algorithm to represent a long horizon joint policy in limited space. In the context of
our mathematical programming approach, we would have to change the policy constraints
in some way so that a long horizon policy is represented by a system consisting of a limited
number of linear equations and linear inequalities. Besides the policy constraints, other
constraints of the presented programs would also have to be accordingly transfigured. It is
not evident (to us) if such a transfiguration of the constraints is possible.

On the other hand, the infinite horizon case seems to be a promising candidate to adapt
our approach to. Mathematical programming has already been applied, with some success,
to solving infinite horizon DEC-POMDPs (Amato et al., 2007a). The computational ex-
perience of this mathematical programming approach shows that it is better (finds higher
quality solutions in lesser time) than a dynamic programming approach (Bernstein et al.,
2005; Szer & Charpillet, 2006).

Nevertheless, this approach has two inter-related shortcomings. First, the approach
finds a joint controller (i.e., an infinite horizon joint policy) of a fixed size and not of the
optimal size. Second, much graver than the first, for the fixed size, it finds a locally optimal
joint controller. The approach does not guarantee finding an optimal joint controller. This
is because the program presented in the work of Amato et al. (2007a) is a (non-convex)
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nonlinear program (NLP). The NLP finds a fixed size joint controller in the canonical form
(i.e., in the form of a finite state machine). We believe that both these shortcomings can
be removed by conceiving a mathematical program (specifically, a 0-1 mixed integer linear
program) that finds a joint controller in the sequence-form. As stated earlier, the main
challenge in this regard is therefore an identification of the sequence-form of an infinite
horizon policy. In fact, it may be that if such sequence-form characterization of an infinite
horizon policy is obtained, it could be used in conceiving a program for the long horizon
(undiscounted reward) case as well.

Q6: How does this help achieve designing artificial autonomous agents ?

At first sight, our work does not have any direct and immediate applied benefits for the
purpose of building artificial intelligent agents or understanding how intelligence “works”.
Even in the limited field of multi-agent planning, our contributions are more on a theoretical
level than on a practical one.

Real artificial multi-agent systems can indeed be modeled as DEC-POMDPs, even if they
make use of communication, of common knowledge, of common social law. Then, such real
systems would likely be made of a large number of states, actions or observations and require
solutions over a large horizon. Our mathematical programming approach is practically
useless in that setting as limited to DEC-POMDPs of very small size. Other models that
are simpler – but far from trivial – to solve because they explicitly take into account some
characteristics of the real systems do exist. Some works take advantage of communications
(Xuan, Lesser, & Zilberstein, 2000; Ghavamzadeh & Mahadevan, 2004), some of the existing
independencies in the system (Wu & Durfee, 2006; Becker, Zilberstein, Lesser, & Goldman,
2004), some do focus on interaction between agents (Thomas, Bourjot, & Chevrier, 2004),
some, as said while answering the previous questions, rely on approximate solutions, etc...
It is our intention to facilitate the re-use and the adaptation to these other models of the
concepts used in our work and of the knowledge about the structure of an optimal solution of
a DEC-POMDP. To that end, we decided not only to describe the MILP programs but also,
and most importantly, how we derived these programs by making use of some properties of
optimal DEC-POMDP solutions.

Truly autonomous agents will also require to adapt to new and unforeseen situations.
Our work being dedicated to planning, it seems easy to argue that it does not contribute
very much to that end either. On the other hand, learning in DEC-POMDPs has never
really been addressed except for some fringe work in particular settings (Scherrer & Charpil-
let, 2002; Ghavamzadeh & Mahadevan, 2004; Buffet, Dutech, & Charpillet, 2007). In fact,
even for “simple” POMDPs, learning is a very difficult task (Singh, Jaakkola, & Jordan,
1994). Currently, the more promising research deals with learning the “Predictive State
Representation” (PSR) of a POMDP (Singh, Littman, Jong, Pardoe, & Stone, 2003; James
& Singh, 2004; McCracken & Bowling, 2005). Making due allowance to the fundamental
differences between the functional role of PSR and histories, we notice that PSR and his-
tories are quite similar in structure. While it is too early to say, it might be that trying to
learn the useful histories of a DEC-POMDP could take some inspiration from the way the
right PSRs are learned for POMDPs.
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9. Conclusion

We designed and investigated new exact algorithms for solving Decentralized Partially Ob-
servable Markov Decision Processes with finite horizon (DEC-POMDPs). The main con-
tribution of our paper is the use of sequence-form policies, based on a sets of histories, in
order to reformulate a DEC-POMDP as a non-linear programming problem (NLP). We
have then presented two different approaches to linearize the NLP in order to find global
and optimal solutions to DEC-POMDPs. The first approach is based on the combinatorial
properties of the optimal policies of DEC-POMDPs and the second one relies on concepts
borrowed from the field of game theory. Both lead to formulating DEC-POMDPs as 0-1
Mixed Integer Linear Programming problems (MILPs). Several heuristics for speeding up
the resolution of these MILPs make another important contribution of our work.

Experimental validation of the mathematical programming problems designed in this
work was conducted on classical DEC-POMDP problems found in the literature. These
experiments show that, as expected, our MILP methods outperform classical Dynamic
Programming algorithms. But, in general, they are less efficient and more costly than
forward search methods like GMAA*, especially in the case where the DEC-POMDP admits
many optimal policies. Nevertheless, according to the nature of the problem, MILP methods
can sometimes greatly outperform GMAA* (as in the MA-Tiger problem).

While it is clear that exact resolution of DEC-POMDPs can not scale up with the size
of the problems or the length of the horizon, designing exact methods is useful in order
to develop or improve approximate methods. We see at least three research directions
where our work can contribute. One direction could be to take advantage of the large
literature on algorithms for finding approximate solutions to MILPs and to adapt them to
the MILPs formulated for DEC-POMDPs. Another direction would be to use the knowledge
gained from our work to derive improved heuristics for guiding existing approximate existing
methods for DEC-POMDPs. For example, the work of Seuken and Zilberstein (2007), in
order to limit the memory resources used by the resolution algorithm, prune the space of
policies to only consider some of them; our work could help using a better estimation of
the policies that are important to be kept in the search space. Then, the one direction we
are currently investigating is to adapt our approach to DEC-POMDPs of infinite length by
looking for yet another representation that would allow such problems to be seen as MILPs.

More importantly, our work participates to a better understanding of DEC-POMDPs.
We analyzed and understood key characteristics of the nature of optimal policies in order
to design the MILPs presented in this paper. This knowledge can be useful for other work
dealing with DEC-POMDPs and even POMDPs. The experimentations have also given
some interesting insights on the nature of the various problems tested, in term of existence
of extraneous histories or on the number of optimal policies. These insights might be a first
step toward a taxonomy of DEC-POMDPs.

Appendix A. Non-Convex Non-Linear Program

Using the simplest example, this section aims at showing that the Non-Linear Program
(NLP) expressed in Table 2 can be non-convex.
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Let us consider an example with two agents, each one with 2 possible actions (a and b)
that want to solve a horizon-1 decision problem. The set of possible joint-histories is then:
〈a, a〉, 〈a, b〉, 〈b, a〉 and 〈b, b〉. Then the NLP to solve is:

Variables: x1(a), x1(b), x2(a), x2(a)

Maximize R(α, 〈a, a〉)x1(a)x2(a) +R(α, 〈a, b〉)x1(a)x2(b) (158)

+R(α, 〈b, a〉)x1(b)x2(a) +R(α, 〈b, b〉)x1(b)x2(b)

subject to

x1(a) + x1(b) = 1

x2(a) + x2(b) = 1

x1(a) ≥ 0, x1(b) ≥ 0

x2(a) ≥ 0, x2(b) ≥ 0

A matrix formulation of the objective function of eq. (158) would be xT .C.x with C and
x of the following kind:

C =









0 0 c d
0 0 e f
c e 0 0
d f 0 0









x =









x1(a)
x1(b)
x2(a)
x2(b)









. (159)

If λ is the eigen value of vector v = [v1 v2 v3 v4]
T then it is straightforward to show that

−λ is also an eigen value: [−v1 − v2 v3 v4]
T = −λC.[v1 v2 − v3 − v4]

T . As a result, the
matrix C, hessian of the objective function, is not positive-definite and thus the objective
function is not convex.

Appendix B. Linear Program Duality

Every linear program (LP) has a converse linear program called its dual. The first LP is
called the primal to distinguish it from its dual. If the primal maximizes a quantity, the
dual minimizes the quantity. If there are n variables and m constraints in the primal, there
are m variables and n constraints in the dual. Consider the following (primal) LP.

Variables: x(i), ∀i ∈ {1, 2, · · · , n}

Maximize

n
∑

i=1

c(i)x(i)

subject to:

n
∑

i=1

a(i, j)x(i) = b(j), j = 1, 2, · · · , m

x(i) ≥ 0, i = 1, 2, · · · , n
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This primal LP has one variable x(i) for each i = 1 to n. The data of the LP consists
of numbers c(i) for each i = 1 to n, the numbers b(j) for each j = 1 to m and the numbers
a(i, j) for each i = 1 to n and for each j = 1 to m. The LP thus has n variables and m
constraints. The dual of this LP is the following LP.

Variables: y(j), ∀j ∈ {1, 2, · · · ,m′}

Minimize

m′

∑

j=1

b(j)y(j)

subject To:

m′

∑

j=1

a(i, j)y(j) ≥ c(i), i = 1, 2, · · · , n′

y(j) ∈ (−∞,+∞), j = 1, 2, · · · , m′

The dual LP has one variable y(j) for each j = 1 to m. Each y(j) variable is a free
variable. That is, it is allowed to take any value in R. The dual LP has m variables and n
constraints.

The theorem of linear programming duality is as follows.

Theorem B.1. (Luenberger, 1984) If either a primal LP or its dual LP has a finite optimal
solution, then so does the other, and the corresponding values of the objective functions are
equal.

Applying this theorem to the primal-dual pair given above, there holds,

n
∑

i=1

c(i)x∗(i) =
m
∑

j=1

b(j)y∗(j)

where x∗ denotes an optimal solution to the primal and y∗ denotes an optimal solution to
the dual.

The theorem of complementary slackness is as follows.

Theorem B.2. (Vanderbei, 2008) Suppose that x is feasible for a primal linear program and
y is feasible for its dual. Let (w1,· · · ,wm) denote the corresponding primal slack variables,
and let (z1,· · · ,zn) denote the corresponding dual slack variables. Then x and y are optimal
for their respective problems if and only if

xjzj = 0 for j = 1, · · · , n,

wiyi = 0 for i = 1, · · · ,m.
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Appendix C. Regret for DEC-POMDPs

The value of an information set ϕ ∈ Ii of an agent i for a i-reduced joint policy q,
denoted λ∗

i (ϕ, q), is defined by:

λ∗
i (ϕ, q) = max

h∈ϕ

∑

j′∈E−i

R(α, 〈h, j′〉)q(j′) (160)

for any terminal information set and, if ϕ is non-terminal, by:

λ∗
i (ϕ, q) = max

h∈ϕ

∑

o∈Oi

λ∗
i (h.o, q) (161)

Then, the regret of a history h for an agent i and for a i-reduced joint policy q,
denoted µi(h, q), it is defined by:

µi(h, q) = λ∗
i (ϕ(h), q) −

∑

j′∈HT
−i

R(α, 〈h, j′〉)q(j′) (162)

if h is terminal and, if h is non-terminal, by:

µi(h, q) = λ∗
i (ϕ(h), q) −

∑

o∈Oi

λ∗
i (h.o, q) (163)

The concept of regret of the agent i, which is independant of the policy of the agent i, is
very useful when looking for optimal policy because its optimal value is known: it is 0. It
is thus easier to manipulate than the optimal value of a policy.

Appendix D. Program Changes Due to Optimizations

Pruning locally or globally extraneous histories reduces the size of the search space of the
mathematical programs. Now, some constraints of the programs depend on the size of the
search space, we must then alter some of these constraints.

Let denote by a “∼” superscript the sets actually used in our program. For example, Ẽi
will be the actual set of terminal histories of agent i, be it pruned of extraneous histories
or not.

Programs MILP (Table 3) and MILP-n agents (Table 5) rely on the fact that the
number of histories of a given length t in the support of a pure policy of each agent is fixed
and equal to |Oi|

t−1. As it may not be the case with pruned sets, the following changes
have to be made:

• The constraint (42) of MILP or (121) MILP-n agents, that is
∑

j∈E

z(j) =
∏

i∈I

|Oi|
T−1

must be replaced by
∑

j∈Ẽ

z(j) ≤
∏

i∈I

|Oi|
T−1. (164)

385



Aras & Dutech

• The set of constraints (41) of MILP or (120) of MILP-n agents, that is

∑

j′∈E−i

z(〈h, j′〉) =
∏

k∈I\{i}

|Ok|
T−1xi(h), ∀i ∈ I, ∀h ∈ Ei

must be replaced by

∑

j′∈Ẽ−i

z(〈h, j′〉) ≤
∏

k∈I\{i}

|Ok|
T−1xi(h), ∀i ∈ I, ∀h ∈ Ẽi. (165)

• The set of constraints (119) of MILP-n agents, that is

yi(ϕ(h)) −
1

|Oi|T−1

∑

j∈E

R(α, 〈h, j−i〉)z(j) = wi(h), ∀h ∈ Ei

must be replaced by

yi(ϕ(h)) −
1

|Õi|T−1

∑

j∈Ẽ

R(α, 〈h, j−i〉)z(j) = wi(h), ∀h ∈ Ẽi. (166)

Appendix E. Example using MA-Tiger

All these example are derived using the Decentralized Tiger Problem (MA-Tiger) described
in Section 2.2. We have two agents, with 3 actions (al, ar, ao) and 2 observations (ol, or).
We will only consider problem with an horizon of 2.

There are 18 (32×2) terminal histories for an agent: ao.ol.ao, ao.ol.al, ao.ol.ar, ao.or.ao,
ao.or.al, ao.or.ar, al.ol.ao, al.ol.al, al.ol.ar, al.or.ao, al.or.al, al.or.ar, ar.ol.ao, ar.ol.al,
ar.ol.ar, ar.or.ao, ar.or.al, ar.or.ar.

And thus 324 (182 = 32×2×22) joint histories for the agents: 〈ao.ol.ao,ao.ol.ao〉,〈ao.ol.ao,ao.ol.al〉,
〈ao.ol.ao,ao.ol.ar〉, · · · , 〈ar.or.ar,ar.or.ar〉.

E.1 Policy Constraints

The policy constraints with horizon 2 for one agent in the MA-Tiger problem would be:
Variables: x for every history

x(ao) + x(al) + x(ar) = 0

−x(ao) + x(ao.ol.ao) + x(ao.ol.al) + x(ao.ol.ar) = 0

−x(ao) + x(ao.or.ao) + x(ao.or.al) + x(ao.or.ar) = 0

−x(al) + x(al.ol.ao) + x(al.ol.al) + x(al.ol.ar) = 0

−x(al) + x(al.or.ao) + x(al.or.al) + x(al.or.ar) = 0

−x(ar) + x(ar.ol.ao) + x(ar.ol.al) + x(ar.ol.ar) = 0

−x(ar) + x(ar.or.ao) + x(ar.or.al) + x(ar.or.ar) = 0
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x(ao) ≥ 0 x(al) ≥ 0 x(ar) ≥ 0

x(ao.ol.ao) ≥ 0 x(ao.ol.al) ≥ 0 x(ao.ol.ar) ≥ 0

x(ao.or.ao) ≥ 0 x(ao.or.al) ≥ 0 x(ao.or.ar) ≥ 0

x(al.ol.ao) ≥ 0 x(al.ol.al) ≥ 0 x(al.ol.ar) ≥ 0

x(al.or.ao) ≥ 0 x(al.or.al) ≥ 0 x(al.or.ar) ≥ 0

x(ar.ol.ao) ≥ 0 x(ar.ol.al) ≥ 0 x(ar.ol.ar) ≥ 0

x(ar.or.ao) ≥ 0 x(ar.or.al) ≥ 0 x(ar.or.ar) ≥ 0

E.2 Non-Linear Program for MA-Tiger

The Non-Linear Program for finding an optimal sequence-form policy for the MA-Tiger
with horizon 2 would be:

Variables: xi for every history for each agent

Maximize R(α, 〈ao.ol.ao, ao.ol.ao〉)x1(ao.ol.ao)x2(ao.ol.ao)

+ R(α, 〈ao.ol.ao, ao.ol.al〉)x1(ao.ol.ao)x2(ao.ol.al)

+ R(α, 〈ao.ol.ao, ao.ol.ar〉)x1(ao.ol.ao)x2(ao.ol.ar)

+ · · ·

subject to:

x1(ao) + x1(al) + x1(ar) = 0

−x1(ao) + x1(ao.ol.ao) + x1(ao.ol.al) + x1(ao.ol.ar) = 0

−x1(ao) + x1(ao.or.ao) + x1(ao.or.al) + x1(ao.or.ar) = 0

−x1(al) + x1(al.ol.ao) + x1(al.ol.al) + x1(al.ol.ar) = 0

−x1(al) + x1(al.or.ao) + x1(al.or.al) + x1(al.or.ar) = 0

−x1(ar) + x1(ar.ol.ao) + x1(ar.ol.al) + x1(ar.ol.ar) = 0

−x1(ar) + x1(ar.or.ao) + x1(ar.or.al) + x1(ar.or.ar) = 0

x2(ao) + x2(al) + x2(ar) = 0

−x2(ao) + x2(ao.ol.ao) + x2(ao.ol.al) + x2(ao.ol.ar) = 0

−x2(ao) + x2(ao.or.ao) + x2(ao.or.al) + x2(ao.or.ar) = 0

−x2(al) + x2(al.ol.ao) + x2(al.ol.al) + x2(al.ol.ar) = 0

−x2(al) + x2(al.or.ao) + x2(al.or.al) + x2(al.or.ar) = 0

−x2(ar) + x2(ar.ol.ao) + x2(ar.ol.al) + x2(ar.ol.ar) = 0

−x2(ar) + x2(ar.or.ao) + x2(ar.or.al) + x2(ar.or.ar) = 0
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x1(ao) ≥ 0 x1(al) ≥ 0 x1(ar) ≥ 0

x1(ao.ol.ao) ≥ 0 x1(ao.ol.al) ≥ 0 x1(ao.ol.ar) ≥ 0

x1(ao.or.ao) ≥ 0 x1(ao.or.al) ≥ 0 x1(ao.or.ar) ≥ 0

x1(al.ol.ao) ≥ 0 x1(al.ol.al) ≥ 0 x1(al.ol.ar) ≥ 0

x1(al.or.ao) ≥ 0 x1(al.or.al) ≥ 0 x1(al.or.ar) ≥ 0

x1(ar.ol.ao) ≥ 0 x1(ar.ol.al) ≥ 0 x1(ar.ol.ar) ≥ 0

x1(ar.or.ao) ≥ 0 x1(ar.or.al) ≥ 0 x1(ar.or.ar) ≥ 0

x2(ao) ≥ 0 x2(al) ≥ 0 x2(ar) ≥ 0

x2(ao.ol.ao) ≥ 0 x2(ao.ol.al) ≥ 0 x2(ao.ol.ar) ≥ 0

x2(ao.or.ao) ≥ 0 x2(ao.or.al) ≥ 0 x2(ao.or.ar) ≥ 0

x2(al.ol.ao) ≥ 0 x2(al.ol.al) ≥ 0 x2(al.ol.ar) ≥ 0

x2(al.or.ao) ≥ 0 x2(al.or.al) ≥ 0 x2(al.or.ar) ≥ 0

x2(ar.ol.ao) ≥ 0 x2(ar.ol.al) ≥ 0 x2(ar.ol.ar) ≥ 0

x2(ar.or.ao) ≥ 0 x2(ar.or.al) ≥ 0 x2(ar.or.ar) ≥ 0

E.3 MILP for MA-Tiger

The MILP with horizon 2 for the agents in the MA-Tiger problem would be:
Variables:
xi(h) for every history of agent i
z(j) for every terminal joint history

Maximize R(α, 〈ao.ol.ao, ao.ol.ao〉)z(〈ao.ol.ao, ao.ol.ao〉)

+ R(α, 〈ao.ol.ao, ao.ol.al〉)z(〈ao.ol.ao, ao.ol.al〉)

+ R(α, 〈ao.ol.ao, ao.ol.ar〉)z(〈ao.ol.ao, ao.ol.ar〉)

+ · · ·
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subject to:

x1(ao) + x1(al) + x1(ar) = 0

−x1(ao) + x1(ao.ol.ao) + x1(ao.ol.al) + x1(ao.ol.ar) = 0

−x1(ao) + x1(ao.or.ao) + x1(ao.or.al) + x1(ao.or.ar) = 0

· · ·

x2(ao) + x2(al) + x2(ar) = 0

−x2(ao) + x2(ao.ol.ao) + x2(ao.ol.al) + x2(ao.ol.ar) = 0

−x2(ao) + x2(ao.or.ao) + x2(ao.or.al) + x2(ao.or.ar) = 0

· · ·

z(〈ao.ol.ao, ao.ol.ao〉) + z(〈ao.ol.ao, ao.ol.al〉) + z(〈ao.ol.ao, ao.ol.ar〉) = 2× x1(ao.ol.ao)

z(〈ao.ol.ao, ao.ol.ao〉) + z(〈ao.ol.al, ao.ol.ao〉) + z(〈ao.ol.ar, ao.ol.ao〉) = 2× x2(ao.ol.ao)

z(〈ao.ol.al, ao.ol.ao〉) + z(〈ao.ol.al, ao.ol.al〉) + z(〈ao.ol.al, ao.ol.ar〉) = 2× x1(ao.ol.al)

z(〈ao.ol.ao, ao.ol.al〉) + z(〈ao.ol.al, ao.ol.al〉) + z(〈ao.ol.ar, ao.ol.al〉) = 2× x2(ao.ol.al)

· · ·

x1(ao) ≥ 0 x1(al) ≥ 0 x1(ar) ≥ 0

x1(ao.ol.ao) ∈ {0, 1} x1(ao.ol.al) ∈ {0, 1} x1(ao.ol.ar) ∈ {0, 1}

x1(ao.or.ao) ∈ {0, 1} x1(ao.or.al) ∈ {0, 1} x1(ao.or.ar) ∈ {0, 1}

· · ·

x2(ao) ≥ 0 x2(al) ≥ 0 x2(ar) ≥ 0

x2(ao.ol.ao) ∈ {0, 1} x2(ao.ol.al) ∈ {0, 1} x2(ao.ol.ar) ∈ {0, 1}

x2(ao.or.ao) ∈ {0, 1} x2(ao.or.al) ∈ {0, 1} x2(ao.or.ar) ∈ {0, 1}

· · ·

z(〈ao.ol.ao, ao.ol.ao〉) ∈ {0, 1} z(〈ao.ol.ao, ao.ol.al〉) ∈ {0, 1} z(〈ao.ol.ao, ao.ol.ar〉) ∈ {0, 1}

z(〈ao.ol.al, ao.ol.ao〉) ∈ {0, 1} z(〈ao.ol.al, ao.ol.al〉) ∈ {0, 1} z(〈ao.ol.al, ao.ol.ar〉) ∈ {0, 1}

· · ·

E.4 MILP-2 Agents for MA-Tiger

The MILP-2 agents with horizon 2 for the agents in the MA-Tiger problem would be:
Variables:
xi(h), wi(h) and bi(h) for every history of agent i
yi(ϕ)) for each agent and for every information set

Maximize y1(∅)
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subject to:

x1(ao) + x1(al) + x1(ar) = 0

−x1(ao) + x1(ao.ol.ao) + x1(ao.ol.al) + x1(ao.ol.ar) = 0

−x1(ao) + x1(ao.or.ao) + x1(ao.or.al) + x1(ao.or.ar) = 0

· · ·

x2(ao) + x2(al) + x2(ar) = 0

−x2(ao) + x2(ao.ol.ao) + x2(ao.ol.al) + x2(ao.ol.ar) = 0

−x2(ao) + x2(ao.or.ao) + x2(ao.or.al) + x2(ao.or.ar) = 0

· · ·

y1(∅)− y1(ao.ol)− y1(ao.or) = w1(ao)

y1(∅)− y1(al.ol)− y1(al.or) = w1(al)

y1(∅)− y1(ar.ol)− y1(ar.or) = w1(ar)

y2(∅)− y2(ao.ol)− y2(ao.or) = w2(ao)

y2(∅)− y2(al.ol)− y2(al.or) = w2(al)

y2(∅)− y2(ar.ol)− y2(ar.or) = w2(ar)

y1(ao.ol)−R(α, 〈ao.ol.ao, ao.ol.ao〉)x2(ao.ol.ao)

−R(α, 〈ao.ol.ao, ao.ol.al〉)x2(ao.ol.al)

−R(α, 〈ao.ol.ao, ao.ol.ar〉)x2(ao.ol.ar)

−R(α, 〈ao.ol.ao, al.ol.ao〉)x2(al.ol.ao)

−R(α, 〈ao.ol.ao, al.ol.al〉)x2(al.ol.al)

−R(α, 〈ao.ol.ao, al.ol.ar〉)x2(al.ol.ar)

· · · = w1(ao.ol.ao)

y1(ao.ol)−R(α, 〈ao.ol.al, ao.ol.ao〉)x2(ao.ol.ao)

−R(α, 〈ao.ol.al, ao.ol.al〉)x2(ao.ol.al)

−R(α, 〈ao.ol.al, ao.ol.ar〉)x2(ao.ol.ar)

−R(α, 〈ao.ol.al, al.ol.ao〉)x2(al.ol.ao)

−R(α, 〈ao.ol.al, al.ol.al〉)x2(al.ol.al)

−R(α, 〈ao.ol.al, al.ol.ar〉)x2(al.ol.ar)

· · · = w1(ao.ol.al)
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· · ·

y1(ar.or)−R(α, 〈ar .or.ar, ao.ol.ao〉)x2(ao.ol.ao)

−R(α, 〈ar.or.ar, ao.ol.al〉)x2(ao.ol.al)

−R(α, 〈ar.or.ar, ao.ol.ar〉)x2(ao.ol.ar)

−R(α, 〈ar.or.ar, al.ol.ao〉)x2(al.ol.ao)

−R(α, 〈ar .or.ar, al.ol.al〉)x2(al.ol.al)

−R(α, 〈ar .or.ar, al.ol.ar〉)x2(al.ol.ar)

· · · = w1(ar.or.ar)

y2(ao.ol)−R(α, 〈ao.ol.ao, ao.ol.ao〉)x1(ao.ol.ao)

−R(α, 〈ao.ol.al, ao.ol.ao〉)x1(ao.ol.al)

−R(α, 〈ao.ol.ar, ao.ol.ao〉)x1(ao.ol.ar)

−R(α, 〈al.ol.ao, ao.ol.ao〉)x1(al.ol.ao)

−R(α, 〈al.ol.al, ao.ol.ao〉)x1(al.ol.al)

−R(α, 〈al.ol.ar, ao.ol.ao〉)x1(al.ol.ar)

· · · = w2(ao.ol.ao)

y2(ao.ol)−R(α, 〈ao.ol.ao, ao.ol.al〉)x1(ao.ol.ao)

−R(α, 〈ao.ol.al, ao.ol.al〉)x1(ao.ol.al)

−R(α, 〈ao.ol.ar, ao.ol.al〉)x1(ao.ol.ar)

−R(α, 〈al.ol.ao, ao.ol.al〉)x1(al.ol.ao)

−R(α, 〈al.ol.al, ao.ol.al〉)x1(al.ol.al)

−R(α, 〈al.ol.ar, ao.ol.al〉)x1(al.ol.ar)

· · · = w2(ao.ol.al)

· · ·

x1(ao) ≤ 1− b1(ao) x1(al) ≤ 1− b1(al)

x1(ar) ≤ 1− b1(ar) x1(ao.ol.ao) ≤ 1− b1(ao.ol.ao)

x1(ao.ol.al) ≤ 1− b1(ao.ol.al) x1(ao.ol.ar) ≤ 1− b1(ao.ol.ar)

· · ·

w1(ao) ≤ U1(ao)b1(ao) w1(al) ≤ U1(al)b1(al)

w1(ar) ≤ U1(ar)b1(ar) w1(ao.ol.ao) ≤ U1(ao.ol.ao)b1(ao.ol.ao)

w1(ao.ol.al) ≤ U1(ao.ol.al)b1(ao.ol.al) w1(ao.ol.ar) ≤ U1(ao.ol.ar)b1(ao.ol.ar)

· · ·
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x1(ao) ≥ 0 x1(al) ≥ 0 x1(ar) ≥ 0

x1(ao.ol.ao) ≥ 0 x1(ao.ol.al) ≥ 0 x1(ao.ol.ar) ≥ 0

· · ·

w1(ao) ≥ 0 w1(al) ≥ 0 w1(ar) ≥ 0

w1(ao.ol.ao) ≥ 0 w1(ao.ol.al) ≥ 0 w1(ao.ol.ar) ≥ 0

· · ·

b1(ao) ∈ {0, 1} b1(al) ∈ {0, 1} b1(ar) ∈ {0, 1}

b1(ao.ol.ao) ∈ {0, 1} b1(ao.ol.al) ∈ {0, 1} b1(ao.ol.ar) ∈ {0, 1}

· · ·

y1(∅) ∈ (−∞,+∞)

y1(ao.ol) ∈ (−∞,+∞) y1(ao.or) ∈ (−∞,+∞)

· · ·

... and the same for agent 2
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