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Abstract

This paper discusses the problem of marrying structural similarity with semantic relat-
edness for Information Extraction from text. Aiming at accurate recognition of relations,
we introduce local alignment kernels and explore various possibilities of using them for this
task. We give a definition of a local alignment (LA) kernel based on the Smith-Waterman
score as a sequence similarity measure and proceed with a range of possibilities for com-
puting similarity between elements of sequences. We show how distributional similarity
measures obtained from unlabeled data can be incorporated into the learning task as se-
mantic knowledge. Our experiments suggest that the LA kernel yields promising results
on various biomedical corpora outperforming two baselines by a large margin. Additional
series of experiments have been conducted on the data sets of seven general relation types,
where the performance of the LA kernel is comparable to the current state-of-the-art results.

1. Introduction

Despite the fact that much work has been done on automatic relation extraction (or recog-
nition) in the past few decades, it remains a popular research topic. The main reason for the
keen interest in relation recognition lies in its utility. Once concepts and semantic relations
are identified, they can be used for a variety of applications such as question answering
(QA), ontology construction, hypothesis generation and others.

In ontology construction, the relation that is studied most is the is-a relation (or hy-
pernymy), which organizes concepts in a taxonomy (Snow, Jurafsky, & Ng, 2006). In in-
formation retrieval, semantic relations are used in two ways, to refine queries before actual
retrieval, or to manipulate the output that is returned by a search engine (e.g. identifying
whether a fragment of text contains a given relation or not). The most widely used relations
for query expansion are hypernymy (or broader terms from a thesaurus) and synonymy.
Semantic relations can also be useful at different stages of question answering. They have
to be taken into account when identifying the type of a question and they have to be con-
sidered at actual answer extraction time (van der Plas, 2008). Yet another application of
relations is constructing a new scientific hypothesis given the evidence found in text. This
type of knowledge discovery from text is often based on co-occurrence analysis and, in many
cases, was corroborated via experiments in laboratories (Swanson & Smalheiser, 1999).

Another reason why extraction of semantic relations is of interest lies in the diversity of
relations. Different relations need different extraction methods. Many existing information
extraction systems were originally designed to work for generic data (Grishman & Sund-
heim, 1996), but it became evident that domain knowledge is often necessary for successful

c©2010 AI Access Foundation. All rights reserved.



Katrenko, Adriaans, & van Someren

extraction. For instance, relation extraction in the biomedical domain would require an
accurate recognition of named entities such as gene names (Clegg, 2008), and in the area
of food it needs information on relevant named entities such as toxic substances.

Also for generic relations syntactic information is often not sufficient. Consider, for
instance, the following sentences (with the arguments of the relations written in italics):

(1) Mary looked back and whispered: “I know every tree in this forest, every scent”.
(Part-Whole relation)

(2) A person infected with a particular flu virus strain develops antibodies against that
virus. (Cause-Effect relation)

(3) The apples are in the basket. (Content-Container relation)

All these sentences exemplify binary relations, namely Part-Whole (tree is part of a
forest), Cause-Effect (virus causes flu) and Content-Container (apples are contained
in basket). We can easily notice that the syntactic context in (1) and (3) is the same, namely,
the arguments in both cases are connected to each other by the preposition ‘in’. However,
this context is highly ambiguous because even though it allows us to reduce the number
of potential semantic relations, it is still not sufficient to be able to discriminate between
Part - Whole and Content - Container relation. In other words, world knowledge
about ‘trees’, ‘forests’, ‘apples’ and ‘baskets’ is necessary to classify relations correctly. The
situation changes even more drastically if we consider example (2). Here, there is no explicit
indication for causation. Nevertheless, by knowing what ‘a flu’ and ‘a virus’ is, we are
able to infer that Cause - Effect relation holds.

The examples in (1), (2) and (3) highlight several difficulties that characterize semantic
relation extraction. Generic relations very often occur in nominal complexes such as ‘flu
virus’ in (2) and lack of sentential context boosts such approaches as paraphrasing (Nakov,
2008). However, even for noun compounds one has to combine world knowledge with the
compound’s context to arrive at the correct interpretation.

Computational approaches to the relation recognition problem often rely on a two-step
procedure. First, the relation arguments are identified. Depending on the relation at hand,
this step often involves named entity recognition of the arguments of the relations. The
second step is to check whether the relation holds. If relation arguments are provided (e.g.,
‘basket’ and ‘apples’ in (3)), relation extraction is reduced to the second step. Previous
work on relation extraction suggests that in this case the accuracy of relation recognition
is much higher than in the case when they have to be discovered automatically (Bunescu
et al., 2005). Furthermore, most existing solutions to relation extraction (including work
presented in this paper) focus on relation examples that occur within a single sentence and
do not consider discourse (McDonald, 2005). Recognizing relations from a wider scope is
an interesting enterprise, but it would require to take into account anaphora resolution and
other types of linguistic analysis.

Approaches to relation extraction that are based on hand-written patterns are time-
consuming and in many cases need an expert to formulate and test the patterns. Although
patterns are often precise, they usually produce poor recall (Thomas et al., 2000). In
general, hand-written patterns can be of two types. The first type is sequential and based
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on frequently occurring sequences of words in a sentence. Hand-written sequential patterns
were initially used for extraction of Hypernymy (Hearst, 1992), with several attempts to
extend them to other relations. The second type of patterns (Khoo, Chan, & Niu, 2000) take
the syntactic structure of a sentence into account. The dependency structure of a sentence
can usually be represented as a tree and the patterns then become subtrees. Such patterns
are sometimes referred to as graphical patterns. To identify examples of the Cause-Effect
relation, Khoo et al. (2000) applied this type of patterns to texts in the medical domain.
This study showed that graphical patterns are sensitive to the errors made by the parsers,
do not cover all examples in the test data and extract many spurious instances.

An alternative to using hand-written patterns is supervised Machine Learning. Then,
relations are labeled and used to train a classifier that can recognize these relations in new
texts. One approach is to learn generalized extraction patterns where patterns are expressed
as characters, words or syntactic categories of words. Other approaches involve clustering
based on co-occurrence (Davidov & Rappoport, 2008). In recent years kernel-based methods
have become popular because they can handle high-dimensional problems (Zelenko et al.,
2003; Bunescu & Mooney, 2006; Airola et al., 2008). These methods transform text frag-
ments, complete sentences or segments around named entitites or verbs, to vectors, and
apply Support Vector Machines to classify new fragments.

Some Machine Learning methods use prior knowledge that is given to the system in
addition to labeled examples (Schölkopf, 1997, p. 17). The use of prior knowledge is often
motivated by, for example, poor quality of data and data sparseness. Prior knowledge can be
used in many ways, from changing the representation of existing training examples to adding
more examples from unlabelled data. For NLP tasks, prior knowledge exists in the form of
manually (or automatically) constructed ontologies or large collections of unannotated data.
These enrich the textual data and thereby improve the recognition of relations (Sekimizu,
Park, & Tsujii, 1998; Tribble & Fahlman, 2007). Recently, Zhang et al. (2008) showed that
semantic correlation of words can be learned from unlabelled text collections, transferred
among documents and used further to improve document classification. In general, while
use of large collections of text allows us to derive almost any information needed, it is done
with varying accuracy. In contrast, existing resources created by humans can provide very
precise information, but it is less likely that they will cover all possible areas of interest.

In this paper, as in the work of Bunescu and Mooney (2006), we use the syntactic
structure of sentences, in particular, dependency paths. This stems from the observation
that linguistic units are organized in complex structures and understanding how words or
word senses relate to each other often requires contextual information. Relation extraction
is viewed as a supervised classification problem. A training set consists of examples of a
given relation and the goal is to construct a model that can be applied to a new, unseen
data set, to recognize all instances of the given relation in this new data set. For recognition
of relations we use a kernel-based classifier that is applied to dependency paths. However,
instead of a vector-based kernel we directly use similarity between dependency paths and
show how information from existing ontologies or large text corpora can be employed.

The paper is organized as follows. We start by reviewing existing kernel methods that
work on sequences (Section 2). In Section 3, we give the definition of a local alignment kernel
based on the Smith-Waterman measure. We proceed by discussing how it can be used in
the context of natural language processing (NLP) tasks, and particularly for extracting
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relations from text (Section 3.2). Once the method is described, we report on two types of
the data sets (biomedical and generic) used in the experiments (Section 4) and elaborate
on our experiments (Sections 5 and 6). Section 7 discusses our findings in more detail.
Section 8 concludes the paper by discussing possible future directions.

2. Kernel Methods

The past years have witnessed a boost of interest in kernel methods, their theoretical analysis
and practical applications in various fields (Burges, 1998; Shawe-Taylor & Christianini,
2000). The idea of having a method that works with different structures and representations,
starting from the simplest representation using a limited number of attributes to complex
structures such as trees, seems indeed very attractive.

Before we define a kernel function, recall the standard setting for supervised classifica-
tion. For a training set S of n objects (instances) (x1, y1), . . . , (xn, yn) where x1, . . . ,xn ∈ X
are input examples in the input space X with their corresponding labels y1, . . . , yn ∈ {0,1},
the goal is to infer a function h : X → {0, 1} such that it approximates a target function t.
However, h can still err on the data which has to be reflected in a loss function, l(h(xi), yi).
Several loss functions have been proposed in the literature so far, the best known of which
is the zero-one loss. This loss is a function that outputs 1 each time a method errs on a
data point (h(xi) 6= yi), and 0 otherwise.

The key idea of kernel methods lies in the implicit mapping of objects to a high-
dimensional space (by using some mapping function φ) and considering their inner product
(similarity) k(xi,xj) =< φ(xi), φ(xj) >, rather than representing them explicitly. Func-
tions that can be used in kernel methods have to be symmetric and positive semi-definite,
whereby positive semi-definiteness is defined by

∑n
i=1

∑n
j=1 cicjk(xi,xj) ≥ 0 for any n > 0,

any objects x1, . . . ,xn ∈ X , and any choice of real numbers c1, . . . , cn ∈ R. If a function
is not positive semi-definite, the algorithm may not find the global optimal solution. If
the requirements w.r.t. symmetry and positive semi-definiteness are met, a kernel is called
valid.

Using the idea of a kernel mapping, Cortes and Vapnik (1995) introduced support vector
machines (SVM) as a method which seeks the linear separation between two classes of the
input points by a function f(x) such that f(x) = wT φ(x) + b, wT ∈ Rp, b ∈ R and
h(x) = sign(f(x)). Here, wT stands for the slope of the linear function and b for its
offset. Often, there can exist several functions that separate data well, but not all of them
are equally good. A hyperplane that separates mapped examples with the largest possible
margin would be the best option (Vapnik, 1982).

SVMs solve the following optimization problem:

argmin
f(x)=wT x+b

1
2
‖ w ‖2 +C

n∑
i=1

l(h(xi), yi) (4)

In Equation 4, the first part of the equation corresponds to the margin maximization
(by minimizing 1

2 ‖ w ‖2), while the second takes into account the error on the training
set which has to be minimized (where C is a penalty term). The hyperplane that is found
may correspond to a non-linear boundary in the original input space. There exist a number
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of standard kernels such as the linear kernel, the Gaussian kernel and others. Information
about the data or the problem can motivate the choice of a particular kernel. It has been
shown by Haussler (1999) that a complex kernel (referred to as a convolution kernel) can
be defined using simpler kernels.

Other forms of machine learning representations for using prior knowledge were defined
along with the methods for exploiting it. Inductive logic programming offers one possible
solution to use it explicitly, in the form of additional Horn clauses (Camacho, 1994). In the
Bayesian learning paradigm information on the hypothesis without seeing any data is en-
coded in a Bayesian prior (Mitchell, 1997) or in a higher level distribution in a hierarchical
Bayesian setting. It is less obvious though how to represent and use prior knowledge in other
learning frameworks. In the case of SVMs, there are three possible ways of incorporating
prior knowledge (Lauer & Bloch, 2008). These are named sampling methods (prior knowl-
edge is used here to generate new data), kernel methods (prior knowledge is incorporated
in the kernel function by, for instance, creating a new kernel), and optimization methods
(prior knowledge is used to reformulate the optimization problem by, for example, adding
additional constraints). The choice of a kernel can be based on general statistical properties
of the domain, but an attractive possibility is to incorporate explicit domain knowledge into
the kernel. This can improve a kernel by “smoothing” the space: instances that are more
similar have a higher probability of belonging to the same class than with a kernel without
prior knowledge.

In what follows, we review a number of kernels on strings that have been proposed
in the research community over the past years. A very natural domain to look for them
is the biomedical field where many problems can be formulated as string classification
(protein classification and amino acid sequences, to name a few). Sequence representation
is, however, not only applicable to the biomedical area, but can also be considered for
many natural language processing tasks. After introducing kernels that have been used in
biomedicine, we move to the NLP domain and present recent work on relation extraction
employing kernel methods.

2.1 The Spectrum Kernel

Leslie, Eskin, and Noble (2002) proposed a discriminative approach to protein classification.
For any sequence x ∈ X , the authors define the m-spectrum as the set S of all contiguous
subsequences of x whose length is equal to m. All possible m-long subsequences q ∈ S
are indexed by the frequency of their occurrence (φq(x)). Consequently, a feature map for
a sequence x and alphabet A equals Φm(x) = (φq(x))q∈Am . The spectrum kernel for two
sequences x and y is defined as the inner product between the corresponding feature maps:
kS(x, y) =< Φm(x),Φm(y) >.

Now, even assuming contiguous subsequences for small m, the feature space to consider
is very large. The authors propose to detect all subsequences of length m by using a suffix
tree method which guarantees fast computation of the kernel matrix. The spectrum kernel
was tested on the task of protein homology detection, where the best results were achieved
by setting m to a relatively small number (3). The novelty of Leslie et al.’s (2002) method
lies in its generality and its low computational complexity.
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2.2 Mismatch Kernels

The mismatch kernel that was introduced later by Leslie et al. (2004) is essentially an ex-
tension of the latter. An obvious limitation of the spectrum kernel is that all considered
subsequences are contiguous and should match exactly. In the mismatch kernel the conti-
guity is preserved while the match criterion is changed. In other words, instead of looking
for all possible subsequences of length m for a given subsequence, one is searching for all
possible subsequences of length m allowing up to r mismatches. Such a comparison will
result in a larger subset of subsequences, but the kernels defined in this way can still be cal-
culated rather fast. The kernel is formulated similarly to the spectrum kernel and the only
major difference is in computing the feature map for all sequences. More precisely, a feature
map for a sequence x is defined as Φm,r(x) =

∑
q∈S Φm,r(q) where Φm,r(q) = (φβ(q))β∈Am .

φβ(q) is binary and indicates whether sequence β belongs to the set of m-length sequences
that differ from q at most in r elements (1) or it does not (0). It is clear that if r is set to
0, the mismatch kernel is reduced to the spectrum kernel. The complexity of the mismatch
kernel computation is linear with respect to the sum of the sequence lengths.

The authors also show that the mismatch kernel not only yields state-of-the-art perfor-
mance on a protein classification task but also outputs subsequences that are informative
from a biological point of view.

2.3 Kernel Methods and NLP

One of the merits of kernel methods is the possibility of designing kernels for different struc-
tures, such as strings or trees. In the NLP field (and in relation extraction, in particular)
most work roughly falls into two categories. In the first, kernels are defined over the plain
text using sequences of words. The second uses linguistic structures such as dependency
paths or trees or the output of shallow parsing. In this short review we do not take a
chronological perspective but rather start with the methods that are based on sequences
and proceed with the approaches that make use of syntactic information.

In the same year in which the spectrum kernel was designed, Lodhi et al. (2002) in-
troduced string subsequence kernels that provide flexible means to work with text data.
In particular, subsequences are not necessarily contiguous and are weighted according to
their length (using a decay factor λ). The length of the subsequences is fixed in advance.
The authors claim that even without the use of any linguistic information their kernels are
able to capture semantic information. This is reflected in the better performance on the
text classification task compared to the bag-of-words approach. While Lodhi et al.’s (2002)
kernel works on sequences of characters, a kernel proposed by Cancedda et al. (2003) is
applied to word sequences. String kernels can be also extended to syllable kernels which
proved to do well on text categorization (Saunders, Tschach, & Shawe-Taylor, 2002).

Because all these kernels can be defined recursively, their computation is efficient. For
instance, the time complexity of Lodhi et al.’s (2002) kernel is O(n|s||t|), where n is the
length of the subsequence, and t and s are documents.

2.3.1 Subsequence Kernels

In the recognition of binary relations, the most natural way is to consider words located
around and between relation arguments. This approach was taken by Bunescu and Mooney
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(2005b) whose choice of sequences was motivated by textual patterns found in corpora. For
instance, they observed that some relations are expressed by ‘subject-verb-object’ construc-
tions while others are part of the noun and prepositional phrases. As a result, three types
of sequences were considered: fore-between (words before and between two named entities),
between (words only between two entities) and between-after (words between and after two
entities). The length of sequences is restricted. To handle data sparseness, the authors
generalize over existing sequences using PoS tags, entity types and WordNet synsets. A
generalized subsequence kernel is recursively defined as the number of weighted sparse sub-
sequences that two sequences share. In the absence of syntactic information, an assumption
is made that long subsequences are not likely to represent positive examples and as such
are penalized. This subsequence kernel is computed for all three types of sequences and the
resulting relation kernel is defined as a sum over the three subkernels. Experimental results
on a biomedical corpus are encouraging, showing that the relation kernel performs better
than manually written patterns and an approach based on longest common subsequences.

A method proposed by Giuliano et al. (2006) was largely inspired by the work of Bunescu
and Mooney (2005b). However, instead of looking for subsequences in three types of se-
quences, the authors treat them as a bag-of-words and define what is called a global kernel
as follows. First, each sequence type (pattern) P is represented by a vector whose elements
are counts of how many times each token was used in P . A local kernel is defined similarly
but only using words surrounding named entities (left and right context). A final shallow
linguistic kernel is defined as the combination of the global and the local kernels. Exper-
iments on biomedical corpora suggest that this kernel outperforms the subsequence kernel
by Bunescu and Mooney.

2.3.2 Distributional Kernels

Recently, Ó Séaghdha and Copestake (2008) introduced distributional kernels on co- oc-
currence probability distributions. The co-occurrence statistics they use are in the form of
either syntactic relations or n-grams. They show that it is possible to derive kernels from
such distances as Jensen-Shannon divergence (JSD) or Euclidean distance (L2) (Lee, 1999).
JSD is a smoothed version of the Kullback-Leibler divergence, an information-theoretic mea-
sure of the dissimilarity between two probability distributions. The main motivation behind
this approach lies in the fact that distributional similarity measures proved to be useful for
NLP tasks. To extract co-occurrence information, the authors use two corpora, the British
National Corpus (BNC) and the Web 1T 5-Gram Corpus (which contains 5-grams with
their observed frequency counts and was collected from the Web). Distributional kernels
proved to be successful for a number of tasks such as compound interpretation, relation
extraction and verb classification. On all of them, the JSD kernel clearly outperforms
Gaussian and linear kernels. Moreover, estimating distributional similarity on the BNC
corpus yields performance similar to the results obtained on the Web 1T 5-Gram Corpus.
This is an interesting finding because the BNC corpus was used to estimate similarity from
syntactic relations whereas the latter corpus contains n-grams only. Most importantly, the
method of Ó Séaghdha and Copestake provides empirical support for the claim that using
distributional similarity is beneficial for relation extraction.
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2.3.3 Kernels for Syntactic Structures

Kernels defined for unpreprocessed text data seem attractive because they can be applied
directly to text from any language. However, as general as they are, they can lose pre-
cision when compared to the methods that use syntactic analysis. Re-ranking parsing
trees (Collins & Duffy, 2001) was one of the first applications of kernel methods to NLP
problems. To accomplish this goal, the authors rely on the subtrees that a pair of trees have
in common. Later on, Moschitti (2006) explored convolution kernels on dependency and
constituency structures to do semantic role labeling and question classification. This work
introduces a novel kernel which is called a partial tree kernel (PT). It is essentially built
on two kernels proposed before, the subtree kernel (ST) that contains all descendant nodes
from a target root (including leaves) and the subset tree kernel (SST) that is more flexible
and allows internal subtrees which do not necessarily encompass leaves. A partial tree is
a generalization of a subset tree whereby partial structures of a grammar are allowed (i.e.,
parts of the production rules such as [VP [V]] form a valid PT). Moschitti demonstrated
that PTs obtain better performance on dependency structures than SSTs, but the latter
yield better results on constituent trees.

2.3.4 Kernel on Shallow Parsing Output

Zelenko et al. (2003) use shallow parsing and designed kernels to extract relations from text.
In contrast to full parsing, shallow parsing produces partial interpretations of sentences.
Each node in such a tree is enriched with information on roles (that correspond to the
arguments of a relation). The similarity of two trees is determined by the similarity of
their nodes. Depending on how similarity is computed, Zelenko et al. define two types of
kernels, contiguous subtree kernels and sparse kernels. Both types were tested on two types
of relations, ‘person-affiliation’ and ‘organization-location’ exhibiting good performance. In
particular, sparse kernels outperform contiguous subtree kernels leading to the conclusion
that partial matching is important when dealing with typically sparse natural language
data. However, the computation of the sparse kernel takes O(mn3) time (where m and n
are the number of children of two relation examples, i.e. shallow trees, under consideration,
m ≥ n), while the algorithm for the contiguous subtree kernel runs in time O(mn).

2.3.5 Shortest Path Kernel

Bunescu and Mooney’s (2005a) shortest path kernel represents yet another approach for
relation extraction that is kernel-based and relies on information found in dependency trees.
A main assumption here is that not the entire dependency structure is relevant, and one
can focus on the path that is connecting two relation arguments instead. The more similar
these paths are, the more likely two relation examples belong to the same category. In spirit
with their previous work, Bunescu and Mooney seek generalizations over existing paths by
adding information sources like part of speech (PoS) categories or named entity types.

The shortest path between relation arguments is extracted and a kernel between two
sequences (paths) x = {x1, . . . , xn} and x′ = {x′1, . . . , x′m} is computed as follows:
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kB(x,x′) =
{

0 m 6= n∏n
i=1 f(xi, x

′
i) m = n

(5)

In Equation 5, f(xi, x
′
i) is the number of features shared by xi and x′i. Bunescu and

Mooney (2005a) use several features such as word (e.g., protesters), part of speech tag (e.g.,
NNS), generalized part of speech tag (e.g., Noun), and entity type (e.g., PERSON) if
applicable. In addition, a direction feature (→ or ←) is employed. Here we reproduce an
example from their paper.

Example 1 Given two dependency paths that exemplify the relation Located such as ‘his
→ actions ← in ← Brcko’ and ‘his → arrival ← in ← Beijing’, both paths are expanded by
additional features as those mentioned above. It is easy to see that comparing path (6) to
path (7) gives us a score of 18 (3×1×1×1×2×1×3 = 18).

 his
PRP
PERSON

× [→]×

 actions
NNS
Noun

× [←]×
[

in
IN

]
× [←]×


Brcko
NNP
Noun
LOCATION

 (6)

 his
PRP
PERSON

× [→]×

 arrival
NN
Noun

× [←]×
[

in
IN

]
× [←]×


Beijing
NNP
Noun
LOCATION

 (7)

The time complexity of the shortest path kernel is O(n), where n stands for the length
of the dependency path.

Dependency paths are also considered in other recent work on relation recognition (Erkan,
Özgür, & Radev, 2007). Here, Erkan et al. (2007) use dependency paths as input and
compare them by means of cosine similarity or edit distance. The authors motivate their
choice by the need to compare dependency paths of different length. Further, various ma-
chine learning methods are used to do classification, including SVM and transuctive SVM
(TSVM), which is an extension of SVM (Joachims, 1999). In particular, TSVM makes use
of labeled and unlabeled data by first classifying the unlabeled examples and then searching
for the maximum margin that separates positive and negative instances from both sets. The
authors conclude that edit distance performs better than the cosine similarity measure, and
that TSVM slightly outperforms SVM.

Airola et al. (2008) propose a graph kernel which makes use of the entire dependency
structure. In their work, each sentence is represented by two subgraphs, one of which is
built from the dependency analysis, and the other corresponds to the linear structure of the
sentence. Further, a kernel is defined on all paths between any two vertices in the graph.
The method by Airola et al. (2008) achieves state-of-the-art performance on biomedical
data sets, and is further discussed, together with the shortest path kernel and the work
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by Erkan et al. (2007), in Section 5 on relation extraction in the biomedical domain in this
paper.

Finally, kernels can be defined not only on graphs of syntactic structures, but also on
graphs of a semantic network. This is illustrated by Ó Séaghdha (2009), who uses graph
kernels on the graph built from the hyponymy relations in WordNet. Even though no
syntactic information is utilized, such kernels proved to perform well on the extraction of
various generic relations.

All kernels that we reviewed in this section deal with sequences or trees albeit in differ-
ent ways. The empirical findings suggest that kernels that allow partial matching usually
perform better when compared to methods where similarity is defined on an exact match.
To alleviate the problem of exact matching, some researchers suggested generalizing over
elements in existing structures (Bunescu & Mooney, 2005a) while others opted for a flexible
comparison. In our view, these types of methods can complement each other (Saunders
et al., 2002). As flexible as the partial matching methods are, they may suffer from low pre-
cision when the penalization of the mismatch is low. The same holds for approaches that use
generalization strategies because they may easily overgeneralize. A possible solution would
be to combine both, provided that mismatches are penalized well and generalizations are
semantically plausible rather than based on part of speech categories. This idea is further
explored in the present paper and evaluated on the relation recognition task.

In a nutshell, the goals of this paper are the following: (i) a study of the possibilities
of using the local alignment kernel for relation extraction from text, (ii) an exploration of
the use of prior knowledge in the alignment kernel and (iii) an extensive evaluation with
automatic recognition of two types of relations, biomedical and generic.

3. A Local Alignment Kernel

One can note from our short overview of the kernels designed for NLP above that many
researchers use partial structures and propose variants such as subsequence kernels (Bunescu
& Mooney, 2005b), a partial tree kernel (Moschitti, 2006), or a kernel on shallow parsing
output (Zelenko et al., 2003) for relation extraction. In this paper we focus on dependency
paths as input and formulate the following requirements for a kernel function:

• it should allow partial matching so that the similarity can be measured for paths of
different length

• it should be possible to incorporate prior knowledge

Recall that by prior knowledge we mean information that comes either from larger cor-
pora or from existing resources such as ontologies. For instance, knowing that ‘development’
is synonymous to ‘evolution’ in some contexts can help to recognize that two different words
are close semantically. Such information is especially useful if the meaning is relevant for
detecting relations that may differ in form.

In the following subsection we will define a local alignment kernel that satisfies these
requirements and show how to incorporate prior knowledge.
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3.1 Smith-Waterman Measure and Local Alignments

Our work here is motivated by the recent advances in the biomedical field. It has been shown
that it is possible to design valid kernels based on a similarity measure for strings (Saigo,
Vert, & Akutsu, 2006). For example, Saigo, Vert, Ueda, and Akutsu (2004) consider the
Smith-Waterman (SW) similarity measure (Smith & Waterman, 1981) (see below) to mea-
sure the similarity between two sequences of amino acids.

String distance measures can be divided into measures based on terms, edit-distance
and Hidden Markov models (HMM) (Cohen, Ravikumar, & Fienberg, 2003). Term-based
distances such as measures based on the TF-IDF score, consider a pair of word sequences as
two sets of words ignoring their order. In contrast, string edit distances (or string similarity
measures) treat entire sequences and compare them using transformation operations, which
convert a sequence x into a sequence x′. Examples of these are the Levenshtein distance,
and the Needleman-Wunsch (Needleman & Wunsch, 1970) and Smith-Waterman (Smith
& Waterman, 1981) measures. The Levenshtein distance has been used in the natural
language processing field as a component in a variety of tasks, including semantic role
labeling (Sang et al., 2005), construction of paraphrase corpora (Dolan, Quirk, & Brockett,
2004), evaluation of machine translation output (Leusch, Ueffing, & Ney, 2003), and others.
The Smith-Waterman measure is mostly used in the biological domain, there are, however,
some applications of a modified Smith-Waterman measure to text data as well (Monge &
Elkan, 1996; Cohen et al., 2003). HMM-based measures present probabilistic extensions of
edit distances (Smith, Yeganova, & Wilbur, 2003).

Our hypothesis is that string similarity measures are the best basis for a kernel for
relation extraction. In this case, the order in which words appear is likely to be relevant
and sparse data usually prevents estimation of probabilities (as in the work of Smith et al.,
2003). In general, two sequences can be aligned in several possible ways. It is possible to
search either for an alignment which spans entire sequences (global alignment), or for an
alignment which is based on similar subsequences (local alignment). Both in the case of
sequences of amino acids and in relation extraction, local patterns are likely to be the most
important factor that determines similarity. Therefore we need a similarity measure that
emphasizes local alignments.

Formally, we define a pairwise alignment π of at most L elements for two sequences
x = x1x2 . . . xn and x′ = x′1x

′
2 . . . x′m, as a pairing π = {πl(i, j)}, l = 1, . . . , L, 1 ≤ i ≤ n,

1 ≤ j ≤ m, 1 ≤ l ≤ n, 1 ≤ l ≤ m. In Example 2 (ii), the third element of the first sequence
is aligned with the first element of the second one, which is denoted by π1(3, 1).

Example 2 Given the sequences x=abacde and x′=ace, two possible alignments (with gaps
indicated by ‘-’) are as follows.

(i) global alignment

a b a c d e
a - - c - e

Alignment: π = {π1(1, 1), π2(4, 2), π3(6, 3)}

(ii) local alignment

a b a c d e
- - a c - e

Alignment: π = {π1(3, 1), π2(4, 2), π3(6, 3)}

11
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In this example, the number of gaps inserted in x′ to align it with x and the number
of elements that match is the same in both cases. Yet, both in the biological and in
the linguistic context we may prefer alignment (ii), because closely matching substrings,
local alignments, are a better indicator for similarity than shared items that are far apart.
It is, therefore, better to use a measure that puts less or no weight on gaps before the
start or after the end of strings (as in Example 2 (ii)). This can be done using a local
alignment mechanism that searches for the most similar subsequences in two sequences.
Local alignments are employed when sequences are dissimilar and are of different length,
while global alignments are considered when sequences are of roughly the same length. From
the measures we have mentioned above, the Smith-Waterman measure is a local alignment
measure, and the Needleman-Wunsch measure compares two sequences based on global
alignments.

Definition 1 (Global alignment) Given two sequences x = x1 . . . xn and x′ = x′1 . . . x′m,
their global alignment is a pair of sequences y and y′ both of the same length, which are
obtained by inserting zero or more gaps before the first element of either x or x′, and after
each element of x and of x′.

Definition 2 (Local alignment) Given two sequences x = x1 . . . xn and x′ = x′1 . . . x′m,
their local alignment is a pair of subsequences α of x and γ of x′, whose similarity is
maximal.

To clarify what we mean by local and global alignments, we give a definition of both the
Smith-Waterman and Needleman-Wunsch measures. Given two sequences x = x1x2 . . . xn

and x′ = x′1x
′
2 . . . x′m of length n and m respectively, the Smith-Waterman measure is defined

as a similarity score of their best local alignment:

sw(x,x′) = max
π∈A(x,x′)

s(x,x′, π) (8)

In the equation above, s(x,x′, π) is a score of a local alignment π of sequence x and x′

and A denotes the set of all possible alignments. The best local alignment can be efficiently
found using dynamic programming. To do this, one fills in a matrix SW with partial
alignments as follows:

SW
1≤i≤n,
1≤j≤m

(i, j) = max


0
SW(i− 1, j − 1) + d(xi, x

′
j)

SW(i− 1, j)−G
SW(i, j − 1)−G

(9)

In Equation 9, d(xi, x
′
j) denotes a substitution score between two elements xi and x′j and

G stands for a gap penalty. Using this equation it is possible to find partial alignments, that
are stored in a matrix in which the cell (i, j) reflects the score for alignment between x1 . . . xi

12
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a b a c d e
0 0 0 0 0 0 0

a 0 2 1 2 1 0 0
c 0 1 1 1 4 3 2
e 0 0 0 0 3 3 5

(a) Smith-Waterman measure

a b a c d e
0 0 0 0 0 0 0

a 0 2 1 0 -1 -1 -1
c 0 1 1 0 2 1 0
e 0 0 0 0 1 1 3

(b) Needleman-Wunsch measure

Table 1: Matrices for computing Smith-Waterman and Needleman-Wunsch scores for se-
quences x=abacde and x′=ace, a gap G = 1, substitution score d(xi, x

′
j) = 2 for

xi = x′j , and d(xi, x
′
j) = −1 for xi 6= x′j .

and x′1 . . . x′j . The cell with the largest value in the matrix contains the Smith-Waterman
score.

The Needleman-Wunsch measure, which searches for global alignments, is defined simi-
larly, except for the fact that the cells in a matrix can contain negative scores:

NW
1≤i≤n,
1≤j≤m

(i, j) = max


NW(i− 1, j − 1) + d(xi, x

′
j)

NW(i− 1, j)−G
NW(i, j − 1)−G

(10)

The Smith-Waterman measure can be seen as a modification of the Needleman-Wunsch
method. By disallowing negative scores in a matrix, the regions of high dissimilarity are
avoided and, as a result, local alignments are preferred. Moreover, while the Needleman-
Wunsch score equals the largest value in the last column or last row, the Smith-Waterman
similarity score corresponds to the largest value in the matrix.

Let us reconsider Example 2 and show how the global and local alignments for alignments
for two sequences x=abacde and x′=ace are obtained. To arrive at actual alignments, one
has to set the gap parameter G and the substitution scores. Assume we use the following
settings: a gap G = 1, substitution score d(xi, x

′
j) = 2 for xi = x′j , and d(xi, x

′
j) = −1

for xi 6= x′j . These values have been chosen for illustrative purpose only, but in a realistic
case, e.g., alignment of protein sequences, the choice of the substitution scores is usually
motivated by biological evidence. For gapping, Smith and Waterman (1981) suggested
to use a gap value which is at least equal to the difference between a match (d(xi, x

′
j),

xi = x′j) and a mismatch (d(xi, x
′
j), xi 6= x′j). Then, the Smith-Waterman and Needleman-

Wunsch similarity scores between x and x′ can be calculated according to Equation 9 and
Equation 10 as given in Table 1.

First, the first row and the first column in the matrix are initialized to 0. Then, the
matrix is filled in by computing the maximum score for each cell as defined in Equation 9
and Equation 10. The score of the best local alignment is equal to the largest element in
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the matrix (5), and the Needleman-Wunsch score is 3. Note that it is possible to trace back
which steps are taken to arrive at the final alignment (the cells in boldface). A left-right
step corresponds to an insertion, a top-down step to a deletion (these lead to gaps), and a
diagonal step implies an alignment of two sequences’ elements.

Since we prefer to use local alignments on dependency paths, a natural choice would
be to use the Smith-Waterman measure as a kernel function. However, Saigo et al. (2004)
observed that the Smith-Waterman measure may not result in a valid kernel because it
may not be positive semi-definite. They give a definition of the LA kernel, which states
that two sequences are similar if they have many local alignments with high scores, as in
Equation 11.

kL(x,x′) =
∑

π∈A(x,x′)

eβ·s(x,x′,π) (11)

Here, s(x,x′, π) is a local alignment score and β(≥ 0) is a scaling parameter.
To define the LA kernel kL (as in Equation 11) for two sequences x and x′, it is needed to

take into account all transformation operations that are used in local alignments. First, one
has to define a kernel on elements that corresponds to individual alignments, ka. Second,
since this type of alignment allows gaps, there should be another kernel for gapping, kg. Last
but not least, recall that by local alignments only parts of the sequences may be aligned, and
some elements of x and x′ may be left out. These elements do not influence the alignment
score and a kernel used in these cases, k0, can be set to a constant, k0(x,x′) = 1. Finally,
the LA kernel is a composition of several kernels (k0, ka, and kg), which is in the spirit of
convolution kernels (Haussler, 1999).

According to Saigo et al. (2004), similarity of the aligned sequences’ elements (ka kernel)
is defined as follows:

ka(x,x′) =
{

0 if |x| 6= 1 or |x′| 6= 1
eβ·d(x,x′) otherwise

(12)

If either x, or x′ has more than one element, this kernel would result in 0. Otherwise,
it is calculated using the substitution score d(x,x′) of x and x′. This score reflects how
similar two sequences’ elements are and, depending on the domain, can be computed using
prior knowledge from the given domain.

The ‘gapping’ kernel is defined similarly to the alignment kernel in Equation 12, whereby
the scaling parameter β is preserved, but the gap penalties are used instead of a similarity
function between two elements:

kg(x,x′) = eβ(g(|x|)+g(|x′|)) (13)

Here, g stands for the gap function. Naturally, for a gap of length 0 this function returns
zero. For gaps of length n, it is reasonable to define a gap in terms of a gap opening o and
a gap extension e, g(n) = o + e ∗ (n− 1). In this case it is possible to decide whether longer
gaps should be penalized more than the shorter ones, and how much. For instance, if there
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are three consecutive gaps in the alignment, the first gap is counted as a gap opening, and
the other two as a gap extension. If in consecutive gaps (i.e., gaps of length n > 1) each gap
is of equal importance, the gap opening has to be equal to the gap extension. If, however,
the length of gaps does not matter, one would prefer to penalize the gap opening more, and
to give a little weight to the gap extension.

All these kernels can be combined as follows:

k(r)(x,x′) = k0 ∗ (ka ∗ kg)r−1 ∗ ka ∗ k0 (14)

In Equation 14, k(r)(x,x′) stands for an alignment of r elements in x and x′ with possibly
r− 1 gaps. Similarity of the aligned elements is calculated by ka, and gapping by kg. Since
there could be up to r − 1 gaps, this corresponds to the following part of the equation:
(ka ∗kg)r−1. Further, because there is the rth aligned element, one more ka is added. Given
the discussion above, k0 is added to the initial and final part. As follows from Equation 14,
if there are no elements in x and x′ aligned, k(r) equals k0, which is 1. If all elements of x
and x′ are aligned with no gaps, the value of k(r) is (ka)r.

Finally, the LA kernel is equal to the sum taken over all possible local alignments for
sequences x and x′:

kL(x,x′) =
∞∑
i=0

k(i)(x,x′) (15)

The results in the biological domain suggest that kernels based on the Smith-Waterman
distance are more relevant for the comparison of amino acids than string kernels (Saigo et al.,
2006). It is not clear whether this holds when applied to natural language processing tasks.
In our view, it could depend on the parameters which are used, such as the substitution
matrix and the penalty gaps.

3.1.1 Computational complexity

The LA kernel, as many other kernels discussed in Section 2, can be efficiently calculated us-
ing dynamic programming. For any two sequences x and x′, of length n and m respectively,
its complexity is proportional to n × m. Additional costs may come from the substitu-
tion matrix, which, unlike in the biomedical domain, can become very large. However, the
look-up of the substitution scores can be done in an efficient manner as well, which leads
to fast kernel computation. For instance, calculating a kernel matrix for the largest data
set used in this paper, AImed (3,763 instances), takes 805 seconds on a 2.93 GHz Intel(R)
Core(TM)2 machine.

3.2 Designing a Local Alignment Kernel for Relation Extraction

The Smith-Waterman measure is based on transformations, in particular deletions of ele-
ments that are different between strings. However, elements that are different may still be
similar to some degree. These similarities can be used as part of the similarity measure.
For example, if two elements are words that are different but that are synonyms, then we
count them as less different than when they are completely unrelated. We will call these
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similarities “substitution scores” (Equation 12) and define them in two different ways: on
the basis of distributional similarity and on the basis of semantic relatedness in an ontology.
For Example 1 we would like to be able to infer that ‘Brcko’ is similar to ‘Beijing’, even
though these two words do not match exactly. Furthermore, if we have phrases “his arrival
in Beijing” and “his arrival in January”, then we would like our kernel to say that ‘Brcko’ is
more similar to ‘Beijing’ than to ‘January’. The use of such information as prior knowledge
makes it possible to measure similarity between two words, one in the test set and the
other in the training set, even if they do not match exactly. Below we review two types of
measures that are based on statistical distributions and on relatedness in WordNet.

3.2.1 Distributional Similarity Measures

There are a number of distributional similarity measures proposed over the years, including
Cosine, Dice and Jaccard coefficients. Distributional similarity measures have been exten-
sively studied before (Lee, 1999; Weeds, Weir, & McCarthy, 2004). The main hypothesis
behind distributional measures is that words occurring in the same context should have
similar meaning (Firth, 1957). Context can be defined either using proximity in text, or
employing grammatical relations. In this paper, we use the first option where context is a
sequence of words in text and its length is set in advance.

Measure Formula

Cosine d(xi, x
′
j) =

P
c P (c|xi)·P (c|x′

j)√P
c P (c|xi)2

P
c P (c|x′

j)
2

Dice d(xi, x
′
j) =

2·F (xi)∩F (x′
j)

F (xi)∪F (x′
j)

L2 d(xi, x
′
j) =

√∑
c(P (c|xi)− P (c|x′j))2

Table 2: A list of functions used to estimate distributional similarity measures.

We have chosen the following measures: Dice, Cosine and L2 (Euclidean) whose defi-
nitions are given in Table 2. In the definition of Cosine and L2, it is possible to use either
frequency counts or probability estimates derived from unsmoothed relative frequencies.
Here, we adopt the definitions given by Lee (1999), which are based on probability esti-
mates P . Recall that x and x′ are two sequences we would wish to compare, with their
corresponding elements xi and x′j . Further, c stands for a context. In the definition of the
Dice coefficient, F (xi) = {c : P (c|xi) > 0}. We are mainly interested in symmetric measures
(d(xi, x

′
j) = d(x′j , xi)) because a symmetric positive semi-definite matrix is required by ker-

nel methods. The Euclidean measure as defined in Table 2 does not necessarily vary from 0
to 1. For this reason, given a list of pairs of words (xi, x

′
j) where xi is fixed and j = 1, . . . , s

with their corresponding L2 score, the maximum value maxj d(xi, x
′
j) is detected and used

to normalize all scores on the list. Furthermore, unlike Dice and Cosine, which return 1 in
the case two words are equal, the Euclidean score equals 0. In the next step, we substract
the obtained normalized value from 1 to ascertain that all scores are within an interval [0, 1]
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and the largest value (1) is assigned to identical words. In our view, this procedure will
make a comparison of the selected distributional similarity measures with respect to their
influence on the LA kernel more transparent.

Distributional similarity measures are very suitable if no other information is available.
In the case that data is annotated by means of some taxonomy (e.g., WordNet), it is
possible to consider measures defined over this taxonomy. Availability of hand-crafted
resources, such as WordNet, that comprise various relations between concepts, enables
making distinctions between different concepts in a subtle way.

3.2.2 WordNet Relatedness Measures

For generic relations, the most commonly used resource is WordNet (Fellbaum, 1998), which
is a lexical database for English. In WordNet, words are grouped together in synsets where
a synset “consists of a list of synonymous words or collocations (e.g., ‘fountain pen’), and
pointers that describe the relations between this synset and other synsets” (Fellbaum, 1998).
WordNet can be employed for different purposes such as studying semantic constraints for
certain relation types (Girju, Badulescu, & Moldovan, 2006; Katrenko & Adriaans, 2008),
or enriching the training set (Giuliano et al., 2007; Nulty, 2007).

To compare two concepts given their synsets c1 and c2 we use five different measures
that have been proposed in the past years. Most of them rely on the notions of the length
of the shortest path between two concepts c1 and c2, len(c1, c2), the depth of a node in the
WordNet hierarchy (which is equal to the length of the path from the root to the given
synset ci), dep(ci), and a least common subsumer (or lowest super-ordinate) between c1

and c2, lcs(c1, c2), which in turn is a synset. To the measures that are exclusively based
on these notions belong conceptual similarity proposed by Palmer and Wu (1995) (simwup

in Equation 16) and the formula of scaled semantic similarity introduced by Leacock and
Chodorow (1998) (simlch in Equation 17). 1 The major difference between them lies in the
fact that simlch does not consider the least common subsumer of c1 and c2 but uses the
maximum depth of the WordNet hierarchy instead. Conceptual similarity ignores this and
focuses on the subhierarchy that includes both synsets.

simwup(c1, c2) =
2 ∗ dep(lcs(c1, c2))

len(c1, lcs(c1, c2)) + len(c2, lcs(c1, c2)) + 2 ∗ dep(lcs(c1, c2))
(16)

simlch(c1, c2) = − log
len(c1, c2)

2 ∗maxc∈WordNet dep(c)
(17)

Aiming at combining information from several sources, Resnik (1995) introduced yet an-
other measure that is grounded in information content (simres in Equation 18). Intuitively,
if two synsets c1 and c2 are located deeper in the hierarchy and the path from one synset to
another is short, they should be similar. If the path between two synsets is long and their
least common subsumer is placed relatively close to the root, this indicates that the synsets

1. In all equations of similarity measures defined over WordNet, subscripts refer to the similarity measure
itself (e.g., lch, wup in simlch and in simwup, respectively)
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c1 and c2 do not have much in common. To quantify this intuition, it is necessary to derive a
probability estimate for lcs(c1, c2) which can be done by employing existing corpora. More
precisely, p(lcs(c1, c2)) stands for the probability of encountering an instance of a concept
lcs(c1, c2).

simres(c1, c2) = − log p(lcs(c1, c2)) (18)

One of the biggest shortcomings of Resnik’s method is the fact that only the least
common subsumer appears in Equation 18. One can easily imagine a full-blown hierarchy
where the relatedness of the concepts subsumed by the same lcs(ci, cj) can heavily vary.
In other words, by using lcs only, one is not able to make subtle distinctions between two
pairs of concepts that share the least common subsumer. To overcome this, Jiang and
Conrath (1997) proposed a solution that takes into account information about the synsets
being compared (simjcn in Equation 19). By comparing Equation 19 against Equation 18,
we will notice that now the equation incorporates not only the probability of encountering
lcs(c1, c2), but also the probability estimates for c1 and c2.

simjcn(c1, c2) = 2 log p(lcs(c1, c2))− (log p(c1) + log p(c2)) (19)

Lin (1998) defined the similarity between two concepts using how much commonality
and differences between them are involved. Similarly to the two previous approaches, he uses
information theoretic notions and derives the similarity measure simlin given in Equation 20.

simlin(c1, c2) =
2 ∗ log p(lcs(c1, c2))
log p(c1) + log p(c2)

(20)

In the past, semantic relatedness measures were evaluated on different NLP tasks (Bu-
danitsky & Hirst, 2006; Ponzetto & Strube, 2007) and it can be concluded that no measure
performs the best for all problems. In our evaluation, we use semantic relatedness for the
validation of generic relations and study in depth how they contribute to the final results.

3.2.3 Substitution Matrix for Relation Extraction

Until now, we have discussed two possible ways of calculating the substitution score d(·, ·), by
using either distributional similarity measures, or measures defined on WordNet. However,
dependency paths which are generated by parsers may contain not only words (or lemmata),
but also syntactic functions such as subjects, objects, modifiers, and others. To take this
into account, we revise the definition of d(·, ·). We assume sequences x = x1x2 . . . xn and
x′ = x′1x

′
2 . . . x′m to contain words (xi ∈W where W refers to a set of words) and syntactic

functions accompanied by direction (xi /∈ W ). The elements of W are unique words (or
lemmata) which are found in the dependency paths, for instance, for the paths ‘his →
actions ← in ← Brcko’ and ‘his → arrival ← in ← Beijing’ in Example (1) in Section 2.3.5,
W= {his, actions, in, Brcko, arrival, Beijing}. The dependency paths we use in the present

work include information on syntactic functions, for instance ‘awareness
prep from← come

nsubj→
joy’. In this case, W= {awareness, come, joy} and W̄ = {prep from← ,

nsubj→ }.
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Then,

d′(xi, x
′
j) =


d(xi, x

′
j) xi, x

′
j ∈W

1 xi, x
′
j /∈W & xi = x′j

0 xi, x
′
j /∈W & xi 6= x′j

0 xi ∈W & x′j /∈W
0 xi /∈W & x′j ∈W

(21)

Equation (21) states that whenever the element xi of the sequence x is compared against
the element x′j of the sequence x′, their substitution score is equal either to (i) the similarity
score in the case both elements are words (lemmata), or to (ii) 1, if both elements are the
same syntactic function, or to (iii) 0, in any other case.

As follows from our discussion on similarity measures above, there are two ways to define
d(xi, x

′
j), using either distributional similarity between xi and x′j (Section 3.2.1), or their

WordNet similarity, provided that they are annotated with WordNet synsets (Section 3.2.2).

4. Experimental Set-up

In this section, we describe the data sets that we have used in the experiments and provide
information on the data collections used for estimating distributional similarity.

4.1 Data

To evaluate the performance of the LA kernel, we consider two types of text data, domain-
specific data, which comes from the biomedical domain and generic or domain-independent
data which represents a variety of well-known and widely used relations such as Part-
Whole and Cause-Effect.

Like other work, we extract a dependency path between two nodes corresponding to the
arguments of a binary relation. We also assume that each analysis results in a tree and since
it is an acyclic graph, there exists a unique path between each pair of nodes. We do not
consider, however, other structures that might be derived from the full syntactic analysis
as in, for example, subtrees (Moschitti, 2006).

4.1.1 Biomedical Relations

Corpora We use three corpora that come from the biomedical field and contain annota-
tions of either interacting proteins - BC-PPI2 (1,000 sentences), AImed (Bunescu & Mooney,
2005b) or the interactions among proteins and genes LLL (77 sentences in the training set
and 87 in the test set, Nédellec, 2005). The BC-PPI corpus was created by sampling sen-
tences from the BioCreAtive challenge, the AImed corpus was sampled from the Medline
collection. The LLL corpus was composed by querying Medline with the term Bacillus sub-
tilis. The difference among all three corpora lies in the directionality of interactions. As
Table 3 shows, relations in the AImed corpus are strictly symmetric, in LLL they are asym-
metric and BC-PPI contains both types. The differences in the number of training instances
for the AImed corpus can be explained by the fact that they correspond to the dependency

2. Available from http://www2.informatik.hu-berlin.de/~hakenber/.
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paths between named entities. If parsing fails or produces several disconnected graphs per
sentence, no dependency path is extracted.

Parser Data set #examples #pos direction
LinkParser LLL (train) 618 153 asymmetric
LinkParser LLL (test) 476 83 a asymmetric
Stanford BC-PPI 664 250 mixed
Stanford AImed 3763 922 symmetric
Enju AImed 5272 918 symmetric

a. Even though the actual annotations for the test data are not given, the number of interactions in the
test data set is provided by the LLL organizers.

Table 3: Statistics of the biomedical data sets LLL, BC-PPI, and AImedd. In this table, #pos
stands for the number of positive examples per data set and #examples indicates
the number of examples in total.

The goal of relation extraction in all three cases is to output all correct interactions
between biomedical entities (genes and proteins) that can be found in the input data. The
biomedical entities are already provided, so there is no need for named entity recognition.

There is a discrepancy between the training and the test sets used for the LLL challenge.
Unlike the training set, where each sentence has an example of at least one interaction, the
test set contains sentences with no interaction. The organizers of the LLL challenge dis-
tinguish between sentences with and without coreferences. Sentences with coreferences are
usually appositions, as shown in one of the examples below. The first sentence in (4.1.1) is
an example of a sentence without coreferences (with interaction between ‘ykuD’ and ‘SigK’),
whereas the second one is a sentence with coreference (with interaction between ‘spoIVA’
and ‘sigmaE’). More precisely, ‘spoIVA’ refers to the phrase ‘one or more genes’ which are
known to interact with ‘sigmaE’. We can therefore infer that ‘spoIVA’ interacts with ‘sig-
maE’. Sentences without coreferences form a subset, which we refer to as LLL-nocoref, and
sentences with coreferences are part of the separate subset LLL-coref.

(22) ykuD was transcribed by SigK RNA polymerase from T4 of sporulation.

(23) Finally, we show that proper localization of SpoIVA required the expression of one
or more genes which, like spoIVA, are under the control of the mother cell
transcription factor sigmaE.

It is assumed here that relations in the sentences with coreferences are harder to recog-
nize. To show how the LA kernel performs on both subsets, we report the experimental re-
sults on the full set of test data (LLL-all), and on its subsets (LLL-coref and LLL-nocoref).

Syntactic analysis We analyzed the BC-PPI corpus with the Stanford parser. The LLL
corpus has already been preprocessed by the LinkParser and its output was checked by
experts. To enable comparison with the previous work, we used the AImed corpus parsed
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by the Stanford parser 3 and by the Enju parser 4 (which exactly correspond to the input in
the experiments by Erkan et al., 2007 and Sætre et al., 2008). Unlike the Stanford parser,
Enju is based on a Head-driven Phrase Structure Grammar (HPSG). The output of the
Enju parser can be presented in two ways, either as predicate argument structure or as a
phrase structure tree. Predicate argument structures describe relations between words in
a sentence, while phrase structure presents a sentence structure in the form of clauses and
phrases. In addition, Enju was trained on the GENIA corpus and includes a model for
parsing biomedical texts.

(24) Cbf3 contains three proteins, Cbf3a, Cbf3b and Cbf3c.

contains

Cbf3

nsubj

proteins

three

num

Cbf3a

conj and

Cbf3b

conj and

Cbf3b

conj and

dobj

Cbf3
nsubj→ contains

dobj← proteins
conj and← Cbf3a

Cbf3
nsubj→ contains

dobj← proteins
conj and← Cbf3b

Cbf3
nsubj→ contains

dobj← proteins
conj and← Cbf3c

Figure 1: Stanford parser output and representation for Example (24).

Figure 1 shows a dependency tree obtained by the Stanford parser for the sentence in
(24). This sentence mentions three interactions among proteins, more precisely, between
‘Cbf3’ and ‘Cbf3a’, ‘Cbf3’ and ‘Cbf3b’, and ‘Cbf3’ and ‘Cbf3c’. All three dependency
paths contain words (lemmata) and syntactic functions (such as subj for a subject) plus the
direction of traversing the tree. Figure 2 presents the output for the same sentence provided
by the Enju parser. The upper part refers to the phrase structure tree and the lower part
shows the paths extracted from the predicate argument structure. The two parsers clearly
differ in their output. First, the Stanford parser conveniently generates the same paths
for all three interaction pairs while the Enju analyzer does not. Second, the output of the
Stanford parser excludes prepositions or conjunctions that are attached to the syntactic
functions whereas the Enju analyzer lists them in the parsing results. Such differences

3. Available from http://nlp.stanford.edu/software/lex-parser.shtml.
4. Available from http://www-tsujii.is.s.u-tokyo.ac.jp/enju/.
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lead to different input sequences that are later fed into the LA kernel. Consequently, the
variations in input may translate into differences in the final performance.

Cbf3
ARG1/verb← contain

ARG2/verb→ protein
ARG1/app← ,

ARG2/app→ Cbf3a

Cbf3
ARG1/verb← contain

ARG2/verb→ protein
ARG1/app← ,

ARG2/app→ Cbf3a
ARG1/coord← ,

ARG2/coord→ Cbf3b

Cbf3
ARG1/verb← contain

ARG2/verb→ protein
ARG1/app← ,

ARG2/app→ Cbf3a
ARG1/coord← and

ARG2/coord→ Cbf3c

Figure 2: Enju’s output and representation for Example (24).

In addition, in most work employing AImed, the dependency paths such as these in
Figure 1 and Figure 2 are preprocessed in the following way. The actual named entities that
are the arguments of the relation are replaced by a label, e.g. PROTEIN. Consequently, the
first path in Figure 1 becomes ‘PROTEIN

nsubj→ contains
dobj← proteins

conj and← PROTEIN’.
To be able to compare our results on AImed with the performance reported in the work of
Erkan et al. (2007) and Sætre et al. (2008), we use exactly the same dependency paths with
argument labels. However, to study whether using labels instead of actual named entities
has an impact on the final results for the LLL data set, we carry out two experiments. In the
first one, the dependency paths contain named entities, whereas in the second they contain
labels. The second experiment is referred to by adding a word ‘LABEL’ to its name (as
LLL-all-LABEL in Table 7).

4.1.2 Generic Relations

The second type of relations that we consider are generic relations. Their arguments are
sometimes annotated using external resources such as WordNet, which makes it possible to
use semantic relatedness measures defined over them. An example of such an approach is
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data used for the SemEval-2007 challenge, “Task 04: Classification of Semantic Relations
between Nominals” (Girju et al., 2009).

The goal of Task 4 was to classify seven semantic relations (Cause - Effect, Instru-
ment - Agency, Product - Producer, Origin - Entity, Theme - Tool, Part -
Whole and Content - Container), whose examples were collected from the Web using
some predefined queries. In other words, given a set of examples and a relation, the ex-
pected output would be a binary classification of whether an example belongs to the given
relation or not. The arguments of the relation were annotated by synsets from the WordNet
hierarchy, as in Figure 3. Given this sentence and a pair (spiritual awareness, joy) with the
corresponding synsets joy%1:12:00 and awareness%1:09:00, this would mean that a classi-
fier has to decide whether this pair is an example of the Cause-Effect relation. This
particular sentence was retrieved by quering the Web with the phrase “joy comes from *”.
The synsets were manually selected from the WordNet hierarchy. There are seven semantic
relations used in this challenge, which gives seven binary classification problems.

Genuine <e1>joy</e1> comes from <e2>spiritual awareness</e2> on life and an abso-
lute clarity of direction, living for a purpose.

WordNet(e1) = “joy%1:12:00”, WordNet(e2) = “awareness%1:09:00”,
Query: “joy comes from *”, Cause-Effect(e2, e1) = true

Figure 3: An annotated example of Cause - Effect from the SemEval-2007, Task 4
training data set.

relation type #examples (train) #pos (train) #examples (test) direction

Origin - Entity 140 54 81 asymmetric
Product - Producer 140 85 93 asymmetric
Theme - Tool 140 58 71 asymmetric
Instrument - Agency 140 71 78 asymmetric
Part - Whole 140 65 72 asymmetric
Content - Container 140 65 74 asymmetric
Cause - Effect 140 73 80 asymmetric

Table 4: Distribution of the SemEval-2007, Task 4 examples (training and test data), where
#pos stands for the number of positive examples per data set and #examples
indicates the number of examples in total.

Syntactic analysis To generate dependency paths, all seven data sets used in SemEval -
2007, Task 4, were analyzed by the Stanford parser. The dependency path for the sentence
in Figure 3 is given in (25).
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(25) awareness#n#1
prep from← come

nsubj→ joy#n#1

Here, words annotated with WordNet have their PoS tag attached, followed by the sense.
For instance, ‘awareness’ is a noun and in the current context its first sense is used, which
corresponds to ‘awareness#n#1’.

4.2 Substitution Matrix

To build a substitution matrix for the LA kernel, we use either distributional similarity
or WordNet semantic relatedness measures. For a data set of dependency paths, which
contains t unique elements (words and syntactic functions), the size of the matrix is t × t.
If k elements out of t are words, the number of substitution scores to be computed by
distributional similarity (or semantic relatedness) measures equals k(k + 1)/2. This is due
to the fact that the measures we use are symmetric. The substitution matrix is built for
each corpus we used in the experiments, which results in three substitution matrices for
the biomedical domain (for BC-PPI, LLL, and AImed) and seven substitution matrices for
generic relations. In what follows, we discuss the settings which were used for calculating
the substitution matrix in more detail.

Distributional similarity can be estimated either by using contextual information (Ó
Séaghdha & Copestake, 2008), or by exploring grammatical relations between words (Lee,
1999). In this work we opt for contextual information. This is motivated by the presence
of words belonging to different parts of speech in the dependency paths. For instance,
even though, according to dependency grammar theory (Mel’čuk, 1988), adjectives do not
govern other words, they may still occur in the dependency paths. In other words, even if
parsing does not fail, it may produce unreliable syntactic structures. To be able to compare
words of any part of speech, we have decided to estimate distributional similarity based on
contextual information, rather than on grammatical relations.

While computing distributional similarity, it may happen that a given word xi does not
occur in the corpus. To handle such cases, we always set d(xi, xi) = 1 (the largest possible
similarity score), and d(xi, x

′
j) = 0 when xi 6= x′j (the lowest possible similarity score).

4.2.1 Biomedical domain

To estimate distributional similarity for the biomedical domain, we use the TREC 2006
Genomics collection (Hersch, Cohen, Roberts, & Rakapalli, 2006) which contains 162,259
documents from 49 journals. All documents have been preprocessed by removing HTML-
tags, citations in the text and reference sections and stemmed by the Porter stemmer (van
Rijsbergen, Robertson, & Porter, 1980). Furthermore, the query-likelihood approach with
Dirichlet smoothing (Chen & Goodman, 1996) is used to retrieve document passages given a
query. All passages are ranked according to their likelihood of generating the query. Dirich-
let smoothing is used to avoid zero probabilities and poor probability estimates (which may
happen when words do not occur in the documents). All k unique words occurring in the set
of dependency paths sequences are fed as queries to collect a corpus for estimating similarity.
Immediate context surrounding each pair of words is used to calculate the distributional
similarity of these words. We set the context window to ±2 (2 tokens to the right and 2
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tokens to the left of a word in focus) and do not perform any kind of further preprocessing
such as PoS tagging.

4.2.2 Generic relations

For generic relations, we use all WordNet relatedness measures described in Section 3.2.2.
We have already shown that the WordNet relatedness measures work only on synsets, which
assumes that all words have to be manually annotated with information from WordNet.
Since this is done only for the relations’ arguments (see the example in Figure 3), and for
no other words in sentences (and, correspondingly, in the dependency paths), we build a
substitution matrix as follows. For any two words annotated with WordNet, their substitu-
tion score equals a value returned by a relatedness measure being used. For any other word
pair, it equals 1 whenever the words are identical, and 0 otherwise. 5 For example, if we
consider the words in the dependency path in (25) and the Wu-Palmer (wup) relatedness
measure, the substitution scores that we obtain are as follows:

d(awareness#n#1, awareness#n#1) = 1 d(awareness#n#1, prep from↑) = 0
d(awareness#n#1, come) = 0 d(awareness#n#1, nsubj↓) = 0
d(awareness#n#1, joy#n#1) = 0.35 d(prep from↑, prep from↑) = 1
d(prep from↑, come) = 0 d(prep from↑, nsubj↓) = 0
d(prep from↑, joy#n#1) = 0 d(come, come) = 1
d(come, nsubj↓) = 0 d(come, joy#n#1) = 0
d(nsubj↓, nsubj↓) = 1 d(nsubj↓, joy#n#1) = 0
d(joy#n#1, joy#n#1) = 1

Figure 4: The substitution scores for the dependency path in (25) using wup measure.
Syntactic relations (prep from, subj) are accompanied by the direction of the
dependency tree traversal (either ↑ or ↓).

In the dependency path (25), there are 5 unique elements (t), 2 of which are annotated
with WordNet synsets (k). Consequently, there are 5*6/2 = 15 substitution scores in total,
3 of which are computed using WordNet relatedness.

To compute WordNet relatedness, we use the WordNet::Similarity package for Word-
Net 3.0 (Pedersen, Patwardhan, & Michelizzi, 2004).

4.3 Baselines and Kernel Settings

In this section, we discuss two baselines and kernel settings.

4.3.1 Baselines

To test how well local alignment kernels perform compared to kernels proposed in the past,
we implemented the shortest path kernel described in the work of Bunescu and Mooney

5. This also applies to the cases when the relation arguments could not have been annotated with WordNet
information.

25



Katrenko, Adriaans, & van Someren

(2005a) (Section 2.3.5) as one of the baselines (Baseline I). This method seems to be the
most natural choice because it operates on the same data structures (dependency paths).
Similarly to Bunescu and Mooney’s (2005a) work, in our experiments we use lemma, part of
speech tag and direction, but we do not consider entity type or negative polarity of items.

The choice of the LA kernel in this paper was motivated not only by its ability to
compare sequences in a flexible way, but also because of the possibility to explore additional
information (not present in the training set) via a substitution matrix. The other baseline,
Baseline II, is used to test whether the choice of similarity measures affects the results. In
this case, the substitution scores d(·, ·) are not calculated using distributional similarity or
WordNet relatedness, but generated randomly within the interval [0, 1].

4.3.2 Kernel settings

The kernels we compute are used together with the support vector machine tool LibSVM
(Chang & Lin, 2001) to detect hyperplanes separating positive examples from negative
ones. Before plugging all kernel matrices for 10-fold cross-validation into LibSVM, they are
normalized as in Equation 26.

k(x
′
, y

′
) =

k(x, y)√
k(x, x)k(y, y)

(26)

To handle imbalanced data sets (most notably AImed and BC-PPI), the examples are
weighted using inverse-class probability (i.e. all training examples of class A are weighted
1/prob(A) where prob(A) is the fraction of training examples with class A). All significance
tests were done using a two-tailed paired t-test with confidence level 95% (α = 0.05).

In addition, in all experiments we tuned the penalty parameter C (Equation 4) in the
range (2−6, 2−4, . . . , 212).

To use the LA kernel, one has to set the following parameters: the gap opening cost,
the gap extension cost, and the scaling parameter β. In our cross-validation experiments,
the gap opening cost is set to 1.2, the extension cost to 0.2 and the scaling parameter β to
1. The choice of the scaling value was motivated by the experiments on amino acids in the
biological domain (Saigo et al., 2004). After initial experiments, we present here a further
study where the parameter values are varied.

5. Experiment I: Domain-Specific Relations

The goal of this evaluation is to study the behavior of the LA kernel on domain-specific
relations in the biomedical domain. In this section, we report on the experiments conducted
on three biomedical corpora using the LA kernel based on the distributional similarity mea-
sures, two baselines and results published previously (e.g., using the graph kernel by Airola
et al., 2008 or the tree kernel by Sætre et al., 2008). To the best of our knowledge, string
kernels have not been applied to dependency paths yet. However, a gap-weighted string
kernel (described in Section 2) also allows gapping and can be thus compared to the LA
kernel. To test how Lodhi et al.’s (2002) kernel performs on dependency paths, we use it
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on all three corpora. We have not tuned parameters of this string kernel and set the length
of subsequences to 4 and the decay factor λ to 0.5. 6

5.1 LLL and BC-PPI Data Sets

This subsection presents results on two biomedical data sets, BC-PPI and LLL. Whenever
possible, we also discuss the performance previously reported in the literature.

The 10-fold cross-validation results on the BC-PPI corpus are presented in Table 5 and
on the LLL training data set in Table 6. The LA kernel based on the distributional similarity
measures (LA-Dice, LA-Cosine and LA-L2) performs significantly better than the two base-
lines. Recall that Baseline I corresponds to the shortest path approach (Section 2.3.5) and
Baseline II is the LA kernel with the randomly generated substitution scores. In contrast
to Baseline I, it is able to handle sequences of different lengths including gaps. According
to Equation 5, a comparison of any two sequences of different lengths results in the 0-score.
Nevertheless, it still yields high recall, while precision is much lower. This can be explained
by the fact that the shortest path uses PoS tags. Even though two sequences of the same
length can be very different, their comparison may still result in a non-zero score, provided
that their part of speech tags match. Furthermore, Baseline II suggests that accurate esti-
mation of substitution scores is important for achieving good performance. Baseline II may
yield better results than Baseline I, but randomly generated substitution scores degrade the
performance.

Method Precision Recall F-score
LA-Dice 75.56 79.72 77.56
LA-Cosine 76.40 80.66 78.13
LA-L2 77.56 79.31 78.42
Baseline I 32.04 75.63 45.00
Baseline II 66.36 54.48 59.80
Gap-weighted string kernel (Lodhi et al., 2002) 72.00 75.31 73.62

Table 5: 10-fold cross-validation on the BC-PPI data set.

At first glance, the choice of the distributional similarity measures does not affect the
overall performance yielded by the LA kernel. On the BC-PPI data, the method based on
the L2 measure outperforms the methods based on Dice (p≤.07) and on Cosine, but the
differences in the latter case are not significant. No statistically significant differences were
observed between the method based on Dice and Cosine.

In contrast to the BC-PPI data set, the kernels which use Dice and Cosine measures
on the LLL data set significantly outperform the one based on L2 (at p≤1.22×10−7 and
p≤1.33×10−6, respectively).

On both data sets, the LA method using distributional similarity measures significantly
outperforms the baselines. Interestingly, the gap-weighted string kernel by Lodhi et al.
(2002) yields good performance too and seems to be a better choice than the subsequence

6. Lodhi et al. (2002) have mentioned in their paper that “the F1 numbers (with respect to SSK) seem to
peak at a subsequence length between 4 and 7”.
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kernel based on shallow linguistic information (Giuliano et al., 2006). Recent work on
LLL (Fundel, Kueffner, & Zimmer, 2007) employs dependency information but, in contrast
to our method, it serves as the representation on which extraction rules are defined. Airola
et al. (2008) apply a graph kernel-based approach to extract interactions and use, among
others, the LLL and AImed data sets. As can be seen in Table 6, their method yields results
which are comparable to the gap-weighted string kernel on the dependency paths. To the
best of our knowledge, the performance achieved by the LA kernel on the LLL training set
is the highest (in terms of the F-score) among the results which have been reported in the
literature.

Method Precision Recall F-score
LA-Dice 88.76 81.62 85.03
LA-Cosine 88.63 82.09 85.23
LA-L2 86.80 75.04 80.49
Baseline I 39.02 100.00 56.13
Baseline II 65.82 41.32 50.76
Graph kernel (Airola et al., 2008) 72.5 87.2 76.8
Gap-weighted string kernel (Lodhi et al., 2002) 83.66 71.11 76.88
Shallow linguistic kernel (Giuliano et al., 2006) 62.10 61.30 61.70
Rule-based method (Fundel et al., 2007) 68 83 75

Table 6: 10-fold cross-validation on the LLL-all training data set.

We also apply our method to the LLL test data (Table 7). 7 Even though the per-
formance on the test set is poorer, LA-Dice outperforms both baselines. In addition, the
gap-weighted string kernel (Lodhi et al., 2002) seems to perform much worse on the test
set. For the LA kernel, precision is high, while recall decreases (and most drastically for
the data subset which includes co-references). This might be due to the fact that for some
sentences only incomplete parses are generated and, consequently, no dependency paths
between the entities are found. For 91 out of 567 possible interaction pairs generated on
the test data, there is no dependency path extracted. In contrast, the approach reported by
Giuliano et al. (2006) does not make use of syntactic information, and on the data subset
without coreferences achieves higher recall.

On the other hand, lower recall can also be caused by using actual names of proteins
and genes as arguments. In the work reported before, the relation arguments and other
named entities are often replaced by their types (e.g., PROTEIN) and these are used as
input for the learning algorithm. We conducted additional experiments using named entity
types in the dependency paths, which led to a great improvement in terms of recall and
F-score (Table 7, LLL-coref-LABEL, LLL-nocoref-LABEL, LLL-coref-LABEL). Our method
clearly outperforms the shallow linguistic kernel and also achieves better results than the
best-performing system in the LLL competition (Sbest), which, according to Nédellec (2005),
applied Markov logic to the syntactic paths.

7. Airola et al. (2008) do not report on the performance on the LLL data set and, for this reason, information
on the graph all-paths kernel is not included in Table 7.
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Data set Method Precision Recall F-score

LLL-coref LA-Dice 52.3 37.9 44.0
LLL-nocoref LA-Dice 70.7 53.7 61.0
LLL-all LA-Dice 72.7 48.1 57.9

LLL-all Baseline I 48.6 43.3 45.8
LLL-all Baseline II 12.9 45.7 20.1

LLL-coref-LABEL LA-Dice 60.0 51.7 55.5
LLL-nocoref-LABEL LA-Dice 69.0 53.7 60.4
LLL-all-LABEL LA-Dice 74.5 53.0 61.9

LLL-coref Shallow linguistic kernel (Giuliano et al., 2006) 29.0 31.0 30.0
LLL-nocoref Shallow linguistic kernel (Giuliano et al., 2006) 54.8 62.9 58.6
LLL-all Shallow linguistic kernel (Giuliano et al., 2006) 56.0 61.4 58.6
LLL-all Gap-weighted string kernel (Lodhi et al., 2002) 56.0 16.8 25.9

LLL-all Sbest (Nédellec, 2005) 60.9 46.2 52.6

Table 7: Results on the LLL test data set.

5.2 AImed Data Set

Yet another data set that we consider is AImed. This data set has often been used for
experiments on relation extraction in the biomedical domain, which enables comparison
with other methods. It should be noted, however, that in this particular case, a corpus
is a collection of documents (abstracts). This may lead to two ways of performing 10-fold
cross-validation. One possibility lies in randomly splitting data in 10 parts, while the other
is to do cross-validation on the level of documents. The experiments we report here are
done using the first setting and can be directly compared against the methods described in
the work of Sætre et al. (2008), Erkan et al. (2007) and Giuliano et al. (2006). In addition,
we use the same dependency paths for the LA kernel as the ones employed by Sætre et al.
and Erkan et al.. The results by Airola et al. (2008) and by Bunescu (2007) are obtained
by cross-validating on the level of documents.

We conducted experiments by setting the distributional measure to Dice, referred to as
LA-Dice in Table 8. In the upper part of the table we used dependency paths generated
by the Stanford parser and in the lower part those obtained by Enju. As we discussed in
Section 2, Erkan et al. (2007) use similarity measures to compare dependency paths, but
they do not consider any additional sources whose information can be incorporated into the
learning procedure. They, however, experiment with supervised (SVM) and semi-supervised
learning (TSVM), where the number of training instances is varied. Table 8 shows the best
performance that was achieved by Erkan et al.’s (2007) method. Among models based
on SVM, the one with Cosine distance, SVM-Cos, yields the best results. In the TSVM
setting, the one with the Edit measure performs the best. We observe that LA-Dice slightly
outperforms both and has, in particular, high precision.

In their work, Sætre et al. (2008) explore several parsers and combinations of features.
The features include not only paths from Enju, but also word dependencies generated by
data-driven KSDEP parser, and word features. KSDEP parser is based on a probabilistic

29



Katrenko, Adriaans, & van Someren

shift-reduce algorithm (Sagae & Tsujii, 2007). In general, the method by Sætre et al. also
uses SVM, but in this case it focuses on tree kernels (discussed in Section 2.3.3). To make a
fair comparison, we conducted experiments on the paths obtained by deep syntactic analysis
(Enju parser) and compared our scores against Sætre et al.’s (2008) results. In contrast
to the previous experiments, we achieve higher recall but lower precision. Overall, the LA
kernel yields better performance than the one reported by Sætre et al. However, when
different sets of features are combined (parses from Enju and KSDEP plus word features -
‘Enju+KSDEP+W’ in Table 8), the overall performance can be improved.

Method Parser Precision Recall F-score

LA-Dice Stanford 69.09 54.63 61.02
Baseline I (Bunescu, 2007) Collins 69.08 35.00 46.46
Baseline II Stanford 48.89 25.06 33.07
SVM-Cos (Erkan et al., 2007) Stanford 61.99 54.99 58.09
TSVM-Edit (Erkan et al., 2007) Stanford 59.59 60.68 59.96
Gap-weighted string kernel (Lodhi et al., 2002) Stanford 67.25 54.67 60.31

LA-Dice Enju 71.16 46.71 56.40
Tree kernel (Sætre et al., 2008) Enju 76.0 39.7 52.0
Tree kernel (Sætre et al., 2008) Enju+KSDEP+W 78.1 62.7 69.5

Graph kernel (Airola et al., 2008) Charniak-Lease 52.9 61.8 56.4
Shallow linguistic kernel (Giuliano et al., 2006) none 60.9 57.2 59.0

Table 8: 10-fold cross-validation on the AImed data set.

Bunescu (2007) reports the evaluation results on the AImed corpus in the form of a
precision-recall curve. If we consider the highest precision that was obtained in our exper-
iments (69.09 or 71.16, depending on the input), this roughly corresponds to a recall of
35% in his plot (referred to as Baseline I in Table 8). In sum, the shortest path approach
never approaches performance of the LA kernel on any of the biomedical data sets that
were studied here. The other baseline, Baseline II, achieves the lowest scores from all the
methods presented here.

Table 8 illustrates that not only various methods have been trained on the AImed corpus,
but also many different parsers have been used. It should be noted that the graph kernel has
been trained and tested on the syntactic representation generated by the Charniak-Lease
parser, and the shortest path kernel has explored dependency paths obtained from the
Collins parser. The Charniak-Lease parser is a statistical parser trained on the biomedical
data (Lease & Charniak, 2005), whose phrase structures can be transformed into depen-
dencies. Likewise, the Collins parser is a statistical parser (Collins, 1999). This leads to the
question whether the choice of syntactic parser has a significant impact on the extraction
results. To compare the impact of the syntactic parsers on relation extraction for AImed,
Miyao et al. (2008) have conducted a complex study with eight parsers (including the Stan-
ford analyzer) and five parse representations 8. They consider two cases. In the first one,
parsers have not been trained on biomedical data. Regardless of the parser being used in
their experiments, accuracy for the extraction task is similar. In the second experiment,

8. These are either various dependency tree formats (e. g., in the Stanford dependency format), or phrase
structures, or predicate-arguments structures.
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parsers have been re-trained on domain-specific data. In this case, it has been shown that
the relation extraction results can be improved. The actual gain, however, can vary from
one parser to another.

For the AImed data, the LA kernel with the Dice measure gives state-of-the-art results.
It is outperformed only by approaches that use more information than just dependency
paths.

5.3 LA Kernel Parameters

Saigo et al. (2004) have already shown that the scaling parameter β (Equation 11) has a
significant impact on accuracy. We have also carried out additional experiments by varying
gap values and the value of β. Results are visualized in Figure 5. The opening and extension
gap values are separated by the slash symbol and the values on the X-axis in the form ‘a/b’
should be read as “the opening gap is set to a and the extension gap is equal to b”. The
kernel matrices were normalized and all examples were weighted. According to our previous
experiments, the results yielded by the Dice measure do not significantly differ from the
ones achieved by the Cosine measure and we selected the Dice measure to conduct all
experiments. The performance on the BC-PPI data set is shown in Figure 5.
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Figure 5: Varying gaps and the scaling (β) parameter on the BC-PPI data set (10-fold
cross-validation): F-score.
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Figure 6: Varying gaps and the scaling (β) parameter on the BC-PPI data set (10-fold
cross-validation): Precision.
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Figure 7: Varying gaps and the scaling (β) parameter on the BC-PPI data set (10-fold
cross-validation): Recall.
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The results in Figure 5 indicate that decreasing β leads to a decrease in overall per-
formance. Moreover, varying gap values causes subtle changes in the F-score, but these
changes are not as drastic as changes due to the lower β.

Changes in the F-score are more likely to be explained by variances in precision and
recall. To investigate this matter, we look at how both measures depend on parameter
changes. If β is set to a low value, one can expect that this will nearly diminish the impact
of the substitution matrix, i.e. similarity among elements. For this reason we hypothesize
that larger values of the scaling parameter β should result in higher recall. Indeed, Figure 7
supports this hypothesis and the recall plot resembles the one for the F-score. Varying
parameter values has a much lower impact on precision (Figure 6) but nonetheless precision
does decrease as the β parameter becomes larger.

Overall, β seems to influence the final results the most, although gap values make a
contribution as well. According to the results we obtained, setting an extension gap e to a
large value (or equal to the opening gap o) is undesirable. Since the scaling parameter β is
applied not only to the substitution matrix but to the gap values as well, setting β below
0.5 decreases the effects of gap penalization and similarity of elements. Consequently, the
best performance is achieved by setting β to 1. This suggests that the final performance of
the LA kernel is influenced by a combination of parameters and their choice is crucial for
obtaining good performance.

6. Experiment II: Generic Relations

Another series of experiments was carried out on seven generic relations from the SemEval
- 2007 challenge, Task 4. The choice of the data sets in this case was motivated by two
factors. First, semantic relations used here differ from the relations from the biomedical
domain. Second, since the arguments of relations are annotated with WordNet, it becomes
possible to explore information from WordNet and use it as prior knowledge for the LA
kernel.

Many participants of this challenge considered WordNet either explicitly (Tribble &
Fahlman, 2007; Kim & Baldwin, 2007), or as a part of a complex system (Giuliano et al.,
2007). Since it is not always obvious how to use WordNet so that it yields the best perfor-
mance, many researchers have made additional decisions such as use of supersenses (Hen-
drickx et al., 2007), selection of a predefined number of high-level concepts (Nulty, 2007), or
cutting the WordNet hierarchy at a certain level (Bedmar et al., 2007). Some other systems
such as the one by Nakov (2007) were based solely on information collected from the Web.
Even though it became evident that the best performing systems used WordNet, the vari-
ance in the results is remarkable and it is not clear whether this difference in performance
can be explained by the machine learning methods being used, the combination of features,
or by some other factors.

The SemEval-2007 Task-4 data set includes some relation examples which are nominal
compounds (like ‘coffee maker’), and this greatly reduces availability of information between
two arguments in the dependency paths. The relation arguments in this case are linked by
one grammatical relation (e.g., ‘coffee’ and ‘maker’ are linked by the grammatical relation
‘nn’, which corresponds to ‘noun compound’). We assume, therefore, information coming
from WordNet to be especially helpful when the dependency paths are that short. In all our
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experiments we used 5 relatedness measures defined earlier in Section 3.2 plus one additional
measure which is called ‘random’. The random measure indicates that the relatedness values
between any two relation arguments were generated randomly (within [0, 1]) and is thus very
suitable as a baseline (Baseline II). Similarly to the experiments in the biomedical domain,
another baseline is the shortest path kernel (Baseline I). Note that in the Task 4 overview
paper, Girju et al. (2007) reported on three baselines, which, in their case, were (i) guessing
‘true’ or ‘false’ for all examples, depending on which class is the majority class in the test
set (Baseline III), (ii) always guessing ‘true’ (Baseline IV), and (iii) guessing ‘true’ or ‘false’
with the probability that corresponds to the class distribution in the test set (Baseline V).

The first question of interest is what implications the choice of semantic relatedness
measure has for the performance of the LA kernel. To answer this question, we perform
10-fold cross-validation on the training set (Figure 9, Figure 10 and Figure 11). Among
all 5 measures only jcn and resnik fail to perform better than the random score. In most
cases, the Resnik score is outperformed by other measures. The behaviour of the Leacock-
Chodorow score (lch) and jcn varies from one semantic relation to another. For instance, use
of jcn seems to boost precision for Cause-Effect, Part-Whole, Product - Producer,
and Theme - Tool. For the remaining three relations it is clearly not the best-performing
measure.

To check whether there are differences between relatedness measures, we have carried
out significance tests comparing all measures for all relations. Our findings are summarized
in Table 9. Here, the symbol ∼ between two relatedness measures stands for the measure
equivalence, or, in other words, indicates that there is no significant difference. Similarly
to the experiments in the biomedical field, all significance tests were conducted using a
two-tailed paired t-test with confidence level 95%. In addition, for any two measures a and
b, a > b means that a performs significantly better than b. For instance, the ranking for
Cause - Effect in Table 9 should be read as follows. The two best performing measures
are wup and lch, which significantly outperform lin, followed by random and res, which, in
turn, yield significantly better results than jcn. It can be seen from this table that wup and
lch are clearly the best performing measures for all seven relations (each of them is the best
measure for six out of seven relations).

Relation type Ranking
Cause - Effect wup ∼ lch > lin > res ∼ random > jcn
Instrument - Agency wup ∼ lch > lin > res > jcn ∼ random
Product - Producer wup ∼ lch > lin ∼ jcn ∼ res > random
Origin - Entity wup ∼ lch > lin > res ∼ jcn > random
Theme - Tool lch > lin ∼ wup > res > jcn > random
Part - Whole wup ∼ lin ∼ lch > res > jcn ∼ random
Content - Container wup > lch > lin ∼ res > jcn ∼ random

Table 9: Ranking of the relatedness measures with respect to their accuracy on the train-
ing sets (∼ stands for measure equivalence, a > b indicates that the measure a
significantly outperforms b).
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For each relation, we applied the best performing measure on the training set for this
particular relation to the test data. The results are reported in Table 10. On average, the LA
kernel employing the WordNet relatedness measures significantly outperforms two baselines.
Moreover, when compared to the best results of the SemEval-2007 competition (Beamer
et al., 2007), our method approaches performance yielded by the best system (bestSV ).
This system used not only various lexical, syntactic, and semantic feature sets, but also
expanded the training set by adding examples from many different sources. We have already
mentioned in Section 2 that the recent work by Ó Séaghdha (2009) explores WordNet
structure and graph kernels to classify semantic relations. The overall performance which
is achieved by this method (Table 10) is comparable to the one by the LA kernel, but it is
unclear whether there are any semantic relations for which one of the approaches performs
better.

Relation type Accuracy Precision Recall F-score measure

Cause - Effect 61.25 62.50 60.98 61.73 lch
Instrument - Agency 75.64 73.17 78.95 75.95 wup
Product - Producer 75.27 76.71 90.32 82.96 lch
Origin - Entity 74.07 75.86 61.11 67.69 wup
Theme - Tool 73.24 67.86 65.52 66.67 lch
Part - Whole 80.56 70.00 80.77 75.00 wup
Content - Container 71.62 74.29 68.42 71.23 wup

Average 73.09 71.48 72.30 71.60

Baseline I 58.23 52.50 54.30 49.19
Baseline II 55.83 61.61 55.50 53.93
Baseline III 57.0 81.3 42.9 30.8
Baseline IV 48.5 48.5 100.0 64.8
Baseline V 48.5 48.5 57.1 48.5

bestSV 76.3 79.7 69.8 72.4

Gap-weighted string kernel (Lodhi et al., 2002) 61.19 66.2 47.52 43.02

WordNet kernels (Ó Séaghdha, 2009) 74.1 - - 71.0

Table 10: Results on the SemEval-2007, Task 4 test data set (selecting the best performing
measure on the training set for each relation).

In addition, we report results on the SemEval Task 4 test set per relatedness measure
(Table 11), which are averages over all seven relations. Similarly to our findings on the
training set, wup and lch are the best performing measures on test data as well.

One would expect that the optimal use of prior knowledge should allow us to reduce
the number of training instances without significant changes in performance. To study how
(and whether) the amount of training data influences the results on the test set, we split
the training set in several subsets, creating a model for each subset and applying it to the
SemEval-2007, Task 4 test data. The split corresponds to the split used by the challenge
organizers. As Figure 8 9 suggests, most relations are recognized well even when a relatively
small data sample is used. The exception is the Theme-Tool relation where increasing the

9. The model trained on only 35 Origin-Entity examples classifies none of the test examples as positive,
for this reason there is no point in Figure 8 for this relation given 35 training examples.

35



Katrenko, Adriaans, & van Someren

training data clearly helps. This finding is in line with the results of Giuliano et al. (2007)
whose system was a combination of kernels on the same data. Their results also indicate
that all relations but one (Theme-Tool) are extracted well, even if only a quarter of the
training set is used.

Relatedness measure Accuracy Precision Recall F-score
wup 72.91 71.20 72.56 71.62
lch 72.96 72.31 70.93 71.02
lin 65.27 62.01 67.07 63.65
res 62.94 62.51 59.66 60.46
jcn 55.55 52.25 69.28 57.07
random 56.57 53.10 52.94 52.83

Table 11: Results on the SemEval-2007, Task 4 test data set, averages for all 7 relations
per WordNet relatedness measure.
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Figure 8: Learning curve on the SemEval-2007, Task 4 test data set.

Some other recent work on the SemEval Task 4 data set includes investigation of distri-
butional kernels (Ó Séaghdha & Copestake, 2008), pattern clusters (Davidov & Rappoport,
2008), relational similarity (Nakov & Hearst, 2008), and WordNet kernels. Unlike WordNet
kernels, the first three approaches do not use WordNet. Ó Séaghdha and Copestake (2008)
report an accuracy of 70.7 and the F-score of 67.5 as the best results yielded by distri-
butional kernels and the best performance of Davidov and Rappoport’s (2008) method is
an accuracy of 70.1, and the F-score of 70.6. WordNet kernels, similarly to our findings
with the LA kernel, yield better accuracy than methods not using WordNet (74.1), but the
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Figure 9: 10-fold cross-validation on the training set (Cause - Effect, Instrument -
Agency and Product - Producer relations).
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Figure 10: 10-fold cross-validation on the training set (Origin - Entity, Theme - Tool
and Part - Whole relations).

38



Using Local Alignments for Relation Recognition

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

randomjcnreslchlinwup
similarity measure

Content-Container

precision
recall

F-score

Figure 11: 10-fold cross-validation on the training set (Content - Container relation).

F-score is comparable to the performance reported by Ó Séaghdha and Copestake (2008)
and by Davidov and Rappoport (2008).

7. Discussion

In this section we revisit the goals that were stated at the end of Section 2 and discuss our
findings in more detail.

7.1 The LA Kernel for Relation Extraction

We have introduced the LA kernel, which has proven to be effective for biomedical problems,
in the NLP domain and showed that it is well suited for relation extraction. In particu-
lar, the experiments in two different domains either outperform existing methods or yield
performance on par with existing state-of-the-art kernels.

One of the motivations for using the LA kernel in the relation extraction task is to
exploit prior knowledge. Here, we explore two possibilities, distributional similarity and
information provided by WordNet.

7.1.1 Distributional Similarity Measures

In our setting, we consider three distributional measures that have already been studied
before. For instance, Lee (1999) uses them to detect similar nouns based on verb-object
co-occurrence pairs. The results suggest the Jaccard coefficient (which is related to the
Dice measure) to be one of the best performing measures followed by some others including
Cosine. Euclidean distance fell into the group with the largest error rates. Given previous
work by Lee (1999), one would expect Euclidean distance to achieve worse results than
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the other two measures. Indeed, on the LLL corpus, the LA kernel employing L2 shows
a significant decrease in performance. As to the other measures, the method using Dice
significantly outperforms the one based on the L2 measure only on the LLL corpus while
there is no significant improvement on the BC-PPI data set. Based on the experiments we
have conducted, we conclude that the LA kernel using Dice and Cosine measures performs
similarly on the LLL data set and the BC-PPI corpus. Given the results on various biomed-
ical corpora (and different settings we have experimented with), we obtained experimental
support for choosing the Dice or Cosine measure over the Euclidean distance.

7.1.2 WordNet Similarity Measures

For generic relations, semantic relatedness plays a significant role. The difference in the
F-score between models that use semantic relatedness and the kernel where the relatedness
values are generated randomly (Baseline II) amounts to nearly 20%. All measures exhibit
different performance on the seven generic relations that we have considered. We can
observe, for instance, that wup, lch, and lin almost always yield the best results, no matter
what relation is considered. We found the Resnik score and Jiang and Conrath’s measure
to yield lower results than other measures. Even though the F-scores per relation vary
quite substantially (by placing Cause-Effect, Theme-Tool, Origin-Entity among
the most difficult relations to extract), two measures, wup and lch, are the top-performing
measures for all seven relations. These two measures explore the WordNet taxonomy using
a length of the paths between two concepts, or their depth in the WordNet hierarchy and,
consequently, belong to the path-based measures. The other three measures, res, lin and
jcn are information content based measures, and here relatedness between two concepts
is defined through the amount of information they share. Our experiments with the LA
kernel on generic relation recognition suggest that, in this particular case, the path-based
measures should be preferred over the information content based measures.

We should stress, however, that this is the evaluation of the semantic relatedness mea-
sures in the context of relation recognition, and one can by no means draw a conclusion
that the top measures for other NLP tasks will stay the same. For example, Budanitsky
and Hirst (2006) use semantic relatedness measures to detect malapropism and show that
Jiang and Conrath’s measure (jcn) yields the best results, followed by Lin’s measure (lin),
and the one by Leacock and Chodorow (lch), and then by Resnik’s measure (res). Our
results are quite similar to their findings if we consider the res measure, but jcn is not on
the top of the accuracy ranking list for any of the seven semantic relations that we have
studied.

7.2 Factors and Parameters that Influence the LA Kernel Performance

Our experiments in two domains have shown that the LA kernel either outperforms existing
methods on the same corpora, or yields performance on par with existing state-of-the-art
kernels.

7.2.1 Baselines

An advantage of the LA kernel over the Bunescu shortest path method (Baseline I) is that
it is capable of handling paths of different lengths. By allowing gaps and penalizing them,
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the final kernel matrix becomes less sparse. The shortest path approach also attempts to
generalize over the dependency paths, but it usually overgeneralizes which leads to high
recall scores (Table 5 and Table 6) but to poor overall performance. One explanation for
overgeneralization may be that this method accounts well for structural similarity (provided
sequences are of the same length) but fails to provide finer distinctions among dependency
paths. Consider, for example, two sequences ‘trip ← makes → tram’ and ‘coffee ← makes
→ guy’, whereby the first path represents a negative instance of the Product-Producer
relation and the second path corresponds to a positive one. Even though they do not match
exactly, the elements that do not match are all nouns in singular. Consequently, comparison
according to the shortest path method will result in a relatively high similarity score. In
contrast, the LA kernel will consider similarity of the elements and the pairs ‘trip’-‘coffee’
and ‘tram’-‘guy’ will obtain low scores.

In addition, Baseline II, which is based on randomly generated substitution scores,
performs poor for all data sets (or comparable to Baseline I). This leads us to the conclusion
that accurate estimation of similarities is another reason why the LA kernel performs well
on relation extraction.

7.2.2 Comparison with Other Methods

As we have already pointed out, the obvious shortcoming of Baseline I is its inability to
handle dependency paths of different length. For this reason, we have also applied the
gap-weighted string kernel (Lodhi et al., 2002) to all data sets. In this case, dependency
paths can be compared in a flexible way because gapping is allowed, but no other additional
information is used. This kernel outperforms Baseline I by increasing precision of relation
extraction while preserving a relatively high recall. The only data set where it fails to yield
good results is the LLL test data, and we believe this is due to the differences in the LLL
training and test data. For all data sets, the LA kernel achieves better performance than
the gap-weighted string kernel. The margin, however, is different for different data sets. In
the biomedical domain, the differences between the two methods can more clearly be seen
on the BC-PPI and LLL data sets, while the results on the AImed corpus are comparable.
However, other methods tested on AImed do not get higher scores unless they use more
features than just dependency paths. This holds for both types of cross-validation used
on this corpus. For generic relations, the difference between the LA kernel and the gap-
weighted string kernel is much larger. In particular, in the case of the gap-weighted kernel,
precision is high, but recall is much lower. This can be explained by the fact that generic
relations benefit from the knowledge found in WordNet and recall achieved by the LA kernel
is, therefore, high. The gap-weighted kernel has access only to information found in the
dependency paths and, for this reason, fails to find more relations.

The LA kernel also achieves the best performance on the LLL training set, outperforming
the graph kernel (Airola et al., 2008), the shallow linguistic kernel (Giuliano et al., 2006)
and the rule-based system by Fundel et al. (2007). All three have used different input for
their methods, varying from plain text to dependency structures. For this reason, a direct
comparison is unfortunately not possible, but we can conclude that the methods employing
dependency information always are among the best performing approaches.
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Two other approaches whose performance has been reported on the AImed data set in-
clude the tree kernel (Sætre et al., 2008) and TSVM (Erkan et al., 2007). Both of them
explore syntactic information in different ways. While Sætre et al. consider subtrees, the
method of Erkan et al. has more similarities with our approach because it relies on the
dependency path comparison. To do this comparison, they only use information already
available in the dependency paths (SVM setting), or more dependency paths (TSVM set-
ting). According to Lauer and Bloch (2008), TSVMs fall into the category using prior
knowledge by ‘sampling methods’, because it explores prior knowledge by generating new
examples. In contrast, we employ information from large unlabeled text sources in order to
enable finer comparison of the dependency paths and always work in the supervised learning
setting. Using the same evaluation procedure as in the work of Sætre et al. and Erkan et al.
we show that the LA kernel outperforms both methods, but the differences on this data set
are much smaller than on the other data sets we have used.

7.2.3 The LA Parameters

We have demonstrated that the choice of LA parameters is crucial for achieving good perfor-
mance. In our experiments, the scaling parameter β contributes to the overall performance
at most, but the other parameters such as gap values have to be taken into account as well.
When β approaches infinity, the LA kernel approximates the Smith-Waterman distance,
but increasing β does not necessarily have a positive impact on the final performance. This
finding is in line with the results reported by Saigo et al. (2004) on the homology detection
task. The best performance is yielded by setting the scaling parameter to 1 or a bit higher,
and by penalizing the gap extension less than the gap opening.

8. Conclusions and Future Work

We have presented a novel approach to relation extraction that is based on the local align-
ments of sequences. Using an LA kernel provides us an opportunity to explore various
sources of information and to study their role in relation recognition. Possible future direc-
tions include, therefore, an examination of other distributional similarity measures, studying
their impact on the extraction of generic relations, and looking for other sources of infor-
mation which could be helpful for relation recognition. It may be interesting to consider
relational similarity (Turney, 2006), which looks for the correspondence between relation
instances. In this case, one should be able to infer that ‘doctor’ corresponds to ‘scalpel’ in
a similar way as ‘fisherman’ to ‘net’ (where both (scalpel, doctor) and (net, fisherman) are
examples of Instrument - Agency).

Despite the sparseness problem that might occur when WordNet-based measures are
used, these measures have an advantage over the distributional measures by treating ele-
ments to be compared as concepts rather than words. In the NLP community, a few steps
have been already taken to solve this problem by clustering words in large corpora aiming
at word sense discovery (Pennacchiotti & Pantel, 2006). Recently, Mohammad (2008) in
his thesis investigated the compatibility of distributional measures with ontological ones.
By using corpus statistics and a thesaurus, the author introduced distributional profiles of
senses and defined distance measures on them. Even though this new approach to calculat-

42



Using Local Alignments for Relation Recognition

ing similarity was tested on generic corpora, it would be of a certain interest to apply it to
domain-specific data.

Overall, local alignment kernels provide a flexible means to work with data sequences.
First, they allow a partial match between sequences which is particularly important when
dealing with text. Second, it is possible to incorporate prior knowledge in the learning
process while preserving kernel validity. In general, LA kernels can be applied to other
NLP problems as long as the input data is in the form of sequences.
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